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Abstract: The automation of map generalization has been keeping researchers in cartography busy for years. 

Particularly great progress was made in the late 90’s with the use of the multi-agent paradigm. Although the current use 

of automatic processes in some national mapping agencies is a great achievement, there are still many unsolved issues 

and research seems to stagnate in the recent years. With the success of deep learning in many fields of science, 

including geographic information science, this paper poses the controversial question of the title: is deep learning the 

new agent, i.e. the technique that will make generalization research bridge the gap to fully automated generalization 

processes? The paper neither responds a clear yes nor a clear no but discusses what issues could be tackled with deep 

learning and what the promising perspectives. Some preliminary experiments with building generalization or data 

enrichments are presented to support the discussion. 
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1. Introduction 

The day when automatically generalized maps are as 

good as manually edited maps is coming closer thanks to 

the effort of many researchers in the past decades.  In 

particular, agent-based generalization (Ruas & Duchêne, 

2007; Duchêne et al., 2018) was a successful paradigm-

shift that gave very promising results, even in production 

environments (Duchêne et al., 2014). But maybe it 

reached its limits as little new breakthrough research 

appeared in recent years, at least nothing as high-

impacting as the first knowledge acquisition projects, 

constraint-based modeling, or agent or optimization-

based models. One reason is that research generalization 

processes became so complex that it is very difficult to 

tune their parameters to achieve good results for a given 

map (Taillandier et al. 2011). And this parameter problem 

is not specific to agent-based generalization but applies to 

other approaches (Harrie, 2003; Zhou & Li, 2016). 

Moreover, the scope of map generalization has broadened 

from the needs of National Mapping Agencies to the 

needs of new mapmakers and map users (Touya, 2017), 

making a new paradigm shift more urgent. Innovative 

generalization techniques should be more flexible, easier 

to parametrize, and adapted more to optimize user 

experience rather than traditional mapping rules. 

When looking at the next paradigm shift that will bring 

the state-of-the-art one step forward, deep learning seems 

to be a rightful but tricky candidate. It is a rightful 

candidate because deep learning has been successfully 

used in many applications: image, video and speech 

recognition, natural language understanding and 

translation, or analyzing particle accelerator data (LeCun 

et al., 2015). So why not map generalization? But it is 

also a tricky candidate because its reputation among 

information technology scientists clearly overestimates its 

actual utility in many cases, compared to other artificial 

intelligence techniques. In order to help the map 

generalization community to sort this out, several 

questions are asked in this paper: 

Is map generalization a good application for deep 

learning? Can we go beyond an effective copy of existing 

techniques? Can deep learning foster creative and on-

demand generalization? What can we learn to improve 

map generalization automation? How can we learn map 

generalization? We try to answer these questions with 

discussions and reports of preliminary experiments. 

This paper is structured as follows. Section 2 surveys past 

attempts to use machine learning for map generalization. 

Then Section 3 explains why map generalization is a 

good use case to apply deep learning techniques. Section 

4 describes the components of a map generalization 

process that would benefit from machine learning. In 

Section 5, different strategies to use deep learning are 

presented and some experiments are reported. Finally, 

Section 6 discusses the current limitations of this 

approach and Section 7 draws some conclusions. 
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2. Machine Learning in Map Generalization  

(Weibel et al., 1995) envisioned great potential of 

machine learning for knowledge acquisition, in order to 

monitor the map generalization process. This potential 

was regularly explored in the following to automate 

different parts of the generalization process: 

 enrich data with implicit structures and relations 

(Plazanet et al., 1998; Sester, 2000; Steiniger et 

al., 2008; Touya & Dumont, 2017) 

 acquire procedural knowledge to orchestrate 

algorithms (Plazanet et al., 1998; Burghardt & 

Neun, 2006; (Karsznia & Weibel, 2018) 

 acquire procedural knowledge to parameterize 

algorithms (Plazanet et al., 1998; Cheng et al., 

2013; Zhou & Li, 2017) 

 evaluate generalized maps (Harrie et al., 2015) 

Knowledge was extracted from different types of sources: 

 expert interviews (Kilpelainen, 2000; Plazanet et 

al., 1998) 

 traces and logs of interactive generalization from 

experts (Weibel et al., 1995; Taillandier et al., 

2011) 

 analysis of a generalized map (Sester, 2000) 

 choice by an expert of the best result among 

several possibilities (Plazanet et al., 1998; Harrie 

et al., 2015) 

But compared to other scientific domains, such as 

automatic text summarization (Touya, 2015), machine 

learning techniques were a little underemployed in map 

generalization in the past fifteen years. In the recent 

years, the success of deep learning brought back the 

attention of researchers in map generalization (Ma, 2017; 

Sester et al., 2018) and this new interest is the very 

essence of this paper. 

