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Une revue des méthodes de classification automatique de

données fonctionnelles

Résumé : Nous présentons dans cet article une revue des méthodes de classification automa-
tique pour données fonctionelles. Ces techniques peuvent être classées en trois catégories: les
méthodes procédant à une étape de réduction de dimension avant la classification, les méthodes
non paramétriques qui utilisent des techniques de classification automatique classiques couplées
à des distances ou dissimilarités spécifiques aux données fonctionnelles, et enfin, les techniques
à base de modèles génératifs. Ces dernières supposent un modèle probabiliste soit sur les scores
d’une analyse en composantes principales fonctionnelle, soit sur les coefficients des approxima-
tions des courbes dans une base de fonctions de dimension finie. Une illustration numérique ainsi
qu’une revue des logiciels disponibles sont également présentées.

Mots-clés : Données fonctionnelles, Classification automatique, Méthodes non paramétriques,
Modèles génératifs, Analyse en composantes principales fonctionnelles
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1 Introduction

The aim of the cluster analysis is to build homogeneous groups (clusters) of observations rep-
resenting realisations of some random variable X . Clustering is often used as a preliminary
step for data exploration, the goal being to identify particular patterns in data that have some
convenient interpretation for the user. In the finite dimensional setting, X is a random vector
with values in R

p, X = (X1, . . . , Xp), p ≥ 1. Earliest methods, such as hierarchical clustering
[56] or k-means algorithm [24] are based on heuristic and geometric procedures. More recently,
probabilistic approaches have been introduced to characterize the notion of cluster through their
probability density [4, 13, 37].

In recent years, researchers concentrated their efforts to solve problems (regression, clustering)
when p is large, in his absolute value or with respect to the size of some sample drawn from the
distribution of X . The curse of dimensionality was and is still a very active topic. A particular
case is that of random variables taking values into an infinite dimensional space, typically a space
of functions defined on some continous set T . Thus, data is represented by curves (functional
data) and the random variable underlying data is a stochastic process X = {X(t), t ∈ T }. If this
type of data was for longtime inaccessible for statistics (because of technological limitations),
today it becomes more and more easy to observe, to store and to process large amounts of such
data in medicine, economics, chemometrics and many others domains (see [42] for an overview).

Clustering functional data is generally a difficult task because of the infinite dimensional
space that data belong to. The lack of a definition for the probability density of a functional
random variable, the defintion of distances or estimation from noisy data are some examples of
such difficulties. Different approaches have been proposed along the years. The most popular
approach consists of reducing the infinite dimensional problem to a finite one by approximating
data with elements from some finite dimensional space. Then, clustering algorithms for finite
dimensional data can be performed. On the other hand, nonparametric methods for clustering
consist generally in defining specific distances or dissimilarities for functional data and then apply
clustering algorithms as hierarchical clustering or k-means. Recently, model-based algorithms
for functional data have been developed.

The aim of this paper is to propose a review of these clustering approaches for functional
data. It is organized as follows. Section 2 introduces functional data and functional principal
component analysis as the main tool for analysing and clustering functional data. Section 3
reviews the different clustering methods for functional data : two-stage methods which reduce
the dimension before clustering, nonparametric methods and model-based methods. Section 4
discusses the common problems of selecting the number of clusters and of choosing appropriate
representation for functional data approximation. Section 5 presents some software for clustering
functional data. The numerical results of the application of some reviewed methods on real data
are presented in Section 6. Some open problems related to functional data clustering end the
paper.

2 Functional Data Analysis

Functional data analysis (FDA) extends the classical multivariate methods when data are func-
tions or curves. Some examples of such data are presented in Figure 1: the top Figure (a) plots
the evolution of some stock-exchange index is observed during one hour; the bottom Figure (b)
presents the knee flexion angle observed over a gait cycle.

The first contributions to functional data analysis concern the factorial analysis and are
mainly based on the Karhunen-Loeve expansion of a second order L2-continuous stochastic pro-
cess [31, 36]. A pioneer work paper on the subject is due to Deville [18] – a one hunderd pages
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(a) Share index evolution during one hour.
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(b) Knee flexion angle (degree) over a complete gait cycle.

Figure 1: Some examples of functional data.

paper in the Annales de l’INSEE – with some applications in economy. In [16] and [3] the authors
obtained asymptotic results for the elements derived from factorial analysis. The contributions
of Besse [5] and of Saporta [47] extends to functional data the principal component analysis,
the canonical analysis of two functional variables, the multiple correspondence analysis for func-
tional categorical data and the linear regression on functional data. An important contribution
to functional categorical data is due to [8].

More recently, important contributions to regression models for functional data are due to
the research group working on functional statistics in Toulouse (STAPH1). Let us remind also
the monographs on functional data by Ramsay and Silverman [41, 42] developing theory and
applications on functional data, the book of Bosq [7] for modeling dependent functional random
variables and the recent book of Ferraty and Vieu [20] on nonparametric models for functional
data containing a review of the most recent contributions on this topic.

