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Abstract10

In this work, reconstruction and location in time domain of multiple forces acting on a linear elastic structure

are achieved through a Bayesian approach to solve an inverse problem. The Bayesian solution of the

inverse problem is provided in the form of a posterior probability density function. The unknown forces are

determined through Markov chain Monte Carlo (MCMC) method, the Gibbs algorithm.

This posterior density integrating both the likelihood and prior information was considered for the particular

case of a linear elastic structure. The measurements are affected by an additive random noise. Two particular

cases were analyzed: unperturbed and uncertain model representing the structure. The unperturbed model

was used to identify a single force. When the model is uncertain, compressed sensing technique was used to

provide an adequate sparse representation of the inverse problem through a wavelet basis.

With this sparse representation, the possibility of achieving automatic location of the forces was investigated.

This requires to identify all the degrees-of-freedom along with the identified actions are not vanishing. Also,

the possibility of force identification with less sensors than forces was studied. The proposed approach

is illustrated and validated on numerical examples. This proposed approach is compared with classical

approach of force identification based on Tihonov regularization associated with the GCV criterion.

Keywords: Multi-force identification; Bayesian regularization; regularization parameter; time domain;11

compressed sensing; sparse; inverse problem.12

1. Introduction13

Force identification has been extensively addressed for the last two decades as a consequence of developing14

structural health monitoring [1, 2]. So many works dealt with the possibility to identify the force and the15

damage of a structure [2–4].16

This is a well-known ill-posed problem and the early work of Tikhonov [5] on regularization techniques hap-17

pens to be the main solution used to solve it. In general an optimization problem must be solved. A direct18

solution may be written [6–8] but some authors preferred specific algorithms like the Levenberg-Marquardt19

Preprint submitted to Elsevier July 10, 2018



[9] or the particle swarm optimization [10] to solve it. The close relation between singular value decompo-20

sition and regularization was highlighted by Hansen in many papers [6–8] : in particular the notion of filter21

factor is a comprehensive approach of the regularization principle including Tikhonov regularization, the22

truncation method [11]. [12] studies different regularization approaches to investigate the solution stability23

of the method of fundamental solutions (MFS). Three regularization methods in conjunction with two dif-24

ferent regularization parameters to find the optimal stable MFS scheme are illustrated.25

The forces may be identified by indirect measurements through a relation between the responses and the26

solicitations. In time domain, this relationship is established thanks to the transfer function (or the Green’s27

function) [11, 13] or to the system Markov parameters [14, 15]. A modal-like method that involved specific28

basis functions was developed by Liu [16]. Chen et al. [17, 18] used the time-reversal approach to identify29

the forces. Considering that the model and the signals are uncertain, Zhang et al. [19] developed a Bayesian30

approach: by using a Markov chain Monte Carlo method, the procedure may be viewed as an iterative31

regularization method. Note that usually the structural behaviour is supposed to be linear even if some32

researchers [20] tried to study nonlinear systems.33

However, all the methods necessitate knowing the force location [21]-[22]. So a lot of works must be done34

to estimate this location first. Wang et al. [15] studied the influence of the sensor location on the force35

identification. Jacquelin et al. [23] suggested that the measurement location has a direct influence on the36

condition number of the transfer matrix. Samagassi et al. [24] proposed a method of location through37

the identification of impact multiple forces. In [24], reconstruction of forces generated by multiple impacts38

occurring on linear elastic structures has been achieved through wavelet relevance vector machine approach39

to inverse problem solution. Bayesian hierarchical modeling according to the relevance vector machine ap-40

proximation was then applied in order to estimate the forces generated by impact events. The obtained41

results were remarkably good as the reconstructed forces were found to be very close to the original forces42

at the system input. The method was found also to provide a way for localization of impact forces.43

Almost all the works are related to identify one force, except [24]. Sometimes a distributed force is studied44

[16] but the problem came down to identify one force. Multiple-force identification was addressed in [24],45

[25], [26] and [27]: in the latter two publications they obtained very good results without performing any46

regularization.47

Many of these previous studies demonstrate that more sensors are required to determine the impact-load48

location. In fact, more sensors can also improve the identification accuracy of impact-force. Thus, some49

researchers have worked on the possibility of identifying impact- forces with fewer sensors than there are50

forces [28–33]. Known as compressed sensing (CS) theory, Candès and Tao wrote the fundaments of this51

theory [34]. The CS considers the sparse character which exists in most of physical data. In particular re-52

constructing data with much lower sample rate than classical Shannon limit is possible in the CS framework.53