3. Why is Map Generalization a Good 

Application for Deep Learning? 

We identified four main reasons why map generalization 

is good application for deep learning techniques: 

a) Map generalization is a graphical problem, and 

most of the constraints that guide generalization 

can be captured by an image of the area to 

generalize (minimum size, granularity, shape 

preservation, minimum distances between 

features, etc.). And deep learning is very well 

adapted to image processing. 

b) It is very complex to model human decisions 

when generalizing a map. As a consequence, 

there is a “knowledge acquisition bottleneck” 

that was identified in 1995 by Weibel et al., and 

this bottleneck is still valid. Deep learning is 

adapted to such problems where knowledge is 

implicit in the data. 

c) Deep neural networks are composed of a huge 

number of parameters and they need massive 

training datasets to achieve an optimal 

performance. But we have massive datasets at 

our disposal, particularly with all the maps 

generalized manually, semi-automatically or 

automatically by national mapping agencies 

(Duchêne et al., 2014). 

d) There are still many problems to solve in map 

generalization, and new approaches are welcome 

to solve these remaining issues.  

But there are also arguments that support the idea that 

map generalization is not adapted to deep learning 

techniques, at least the current techniques: 

a) Image vs Vector: convolutional neural networks 

(CNN) are effective with image or image-like 

data while map generalization techniques use 

geographic databases as input. Deriving 

generalized maps from images only, causes 

some information loss (e.g. overlapping 

features) that might prevent deep learning from 

being really effective. 

b) Deep learning model are very complex to 

parameterize to achieve optimal results, which 

would not solve one of the main reasons of the 

current stagnation. 

c) The causal mechanisms are hidden: a deep 

neural network that simplifies a building such as 

the one presented by Sester et al. (2018) cannot 

explain how the pixels of the resulting image 

were classified as buildings, we have to accept 

the result as it is, which can be a problem with 

semi-automatic processes with a human editing 

to finalize the map. 

4. What Can We Learn? 

(Weibel et al., 1995) stated that machine learning should 

be limited to learn very specific tasks of knowledge 

acquisition, in conjunction with other processes based on 

generalization algorithms (such as agent-based processes 

that did not exist at the time of the paper). This statement 

has been true for many years, as shown by the literature 

reviewed in the Section 2. In this section, we permit 

ourselves an extension of this scope, in order to discuss a 

broader use of machine learning in map generalization. 

The first step of a generalization process consists in 

analysing the dataset to extract the implicit structures, 

patterns and spatial relations, to make them explicit to 

guide the orchestration of the algorithms. This step is 
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often called data enrichment. In this data enrichment step, 

there are many tasks that can be carried out with deep 

learning. First, the classification tasks such as the 

characterization of urban blocks (Steiniger et al. 2008) or 

finding the landmark buildings (Touya & Dumont, 2017) 

could greatly benefit from deep learning. Similarly, 

pattern recognition tasks that are common in data 

enrichment are totally adapted to the use of deep learning. 

For instance, the detection of highway interchanges is 

complex task using a classical analysis of the vector data 

(Touya, 2010), but a preliminary experiment showed the 

potential of deep recognition models to identify them in 

images of road networks (Figure 1). The results of this 

experiment are presented in Section 5.3. 

 

Figure 1. Highway interchange detection in images (a) image 

with interchange, (b) image without interchange, (c) interchange 

segmentation.  

Besides data enrichment, we can learn how each map 

feature is generalized at a given scale. Incidentally, the 

first attempts to use deep learning in map generalization 

focused on this learning problem for buildings (Ma, 

2017; Sester et al., 2018). These attempts are quite 

successful, which is not really surprising as individual 

building generalization is mainly driven by graphic 

legibility constraint. Similar approaches could be used on 

other map features that are individually generalized at 

some point of a complete generalization process, for 

instance on mountain roads that drew attention from 

many researchers in the past due to the complexity of the 

problem. 

