
HAL Id: hal-01369906
https://inria.hal.science/hal-01369906v1

Submitted on 13 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convolutional Neural Networks for Large-Scale Remote
Sensing Image Classification

Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, Pierre Alliez

To cite this version:
Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, Pierre Alliez. Convolutional Neural
Networks for Large-Scale Remote Sensing Image Classification. IEEE Transactions on Geoscience and
Remote Sensing, 2017, 55, pp.645-657. �10.1109/tgrs.2016.2612821�. �hal-01369906�

https://inria.hal.science/hal-01369906v1
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

Convolutional Neural Networks for Large-Scale
Remote Sensing Image Classification
Emmanuel Maggiori, Student member, IEEE, Yuliya Tarabalka, Member, IEEE,

Guillaume Charpiat, and Pierre Alliez

Abstract—We propose an end-to-end framework for the dense,
pixelwise classification of satellite imagery with convolutional
neural networks (CNNs). In our framework, CNNs are directly
trained to produce classification maps out of the input images.
We first devise a fully convolutional architecture and demonstrate
its relevance to the dense classification problem. We then address
the issue of imperfect training data through a two-step training
approach: CNNs are first initialized by using a large amount
of possibly inaccurate reference data, then refined on a small
amount of accurately labeled data. To complete our framework
we design a multi-scale neuron module that alleviates the common
trade-off between recognition and precise localization. A series
of experiments show that our networks take into account a large
amount of context to provide fine-grained classification maps.

Index Terms—Classification, satellite images, convolutional
neural networks, deep learning.

I. INTRODUCTION

THE ANALYSIS of remote sensing images is of
paramount importance in many practical applications,

such as precision agriculture and urban planning. Recent
technological developments have significantly increased the
amount of available satellite imagery. Notably, the constel-
lation of Pléiades satellites produces high spatial resolution
images that cover the whole Earth in less than a day. The
large-scale nature of these datasets introduces new challenges
in image analysis. In this paper we address the problem of
pixelwise classification of satellite imagery.

There is a vast literature on classification approaches that
take into account the spectrum of every individual pixel to
assign it to a certain class. Alternatively, more advanced
techniques combine information from a few neighboring pixels
to enhance the classifiers’ performance, often referred to as
spectral-spatial classification. These approaches rely on the
separability of the different classes based on the spectrum
of a single pixel or of some neighboring pixels. In a large-
scale setting, however, these approaches are not effective.
On the one hand, current large-scale satellite imagery does
not use high spectral resolution sensors, making it difficult
to distinguish object classes solely by their spectrum. On
the other hand, due to the large spatial extent covered by
the datasets, classes have a considerable internal variability,
which further challenges the class separability when simply

E. Maggiori, Y. Tarabalka and P. Alliez are with Univeristé Côte d’Azur,
TITANE team, Inria, 2004 Route des Lucioles, BP93 06902 Sophia Antipolis
Cedex, France. E-mail: emmanuel.maggiori@inria.fr.

G. Charpiat is with Tao team, Inria Saclay–Île-de-France, LRI, Bât. 660,
Universit Paris-Sud, 91405 Orsay Cedex, France.

Manuscript received ...; revised ...

observing the spectral signatures of a restricted neighborhood.
We argue that a more thorough understanding of the context
such as, e.g., the shape of objects, is required to aid the
classification process.

Convolutional neural networks (CNNs) [1] are therefore
gaining attention, due to their capability to automatically
discover relevant contextual features in image categorization
problems. CNNs consist of a stack of learned convolution
filters that extract hierarchical contextual image features, and
are a popular form of deep learning networks. They are already
outperforming other approaches in various domains such as
digit recognition [2] and natural image categorization [3].

Our goal is to devise an end-to-end framework to clas-
sify satellite imagery with CNNs. The context of large-scale
satellite image classification introduces certain challenges that
we must address in order to turn CNNs into a relevant
classification tool. Notably, we must (1) design a specific
neural network architecture for our problem, (2) acquire large-
scale training data and handle its eventual inaccuracies, and
(3) generate high-resolution output classification maps.

1) CNN architecture: CNNs are commonly used for image
categorization, i.e., for assigning the entire image to a class
(e.g., a digit [1] or an object category [3]). In remote sensing,
the equivalent problem is to assign a category to an entire
image patch, such as ‘residential’ or ‘agricultural’ area. Our
context differs in that we wish to conduct a dense pixelwise
labeling. We must thus design a CNN that outputs a per-pixel
classification and not just a category for the entire input.

2) Imperfect training data: A sensitive point regarding
CNNs is the amount of training data required to properly learn
the network parameters. A large source of free-access maps
is OpenStreetMap, a collaborative online mapping platform,
but the availability of data is highly variable between areas.
In some areas, the coverage is very limited or nonexistent,
and an irregular misregistration is prevalent throughout the
maps. As we focus on the large-scale application of CNNs for
classification, we must explore the use of imperfect training
data in order to make our framework applicable to a wide
range of geographic areas.

3) High-resolution output: The power of CNNs to take a
large context to conduct predictions comes at the price of
losing resolution for the output. This is because some degree
of downsampling of the feature maps along the network is
required in order to increase the amount of context without
an excessive number of learnable parameters. Such coarse
resolution translates into a fuzzy aspect around object edges

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2

and corners. One of our challenges is then to alleviate this
trade-off.

A. Related Work
We now review classification methods and the use of CNNs

in remote sensing.
In the context of spectral classification, decision trees [4],

artificial neural networks [5], [6] and support vector ma-
chines [7] are some of the approaches that have been ex-
plored, both for multispectral and hyperspectral image analy-
sis. Spectral-spatial methods [8] use contextual information to
regularize the classification maps. Different approaches have
been presented, for example, Liao et al. [9] sequentially apply
morphological filters to model different kinds of structural
information and Tarabalka et al. [10] model spatial interactions
with a graphical model. Neural networks have also been used
for spectral-spatial classification. In this direction, Kurnaz
et al. [11] use such network to classify the concatenated
spectrum of pixels inside a sliding window, in order to label
multispectral images. In a similar fashion, Lloyd et al. [12]
compute a textural feature which is concatenated to the pixel
spectrum vector, prior the a neural network classification. Lu
and Weng [13] provide a comprehensive survey on classifica-
tion methods.

In remote sensing, CNNs have been used to individually
classify the pixels of hyperspectral images. This was achieved
by performing convolutions in the 1D domain of the spectrum
of each pixel [14], [15], [16]. Alternatively, a spectral-spatial
approach has been taken by convolving in the 1D flattened
spectrum vector of a group of adjacent pixels [17], [18].
Note however that these approaches do not learn spatial
contextual features such as the typical shape of the objects
of a class. Recent works have incorporated convolutions on
the spatial domain after extracting the principal components
of the hyperspectral image [19], [20], [21], and the idea of
reasoning at multiple spatial scales has also been exploited,
notably for hyperspectral classification [22], [23] and image
segmentation [24]. Let us remark that convolutional neural
networks have also been used for other remote sensing appli-
cations, such as road tracking [25], object detection [26] and
land use classification [27], [28].

Mnih [29] proposed a specific architecture to learn large-
extent spatial contextual features for aerial image labeling.
It is derived from common image categorization networks
by increasing the output size of the final layer. Instead of
outputting a single value to indicate the category, the final layer
produces an entire dense classification patch. This network
successfully learns contextual spatial features to better distin-
guish the object classes. However, this patchwise procedure
has the disadvantage of introducing artifacts on the border of
the classified patches. Moreover, the last layer of the network
introduces an unnecessarily large number of parameters, ham-
pering its efficiency.

