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Abstract. This paper deals with morphological characterization of un-
structured 3D point clouds issued from LiDAR data. A large majority
of studies first rasterize 3D point clouds onto regular 2D grids and then
use standard 2D image processing tools for characterizing data. In this
paper, we suggest instead to keep the 3D structure as long as possible in
the process. To this end, as raw LiDAR point clouds are unstructured,
we first propose some voxelization strategies and then extract some mor-
phological features on voxel data. The results obtained with attribute
filtering show the ability of this process to efficiently extract useful in-
formation.

Keywords: Point clouds · Max-tree · Rasterization · Voxel · Attribute
filtering.

1 Introduction

Thanks to the advances both in technologies such as laser scanning (LiDAR)
and in methods from photogrammetry, digital point clouds form a popular ob-
ject of study in many scientific fields such as geosciences (flow, erosion, rock
deformations, . . . ), computer graphics (3D reconstruction), urban environments
analysis from Earth Observation (detection of trees, roads, buildings, . . . ). In
the context of urban scenes, they provide a rich 3D information w.r.t. digital 2D
photographs.

Despite their growing interest, only limited studies have explored how to
apply mathematical morphology on point clouds [2, 13]. The usual approach
remains to first rasterize the point cloud to obtain a digital image (also called
a raster of pixels) on which standard morphological operators are applied [18].
This strategy was also recently followed for morphological hierarchies on LiDAR
point clouds [8].

In this paper, we claim that discretizing a point cloud into a 2D raster leads
to an oversimplification of the image that greatly reduces the potential of mor-
phological operators. Thus, we consider here a 3D discretization in a voxel grid
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Fig. 1. LiDAR data projected into a voxel grid.

as illustrated in Figure 1. Such an approach allows us to benefit from efficient
algorithms that have been introduced for morphological hierarchies, while still
maintaining the 3D information. We illustrate our solution with a very popular
processing, namely attribute filtering, that is applied on an urban point cloud.
The reported results show the relevance and the potential of this approach.

The paper is organized as follows. In Section 2 we review morphological
approaches (especially those based on hierarchies) for point clouds and 3D pro-
cessing. We then explain the different steps of our method in Section 3, before
illustrating it in the urban remote sensing context in Section 4. Section 5 con-
cludes this manuscript and provides directions for future research.

2 Related Work

2.1 Mathematical morphology on point clouds

Conversely to digital images that are usually defined on a discrete 2D grid, a
point cloud is characterized by a sparse set of points defined with continuous
coordinates. So dealing with a 3D point cloud raises many issues including the
lack of efficient processing algorithms. One of the most critical questions is the
definition and fast computation of the neighborhood of a point, which is a fun-
damental concept in morphology.
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As already stated, the usual approach is to project the 3D point cloud in a
discrete grid (either 2D or 3D) where the neighborhood computation becomes
straightforward. Thus, LiDAR point clouds were considered in [6] to characterize
vegetation (trees). The authors use the point density to define voxel values, that
are further processed with 3D adaptation of standard 2D morphological methods.
In the astronomical context, the discretization proposed by [4] also relies on the
density, this latter being estimated using adaptive kernel. A max-tree is then
used to find local maxima that allow for identification of relevant subspaces for
clustering the data.

More closely related to our study, a few attempts have been made to process
urban point clouds. In [1], the segmentation and classification of an urban point
cloud is achieved by means of super-voxels. They are created using a distance
computed in the feature space between voxel properties such as distribution
(by mean, variance) of spectral values (intensity or color information). Finally, a
reprojection step is involved to obtain the resulting labeled point cloud. The same
tasks are addressed by [18], with a different approach though. The point cloud
is projected in a digital elevation model (DEM) before applying 2D morphology
and classification. The results are then reprojected into a point cloud. More
recently, the same authors have addressed segmentation of facades with attribute
profiles [17]. Combination of DEM morphology and attribute filters (elongation)
were considered on binary 3D images denoting an occupancy grid. Beyond these
works on 2D and 3D rasters, a few works have been conducted directly on the
continuous space of 3D points cloud, such as [2, 13]. However the morphological
methods introduced in these papers are dedicated to point clouds describing
surfaces, and as such cannot be used with LiDAR data since a surface can not
be reconstructed in each situation (points are also likely to belong to the inside
of objects, for example in vegetation areas).