2.1 Functional Data

According to [20], a functional random variable X is a random variable with values in an infinite
dimensional space. Then, functional data represents a set of observations {X1, . . . , Xn} of X .

1http://univ-tlse3.fr/STAPH
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Functional data clustering: a survey 5

The underlying model for Xi’s is generally an i.i.d. sample of random variables drawn from the
same distribution as X .

A well accepted model for this type of data is to consider it as paths of a stochastic process
X = {Xt}t∈T taking values in a Hilbert space H of functions defined on some set T . Generally, T
represents an interval of time, of wavelengths or any other continuous subset of R. We restrict our
presentation to the case where H is a space of real-valued functions. For multivariate functional
data (elements of H are R

p-valued functions, p ≥ 2) the reader can refer for instance to [29] for
a recent work on multivariate functional data clustering.

The main source of difficulty when dealing with functional data consists in the fact that the
observations are supposed to belong to an infinite dimensional space, whereas in practice one only
has sampled curves observed into a finite set of time-points. Indeed, it is usual that we only have
discrete observations Xij of each sample path Xi(t) at a finite set of knots {tij : j = 1, . . . , mi}.
Because of this, the first step in FDA is often the reconstruction of the functional form of
data from discrete observations. The most common solution to this problem is to consider that
sample paths belong to a finite dimensional space spanned by some basis of functions (see, for
example, [42]). An alternative way of solving this problem is based on nonparametric smoothing
of functions [20].

Let us consider a basis Φ = {φ1, . . . , φL} generating some space of functions in H and assume
that X admits the basis expansion

Xi(t) =

L∑

ℓ=1

αiℓφℓ(t) (2.1)

for some L ∈ N, with αiℓ ∈ R.
The sample paths basis coefficients are estimated from discrete-time observations by using

an appropriate numerical method:� If the sample curves are observed without error

Xij = Xi (tij) j = 1, . . . , mi,

an interpolation procedure can be used. For example, [19] propose quasi-natural cubic
spline interpolation to reconstruct annual temperatures curves from monthly values.� On the other hand, if the functional predictor is observed with error

Xij = Xi (tij) + εij j = 1, . . . , mi,

least squares smoothing is used after choosing a suitable basis as, for example, trigonometric
functions, B-splines or wavelets (see [42] for a detailed study). In this case, the basis
coefficients of each sample path Xi(t) are approximated by

α̂i = (Θ′
iΘi)

−1
Θ′

iX̃i,

with α̂i = (α̂i1, . . . , α̂iL)′, Θi = (φℓ(tij))1≤j≤mi,1≤ℓ≤L and X̃i = (Xi1, . . . , Ximi
)′.

2.2 Functional Principal Component Analysis

From the set of functional data {X1, . . . , Xn}, one can be interested in optimal representation
of curves into a function space of reduced dimension. The main tool to answer this request,
Functional Principal Component Analysis (FPCA), is presented in this section. Althought the

RR n° 8198



6 Jacques & Biernacki

practical interest of FPCA for interpretation and data presentation (graphics), it is one of the
main tools considered when clustering functional data.
In order to address this question in a formal way, we need the hypothesis that considers X as a
L2-continuous stochastic process:

∀t ∈ T , lim
h→0

E
[
|X(t + h) − X(t)|2

]
= 0.

The L2-continuity is a quite general hypothesis, as most of the real data applications satisfy this
one.
Let µ = {µ(t) = E[X(t)]}t∈T denotes the mean function X .
The covariance operator V of X :

V : L2(T ) → L2(T )

f
V

7−→ Vf =

∫ T

0

V (·, t)f(t)dt,

is an integral operator with kernel V defined by:

V (s, t) = E [(X(s) − µ(s))(X(t) − µ(t))] , s, t ∈ T .

Under the L2-continuity hypothesis, the mean and the covariance function are continuous and
the covariance operator V is a Hilbert-Schmidt one (compact, positive and of finite trace).

The spectral analysis of V provides a countable set of positive eigenvalues {λj}j≥1 associated
to an orthonormal basis of eigenfunctions {fj}j≥1:

Vfj = λjfj , (2.2)

with λ1 ≥ λ2 ≥ . . . and

∫ T

0

fj(t)fj′(t)dt = 1 if j = j′ and 0 otherwise.

The principal components {Cj}j≥1 of X are random variables defined as the projection of X on
the eigenfunctions of V :

Cj =

∫ T

0

(X(t) − µ(t))fj(t)dt.