B. Contributions
We now summarize our contributions to address the issues

presented before and provide then a framework for satellite
image classification with CNNs.

1) Fully convolutional architecture: We first analyze the
CNN architecture proposed by Mnih [29] and the fact that it
has a fully connected layer, i.e., connected to all the outputs of
the previous layer, to produce the output classification patches.
We point out that this architectural decision hampers both its
accuracy and efficiency.

We then propose a new network architecture that is fully
convolutional, i.e., that only involves a series of convolution
and deconvolution operations to produce the output clas-
sification maps. This architecture solves the issues of the
previous patch-based approach by construction. While such a
fully convolutional architecture imposes further restrictions to
the neuronal connections than the fully connected approach,
these restrictions reduce the number of trainable parameters
without losing generality. It has been seen multiple times in
the literature that reducing the number of parameters under
sensible assumptions often implies a simpler error surface
and helps reaching better local minima. For example, con-
volutional networks have fewer connections than multi-layer
perceptrons but perform better in practice for visual tasks [1],
and Mnih [29] showed that adding too many layers to a
network resulted in poorer results.

We compare the fully convolutional vs fully connected
approaches on a dataset of publicly available aerial color
images over Massachusetts [29] created with the specific
purpose of evaluating CNN architectures.

2) Two-step training approach: To deal with the imper-
fections in training data we propose a two-step approach.
First, we train our fully convolutional neural network on raw
OpenStreetMap data to discover the generalities of the dataset.
Second, we fine-tune the resulting neural networks for a few
iterations under a small piece of manually labeled image. Our
hypothesis is that, once the network is pre-trained on large
amounts of imperfect data, we can boost its performance by
“showing” it a small amount of accurate labels. Our approach
is inspired by a common practice in deep learning: taking
pre-trained networks designed to solve one problem and fine-
tuning them to another problem.

3) Multi-scale architecture: We design a specific neuron
module that processes its input at multiple scales, while
keeping a low number of parameters. This alleviates the
aforementioned trade-off between the amount of context taken
and the resolution of the classification maps. Our overall
approach constitutes then an end-to-end framework for satellite
image labeling with CNNs. We evaluate it on a Pléiades image
dataset over France, where the associated OpenStreetMap data
is significantly inaccurate.

C. Organization of the Paper

In the next section an introduction to convolutional neural
networks is presented. In Section III the fully convolutional
architecture is described and evaluated. Section IV presents
the two-step training approach and the multi-scale architec-
ture, in order to use CNNs as an end-to-end framework for
satellite image classification. Finally, conclusions are drawn
in Section V.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 3

II. CONVOLUTIONAL NEURAL NETWORKS

In machine learning an artificial neural network is a system
of interconnected neurons that pass messages to each other.
Neural networks are used to model complex functions and, in
particular, as frameworks for classification. In this work we
deal with the so-called feed-forward networks, whose graph
of message passing between neurons is acyclic [30].

An individual neuron takes a vector of inputs x = x1 . . . xn
and performs a simple operation to produce an output a. The
most common neuron is defined as follows:

a = σ(wx+ b), (1)

where x denotes a weight vector, b a scalar known as bias and
σ an activation function. The weight vectors and the biases are
parameters that define the function computed by a network,
and the goal of training is to find the optimal values for
these parameters. When using at least one layer of nonlinear
activation functions, one can prove that a sufficiently large
network can represent any function, suggesting the expres-
sive power of neural networks. The most common activation
functions are sigmoids, hyperbolic tangents and rectified linear
units (ReLU) [3]. ReLUs are known to offer some practical
advantages in the convergence of the training procedure.

Even though any function can be represented by a suffi-
ciently large single layer of neurons, it is common to organize
them in a set of stacked layers that transform the outputs of the
previous layer and feed it to the next layer. This encourages
the networks to learn hierarchical features, doing low-level
reasoning in the first layers and performing higher-level tasks
in the last layers. For this reason, the first and last layers are
often referred to as lower and upper layers respectively.

In an image categorization problem, the input of our net-
work is an image (or a set of features derived from an image),
and the goal is to predict the correct label associated with the
image. Finding the optimal neural network classifier reduces
to finding the weights and biases that minimize a loss L
between the predicted values and the target values in a training
set. If there is a set L of possible classes, the labels are
typically encoded as a vector of length |L| with value ‘1’
at the position of the correct label and ‘0’ elsewhere. The
network has then as many output neurons as possible labels. A
softmax normalization is performed on top of the last layer to
guarantee that the output is a probability distribution, i.e., the
values for every label are between zero and one and add to
one. The multi-label problem is then seen as a regression on
the desired output label vectors.

The loss function L quantifies the misclassification by
comparing the target label vectors y(i) and the predicted label
vectors ŷ(i), for n training samples i = 1 . . . n. In this work
we use the common cross-entropy loss, defined as:

L = − 1

n

n∑
i=1

|L|∑
k=1

y
(i)
k log ŷ

(i)
k . (2)

The cross-entropy loss has fast convergence rates when train-
ing neural networks (compared with, for instance, the Eu-
clidean distance between y and ŷ) and is numerically stable
when coupled with softmax normalization [30].

Note that in the special case of binary labeling we can
produce only one output (with targets ‘1’ for positive and
‘0’ for negative). In this case a sigmoid normalization and
cross-entropy loss are analogously used, albeit a multi-class
framework can also be used for two classes.

Once the loss function is defined, the parameters (weights
and biases) that minimize the loss must be solved for. Solving
is achieved by gradient descent by computing the derivative
∂L
∂wi

of the loss function with respect to every parameter wi,
and updating the parameters with a learning rate λ as follows:

wi ← wi + λ
∂L

∂wi
. (3)

The derivatives ∂L
∂wi

are obtained by backpropagation, which
consists in explicitly computing the derivatives of the loss with
respect to the last layer’s parameters and using the chain rule
to recursively compute the rest of the derivatives. In practice,
learning is performed by stochastic gradient descent, i.e., by
estimating the loss (2) on a small subset of the training set,
referred to as a mini-batch.

Despite the fact that neural networks can represent very
complex functions, the epigraph of the loss function L can
be highly non-convex, making the optimization difficult via a
gradient descent approach. To regularize this loss and improve
training, convolutional neural networks (CNNs) [1] are a
special type of neural networks that impose restrictions that
make sense in the context of image processing. In these
networks, every neuron is associated to a spatial location (i, j)
with respect to the input image. The output aij associated with
location (i, j) is then computed as follows:

aij = σ((W ∗X)ij + b), (4)

where W denotes a kernel with learned weights, X the input
to the layer and ‘∗’ the convolution operation. Note that this
is a special case of the neuron in Eq. 1 with the following
constraints:
• The connections only extend to a limited spatial neigh-

borhood determined by the kernel size;
• The same filter is applied to each location, guaranteeing

translation invariance.
Typically multiple convolution kernels are learned in every
layer, interpreted as a set of spatial feature detectors. The
responses to every learned filter are therefore known as a
feature map.

Departing from the traditional fully connected layer, in
which every neuron is connected to all outputs of the previous
layer, a convolutional layer dramatically reduces the number
of parameters by enforcing the aforementioned constraints.
This results in a regularized loss function, easier to optimize,
without losing much generality.