In structural dynamics, data acquisition may require several sensors. In situations when the number of mea-54
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surements is limited [35], it is still possible to identify a force in a CS context by considering the sparsity of55

the force. In many situations, the signal-force is not directly sparse : however, in many cases, it is possible56

to find a basis in which the force is approximately sparse [28, 29, 36].57

Identifying forces is useful for determining the amount of damage undergone by a structure after a shock58

event and enables to evaluate through reanalysis of the structure its residual capacity. When the structure is59

represented by a discrete model, having the general form of a Toeplitz like matrix, the information acquired60

by sensors which are implemented on the structure does not allow by simple inversion of that matrix to61

straightforwardly recovering the input forces. On one hand, the problem is habitually ill-conditioned and62

may be even ill-posed, and on the other hand the information acquired by sensors as well as the Toeplitz ma-63

trix can be noisy and/or uncertain. To tackle these issues, which will be considered in this paper, Bayesian64

approach appeared to be an interesting way of achieving regularization of the problem [19, 24].65

In this paper, the force identification problem in time domain was investigated. On account of the pres-66

ence of measurement noise and modeling error, the impact-force identification is tackled within a Bayesian67

framework. The Bayesian approach considers the unknown quantities of interest as random variables68

[19, 24, 37, 38]. This approach has several advantages. First, it endows the unknown force with prior69

information in the form of a probability density function (p.d.f.), which naturally imposes an intrinsic reg-70

ularization. Second, the Bayesian approach provides a rigorous probabilistic framework to account for all71

possible sources of errors, which participate to the uncertainty of the identified forces including the mea-72

surement noise and the model uncertainty.73

The main objective of this paper is to study the possibility for the Bayesian approach together with the74

so-called compressed sensing technique [39, 40] to identify multiple forces that act on a linear elastic struc-75

ture, through indirect measurements. This Bayesian identification of multiple forces is analyzed through76

the Gibbs sampler.77

The rest of the paper is organized as follows. The general description of force reconstruction problem is78

tackled in section 2. In Section 3, two strategies of regularization including the l2-norm regularization and79

l1-norm regularization are illustrated and a Bayesian sparse regularization approach is proposed as sparse80

deconvolution model of impact-force identification. Section 4 highlights the technique of Bayesian sparse81

regularization approach for identifying impact-force. Before concluding in Section 6, numerical simulations82

will be make on a planar beam modeled both by an analytical approach and by the finite element method83

in Section 5.84

Obviously, the load identification issue is not new but it seems that the limitations of such an identification85

must be highlighted. that’s why the identification of force will also be carried out by the classical approach86

through the regularization of Tikhonov in order to make a comparative study of the two approaches. The87

quality of the results obtained by the regularization of Tikhonov seems to be related to the choice of the88

regularization parameter. Several methods exist to reach a “good choice” of the regularization parameter89
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[6] : the L-curve method, the generalized cross validation criterion (GCV), the quasi-optimality criterion90

and the Morozov’s discrepancy principle are among the most used criteria. In the following, the GCV91

method is used to provide the identified actions because the criterion GCV seems to be the one that would92

lead to better results [11, 12]. However, the L-curve and the quasi-optimality were used to compare the93

regularization parameters.94

2. General description of the force reconstruction problem95

In the following, the structure is supposed to have a linear elastic behaviour and to remain elastic during96

and after applying forces.97

Let Gij(t) be the impulse response between degrees-of-freedom (dof) i and j. This function may be deter-98

mined thanks to a modal expansion of the response, either analytically (for very simple structures) or from99

a finite element model.100

Suppose that nF forces act on the beam along several dofs, and that nm measurements are carried out.101

Then response sil(t) of dof il is given by the convolution equation:102

∀l ∈ 1, · · · , nm, sil(t) =

nF∑
k=1

∫ t

0
Gil jk(t− τ) Fjk(τ) dt) =

nF∑
k=1

Gil,jk(t) ⋆ Fjk(t) (1)

where {jk}k=1···nF
is the set of the dofs along which a force is applied; similarly, {il}l=1···nm is the set of103

the dofs along which a measurement is performed; so index l (resp. k) of il (resp. jk) restricts the dof set104

to the dofs where a signal (resp. a force) is measured (is applied); “⋆” stands for the convolution product.105

Convolution equation (1) is discretized. This leads to a system of algebraic equations ( see appendix C for106

more details about the identification of multiple forces):107

∀l ∈ 1, · · · , nm, sil =

nF∑
k=1

Gil,jk Fjk (2)

where:108

− ∆t is the time step; nt is the number of time sampling, that is to say, the number of time steps used109

for sampling the continuous response measured by the sensor.110

− Gil,jk is a nt-by-nt transfer matrix:

Gil,jk = ∆t



Gil,jk(∆t) 0 0

Gil,jk(2∆t) Gil,jk(∆t)
. . .