The principal components {Cj}j≥1 are zero-mean uncorrelated random variables with variance
λj , j ≥ 1.
With these definitions, the Karhunen-Loeve expansion [31, 36] holds:

X(t) = µ(t) +
∑

j≥1

Cjfj(t), t ∈ T . (2.3)

Truncating (2.3) at the first q terms one obtains the best approximation in norm L2 of X(t) by
a sum of quasi-deterministic processes [47] ,

X(q)(t) = µ(t) +

q∑

j=1

Cjfj(t), t ∈ T . (2.4)

Inria



Functional data clustering: a survey 7

2.3 Computational methods for FPCA

Let {x1, . . . , xn} be the observation of the sample {X1, . . . , Xn}. The estimators for µ(t) and
V (s, t), for s, t ∈ T , are:

µ̂(t) =
1

n

n∑

i=1

xi(t) and V̂ (s, t) =
1

n − 1

n∑

i=1

(xi(s) − µ̂(s))(xi(t) − µ̂(t)).

In [18] it has been shown that µ̂ and V̂ converges to µ and V in L2-norm with convergences rate
of O(n−1/2).

As previously discussed, the functional data are generally observed at discrete time points and
a common solution to reconstruct the functional form of data is to assume that functional data
belong to a finite dimensional space spanned by some basis of functions. Let αi = (αi1, . . . , αiL)′

be the expansion coefficient of the observed curve xi in the basis Φ = {φ1, . . . , φL}, such that:

xi(t) = Φ(t)′αi

with Φ(t) = (φ1(t), . . . , φL(t))′.
Let Ã be the n×L-matrix, whose rows are the vectors α′

i, and M(t) = (x1(t), . . . , xn(t))′ the
vector of the values xi(t) of functions xi at times t ∈ T (1 ≤ i ≤ n). With these notations, we
have

M(t) = ÃΦ(t). (2.5)

Under the basis expansion assumption (2.1), the estimator V̂ of V , for all s, t ∈ T , is given by:

V̂ (s, t) =
1

n − 1
(M(s) − µ̂(s))′(M(t) − µ̂(t)) =

1

n − 1
Φ(s)′A′AΦ(t), (2.6)

where M(s) − µ̂(s) means that the scalar µ̂(s) is subtracted to each elements of M(s), and
A = (In − 1In(1/n, . . . , 1/n))Ã where In and 1In are respectively the identity n × n-matrix and
the unit column vector of size n.
From (2.2) and (2.6), each eigen-function fj belongs to the linear space spanned by the basis Φ:

fj(t) = Φ(t)′bj (2.7)

with bj = (bj1, . . . , bjL)′.

Using the estimation V̂ of V , the eigen problem (2.2) becomes

∫ T

0

V̂ (s, t)fj(t)dt = λjfj(s),

which, by replacing V̂ (s, t) and fj(s) by their expressions given in (2.6) and (2.7), is equivalent
to

1

n − 1
Φ(s)′A′A

∫ T

0

Φ(t)Φ(t)′dt

︸ ︷︷ ︸
W

bj = λjΦ(s)′bj , (2.8)

where W =
∫ T

0 Φ(t)Φ(t)′dt is the symmetric L × L matrix of the inner products between the
basis functions.
Since (2.8) is true for all s, we have:

1

n − 1
A′AWbj = λjbj .

RR n° 8198



8 Jacques & Biernacki

By defining uj = W 1/2bj , the multivariate functional principal component analysis is reduced to
the usual PCA of the matrix 1√

n−1
AW 1/2:

1

n − 1
W 1/2′A′AW 1/2uj = λjuj.

The coefficient bj, j ≥ 1, of the eigen-function fj are obtained by bj = (W 1/2)−1uj , and the
principal component scores, are given by

Cj = AWbj j ≥ 1.

Note that the principal components scores Cj are also the solutions of the eigenvalues problem:

1

n − 1
AWA′Cj = λjCj .

2.4 Preprocessing functional data

Curves are generally observed at discrete instants of time. For this reason a first step when
working with functional data is to reconstruct the functional form of data.
A second important step in functional data analysis is, generally, data registration [42, chap. 7].
It consists in centring and scaling the curves in order to eliminate both phase and amplitude
variations into the curve’s dataset. But, in our opinion, for clustering purpose registration is not
necessarily. Indeed, the amplitude and phase variability of curves can be interesting elements
to define clusters. For instance, in the well-known Canadian weather dataset (temperature and
precipitation curves for Canadian weather stations [10, 28, 42]), the geographical interpretation of
the clusters of weather stations is mainly due to amplitude variability. Nevertheless, several works
perform curves registration before or simultaneously with clustering [35, 46] aiming to obtain
new clusters which are not related to phase and amplitude variations. But, in this tentative, the
conclusion is often the absence of cluster after registration. For instance, the Growth dataset
[14, 28, 42, 54], which consists of growth curves for girls and boys, is considered by [35] for a
clustering study simultaneously with data registration. The result being the absence of cluster,
they failed in retrieving the gender of subjects, contrary to other methods [14, 28] which does
not perform data registration.