Note that the convolution kernels are actually three-
dimensional because, in addition to their spatial extent, they go
through all the feature maps in the previous layers, or through
all the bands in the input image. Since the third dimension
can be inferred from the previous layer it is rarely specified
in architecture descriptions, only the two spatial dimensions
being usually mentioned.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 4

In addition to convolutional layers, state-of-the-art networks
such as Imagenet [3] involve some degree of downsampling,
i.e., a reduction in the resolution of the feature maps. The
goal of downsampling is to increase the so-called receptive
field of the neurons, which is the part of the input image
that neurons can “see”. For the predictions to take into
account a large spatial context, the upper layers should have
a large receptive field. This is achieved either by increasing
the convolution kernel sizes or by downsampling feature
maps to a lower resolution. The first alternative increases the
number of parameters and memory consumption, making the
training and inference processes prohibitive. State-of-the-art
CNNs tend then to keep the kernels small and add some
degree of downsampling instead. This can be accomplished
either by including pooling layers (e.g., taking the average or
maximum of adjacent locations) or by introducing a so-called
stride, which amounts to skip some convolutions through, e.g.,
applying the filter once every four locations.

Classification networks typically contain a fully connected
layer on top of the convolutions/pooling. This layer is designed
to have as many outputs as labels, and produces the final
classification scores.

The overall success of CNNs lies mostly in the fact the
the networks are forced by construction to learn hierarchical
contextual translation-invariant features, which are particularly
useful for image categorization.

III. CNNS FOR DENSE CLASSIFICATION

In this work we address the problem of dense classifi-
cation, i.e., not just the categorization of an entire image,
but a full pixelwise labeling into the different categories. We
first describe an existing approach, the patch-based network,
point out its limitations and propose a fully convolutional
architecture that addresses these limitations. We restrict our
experiments to the binary labeling problem for the building
vs not building classes, but our approach is extensible to
an arbitrary number of classes following the formulation
described in Section II.

A. Patch-based Network

To perform dense classification of aerial imagery, Mnih
proposed a patch-based convolutional neural network [29].
Training and inference are performed patch-wise: the network
takes as input a patch of an aerial image, and generates
as output a classified patch. The output patch is smaller,
and centered in the input patch, to take into account the
surrounding context for more accurate predictions. The way to
create dense predictions is to increase the number of outputs of
the last fully connected classification layer, in order to match
the size of the target patch.

Fig. 1(a) illustrates the patch-based architecture from [29].
The network takes 64× 64 patches (on color images of 1m2

spatial resolution) and predicts 16×16 centered patches of the
same resolution. Three convolutional layers learn 64, 112 and
80 convolution kernels, of 12 × 12, 4 × 4 and 3 × 3 spatial
dimensions, respectively. The first convolution is strided (one

(a) Color (b) Patch-based (c) FCN

Fig. 2: The patch-based predictions exhibit artifacts on the
patch borders while the FCN prevents them by construction.

convolution every four pixels), which implies a downsampling
with factor 4.

After the three convolutional layers, a fully connected layer
transforms the high-level features of the last convolutional
layer into a classification map of 256 elements, matching the
required 16× 16 output patch.

Training is performed by selecting random patches from the
training set, and grouping them into mini-batches as required
by the stochastic gradient descent algorithm.

B. Limitations of the Patch-based Framework

We now point out some limitations of the patch-based
approach discussed above, which motivate the design of an
improved network architecture. Let us first analyze the role
of the last fully connected layer that constructs the output
patches. In the architecture of Fig. 1(a), the size of the feature
maps in the last convolutional layer (before the last fully
connected one) is 9× 9. The resolution of these filters is 1/4
of the resolution of the input image, due to the 4-stride in
the first convolution. The output of the fully connected layer
is, however, a full-resolution 16× 16 classification map. This
means that the fully connected layer does not only compute
the classification scores, but also learns how to upsample
them. Outputting a full-resolution patch is then the result of
upsampling and not of an intrinsic high-resolution processing.
We also observe that the fully connected layer allows outputs
at different locations to have different weights with respect
to the previous layer. For example, the weights associated
to an output pixel at the top-left corner of a patch can be
different to those of a pixel at the bottom right. In other
words, the network can learn priors on the position inside
a patch. This makes sense in some specific contexts such as
when labeling pictures of outdoor scenes: the system could
learn a prior for the sky to be at the top of the image. In
our context, however, the partition of an image into patches
is arbitrary, hence the “in-patch location” prior is irrelevant
since allowing different weights at different patch locations
may yield undesirable properties. For example, feeding two
image patches that are identical but rotated by 90 degrees
could yield different classification maps.

When training the network of Fig. 1(a) we expect that, after
processing many training cases, the fully connected layer will
end up learning a location-invariant function. Figs. 2(a)-(b)
illustrate a fragment of an output score map by using such

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 5

(a) Patch-based
(b) Fully convolutional (16× 16 output)

Fig. 1: Convolutional neural network architectures (e.g., “64@14× 14” means 64 feature maps of size 14× 14).

an architecture. Notice the discontinuities at the border of
the patches, which reveal that the network did not succeed
in learning to classify pixels independently of their location
inside the patch. While this issue is partly addressed in [29]
by smoothing the outputs with a conditional random field, we
argue that avoiding such artifacts by construction is desirable.
In addition, generating similar results regardless of image
tiling is an important property for large-scale satellite image
processing, and an active research topic [31], [32]. Another
concern with the fully connected layer is that the receptive field
of every patch output is not centered in itself. For example, a
prediction near the center of the output patch can “see” about
32 pixels in every direction around it. However, the prediction
at the top-left corner of the output patch considers a larger
portion of the image to the bottom and to the right than to the
top and to the left. Considering that the division into patches
is arbitrary, this behavior is hard to justify.

A deeper understanding of the role played by every layer of
the network, as described in this section, motivates the design
of a more suitable architecture from a theoretical point of view,
with the additional goal of boosting the overall performance
of the approach.

C. Fully Convolutional Network

We propose a fully convolutional neural network architec-
ture (FCN) to produce dense predictions. We explicitly restrict
the process to be location-independent, enforcing the outputs
to be the result of a series of convolutions only (see Fig. 1b).

A classification network may be “convolutionalized” [33] as
follows. We first convert the fully connected layer that carries
out the classification to a convolutional layer. The convolution
kernel is chosen so that its dimensions coincide with the
previous layer. Thus, its connections are equivalent to a fully
connected layer. The difference is that if we enlarge the input
image, the output size is also increased, but the number of
parameters remains constant. This may be seen as convolving
the whole original network around a larger image to evaluate
the output at different locations.

To increase the resolution of the output map, we then add a
so-called “deconvolutional” layer [33]. The goal of this layer is
to upsample the feature maps from the previous layer, which is
achieved by performing an interpolation from a set of nearby
points. Such an interpolation is parametrized by a kernel
that expresses the extent and amount of contribution from a
pixel value to its neighboring positions, only based on their
locations. For an effective interpolation, the kernels must be

Fig. 3: “Deconvolution” layer for upsampling.

large enough to overlap in the output. The interpolation is then
performed by multiplying the values of the kernel by every
input and adding the overlapping responses in the output. This
process is illustrated by Fig. 3 for a 2x upsampling. Notice
that the scaling step is performed based on a constant 4 × 4
kernel. In our framework, and as in previous work [33], the
interpolation kernel is another set of learnable parameters of
the network instead of being determined a priori, e.g., setting
them to represent a bilinear interpolation. Note also that the
upsampled feature map has a central part computed by adding
the contribution of two neighboring kernels and an outer
border obtained solely by the contribution of one kernel (the
two leftmost and rightmost output columns in Fig. 3). The
outer border can be seen as an extrapolation of the input while
the inner part can be seen as an interpolation. The extrapolated
border can be cropped from the output to avoid artifacts.