But the existing generalization models already perform 

very well on individual features, so the gain is minimal if 

deep learning can only mimic successful algorithms. This 

is why we need to consider its application to more 

complex problem, such as the generalization of blocks or 

groups of buildings. One difficulty to overcome would 

the diversity of block sizes that would make it difficult 

for all blocks to fit in one image. It is currently not 

known how sizes of map objects or situations as encoded 

by pixels will influence the learning and prediction 

capabilities, i.e. what is the optimal image size and 

resolution to optimise this learning problem? 

If we think even bigger, we could try to learn how to 

generalise a complete map, with all features. But with the 

diversity of situations that are generalized differently, it 

would require an extremely large amount of training 

examples.  

In addition to the data enrichment and the generalization 

steps, automatic evaluation, which gives feedbacks 

during the control of generalization and rates the overall 

quality of generalized maps, could also benefit from deep 

learning techniques. One of the most challenging tasks in 

generalization evaluation is the global assessment of a 

map, which currently still relied on human efforts (Stoter 

et al., 2014). For instance, Figure 2 shows two 

generalized outputs of the same area rated by an expert 

that can be used to learn what a globally well generalized 

map is.  

 

Figure 2. Rating maps as a global evaluation of generalization: 

the left map is rated 1/5 and the right map, better generalized is 

rated 4/5. 

Deep learning proved very successful on problems of labelling 

images with descriptive labels, so similar models could be used 

to label the remaining conflicts or legibility problems in a 

generalized map (Figure 3).  

 

Figure 3. Annotation of the generalization constraints still 

unsatisfied in the map.  

In this section, we discussed what we could learn with 

deep learning techniques, but we can also discuss what 

we cannot learn. Past attempts to use machine learning in 

map generalization mainly focused on the procedural 

knowledge required to monitor the orchestration and 

parametrization of algorithms. At first glance, classical 

deep learning techniques are not really adapted. In some 

cases, a macro view is necessary to generalize each 

feature. For instance, road network selection (Touya, 

2010; Zhou & Li, 2017) often uses the complete network 

to compute the importance of one road section. In this 

case, a single image does not give enough context to 

make the best decision. 

https://doi.org/10.1080/23729333.2019.1613071
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5. How Can We Learn? 

While the previous section listed the tasks related to map 

generalization that could be automated or improved by 

the use of deep learning techniques, this section discusses 

the methods that could be used to adapt deep learning 

techniques to the case of map generalization. 

According to Weibel et al. (1995), there are several 

possible sources of cartographic knowledge: human 

experts, maps, text documents, and process tracing. In 

this section, we explain how we can learn only from 

maps, while some parts of the discussion in Section 6 are 

related to the addition of the other sources of knowledge 

in a deep learning model. 

5.1 How to Create Training Datasets? 

As cartographers, our contribution is more on the 

derivation of optimal training datasets than on the design 

of novel deep neural networks. A training dataset is a set 

of training example, each training example being a pair of 

input vector (often an image in deep learning) and an 

output vector. The output vector is a class label in 

classification problems, a mask in image segmentation 

problem, and can also be an image (this is the case when 

learning how to generalize). This subsection describes 

four different ways to derive such training datasets for 

learning how to output generalized results. 

 

Figure 4. Three training examples extracted from our building 

generalization use case (initial buildings on top and generalized 

ones with agents below).  

The first way to create a large training dataset is to use 

existing algorithms/processes. In this case, initial data is 

used as input, and then generalized by a given algorithm 

or more complex process; the generalized data is used as 

output of the training dataset. This is the method used for 

learning building generalization by Sester et al. (2018) 

and also the one used in our own experiment on building 

generalization (Figure 4) where buildings are generalized 

by an agent-based process (Ruas & Duchêne, 2007). The 

main advantage of this method is the possibility to easily 

generate very large datasets, as only initial topographic 

data and a generalization software tool are required. The 

main drawback of this method is that the machine 

learning model can only learn to mimic a process that 

already provides automatic generalization and may 

sometimes give unsatisfactory results. A plugin was 

developed in the CartAGen open generalization platform 

(Touya et al., 2019) to generate such training examples 

from a dataset and a given generalization process. 

The second way to create training datasets is to use 

existing maps at multiple scales. The main advantage of 

this method is that it might capture the knowledge of 

human cartographers that generalized the maps manually 

or that edited the output of a semi-automatic process, so it 

goes further than just mimicking an existing automatic 

process. The main drawback of this method is the 

availability of such multi-scale generalized maps. Even if 

multi-scale generalized maps are now available, for 

instance on NMA geoportals, the vector dataset is 

required to generate optimal input/output (e.g. change 

symbols, or remove features, see the following 

subsections). 