3 Major functional data clustering approaches

Clustering functional data received particular attention from statisticians in the last decade. We
present in this section a classification of the different approaches to functional data clustering
into three groups. This classification, illustrated in Figure 2, is described below.
A first approach, quoted as raw-data clustering in Figure 2, consists in using directly discretiza-
tion of the functions at some time points. This approach is the most simple one, since the
functions are generally already observed at discrete instants of time. In this situation, there is
no need to reconstruct the functional form of the data. Because of the large size of the discretiza-
tion, clustering techniques for high-dimensional vectorial data must be used. These techniques
are not discussed in this paper, and we refer to [11] for a complete review on the subject.
Thus, the first category of methods discussed in the sequel (Section 3.1) is two-stage methods,
which first reduce the dimension of the data and second perform clustering.
The second category concerns nonparametric clustering methods and will be reviewed in Section
3.2. These methods consist generally in using specific distances or dissimilarities between curves

Inria



Functional data clustering: a survey 9

combined to classical non-probabilistic clustering algorithms designed for finite-dimensional data.
The third category is model-based clustering techniques which assume a probability distribution
underlying data. For functional data the notion of probability density generally does not exist
[17]. Therefore, one can consider models involving probability density for some finite dimensional
coefficients describing data. These coefficients can be either coefficients of curves into a basis
approximation (splines, wavelets...) or principal components scores resulting from functional
principal component analysis of the curves. These methods will be presented in Section 3.3.
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Figure 2: Classification of the different clustering methods for functional data.

3.1 Two-stage approaches

The two-stage approaches for functional data clustering consist of a first step, quoted as filtering
step in [30], in which the dimension of data is reduced, and of a second step in which classical
clustering tools for finite dimensional data are used.
The reducing dimension step consists generally in approximating the curves into a finite basis of
functions. Spline basis [55] is one of the most common choice because of their optimal properties.
For instance, B-splines are considered in [1, 44]. Another dimension reduction technique is the
functional principal component analysis (see Section 2.2), for which, from a computational point
of view, one needs generally to use also a basis approximation of the curves (see Section 2.3).
Functional data being summarized either by their coefficients in a basis of functions or by their
first principal component scores, usual clustering algorithms can be used to estimate clusters of
functional data. In [1] and [39] the k-means algorithm is used on B-splines coefficients [1] and on
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10 Jacques & Biernacki

a given number of principal component scores [39]. In [39] the number of principal component
scores is selected according to the percentage of explained variance, which is an usual criterion
in principal component analysis. Let remark also that in [39], the principal component scores
are not directly used but transformed in a low-dimensional space thanks to a multi-dimensional
scaling [15]. In [44] and [32] an unsupervised neural network, Self-Organised Map [33], is applied
respectively on B-spline and Gaussian coefficient’s basis.
Table 1 summarizes these two-stage approaches.
Let remark that there exist several other approaches developed in specific context. For instance,
[49] decomposes a dataset of curves using a functional analysis of variance (ANOVA) model: tak-
ing into account repeated random functions the authors propose a clustering algorithm assuming
a mixture of Gaussian distributions on the coefficients of the ANOVA model.

type of basis functions
clustering B-spline Gaussian eigenfunctions
k-means [1] [39]
Self-Organised Map [44] [32]

Table 1: Summary of two-stage clustering approaches for functional data.

3.2 Nonparametric approaches

Nonparametric approaches for functional data clustering are divided into two categories: methods
who apply usual nonparametric clustering techniques (k-means or hierarchical clustering) with
specific distances or dissimilarities, and methods which propose new heuristics or geometric
criteria to cluster functional data.
In the first category of methods, several works consider the following measures of proximity
between two curves xi and xi′ :

dℓ(xi, xi′ ) =

(∫

T
(x

(ℓ)
i (t) − x

(ℓ)
i′ (t))2dt

)1/2

.

where x(ℓ) is the ℓ-th derivative of x. In [20] the authors propose to use hierarchical clustering
combined with the distance d0 – the L2-metric – or with the semi-metric d2. In [27] the k-means
algorithm is used with d0, d1 and with (d2

0 + d2
1)

1/2. In [51] the authors investigate the use of
d0 with k-means for Gaussian processes. In particular, they prove that the cluster centres are
linear combinations of FPCA eigenfunctions. The same distance d0 with k-means is considered
in [53] defining time-dependent clustering. These methods are summarized in Table 2.

proximity measure
clustering d0 d1 d0 + d1 d2

k-means [27, 51, 53] [27] [27]
hierarchical clustering [20] [20]

Table 2: Classical nonparametric clustering methods with proximity measures specific to func-
tional data.

Remark: Following the method used to estimate the distance d0, nonparametric methods can
be assimilated to raw-data clustering or to a two-stage methods. Indeed, if d0 is approximated

Inria



Functional data clustering: a survey 11

using directly the discrete observations of curves – using for instance the function metric.lp()
of the fda.usc package for the R software –, nonparametric methods are equivalent to raw-data
clustering methods. Similarly, if an approximation of the curves into a finite basis is used to
approximate d0 – with function semimetric.basis() of fda.usc –, nonparametric methods are
equivalent to two-stage methods with the same basis approximation.

