
HAL Id: inria-00144010
https://inria.hal.science/inria-00144010v1

Submitted on 30 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ensemble Learning for Free with Evolutionary
Algorithms ?

Christian Gagné, Michèle Sebag, Marc Schoenauer, Marco Tomassini

To cite this version:
Christian Gagné, Michèle Sebag, Marc Schoenauer, Marco Tomassini. Ensemble Learning for Free with
Evolutionary Algorithms ?. GECCO, ACM SIGEVO, Jul 2007, London, United Kingdom. pp.1782-
1789. �inria-00144010�

https://inria.hal.science/inria-00144010v1
https://hal.archives-ouvertes.fr

in
ria

-0
01

44
01

0,
 v

er
si

on
 1

 -
 3

0
A

pr
 2

00
7

Ensemble Learning for Free with Evolutionary Algorithms ?

Christian Gagné
∗

Informatique WGZ Inc.,
819 avenue Monk,

Québec (QC), G1S 3M9, Canada.

christian.gagne@wgz.ca

Michèle Sebag
Équipe TAO – CNRS UMR 8623 / INRIA Futurs,

LRI, Bat. 490, Université Paris Sud,
F-91405 Orsay Cedex, France.

michele.sebag@lri.fr

Marc Schoenauer
Équipe TAO – INRIA Futurs / CNRS UMR 8623,

LRI, Bat. 490, Université Paris Sud,
F-91405 Orsay Cedex, France.

marc.schoenauer@lri.fr

Marco Tomassini
Information Systems Institute,

Université de Lausanne,
CH-1015 Dorigny, Switzerland.

marco.tomassini@unil.ch

ABSTRACT
Evolutionary Learning proceeds by evolving a population of
classifiers, from which it generally returns (with some no-
table exceptions) the single best-of-run classifier as final re-
sult. In the meanwhile, Ensemble Learning, one of the most
efficient approaches in supervised Machine Learning for the
last decade, proceeds by building a population of diverse
classifiers. Ensemble Learning with Evolutionary Compu-
tation thus receives increasing attention. The Evolutionary
Ensemble Learning (EEL) approach presented in this paper
features two contributions. First, a new fitness function, in-
spired by co-evolution and enforcing the classifier diversity,
is presented. Further, a new selection criterion based on
the classification margin is proposed. This criterion is used
to extract the classifier ensemble from the final population
only (Off-EEL) or incrementally along evolution (On-EEL).
Experiments on a set of benchmark problems show that
Off-EEL outperforms single-hypothesis evolutionary learn-
ing and state-of-art Boosting and generates smaller classifier
ensembles.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation; I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search—Heuristic
methods

∗This work has been mainly realized during a postdoctoral
fellowship of Christian Gagné at the University of Lausanne.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

General Terms
Algorithms

Keywords
Ensemble Learning, Evolutionary Computation

1. INTRODUCTION
Ensemble Learning, one of the main advances in Super-

vised Machine Learning since the early 90’s, relies on: i) a
weak learner (extracting hypotheses, aka classifiers, with er-
ror probability less than 1/2− ǫ, ǫ > 0); ii) a diversification
heuristics used to extract sufficiently diverse classifiers; iii)
a voting mechanism, aggregating the diverse classifiers con-
structed [1, 8]. If the classifiers are sufficiently diverse and
their errors are independent, then their majority vote will
reach an arbitrarily low error rate on the training set as the
number of classifiers increases [6]. Therefore, up to some re-
strictions on the classifier space [25], the generalization error
will also be low1.

The most innovative aspect of Ensemble Learning w.r.t.
the Machine Learning literature concerns the diversity re-
quirement, implemented through parallel or sequential heu-
ristics. In Bagging, diversity is enforced by considering inde-
pendent sub-samples of the training set, and/or using differ-
ent learning parameters [1]. Boosting iteratively constructs
a sequence of classifiers, where each classifier focuses on the
examples misclassified by the previous ones [8].

Diversity is also a key feature of Evolutionary Computa-
tion (EC): in contrast with all other stochastic optimization
approaches, evolutionary algorithms proceed by evolving a
population of solutions, and the diversity thereof has been
stressed as a key factor of success since the beginnings of
EC. Deep similarities between Ensemble Learning and EC
thus appear; in both cases, diversity is used to escape from
local minima, where any single “best” solution is only too
easily trapped. Despite this similarity, Evolutionary Learn-
ing has most often (with some notable exceptions, see [14,
1In practice, the generalization error is estimated from the
error on a test set, disjoint from the training set. The reader
is referred to [4] for a comprehensive discussion about the
comparative evaluation of learning algorithms.

16, 18] among others) focused on single-hypothesis learning,
where some single best-of-run hypothesis is returned as the
solution.

However, the evolutionary population itself could be used
as a pool for recruiting the elements of an ensemble, en-
abling “Ensemble Learning for Free”. Previous work along
this line will be described in Section 2, mostly based on us-
ing an evolutionary algorithm as weak learner [17], or using
evolutionary diversity-enforcing heuristics [16, 18].