2.2 Morphological hierarchies on 3D images

The extension of morphological hierarchies (e.g. max-tree) from a 2D image to
a 3D volume is rather straightforward. Unsurprisingly, it led to several works
attempting to use it on 3D voxels, especially in the medical domain. Early work
in [22] has for example used the max-tree to filter 3D images with volume and
inertia attributes. Later on, the max-tree was used to filter and visualize the
medical images [21] with three new 3D moment-based attributes (elongation,
flatness and sparseness). Another 3D attribute was proposed in [10] to estimate
the sphericity of objects. It was based on the computation of surface and vol-
ume of connected components and aims to be more efficient than the previous
measures. Roundness of objects was estimated through another 3D attribute for
max-tree filtering in [11]. Filtering medical images has also received a lot of at-
tention until very recently, e.g. [3, 7, 20, 12]. Finally, we can mention the work of
[5] to compute the tree of shapes of nD images.
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3 Method

In order to filter point clouds using hierarchical representations, we propose to
rely on a prior discretization of the continuous domain into a regular 3D voxel
grid (instead of a 2D raster). This intermediate representation allows us to use
directly mathematical morphology with the 3D data. We then reproject the
results of the morphological filtering into the continuous domain (i.e. as a new
point cloud).

3.1 From point cloud to voxel grid

A raw dataset X issued from LiDAR acquisitions lives in R3 × R where each
data x = {x, y, z, I} ∈ X is such that the intensity taken in location (x, y, z) is
I. Though very interesting, the irregularity of available locations (x, y, z) pre-
vents from the use of tools devoted to structured data with ordering relations as
images or volumes. To cope this difficulty, we suggest to transform this dataset
X into a structured volume. This “voxelization” step aims at defining the data
on a regular 3D grid Eh ⊂ N3 with a given spatial resolution h (for the sake of
simplicity, we consider here isotropic resolutions but the method can be applied
with anistropic ones) such that the value taken in any point (i, j, k) ∈ Eh repre-
sents an information about initial data. This information can either be a boolean
(related to the presence/absence of points in the voxel), the number of LiDAR
points into the voxel, the average/standard deviation of associated intensities,
the average/standard deviation of associated elevations, the majority label (for
3D labels), etc.

More formally, we apply a transformation PVh,f (for “points to voxels”,
associated with a discretization step h and an information function f) defined
as:

PVh,f : R3 × R −→ Eh × R
{x, y, z, I} 7−→ {i, j, k, I} with:

i s.t. xm + ih ≤ x < xm + (i + 1)h

j s.t. ym + jh ≤ y < ym + (j + 1)h

k s.t. zm + kh ≤ z < zm + (k + 1)h

I = f(i, j, k, x, y, z, I)

(1)

with xm (resp. (ym, zm)) the minimum value of all points x (resp. y, z) in the
dataset X. The rule of function f is to associate to each voxel location (i, j, k)
an information related to the original data points. Let us denote Ii,j,k the set
of intensities I of points (x, y, z) inside a voxel (i, j, k) (i.e. fulfilling the 3 first
conditions of (1)). Its cardinal is noted |Ii,j,k|.