 

Figure 5. Two representations of highway interchanges (road 

lines and points) in a MRDB, that can be used to generate a 

training dataset to classify images that contain highway 

interchanges.  

The third way create training examples is to use multiple 

representation databases (MRDB). MRDBs can provide 

different abstractions of the same real world geographic 

features, and these multiple abstractions can be used to 

generate the proper input/output. For instance, in our 

experiment on highway interchange detection, we have to 

generate input images for the two classes (interchange/no 

interchange), and we used the multiple representation of 

highway interchange to automatically derive images 

where there is an instance and images where there is none 

(Figure 5). The advantage of this method is the possibility 

to generate large training datasets automatically. The 

main drawback is the same as the previous one, there is a 

need for a MRDB, and this is not common. Another 

drawback is that less detailed abstractions were often 

subjected to some kind of generalization: for instance, in 

the highway interchange example, only the main 

instances were retained in the point representation, so 

there is no example showing what was considered as less 

important instances. 

The fourth and final way to create training datasets is to 

use human annotations. The main drawback of this 

https://doi.org/10.1080/23729333.2019.1613071
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method is the cost in time and money. 20,000 images 

used to train the U-Net model from (Sester et al., 2018), 

1.2 million manually annotated images to train the 

famous Inception model from Google (Szegedy et al., 

2015). In the case of learning generalization, this is not a 

simple annotation problem, as a training example requires 

some manual generalization, so the cost of human 

annotation is even higher. Using crowdsourced 

annotation, rather than asking expert cartographers, is a 

possibility but it might introduce some biases in the 

training dataset with problems of visualization literacy 

(Borgo et al., 2017). The only advantage of this method is 

that there is no prerequisite data or software to derive the 

training dataset. 

5.2 Just an Image as Input? 

Deep convolutional neural networks are very adapted to 

input vectors that have a grid format, just like images. 

This is why images are used as the main input in most 

deep learning applications.  

To generate input and output images from vector initial 

and generalized data, there are several choices to make. 

The first one is the size of the image in pixels. Figure 6 

shows three images derived from the same building with 

different resolutions. When the number of pixels 

decreases, the building boundaries are not sharply 

displayed which might be a problem as generalization is 

often a detail reduction issue. But larger images make the 

learning process much difficult to compute for a 

computer, as the size of the tensors manipulated by the 

model depends on the number of pixels in the image. As 

a comparison, the MNIST dataset that contains images of 

handwritten digits uses a 28x28 pixels format (LeCun et 

al., 1998). 

 

Figure 6. A same building displayed in images with different 

sizes: (a) 512x512, (b) 128x128, (c) 64x64.  

So, what is the optimal size/resolution of images for deep 

learning map generalization? We studied different 

possible sizes in Table 1, to find the best compromise for 

our building generalization use case at a given scale. It 

should be noted that power of two dimensions are 

preferred to optimize the use of pooling layers in the 

convolutional neural network. We used a classical 

threshold of building minimum size (0.16 mm² in the 

map) from (Stoter et al., 2009). (Stoter et al., 2009) also 

shows that more than 95% of the buildings in a 

generalized topographic map at the 1:50k are below three 

times the area threshold, so we used 3*0.16 as the 

maximum size of a building, to compute the size of a 

pixel in Table 1. We selected the 128x128 resolution, 

even at the 1:25k, as a good compromise between pixel 

size and computing performance. 

 1:25k 1:50k 1: 100k 

256x256 0.07 0.14 0.27 

128x128 0.14 0.27 0.55 

64x64 0.28 0.55 1.09 

Table 1. Pixel dimensions (in m) according to map scale and 
training image dimensions for a building to fit in one image 
with a minimum area of 0.16 mm² in the map.  

When an image resolution is chosen, the next issue is the 

partitioning method. A simple method is to use a regular 

grid (Figure 7a) as proposed in the literature (Xu et al., 

2017; Sester et al., 2018). The drawback of this method is 

that features can be cut on borders and it will require 

some merging afterwards. Another method is to derive 

one image per feature with the feature on the center of the 

image (Figure 7b). The last method was used in both 

experiments we carried out. It would be interesting to 

compare both methods on a same dataset. 

 

Figure 7. Two ways to generate training images: (a) partition 

with a regular grid, (b) an image centered on each feature.  