In this paper, the “Evolutionary Ensemble Learning For
Free” claim is empirically examined along two directions.
The first direction is that of the classifier diversity; a new
learning-oriented fitness function is proposed, inspired by
the co-evolution framework [13] and generalizing the diver-
sity-enforcing fitness proposed by [18]. The second direction
is that of the selection of the ensemble classifiers within the
evolutionary population(s). Selecting the best classifiers in a
pool amounts to a feature selection problem, that is, a com-
binatorial optimization problem [12]. A greedy set-covering
approach is used, build on a margin-based criterion inspired
by Schapire et al. [23]. Finally, the paper presents two
Evolutionary Ensemble Learning (EEL) approaches, called
Off-EEL and On-EEL, respectively tackling the selection of
the ensemble classifiers in the final population, or along evo-
lution.

Paper structure is as follows. Section 2 reviews and dis-
cusses some work relevant to Evolutionary Ensemble Learn-
ing. Section 3 describes the two proposed approaches Off-
EEL and On-EEL, introducing the specific fitness function
and the ensemble classifier selection procedure. Experi-
mental results based on benchmark problems from the UCI
repository are reported in Section 4. The paper concludes
with some perspectives for further research, discussing the
priorities for a tight coupling of Ensemble Learning with
Evolutionary Optimization in terms of dynamic systems [22].

2. RELATED WORK
Interestingly, some early approaches in Evolutionary Learn-

ing were rooted on Ensemble Learning ideas2. The Michigan
approach [14] evolves a population made of rules, whereas
the Pittsburgh approach evolves a population made of sets
of rules. What is gained in flexibility and tractability in the
Michigan approach is compensated by the difficulty of as-
sessing a single rule, for the following reason. A rule usually
only covers a part of the example space; gathering the best
rules (e.g. the rules with highest accuracy) does not result
in the best ruleset. Designing an efficient fitness function,
such that a good quality ruleset could be extracted from the
final population, was found a tricky task.

In the last decade, Ensemble Learning has been explored
within Evolutionary Learning, chiefly in the context of Ge-
netic Programming (GP). A first trend directly inspired
from Bagging and Boosting aims at reducing the fitness com-
putation cost [7, 16] and/or dealing with datasets which do
not fit in memory [24]. For instance, Iba [16] divided the GP
population into several sub-populations which are evaluated
on subsets of the training set. Folino et al. [7] likewise sam-
pled the training set in a Bagging-like mode in the context

2Learning Classifier Systems (LCS, [14, 15]) are mostly de-
voted to Reinforcement Learning, as opposed to Supervised
Machine Learning; therefore they will not be considered in
the paper.

of parallel cellular GP. Song et al. [24] used Boosting-like
heuristics to deal with training sets that do not fit in mem-
ory; the training set is divided into folds, one of which is
loaded in memory and periodically replaced; at each gen-
eration, small subsets are selected from the current fold to
compute the fitness function, where the selection is nicely
based on a mixture of uniform and Boosting-like distribu-
tions.

The use of Evolutionary Algorithms as weak learners with-
in a standard Bagging or Boosting approach has also been
investigated. Boosting approaches for GP have been applied
for instance to classification [21] or symbolic regression [17]:
each run delivers a GP tree minimizing the weighted sum
of the training errors, and the weights were computed as in
standard Boosting [8]. While such ensembles of GP trees
result, as expected, in a much lower variance of the perfor-
mance, they do not fully exploit the population-based nature
of GP, as independent runs are launched to learn successive
classifiers.

Liu et al. [18] proposed a tight coupling between Evo-
lutionary Algorithms and Ensemble Learning. They con-
structed an ensemble of Neural Networks, using a modified
back-propagation algorithm to enforce the diversity of the
networks; specifically, the back-propagation aims at both
minimizing the training error and maximizing the negative
correlation of the current network with respect to the current
population. Further, the fitness associated to each network
is the sum of the weights of all examples it correctly classi-
fies, where the weight of each example is inversely propor-
tional to the number of classifiers that correctly classify this
example. While this approach nicely suggests that ensemble
learning is a Multiple Objective Optimization (MOO) prob-
lem (minimize the error rate and maximize the diversity),
it classically handles the MOO problem as a fixed weighted
sum of the objectives.

The MOO perspective was further investigated by Chan-
dra and Yao in the DIVACE system, a highly sophisticated
system for the multi-level evolution of ensemble of classi-
fiers [2, 3]. In [3], the top-level evolution simultaneously
minimizes the error rate (accuracy) and maximizes the neg-
ative correlation (diversity). In [2], the negative correlation-
inspired criterion is replaced by a pairwise failure crediting ;
the difference concerns the misclassification of examples that
are correctly classified by other classifiers. Finally, the en-
semble is constructed either by keeping all classifiers in the
final population, or by clustering the final population (after
their phenotypic distance) and selecting a classifier in each
cluster.

While the MOO perspective nicely captures the interplay
of the accuracy and diversity goals within Ensemble Learn-
ing, the selection of the classifiers in the genetic pool as
done in [2, 3] does not fully exploit the possibilities of evo-
lutionary optimization, in two respects. On the one hand, it
only considers the final population that usually involves up
to a few hundred classifiers, while learning ensembles com-
monly involve some thousand classifiers. On the other hand,
clustering-based selection proceeds on the basis of the phe-
notypic distance between classifiers, considering again that
all examples are equally important, while the higher stress
put on harder examples is considered the source of the better
Boosting efficiency [5].

3. ENSEMBLE LEARNING FOR FREE

After the above discussion, Evolutionary Ensemble Learn-
ing (EEL) involves two critical issues: i) how to enforce both
the predictive accuracy and the diversity of the classifiers in
the population, and across generations; ii) how to best se-
lect the ensemble classifiers, from either the final population
only or all along evolution.

