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Abstract: Given that the neural and connective tissues of the optic nerve head (ONH) exhibit 
complex morphological changes with the development and progression of glaucoma, their 
simultaneous isolation from optical coherence tomography (OCT) images may be of great 
interest for the clinical diagnosis and management of this pathology. A deep learning 
algorithm (custom U-NET) was designed and trained to segment 6 ONH tissue layers by 
capturing both the local (tissue texture) and contextual information (spatial arrangement of 
tissues). The overall Dice coefficient (mean of all tissues) was 0.91 ± 0.05 when assessed 
against manual segmentations performed by an expert observer. Further, we automatically 
extracted six clinically relevant neural and connective tissue structural parameters from the 
segmented tissues. We offer here a robust segmentation framework that could also be 
extended to the 3D segmentation of the ONH tissues. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (110.4500) Optical coherence tomography; (150.0150) Machine vision; (170.0170) Medical optics and 
biotechnology; (150.1135) Algorithms. 
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1. Introduction 

The development and progression of glaucoma is characterized by complex 3D structural 
changes within the optic nerve head (ONH) tissues. These include the thinning of the retinal 
nerve fiber layer (RNFL) [1–3]; changes in the minimum-rim-width [4], choroidal thickness 
[5, 6], lamina cribrosa (LC) depth [7–9], and posterior scleral thickness [10]; and migration of 
the LC insertion sites [11, 12]. If these parameters (and their changes) could be extracted 
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automatically from optical coherence tomography (OCT) images, this could assist clinicians 
in the day-to-day management of glaucoma. 

While there exist several traditional image processing tools to automatically segment the 
ONH tissues [13–20], and thus extract these parameters, each tissue currently requires a 
different algorithm (tissue-specific). Besides, they are computationally expensive [21], and 
are also prone to segmentation errors in images with pathologies [22–25] (e.g. glaucoma). In 
our previous study [26], while it was possible to isolate the connective and neural tissues of 
the ONH, we were unable to segment each ONH tissue separately. 

Recently, with the advent of deep learning, several studies have shown the successful 
segmentation of retinal layers [27–30], choroid [31, 32], etc., from macular OCT images. 
However, the retinal layer segmentation technique proposed by Fang L. et al. [28], was able 
to capture only the local information (tissue texture), and was computationally expensive. 
Although the study by Venhuizen F.G. et al. [30] was able to capture both the local and 
contextual information (spatial arrangement of tissues), it was still limited by under-
segmentation in images with mild-pathology (AMD). Also, current choroidal segmentation 
tools offered low specificity and sensitivity [31], and were slow [32]. With our recently 
proposed patch-based segmentation [33], we were able to simultaneously segment the 
individual neural and connective tissues, and offer significantly similar performance on 
healthy and glaucoma images. Yet, this approach was still limited as it failed to offer precise 
tissue boundaries, separate the LC from the sclera, and presented artificial LC-scleral 
insertions. 

In this study, we present DRUNET (Dilated-Residual U-Net), a novel deep-learning 
approach capturing both the local and contextual information to segment the individual neural 
and connective tissues of the ONH. This algorithm can be used to automatically extract 6 
structural parameters of the ONH. We then present a comparison with our earlier deep-
learning (patch-based) approach to assert the robustness of DRUNET. Our long-term goal is 
to offer a framework that can be extended to the segmentation and the automated extraction 
of structural parameters from OCT volumes in 3D. 

2. Methods 

2.1. Patient recruitment 

A total of 100 subjects were recruited at the Singapore National Eye Center. All subjects gave 
written informed consent. This study adhered to the tenets of the Declaration of Helsinki and 
was approved by the institutional review board of the hospital. The cohort consisted of 40 
normal (healthy) controls, 41 subjects with primary open angle glaucoma (POAG) and 19 
subjects with primary angle closure glaucoma (PACG). The inclusion criteria for normal 
controls were: an intraocular pressure (IOP) less than 21 mmHg, healthy optic nerves with a 
vertical cup-disc ratio (VCDR) less than or equal to 0.5 and normal visual fields test. Primary 
open angle glaucoma was defined as glaucomatous optic neuropathy (GON; characterized as 
loss of neuroretinal rim with a VCDR > 0.7 and/or focal notching with nerve fiber layer 
defect attributable to glaucoma and/or asymmetry of VCDR between eyes > 0.2) with 
glaucomatous visual field defects. Primary angle closure glaucoma was defined as the 
presence of GON with compatible visual field loss, in association with a closed anterior 
chamber angle and/or peripheral anterior synechiae in at least one eye. A closed anterior 
chamber angle was defined as the posterior trabecular meshwork not being visible in at least 
180° of anterior chamber angle. We excluded subjects with any corneal abnormalities that 
would preclude reliable imaging. Note also that the patient cohort was the same as that in our 
previous patch-based study [33]. 
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2.2. Optical coherence tomography imaging 

The subjects were seated and imaged under dark room conditions after dilation with 1% 
tropicamide solution. The images were acquired by a single operator (TAT), masked to 
diagnosis with the right ONH being imaged in all the subjects, unless the inclusion criteria 
were met only in the left eye, in which case the left eye was imaged. A horizontal B-scan (0°) 
of 8.9 mm (composed of 768 A-scans) was acquired through the center of the ONH for all the 
subjects using spectral-domain OCT (Spectralis, Heidelberg Engineering, Heidelberg, 
Germany). Each OCT image was averaged 48× and enhanced depth imaging (EDI) was used 
for all scans. 

2.3. Shadow removal and light attenuation: adaptive compensation 

We used adaptive compensation (AC) to remove the deleterious effects of light attenuation 
[34]. AC can help mitigate blood vessel shadows and enhance the contrast of OCT images of 
the ONH [34, 35]. A threshold exponent of 12 (to limit noise over-amplification at high 
depth) and a contrast exponent of 2 (for improving the overall image contrast) were used for 
all the B-scans [34]. 

