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Abstract

Dynamic forces reconstruction from vibration data is an ill-posed inverse

problem. A standard approach to stabilize the reconstruction consists in us-

ing some prior information on the quantities to identify. This is generally

done by including in the formulation of the inverse problem a regularization

term as an additive or a multiplicative constraint. In the present article,

a space-frequency multiplicative regularization is developed to identify me-

chanical forces acting on a structure. The proposed regularization strategy

takes advantage of one’s prior knowledge of the nature and the location of

excitation sources, as well as that of their spectral contents. Furthermore,

it has the merit to be free from the preliminary definition of any regular-

ization parameter. The validity of the proposed regularization procedure is

assessed numerically and experimentally. It is more particularly pointed out

that properly exploiting the space-frequency characteristics of the excitation

field to identify can improve the quality of the force reconstruction.
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1. Introduction

The characterization of dynamic forces acting on a structure remains one

of the major industrial concerns to control broadband excitation sources or

establish consistent excitation models for numerical simulation and design

of complex structures. Unfortunately, the direct measurement of excitation

forces is generally difficult or even impossible in practical situations. The

basic idea to circumvent this practical limitation is to perform an indirect

measurement from related accessible quantities such as displacement, veloc-

ity or acceleration fields.

Such techniques, referred to as force reconstruction problems, belong to the

class of ill-posed inverse problems, meaning that the existence of a unique

stable solution is not guaranteed. A possible solution to remedy this unde-

sirable feature consists in including in the reconstruction problem some prior

information on the forces to identify to constrain the space of admissible so-

lutions. The mathematical transcription of this simple idea leads to express

the inverse problem as a minimization problem, where prior information on

the excitation forces is encoded in a regularization term. This regularization

term can be incorporated in the formulation as an additive constraint, given

rise to Tikhonov-like regularizations [1]. It should, however, be noted that a

proper choice of the regularization term is crucial since it strongly conditions

the quality of the reconstruction.

In general, two categories of reconstruction problem can arise in practical

situations. The first one is related to the localization of excitation sources,

while the second one consists in reconstructing the frequency spectrum or the
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time signal of prelocalized sources. Regarding the localization problem, the

regularization term only reflects the spatial prior information on the sources

to identify. It is often expressed as the `p−norm of the desired solution vec-

tor. Such a norm is highly flexible to express one’s prior knowledge on the

nature of the forces to reconstruct [2], since smooth solutions are obtained

for p = 2 [1, 3, 4], while sparse excitation fields are promoted for p ≤ 1

[5, 6, 7, 8, 9]. It should be noticed that the spatial prior information is

classically defined in a global manner, meaning that all the sources exciting

the structure have the same attribute, i.e. localized, distributed or piecewise

continuous. Such global regularization terms lead to poor reconstructions, if

the actual excitation field combines sources of different nature, since the a

priori has to reflect a compromise between contradictory distributions [2]. To

bypass this difficulty, a group regularization term, defined from `p−norms,

has been recently proposed to exploit local spatial prior information on both

the nature and the location of excitation sources [10, 11]. In all the afore-

mentioned methods developed in the frequency domain, the reconstruction

problem is solved frequency by frequency, which is equivalent to suppose that

the frequency spectrum of the identified sources is discontinuous. This lack of

spectral continuity is inherent to these approaches and can induce potential

inaccuracies in the reconstructed frequency spectrum if the sources are broad-

band [12]. On the other hand, for reconstructing the frequency spectrum or

the time signal of prelocalized sources, the regularization term has to reflect

prior information on the nature of the excitation signal. Since the sources

are usually broadband, the force signal exhibits a certain continuity. That is

why, the corresponding regularization term is generally constructed from the
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`2−norm of the solution vector to identify [13, 14, 15, 16]. Obviously, such

identification methods are not suited for source localization and should fail

when the locations of the potential sources does not match the actual ones.

Consequently, it appears that the vast majority of the methods proposed in

the literature are generally unable to consistently tackle both localization

and spectral/temporal reconstruction problems at the same time. To the

best of our knowledge, only a few methods have been developed to address

these issues. However, they are often limited to the reconstruction of point

sources or to configurations where the spatial distribution of the sources and

the nature of the excitation signals share the same characteristics such as the

sparsity [17, 18, 19, 20, 21] or address the space-time (or space-frequency)

reconstruction problem in a separated manner [22].

It is thus of primary interest to simultaneously exploit both the spatial and

the spectral/temporal features of excitation sources to aid the reconstruction

process in finding the best possible solution. These requirements are actually

satisfied by regularization terms derived from a mixed `p,q−norm. A mixed

norm is a matrix norm defined for any matrix F by the following relation:

‖F‖p,q =

∑
i

(∑
j

|Fij|p
) q

p

 1
q

∀(p, q) ∈ ]0,+∞[2. (1)

Mixed `2,q−norms, for q ≤ 1, have revealed their suitability in signal and

image recovery applications [23, 24, 25, 26]. In the context of force iden-

tification, Rezayat et al. first derive a Tikhonov-like regularization using a

regularization term based on a mixed `2,1−norm to reconstruct broadband

point forces [12, 21].
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In the present paper, an original regularization strategy is developed to

solve both localization and spectral reconstruction problems within a unique

framework. More precisely, the proposed approach first relies on the defini-

tion of a regularization term that properly reflects one’s prior knowledge on

the type (localized or distributed) of the excitation forces, as well as on the

nature of the excitation signal. From a mathematical standpoint, this regu-

larization term is constructed from the general mixed `p,q−norm. Then, to

derive the generic form of the identification problem, the proposed regular-

ization term is included in the formulation as a multiplicative constraint. In

doing so, a particular form of multiplicative regularization is obtained. This

regularization strategy, originally developed by Van den Berg et al. [27],

has several advantages compared to the more classical additive approaches,

which explains its use in the present article. It has, in particular, the merit to

be free from the preliminary definition of any regularization parameter. Ac-

cordingly, it is generally faster than the related Tikhonov-like regularization,

but leads to similar reconstructed solutions [28]. To clearly highlight and

explain the main features of the proposed regularization strategy, this article

is divided into five parts. In section 2, the reconstruction model used for de-

riving the space-frequency regularization is detailed. Section 3 is devoted to

the description of the generic formulation of the regularization problem. Its

resolution is performed from an iterative procedure introduced in section 4.