Two EEL frameworks have been designed to study these
interdependent issues. The first one dubbed Offline Evolu-
tionary Ensemble Learning (Off-EEL) constructs the ensem-
ble from the final population only. The second one, called
Online Evolutionary Ensemble Learning (On-EEL), gradu-
ally constructs the classifier ensemble as a selective archive
of evolution, where some classifiers are added to the archive
at each generation.

Both approaches combine a standard generational evo-
lutionary algorithm with two interdependent components:
a new diversity-enhancing fitness function, and a selection
mechanism. The fitness function, presented in Section 3.1
and generalizing the fitness devised by Liu et al. [18], is in-
spired from co-evolution [13]. The selection process is used
to extract a set of classifiers from either the final population
(Off-EEL) or the current archive plus the current popula-
tion (On-EEL), and proceeds by greedily maximizing the
ensemble margin (Section 3.2).

Only binary or multi-class classification problems are con-
sidered in this paper. The decision of the classifier ensemble
is the majority vote among the classifiers (ties being arbi-
trarily broken).

3.1 Diversity-enforcing Fitness
Traditionally, Evolutionary Learning maximizes the num-

ber of correctly classified training examples (or equivalently
minimizes the error rate). However, examples are not equally
informative; therefore a rule correctly classifying a hard ex-
ample (e.g. close to the frontiers of the target concept) is
more interesting and should be more rewarded than a rule
correctly classifying an example which is correctly classified
by almost all rules.

Co-evolutionary learning, first pioneered by Hillis [13],
nicely takes advantage of the above remark, gradually forg-
ing more and more difficult examples to enforce the discov-
ery of high-quality solutions. Boosting proceeds along the
same lines, gradually putting the stress on the examples
which have not been successfully predicted so far.

A main difference between both frameworks is that Boost-
ing exploits a finite set of labelled examples, while co-evol-
utionary learning has an infinite supply of labelled examples
(since it embeds the oracle). A second difference is that the
difficulty of an example depends on the whole sequence of
classifiers in Boosting, whereas it only depends on the cur-
rent classifier population in co-evolution. In other words,
Boosting is a memory-based process, while co-evolutionary
learning is a memoryless one. Both approaches thus suf-
fer from opposite weaknesses. Being a memory-based pro-
cess, Boosting can be misled by noisy examples; consistently
misclassified, these examples eventually get heavy weights
and thus destabilize the Boosting learning process. Quite
the contrary, co-evolution can forget what has been learned
during early stages and specific heuristics, e.g. the so-called
Hall-of-Fame, archive of best-so-far individuals, are required
to prevent co-evolution from cycling in the learning land-
scape [20].

Based on these ideas, the fitness of classifiers is defined in

this work from a set of reference classifiers noted Q. The
hardness of every training example x is measured after the
number of classifiers in Q which misclassify x. The fitness of
every classifier h is then measured by the cumulated hard-
ness of the examples that are correctly classified by h.

Three remarks can be made concerning this fitness func-
tion. Firstly, contrasting with standard co-evolution, there
is no way classifiers can “unlearn” to classify the training ex-
amples, since the training set is fixed. Secondly, as in Boost-
ing, the fitness of a classifier reflects its diversity with respect
to the reference set. Lastly, the classifier fitness function is
highly multi-modal compared to the simple error rate: good
classifiers might correctly classify many easy examples, or
sufficiently many hard enough examples, or a few very hard
examples.

Formally, let E = {(xi, yi), xi ∈ X , yi ∈ Y, i = 1 . . . n}
denote the training set (referred to as set of fitness cases
in the GP context); each fitness case or example (xi, yi) is
composed of an instance xi belonging to the instance space
X and the associated label yi belonging to a finite set Y .
Any classifier h is a function mapping the instance space X
onto Y . The loss function ℓ is defined as ℓ : Y × Y 7→ IR,
where ℓ(y, y′) is the (real valued) error cost of predicting
label y instead of the true label y′.

The hardness or weight of every training example (xi, yi),
noted wQ

i , or wi when the reference set Q is clear from
the context, is the average loss incurred by the reference
classifiers on (xi, yi):

wi =
1

|Q|
∑

h∈Q

ℓ(h(xi), yi). (1)

The cumulated hardness fitness F is finally defined as fol-
lows: F(h) is the sum over all training examples that are
correctly classified by h, of their weight wi raised to power
γ. Parameter γ governs the importance of the weights wi

(the cumulated hardness boils down to the number of cor-
rectly classified examples for γ = 0) and thus the diversity
pressure.

F(h) =
∑

i=1...n
h(xi)=yi

wγ
i (2)

Parameter γ can also be adjusted depending on the level
of noise in the dataset. As noisy examples typically reach
high weights, increasing the value of γ might lead to retain
spurious hypotheses, which happen to correctly classify a
few noisy examples. When ℓ is set to the step loss function
(ℓ(y, y′) = 0 if y = y′, 1 otherwise) and γ is set to 1, the
above fitness function is the same as the one used by Liu
et al. [18]. The value of γ is set to 2 in the experiments
(Section 4).

3.2 Ensemble Selection
As noted earlier on, the selection of classifiers in a pool

H = {h1, . . . , hT } in order to form an efficient ensemble
is formally equivalent to a feature selection problem. The
equivalence is seen by replacing the initial instance space X
with the one defined from the classifier pool, where each in-
stance xi is redescribed as the vector (h1(xi), . . . , hT (xi)).
Feature selection algorithms [12] could thus be used for en-
semble selection; unfortunately, feature selection is one of
the most difficult Machine Learning problems.