Gil,jk(3∆t) Gil,jk(2∆t)
. . . . . .

...
... . . . . . . 0

Gil,jk(nt∆t) Gil,jk((nt − 1)∆t) . . . . . . Gil,jk(∆t)


111

4



− sil = [sil(∆t), . . . , sil(nt∆t)]t,112

− Fjk = [Fjk(0), . . . , Fjk((nt − 1)∆t)]t,113

Equations (2) lead to the following problem:114

s = G F (3)

where s = [si1
t, . . . , sinm

t]t; F = [Fj1
t, . . . ,FjnF

t]t is the force vector; G is a Toeplitz block Gkl matrix115

such as Gkl = Gil,jk for k = 1 · · ·nF and l = 1 · · ·nm ; so G is a m-by-n matrix, s is a m-vector, F is a116

n-vector, where m = nt × nm and n = nt × nF .117

However, given the observed response s of structure after the impact events and the transfer matrix G which118

describes completely the structure ’s dynamic characteristic, solving Eq.(3) for the unknown impct-force119

vector F is called impact-force deconvolution. An important issue in practice is that actual observations120

always contain some amount of noise. Noise may arise in particular because of numerical round-off or121

nonlinearities that have not been taken into account for instrument readings. Taking into account the122

measurement noise, Eq.(3) becomes :123

s = G F+ η (4)

where η, m-vector, is a random vector representing measurement noise.124

If we consider impact-force signal F in Eqs.( 3) or (4) and an associated signal w which is r-sparse in an125

appropriate basis B, that which means that w contains no more than r non-zero elements or significant126

components with typically r ≪ n. This property can be expressed under vector-matrix form by a projection127

taking the following notation :128

F = Bw (5)

where w ∈ Rn×1, and B ∈ Rn×n. The columns of B define n vectors representing an orthonormal basis.129

For most natural force signals F that are piecewise smooth, the wavelet transform such as Daubechies and130

Symlets wavelets transform has been shown to yield sparse representation [41, 42].131

B is an orthogonal basis matrix, so B satisfies BtB = BBt = I. Thus, Eq.(5) can be easily inverted :132

w = BtF (6)

where ()t represent the transpose operation. By using Eq.(5), Eq.(4) rewrites133

s = GBw + η (7)

or equivalently134

s = Aw + η (8)

where A = GB ∈ Rm×n.135

We can divided the inverse problem of impact-force identification into three categories depending on the136

total number of unknown impact-sources F and known responses s137
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− Case 1:138

Eq.(8) is a under-determined case : the number of measurements m is less than the number of sources139

n.140

− Case 2:141

Eq.(8) is a even-determined case: the number of measurements m is equal to the number of sources n.142

− Case 3:143

Eq.(8) is a over-determined case: the number of measurements m is greater than the number of sources144

n.145

Solving Eq.(8) in case 1 for the unknown vector w given the observed response s as well as matrix A is a146

compressed sensing problem [39, 40, 43, 44]. Compressed sensing (CS) appears,so, as a simple method for147

finding the sparsest solution to an under-determined system of linear equations having the form of Eqs.( 8)148

or (7). Also, CS can be see as an effective solution approach particularly in situations where the number149

of sensors is limited because of implementation constraints or cost and when the sensing process provides a150

small number of measurements due to a poor sampling rate [41].151

The first two cases have been considered in this paper.152

Note that for real systems, the matrix G can also be polluted. There are two ways in order to take into153

account system matrix uncertainties. In the first approach, one uses model uncertainty propagation based154

approaches that enable to estimate variability of G following those of the basic design parameters. In the155

second approach, one apply posterior noise on the matrix G in order to take into account globally and156

non-parametrically the various physical perturbations, modeling errors as well as material and geometrical157

variability.158

The method based on propagation gives raise to major difficulties and is out of the scope of the present159

work. Thus, in the following, only the second method is considered and the matrix of system is assumed to160

be perturbed by a general white Gaussian noise.161

Note also that the problem of force identification is naturally ill-posed. The condition number of the transfert162

matrix G can be very large, which means that the desired solution F through w is very sensitive to the163

small noise in response s. The direct Least squares (LS) approach that minimize the l2-norm of the response164

residual ∥s−Aw∥2 in order to solve Eq.(8) never provides a satisfactory solution. Thus in order to stabilize165

the problem, regularization strategies must be developed to reconstruct the impact-force .166