Numerical and experimental validations of the space-frequency regularization

are respectively proposed in sections 5 and 6. Obtained results point out the

practical and potential interest in exploiting both spatial and spectral prior

information for improving the quality of the force reconstruction. Finally,
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the last part of this paper introduces the theoretical basis of the possible

extension of the space-frequency regularization to time domain applications.

2. Description of the reconstruction model

The definition of the space-frequency reconstruction problem requires the

construction of a model describing the dynamic behavior of the structure and

relating the measured vibration field to the excitation field to identify. To

this end, let us consider the general situation where the studied structure is

supposed linear and time-invariant. In this case, the dynamic behavior of the

structure at a particular frequency fj is completely described by the trans-

fer functions matrix H(fj). Depending on the method used to derive this

transfer function matrix, two reconstruction models can be defined. Indeed,

if H(fj) is measured, the reconstruction model is written [29, 30, 31]:

X(fj) = H(fj) F(fj), ∀ j = 1, . . . , N, (2)

where X(fj) is the measured vibration field and F(fj) is the unknown exci-

tation field at frequency fj and N is the number of studied frequencies.

On the other hand, if H(fj) is numerically computed, the reconstruction

model is then defined by the following relation [32, 33]:

X(fj) = H(fj) F(fj) + N(fj) ∀ j = 1, . . . , N, (3)

where N(fj) is the noise vector reflecting measurement and modeling errors.

To implement the proposed space-frequency regularization, one has to

define a global model from the reconstruction model given by Eq. (2) or (3)
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at each studied frequency. Considering that the transfer function matrices

are obtained from FEM, the global reconstruction model is written [21]:

X = HF + N, (4)

whereH = diag [H(f1), . . . ,H(fj), . . . ,H(fN)] is the global transfer functions

matrix, X =
[
X(f1)

T , . . . ,X(fj)
T , . . . ,X(fN)T

]T is the global measured vi-

bration field, F is the global unknown excitation field and N is the global

noise vector.

3. Space-frequency multiplicative regularization

As already evoked in the introduction, a classical approach to stabilize

an inverse problem consists in including in the formulation of the problem

some prior information on the forces to identify. For this purpose, the in-

verse problem is generally expressed as a constrained minimization problem,

namely:

min
F
F(X−HF) subject to R(F) ≤ β, (5)

where:

− F(X−HF) is the data-fidelity term which controls the a priori on the

noise corrupting the data [34, 35, 36];

− R(F) is the regularization term that encodes prior information on the

force distribution F [5, 37, 38];

− β is some positive constant related to the solution variance.
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For simplifying the resolution of the reconstruction problem, the con-

strained minimization problem is generally reformulated into an unconstrained

form, in which the regularization term appears as an additive or a mul-

tiplicative constraint. The additive formulation actually corresponds to a

Tikhonov-like regularization, that is:

Fa = argmin
F

F(X−HF) + λR(F), (6)

where λ is a Lagrange multiplier, a.k.a. the regularization parameter, which

controls the trade-off between the data-fidelity and regularization terms.

The main issue of such a formulation is related to the choice of the regular-

ization parameter. Generally, the optimal value of this parameter is automat-

ically selected from adapted numerical procedures [39, 40]. However, these

selection methods are often computationally intensive and time-consuming.

To circumvent this drawback, the multiplicative strategy can be used as an

alternative [41, 42, 43, 44]. Formally, this approach simply writes:

Fm = argmin
F

F(X−HF) · R(F). (7)

From a practical standpoint, this regularization method eliminates the

need for the selection of the regularization parameter. As a result, the mul-

tiplicative strategy is significantly faster than the additive formulation. It

should however be noted that both techniques lead to similar identified ex-

citation fields [11]. For this particular reason, the proposed space-frequency

regularization method is based on a multiplicative approach. The choice of

the data-fidelity and regularization terms is detailed in the following subsec-

tions.
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3.1. Definition of the regularization term

An appropriate definition of the regularization term is all the more crucial

since it conditions the quality of the reconstructed solution [2, 3, 11, 20].

In this paper, the regularization term is defined from the general mixed

`p,q−norm in order to properly exploit one’s prior knowledge on the spatial

and spectral characteristics of the forces to reconstruct. To highlight the

main properties of the proposed regularization term and make its definition

clearer, a step-by-step description is introduced. More precisely, it consists in

explaining the construction of the space-frequency regularization term from

the separate definition of frequency and spatial regularization terms.