Therefore, a simple greedy selection process is used in this
paper to select the classifiers in the diverse pools considered

Figure 1: Pseudo-code of Ensemble-Selection(Classifier pool H, training set E , initial classifier ensemble L0).

1. Let t = 1, and H1 be the set H with duplicate individuals removed

2. While Ht is not empty:

(a) Let h∗
t = argmaxh∈Ht

(Lt−1 ∪ {h}) after the margin-based order relation of Equation 5

(b) Let Ht+1 = Ht\{h∗
t } (remove h∗

t from Ht)

(c) Let Lt = Lt−1 ∪ {h∗
t } (and add it to Lt)

(d) t = t + 1

3. Return L∗, the classifier ensemble in {L0 . . .Lt−1} that achieves the lowest error rate on E , selecting the smallest
ensemble in case of ties.

by the Off-EEL (Section 3.3) and On-EEL (Section 3.4) al-
gorithms. The novelty is the selection criterion, generalizing
the notion of margin [11, 23] to an ensemble of examples as
follows.

Formally, let L denote the current ensemble, initialized to
the classifier h∗ with minimum error rate in H. For each
example (xi, yi), let its margin mi be defined as follows.
Let y′

i be the class most frequently associated to xi by the
classifiers in L, such that y′

i is different from the true class
yi. Let ci (respectively c′i) denote the number of classifiers
in L associating class yi (resp. y′

i) to xi. Then margin mi

is defined as ci − c′i. A positive margin thus denotes the
fact that the example is correctly classified by the majority
vote; the higher the margin, the more confident the ensemble
prediction. Conversely, a negative margin denotes an error;
the ensemble misclassifies the example as belonging to class
y′

i; the more negative the margin, the more classifiers need
to be added to the ensemble in order to correctly classify xi.

Let K denote the number of classes of the problem and
|A| the size of a set A. The above definitions then read:

y′
i = argmax

k=1...K
k 6=yi

|{hj(xi) = k, hj ∈ L}| , (3)

mi = |{hj(xi) = yi, hj ∈ L}| −
|{hj(xi) = y′

i, hj ∈ L}|. (4)

Initially, the quality of ensemble L was measured after its
minimum margin when (xi, yi) ranges over the training set,
and the selection process aimed at maximizing the minimum
margin likewise Boosting [22]. However, it turned out exper-
imentally that the minimum margin alone is too coarse a cri-
terion, leading to many ties. Thus, a finer grained criterion,
based on the margin histogram, has finally been defined.

Let c(L, m) denote the number of training examples with
margin m after L. An order relation on classifier ensembles
L and L′ can then be defined by comparing c(L, m) and
c(L′, m) for increasing values of m; the best ensemble is
the one with lesser number of examples with the smallest
margin.

L < L′ iff ∃ m0 s.t.

{

∀m < m0, c(L, m) = c(L′, m)
c(L, m0) > c(L′, m0)

(5)

The pseudo-code of the ensemble selection algorithm is
displayed in Figure 1. It starts with a classifier pool H, a set
of training examples E and an initial set of classifiers L0. It

then iteratively moves all classifiers from H into L, based on
the above order on ensembles. Ultimately, the ensemble with
lowest error rate on E in the ensemble sequence L0 . . .Lt−1

is selected.

3.3 Offline Evolutionary Ensemble Learning
Off-EEL is a two-step process. It firstly runs a standard

evolutionary learning algorithm. The approach does not
make any requirement on the genetic search space, that is
the classifier space; the designer can run Off-EEL on the top
of her favorite evolutionary learning algorithm, searching for
linear classifiers, neural nets, rule systems, or genetic pro-
grams. The only required modification concerns the fitness
function, which is set to the diversity-enhancing fitness de-
scribed in Section 3.1, taking the whole current population
as set of reference classifiers. In contrast with Boosting, the
process does not maintain any memory about the examples;
their weights are recomputed from scratch at each genera-
tion. While Boosting might result in exponentially increas-
ing the weight of hard or possibly noisy examples, Off-EEL
thus keeps the weight of each training example bounded,
and thereby avoids the instability due to the data noise.

The second step achieves the ensemble selection based on
the margin-based criterion (Section 3.2 and Figure 1). It
uses the final population as pool of classifiers H, and ini-
tializes the classifier ensemble to the classifier h∗ that has
the smallest error rate on the training set in the population
(L0 = {h∗}).

3.4 Online Evolutionary Ensemble Learning
In contrast with Off-EEL, On-EEL interleaves evolution-

ary learning and ensemble selection; at each generation the
classifier ensemble is updated using the current population.

At generation 1, the classifier ensemble is initialized to the
classifier that minimizes the error rate on the training set.
In further generations, the current population is evolved us-
ing the diversity-enhancing fitness function with the current
ensemble as reference set (Section 3.1), and the ensemble
selection algorithm (Figure 1) is launched, using the current
population as classifier pool H, and the current classifier en-
semble as L0. The pseudo-code of On-EEL is given in Figure
2.

Notably, Off-EEL and On-EEL achieve different Explo-
ration vs Exploitation trade-offs. In Off-EEL, the set of ref-
erence classifiers is the current population; the fitness func-

Figure 2: Pseudo-code of On-EEL(training set E).