3. Strategies of regularization for impact-force reconstruction167

3.1. Method of regularization based on l2-norm168

If there is a method of regularization that is most commonly used and well-known for solving various inverse169

problems, it is probably Tikhonov regularization [7, 12]. The primary purpose of this regularization is to170
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find a stable solution by minimizing the weighted combination of the residual norm and the solution norm :171

minimize ∥s−Aw∥22 + β∥w∥22 (9)

where β is a regularization parameter and ∥.∥2 is the l2-norm. With this term β∥w∥22, the ill-posed inverse172

problem becomes well-posed. A fair balance between minimizing ∥s−Aw|2 and ∥w∥2 is established by β.173

Regularization of Tikhonov always has an explicit and unique solution to Eq. (9), for any β fixed :174

wtik =
(
AtA+ βI

)−1
Ats (10)

where I is an identity matrix. The quality of the results obtained by this approach seems to be related175

to the good choice of the regularization parameter β. Several methods exist to reach a “good choice” of176

the regularization parameter [7, 12]: the L-curve method, the generalized cross validation criterion, the177

quasi-optimality criterion and the Morozov’s discrepancy principle are among the most used criteria. In178

the following, the GCV method is used to provide the identified actions. However, the L-curve and the179

quasi-optimality were used to compare the regularization parameters.180

3.2. Method of regularization based on l1-norm181

It is well-known the classical regularization methods based on l2-norm such as Tikhonov regularization fail182

to solve the case 1, that is to say under-determined case. Inversely, the l1-norm regularization, that is to183

say sparse regularization, refers to finding the minimum l1-norm solution to an under-determined system.184

Recently it has received much attention, particularly motivated by compressive sensing theory under sparsity185

condition, where the minimum l1-norm solution is also the sparsest solution [39, 40, 43, 44]. In fact, when186

the desired impact-force is known to be sparse in the sense that most components of w are close to zeros,187

more measurements will not be necessary. Therefore, the sparsity nature of impact-force w fundamentally188

changes the under-determined problem, making, thus, unique solution possible. The sparse regularized189

problem associated to the problem Eq.(8) [24, 32, 33] can be written as :190

minimum
{
∥s−Aw|22 + β∥w∥1

}
(11)

where β is also called parameter of regularization. The sparse solution of Eq.(8) is constructed by l1-191

norm term. The problem of optimization in Eq.(11) is known as the basis pursuit denoising (BPDN)192

problem [32]. Note that the inherent sparsity of impact-event is the prerequisite of sparse regularization.193

While the solution of Tikhonov can be explicitly expressed, sparse regularization requires solving the convex194

optimization problem Eq.(11) by an iterative approach, that which has no explicit analytic solution. There195

are much theoretical work in compressing sensing domain that have shown that the so-called restricted196

isometry property (RIP) of the matrix A guarantees that sparse regularization will yield an accurate and197

robust solution from the incomplete and noisy measurement s [39, 40, 43, 44]. If the matrix A of system198

verifies the RIP, any small perturbation of measurement resulting from noise will yield a small perturbation199
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on the identified sparse signal. It has been shown in [24, 32] that the RIP is a sufficient condition, that200

which means that even though a matrix does not satisfies the restricted isometry property (RIP), it can yet201

be used as a matrix of measurement. Results obtained in [24, 32] are very satisfactory.202

For our particular problem of force reconstruction, it has not still been proven mathematically that the203

matrix A satisfy the RIP. Nevertheless, some studies have shown that the verification of the RIP strongly204

resides in the random nature of the matrix of the system [40, 43]. This is why, we perturbed by a Gaussian205

term the matrix of the system in order to take into account globally and non-parametrically the various206

physical perturbations, modeling errors as well as material and geometrical variability. This uncertainty207

which is propagated to the response is assumed small enough : A+ δA. So, robustness can only be verified208

numerically.209

In this paper, iterative approach proposed in order to solve Eq.(11) is Bayesian hierarchical model. Two210

algorithms based on Gibbs sampling are proposed.211

4. Bayesian sparse regularization for impact-force identification212

4.1. Bayes’formula213

Denoting by x, the vector including the unknown parameters (F (or w), noise η, model uncertainty), the214

Bayesian solution of equation Eq.(11) or Eq.(8) is obtained by the a posteriori probability density function215

(pdf) of x given by the Bayes’ formula:216

π (x|s,J) = π (s|x,J)π (x,J)

π (s,J)
∝ π (s|x,J)π (x,J) (12)

Information J, which will be more detailed later, is introduced to make information a priori explanatory.217

The elements of equation (12) are listed as follows:218

− the likelihood function, π (s|x,J), reflects the probability of observing the data s given a set of param-219

eters x and J;220

− the prior pdf, π (x,J), reflects our knowledge on the parameters before experiments are undertaken.221