3.1.1. Frequency regularization term

The frequency regularization term has to reflect prior information on the

nature of the excitation signal. To this end, let us consider a reconstruction

point i located on the structure. For this particular point, the frequency

spectrum (a.k.a frequency group) is extracted from the global force vector F

and is simply written:

F[i, :] = [Fi(f1), . . . , Fi(fj), . . . , Fi(fN)]T . (8)

To take into account a wide class of excitation signals, the frequency

regularization term can be expressed from a `p−norm, that is:

R
(
F[i, :]

)
=
∥∥∥F[i, :]

∥∥∥
p
. (9)

Such a regularization term is well adapted to deal with broadband as well

as sparse excitation signals. Indeed, when rotating machinery applications

or milling processes are considered, the force signal is generally sparse, since
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only a few specific frequencies are excited [45, 46]. Such a sparsity pattern can

be enforced using p ≤ 1 [7]. On the contrary, when the structure is excited

by an impact or a shaker fed by a white noise signal, the force spectrum is

necessarily broadband and continuous, i.e. rather smooth. In this situation,

it is recommended to set p = 2 to promote the C0 continuity of the force

signal. To enforce a particular continuity pattern, such as Cn or piecewise

continuity, a differentiation operator Lf has to be introduced to include in

the formulation one’s prior knowledge on the continuity of force spectrum

[47, 48]. As a result, a general form of frequency regularization term is:

R
(
F[i, :]

)
=
∥∥∥Lf

(
F[i, :]

)∥∥∥
p
. (10)

Practically, the differentiation operator corresponds to the discretized

form of a certain continuum derivative operator. For instance, to promote

the C1 continuity of the force spectrum, one has to set p = 2 and define a

frequency differentiation operator Lf of the form:

Lf =
1

∆f



−1.5 2 −0.5

−0.5 0 0.5
. . .

. . .

−0.5 0 0.5

0.5 −2 1.5


, (11)

where ∆f is the frequency resolution.

3.1.2. Spatial regularization term

The spatial regularization term has to reflect prior information on the type

of the excitation forces acting on a structure. To this end, let us consider the
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force vector at a particular frequency fj, namely:

F[:, j] = F(fj) = [F1(fj), . . . , Fi(fj), . . . , FM(fj)]
T , (12)

where M is the number of reconstruction points.

To derive a consistent spatial regularization term, it has to be flexible

enough to properly reflect different priors. In this paper, we consider that

only one type of sources excites the structure. Yet, the derivations presented

in the next sections can be easily extended to the case where several types of

sources act simultaneously on the structure. To this end, the concept of local

regularization term has to be introduced [11]. Here, the spatial regularization

term is chosen such that:

R
(
F[:, j]

)
=
∥∥∥Ls

(
F[:, j]

)∥∥∥q
q
, (13)

where Ls is the spatial differentiation operator that allows controlling the

regularity of the solution.

As shown in Refs. [2, 11], the proposed regularization term is particularly

well adapted for force reconstruction problems, since smooth solutions are

promoted for q = 2 and Ls = IM (IM : Identity matrix of dimensionM), while

sparse solutions are favored for q ≤ 1 and Ls = IM . For promoting piecewise

continuous solutions, one can set q ≤ 1 and define Ls as the discretized form

of the nth-order differential operator. Thus, the solution is approximated by

piecewise constant segments if n = 1 [see Eq. (11)], while the solution is

approximated by piecewise polynomials of degree 1 if n = 2 [47].
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3.1.3. Space-frequency regularization term

The role of the space-frequency regularization term is to reflect the ex-

perimenter’s knowledge on both the spatial and spectral characteristics of

the forces to identify. From the definition of the frequency and spatial regu-

larization terms, it readily comes:

R(F) =
∥∥∥L F

∥∥∥q
p,q

=
M∑
i=1

∥∥∥(LF)[i, :]
∥∥∥q
p
, (14)

where L is the global space-frequency differentiation operator and the vector

(LF)[i] is defined by analogy with Eq. (8). For implementation purposes,

the space-frequency differentiation operator is expressed:

L = Ls Lf, (15)

where Ls = IN ⊗Ls and Lf are respectively the global spatial and frequency

differentiation operator.

Such a regularization term introduces explicitly a coupling between the

coefficients of the vector LF and allows promoting some structures observed

in real signals [24]. To illustrate this particular property of mixed norms, let

us consider the simple case where L = INM . Furthermore, if one represents

the force vector F as a matrix, where the rows correspond to the force spec-

trum at a particular location and the columns to the force field at a specific
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frequency, it comes:

F =



F1(f1) · · · F1(fj) · · · F1(fN)
...

...
...

Fi(f1) · · · Fi(fj) · · · Fi(fN)
...

...
...

FM(f1) · · · FM(fj) · · · FM(fN)


. (16)

If we further assume that (p, q) = (2, 1), then the matrix F is supposed to be

sparse along the lines (space) and full along the rows (frequency). In other

words, one promotes the spatial sparsity of the excitation field (localized

sources) and the continuity of its frequency spectrum (broadband source

signal). Consequently, the present space-frequency regularization term is

highly flexible, since it allows dealing with various force distributions and

various excitation signals within a unique framework.

3.2. Definition of the data-fidelity term

The data-fidelity term is a measure of the difference between the measured

vibration field X and the reconstructed vibration field HF. Consequently,

it reflects prior information on the bias between measured and reconstructed

vibration fields. In other words, it defines one’s prior knowledge of the noise

corrupting the data. A common assumption consists in considering that the

vibration field is corrupted at each frequency by an additive Gaussian white

noise. In this situation, the data-fidelity term is usually expressed as:

F(X−HF) =
∥∥∥X−HF

∥∥∥2
2

(17)
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3.3. Generic form of the space-frequency multiplicative regularization

The generic form of the proposed space-frequency multiplicative regular-

ization is simply obtained by introducing Eqs. (14) and (17) into Eq. (7). In

doing so, it readily comes:

Fm = argmin
F

∥∥∥X−HF
∥∥∥2
2
·
∥∥∥L F

∥∥∥q
p,q
. (18)