2.4. Manual segmentation 

An expert observer (SD) performed manual segmentation of all OCT images using Amira 
(version 5.4, FEI, Hillsboro, OR). This was done to 1) train our algorithm to identify and 
isolate the ONH tissues; and to 2) validate the accuracy of the segmentations. Each OCT 
image was segmented into the following classes: (refer Fig. 1.): (1) the RNFL and the 
prelamina (in red); (2) the retinal pigment epithelium (RPE; in pink); (3) all other retinal 
layers (in cyan); (4) the choroid (in green); (5) the peripapillary sclera (in yellow); and (6) the 
(LC) (in blue). Noise (in gray) and the vitreous humor (in black) were also isolated. Note that 
we were unable to obtain a full thickness segmentation of the peripapillary sclera and the LC 
due to limited visibility [35]. Only their visible portions were segmented. 

 

Fig. 1. Manual segmentation of a compensated OCT image. The RNFL and the prelaminar 
tissue are shown in red, the RPE in pink, all other retinal layers in cyan, the choroid in green, 
the peripapillary sclera in yellow, the LC in blue, noise in grey and the vitreous humor in 
black. 

2.5. Deep learning based segmentation of the ONH 

While there already exist a few deep learning based studies for segmentation of retinal layers 
[27, 28, 30, 36] and choroid [31, 32] from macular OCT images, the simultaneous 
segmentation of the individual neural and connective tissues of the ONH still remains less 
explored. Although our recently proposed patch-based method, to the best of our knowledge, 
was the first to explore the simultaneous segmentation of the individual ONH tissues, its 
accuracy was still limited. 
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In this study, we developed the architecture DRUNET (Dilated-Residual U-Net): a fully 
convolutional neural network inspired by the widely used U-Net [37], to segment the 
individual ONH tissues. It exploits the inherent advantages of the U-Net skip connections 
[38], residual learning [39] and dilated convolutions [40], as also shown in [41], to offer a 
robust segmentation with a minimal number of trainable parameters. The U-Net skip 
connections allowed capturing both the local and contextual information [29, 30], while the 
residual connections offered a better flow of the gradient information through the network. 
Using the dilated convolutional filters, we were able to better exploit the contextual 
information: this was crucial as we believe local information (i.e. tissue texture) alone is 
insufficient to delineate precise tissue boundaries. DRUNET was trained with OCT images of 
the ONH and their corresponding manually segmented ground truths. 

2.5.1. Network architecture 

The DRUNET architecture was composed of a downsampling and an upsampling tower (Fig. 
2), connected to each other via skip connections. Each tower consisted of one standard block 
and two residual blocks. Both the standard and the residual blocks were constructed using two 
dilated convolution layers, with 16 filters (size 3×3) each. The identity connection in the 
residual block was implemented using a 1×1 convolution layer, as described in Fig. 2. In the 
downsampling tower, the input image of size 496×768 was fed to a standard block with a 
dilation rate of 1 followed by two residual blocks with dilation rates of 2 and 4 respectively. 
After every block in the downsampling tower, a max-pooling layer of size 2×2 was used to 
reduce the dimensionality and exploit the contextual information. A residual block with a 
dilation rate of 8 was used to transfer the features from the downsampling to the upsampling 
tower. These features were then passed through two residual blocks with dilation rates of 4 
and 2 respectively. A standard block with a dilation rate of 1 was used to restore the image to 
its original resolution. After every block in the upsampling tower, a 2×2 upsampling layer 
was used to sequentially restore the image to its original resolution. The output layer was 
implemented as a 1×1 convolution layer with the number of filters equal to the number of 
classes (8; 6 tissues + noise and vitreous humour). We then applied a softmax activation to 
this output layer to obtain the class-wise probabilities for each pixel. Finally, each pixel was 
assigned the class of the highest probability. Also, the skip connections [38] were established 
between the downsampling and upsampling towers to recover the spatial information lost 
during the downsampling. 

In both towers, all the layers except the last output layer were batch normalized [42] and 
activated by an exponential linear unit function ELU [43]. In each residual block, the residual 
layers were batch normalized and ELU activated before their addition. 

The entire network was trained end-to-end using stochastic gradient descent with 
Nesterov momentum (momentum = 0.9). An initial learning rate of 0.1 (halved when the 
validation loss failed to improve over two consecutive epochs) was used to train the network 
and the model with the best validation loss was chosen for all the experiments in this study. 
The loss function ‘L’ was based on the mean of Jaccard Index calculated for each tissue as 
shown below: 

 1
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where iJ  is the Jaccard Index for the tissue ‘ i ’, N  is the total number of classes, iP  is the set 

of pixels belonging to class ‘ i ’ as predicted by the network, and iT  is the set of pixels 

representing the class ‘ i ’ in the manual segmentation. The final network consisted of 40,000 
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trainable parameters. The proposed architecture was trained and tested on an NVIDIA GTX 
1080 founder’s edition GPU with CUDA v8.0 and cuDNN v5.1 acceleration. With the given 
hardware configuration, each OCT image was segmented in 80 ms. 

2.5.2. Data augmentation 

An extensive online data augmentation was performed to overcome the sparsity of our 
training data. Data augmentation consisted of rotation (8 degrees clockwise and anti-
clockwise); horizontal flipping; nonlinear intensity shift; additive white noise and 
multiplicative speckle noise [44]; elastic deformations [45] and occluding patches. An 
example of data augmentation performed on a single OCT image is shown in Fig. 3. 

Nonlinear intensity shift was performed using the following function: 

 ( )1 pI a a b I= − + + + ×  (3) 

where I and I  are the image intensities (pixel-wise) before and after the nonlinear intensity 
shift respectively, a  and b  are random numbers between 0 and 0.1, and p  is an 

exponentiation factor (random number between 0.6 and 1.4). This made the network invariant 
to intensity inhomogeneity within/between tissue layers (a common problem in OCT images 
affecting the performance of automated segmentation tools [46]). 