− the marginal function, π (s,J) =
∫
π (s|x,J)π (x,J) dx, is often seen as a normalization constant.222

Eq.(12) provides the updated information on the parameters involved in the inference. The force vector, w,223

is finally estimated with an iterative process, the Markov chain Monte Carlo, through a probability density224

function (pdf).225

The construction of the likelihood requires two steps. The first one is the definition of the measurement noise;226

the second one is the representation of the noise by a probability density function. Reference [45] shows227

that the pdf of the noise, πnoise (η), and the pdf of the measurement s are identical because of the mutual228

independence between F (or w) and η . In the following, the noise that spoils the data, s, is supposed to229

be a Gaussian random noise with zero mean: η ∼ N (0,Γnoise), where Γnoise = σ2
ηI is the covariance matrix230

and I is the identity matrix.231
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4.2. First algorithm for Bayesian force identification232

One of the first impact-force reconstruction algorithms based on Bayesian approach was developed by Zhang233

and al.[19]. This impact-force reconstruction has been discussed in the frequency domain.234

In this subsection, impact-force identification is discussed in time domain and we explain a Bayesian iterative235

method to solve convex optimization problem expressed by Eq.(11). We consider situation where matrix236

system is unperturbed, ie A = GB. Thus, the likelihood function reads:237

π
(
s|w, σ2

η

)
= πnoise

(
s−Aw|w, σ2

η

)
(13)

This means that: s|w, σ2
η ∼ N (Aw,Γnoise).238

A conjugate prior1 pdf is attributed to force w :239

w ∼ N (w0,Γpr) (14)

with w0 the vector of mean values and the covariance matrix Γpr is assumed to be diagonal: Γpr = diag(σ2
w)240

where σ2
w =

[
σ2
w(1), σ

2
w(2), . . . , σ

2
w(nt)

]
.241

In Eqs. (13) and (14), parameters w0, σ2
w (i), and σ2

η, called hyper-parameters are unknown. These hyper-242

parameters may be viewed as regularization parameters.243

In addition, these hyper-parameters are the parameters of the prior distribution and noise. So they are244

a source of a priori information [19] : w0, σ2
w (i), and σ2

η are hyper-parameters and are random variables245

following probability distributions :246

w0 ∼ N (U0,Cu) (15)

σ−2
η ∼ Γ (kη, βη) (16)

σ−2
w (i) ∼ Γ (kw, βw) (17)

where Γ (k, β) stands for the gamma distribution and Cu = σ2
uI.247

Denote J =
{
U0, σ

2
u, kw, βw, kη, βη

}
the set of parameters supposed to be known a priori; then the posterior248

probability density is:249

π
(
w,w0, σ

−2
w (i), σ−2

η |s
)
∝ πnoise

(
s−Aw|w, σ−2

η

)
πpr
(
w|w0, σ

−2
w (i)

)
πpr
(
w0, σ

−2
w (i), σ−2

η |J
)

(18)

Eq.(18) is the Bayesian solution of the force identification problem. The determination of inference param-250

eters w,w0, σ
−2
w (i), σ−2

η can be achieved through the MCMC Gibbs algorithm (Algorithm 1 below) : The251

maximization of this posterior probability density with respect to w yields the posterior maximum estimator252

[45] :253

w̄ =
(
Γ−1
pr +ATΓ−1

noiseA
)−1 (

ATΓ−1
noises+ Γ−1

pr w0

)
(19)

1A conjugate prior pdf is in the same pdf family as the posterior
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A comparison between the Bayesian approach and classical Tikhonov regularization is given in Appendix254

A.255

The principle of MCMC consists in generating random walks whose stationary pdf coincides with the256

posterior pdf of interest. Among the MCMC methods [46–48], the Gibbs sampling algorithm [47] is used to257

explore the posterior pdf. The implementation of the Gibbs sampling on force reconstruction is resumed as258

follows (See Appendix B for details).259

− Algorithm 1260

Initialize parameters of J =
{
U0, σ

2
u, kw, βw, kη, βη

}
261

1. Draw262

w0 ∼ N
(
U0, σ

2
uI
)