4. Resolution of the regularization problem

As already stated in section 3, the proposed formulation is flexible enough

to properly incorporate prior information on the type of the sources acting

on the structure, but also on the nature of the excitation signals. In re-

turn, the functional to minimize is generally non-convex, implying that the

corresponding solution, if exists, has no closed-form expression. For this pri-

mary reason, the implementation of an iterative procedure is the keystone

to obtain consistent regularized solutions. The requested algorithm should

be easy to implement, sufficiently general to cope with a wide range of con-

figurations depending on the values of p and q and should exhibit a linear

or super-linear rate of convergence. All these requirements are met by the

Iteratively Reweighted Least Squares algorithm [49, 50, 51, 52]. Such an iter-

ative procedure has been successfully applied for solving force reconstruction

problems at a particular frequency [2, 11, 28]. In the next of this section, an

adapted IRLS algorithm is derived to deal with the proposed space-frequency

multiplicative regularization.
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4.1. Basic principle

The proposed IRLS algorithm is a fixed-point algorithm adapted for solv-

ing minimization problems of the form of Eq. (18). The underlying idea be-

hind this algorithm is to define a fixed-point iteration having a unique and

explicit solution. In doing so, it is expected to recover the solution of the

original minimization problem when the convergence of the iterative process

is reached. To derive the desired fixed-point iterate, the mixed `p,q−norm to

the power of q is recast into a squared weighted `2−norm. In doing so, one

obtains at iteration k+1:

F
(k+1)

m = argmin
F

∥∥∥X−HF
∥∥∥2
2
·
∥∥∥∥W(k)1/2

LF
∥∥∥∥2
2

, (19)

where F
(k+1)

m is the solution at iteration k+1 and W
(k)

is a global weighting

diagonal matrix defined as a function of LF
(k)

m . In the present case, the

coefficients of the global weighting matrix are defined such that:

W
(k)

I = W
s (k)
i ·W f (k)

i,j , (20)

where I = j +N(i− 1) is a global index (for i = 1, . . . ,M and j = 1, . . . , N)

and W s (k)
i and W f (k)

i,j are the weighting coefficients related to the space (s)

and the frequency (f) domains.

By setting Y[i, :] = (LF
(k)

m )[i, :], the weighting coefficients W f (k)
i,j and

W
s (k)
i are written [see Appendix A]:

W
f (k)
i,j = max

(
ε p−2, |Yi(fj)|p−2

)
(21)

and

W
s (k)
i = max

([
ε2
] q

p
−1
,

[∥∥∥Wf (k)
i

1/2
Y[i, :]

∥∥∥2
2

] q
p
−1
)
, (22)
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where Wf (k)
i = diag

[
W

f (k)
i,1 , . . . ,W

f (k)
i,N

]
and ε is a damping parameter that

allows avoiding infinite weights. The damping parameter is automatically

selected once for all at the beginning of the iterative process from the cumu-

lative histogram of
∣∣∣LF(0)

m

∣∣∣ [2, 53]. Actually, its value is calculated so that

5% of the values
∣∣∣LF(0)

m

∣∣∣ are less than or equal to ε.

To have a better insight on the regularization properties of the multi-

plicative strategy, the operational form of the previous minimization prob-

lem should be given. After some simple calculations, one finds the following

explicit relation:

F
(k+1)

m =
(
H
H
H + α(k+1) L

H
W

(k)
L
)−1

H
H
X, (23)

where α(k+1) is an adaptive regularization parameter, defined such that:

α(k+1) =

∥∥∥X−HF
(k)

m

∥∥∥2
2∥∥∥∥W(k)1/2

LF
(k)

m

∥∥∥∥2
2

. (24)

Practically, the adaptive regularization parameter automatically adjusts

the amount of regularization throughout the iterative process, since its cur-

rent value depends on the regularized solution computed at iteration k. This

actually constitutes the definite advantage of the proposed multiplicative

regularization over its additive counterpart, because updating the adaptive

regularization parameter is almost costless.

4.2. Choice of the initial solution and stopping criterion

As any iterative procedure, the proposed IRLS algorithm requires the

definition of a good initial guess and a reliable stopping criterion.
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4.2.1. Choice of the initial solution

The choice of the initial solution is essential for a successful reconstruc-

tion. This choice is all the more crucial that the functional to minimize

is generally non-convex. Actually, the initial solution has to satisfy several

prerequisites to lead to relevant reconstructions. More precisely, it could be

defined as a coarse solution of the minimization problem, easy to compute,

but sufficiently close to the actual solution to ensure the convergence of the

iterative process. Such requirements are fulfilled by a solution of the form:

F
(0)

m =
(
H
H
H + α(0) L

H
L
)−1

H
H
X, (25)

where α(0) is a rough estimate of the converged value of the adaptive regu-

larization parameter.

In Ref. [28], it has been shown that α(0) can be chosen from the following

heuristic procedure:

1. Find estimates of the largest and the smallest singular values of A =[
HL

−1]H [
HL

−1]
, noted σ̂1 and σ̂n respectively.

The estimate of the largest singular value is given by the upper bound

of σ1, namely [54]:

σ̂1 (A) =
√
‖A‖∞‖A‖1. (26)

The estimation of the smallest singular value is obtained from σ̂1 and

an estimate κ̂ of the condition number of A, namely:

σ̂n (A) =
σ̂1 (A)

κ̂ (A)
. (27)
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2. Define a set Sα0 of possible values of α(0) ∈ [σ̂n, σ̂1] using a constant

logarithmic spacing to take into account the decrease of the singular

values.

3. Choose α(0) = median (Sα0).

Some comments should be made on the estimation procedure described

above. This heuristic selection procedure has been developed with perfor-

mance in mind. Indeed, classical automatic selection procedures, like the

Generalized Cross Validation [39] or the L-curve principle [40], require the

computation of the SVD of the system matrix, which can be time consuming

when dealing with large reconstruction problems. To bypass this potential

bottleneck, we have sought to develop a procedure close to the classical ones

but avoiding the calculation of the SVD of the system matrix. That is why,

estimates of the largest and smallest singular value are only calculated in

step 1. Actually, all the performance gain are related to this calculation.