As compared to a patch-based approach, we can expect our
fully convolutional network to exhibit the following advan-
tages:

• Elimination of discontinuities due to patch borders;
• Improved accuracy due to a simplified learning process,

with a smaller number of parameters;
• Lower execution time at inference, due to the fast GPU

execution of convolution operations.

Our FCN network is constructed by convolutionalizing the
existing patch-based network depicted by Fig. 1(a). We choose
an existing framework to benefit from a mature architecture
and to carry out a rigorous comparison. The architectural
decisions (i.e., the choice of the number of layers and filter
sizes) of the base network are described in [29].

Fig. 1(b) depicts the resulting FCN. First, we pretend that
the output patch of the original network is only of size

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 6

1 × 1, thus just focusing on a single output centered in its
receptive field. Second, we rewrite the fully connected layer
as a convolutional layer with one feature map and the spatial
dimensions of the previous layer (9 × 9). Third, we add a
deconvolutional layer that upsamples its input by a factor of
4 (with a learnable kernel of size 8 × 8), in order to recover
the input resolution. Notice that the tasks of classification and
upsampling are now separated.

This new network can take input images of different sizes,
with the output size varying accordingly. For example, during
the training stage we wish to output patches of size 16×16 in
order to emulate the learning process as was done in the patch-
based network of Fig. 1(a). For this we require a patch input
of size 80 × 80, as in the architecture of Fig. 1(b). Notice
that the input is larger than the original 64 × 64 patches.
This is not because we are taking more context to carry
out the predictions, but instead because every output is now
centered in its context. At inference time we can take inputs
of arbitrary sizes and feed them to the network to construct
the classification maps, and the number of network parameters
does not vary.

In the deconvolutional layer illustrated in Fig. 1(b), the
overlapping areas added to produce the output are depicted
in gray while the excluded extrapolation is in white.

D. Experiments on Fully Convolutional Networks
We implemented the CNNs using the Caffe deep learning

framework [34]. In a first experiment we apply our approach
to the Massachusetts Buildings Dataset [29]. This dataset
consists of color images over the area of Boston with 1 m2

spatial resolution, covering an area of 340 km2 for training,
9 km2 for validation and 22.5 km2 for testing. The images are
labeled into two classes: building and not building. A portion
of an image and its corresponding reference are depicted in
Figs. 4(a-b).

We train the patch-based and fully convolutional networks
(Figs. 1(a) and 1(b) respectively) for 30,000 stochastic gra-
dient descent iterations, until we observe barely no further
improvement on the validation set. The patches are sampled
uniformly from the whole training set, with mini-batches of
64 patches each and a learning rate of 0.0001. A momentum
and an L2 parameter penalty are introduced to regularize
the learning process and avoid overfitting. Momentum adds
a fraction of the previous gradient to the current one in order
to smooth the descent, while an L2 penalty on the learned
parameters discourages neurons to specialize too much on
particular training cases [30]. The weights of these regularizers
are set to 0.9 and 0.0002 respectively. Further details on these
so-called hyperparameters and rationale for selecting them are
provided by Mnih [29].

To evaluate the accuracy of the classification we use two
different measures: pixelwise accuracy (proportion of correctly
classified pixels, obtained through binary classification of the
output probabilities with threshold 0.5) and area under the
receiver operating characteristics (ROC) curve [35]. The latter
quantifies the relation between true and false positives at
different thresholds, and is appropriate to evaluate the overall
quality of the fuzzy maps.

Fig. 5(a) plots the evolution of the area under ROC curve
and pixelwise accuracy in the test set, across iterations.
The FCN consistently outperforms the patch-based network.
Fig. 5(b) shows ROC curves for the final networks after
convergence, the FCN exhibiting the best relation between true
and false positive rates. Fig. 4(c-d) depicts some visual results.

To further illustrate the benefits of neural networks over
other learning approaches we train a support vector machine
(SVM) with Gaussian kernel on 1,000 randomly selected
pixels of each class. We train on the individual pixel spec-
tra without any feature selection. The SVM parameters are
selected by 5-fold cross-validation, as commonly performed
in remote sensing image classification [10]. As shown by
Fig. 4(e), the pixelwise SVM classification often confuses
roads with buildings due to the fact that their colors are similar,
while neural networks better infer and separate the classes by
taking into account the geometry of the context. The accuracy
of the SVM on the Boston test dataset is 0.6229 and its area
under ROC curve is 0.5193, i.e., significantly lower than with
CNNs, as shown in Fig. 5. If we wished to successfully use an
SVM for this task, we should design and select spatial features
(e.g., texture) and use them as the input to the classifier instead.

The amplified fragment in Fig. 2 shows that the border
discontinuity artifacts present in the patch-based scheme are
absent in our fully convolutional setting. This behaves as
expected considering that the issues described in Section III-B
are addressed by construction in the new architecture. This
confirms that imposing sensible restrictions to the connections
of a neural network has a positive impact in the performance.

In terms of efficiency the FCN also outperforms the patch-
based CNN. At inference time, instead of carrying out the
prediction in a small patch basis, the input of the FCN is
simply increased to output larger predictions, better benefiting
from the GPU parallelization of convolutions. The execution
time required to classify the whole Boston 22.5 km2 test set
(performed on an Intel I7 CPU @ 2.7Ghz with a Quadro
K3100M GPU) is 82.21 s with the patch-based CNN against
8.47 s with the FCN. The speedup is about 10x, a relevant im-
provement considering the large-scale processing capabilities
required by new sensors.

IV. END-TO-END FRAMEWORK

In remote sensing image analysis it is a common practice to
train classifiers on the spectrum of a small number (a couple
of hundreds) of isolated sample pixels [36]. Training relies
on the trustworthiness of the reference data and on the fact
that classes are reliably separable simply by observing the
spectral signature of the sampled pixels. While such training
approaches are popular, for example, in hyperspectral image
classification, our goals differ as we wish to automatically
learn contextual features that can help better identify the
classes in satellite imagery. Our goal requires more training
data per se, as we must show the classifier the many different
contexts in which a pixel class can be embedded, and not just
its spectral values. In addition, is it well-known that massive
data might be required to train neural networks, contrary to
a common feature selection and classification approach. This

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 7

(a) Color image (b) Reference data (c) Patch-based fuzzy map (d) FCN fuzzy map (e) SVM fuzzy map

Fig. 4: Experimental results on a fragment of the Boston dataset.

0.5 1 1.5 2 2.5 3

x 10
4

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Iterations

A
re

a
 u

n
d
e
r

R
O

C
 c

u
rv

e

Fully convolutional

Patch−based

0.5 1 1.5 2 2.5 3

x 10
4

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Iterations

P
ix

e
l−

w
is

e
 a

c
c
u
ra

c
y

Fully convolutional

Patch−based

(a) Performance evolution

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

False Positive rate

T
ru

e
 P

o
s
it
iv

e
 r

a
te

Patch−based

Fully convolutional

(b) ROC curves

Fig. 5: Evaluation of patch-based and fully convolutional neural networks on the Boston test set.

led us to analyze and address the dependency of the algorithm
on the availability and accuracy of the training data.