1. Let P1 be the first evolutionary population, and h∗ the
classifier with minimal error rate on E .

2. L1 = Ensemble-Selection(P1 , E , {h∗})

3. For t = 2 . . . T :

(a) Evolve Pt−1 → Pt, using Lt−1 as reference set.

(b) Lt = Ensemble-Selection(Pt , E ,Lt−1)

4. Return LT .

tion thus favors both accurate and diverse classifiers in each
generation. The ensemble selection algorithm is launched
only once, on a high quality and diversified pool of classi-
fiers.

In On-EEL, the set of reference classifiers is the current
classifier ensemble; like in Boosting, the goal is to find classi-
fiers which overcome the errors of the past classifiers. While
the ensemble selection algorithm is launched at every gen-
eration, it uses the biased current population as classifier
pool. In fact, On-EEL addresses a dynamic optimization
problem; if the classifier ensemble significantly changes be-
tween one generation and the next, the fitness landscape
will change accordingly and several evolutionary generations
might be needed to accommodate this change. On the other
hand, as long as the current population does not perform
well, the ensemble selection algorithm is unlikely to select
further classifiers in the current ensemble; the fitness land-
scape thus remains stable. The population diversity does
not directly result from the fitness function as in the Off-
EEL case; rather, it relates with the dynamic aspects of the
fitness function.

4. EXPERIMENTAL SETTING
This section describes the experimental setting used to

assess the EEL framework.

4.1 Datasets
Experiments are conducted on the six UCI datasets [19]

presented in Table 1. The performance of each algorithm is
measured after a standard stratified 10-fold cross-validation
procedure. The dataset is partitioned into 10 folds with
same class distribution. Iteratively, all folds but the i-th
one are used to train a classifier, and the error rate of this
classifier on the remaining i-th fold is recorded. The per-
formance of the algorithm is averaged over 10 runs for each
fold, and over the 10 folds.

4.2 Classifier Search Space
As mentioned earlier on, evolutionary ensemble learning

can accommodate any type of classifier; Off-EEL and On-
EEL could consider neural nets, genetic programs or decision
lists as genotypic search space. Our experiments will con-
sider the most straightforward classifiers, namely separating
hyperplanes, as these can easily be inspected and compared.
Formally, let X = IRd be the instance space, a separating

hyperplane classifier h is characterized as (w, b) ∈ IRd × IR
with h(x) = < w,x > − b (< w,x > denotes the scalar
product of w and x). The search for a separating hyper-
plane is amenable to quadratic optimization, with:

F(h) =
∑

i=1...n

(h(xi) − yi)
2. (6)

As the above optimization problem can be tackled using
standard optimization algorithms, it provides a well-founded
baseline for comparison. Specifically, the first goal of the
experiments is thus to assess the merits of evolutionary en-
semble learning against three other approaches.

The first baseline algorithm referred to as Least Mean
Square (LMS) uses a stochastic gradient algorithm to de-
termine the optimal separating hyperplane in the sense of
criterion given by Equation 6 (see pseudo-code in Figure 3).

The second baseline algorithm is an elementary evolution-
ary algorithm, producing the best-of-run separating hyper-
plane such that it minimizes the (training) error rate3.

The third reference algorithm is the prototypical ensem-
ble learning algorithm, namely AdaBoost with its default
parameters [8]. AdaBoost uses simple decision stumps [23]
baseline algorithm as weak learner (more on this below).

The learning error is classically viewed as composed from
a variance term and a bias term [1]. The bias term mea-
sures how far the target concept tc is from the classifier
search space H, that is, from the best classifier h∗ in this
search space. The variance term measures how far away one
can wander from h∗, wrongly selecting other classifiers in H
(overfitting).

The comparison of the first and second baseline algorithms
gives some insight into the intrinsic difficulty of the problem.
Stochastic gradient (LMS) will find the global optimum for
criterion given by Equation 6, but this solution optimizes at
best the training error. The comparison between the solu-
tions respectively found by LMS and the simple evolutionary
algorithm will thus reflect the learning variance term.

Similarly, the comparison of the first baseline algorithm
and AdaBoost gives some insight into how the ensemble im-
proves on the base weak learner; this improvement can be
interpreted in terms of variance as well as in terms of bias
(since the majority vote of decision stumps allows for de-
scribing more complex regions than simple separating hy-
perplanes alone).

4.3 Experimental Setting
The parameters for the LMS algorithm (see Figure 3) are

as follows: the training rate, set to η(t) = 1/(n
√

t), decreases
over the training epochs; the maximum number of epochs
allowed is T = 10000; the stopping criterion is when the
difference in the error rates over two consecutive epochs, is
less that some threshold ǫ (ǫ = 10−7). Importantly, LMS
requires a preliminary normalization of the dataset, (e.g.
∀i = 1 . . . n, xi ∈ [−1, 1]d). The final result is the error on
the test set, averaged over 10 runs for each fold (because of
the stochastic reordering of the training set) and averaged
over 10 folds.

3For 3-classes problems, e.g. bos or cmc, the classifier is
characterized as two hyperplanes, respectively separating
class 0 (resp. class 1) from the other two classes. In case of
conflict (the example is simultaneously classified in class 0
by the first classifier and in class 1 by the second classifier),
the tie is broken arbitrarily.