The second step is rather standard in the implementation of automatic selec-

tion procedures [see Ref. [55] for instance]. The last step defines the initial

adaptive regularization parameter as the median of the set Sα0 . It has been

found experimentally that such an estimate allows generally obtaining a rele-

vant initial solution for the iterative solver. However, because this estimation

procedure is heuristic, it may sometimes fail to give a good starting point

for the iterative process. In such a situation, it is always possible to choose

α(0) as the regularization parameter picked by the L-curve or any other auto-

matic selection procedure. Incidentally, the computational efficiency of the

overall procedure is affected in proportion to the size of the transfer functions

matrix.
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4.3. Choice of the stopping criterion

Regarding the choice of the stopping criterion, a classical approach con-

sists in stopping the iterative process when the relative variation of a certain

quantity is less or equal to some tolerance. Actually, the proposed iterative

procedure offers a natural definition of the stopping criterion, based on the

relative variation δ of the adaptive regularization parameter. By definition,

this convergence indicator is written:

δ =

∣∣α(k+1) − α(k)
∣∣

α(k)
. (28)

Experimentally, it has been found that setting the tolerance to 10−8 allows

obtaining consistent reconstruction, while preserving the time-performance

of the IRLS algorithm [2].

4.4. Generic resolution algorithm

A comprehensive overview of the proposed resolution algorithm is given

in table 1.

5. Numerical validation

This numerical validation intends to investigate the practical interest of

applying the proposed approach for solving force reconstruction problems.

5.1. Description of the numerical test case

The studied structure is a thin simply supported steel beam of length

1 m and cross-sectional area 3 × 10−4 m2. The beam is excited by a point

force of unit amplitude from 50 Hz to 500 Hz (frequency resolution: 1 Hz).

The coordinate of the point force, measured from the left end of the beam,
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Table 1: Generic resolution algorithm

Inputs: Global transfer functions matrix H, Global measured vibration field X,

Global differentiation matrix L, Tolerance tol

Output: Reconstructed force vector Fm

Initialization: Estimate α(0)

Compute F
(0)

m from Eq. (25)

Compute ε from the cumulative histogram of
∣∣∣∣LF

(0)

m

∣∣∣∣
Initialize δ to 1

Iteration:

while δ > tol

Compute W
(k)

from Eqs. (20), (21) and (22)

Compute α(k+1) from Eq. (24)

Compute F
(k+1)

m from Eq. (23)

Update δ using Eq. (28)

k ← k + 1

end

return Fm ← F
(k)

m
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is x0 = 0.6 m. Practically, this excitation configuration allows not only sim-

ulating a broadband excitation such as a hammer impact, but also studying

the influence of the proposed regularization term, since the excitation field

spatially exhibits a sparse distribution of excitation sources.

To synthesize experimental vibration data, the global exact vibration dis-

placement field Xexact is first computed from a FE mesh of the beam made

up with 20 plane beam elements, assuming that only transverse motions are

measurable. Then, the exact displacement field is corrupted by an additive

Gaussian white noise with a signal-to-noise ratio (SNR) equal to 30 dB. It

should be added that a structural damping ratio of 0.01 has been introduced

in the calculation to avoid infinite displacement amplitudes at resonance fre-

quencies, whose the five first are given in Table 2.

Table 2: First five resonance frequencies

ID Value

1 23.52 Hz

2 94.11 Hz

3 211.75 Hz

4 376.45 Hz

5 588.21 Hz

Regarding finally the definition of the reconstruction model, the global

transfer functions matrix H is computed from a FE model of the plate with
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free boundary conditions, by supposing that only the transverse forces acting

on the structure are of primary importance. The main interest in using such

a numerical model is to allow the reconstruction of both external and reaction

forces [4, 11].

5.2. Reference force vector

To measure the ability of the proposed space-frequency regularization

in reconstructing relevant excitation fields, it is first necessary to define a

reliable point of comparison. Such a reference force vector is derived from

the global transfer functions matrix H and the global exact displacement

Xexact by using the following simple relation:

Fref = H
−1
Xexact. (29)

The typology of the sources acting on the structure is presented in Fig. 1.

More specifically, this figure proposes a spatial representation of the reference

force vector at a resonance frequency of the structure (211 Hz), but also

at a frequency lying outside resonance frequencies (150 Hz). It should be

noted that the reference force vector exhibits, as expected, only point sources,

namely the point force and the reaction forces at both ends of the beam.

For the sake of completeness, the exact displacement field at 150 Hz and

211 Hz is given in Fig. 2. This figure clearly show that the analysis displace-

ment vibration field alone does not provide any information on the sought

excitation field, which emphasizes the interest of developing an appropriate

reconstruction strategy.
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(b) 211 Hz

Figure 1: Reference force vector Fref[:, j] (a) at a non-resonance frequency (150 Hz) and

(b) at a resonance frequency (211 Hz)
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Figure 2: Exact displacement vector Xexact[:, j] (a) at a non-resonance frequency (150 Hz)

and (b) at a resonance frequency (211 Hz)
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5.3. Naive reconstruction

When the displacement field is noisy, a naive approach is to solve the

reconstruction problem in a least-squares sense, that is:

Fnaive = H
+
X, (30)

where H
+
is the Moore-Penrose pseudoinverse of H.

Unfortunately, such a naive approach generally fails to locate and recon-

struct the actual forces acting on a structure as illustrated in Figs. 3 and 4.

It is especially noteworthy that the larger reconstruction errors of the point

force spectrum are observed at resonance frequencies [see Fig. 4]. To justify

this result, one has to keep in mind that for lightly damped structures the

shape of the vibration response at resonance frequencies is close to that of

the mode shapes. In this situation, the nearfield information is somewhat

masked, which makes the reconstruction problem more involved. These pre-

liminary results better explain the need for regularization methods and can

serve as a basis to point out the main features of the proposed approach.