In the experiments described in Section III-D, the Mas-
sachusetts Buildings dataset is used for training and testing.
This dataset is a hand-corrected version of the OpenStreetMap
(OSM) vectorial map available over the area covered by
the images. Despite the existence of some inaccuracies in
the reference data, the coverage of OSM in that region is
satisfactory and the errors are minor.

In many other areas of Earth, however, the coverage of OSM
is limited. In the samples of Fig. 8 we observe large areas
with missing data and a general misregistration of the vectorial
maps with respect to the actual structures. In addition, the
misregistration is not uniform and neighboring buildings are
often shifted in different directions. Note that in the samples of
Fig. 8 the buildings have been delineated in OSM based on the
official French cadaster records. However, even the cadaster
records are not always accurate up to the meter resolution.
Furthermore, satellite images undergo a series of corrections
before being aligned to the maps. For example, the use of
inexact elevation models for orthorectification might introduce
misregistrations throughout the images. As a result, the OSM
raw data is imperfect and thus not fully reliable.

The reference data obtained from OSM, as shown by Fig. 8,
provides a rough idea of the location of the buildings, but
rarely outlines them. In such a setting, convolutional neural
networks would hardly learn that building boundaries are
likely to fall on visible edges, since this is not what the refer-
ence data depicts. Under these circumstances, we expect the
predictions not to be very confident, especially on the border of
the objects. As we will illustrate in Section IV-C, this yields a

“blobby” and overly fuzzy aspect to predictions obtained with
the network of Section III-C on more challenging datasets.

Our first contribution in this section is a novel approach for
tackling the issue of inaccurate labels for CNN training. For
this we propose a two-step approach: 1) the network is first
trained on raw OSM data, 2) it is then fine-tuned on a tiny
piece of manually labeled image.

This method provides us with a means to deal with the
inaccuracy of training data, by increasing the confidence
and sharpness of the predictions. However, we still cannot
expect it to provide highly precise boundaries with the fully
convolutional architecture as described in Section III-C. This
is because such network includes a downsampling step, re-
quired to capture the long-range spatial dependencies that
help recognize the classes. However, downsampling makes
the whole system lose spatial precision, and the deconvo-
lutional layer learns a way of naively upsampling the data
from a restricted number of neighbors, without reincorporating
higher-resolution information. What is lost in spatial precision
through the network, is not recovered. This is a consequence
of a well-known trade-off between the receptive field (how
much context is taken to conduct predictions) and the output
resolution (how fine is the prediction) if we wish to keep a
reasonable number of trainable parameters [33]. Our second
contribution is then a new architecture that incorporates infor-
mation at multiple scales in order to alleviate this trade-off.
Our architecture combines low-resolution long-range features
with high-resolution local features that conduct predictions
with a higher level of detail. This architecture, when combined
with our two-step training approach, provides a framework that
can be used end-to-end to classify satellite imagery.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 8

A. Fine-tuning

Fine-tuning is a very common procedure in the neural
network literature. The idea is to adapt an existing pretrained
model to a different domain by executing a few training iter-
ations on a new dataset. The notion of fine-tuning is based on
the intuition that low-level information/features can be reused
in different applications, without training from scratch. Even
when the final classification objective is different, it is also
a relevant approach for initializing the learnable parameters
close to good local minima, instead of initializing with random
weights. After proper fine-tuning, low-level features tend to be
quite preserved from one dataset to another, while the higher
layers’ parameters are updated to adapt the network to the new
problem [37].

When fine-tuning, the training set for the new domain is usu-
ally substantially smaller than the one used to train the original
network. This is because one assumes that some generalities
of both domains are well conveyed in the pretrained network
(e.g., edge detectors in different directions) and the fine-tuning
phase is just needed to conduct the domain adaptation. When
the training set used for fine-tuning is very small, additional
considerations to avoid overfitting are commonly taken, such
as early stopping (executing just a few iterations on the new
training dataset), fixing the weights at the lower layers or
reducing the learning rate.

We now incorporate the idea of neural network fine-tuning,
in order to perform training on imperfect data. Our approach
proceeds in two steps. In step one large amounts of training
data are used to train a fully convolutional neural network.
This raw training data is extracted directly from OSM, without
any hand correction. The goal of this step is to capture the
generalities of the dataset such as, e.g., the representative
spectrum of object classes.

In step two, we fine-tune the network by using a small
part of carefully labeled image. This phase is designed to
compensate for the inaccuracy of labels obtained in step one,
by fine-tuning the network on small yet consistent target
outputs. Assuming that most of the generalities have been
captured during the initial training step, the fine-tuning step
should locally correct the network parameters to output more
accurate classifications. The efforts of fine-tuning are thus
limited to manually labeling a small dataset, while the large
inaccurate dataset is automatically extracted from OSM.

B. Conducting Fine Predictions

The resolution at which the networks proposed in Section III
operate yields probability maps that, once upsampled, are
coarse in terms of spatial accuracy. A naive way to increase
the resolution of the network would be to use higher-resolution
filters, which requires to increase their dimensions if we
want to preserve the receptive field. For example, instead of
applying a 5× 5 filter at a fourth of the image resolution, one
could use a 20×20 filter at full resolution, hence covering the
same spatial extent. However, such an increase in filter sizes
is prohibitive, hampering the spatial and temporal efficiency
of the algorithm and producing less accurate results due to the
difficulty of optimizing so many parameters.

Nevertheless, we observed that we do not need full-
resolution filters to conduct accurate predictions. One requires
a higher resolution only in the center of the convolution
filters (assuming that the pixel we wish to predict is in the
center of the context of interest). A large spatial extent is
indeed required to capture contextual information, but it is
not necessary to conduct this analysis at full resolution. For
example, the presence of two parallel bands of grass can help
identify a road (and distinguish it from, for instance, a building
with a gray rooftop), but a precise localization of the grass is
not necessary. On the contrary, at the center of the convolution
filter, a higher-resolution analysis is required to specifically
locate the boundary of the aforementioned road.

Fig. 6 illustrates this observation. In Fig. 6(a) we observe
the area around a pixel whose class we wish to predict, at full
resolution. A filter taking such an amount of context with that
resolution would be prohibitive in the number of parameters,
as well as unnecessary. Fig. 6(b) depicts the same context
at a quarter of the resolution. Notice that it is still possible
to visually infer that there is a road. However, identifying
the precise location of the boundaries of the road becomes
difficult. Alternatively, Fig. 6(c) depicts a small patch but at
full resolution. We can now better locate the precise boundary
of the object, but with so little context it is difficult to identify
that the object is indeed a road. Large filters at low resolution
- see Fig. 6(b) or small filters at high resolution - see Fig. 6(c),
which would both have a reasonable number of parameters,
are bad alternatives: the first filter is too coarse and the second
filter is using too little context.

We propose convolutional filters that combine multiple
scales instead. In Fig. 6(d) the large-size low-resolution con-
text of Fig. 6(b) is combined with the small high-resolution
context of 6(d). This provides us with a means to simultane-
ously infer the class by observing the surroundings at a coarse
scale, and determine the precise boundary location by using
a finer context. This way, the amount of parameters are kept
small while the trade-off between recognition and localization
is alleviated.