The second category of nonparametric methods proposes new heuristics to cluster functional.
In [26] two dynamic programming algorithms which simultaneously perform clustering and piece-
wise estimation of the cluster centres are proposed. Recently, [57] develops a new procedure to
identify optimal clusters of functions and optimal subspaces for clustering, simultaneously. For
this purpose, an objective function is defined as the sum of the distances between the observa-
tions and their projections plus the distances between the projections and the cluster means (in
the projection space). An alternate algorithm is used to optimize the objective function.

3.3 Model-based approaches

Model on Type of model Reference

FPCA scores
Gaussian (parsimonious sub-models) [10]
Gaussian [28, 29]
Gaussian spherical (k-means) [14]

basis expansion coefficients
Gaussian (parsimonious) [30]
Gaussian with regime changes [45]
Bayesian [22, 25, 43]

Table 3: Model-based clustering approaches for functional data.

Model-based clustering techniques for functional data are not so straightforward as in the
finite-dimensional setting, since the notion of density probability is generally not defined for
functional random variable [17]. Thus, such techniques consists in assuming a density probability
on a finite number of parameters describing the curves. But contrary to two-stage methods, in
which the estimation of these coefficients is done previously to clustering, these two tasks are
performed simultaneously with model-based techniques.

We divide model-based clustering techniques for functional data into two sets of methods,
summarized in Table 3: those modelling the FPCA scores and those modelling directly the
expansion coefficients in a finite basis of functions.

3.3.1 Model-based functional clustering techniques using principal components

modelling

In [17], an approximation of the notion of probability density for functional random variables is
proposed. This approximation is based on the truncation (2.4) of the Karhunen-Loeve expansion,
and uses the density of principal components resulting from a FPCA of the curves. After an
independence assumption on the principal components (which are uncorrelated), they consider
a non-parametric kernel-based density estimation and use it to estimate the mean and the mode
of some functional dataset. Using a similar approximation of the notion of density for functional
random variables, [10] and [28] assume a Gaussian distribution of the principal components, and
define model-based clustering techniques by the mean of the following mixture model [28]:

f
(q)
X (x; θ) =

K∑

k=1

πk

qk∏

j=1

fCj|Zk=1
(cjk(x); λjk),

RR n° 8198



12 Jacques & Biernacki

where θ = (πk, λ1k, . . . , λqkk)1≤k≤K are the model parameters and qk is the order of truncation
of the Karhunen-Loeve expansion (2.3), specific to cluster k. The main interest of this model,
called funclust by the authors, is in the fact that principal component scores cjk(x) of x are
computed per cluster, thanks to an EM-like algorithm, which iteratively computes the conditional
probabilities of the curves to belong to each cluster, performs FPCA per cluster by weighting the
curves according to these conditional probabilities, and computes the truncation orders qk thanks
to the scree-test of Cattell [12]. In [10], the qk’s are fixed to the maximum number of positive
eigenvalues, L, which corresponds to the number of basis functions used in FPCA approximation
(see Section 2.3), and some parsimony assumptions on the variance λjk are considered to define
a family of parsimonious sub-models, quoted as funHDDC as an extension of the HDDC method
for finite dimensional data [9]. The choice between these different sub-models is performed thanks
to the BIC criterion [48].
Previously to this work, [14] have considered a k-means algorithm based on a distance defined as
the L2 distance between truncations of the Karhunen-Loeve expansion at a given order qk. This
model, named k-centres, is a particular case of [10, 28] assuming narrowly that the variance λjk

are all equals within and between clusters.

3.3.2 Model-based functional clustering techniques using basis expansion coeffi-

cients modelling

To our knowledge, the first model-based clustering algorithm has been proposed in [30], under
the name fclust. The authors consider that the expansion coefficients of the curves into a spline
basis of functions are distributed according to a mixture Gaussian distributions with means µk,
specific to each cluster, and common variance Σ:

αi ∼ N (µk, Σ).

Contrary to the two-stage approaches, in which the basis expansion coefficients are considered
fixed, they are considered as random variable, what allows inter alia to proceed efficiently with
sparsely sampled curves. Parsimony assumptions on the cluster means µk allow to define parsi-
monious clustering models and low-dimensional graphical representation of the curves.
The use of spline basis is convenient when the curves are regular, but are not appropriate for
peak-like data as encountered in mass spectrometry for instance. For this reason, [22] recently
proposes a Gaussian model on a wavelet decomposition of the curves, which allows to deal with
a wider range of functional shapes than splines.
An interesting approach has also been considered in [45], by assuming that the curves arise from
a mixture of regressions on a basis of polynomial functions, with possible changes in regime at
each instant of time. Thus, at each time point tij , the observation Xi(tij) is assumed to arise
from one of the polynomial regression models specific to the cluster Xi belongs to.
Some Bayesian models have also been proposed. On the one hand, [25] consider that the expan-
sion coefficients are distributed as follows:

αi|σk ∼ N (µ, σkΣ) and σk ∼ IG(u, v),

where IG is the Inverse-Gamma distribution. On the other hand, [43] propose a hierarchical
Bayesian model assuming further that Σ is modelled by two sets of random variables controlling
the sparsity of the wavelets decomposition and a scale effect.