Many functions f can be defined, as for example:

– Boolean (noted fb):

fb(i, j, k, x, y, z, I) =

{
1 if |Ii,j,k| ≥ 1

0 otherwise
(2)
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– Density (noted fd, similar to [4]):

fd(i, j, k, x, y, z, I) = |Ii,j,k| (3)

– Empirical average intensity (noted fa):

fa(i, j, k, x, y, z, I) =
1

|Ii,j,k|
∑
Ii,j,k (4)

– Empirical standard deviation of intensity (noted fs):

fs(i, j, k, x, y, z, I) =

√
1

|Ii,j,k|
∑(
Ii,j,k − fa(i, j, k, x, y, z, I)

)2
(5)

with fa and fs defined only if fb 6= 0. Depending on the sought applications,
many other functions can be used, for example related to the geometry (normal
surface, main orientation, . . . ) or any other features of Ii,j,k.

It should be outlined that empty cells can occur from two situations: 1)
empty spaces into the scene or 2) missing data because of occlusions. Several
approaches are possible to deal with such empty voxels (affecting a value 0,
linear interpolation, . . . ). In this study, and without loss of genericity, we chose
to assign them the null value.

Once the voxelization transformation PV is performed, our data (i, j, k, I) ∈
Eh × R can be represented through a volume V such that:

V : Eh −→ R
(i, j, k) 7−→ I .

(6)

3.2 Attribute filtering with the max-tree of voxels

Max-tree Attribute filtering is a popular tool in mathematical morphology. It
operates on connected components of an image (if binary) or of its level sets
(if greyscale). As a connected filter, it does not shift object edges but proceeds
by removing the components that do not fulfill a given criterion (related to the
aforementioned attribute). It benefits from efficient implementation through the
image representation as a max-tree.

As already stated, the usual definition of the max-tree for 2D images remains
valid in case of 3D volumes. Only the connectivity needs to be updated, from 4-
and 8-connectivity in 2D to 6-, 18- and 26-connectivity in 3D. The upper level
sets of the volume V are obtained from successive thresholdings of the grey levels
l ∈ R and noted

Ll = {(i, j, k) ∈ Eh | V (i, j, k) ≥ l} . (7)

We index by c the connected components within a level set, i.e. Ll,c. These
components are nested and form a hierarchy called the max-tree. The leaves of
the tree correspond to the regional maxima while the root contains the whole
volume.
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Filtering The max-tree structure provides an efficient way to filter its nodes
(i.e. the connected components of the level sets). Such a filtering relies on some
predefined criteria called attributes, whose values are usually computed for each
node during the tree construction step.

We distinguish here between two kinds of attributes that are scale-dependent
and scale-invariant, respectively. In the former category, we can mention the
volume and surface (i.e. 3D counterparts of the 2D area and perimeter, respec-
tively), as well as dimensions of the bounding box or the convex hull. Exam-
ples of scale-invariant attributes are distributions of grey levels (e.g. standard
deviation, entropy), measures computed with moments of inertia (e.g. compact-
ness, sphericity), or moment invariants (e.g. elongation, flatness). The interested
reader is referred to [16] for more details.

We provide below a formal definition of the three attributes that have been
used in the experiments reported in this paper:

– Height (noted Ah):

Ah(Ll,c) = max
i,j,k

(k)−min
i,j,k

(k) (8)

– Volume (noted Av):

Av(Ll,c) =
∣∣(i, j, k)

∣∣ (9)

– Extent (also named “fill ratio” [9], noted Ae):

Ae(Ll,c) =
Av(Ll,c)

Av(B(Ll,c))
(10)

with B(·) the bounding box of a set. Let us note that for the sake of conciseness,
the condition (i, j, k) ∈ Ll,c was systematically omitted in the right part of the
previous equations.

The aforementioned attributes are either increasing or non-increasing, de-
pending if their value is increasing from leaves to root or not. The filtering sim-
ply consists in assessing each connected component by comparing its attribute
value to a given threshold T , and retaining only the filtered set L′ ⊆ L defined
as

L′
l = {Ll,c |A (Ll,c) ≥ T} . (11)

While the filtering with an increasing attribute is achieved through pruning the
tree (i.e. removing all descendant nodes of Ll,c if A(Ll,c) < T ), considering a
non-increasing attribute leads to pruning and non-pruning strategies [15, 19] that
remove full branches or isolated nodes, respectively.