5.4. Reconstruction from the space-frequency regularization

To properly apply the proposed space-frequency regularization, one has

to determine the parameters defining the regularization term. As already

evoked in the introduction, consistent reconstructions can be obtained by

properly exploiting the spatial and spectral characteristics of the force vec-

tor to identify. Regarding the spatial prior, one has to remind that the

force vector is sparse [see Fig. 1]. Practically, this observation leads to de-

fine a parameter q promoting the sparsity of the solution. On the other
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(b) 211 Hz

Figure 3: Naive spatial reconstruction of the force vector Fnaive[j] (a) at a non-resonance

frequency (150 Hz) and (b) at a resonance frequency (211 Hz) – (—) Reference and (−−)

Naive reconstruction

100 200 300 400 500

Frequency [Hz]

-20

-10

0

10

20

30

40

50

F
o

rc
e
 a

m
p

li
tu

d
e
 [

d
B

, 
re

f:
 1

 N
]

Figure 4: Spectrum of the reconstructed point force - (—) Naive reconstruction and (−−)

Reference

25



hand, the point force excitation being broadband, the frequency prior has

to reflect the continuity of the source signal. Following the recommenda-

tions given in section 3, one sets (p, q) = (2, 0.5) and L = INM . To better

highlight the advantage of the proposed regularization term [see Eq. 14], the

proposed space-frequency (SF) regularization is compared with the corre-

sponding frequency-by-frequency (FbF) regularization. The latter strategy

is a particular case of the space-frequency approach, since it is obtained by

defining N separate frequency groups for a reconstruction point i. In other

words, this regularization strategy is written [11]:

Fm(fj) = argmin
F(j)

‖X(fj)−H(fj)F(fj)‖22 ·‖F(fj)‖qq , ∀ j = 1, . . . , N. (31)

The first step to assess the pertinence of the proposed SF regularization

compared to the FbF strategy consists in appraising their ability in properly

identifying the mechanical sources acting on the structure. The reconstruc-

tions proposed in Fig. 5 point out that both FbF and SF approaches provide

a consistent identification of the reaction forces at boundaries. However, it

is worth noting that the FbF regularization fails in localizing the point force

at one of the resonance frequencies of the beam, which is not the case with

the SF strategy [see Fig. 5b]. This observation is confirmed by the analysis

of the spectrum of the point force reconstructed by the FbF or the SF ap-

proaches and presented in Fig. 6. Indeed, the force spectrum obtained using

the FbF strategy exhibits large reconstruction errors around the resonance

frequencies (94 Hz, 211 Hz and 376 Hz in the frequency range of interest).

On the contrary, the reconstruction error is limited to 1.6 dB at most over all

the frequency range with the SF strategy. All these results tend to demon-

strate that the proposed multiplicative regularization is well adapted to force
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reconstruction problems.
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Figure 5: Spatial reconstructions of the excitation field (a) at non-resonance frequency

(150 Hz) and (b) at a resonance frequency (211 Hz) of the beam - (—) Reference, (−−)

SF regularization and (− · −) FbF regularization

Finally, one has to notice that the proposed regularization strategy is well

adapted to solve large reconstruction problem, since the calculation of a SVD,

that is generally used to compute the optimal regularization parameter, is

avoided. This is all the more interesting than the calculation of the SVD can

be time-consuming or even impossible for large-scale systems on a personal

computer.

5.5. Influence of the choice of the norm parameters p and q

It can be argued that in real-life applications the proposed guidelines re-

garding the choice of the norm parameters p and q seem impractical, because

the force distribution is unknown or there is no idea about the force to re-

cover. We are prone to think that in real-life applications rough information
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(a) FbF regularization
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(b) SF regularization

Figure 6: Spectrum of the reconstructed point force - (—) Reconstructed force spectrum

and (−−) Reference force spectrum

about the force to recover is available. This information is provided by a

careful analysis of the mechanical system. As a result, we think that a rough

idea of the nature of the excitation signal and the type of the sources acting

on the structure can be obtained, but this supposes that the user has some

knowledge in mechanics.

Nevertheless, it is interesting to study the influence of an improper choice

of p and q on the quality of the reconstructed solutions. To this end, two

configurations are compared. The first one corresponds to the case where

the the nature of the excitation signal is properly inferred, while the prior on

the type of the source does not correspond to the actual spatial distribution.

This situation typically arises when (p, q) = (2, 2). The second configura-

tion corresponds to the situation for which the type of the source is properly

determined, while the prior on the nature of the excitation signal does not
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match the actual one. This situation is encountered when (p, q) = (1, 0.5).

The analysis of the spatial reconstructions at 150 Hz presented in Fig. 7

tends to show that an error on the choice of p seems less critical than an error

on the choice of q. This observation is confirmed by the inspection of the

spectrum of the reconstructed point force obtained from both configurations

[see Fig. 8]. However, it should be noted that a poor choice of p lowered

the overall quality of the reconstructed solution even if q is appropriately

selected. This is particularly noticeable in Fig. 8b where the reconstruction

error obtained for the second configuration with p = 1 is on the whole greater

than that obtained with p = 2 [see Fig. 6b].
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Figure 7: Spatial reconstructions of the excitation field at 150 Hz - (—) Reference, (−−)

Reconstructed excitation field for (p, q) = (2, 2) and (− ·−) Reconstructed excitation field

for (p, q) = (1, 0.5)
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Figure 8: Spectrum of the reconstructed point force for (a) (p, q) = (2, 2) and (b) (p, q) =

(1, 0.5) - (—) Reconstructed force spectrum and (−−) Reference force spectrum

5.6. Influence of the noise on the performance of the resolution algorithm

The proposed resolution algorithm being iterative, it could be interest-

ing to determine how the noise corrupting the data affects its performances.