3.4 Synthesis

We now present a short synthesis underlying the advantage and disadvantage of each categories
of methods.
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The use of raw-data clustering is probably the worst choice since it does not take into account
the ”time-dependent” structure of data, which is inherent to functional data.
The two-stage methods consider the functional nature of the data since the first stage consists
of approximating the curves into a finite basis of function. The main weakness of these methods
is that the filtering step is done previously to clustering, and then independently of the goal of
clustering.
Nonparametric methods have the advantage of their simplicity: these methods are easy to un-
derstand and to implement. But their strength is also their weakness, since complex cluster
structures can not be efficiently modelled by such approach. For instance, using k-means as-
sumes in particular a common variance structure for each cluster, which is not always a realistic
assumption.
In our opinion, the best methods are model-based clustering ones, because they take into ac-
count the functional nature of data, they perform simultaneously dimensionality reduction and
clustering, and they allow to model complex covariance structure by modelling more or less free
covariance operator with more or less parsimony assumptions. Both sub-categories of methods
discussed in Section 3.3.2 and 3.3.1 are very efficient, and they both have their own advantages.
On the one hand, model-based approaches built on the modelling of the basis expansion coeffi-
cients allow to model the uncertainty due to the approximation of the curve into a finite basis
of function, what can be important especially for sparsely sample curve. On the other hand, the
model-based approaches built on the principal component modelling define a general framework
which can for instance be efficiently extended to the clustering of multivariate curves [29] or
categorical curves.

4 Model selection

A common problem to clustering studies is the choice of the number of clusters. We present in
Section 4.1 several criterion used for model selection in the functional data framework. A second
model selection problem occurs for methods using an approximation of the curves into a finite
basis of function, i.e. two-stage methods and model-based ones: the choice of an appropriate
basis. Section 4.2 discusses this issue.

4.1 Choosing the number of clusters

If classical model selection tools, as BIC [48], AIC [2] or ICL [6] are frequently used in the context
of model-based clustering to select the number of clusters (see for instance [10, 22, 45, 49]), more
specific criteria have also been introduced.
First of all, Bayesian model for functional data clustering [25, 43] defines a framework in which
the number of clusters can be directly estimated. For instance, [25] considered a uniform prior
over the range {1, . . . , n} for the number of clusters, which is then estimated when maximizing
the posterior distribution.
More empirical criteria have also been used for functional data clustering. In the two-stage
clustering method presented in [32], the clustering is repeated several times for each number of
clusters and that leading to the highest stability of the partition is retained. Even more empirical
and very sensitive, [14, 27] retain the number of clusters leading to a partition having the best
physical interpretation.
In [30], an original model selection criterion is considered. Proposed initially in [50], this criterion
is defined as the averaged Mahalanobis distance between the basis expansion coefficients αi and
their closest cluster centre. In [50], it is shown for a large class of mixture distributions that
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this criterion choose the right number of clusters asymptotically with the dimension (here the
number L of basis functions).

4.2 Choosing the approximation basis

Almost all clustering algorithms for functional data needs the approximation of the curves into
a finite dimensional basis of functions. Therefore, there is a need to choose an appropriate basis
and thus, the number of basis functions. In [42], the authors advise to choose the basis according
to the nature of the functional data: for instance, Fourier basis can be suitable for periodic data,
whereas spline basis is the most common choice for non-periodic functional data. The other
solution is to use less subjective criteria such as penalized likelihood criteria BIC, AIC or ICL.
The reader can for instance to refer to [30, 45, 49] for such use.

5 Software

Whereas there exist several software solutions for finite dimensional data clustering, the software
devoted to functional data clustering is less developed.
Under the R software environment, two-stage methods can be performed using for instance the
functions kmeans or hclust of the stats package, combined with the distances available from the
fda or fda.usc packages.
Alternatively, several recent model-based clustering algorithms have been implemented by their
authors and are available under different forms:� R functions for funHDDC [10] and funclust [28] are available from request from their

authors. An R package is currently under construction and will be available in 2013 on
the CRAN2 website,� an R function for fclust [30] is available directly from James’s webpage,� the package curvclust for R [22] is probably the most finalized tool for curves clustering in
R, and implements the wavelets-based methods [22] described in Section 3.3.2.

A MATLAB toolbox, Curve Clustering Toolbox [21], implements a family of two-stage clustering
algorithms combining mixture of Gaussian models with spline or polynomial basis approximation.

6 Numerical illustration

The evaluation of clustering algorithms is always a difficult task [23]. In this review, we only
illustrate the ability of the clustering algorithms previously discussed to retrieve the class labels
of classification benchmark datasets.