Table 1: UCI datasets used for the experimentations.
#

Dataset Size features classes Application domain
bcw 683 9 2 Wisconsin’s breast cancer, 65 % benign and 35 % malignant.
bld 345 6 2 BUPA liver disorders, 58 % with disorders and 42 % without disorder.
bos 508 13 3 Boston housing, 34 % with median value v < 18.77 K$, 33 % with v ∈]18.77, 23.74],

and 33 % with v > 23.74.
cmc 1473 9 3 Contraceptive method choice, 43 % not using contraception, 35 % using short-term

contraception, and 23 % using long-term contraception.
pid 768 8 2 Pima indians diabetes, 65 % tested negative and 35 % tested positive for diabetes.
spa 4601 57 2 Junk e-mail classification, 61 % tested non-junk and 39 % tested junk.

Figure 3: Least-mean square training algorithm.

1. Initialize w = 0 and b = 0

2. For t = 1 . . . T :

(a) Shuffle the dataset E = {(xi, yi), i = 1 . . . n}
(b) For i = 1 . . . n:

ai = < w,xi > − b

∆i = 2η(t)(ai − yi)

w = w + ∆ixi

b = b − ∆i

(c) Errt =
√

1

n

∑

i=1...n(ai − yi)2 (RMS error)

(d) If |Errt − Errt−1| < ǫ, stop

The classical AdaBoost algorithm [8] uses simple decision
stumps [23], and the number of Boosting iterations is limited
to 2000. Decision stumps are simple binary classifiers that
classify data according to a threshold value on one of the
features of the data set. If the feature value of a given data
is less (or greater) than the threshold, the data is assigned
to a given class, otherwise it is assigned to another class.
Decision stumps are trained deterministically, by looping
over all features and all features threshold for a given train-
ing dataset, selecting the feature, threshold, and comparison
operation on the threshold (> or <) that maximize the clas-
sification accuracy on the training data set. Decision stumps
are the simplest possible linear classifiers, but generate good
results in combination with AdaBoost.

The elementary evolutionary algorithm is a real-valued
generational GA using SBX crossover, Gaussian mutations,
and tournament selection. The search space is IRd+1 for
binary classification problems, and IR2d+2 for ternary classi-
fication problem, where d is the number of attributes in the
problem domain. The evolutionary parameters are detailed
in Table 2. All experiments with the real-valued GA rely on
the C++ framework Open BEAGLE [9, 10].

5. RESULTS
This section reports on the experimental results obtained

by Off-EEL and On-EEL, compared to the three baseline

Table 2: Parameters for the real-valued GA.
Parameter Value
Population size 500
Termination criteria 100000 fitness evaluations
Tournament size 2
Initialization range [-1,1]
SBX crossover prob. 0.3
SBX crossover n-value n = 2
Gaussian mutation prob. 0.1
Gaussian mutation std. dev. σ = 0.05

methods respectively noted LMS (optimal linear classifier),
GA (genetically evolved linear classifier) and Boosting (en-
semble of decision stumps), on the six UCI data sets de-
scribed in Table 1. For each method and problem, the aver-
age test error (over 100 independent runs as described in Sec-
tion 4) and the associated standard deviation are displayed
in Table 3. The average computational effort of Off-EEL for
a run ranges from 30 seconds (on problem bld) to 20 min-
utes (on problem spa), on AMD Athlon 1800+ computers
with 1G of memory. For On-EEL, the average computa-
tional effort for a run ranges from 2 hours (on problem pid)
to 24 hours (on problem spa), on the same computers.

With respect to the baseline algorithms, a first remark is
that the LMS-based classifier is significantly outperformed
by all other methods, on all problems but one (pid). This is
explained as the criterion given by Equation 6 uselessly over-
constrains the learning problem, replacing a set of linear
inequalities with the minimization of the sum of quadratic
terms. Similarly, the single-hypothesis evolutionary learning
is dominated by all other methods on all problems but one
(bcw). Boosting shows its acknowledged efficiency as it is
the best algorithm on two out of six problems (Off-EEL and
Boosting are both best performers for the cmc problem).

Off-EEL is the best method for three out of six problems
tested. Compared to AdaBoost, it generates ensemble with
lower test error rate on four problems, with a tie for the cmc

problem, and AdaBoost being the best on spa problem. In
all cases, the number of classifiers is lower, with an aver-
age between 235 and 335 classifiers for Off-EEL compared
with more than 750 on all problems but bcw for Boosting.
This is understandable given that the ensembles are built
with Off-EEL starting from a population of 500 individu-
als. This raises the question on whether the evolutionary
learning accuracy could be improved by considering larger
population sizes. But it should not be forgotten that the de-
cision stumps classifier making the AdaBoost ensembles are

Table 3: Results on the UCI datasets based on 10-folds cross-validation, using 10 independent runs over each
fold. Values are averages (standard deviations) over the 100 runs. Statistical tests are p-values of paired
t-tests on the test error rate compared to that of the best method on the dataset (in bold).