The elastic deformations [45] can be viewed as an image warping technique to produce 
the combined effects of shearing and stretching. This was done in an attempt to make our 
network invariant to images with atypical morphology (i.e., ONH tissue deformations as seen 
in glaucoma [47]). A normalized random displacement field ( ), u x y  representing the unit 

displacement vector for each pixel location ( ), x y  in the image was defined, such that: 

 w oP P uα= +  (4) 

where wP  and oP  are the pixel locations in the warped and the original images respectively. 

The magnitude of the displacement was controlled by α  ( xα  = 10 in the horizontal and yα  = 

15 in the vertical direction). The variation in displacement among the pixels was controlled 
by σ  (60 pixels; empirically set), the standard deviation of the Gaussian that is convolved 
with the displacement field u . Note that the unit displacement vectors were generated 
(randomly) from a uniform distribution between −1 and + 1. 

Twenty occluding patches of size 60×20 pixels were also added at random locations to 
reduce the visibility in certain tissues, in an effort to make our network invariant to blood 
vessel shadowing that is common in OCT images. Each occluding patch resulted in the 
reduction of intensity in the entire occluded region by a random factor (random number 
between 0.2 and 0.8). 
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Fig. 2. DRUNET comprises of two towers: (1) A downsampling tower – to capture the 
contextual information (i.e., spatial arrangement of the tissues), and (2) an upsampling tower – 
to capture the local information (i.e., tissue texture). Each tower consists of two blocks: (1) a 
standard block, and (2) a residual block. The entire network consists of 40,000 trainable 
parameters in total. 

 

Fig. 3. Extensive data augmentation was performed to overcome the sparsity of our training 
data. (A) represents a compensated OCT image of a glaucoma subject. (B) represents the same 
image having undergone data augmentation. The data augmentation includes horizontal 
flipping, rotation (8 degrees clockwise), additive white noise and multiplicative speckle noise 
[44], elastic deformation [45] and occluding patches. A portion of the image undergoing elastic 
deformation and occlusion from patches is bounded by blue and red box respectively. The 
elastic deformations (combination of shearing and stretching) made our network invariant to 
images with  atypical morphology (i.e., ONH tissue deformation in glaucoma [47]). The 
occluding patches reduced visibility of certain tissues, making our network invariant to blood 
vessel shadows. 
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2.5.3. Demystifying DRUNET 

In an attempt to understand the intuition behind each design element in the DRUNET 
architecture, four different architectures were trained and validated on the same data sets. The 
following architectures were used for training (with data augmentation): 

Architecture1: Baseline U-Net (each tower consisted of only standard blocks with 
standard convolution layers). 

Architecture 2: Modified U-Net v1 (each tower consisted of one standard block and two 
residual blocks with standard convolution layers). 

Architecture 3: Modified U-Net v2 (each tower consisted of one standard block and two 
residual blocks with standard convolution layers; batch normalization after every convolution 
layer in the residual block). 

Architecture 4: DRUNET (each tower consisted of one standard block and two residual 
blocks with dilated convolution layers; batch normalization after every dilated convolution 
layer in the residual block). 

In all the architectures, the convolution layers (standard/dilated) had 16 feature maps, and 
were trained end to end using stochastic gradient descent with Nesterov momentum 
(momentum = 0.9). 

The performance between different architectures was compared by assessing the training 
loss and the validation accuracy (accuracy on unseen images) obtained on the same training 
and testing data sets. 

In an attempt to understand the importance of data augmentation, the entire process was 
repeated by training each architecture without data augmentation. 

2.5.4. Training and testing of our network 

The data set of 100 B-scans (40 healthy, 60 glaucoma) was split into training and testing data 
sets. The training set was composed of an equal number of compensated glaucoma and 
healthy OCT images of the ONH, along with their corresponding manual segmentations. The 
trained network was then evaluated on the unseen testing set (composed of the remaining 
compensated OCT images of the ONH and their corresponding manual segmentations). A 
training set of 40 images (60 testing images) were chosen for all the experiments discussed in 
this study. 

To assess the consistency of the proposed methodology, the model was trained on five 
training sets of 40 images each and tested on their corresponding testing sets. Given the 
limitation of a total of only 100 OCT images, it was not possible to obtain five distinct 
training sets, thus each training set had some images repeated. 

To study the effect of compensation on segmentation, the entire process (training and 
testing) was repeated with the baseline (uncompensated) images. 

A comparative study was also performed between the DRUNET architecture and our 
previously published patch-based segmentation approach [33]. For this, we trained and tested 
both the techniques with the same data set. 

We would like to assert that there was no overlap between the training and testing sets in 
each experiment. However, due to the scarcity of OCT images (100 images) and their manual 
segmentations, there was a small leakage of test/training sets across all experiments. 

2.6. Qualitative analysis 

All the DRUNET segmented images were manually reviewed by an expert observer (SD) and 
qualitatively compared with their corresponding manual segmentations. 

2.7. Quantitative analysis 

We used the following metrics to assess the segmentation accuracy of the DRUNET: (1) the 
Dice coefficient (DC); (2) Specificity (S.p); and (3) Sensitivity (S.n). For each image, the 
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metrics were computed for the following classes: (1) RNFL and prelamina, (2) RPE, (3) all 
other retinal layers, and (4) choroid. Note that the metrics could not be applied directly to the 
peripapillary sclera and the LC as their true thickness could not be obtained from the manual 
segmentation. However, segmentation of the peripapillary sclera and of the LC was 
qualitatively assessed. Noise and vitreous humor were also exempted from such a quantitative 
analysis. 

The Dice coefficient was used to measure the spatial overlap between the manual and 
DRUNET segmentation. It is defined between 0 and 1, where 0 represents no overlap and 1 
represents a complete overlap. For each image in the testing set, the Dice coefficient was 
calculated for each tissue as follows: 

 
   2 * i i
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+

∩
 (5) 

where iMS  is the set of pixels representing the tissue ‘ i ’ in the manual segmentation, 

while iDS  represents the same in the DRUNET segmented image. 