263

σ−2
w (i) ∼ Γ (kw, βw)264

σ−2
η (i) ∼ Γ (kη, βη)265

2. Draw w|s, w0, σ
−2
w (i), σ−2

η ∼ N (w̄,Γpost) with266

w̄ =
(
Γ−1
pr +ATΓ−1

noiseA
)−1 (

ATΓ−1
noises+ Γ−1

pr w0

)
267

Γpost =
(
Γ−1
pr +ATΓ−1

noiseA
)−1

268

3. Draw σ−2
η |w, s ∼ Γ

(
k̂η, β̂η

)
with269

k̂η = kη +
nt
2270

β̂η =
∥s−Aw∥22

2 + βη271

4. Draw w0|w, σ−2
w (i) ∼ N

(
Û0, Ĉu

)
with272

Ĉu =
(
Γ−1
pr + σ−2

u I
)−1

273

Û0 = Ĉu

(
Γ−1
pr w + σ−2

u U0

)
274

5. Draw σ−2
w (i) |w, w0 ∼ Γ

(
k̂w, β̂w

)
with275

k̂w = kw + nt
2276

β̂w =
∥w−w0∥22

2 + βw277

6. go to step 2 and repeat until a sufficiently large sample is collected after the burn-in phase.278

In practice the initial values given to J are assigned arbitrarily. However, as the algorithm is iterative, these279

parameters are updated in the loop and their final values does not depend on their arbitrary initial value.280

The Markov chain needs a ”heating” stage to reach the stationary target p.d.f; this stage is the so-called281

burn-in phase, in which the samples are not yet drawn from the target probability distribution. Thus, the282

first few samples are not taken into account when estimating unknown parameters (ie, w, w0, σ2
η, σ2

w (i))283

of the inference. The estimate of these unknown is made by calculating the average for each unknown284

parameter without the samples drawn in the burn-in stage. The convergence of a Markov chain can be285

roughly verified by inspecting its trajectory.286
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4.3. Sparse Bayesian learning via Gibbs sampling for impact-force identification287

From the Bayesian point of view, Eq.(11) is equivalent to the maximum a posteriori method for identifying288

w, considering that η is a normal random vector and w has a Laplacian a priori distribution. For solving289

Eq.(11) many approaches have recently been proposed [28, 32, 33, 49]. It is proposed, here, a novel Gibbs290

sampling based sparse Bayesian learning (SBL) method in order to solve Eq.(11).291

As mentionned above, for real systems the matrix A can be polluted by applying posterior noise on the292

matrix G in order to take into account globally and non-parametrically the various physical perturbations,293

modeling errors as well as material and geometrical variability. Thus, matrix A can be expressed by A =294

(G+ δG)B.295

To solve the problem defined in Eq.(8) or Eq.(11), consider the following Bayesian model :296

1. the likelihood function is297

s|w, σ2
η ∼ N

(
Aw, σ2

ηI
)
,298

2. the prior informations are modeled by:299

(a) w|σ2
w ∼ N (0,Γpr)300

(b) σ2
w (i) ∼ IG (kw, βw)301

(c) π
(
σ2
η

)
∝ 1302

where Γpr = diag
(
σ2
w (i)

)
, σ2

w =
[
σ2
w (1) , σ2

w (2) , · · · , σ2
w (n)

]
. The sparsity of w relies heavily in the303

sparsity of σ2
w. We consider the inverse gamma prior for σ2

w (i) because it is known that σ2
w is sparse and304

the inverse gamma prior promotes sparsity in the estimate of σ2
w, when βw is small [28, 49]. No a priori305

information on noise σ2
η is available, that is why its prior distribution, π

(
σ2
η

)
, is assumed to be uniform. So,306

conditional distributions can readily be calculated :307

− the joint posterior pdf:

π
(
w, σ2

w, σ
2
η|s, kw, βw

)
= π

(
s|w, σ2

η

)
π
(
w|σ2

w

)
π
(
σ2
w|kw, βw

)
− the posterior pdf:

π
(
w|s, σ2

w, σ
2
η, kw, βw

)
= π

(
s|w, σ2

η

)
π
(
w|σ2

w

)
∝ e−

1
2((w−µ)tΣ−1(w−µ))

where Σ =
((

σ2
η

)−1
ATA+ Γ−1

pr

)−1
and µ =

(
σ2
η

)−1
ΣAT s308

− updating the noise:309

σ2
η|s,w, kw, βw ∼ IG

(
m

2
− 1,

∥s−Aw∥22
2

)
− updating the variance:

σ2
w (i) |s,w, kw, βw ∼ IG

(
kw +

1

2
, βw +

w2
i

2

)
11



Note (.)T represent transpose operation. Using these relationships, we can derive the Gibbs sampling310

algorithm as follow :311

− Algorithm 2312

Initialize w, kw and βw313

Perform the following steps at the t-th iteration :314

1. Draw
(
σ2
w (i)

)t |s,w(t−1), kw, βw ∼ IG

(
kw + 1

2 , βw +

(
w

(t−1)
i

)2

2

)
with i = 1, . . . , n.315

2. Draw
(
σ2
η

)t |s,w(t−1), kw, βw ∼ IG
(
m
2 − 1,

∥s−Aw(t−1)∥22
2

)
316

3. Draw (w)t |s,
(
σ2
w

)t
,
(
σ2
η

)t
, kw, βw ∼ N

(
µt,Σt

)
317

where318

Σt =

[((
σ2
η

)−1
)t

ATA+
(
Γ−1
pr

)t]−1

319

Σt = (Γpr)
t − (Γpr)

tAT
((

σ2
η

)t
I+A (Γpr)

tAT
)−1

A (Γpr)
t

320

and321

µt =
((

σ2
η

)−1
)t

ΣtAT s322

µt = (Γpr)
tAT

((
σ2
η

)t
I+A (Γpr)

tAT
)−1

s323

4. go to step 1 and repeat until a sufficiently large sample is collected after the burn-in phase.324

We recommend CoSaMP developped by Needell and al. [50] in order to obtain the initial estimate of w.325

CoSaMP requires the knowledge of the level of sparsity of w, that is to say, the number of non-zeros elements326

in w (i.e r), which is unknown a priori in most applications. Since r is unknown, we simply suggest to set327

it to m/2.328

An affine transformation of a normal random vector z can be used to generate the normal random vector329

(w)t :330

(w)t = µt + (ϕ)tz331

where332

z ∼ N (0, I)333

and334

(ϕ)t
(
(ϕ)t

)T
= Σt.335

Conventionally,
(
(ϕ)t

)
can be obtain by the Cholesky decomposition. However, the decomposition of336

Cholesky is of a complexity of O
(
n3
)

[28, 49], and so it is not suitable for large-scale applications. In-337

stead, we illustrate an efficient way to generate (w)t as follows.338

Consider z1 and z2 two independent normal random vectors of dimensions m and n, respectively. Then :339

z3 =
((

σ2
η

)t)− 1
2
AT z1 +

(
(Γpr)

t)− 1
2 z2 (20)
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is a normal random vector with 0 as mean and
(
Σt
)−1 as matrix of covariance. The matrix vector product340

AT z1 determine the complexity of Eq.(20). Next, it can be verify that341

(w)t = µt +Σtz3 (21)

is a normal random vector where µt is mean and Σt matrix of covariance . Using these precedent formulas342

Σt = (Γpr)
t − (Γpr)

tAT
((

σ2
η

)t
I+A (Γpr)

tAT
)−1

A (Γpr)
t

343

and344

µt = (Γpr)
tAT

((
σ2
η

)t
I+A (Γpr)

tAT
)−1

s345

Eq.(21) can be simplify as follow :346

(w)t = (Γpr)
t z3 − (Γpr)

tAT
((

σ2
η

)t
I+A (Γpr)

tAT
)−1

E (22)

with E = s−A (Γpr)
t z3.347

Conjugate gradient (CG) method can be used to compute
((

σ2
η

)t
I+A (Γpr)

tAT
)−1

E .348

Thus, we can identify the desired impact-force F through Eq.(5). Algorithm 2 being a Markov chain, it349

needs a burn-in phase to reach the stationary target p.d.f: the first few samples are not taken into account350

to estimate the pdf. The estimate of the unknowns is done by calculating the average for each unknown351

parameter. The convergence of a Markov chain can be roughly verified by inspecting its trajectory, or352

more reliably by several repetition of simulated Markov chains that should converge to the same probability353

distribution.354

5. Numerical simulations355

The objectives of this section are twofold: firstly the Bayesian probabilistic method is used and its capacity356

to identify a force that may be identically equal to zero is assessed, and secondly the difficulties are identified357

and highlighted. These objectives will be illustrated by testing Algorithms 1 and 2.358

A pinned-pinned beam is studied to illustrate the identification process proposed in this paper. Two cases359

are analyzed: in the first application, the beam is analytically modeled whereas in the second application a360

finite element model of the beam is used. The beam is made of a homogeneous linear elastic material having361

a uniform rectangular cross section. The geometrical characteristics of the beam are shown in Fig. 2 below.362

Forces and moments can be applied to the beam: in the following, an action will denote either a force or a363

moment. All the actions applied in the following are proportional to:364

f(t) = f0t
αe−βt (23)

where in example 1 f0 = 2.1015 N/s6, α = 6 and β = 300 s−1, and f0 = 2.1019 N/s6, α = 6 and β = 1000 s−1365

in example 2. In order to vary the actions applied, the force reconstructed by the regularization of Tihonov366

has for parameters : f0 = 3.1011 N/s6, α = 3 and β = 1300 s−1 . This function is depicted in Fig.1.367
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An action that is not identically equal to zero will be referred to a non-zero action (NZA); an action that368

identically equals zero is an identically zero action (IZA). A delay may be introduced in the action to test369

its influence on the force identification.370

To validate the quality of the identification of the NZA, a relative error between the actual action
(
Atrue