Measure LMS GA Boosting Off-EEL On-EEL
bcw

Train error 3.9% (0.2%) 1.8% (0.2%) 0.0% (0.0%) 1.4% (0.2%) 0.4% (0.4%)
Test error 4.0% (1.6%) 3.2% (1.7%) 5.3% (2.0%) 3.4% (1.7%) 3.5% (2.0%)

Test error p-value 0.00 – 0.00 0.09 0.04
Ensemble size – – 291.6 (68.2) 235.6 (66.8) 116.3 (278.2)

bld

Train error 29.8% (0.9%) 25.4% (1.2%) 0.0% (0.0%) 20.9% (1.5%) 18.9% (2.0%)
Test error 30.4% (6.6%) 32.7% (6.6%) 30.4% (5.4%) 29.2% (7.4%) 29.5% (8.4%)

Test error p-value 0.04 0.00 0.14 – 0.64
Ensemble size – – 1081.4 (166.1) 301.0 (37.9) 294.1 (154.2)

bos

Train error 32.2% (1.3%) 23.4% (4.1%) 0.0% (0.0%) 16.7% (1.9%) 20.9% (2.3%)
Test error 34.0% (6.7%) 30.7% (7.5%) 26.9% (4.2%) 22.7% (5.7%) 26.2% (7.2%)

Test error p-value 0.00 0.00 0.00 – 0.00
Ensemble size – – 761.1 (40.8) 303.8 (41.4) 2960.9 (2109.3)

cmc

Train error 51.6% (0.4%) 45.7% (1.4%) 43.3% (0.7%) 42.9% (1.2%) 43.9% (1.4%)
Test error 51.8% (2.5%) 50.4% (3.9%) 46.8% (2.9%) 46.8% (3.9%) 47.7% (3.9%)

Test error p-value 0.00 0.00 0.99 – 0.04
Ensemble size – – 4000.0 (0.0) 326.4 (35.7) 2707.7 (1696.1)

pid

Train error 22.0% (0.6%) 20.2% (0.7%) 0.6% (0.5%) 19.8% (0.7%) 20.0% (0.8%)
Test error 22.8% (3.5%) 24.2% (3.9%) 28.1% (5.0%) 24.0% (4.0%) 24.0% (3.9%)

Test error p-value – 0.00 0.00 0.00 0.00
Ensemble size – – 1978.1 (43.0) 309.5 (37.6) 1196.3 (765.7)

spa

Train error 11.1% (0.4%) 7.9% (0.5%) 1.4% (0.1%) 6.1% (0.2%) 7.6% (0.8%)
Test error 11.3% (1.2%) 9.0% (1.3%) 5.7% (0.8%) 6.7% (1.2%) 8.3% (1.4%)

Test error p-value 0.00 0.00 – 0.00 0.00
Ensemble size – – 2000.0 (0.0) 331.1 (28.4) 6890.0 (2938.1)

significantly simpler than the evolved linear discriminants
of Off-EEL. No clear conclusion can thus be made on the
relative complexity of the ensembles generated by Off-EEL
compared to Boosting.

Despite its larger ensemble size, On-EEL is dominated by
Off-EEL on all problems but pid, where both approaches
generate identical test error rates. A tentative explanation
stems from the nature of the two approaches, with Off-EEL
having a clear algorithm organized in two stages, classifiers
evolution with diversity-enhancing fitness followed by en-
semble construction, while On-EEL is more complex, with
a succession of ensemble construction and classifiers evo-
lution with diversity-enforcing measure taken relatively to
the current ensemble. The dynamics of On-EEL is hard
to understand, but it can be speculated that the iterative
construction of the ensemble (without individual removal)
is prone to be stuck in local optima. Indeed, the “construc-
tion path” taken to build the ensemble begins with a selec-
tion of some (supposed poor) individuals at the beginning
of the evolution. As these individuals cannot be removed
from the ensemble, they significantly influence the choice of
other individuals, biasing and possibly misleading the whole
process.

6. DISCUSSION AND PERSPECTIVES
This paper has examined the “Evolutionary Ensemble

Learning for Free” claim, based on the fact that, since Evo-
lutionary Algorithms maintain a population of solutions, it
comes naturally to use these populations as a pool for build-
ing classifier ensembles.

Two main issues have been studied, respectively concerned
with enforcing the diversity of the population of classifiers,
and with selecting the classifiers either in the final popula-
tion or along evolution.

The use of a co-evolution-inspired fitness function, gener-
alizing [18], was found sufficient to generate diverse classi-
fiers. As already noted, there is a great similarity between
the co-evolution of programs and fitness cases [13] and the
Boosting principles [8]; the common idea is that good classi-
fiers are learned from good examples, while good examples
are generalized by good classifiers. The difference between
Boosting and co-evolution is that in Boosting, the train-
ing examples are not evolved; instead, their weights are up-
dated. However, the uncontrolled growth of some weights,
typically in the case of noisy examples, actually appears as
the Achilles’ heel of Boosting compared to Bagging. Basi-
cally, AdaBoost can be viewed as a dynamic system [22];
the possible instability or periodicity of this dynamic sys-

tem has undesired consequences on the ensemble learning
performance. The use of co-evolutionary ideas, even though
the set of ensemble does not evolve, seems to increase the
stability of the learning process.

The two EEL frameworks investigated in this paper can
be considered as promising. Off-EEL constructs ensembles
with best performances while needing little modifications
over a traditional evolutionary algorithm, with a diversity-
enhancing fitness and the construction of an ensemble from
the final population. But the size of the ensembles gener-
ated suggests that bigger population would lead to bigger
and possibly better ensembles. For the sake of scalability,
this suggests that the ensemble should be gradually con-
structed along evolution, instead of considering only the fi-
nal population. This has been explored with On-EEL, with
lesser performance comparing to Off-EEL. It is suggested
that ensemble construction with On-EEL is prone to be
stuck in local minima, so some capability of removing in-
dividuals can be beneficial, at the risk of inducing an highly
dynamic algorithm. Ultimately, the momentum and dynam-
ics of EEL should be controlled by evolution itself, enforcing
some trade-off between exploring new regions and preserv-
ing efficient optimization. This will be the subject of future
researches.