Specificity was used to assess the true negative rate of the proposed method. 
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here iDS  and iMS  are the set of all the pixels not belonging to class ‘ i  ’ in the DRUNET 

segmented and the corresponding manually segmented image respectively. 
Sensitivity was used to assess the true positive rate of the proposed method as is defined 

as: 
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Both specificity and sensitivity were reported on a scale of 0-1. To assess the 
segmentation performance between glaucoma and healthy OCT images, for each experiment, 
the metrics were calculated separately for the two groups. 

2.7.1. Segmentation accuracy: comparison between glaucoma and healthy images 

We used unpaired Student’s t-test to quantitatively compare the performance of DRUNET 
segmentation when tested on either glaucoma or healthy OCT images. In each of the five 
testing sets, unpaired t-tests were used to assess the differences in the Dice coefficients, 
specificities and sensitivities (means). The tests were performed in MATLAB (R2015a, 
MathWorks Inc., Natick, MA) and statistical significance was set at p<0.05. 

2.7.2. Segmentation accuracy: effect of compensation 

Paired t-tests were used to assess if the segmentation performance improved when trained 
with compensated images (as opposed to baseline or uncompensated images). In each of the 
five testing sets, paired t-tests were used to assess the differences in the Dice coefficients, 
specificities and sensitivities (means). 

2.7.3. Segmentation accuracy: comparison with patch-based segmentation 

The performance of DRUNET was compared with the patch-based approach by using paired 
t-tests to assess the differences in the quantitative metrics (means). For this experiment, both 
the approaches were trained and tested on the same data sets. 
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2.8. Clinical application: automated extraction of structural parameters 

Upon segmenting the individual ONH tissues, six clinically relevant neural and connective 
tissue structural parameters (Fig. 4) were automatically extracted: The disc diameter, 
peripapillary RNFL thickness (p-RNFLT), peripapillary choroidal thickness (p-CT), 
minimum rim width (MRW), prelaminar thickness (PLT), and the prelaminar depth (PLD). 
Each parameter was calculated by computing the number of pixels representing them 
multiplied by the physical scaling factor. 

The disc diameter was defined as the length of the Bruch’s membrane opening (BMO) 
reference line. The BMO points were identified as the end tips of the RPE in the central scans 
of the ONH. The BMO reference line was obtained by joining the two BMO points. The 
segmented images were then rotated to ensure the BMO reference line was horizontal. 

The p-RNFLT was defined as the distance between ILM and the posterior RNFL 
boundary measured at 1.7 mm from the center of the BMO reference line in the nasal and 
temporal regions. 

The p-CT was defined as the distance between the posterior RPE boundary and the 
choroidal-scleral interface measured at 1.7 mm from the center of the BMO reference line in 
the nasal and temporal regions. 

The MRW was defined as the minimum distance between each BMO point and the inner 
limiting membrane (ILM). The global values for the p-RNFLT, p-CT, and MRW were 
reported as the average of the measurements taken in the nasal and temporal regions. 

The PLT was defined as the perpendicular distance between the deepest point on the ILM 
and the anterior lamina cribrosa surface (ALC) boundary. 

The PLD was defined as the perpendicular distance between the mid-point of the BMO 
reference line and the ILM. An arbitrary plus and minus sign was used to differentiate 
elevation and depression of the ONH surface. When the ILM dipped below the BMO, a 
positive value was used to indicate depression. When the ILM was elevated from the BMO, a 
negative value was used. 

Each parameter was also manually assessed by two expert observers (SD and GS) using 
ImageJ [48] for all the images. The structural measurements were then validated by obtaining 
the absolute percentage error (mean) between the automatically extracted values and the 
ground truth obtained from each expert observer for all the parameters. 

For the same testing data set, the above procedure was repeated for the segmentations 
obtained from the patch-based method. Paired t-tests were used to assess the differences 
(means) in the percentage error obtained from both methods. 

 

Fig. 4. Automated extraction of the ONH structural parameters. Upon segmenting the ONH 
tissues, six neural and connective tissue structural parameters were automatically extracted: (1) 
the disc diameter, (2) peripapillary RNFL thickness (p-RNFLT), (3) peripapillary choroidal 
thickness (p-CT), (4) minimum rim width (MRW), (5) prelaminar thickness (PLT), and the (6) 
prelaminar depth (PLD). 
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3. Results 

3.1. Qualitative analysis 

The baseline, compensated, manually segmented, and the DRUNET segmented images for 4 
selected subjects (1&2: POAG, 3: Healthy, 4: PACG) are shown in Fig. 5. When trained with 
the compensated images (Fig. 5, 4th Row) or the uncompensated images (Fig. 5, 5th Row), 
DRUNET was able to simultaneously isolate the different ONH tissues, i.e. the RNFL + 
prelamina (in red), the RPE (in pink), all other retinal layers (in cyan), the choroid (in green), 
the sclera (in yellow) and the LC (in blue). Noise and vitreous humor were isolated in gray 
and black respectively. In both cases, the DRUNET segmentation of the ONH tissues was 
qualitatively similar, comparable and consistent with the manual segmentation. A smooth 
delineation of the choroid-sclera interface was obtained in both cases. 

Irregular (Fig. 5, Subject 2 and 4) LC boundaries that were inconsistent with the manual 
segmentations were obtained in few images irrespective of the training data 
(compensated/uncompensated images). 

When validated against the respective manual segmentations, there was no visual 
difference in the segmentation performance on healthy or glaucoma OCT images across all 
experiments. 