The final step of the filtering is to reconstruct the filtered volume F based
on remaining nodes of the max-tree, i.e.:

F : Eh −→ R
(i, j, k) 7−→ max

l∈R

(
(i, j, k) ∈ L′

l

)
.

(12)
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3.3 Reprojection to the 3D point cloud

After having performed attribute filtering (or any other morphological process-
ing) on the 3D volume, the filtered volume F (i, j, k) needs to be reprojected in the
original continuous set of coordinates to produce a dataset {x, y, z,F} ∈ R3×R.
To this end, we assign to all initial points embedded in each voxel (i, j, k) the
value F (i, j, k). Let us note that more complex functions could have been consid-
ered here (e.g. interpolation taking into account the position of (x, y, z) in (i, j, k)
and intensities of the neighboring voxels). Our choice mathematically reads as
applying the inverse transformation function VP (for “voxels to points”) defined
as:

VP : Eh × R −→ R3 × R
{i, j, k, F (i, j, k)} 7−→ {x, y, z,F} with:

(x, y, z) = (xe, ye, ze) ∈X s.t.
xm + ih ≤ xe < xm + (i + 1)h

ym + jh ≤ ye < ym + (j + 1)h

zm + kh ≤ ze < zm + (k + 1)h

F = F (i, j, k)

(13)

The proposed scheme allows us to consider the 3D information contained in
the 3D point cloud by processing the associated volume. We will illustrate in the
next section the relevance of such an approach.

4 Experiments

4.1 Dataset

Experiments have been carried out on the Paris Lille 3D dataset [14]. The LiDAR
tiles considered here have been acquired by a mobile laser scanning (MLS) on a
street of Paris. As the acquisition source is close to the ground, the point density
varies greatly according to the distance of the scanned object (as a consequence,
density based max-tree will tend to remove distant objects). However the point
cloud density of this dataset is significantly high (between 1, 000 to 2, 000 per
square meters), which gives flexibility in the choice of the spatial resolution h
in the voxelization process. Additional data is available, with LiDAR intensity
return and label associated with each point in the cloud.

4.2 Experimental setup

As a first experiment, we have chosen to filter the labelled point cloud, which is
illustrated in Figure 2a. For this point cloud we have fixed the step of the voxel
grid to h = 10 cm. The labels are given with the dataset and ordered as follows:
void (value 0), unclassified (1), ground (2), road sign and traffic light (4), bollard
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(a) Point cloud (b) Voxel grid

Fig. 2. Visualization of the valued point cloud and the corresponding voxel grid. The
5 classes are represented as follows: road in purple, cars in green, fences in teal, trees
in yellow and urban furniture in blue.

(5), trash can (6), barrier (7), pedestrian (8), car (9) and vegetation (10). This
order has been used to construct max-tree on the [0, 10] value range. We have
represented for each cell of the grid the majority-class of the points (Figure 2b).

We have built the max-tree considering 26-connectivity (i.e. two voxels (i, j, k)
and (i′, j′, k′) are neighbors if max(|i− i′|, |j− j′|, |k−k′|) = 1). The tree is aug-
mented with spectral features such as mean grey level and standard deviation
and also with spatial features such as the volume, the bounding box and several
geometric ratios. During the filtering process, we used the direct non-pruning
strategy for the sake of simplicity and to retrieve all the objects corresponding
to the required description on non-increasing criteria (extent in our case). Then
the filtered max-tree is transformed back into a 3D volume and reprojected into
a point cloud (therefore function F in (13) is the label value).

With this experiment we were able to interactively filter objects from the
max-tree with geometric object attributes (e.g. volume, height, compactness)
in order to choose the appropriate threshold values. The illustration given in
Figure 3a is the voxel grid result of a filtering with the volume criterion set as
1, 000 < Av ≤ 5, 000. We then transfer the filtered result back into the point
cloud (Figure 3b).