To this end, 103 samples of the measurement noise vector N, supposed to

be a Gaussian white noise, are drawn for each of two following SNR: 30

dB and 25 dB. Then, the SF regularization is applied to each samples with

(p, q) = (2, 0.5). This procedure allows quantifying the posterior uncertainty

about the reconstructed solution by estimating the median and the 95% cred-

ible interval from the solution samples as well as monitoring the evolution of

the number of iterations of the resolution algorithm.

As expected, Figs. 9 and 10 show that the posterior uncertainty about

the reconstructed force vector is large at resonance frequencies and more

generally increases as the SNR decreases, which is also associated to a loss
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of accuracy of the reconstruction. Regarding the number of iterations per-

formed by the resolution algorithm to converge, the results are summarized

in Table 3. It can be seen that the number of iterations increases as the SNR

decreases, which is in line with our expectations. It is also worth noting that

the related 95% credible interval around the median value is relatively sharp.
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Figure 9: Spatial reconstructions of the excitation field at 211 Hz for a SNR equal to (a)

30 dB and (b) 25 dB - Real part of the reconstructed force vector - (—) Reference, (−−)

Median of the samples and ( a ) 95% credible interval

Table 3: Number of iteration with respect to the SNR

SNR Median 95% CI

30 dB 20 [19, 23]

25 dB 28 [25, 31]
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(b)

Figure 10: Spectrum of the reconstructed point force for a SNR equal to (a) 30 dB and

(b) 25 dB - Real part of the reconstructed force vector - (—) Median of the samples, (−−)

Reference force spectrum and ( a ) 95% credible interval

6. Experimental validation

To confirm the conclusions drawn from the previous numerical experi-

ment, the SF and FbF regularizations are applied to a real structure. The

main objective of this experimental validation is to assess the performance

of the proposed approach in operating conditions.

6.1. Description of the experimental set-up

The structure under test is a suspended (free) aluminum plate of 0.6 m

in length, 0.4 m in width and 5 mm in thickness [see Fig. 11a]. The plate

is excited at (x0, y0) = (0.405 m, 0.255 m) by a shaker fed by a white noise

signal and equipped with a force sensor [see Fig. 11b].

Measurements of the vibration field were carried out with a scanning laser
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(a) (b)

Figure 11: Experimental set-up - (a) Suspended plate and (b) Excitation device

vibrometer on a grid of 35× 29 points along x and y directions respectively

using the force signal as phase reference. Regarding the FE mesh used to

model the dynamic behavior of the plate and reconstruct the excitation field,

it has been designed to perfectly match the measurement mesh. As a result,

it consists of 952 shell elements, making the model theoretically valid up to

4500 Hz. Then, the corresponding FE model with free boundary conditions

has been used to compute the transfer functions matrix H, considering the

bending motions as the only available data. Finally, it is worth mentioning

that the FE model has not been updated in terms of Young modulus and

density and that a global structural damping, estimated from the modal

damping ratios obtained from the measured FRFs, has been used in the

present experimental validation.
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6.2. Reconstruction of the excitation field

In the numerical validation, the proposed SF formulation has been com-

pared with the related FbF regularization. A similar analysis process is

proposed in this section. The analysis of the experimental set-up implies

that the plate is only excited by a broadband point force. Consequently, it

is necessary to define a regularization promoting the spatial sparsity of the

excitation field as well as the continuity of the force spectrum. From the

guidelines given in section 3.1, the tuning parameters of the SF regulariza-

tion term are sets to (p, q) = (2, 0.5).

Figure 12 presents a comparison of the force spectrum identified at (x̂0, ŷ0) =

(0.404 m, 0.256 m) by the SF and FbF regularizations with the reference sig-

nal measured by the force sensor between 150 Hz and 750 Hz (frequency

resolution: 5 Hz). Contrary to what has been observed in the numerical

validation, the SF and FbF regularizations provide similar results on the

whole, but exhibit discrepancies at some resonance frequencies of the plate.

To further compare the SF and FbF regularizations, it is interesting to see

whether the reconstructed force spectrum far from the excitation point is

close to 0 N. This expected result is confirmed in Fig. 13, where the recon-

structed force spectrum at (x, y) = (0.109 m, 0.075 m) obtained from both

regularization strategies are indeed close to 0 N. Although these results seem

consistent with our expectations, it remains to verify the behavior of the SF

and FbF approaches in the space domain. Indeed, the excitation field being

reconstructed on a grid of 35× 29 points, corresponding to the measurement

mesh, it is possible to study its spatial distribution. One can observe in
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Fig. 14 that both regularization techniques allows identifying relevant force

distributions, since the point force is properly localized. More specifically,

they perform equally well at non-resonance frequency (here 230 Hz), insofar

as the point force amplitude is respectively estimated to 0.030 N and 0.036

N by the SF and FbF regularizations, while the measured amplitude is equal

to 0.029 N. Furthermore, as already observed in the numerical validation

and in Fig. 12, the main discrepancies can arises around the resonance fre-

quencies. For instance, Fig. 14 points out that at 290 Hz, the SF and FbF

regularizations behave rather differently, since the SF leads to a consistent re-

constructed solution (identified: 0.015 N, actual: 0.014 N). On the contrary,

the FbF strategy fails in properly estimating the point force amplitude (iden-

tified: 0.002 N). However, except this very local difference, both techniques

provide similar results on whole frequency range [see Fig. 12]. In the end,

the present experimental study shows that, in a particular real-world appli-

cation, the SF multiplicative regularization leads to a reconstruction similar

to that obtain with the related FbF multiplicative regularization. However,

this observation is finally reassuring here, because the solution provided by

the FbF strategy is already in good agreement with the reference one.