6.1 The data

Three real datasets are considered: the Kneading, Growth, and ECG datasets. These three
datasets are plotted in Figure 3. The Kneading dataset comes from Danone Vitapole Paris
Research Center and concerns the quality of cookies and the relationship with the flour kneading
process. The kneading dataset is described in detail in [34]. There are 115 different flours for
which the dough resistance is measured during the kneading process for 480 seconds. One obtains

2http://cran.r-project.org/
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Figure 3: Kneading, Growth and ECG datasets.

115 kneading curves observed at 241 equispaced instants of time in the interval [0, 480]. The 115
flours produce cookies of different quality: 50 of them have produced cookies of good quality,
25 produced medium quality and 40 low quality. This data, have been already studied in a
supervised classification context [34, 40]. They are known to be hard to discriminate, even for
supervised classifiers, partly because of the medium quality class. Taking into account that the
resistance of dough is a smooth curve but the observed one is measured with error, and following
previous works on this data [34, 40], least squares approximation on a basis of cubic B-spline
functions (with 18 knots) is used to reconstruct the true functional form of each sample curve.
The Growth dataset comes from the Berkeley growth study [54] and is available in the fda
package of R. In this dataset, the heights of 54 girls and 39 boys were measured at 31 stages,
from 1 to 18 years. The goal is to cluster the growth curves and to determine whether the
resulting clusters reflect gender differences. The ECG dataset is taken from the UCR Time
Series Classification and Clustering website3. This dataset consists of 200 electrocardiogram
from 2 groups of patients sampled at 96 time instants, and has already been studied in [38]. For
these two datasets, the same basis of functions as for the Kneading dataset has been arbitrarily
chosen (20 cubic B-splines).

6.2 Experimental setup

All the clustering algorithm presented in Section 3 can not tested, in particular because they are
not all implemented in a software. The following clustering algorithms for functional data are
considered:� two-stage methods:

– the classical clustering methods for finite dimensional data considered are k-means,
hierarchical clustering and Gaussian Mixture Models (package mclust [4]) and two
methods dedicated to the clustering of high-dimensional data: HDDC [9] and MixtP-
PCA [52],

– these methods are applied on the FPCA scores with choice of the number of com-
ponents with the Cattell scree test, directly on discretizations of the curves at the
observation times points, and on the coefficients in the cubic B-spline basis approxi-
mation.

3http://www.cs.ucr.edu/∼eamonn/time series data/
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16 Jacques & Biernacki� non-parametric method: k-means with distance d0 and d1 [27],� model-based clustering methods: Funclust [28], FunHDDC [10], fclust [30], k-centres [14]
(results for the Growth dataset are available in their paper, but not software allow to
proceed with the two other datasets), and curvclust [22].

The corresponding R codes are given in Appendix A.

6.3 Results

The correct classification rates (CCR) according to the known partitions are given in Table 4.
Even if no numerical study can conclude to which method is the best, the present results suggest
several comments:� A first comment concerns the use of the different types of clustering methods: two-stage,

nonparametric or model-based approaches. Two-stage methods can sometimes perform
very well (to estimate the class label), but the main problem is that, in the present unsu-
pervised context, we have no possibility to choose between working with the discrete data,
with the spline coefficients or with the FPCA scores. For instance, HDDC and MixtPPCA
are very well performing on the Growth dataset using the FPCA scores, but they are very
poor using the discrete data or the spline coefficients. If nonparametric methods suffer from
a similar limitation, due to the choice of the distance or dissimilarity to use, model-based
clustering methods, which also require the choice of an appropriate basis, allow generally to
use penalized likelihood criteria such as BIC to evaluate the different basis choices. In that
sense, model-based approaches provide more flexible tools for functional data clustering.� Concerning the model-based clustering methods, FunHDDC and Funclust are among the
best methods on these datasets. On the contrary, fclust and curvclust lead to relatively
poor clustering results. This is probably due to the nature of the data, which are regu-
larly sampled and without peak whereas fclust and curvclust are especially designed for
respectively irregularly sampled curves and peak-like data.

7 Conclusion and future challenge

This paper has presented a review of the main existing algorithms for functional data clustering.
A classification of these methods has been proposed, into three main groups: 1. two-stage
methods which perform dimension reduction before clustering, 2. nonparametric methods using
specific distances or dissimilarities between curves and 3. model-based clustering methods which
assume a probabilistic distribution on either the FPCA scores or the coefficients of curves into a
basis approximation. A critical analysis has been proposed, which highlights the advantages of
model-based clustering methods. Some numerical illustrations and a short software review have
also been presented, and the corresponding R codes given in the appendix may help the reader
in applying these clustering algorithms to his own data.