Les us denote by S a set of levels of detail expressed as a
fraction of the original resolution. For example, S = {1, 1/2}
is a set comprising two-scales: full resolution and half of the
full resolution. We denote by xs a feature map x downsampled
to a certain level s ∈ S. For example, x1/2 is a feature map
downsampled to half of the original resolution. Inspired in
Equation 1, we design a special type of neuron that adds the
responses to a set of filters applied at different scales of the
feature maps in the previous layer:

a = σ

(∑
s∈S

wsxs + b

)
. (5)

Notice that individual filters ws are learned for every scale
s. Such a filter is easily implemented by using a combination
of elementary convolutional, downsampling and upsampling
layers. Fig. 7 illustrates this process in the case of a two-
scale (S = {1, 1/2}) module. In our implementation we
average neighboring elements in a window for downsampling
and perform bilinear interpolation for upsampling, but other

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 9

(a) Large context, high res-
olution

(b) Large context, low res-
olution

(c) Small context, high res-
olution

(d) Combined scales

Fig. 6: Different types of context to predict a pixel’s class. A multi-scale context such as in (d) alleviates the trade-off between
classification accuracy and number of learnable parameters.

Fig. 7: Two-scale convolutional module that simultaneously
combines coarse large-range and fine short-range reasoning.

Fig. 8: Fragments of the Forez training set (red: building).

approaches are also applicable. The kernel sizes of the con-
volutions at both scales are set to be equal (e.g., 3 × 3), yet
the amount of context taken varies from one path to the other
due to the different scales. The addition is an elementwise
operation, followed by the nonlinear activation function.

C. Experiments on the End-to-End Classification Framework

We conduct our experiments on a Pléiades image over the
area of Forez, France. An orthorectified color pansharpened
version of the image is used, at a spatial resolution of 0.5
m2. Our training subset amounts to 22.5 km2. The criterion to
construct the training set was to choose ten 3000× 3000 tiles
with at least some coverage of OpenStreetMap (OSM). The
shape files were rasterized with GDAL1 to create the binary
reference maps. Fig. 8 shows some fragments of the reference
data. Inconsistent misregistrations and considerable omissions
are observed all over.

1http://www.gdal.org

Fig. 9: Manually labeled tile for fine-tuning (3000×3000).

Fig. 10: Fragment of the fine-tuning tile. Red borders enclose
building areas.

We manually labeled a 2.25 km2 tile for FCN fine-tuning,
and a different 2.25 km2 tile for testing. The manual labeling
takes about two hours for each of the tiles. The entire tuning
tile is depicted by Fig. 9 and a close-up is shown in Fig. 10.

The fully convolutional network (FCN) described in Section
III-C, which was used for the Massachusetts dataset, is now
trained with the Forez set, under a similar experimental setting.
Note that this FCN was designed for images which have a
1 m2 resolution, while Pléiades imagery features a 0.5 m2

resolution. In order for the architectural decisions of FCN to
be valid in our new dataset, one must preserve the receptive
field size in terms of meters, not pixels. We thus downsample
Pléiades images prior to entering the first layer of the FCN,
and bilinearly upsample the output classification maps. Even
though a new network directly tailored to the Pléiades reso-
lution could be designed, we favor this proven architecture to
conduct our experiments. The concepts described in this paper

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 10

Method Accuracy AUC IoU
FCN 0.99126 0.99166 0.48

FCN + Fine-tuning 0.99459 0.99699 0.66
Two-scale FCN 0.99129 0.98154 0.47

Two-scale FCN + Fine-tuning 0.99573 0.99836 0.72

TABLE I: Performance evaluation on the Pléiades test set.

are however general and can be used to design other networks.
After training on the raw OSM Forez dataset, we fine-tune

the weights on the manually labeled tuning tile. The training
hyper-parameters are kept similar in the fine-tuning step, but
an early stopping criterion interrupts it after 200 iterations.

To assess the performance of fine-tuning we use as criteria
pixelwise accuracy and area under the ROC curve (AUC), as
described in Section III-D. Since there are many more non-
building pixels than building pixels in this dataset, these accu-
racy measures might seem overly high, a well-known issue of
pixelwise accuracy in imbalanced datsets [38]. We add then
the intersection over union criterion (IoU), an object-based
overlap measure typically used for imbalanced datasets [38].
In our case it is defined as the number of pixels labeled as
buildings both in the classified image and in the ground truth,
divided by the total amount of pixels labeled as such in either
of them. These criteria are evaluated on the manually labeled
test set, which is used neither for training nor for fine-tuning.
The first two rows of Table I show that fine-tuning enhances
the quality of the predictions in terms of accuracy, AUC and
IoU. To confirm the significance of the accuracy, a McNemar’s
test [39] proved that the improvement is not a result of mere
luck with a probability greater than 0.99999. Besides, the IoU
is improved by over a third with the fine-tuned network.

Fig. 11(a-d) shows the impact of fine-tuning on several
amplified fragments of the test set. A greater confidence in
the fine-tuned network predictions is observed. The objects
exhibit better alignment to the objects of the image, albeit the
boundaries could better line up to the underlying edges.

Fig. 12 illustrate the first-layer convolutional filters learned
by the initial and fine-tuned networks. We observe a combina-
tion of low- and high-frequency filters, a behavior typically
observed in CNNs. We also observe edge and color blob
detectors. These filter remain unchanged after fine-tuning, even
though no constraints are introduced to enforce this. Fine-
tuning corrects the weights in the high-level layers, which
suggests that the initial low-level features were useful indeed,
but the inaccuracy in the labels was introducing fuzziness in
the upper layers of the network.

We now evaluate the performance of a two-scale network.
The FCN architecture described in Section III-C is replaced
by three two-scale stacked modules, with scales S = {1, 1/4}.
We select S = 1/4 as it corresponds to the degree of
downsampling of the original FCN network, and S = 1 is
added to refine the predictions. The three modules learn 3× 3
filters in both scales. The first two modules generate 64 feature
maps and the last module generates a single map with the
building/non-building prediction.

The two-scale network is trained and fine-tuned in a similar
setting as the FCN network. The results summarized in the
last two rows of Table I show that fine-tuning significantly

Fig. 12: First layer filters before and after fine-tuning.

enhances the classification performance, and that the fine-
tuned two-scale network outperforms the single scale network.
Notably, IoU goes from 0.48 to 0.72, implying that objects
overlap with the ground truth 50% better by adding a scale
and performing fine-tuning. Note that if a scale is added but
no fine-tuning is done, there is actually a slight decrease in
performance. A possible explanation for this is that including a
finer scale adds even more confusion to the training algorithm
if only noisy misregistered labels are provided.

Figs. 11(e-f) illustrate the results on visual fragments of
the test set. The two-scale network yields classification maps
that better correspond to the actual image objects, and exhibit
sharper angles and straighter lines. The entire classified test tile
for the fine-tuned two-scale network is depicted by Fig. 13c.
The time required to generate this result corresponds to three
hours for training on the OSM dataset, two hours to manually
label an image tile and about a minute for fine-tuning. The
prediction of the 3000 × 3000 test tile using the hardware
described in Section III-D takes 3.2 seconds, and it grows
linearly in the size of the image. As in Section III-D, we ran
an SVM on the individual pixel values (see the classification
map in Fig. 13b). Accuracy is 0.9487 and IoU 0.19, yielding
poorer results than the presented CNN-based approaches.

As validated by the experiments, the issue of not having
large amounts of high-quality reference data can be alleviated
by providing the network with a small amount of accurate
data in a fine-tuning step. Our multi-scale neurons combine
reasoning at different resolutions to effectively produce fine
predictions, while keeping a reasonable number of parameters.
Such a framework can be used end-to-end to perform the
classification task directly from input imagery. More scales
can be easily be added and, besides the fact of being fully
convolutional, there are little constraints on the architecture
itself, admitting a different number of classes, input bands or
number of feature maps.