3.2. Quantitative analysis 

When trained with compensated images, across all the five testing sets, the mean Dice 
coefficients for the healthy/glaucoma OCT images were: 0.92 ± 0.05/0.92 ± 0.03 for the 
RNFL + prelamina, 0.83 ± 0.04/0.84 ± 0.03 for the RPE, 0.95 ± 0.01/0.96 ± 0.03 for all other 
retinal layers, and 0.90 ± 03/0.91 ± 0.05 for the choroid. The mean sensitivities for the 
healthy/glaucoma OCT images were 0.92 ± 0.01/0.92 ± 0.03 for the RNFL + prelamina, 0.87 
± 0.04/0.88 ± 0.03 for the RPE, 0.96 ± 0.04/0.96 ± 0.03 for all other retinal layers, and 0.89 ± 
0.06/0.91 ± 0.02 for the choroid respectively. For all the tissues, the mean specificities were 
always above 0.99 for both glaucoma and healthy subjects. In all experiments, there were no 
significant differences (mean Dice coefficients, specificities, and sensitivities) in the 
segmentation performance between glaucoma and healthy OCT images (p>0.05; Fig. 6). 
Further, the segmentation performance did not significantly improve when using 
compensation (p>0.05; Fig. 7). Overall, the DRUNET performed significantly better (p<0.05) 
for all the tissues compared to the patch-based approach, except for the RPE, in which case it 
performed similar (Table 1). 

3.3. Clinical application: automated extraction of structural parameters 

Six neural and connective tissue structural parameters were automatically extracted from the 
DRUNET segmentations. The percentage errors (vs. manual extraction; mean ±  standard 
deviation) in the measurements when validated against both the observers (average for both) 
were: 2.00 ±  2.12% for the disc diameter, 8.93 ±  3.8% for the p-RNFLT, 6.79 ±  4.07% 
for the p-CT, 5.22 ±  3.89% for the MRW, 9.24 ±  3.62% for the PLT, and 4.84 ±  2.70% 
for the PLD. 

When measured from the patch-based segmentations, the percentage errors (mean) were 
always greater than 10.30 ±  6.28% for all the parameters irrespective of the observer chosen 
for validation. 

The percentage errors (mean) between the observers were: 3.50 ±  0.85% for the disc 
diameter, 5.94 ±  2.30% for the p-RNFLT, 5.23 ±  3.91% for the p-CT, 6.03 ±  1.30% for 
the MRW, 4.85 ±  1.99% for the PLT, and 5.18 ±  0.67% for the PLD. 

A significantly lower (p<0.05) percentage error in the automated extraction of the 
structural parameters was observed when extracted from DRUNET segmentations, as 
opposed to patch-based segmentations (Table 2). 
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Fig. 5. Baseline (1st row), compensated (2nd row), manually segmented (3rd row), DRUNET 
segmented images (trained on 40 compensated images; 4th row), and DRUNET segmented 
images (trained on 40 baseline images; 5th row) for 4 selected subjects (1&2: POAG, 3: 
Healthy, 4: PACG). 

Table 1. Performance Comparison Between DRUNET and Patch-Based Segmentation 

Metrics Tissue DRUNET Patch-Based 
Healthy Glaucoma Healthy Glaucoma 

Dice 
coefficient 

(Mean ± SD) 

RNFL 0.922 ± 
0.052 

0.921 ± 0.031 0.821 ± 
0.040 

0.814 ± 0.038 

Retinal 
Layers 

(all others) 

0.951 ± 
0.010 

0.960 ± 0.030 0.872 ± 
0.034 

0.863 ± 0.081 

RPE 0.831 ± 
0.045 

0.841 ± 0.034 0.857 ± 
0.018 

0.861 ± 0.060 

Choroid 0.906 ± 
0.035 

0.912 ± 0.050 0.862 ± 
0.013 

0.859 ± 0.025 

Sensitivity 
(Mean ± SD) 

RNFL 0.923 ± 
0.012 

0.925 ± 0.032 0.897 ± 
0.041 

0.883 ± 0.012 

Retinal 
Layers 

(all others) 

0.960 ± 
0.038 

0.966 ± 0.032 0.981 ± 
0.010 

0.983 ± 0.002 

RPE 0.870 ± 
0.043 

0.888 ± 0.033 0.915 ± 
0.052 

0.899 ± 0.090 

Choroid 0.890 ± 
0.060 

0.911 ± 0.020 0.882 ± 
0.021 

0.871 ± 0.062 

Specificity 
(Mean ± SD) 

RNFL 0.993 ± 
0.005 

0.994 ± 0.002 0.989 ± 
0.002 

0.988 ± 0.001 

Retinal 
Layers 

(all others) 

0.995 ± 
0.001 

0.996 ± 0.001 0.991 ± 
0.004 

0.989 ± 0.003 

RPE 0.993 ± 
0.000 

0.993 ± 0.004 0.989 ± 
0.003 

0.990 ± 0.000 

Choroid 0.996 ± 
0.022 

0.994 ± 0.004 0.993 ± 
0.002 

0.991 ± 0.005 
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Fig. 6. A quantitative analysis of the proposed method is presented to assess the consistency 
and segmentation performance between glaucoma and healthy images. A total of 5 data sets 
were used for training (40 images) and its corresponding testing (60 images). (A-C) represent 
the Dice coefficients, sensitivities and specificities as box plots for the RNFL + prelamina for 
healthy (in green) and glaucoma (in yellow) images in the testing sets. (D-F) represent the 
same for the RPE, (G-I) represent the same for all other retinal layers and (J-L) represent the 
same for the choroid. 

Table 2. Clinical Application: Automated Extraction of Structural Parameters of the 
ONH 

 Percentage Error (Mean ±  Standard Deviation) 
Parameter 

 
DRUNET vs. 