An additional example of attribute filtering is given in Figure 4. We can
observe the relevance of the height attribute to extract tall objects (e.g. the
lamp post is the only object with a height comprised between 10 and 13 meters,
Figure 4a). Considering the extent attribute with value between 0.14 and 0.16
allows us to highlight road signs, cars and a few branches, as shown in Figure 4b.
Finally, it is possible to combine multiple attribute for a more precise filtering,
e.g. objects with height between 1.5 and 3 meters, a volume greater than 1, 000
and an extent between 0.14 and 0.16 match cars in Figure 4c.
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(a) Filtered voxel grid (b) Filtered point cloud

Fig. 3. Visualization of the filtered voxel grid from (Fig. 2b) with an area criterion (a)
and the reprojection into the point cloud (b).

Among the current limitations of the proposed approach, we have noticed
that some small blocking artifacts were appearing at the border between two
objects in the point cloud (see close-up view in Figure 3). These artifacts are
directly linked with the grid discretization method and depend on the voxel size.
In our experiments, we observe that artifacts remain small with h = 10 cm.

The previous experiments showed that attribute filtering is useful to filter a
labeled point cloud. The labels are either defined by visual expert analysis or
by automatic classification of the raw LiDAR data. It is also possible to filter
directly such raw data. We illustrate some results of preliminary experiments
with LiDAR intensity in Figure 6. We can see here the relevance of attribute
filters to remove the noise in the point cloud. Indeed, the noise can be easily

(a) Height filtering (b) Extent filtering (c) Multi-attribute filtering

Fig. 4. Different attribute filters on V : connected components characterized by (a)
Ah ∈ [100, 130], (b) Ae ∈ [0.14, 0.16], (c) Ah ∈ [15, 30], Av > 1, 000, and Ae ∈
[0.14, 0.16].
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(a) Initial point cloud (b) Filtered point cloud

Fig. 5. Close-up of the area where an object is in contact with the ground. In the filtered
point cloud (b), blocking artifacts may appear at the boundary between objects (in
this image part of the wheel is “blocked” in the road.

characterized by geometric attributes (e.g. small volume nodes correspond to
points disconnected from the rest of the scene, see Figure 6a). It is also relevant
to remove extreme intensity values (i.e. outliers) with the max-tree.

5 Conclusion

While most approaches for applying mathematical morphology on point clouds
are relying on a prior rasterization step into a 2D image, we explore here a
different strategy. Indeed, we rather suggest a discretization of the space into
voxels to build a 3D volume instead of a 2D image. This choice is motivated by
the straightforward extension of morphological operators (including hierarchies)
to nD data considering a connectivity of higher dimension. It allows us to benefit
from a richer hierarchical representation where each node contains a set of voxels
from which advanced features can be computed. We illustrate the relevance of
such a framework with the popular attribute filtering, that is applied here on the
voxel hierarchy before reconstructing a filtered point cloud. The results obtained
on an urban point cloud show the performance of the proposed strategy, that
goes far beyond the standard 2D processing usually considered in the literature.

Future work will include extending our proposal to other hierarchical models
(e.g. min-tree, tree of shapes) as well as considering some other tree-based tools
beyond the standard attribute filtering. Note than an alternative could be to a
create nearest neighbour graph representation from the raw set of points and
perform filtering using max-tree on this graph. Besides, multiscale description
with attribute profiles and data segmentation with hierarchical cuts (to name a
few) would be of great interest to deal with point clouds such as those considered
in remote sensing. Finally, the blocking artifacts discussed in the paper call for
some further studies.
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(a) Noise (b) Denoised

Fig. 6. Denoising of raw LiDAR data: outliers and isolated points are removed from
the scene using the volume attribute: (a) Av < 2 identifies noise removed from the
scene, (b) Av ≥ 2 performs the denoising.
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