7. Extension to time domain applications

The proposed space-frequency regularization strategy can be easily adapted

to derive a space-time regularization approach. To this end, only the global

reconstruction model has to be modified. If the structure is time-invariant

and initially at rest, the displacement field xk at instant tk is obtained from
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Figure 12: Reconstruction of the force spectrum at identified excitation point – (—) Refer-

ence measured by the force sensor, (−−) SF regularization and (−.−) FbF regularization
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Figure 13: Reconstruction of the force spectrum far from the identified excitation point –

(—) SF regularization and(−−) FbF regularization
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Figure 14: Spatial reconstructions of the excitation field at non-resonance frequency (230

Hz) and around a resonance frequency of the plate (290 Hz) – (a, c) SF regularization and

(b, d) FbF regularization
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the discretized Duhamel’s integral:

xk = ∆t
k∑
i=0

hk−i fi + nk, (32)

where ∆t = tk+1−tk is the constant time step and hk and nk are respectively

the impulse response matrix and the noise vector at instant tk.

The previous relation can be recast under the following matrix form:

X = HF + N, (33)

with:

H =


h0 0 · · · 0

h1 h0
. . . ...

...
... . . . 0

hNt hNt−1 · · · h0

 , X =


x0

x1

...

xNt

 ,F =


f0

f1
...

fNt

 , N =


n0

n1

...

nNt

 ,

(34)

where Nt is the total number of time steps.

Consequently, using the previous mechanical model, the regularization

procedure described in sections 3 and 4 can be directly implemented for time

domain applications. It is also worth mentioning that the such a space-time

regularization is a natural strategy for time domain applications, for which

the reconstruction problem is classically established from a convolution model

[13, 56]. We are prone to think that the extension and application of the

proposed regularization strategy to force reconstruction problems in time

domain is very promising, because of its ability to allow dissociate prior
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information on the spatial distribution and the time history of the force

signals.

8. Conclusion

In the present study, the initial motivation was to propose a formulation

of the force reconstruction problem able to fully exploit information available

a priori on the type of the sources and the nature of the excitation signals.

To this end, a space-frequency multiplicative regularization has been intro-

duced. This formulation is highly flexible, since it allows dealing with various

force distributions and various excitation signals within a unique framework.

Practically, the regularization problem is solved from an adapted IRLS al-

gorithm. The proposed experimental application tends to show that the

SF multiplicative regularization gives results similar to those obtained with

the related FbF multiplicative regularization. This apparently disappoint-

ing observation is actually reassuring, since, in the present case, the force

signal identified by the FbF strategy is already in good agreement with the

reference one. The potential benefit of the proposed SF strategy has been

better highlight in the numerical validation, since it allows obtaining con-

sistent reconstructions even at structural resonance frequencies, where the

FbF approach generally fails. These proposed numerical and experimental

applications consequently indicate that the SF regularization performs better

than or, at least, similarly to the FbF regularization. Finally, a direct and

natural promising extension of the proposed regularization has been intro-

duced for time domain application. Its implementation and its performances

will be the subject of a future publication.
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Appendix A. Calculation of the weighting coefficients

The purpose of this appendix is to detail the calculation of the weighting

coefficients W f (k)
i,j and W

s (k)
i . To this end, let us define Y = LF

(k)

m and

Y[i, :] = (LF
(k)

m )[i, :]. From these definitions, the weighting coefficients are

determined as follows:∥∥∥Y[i, :]
∥∥∥p
p

=
N∑
j=1

|Yi(fj)| p

=
N∑
j=1

|Yi(fj)| p−2 |Yi(fj)|2

=
N∑
j=1

W
f (k)
i,j |Yi(fj)|2

=
∥∥∥Wf (k)

i
1/2

Y[i, :]
∥∥∥2
2
,

(A.1)

where Wf (k)
i = diag

(
W

f (k)
i,1 , . . . ,W

f (k)
i,N

)
.

The previous equation clearly shows that the weighting coefficientsW f (k)
i,j

are theoretically defined by:

W
f (k)
i,j = |Yi(fj)| p−2. (A.2)

However, to avoid infinite weights when |Yi(fj)| → 0 and p < 2, a damp-

ing parameter εf must be introduced.

The weighting coefficients W s (k)
i are obtained in a similar fashion, that

40



is: ∥∥∥Y∥∥∥q
p,q

=
M∑
i=1

(∥∥∥Y[i, :]
∥∥∥p
p

) q
p

=
M∑
i=1

(∥∥∥Wf (k)
i

1/2
Y[i, :]

∥∥∥2
2

) q
p

=
M∑
i=1

(∥∥∥Wf (k)
i

1/2
Y[i, :]

∥∥∥2
2

) q
p
−1 ∥∥∥Wf (k)

i
1/2

Y[i, :]
∥∥∥2
2

=
M∑
i=1

W
s (k)
i

∥∥∥Wf (k)
i

1/2
Y[i, :]

∥∥∥2
2

=

∥∥∥∥W(k)1/2

Y
∥∥∥∥2
2

.

(A.3)

From Eq. (A.3), the weighting coefficients W s (k)
i are simply given by:

W
s (k)
i =

(∥∥∥Wf (k)
i

1/2
Y[i, :]

∥∥∥2
2

) q
p
−1

. (A.4)

As stated previously, a damping parameter εs should be introduced in or-

der to avoid infinite weights when
∥∥∥Wf (k)

i
1/2

Y[i, :]
∥∥∥
2
→ 0 and q < p. For the

sake of simplicity, the damping parameter is chosen such that εf = εs = ε,

where ε is calculated from the cumulative histogram of
∣∣∣LF(0)

m

∣∣∣ [see sec-

tion 4.1].

Finally, Eq. (A.3) allows also demonstrating that the coefficients of the

global weighting matrix W
(k)

are written:

W
(k)

I = W
s (k)
i W

f (k)
i,j , (A.5)

where I = j +N(i− 1).
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