Observer 1 (%) 
Patch-Based vs. 
Observer 1 (%) 

DRUNET vs. 
Observer 2 (%) 

Patch-Based vs. 
Observer 2 (%) 

Observer 1 
vs. Observer 

2 (%) 
Disc 

Diameter 
2.03 ±  1.50 10.43 ±  6.05 1.98 ±  2.75 11.86 ±  5.78 3.50 ±  0.85 

p-RNFLT 
(global) 

8.85 ±  3.40 14.30 ±  9.74 9.01 ±  4.20 16.20 ±  8.33 5.94 ±  2.30 

p-CT (global) 7.03 ±  4.50 21.65 ±  11.05 6.55 ±  3.65 19.36 ±  10.91 5.23 ±  3.91 
MRW 

(global) 
5.09 ±  4.00 19.86 ±  12.45 5.35 ±  3.78 22.30 ±  14.34 6.03 ±  1.30 

PLT 9.15 ±  3.22 15.73 ±  8.24 9.34 ±  4.02 16.12 ±  9.03 4.85 ±  1.99 
PLD 4.56 ±  2.85 11.23 ±  7.23 5.12 ±  2.55 10.30 ±  6.28 5.18 ±  0.67 
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Fig. 7. The effect of compensation on the segmentation accuracy is presented. A total of 5 
compensated and uncompensated data sets were used for training (40 images) and its 
corresponding testing (60 images). Box plots (1-4) represent the mean of the 5 compensated 
(normal in green; glaucoma in yellow) and uncompensated (normal in cyan; glaucoma in red) 
data sets. (A-C) represent the Dice coefficients, sensitivities and specificities for the RNFL + 
prelamina. (D-F) represent the same for the RPE, (G-I) represent the same for all other retinal 
layers and (J-L) represent the same for the choroid. 

3.4. Demystifying DRUNET 

The performance (training loss and the validation accuracy) of all the four architectures is 
shown in Fig. 8. With the baseline U-Net (architecture 1), the training loss was the highest 
(best model training loss = 0.67) and the validation accuracy was highly inconsistent. Upon 
the addition of residual blocks to the baseline U-Net (architecture 2), the training loss nearly 
halved (0.31), and the model converged relatively faster. However, the validation accuracy 
was still inconsistent. When batch normalization was added (architecture 3), the training loss 
decreased further (0.26), and we obtained a consistent and fairly good validation accuracy 
(best model validation accuracy = 0.79) as well. Further, with the addition of dilated 
convolution layers along with batch normalization (architecture 4; DRUNET), we observed 
the lowest training loss (0.19), and the model converged the fastest. We also observed a 20% 
increase in the validation accuracy (to 0.94), when compared to the best model obtained in 
architecture 3. 

In the absence of data augmentation, all the architectures overfitted in general and models 
converged slower. As for the validation accuracy, DRUNET performed better than rest (0.91), 
but relatively lower than DRUNET trained with data augmentation. The performance of 
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DRUNET (without data augmentation) was poor especially in images with thick blood vessel 
shadows and intensity inhomogeneity. 

 

Fig. 8. In an attempt to understand the significance of each design element in the DRUNET 
better, four different architectures were trained with and without data augmentation. 
Architecture 1: Baseline U-Net (each tower consisted of only standard blocks; standard 
convolution layers); Architecture 2: Modified U-Net v1 (each tower consisted of one standard 
block and two residual blocks; standard convolution layers); Architecture 3: Modified U-Net 
v2 (each tower consisted of one standard block and two residual blocks with standard 
convolution layers; batch normalization after every convolution layer in the residual block); 
Architecture 4: DRUNET (each tower consisted of one standard block and two residual 
blocks with dilated convolution layers; batch normalization after every dilated convolution 
layer in the residual block). (A & B) represent the training loss and the validation accuracy 
respectively for all the four architectures, when trained with data augmentation. (C & D) 
represent the same, when trained without data augmentation. 

4. Discussion 

In this study, we present DRUNET, a custom deep learning approach that is able to capture 
both local and contextual features to simultaneously segment (i.e. highlight) the connective 
and neural tissues in OCT images of the ONH. The proposed study leverages on the inherent 
advantages of skip connections, residual learning and dilated convolutions. Having 
successfully trained, tested and validated on the OCT images from 100 subjects, we were able 
to consistently achieve a good qualitative and quantitative performance. Thus, we may be 
able to offer a robust segmentation framework, that can be extended to the 3D segmentation 
of OCT volumes. 

Using DRUNET, we were able to simultaneously isolate the RNFL + prelamina, the RPE, 
all other retinal layers, the choroid, the peripapillary sclera, the LC, noise and the vitreous 
humor with good accuracy. When trained and tested on compensated images, there was good 
agreement with manual segmentation, with the overall Dice coefficient (mean of all tissues) 
being 0.91 ± 0.04 and 0.91 ± 0.06 for glaucoma and healthy subjects respectively. The mean 
sensitivities for all the tissues were 0.92 ± 0.04 and 0.92 ± 0.04 for glaucoma and healthy 
subjects respectively while the mean specificities were always higher than 0.99 for all cases. 

We observed that DRUNET offered no significant differences in the segmentation 
performance when tested upon compensated (blood vessel shadows removed), or 
uncompensated images, as opposed to our previous patch-based method [33], which 
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performed better on compensated images. This may be attributed to the extensive online data 
augmentation we used herein that also included occluding patches to mimic the presence of 
blood vessel shadows. In uncompensated images, the presence of retinal blood vessel 
shadows typically affects the automated segmentation of the RNFL [49, 50], that can yield 
incorrect RNFL thickness measurements. This phenomenon may be more pronounced in 
glaucoma subjects that exhibit very thin RNFL. Our DRUNET framework, being invariant to 
the presence of blood vessel shadows, could potentially be extended to provide an accurate 
and reliable measurement of RNFL thickness. We believe this could improve the diagnosis 
and management of glaucoma. However, given the benefits of compensation in enhancing 
deep tissue visibility [35], and contrast [34], it may be advised to segment compensated 
images for a reliable clinical interpretation of the isolated ONH tissues. 

When trained and tested with the same cohort, DRUNET offered smooth and accurate 
delineation of tissue boundaries with reduced false predictions. Thus, it performed 
significantly better than the patch-based approach for all the tissues, except for the RPE, in 
which case it performed similarly. This may be attributed to DRUNET’s ability in capturing 
both local (tissue texture) and contextual features (spatial arrangement of tissues), compared 
to the patch-based approach that captured only the local features. 