V. CONCLUDING REMARKS

Convolutional neural networks have become a popular clas-
sifier in the context of image analysis due to their potential
to automatically learn relevant contextual features. Initially
devised for the categorization of natural images, these net-
works must be revisited and adapted to tackle the problem of
pixelwise labeling in remote sensing imagery.

We proposed a fully convolutional network architecture by
analyzing a state-of-the-art model and solving its concerns by
construction. Despite their outstanding learning capability, the

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 11

(a) Color image (b) Reference (c) FCN (d) FCN + Fine-tuning (e) 2-scale FCN (f) 2-scale FCN +
Fine-tuning

Fig. 11: Classified fragments of the Pléiades test image. Fine-tuning increases the confidence of the predictions, and the
two-scale network produces fine-grained classification maps.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 12

(a) Color pansharpened input (b) SVM on individual pixels (c) FCN (two scales + fine-tuning)

Fig. 13: Binary classification maps on the Forez test image.

lack of accurate training data might limit the applicability of
CNN models in realistic remote sensing contexts. We therefore
proposed a two-step training approach combining the use of
large amounts of raw OpenStreetMap data and a small sample
of manually labeled reference. The last ingredient we needed
to provide a usable end-to-end framework for remote sensing
image classification was to produce fine-grained classification
maps, since typical CNNs tend to hamper the fineness of the
output as a side effect of taking large amounts of context. We
proposed a type of neuron module that simultaneously reasons
at different scales.

Experiments showed that our fully convolutional network
outperforms the previous model in multiple aspects: the accu-
racy of the results is improved, the visual artifacts are removed
and the inference time is reduced by a factor of ten. The use of
our architecture constitutes then a win-win situation in which
no aspect is compromised for the others. This was achieved
by analyzing the role played by every layer in the network in
order to propose a more appropriate architecture, showing that
a deep understanding of how CNNs work is important for their
success. Further experimentation showed that the two-step
training approach effectively combines imperfect training data
with manually labeled data to capture the dataset’s generalities
and its precise details. Moreover, the multi-scale modules
increase the level of detail of the classification without making
the number of parameters explode, attenuating the trade-off
between detection and localization.

Our overall framework shows then that convolutional neural
networks can be used end-to-end to process large amounts of
satellite images and provide accurate pixelwise classifications.

As future work we plan to extend our experiments to
multiple object classes and study the possibility of directly
inputting non-pansharpened imagery, in order to avoid this
preprocessing step. We also plan to study the introduction of
shape priors in the learning process and the vectorization of
the classification maps.

ACKNOWLEDGMENT

All Pléiades images are c©CNES (2012 and 2013), distri-
bution Airbus DS / SpotImage. The authors thank CNES for
initializing and funding the study, and providing Pléiades data.

REFERENCES

[1] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner,
“Gradient-based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[2] Dan Ciresan, Ueli Meier, and Jürgen Schmidhuber, “Multi-column deep
neural networks for image classification,” in IEEE CVPR, 2012, pp.
3642–3649.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet
classification with deep convolutional neural networks,” in NIPS, 2012.

[4] Annamalai Senthil Kumar and Kantilal Majumder, “Information fusion
in tree classifiers,” International Journal of Remote Sensing, vol. 22,
no. 5, pp. 861–869, 2001.

[5] Jean Mas and Juan Flores, “The application of artificial neural networks
to the analysis of remotely sensed data,” International Journal of Remote
Sensing, vol. 29, no. 3, pp. 617–663, 2008.

[6] Thomas Villmann, Erzsbet Mernyi, and Barbara Hammer, “Neural maps
in remote sensing image analysis,” Neural Networks, vol. 16, no. 34,
pp. 389 – 403, 2003, Neural Network Analysis of Complex Scientific
Data: Astronomy and Geosciences.

[7] Gustavo Camps-Valls and Lorenzo Bruzzone, “Kernel-based methods
for hyperspectral image classification,” IEEE Tran. Geosci. Remote
Sens., vol. 43, no. 6, pp. 1351–1362, 2005.

[8] Mathieu Fauvel, Yuliya Tarabalka, Jon Atli Benediktsson, Jocelyn
Chanussot, and James C Tilton, “Advances in spectral-spatial classi-
fication of hyperspectral images,” Proceedings of the IEEE, vol. 101,
no. 3, pp. 652–675, 2013.

[9] Wenzhi Liao, Mauro Dalla Mura, Jocelyn Chanussot, Rik Bellens,
and Wilfried Philips, “Morphological attribute profiles with partial
reconstruction,” IEEE Tran. Geosci. Remote Sens., vol. 54, no. 3, pp.
1738–1756, 2016.

[10] Yuliya Tarabalka and Aakanksha Rana, “Graph-cut-based model for
spectral-spatial classification of hyperspectral images,” in IEEE IGARSS.
IEEE, 2014, pp. 3418–3421.

[11] Mehmet Nadir Kurnaz, Zmray Dokur, and Tamer lmez, “Segmentation
of remote-sensing images by incremental neural network,” Pattern
Recognition Letters, vol. 26, no. 8, pp. 1096 – 1104, 2005.

[12] Christopher David Lloyd, Suha Berberoglu, Paul Curran, and Peter
Atkinson, “A comparison of texture measures for the per-field classi-
fication of mediterranean land cover,” International Journal of Remote
Sensing, vol. 25, no. 19, pp. 3943–3965, 2004.

[13] Dengsheng Lu and Qihao Weng, “A survey of image classification
methods and techniques for improving classification performance,” In-
ternational journal of Remote sensing, vol. 28, no. 5, pp. 823–870, 2007.

[14] ME Midhun, Sarath R Nair, VT Prabhakar, and S Sachin Kumar, “Deep
model for classification of hyperspectral image using restricted boltz-
mann machine,” in Proceedings of the 2014 International Conference
on Interdisciplinary Advances in Applied Computing. ACM, 2014, p. 35.

[15] Tong Li, Junping Zhang, and Ye Zhang, “Classification of hyperspectral
image based on deep belief networks,” in IEEE ICIP, 2014.

[16] Viktor Slavkovikj, Steven Verstockt, Wesley De Neve, Sofie Van Hoecke,
and Rik Van de Walle, “Hyperspectral image classification with convo-
lutional neural networks,” in Proceedings of the 23rd ACM international
conference on Multimedia. ACM, 2015, pp. 1159–1162.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 13

[17] Yushi Chen, Xing Zhao, and Xiuping Jia, “Spectral-spatial classification
of hyperspectral data based on deep belief network,” IEEE J. Sel. Topics
Appl. Earth Observ. in Remote Sens., vol. 8, no. 6, June 2015.

[18] Yushi Chen, Zhouhan Lin, Xing Zhao, Gang Wang, and Yanfeng Gu,
“Deep learning-based classification of hyperspectral data,” IEEE J. Sel.
Topics Appl. Earth Observ. in Remote Sens., vol. 7, no. 6, pp. 2094–
2107, 2014.

[19] Jun Yue, Wenzhi Zhao, Shanjun Mao, and Hui Liu, “Spectral–spatial
classification of hyperspectral images using deep convolutional neural
networks,” Remote Sensing Letters, vol. 6, no. 6, pp. 468–477, 2015.