The last issue to derive input (and output) images is the 

background of the image. We identified three different 

types of background: (1) an empty background (Figure 

8a); (2) a map background with the features that influence 

generalization rendered in the image (Figure 8b); (3) the 

aerial image as background (Figure 8c). The first solution 

was used for both experiments, but there should be 

comparisons to assess which one performs best for 

different generalization problems. 

 

Figure 8. A same building displayed in training images with 

different backgrounds: (a) empty background, (b) map 

background, (c) aerial image background.  

https://doi.org/10.1080/23729333.2019.1613071
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Even if we try to derive the best image possible, using 

only an image as the input is a clear limitation compared 

to the richness of vector data. First of all, many of the 

constraints that drive map generalization are related to 

some kind of occlusion/overlap/coalescence between map 

symbols. For instance, buildings are displaced when they 

overlap road symbol, which might not be visible on an 

image (Figure 9a). Using a specific style to highlight 

these occlusion/overlap problems could be a partial 

solution (Figure 9b). 

 

 

Figure 9. Conveying occlusions and overlaps in training images: 

(a) one or several buildings? Overlap with road symbol or not? 

(b) Feature styling to better convey occlusions and overlaps.  

There is also a problem if we try to convey spatial 

relations and meso patterns in the input image. Map 

generalization needs some explicit modelling of the 

spatial relations that play a key role in map generalization 

(Touya et al., 2014). With just an image as input, these 

spatial relations remain implicit. Deep learning methods 

allow the addition of metadata dimension in the input 

tensor, and this might be the solution to give explicit 

relations and patterns as input of the learning model. 

5.3 What Type of Network to Use? 

For image classification problems, convolutional neural 

networks (CNN) are very effective. For our interchange 

classification problem we used a simple CNN 

architecture and the results are very positive. 2000 

examples of interchange and 800 examples without 

interchange led to a 95% classification, with 98% of good 

classification for our remaining 600 interchange 

classification and 77% of good classification for our 

remaining 300 examples without interchange. Additional 

experiments with more examples without interchange are 

on-going.  

When the output is another image, which is the case when 

we learn how to generalize, or when segmentation is the 

target, the output of the neural network is not a class for 

the whole image but a class for each pixel of the image 

(class “background” or class “generalized building” in 

our use case). U-net architectures are usually used for 

such input/output pair (Ronneberger et al., 2015). For 

instance, a U-Net architecture was used to simplify 

sketchy drawings (Simo-Serra et al., 2016), and this is 

also the case for the first building generalization 

experiment by Sester et al. (2018). We also tested a U-

Net architecture for our building generalization use case, 

but the results were not conclusive (Figure 10). These 

disappointing results can be explained by our processing 

power limitations that prevented the use of training 

datasets larger than 2,000 buildings. 

 

Figure 10. Two examples of building generalization prediction 

with a U-Net trained with quite few examples (2,000) due to 

lack of processing power. The paler the pixel is, the higher the 

probability of being a building pixel is. 

Unlike the results of Figure 10, Sester et al. (2018) 

obtained very promising results with a similar U-Net 

architecture trained with much more examples, which 

shows that U-Nets are an interesting kind of model for 

map generalization. We also successfully used a U-Net to 

segment the roads belonging to a highway interchange 

(Figure 1). 

But, to achieve even better results on more complex 

problems (e.g. urban block generalization), we believe 

that Generative Adversarial Networks (GAN) are the best 

network architecture. A GAN combines two networks, 

one that generates many outputs, and one that 

discriminates the best possible outputs from the ones 

generated by the first network (Goodfellow et al., 2014). 

In our case, a GAN could combine a U-Net as the 

generative network and a CNN to discriminate valid from 

valid generalized shapes. An interesting use of a GAN is 

the pix2pix model (Isola et al., 2017) that was 

successfully used to generate a GoogleMaps-like map 

image from an aerial photograph of the same area. 

Recurrent Neural Networks (RNN) could also be very 

useful. RNNs are neural networks that contain recurrent 

connections between neurons, and are adapted to 

problems where an input i can be better classified using 

the classification of input i-1, i-2, etc. RNNs are effective 

on time series, or for language processing. As the analogy 

between time and scale already proved its success in the 

past with the ScaleMaster, RNNs could be useful when 

https://doi.org/10.1080/23729333.2019.1613071
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multi-scale, or continuous, generalization is performed, 

with the generalization at one scale influencing the 

generalizations at smaller scales. 

6. Discussion 

Despite its potential, deep learning techniques are not 

within the reach of any researcher in map generalization. 