DRUNET consisted of 40,000 trainable parameters as opposed to the patch-based 
approach that required 140,000 parameters. Besides, DRUNET also eliminated the need for 
multiple convolutions on similar sets of pixels as seen in patch-based approach. Thus, 
DRUNET offers a computationally inexpensive and faster segmentation framework that only 
takes 80 ms to segment one OCT image. This could be extended to the real-time segmentation 
of OCT images as well. We are currently exploring such an approach. 

We found that DRUNET was able to dissociate the LC from the peripapillary sclera. This 
provides an advantage as opposed to previous techniques that were able to segment only the 
LC [51, 52], or the LC fused with the peripapillary sclera [33]. To the best of our knowledge, 
no automated segmentation techniques have been proposed to simultaneously isolate all 
individual ONH connective tissues. We believe our network was able to achieve this because 
we used the Jaccard Index as part of the loss function. During training, by computing the 
Jaccard Index for each tissue, the network was able to learn the representative features 
equally for all tissues. This reduced the inherent bias in learning features of a tissue 
represented by a large number of pixels (e.g., retinal layers) as opposed to a tissue represented 
by a small number of pixels (e.g., LC/RPE). 

We observed no significant differences in the segmentation performance when tested on 
glaucoma or healthy images. The progression of glaucoma is characterized by thinning of the 
RNFL [1–3] and decreased reflectivity (attenuation) of the RNFL axons [53], thus reducing 
the contrast of the RNFL boundaries. Existing automated segmentation tools for the RNFL 
rely on these boundaries for their segmentation and are often prone to segmentation artifacts 
[22–25] (incorrect ILM/ posterior RNFL boundary), resulting in inaccurate RNFL 
measurements. This error increases with the thinning of the RNFL [50]. Thus, glaucomatous 
pathology increases the likelihood of errors in the automated segmentation of the RNFL, 
leading to under- or over-estimated RNFL measurements that may affect the diagnosis of 
glaucoma [50]. An automated segmentation tool that is invariant to the pathology is thus 
highly needed to robustly measure RNFL thickness. We believe DRUNET may be a solution 
to this problem, and we aim to test this hypothesis in future works. 

Upon segmenting the individual ONH tissues, we were able to successfully extract six 
clinically relevant neural and connective tissue structural parameters. For all the parameters, a 
significantly lower (p<0.05) percentage error (mean) was observed when measured from the 
DRUNET segmentations compared to our earlier patch-based approach. Thus, a robust 
segmentation approach can reduce the error in the automated extraction of clinically relevant 
parameters that follow. With the complex morphological changes occurring in glaucoma, a 
robust in vivo extraction of these structural parameters could eventually help clinicians in the 
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daily management of glaucoma, thus increasing the current diagnostic power of OCT in 
glaucoma. 

We attribute the significant improvement in the performance of segmentation and the 
automated extraction of structural parameters of DRUNET over the patch-based method to its 
individual design elements. By improving the information gradient flow along the network, 
residual connections helped the network learn better (lower training loss), while the addition 
of batch normalization yielded consistent and fairly good validation accuracy. With an 
enhanced receptive field, dilated convolution layers allowed the network to better understand 
the spatial arrangement of tissues, thus offering a robust segmentation with a limited amount 
of training data. Lack of data augmentation, in general, resulted in overfitting of all the 
architectures and poor generalizability. While the addition of each design element to the 
baseline U-Net improved the performance, a combination of all them (DRUNET: residual 
connections, dilated convolutions, and data augmentation) indeed offered the best 
performance. 

While there exist several deep learning based retinal layer segmentation tools [27–30], 
they generally required a larger amount of training data (few volumes; we used only 40 
images) [28, 30], and was unable to capture both the local and contextual information 
simultaneously [28]. While [27, 30] were able to capture both these features, there was still 
under-segmentation in images with mild-pathology [30], and [27] offered a relatively lower 
Dice coefficient (0.90) for the segmentation of the entire retina (ours = 0.94). We were unable 
to directly compare the performance with [28–30], as the validation metrics used were 
different (contour error, error in thickness map, mean thickness difference, etc.) from ours 
(Dice coefficient, specificity, and sensitivity). Recently developed deep learning techniques 
for the segmentation of the choroid [31, 32] from macular scans have shown superior 
performance [31] over the original U-Net [37]. Yet, it [31] still offered a lower specificity 
(0.73) and sensitivity (0.84) compared to the proposed DRUNET (sensitivity: 0.90; 
specificity: 0.99). However, we believe, a straightforward comparison of the segmentation 
performance between tissues extracted from the macular and ONH centered scans wouldn’t 
be fair given the difference in quality, resolution and deep tissue visibility between them. 

While there exists a deep learning based study [54] for the segmentation of the Bruch’s 
membrane opening (BMO) from 3D OCT volumes, we rather follow a simple and 
straightforward approach to identify the BMO points as the extreme tips of the segmented 
RPE in central B-scans. Finally, to the best of our knowledge, while there exists a study for 
the demarcation anterior LC boundary [55] from ONH images, there exists no technique yet 
for the simultaneous isolation of individual connective tissues (sclera and LC; visible 
portion). 

In this study, several limitations warrant further discussion. First, the accuracy of the 
algorithm was validated against the manual segmentations provided by a single expert 
observer (SD). The future scope of this study would be to provide a validation against 
multiple expert observers. Nevertheless, we offer a proof of concept for the simultaneous 
segmentation of the ONH tissues in OCT images. 

Second, the algorithm was trained with the images from a single machine (Spectralis). 
Currently, it is unknown if the algorithm would perform the same way if tested on images 
from multiple OCT devices. We are exploring other options to develop a device-independent 
segmentation approach. 