Literature on functional data clustering generally consider the case of functional data as
realizations of a stochastic process X = {Xt}t∈T , with Xt ∈ R, which is the subject of the
present paper. Recently, some authors are interested in the case of multivariate functional data,
i.e. Xt ∈ R

p, in which a path of X is a set of p curves. An example of bivariate functional
data is given in [42] with temperature and precipitation curves of Canadian weather stations.
Few works have defined clustering algorithms for such multivariate functional data: [27, 29, 57].
Another case of interest is qualitative functional data [8], in which Xt lives in a categorical space.
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Kneading Kneading

functional
2-stage discretized spline coeff. FPCA scores
methods (241 instants) (20 splines) (4 components)

Funclust 66.96 HDDC 66.09 53.91 44.35
FunHDDC 62.61 MixtPPCA 65.22 64.35 62.61
fclust 64 GMM 63.48 50.43 60
k-centres - k-means 62.61 62.61 62.61
curvclust 65.21 hclust 63.48 63.48 63.48
kmeans-d0 62.61
kmeans-d1 64.35

Growth Growth

functional
2-stage discretized spline coeff. FPCA scores
methods (350 instants) (20 splines) (2 components)

Funclust 69.89 HDDC 56.99 50.51 97.85

FunHDDC 96.77 MixtPPCA 62.36 50.53 97.85

fclust 69.89 GMM 65.59 63.44 95.70
k-centres 93.55 k-means 65.59 66.67 64.52
curvclust 67.74 hclust 51.61 75.27 68.81
kmeans-d0 64.52
kmeans-d1 87.40

ECG ECG

functional
2-stage discretized spline coeff. FPCA scores
methods (96 instants) (20 splines) (19 components)

Funclust 84 HDDC 74.5 73.5 74.5
FunHDDC 75 MixtPPCA 74.5 73.5 74.5
fclust 74.5 GMM 81 80.5 81.5
k-centres - k-means 74.5 72.5 74.5
curvclust 74.5 hclust 73 76.5 64
kmeans-d0 74.5
kmeans-d1 61.5

Table 4: Correct classification rates (CCR) in percentage for Funclust, FunHDDC (best model
according BIC), fclust, kCFC, curvclust and usual non-functional methods on the Kneading,
Growth and ECG datasets.

The marital status of individuals, the status of some patients with respect to some diseases are
some examples of such data. To the best of our knowledge, there are no works considering this
type of data in the functional data context and in particular, in the clustering topic.

A R codes for curve clustering

In this appendix are given the R codes used to perform functional data clustering on growth
dataset.

A.1 Data loading

First, the values of the functional data at the observations time points are loaded in the matrix
data, and the true label in the vector cls:
> library(fda)

> data=cbind(matrix(growth$hgtm,31,39),matrix(growth$hgtf,31,54))
> cls=c(rep(1,39),rep(2,54))

The functional form is reconstructed using spline basis (for FPCA-based methods), and stored
in an object of the class fd of the fda package:
> t=growth$age
RR n° 8198



18 Jacques & Biernacki

> splines <- create.bspline.basis(rangeval=c(1, max(t)), nbasis = 20,norder=4)

> fdata <- Data2fd(data, argvals=t, basisobj=splines)

The number of clusters is 2 for this dataset:
> K=2

A.2 Clustering with Funclust and FunHDDC

The corresponding computer code are available from request to their authors.
Funclust and FunHDDC can be applied directly on the fd object fdata:
>res=funclust(fd,K=K)

and
>res=fun hddc(fd,K=K,model=’AkjBkQkDk’)

FunHDDC proposing several sub-models, each of one have to be tested –’AkjBkQkDk’, ’AkjBQkDk’,
’AkBkQkDk’,’AkBQkDk’, ’ABkQkDk’, ’ABQkDk’–, and the one leading to the highest BIC criterion
is retained (available from res$bic).
For both methods, the clusters are stored in res$cls.
A.3 Clustering with fclust

The corresponding computer code is available from James’s webpage.
First, the data have to be stored in a list as follows:
> nr=nrow(data)

> N = ncol(data)

> fdat = list()

> fdat$x = as.vector(data)

> fdat$curve = rep(1:N,rep(nr,N))

> fdat$timeindex = rep(as.matrix(seq(1,nr,1)),N)

> grid = seq(1, nr, length = nr)

And then, the clustering can be estimated by:
> testfit=fitfclust(data=fdat,grid=grid,K=K)

the cluster being available from fclust.pred(testfit)$class
A.4 Clustering with curvclust

First, the values of functional data discretization are registered in a list Y, then transformed in
an object of the class CClustData:
> library(’curvclust’)

> fdat= list()

> for (j in 1:ncol(data)) fdat[[j]] =data[,j]

> CCD = new("CClustData",Y=fdat,filter.number=1)

Dimension reduction is then performed:
> CCDred = getUnionCoef(CCD)

The number of clusters is specified in the class CClustO:
> CCO = new("CClustO")

> CCO["nbclust"] = K

> CCO["Gamma2.structure"] = "none"

and clustering is performed thanks to the function getFCM:
> CCR = getFCM(CCDred,CCO)
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> summary(CCR)

The cluster are finally estimated by maximum a posteriori:
> cluster = apply(CCR["Tau"],1,which.max)
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