Acknowledgments
This work was supported by postdoctoral fellowships from
the ERCIM-SARIT (Europe), the Swiss National Science
Foundation (Switzerland), and the FQRNT (Québec) to C.
Gagné. The second and third authors gratefully acknowl-
edge the support of the Pascal Network of Excellence IST-
2002-506 778.

7. REFERENCES
[1] L. Breiman. Arcing classifiers. Annals of Statistics,

26(3):801–845, 1998.

[2] A. Chandra and X. Yao. Ensemble learning using
multi-objective evolutionary algorithms. J. of
Mathematical Modelling and Algorithms, 5(4):417–425,
2006.

[3] A. Chandra and X. Yao. Evolving hybrid ensembles of
learning machines for better generalisation.
Neurocomputing, 69:686–700, 2006.

[4] T. G. Dietterich. Approximate statistical tests for
comparing supervised classification learning
algorithms. Neural Computation, 10:1895–1923, 1998.

[5] T. G. Dietterich. Ensemble methods in machine
learning. In First Int. Workshop on Multiple Classifier
Systems, pages 1–15, 2000.

[6] R. Esposito and L. Saitta. Monte Carlo theory as an
explanation of Bagging and Boosting. In Proc. of the
Int. Joint Conf. on Artificial Intelligence (IJCAI’03),
pages 499–504, 2003.

[7] G. Folino, C. Pizzuti, and G. Spezzano. Ensemble
techniques for parallel genetic programming based
classifiers. In Proc. of the European Conf. on Genetic
Programming (EuroGP’03), pages 59–69, 2003.

[8] Y. Freund and R. Schapire. Experiments with a new
Boosting algorithm. In Proc. of the Int. Conf. on
Machine Learning (ICML’96), pages 148–156, 1996.

[9] C. Gagné and M. Parizeau. Genericity in evolutionary
computation software tools: Principles and case-study.

Int. J. on Artificial Intelligence Tools, 15(2):173–194,
2006.

[10] C. Gagné and M. Parizeau. Open BEAGLE: An
evolutionary computation framework in C++.
http://beagle.gel.ulaval.ca, 2006.

[11] R. Gilad-Bachrach, A. Navot, and N. Tishby. Margin
based feature selection - theory and algorithms. In
Proc. of the Int. Conf. on Machine Learning
(ICML’04), pages 43–50, 2004.

[12] I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh,
editors. Feature Extraction: Foundations And
Applications. Springer-Verlag, 2006.

[13] W. D. Hillis. Co-evolving parasites improve simulated
evolution as an optimization procedure. Physica D,
42:228–234, 1990.

[14] J. Holland. Escaping brittleness: The possibilities of
general-purpose learning algorithms applied to parallel
rule-based systems. In Machine Learning, An
Artificial Intelligence Approach, volume 2, pages
593–623. Morgan Kaufmann, 1986.

[15] J. Holmes, P. Lanzi, W. Stolzmann, and S. Wilson.
Learning classifier systems: New models, successful
applications. Information Processing Letters,
82(1):23–30, 2002.

[16] H. Iba. Bagging, Boosting, and bloating in genetic
programming. In Proc. of the Genetic and
Evolutionary Computation Conference (GECCO’99),
pages 1053–1060, 1999.

[17] M. Keijzer and V. Babovic. Genetic programming,
ensemble methods, and the bias/variance tradeoff –
introductory investigations. In Proc. of the European
Conf. on Genetic Programming (EuroGP’00), pages
76–90, 2000.

[18] Y. Liu, X. Yao, and T. Higuchi. Evolutionary
ensembles with negative correlation learning. IEEE
Trans. on Evolutionary Computation, 4(4):380–387,
2000.

[19] D. Newman, S. Hettich, C. Blake, and C. Merz. UCI
repository of machine learning databases. http:
//www.ics.uci.edu/~mlearn/MLRepository.html,
1998.

[20] J. Paredis. Coevolving cellular automata: Be aware of
the Red Queen! In Proc. of the Int. Conf. on Genetic
Algorithms (ICGA’97), pages 393–400, 1997.

[21] G. Paris, D. Robilliard, and C. Fonlupt. Applying
Boosting techniques to genetic programming. In
Artificial Evolution 2001, volume 2310 of LNCS, pages
267–278. Springer Verlag, 2001.

[22] C. Rudin, I. Daubechies, and R. E. Schapire. The
dynamics of AdaBoost: Cyclic behavior and
convergence of margins. J. of Machine Learning
Research, 5:1557–1595, 2004.

[23] R. Schapire, Y. Freund, P. Bartlett, and W. Lee.
Boosting the margin: A new explanation for the
effectiveness of voting methods. Annals of Statistics,
26(5):1651–1686, 1998.

[24] D. Song, M. I. Heywood, and A. N. Zincir-Heywood.
Training genetic programming on half a million
patterns: an example from anomaly detection. IEEE
Trans. on Evolutionary Computation, 9(3):225–239,
2005.

http://beagle.gel.ulaval.ca
http://www.ics.uci.edu/~mlearn/MLRepository.html

[25] V. N. Vapnik. Statistical Learning Theory. Wiley, New
York, NY (USA), 1998.