[20] Konstantinos Makantasis, Konstantinos Karantzalos, Anastasios
Doulamis, and Nikolaos Doulamis, “Deep supervised learning for
hyperspectral data classification through convolutional neural networks,”
in IEEE IGARSS. IEEE, 2015, pp. 4959–4962.

[21] Wenzhi Zhao and Shihong Du, “Spectral–spatial feature extraction
for hyperspectral image classification: A dimension reduction and deep
learning approach,” IEEE Tran. Geosci. Remote Sens., vol. 54, no. 8,
pp. 4544–4554, 2016.

[22] Wenzhi Zhao, Zhou Guo, Jun Yue, Xiuyuan Zhang, and Liqun Luo,
“On combining multiscale deep learning features for the classification of
hyperspectral remote sensing imagery,” International Journal of Remote
Sensing, vol. 36, no. 13, pp. 3368–3379, 2015.

[23] Wenzhi Zhao and Shihong Du, “Learning multiscale and deep repre-
sentations for classifying remotely sensed imagery,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 113, pp. 155–165, 2016.

[24] Essa Basaeed, Harish Bhaskar, Paul Hill, Mohammed Al-Mualla, and
David Bull, “A supervised hierarchical segmentation of remote-sensing
images using a committee of multi-scale convolutional neural networks,”
International Journal of Remote Sensing, vol. 37, no. 7, 2016.

[25] Jun Wang, Jingwei Song, Mingquan Chen, and Zhi Yang, “Road network
extraction: a neural-dynamic framework based on deep learning and a
finite state machine,” International Journal of Remote Sensing, vol. 36,
no. 12, pp. 3144–3169, 2015.

[26] Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, and Chun-Hong Pan,
“Vehicle detection in satellite images by hybrid deep convolutional
neural networks,” IEEE Geoscience and remote sensing letters, vol.
11, no. 10, pp. 1797–1801, 2014.

[27] Igor Ševo and Aleksej Avramović, “Convolutional neural network based
automatic object detection on aerial images,” IEEE Geoscience and
Remote Sensing Letters, vol. 13, no. 5, pp. 740–744, 2016.

[28] FPS Luus, BP Salmon, F Van Den Bergh, and BTJ Maharaj, “Multiview
deep learning for land-use classification,” IEEE Geoscience and Remote
Sensing Letters, vol. 12, no. 12, pp. 2448–2452, 2015.

[29] Volodymyr Mnih, Machine learning for aerial image labeling, Ph.D.
thesis, University of Toronto, 2013.

[30] Christopher M Bishop, Neural networks for pattern recognition, Oxford
university press, 1995.

[31] Julien Michel, David Youssefi, and Manuel Grizonnet, “Stable mean-
shift algorithm and its application to the segmentation of arbitrarily large
remote sensing images,” IEEE Tran. Geosci. Remote Sens., vol. 53, no.
2, pp. 952–964, 2015.

[32] Pierre Lassalle, Jordi Inglada, Julien Michel, Manuel Grizonnet, and
Julien Malik, “A scalable tile-based framework for region-merging
segmentation,” IEEE Tran. Geosci. Remote Sens., vol. 53, no. 10, pp.
5473–5485, 2015.

[33] Jonathan Long, Evan Shelhamer, and Trevor Darrell, “Fully convolu-
tional networks for semantic segmentation,” in CVPR, 2015.

[34] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell, “Caffe:
Convolutional architecture for fast feature embedding,” arXiv preprint
arXiv:1408.5093, 2014.

[35] Cèsar Ferri, José Hernández-Orallo, and Peter A Flach, “A coherent
interpretation of AUC as a measure of aggregated classification perfor-
mance,” in ICML, 2011.

[36] Yuliya Tarabalka, Mathieu Fauvel, Jocelyn Chanussot, and Jón Atli
Benediktsson, “Svm-and mrf-based method for accurate classification of
hyperspectral images,” Geoscience and Remote Sensing Letters, IEEE,
vol. 7, no. 4, pp. 736–740, 2010.

[37] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson, “How
transferable are features in deep neural networks?,” in NIPS, 2014.

[38] Gabriela Csurka, Diane Larlus, Florent Perronnin, and France Meylan,
“What is a good evaluation measure for semantic segmentation?.,” in
BMVC, 2013, vol. 27, p. 2013.

[39] Quinn McNemar, “Note on the sampling error of the difference between
correlated proportions or percentages,” Psychometrika, vol. 12, no. 2,
pp. 153–157, 1947.

Emmanuel Maggiori received the Engineering de-
gree in computer science from Central Buenos Aires
Province National University (UNCPBA), Tandil,
Argentina, in 2014. The same year he joined
AYIN and STARS teams at Inria Sophia Antipolis-
Méditerranée as a research intern in the field of
remote sensing image processing. Since 2015, he
has been working on his Ph.D. within TITANE team,
studying machine learning techniques for large-scale
processing of satellite imagery.

Yuliya Tarabalka (S’08–M’10) received the B.S.
degree in computer science from Ternopil Ivan
Pul’uj State Technical University, Ukraine, in 2005
and the M.Sc. degree in signal and image processing
from the Grenoble Institute of Technology (INPG),
France, in 2007. She received a joint Ph.D. degree
in signal and image processing from INPG and in
electrical engineering from the University of Iceland,
in 2010.

From July 2007 to January 2008, she was a
researcher with the Norwegian Defence Research

Establishment, Norway. From September 2010 to December 2011, she was a
postdoctoral research fellow with the Computational and Information Sciences
and Technology Office, NASA Goddard Space Flight Center, Greenbelt, MD.
From January to August 2012 she was a postdoctoral research fellow with
the French Space Agency (CNES) and Inria Sophia Antipolis-Méditerranée,
France. She is currently a researcher with the TITANE team of Inria Sophia
Antipolis-Méditerranée. Her research interests are in the areas of image
processing, pattern recognition and development of efficient algorithms. She
is Member of the IEEE Society.

Guillaume Charpiat is a researcher at Inria Saclay
(France) in the TAO team. He studied Mathemat-
ics and Physics at the École Normale Supérieure
(ENS Paris), and then Computer Vision and Machine
Learning (at ENS Cachan), as well as Theoretical
Physics. His PhD thesis, in Computer Science, ob-
tained in 2006, was on the topic of distance-based
shape statistics for image segmentation with priors.
He then spent one year at the Max-Planck Institute
for Biological Cybernetics (Tübingen, Germany),
on the topics of medical imaging (MR-based PET

prediction) and automatic image colorization. As a researcher at Inria Sophia-
Antipolis (France), he worked mainly on image segmentation and optimization
techniques. Now at Inria Saclay he focuses on Machine Learning, in particular
on building a theoretical background for neural networks.

Pierre Alliez Pierre Alliez is Senior Researcher and
team leader at Inria Sophia-Antipolis - Mediterranee.
He has authored scientific publications and several
book chapters on mesh compression, surface recon-
struction, mesh generation, surface remeshing and
mesh parameterization. He is an associate editor
of the Computational Geometry Algorithms Library
(http://www.cgal.org) and an associate editor of the
ACM Transactions on Graphics. He was awarded
in 2005 the EUROGRAPHICS young researcher
award for his contributions to computer graphics

and geometry processing. He was co-chair of the Symposium on Geometry
Processing in 2008, of Pacific Graphics in 2010 and Geometric Modeling and
Processing 2014. He was awarded in 2011 a Starting Grant from the European
Research Council on Robust Geometry Processing.