The first reason is economical as deep learning requires 

high performance computing facilities, and most of 

research team in map generalization do not have an easy 

access to such facilities (at least we do not). Labs will 

have to invest either on computing time in cloud 

computing platform such as AmazonWebService, or 

expensive computers with high-performance graphical 

processing units. The second reason why it would not be 

an easy transition for map generalization researchers is 

that deep learning is mainly driven by researchers in 

computer vision and pattern recognition. As the raw 

material of most researchers in map generalization is a 

vector geographic dataset, we will have to learn how to 

also work with images. We will also have to learn how to 

map the generalization tasks correctly to the right deep 

learning models and architectures. 

 

Figure 11. (a) vectorization of a building from the training 

dataset. (b) vectorization of a fuzzy prediction for the same 

building.  

One of the important consequences of working with 

images is that the output of a deep learning model for 

map generalization is not digital cartographic model 

(Grünreich, 1985), but an image. Even if the images 

generated as inputs are geolocated tiff images, a 

vectorization step is required to re-inject the generalized 

information into the map. Figure 11 shows two examples 

of a basic vectorization algorithm based on contour 

detection. In the case (a), the image output of one training 

example is vectorized, and the algorithm is really able to 

cope with the low resolution to generate straight lines. In 

case (b), it is clear that vectorizing a fuzzy output gives 

extremely bad results. So vectorization should not be a 

big problem as long as the image result is very good. 

However, this assertion needs to be verified with other 

map features, or with multiple features (e.g. an urban 

block) in the image. 

As the generalization of a complete map with a deep 

learning model is out of reach for now, such techniques 

will have to be integrated with classical generalization 

models. For instance, it is possible to integrate specific 

deep learning models as available operations in an 

orchestrated generalization model such as the agent-based 

ones. Compared to other operations of such systems, 

there should be a focus on the diffusion of the operation 

on nearby features that were outside the image. 

Transfer learning (Pan & Yang, 2010) is also an 

important issue to discuss. If a model learns how to 

generalize with examples from a specific place (type of 

landscape, region, country…), it might give disappointing 

results on places that are different. The problem is similar 

with output scale: a model trained for 1:25k might not be 

able to properly work at the 1:35k scale. Also, a network 

trained for a specific generalization purpose can be 

difficult to be tuned for a different purpose (e.g. on-

demand and adaptive generalization). Transfer learning 

techniques enable to re-train models at a minimum cost to 

adapt them to new locations, scales or purposes, and 

research will be necessary on the transfer of models for 

map generalization. 

Finally, deep learning techniques would be easier to use 

in map generalization if they were able to handle vector 

data rather than images. There is no inevitability in the 

use of images as input. For instance, the SuperPoint 

Graph model (Landrieu & Simonovsky, 2018) processes 

Lidar 3D point clouds as graphs rather than images. 

Using a graph as input instead of an image could be a 

way to overcome the limits of the image highlighted in 

Section 5.2 (overlaps, explicit patterns and spatial 

relations…).  

7. Conclusion and Future Work 

To conclude, this paper discussed a possible paradigm 

shift in map generalization research with the use of deep 

learning techniques to solve some of our remaining 

issues. The main contribution of the paper is the detailed 

description of what could be learned with deep learning 

and how we can use deep learning for map 

generalization. Two preliminary experiments (detection 

of highway interchanges and building generalization) 

were carried out to illustrate this discussion. Our 

conclusion is to recognise a huge potential of 

improvements for map generalization, but there are still 

important limitations and deep learning is clearly not a 

magic remedy in our domain. 

Our future plan is to continue investigating the topic step 

by step: (1) we want to improve the results for simple 

problems such as individual feature generalization or data 

enrichment; (2) we need to tackle the vectorization/fuzzy 
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output problem, which is mandatory to integrate deep 

learning within existing generalization systems (using a 

GAN architecture?); (3) we plan to try more complex 

generalization problems such as block/city generalization 

with multiple features; (4) we want to investigate novel 

techniques to include information from vector data (i.e. 

symbol overlaps and spatial relations) into the model. 

Otherwise, if we want to reproduce the successes of deep 

learning in other fields, we need to create shared training 

datasets and benchmarks to foster research propositions 

and comparisons. The datasets we used in these first 

experiments and in future ones will be made available as 

components of the CartAGen open generalization 

platform
1
 and we hope that they will be the building 

blocks of future benchmarks. 
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