Third, we observed irregular LC boundaries that were inconsistent with that of the manual 
segmentations in few images. When extended for the automated parametric study, this could 
affect the LC parameters such as LC depth [56], LC curvature [57], and the global shape 
index [58]. Given the significance of LC morphology in glaucoma [12, 56, 58–64], a more 
accurate delineation of the LC boundary would be required to obtain reliable parameters for a 
better understanding of glaucoma. This could be addressed using transfer learning [65, 66] by 
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incorporating more information about LC morphology within the network. We are currently 
exploring such an approach. 

Fourth, a quantitative validation of the peripapillary sclera and the LC could not be 
performed as their true thickness could not be obtained from the manual segmentations due to 
limited visibility [67]. 

Fifth, we were unable to provide further validation to our algorithm by comparing it with 
data obtained from histology. This is a challenging task, given that one would need to image a 
human ONH with OCT, process it with histology and register both data sets. However, it is 
important to bear in mind that the understanding of OCT ONH anatomy stemmed from a 
single comparison of a normal monkey eye scanned in vivo at an IOP of 10 mm Hg and then 
perfusion fixed at the time of sacrifice at the same IOP [68]. Our algorithm produced tissue 
classification results that match the expected relationships obtained in this above-mentioned 
work. The absence of published experiments matching human ONH histology to OCT 
images, at the time of writing this paper, inhibits an absolute validation of our proposed 
methodology. 

Sixth, a robust and accurate isolation of the ganglion cell complex (GCC) [69] and the 
photoreceptor layers [70], whose structural changes are associated with the progression of 
glaucoma was not possible in both compensated and uncompensated images. The limitation 
of an accurate intra-retinal layer segmentation from ONH images can be attributed to the 
inherent speckle noise and intensity inhomogeneity which affects the robust delineation of the 
intra-retinal layers. This could be resolved by using advanced pre-processing techniques for 
image denoising (e.g. deep learning based) or a multi-stage tissue isolation approach (i.e., 
extraction of retinal layer followed by the isolation of intra-retinal layers). 

Seventh, given the limitation of a small data set (100 images), and the need for performing 
multiple experiments (repeatability), we were able to use only 40 images for training (60 
images for testing) in each experiment. It is currently unknown if the segmentation 
performance would improve when trained upon a larger data set. Also, we would also like to 
emphasize again that there was no mixing of the training and testing sets in a given 
experiment. However, across all the experiments, there was indeed a small leakage of the 
testing/training sets. Nevertheless, we offer a proof of principle for a robust deep learning 
approach to isolate ONH tissues that could be used by other groups for further validation. 

In conclusion, we have developed a custom deep learning algorithm for the simultaneous 
isolation of the connective and neural tissues in OCT images of the ONH. Given that the 
ONH tissues exhibit complex changes in their morphology with the progression of glaucoma, 
their simultaneous isolation may be of great interest for the clinical diagnosis and 
management of glaucoma. 

Appendix 

DRUNET robustness 

To test the robustness of the proposed technique, we included 100 more subjects (40 normal, 
60 glaucomatous), the details of which can be found from our previous studies [61, 71–73]. 
For each subject, 3D OCT scans centered on the ONH were obtained using a spectral domain 
OCT (Spectralis, Heidelberg Engineering, Heidelberg). All the images were noisier (20× 
signal averaged) than those used in the manuscript (48× signal averaged). The entire process 
(training and validation) was repeated with central horizontal slice obtained from each 
volume. 
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Fig. 9. Baseline (1st row), manually segmented (2nd row), and DRUNET segmented images (3rd 
row) for 4 selected subjects (1&2: POAG, 3: Healthy, 4: PACG). 

All the segmented images were qualitatively assessed by an expert observer (LZ). The 
baseline, manually segmented, and the DRUNET segmentations for 4 selected subjects (1&2: 
POAG, 3: Healthy, 4: PACG) are shown in (Fig. 9). In all the cases, the segmentations 
obtained were qualitatively similar, comparable and consistent with the manual segmentation. 
The mean Dice coefficients (Table 3) for healthy/glaucoma OCT images were: 
0.90±0.04/0.90±0.02 for the RNFL + prelamina, 0.82±0.03/0.84±0.02 for the RPE, 
0.94±0.00/0.92±0.01 for all other retinal layers, and 0.89±0.02/0.90±0.05 for the choroid. For 
all the tissues, the mean sensitivities and specificities were always greater than 0.88 and 0.98 
respectively for all images. 

While the training and testing images described in the manuscript were 48× signal 
averaged, the robustness of the DRUNET was assessed by repeating the same on noisier (20× 
signal averaged) central horizontal slice obtained from each OCT volume. We obtained a 
good qualitative and quantitative performance on all the baseline (uncompensated) images 
despite reduced signal averaging and poor contrast. Thus, our technique may be applicable to 
a wide variety of OCT scans. Further validation with additional scan types may still be 
required. 
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Table 3. DRUNET Robustness 

Metrics Tissue Test Data set 
Healthy Glaucoma 

Dice coefficient 
(Mean ± SD) 

RNFL 0.901 ± 0.043 0.903 ± 0.022 

Retinal Layers 
(all others) 

0.939 ± 0.008 0.920 ± 0.01 

RPE 0.821 ± 0.034 0.839 ± 0.019 
Choroid 0.891 ± 0.017 0.900 ± 0.050 

Sensitivity 
(Mean ± SD) 

RNFL 0.901 ± 0.008 0.900 ± 0.003 
Retinal Layers 

(all others) 
0.942 ± 0.023 0.931 ± 0.009 

RPE 0.882 ± 0.055 0.880 ± 0.010 
Choroid 0.902 ± 0.043 0.912 ± 0.009 

Specificity 
(Mean ± SD) 

RNFL 0.989 ± 0.005 0.984 ± 0.001 
Retinal Layers 

(all others) 
0.991 ± 0.003 0.993 ± 0.002 

   

RPE 0.989 ± 0.001 0.992 ± 0.004 

Choroid 0.992 ± 0.001 0.994 ± 0.005 
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