)
371

and the identified action
(
Aid
)

is used:372

ENZA (%) = 100× ∥Atrue −Aid∥2
∥Atrue∥2

(24)

For IZA, the error is defined as follows:373

EIZA (%) = 100× ∥Aid∥2
∥ANZA∥2

(25)

The noise, η, is Gaussian with zero mean and standard deviation proportional to the maximum amplitude374

of the response. The standard deviation is defined in each of the applications below. The total number of375

iterations is 10,500. The number of iterations that constitute the burn-in phase is 500: the 500 samples376

drawn in this phase are not taken into account.377

It is important to remember the importance of identifying a null action. The objective of this manuscript is378

to locate the impact zones through the reconstruction of the impact forces that the structure has undergone.379

For a finite element model such as ours, assuming priori that the load to be identified is distributed over all380

the nodes of the studied structure, one eliminates the problem of localization. Thus, where the identified381

load will be (almost) zero, we can then conclude that there was no loading applied: it is then possible to382

locate the loading zone posteriori. The quality of the result is therefore directly related to the ability of the383

methods used to identify a constantly effort equal to zero and to simultaneously identify multiple actions.384

Figure 1: Shape of the actions

Length L (m) Width w (m) Thickness h (m) E (Pa) ρ
(
kg.m−3

)
modal damping ξn

1 5.10−3 5.10−3 7, 06.1010 2660 5.10−3

Figure 2: Characteristics of the beam
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5.1. Single force identification385

Although the method can be applied in general to any elastic structure for which the matrix G in Eq.(4)386

is available, the two Gibbs’s algorithms will be tested on a planar beam having a symmetric section and387

loaded orthogonally to its mean fiber, in its plane of symmetry. Fig.(3) depicts the considered beam which388

is assumed to be made from a homogeneous elastic linear material and having a uniform cross section. The389

beam section is assumed to be rectangular. This enables to derive simple analytical time transfer functions390

between any excitation point where a transverse force f (xi, t) is applied and any response point where the391

longitudinal normal strain s (xj, t) is assumed to be measured. The measurement point is assumed to be392

located on the upper beam fiber where a strain gauge sensor is placed.393

It is straightforward to derive for the simply supported beam considered here that the Toeplitz like matrix394

G (xi,xj) giving the discrete time response in terms of longitudinal axial strain of the upper fiber s as395

function of the discrete force vector F according to Eq.(3), writes :396

G (xi,xj) =
π2h

ρAL3

Nmodes∑
n=1

n2 sin
(nπxi

L

)
sin
(nπxj

L

)
g (wn, ξn, (k − l)∆t) (26)

with g (wn, ξn, (k − l)∆T ) = 0 if k ≺ l, and397

g (wn, ξn, (k − l)∆t) =
∆t exp (−δnwn(k − l)∆t)

wn

√
1− ξ2n

sin
(
wn

√
1− ξ2n(k − l)∆t

)
if k ≥ l (27)

and the rotational frequencies are398

wn =
n2π2h

2L2

√
E

3ρ
(28)

where k, l ∈ 1, 2, · · · , Nt, E is the Young’s modulus, ρ the density, h the beam thickness, L the beam length,399

ξn the modal damping associated to mode number n, ∆t the time step and Nmodes the total number of400

modes selected owing to modal truncation. Nmodes is determined from a convergence study or can be401

estimated by considering the highest frequency contained in the impact signal. The time step is chosen402

in order to satisfy Shannon sampling condition with regards to the maximum frequency contained in the403

excitation, even if this condition is not necessary.404

In this first application, the identification of a single force is considered. The force is applied at xi = L/3 and405

the measurement is carried out at xj = L/2. The reconstruction will be done on the interval [0 0.1]s with 256406

points and the chosen time step value was ∆t = 3.90 10−4 s.The five first frequencies of the pinned-pinned407

beam are: f1 = 11, 68 Hz, f2 = 46, 72 Hz,f3 = 105, 1 Hz, f4 = 186, 9 Hz and f5 = 292 Hz. The time step was408

fixed so as to satisfy Shannon’s sampling condition which is here equivalent to ∆t ≺ ∆tmax = 1.7123× 10−3409

s, where ∆tmax = 1/(2f5). The applied force spectrum is taken with a maximum frequency which is smaller410

than f5.411

The results provided by Algorithm 1 are plotted in Figs. 4 to 6. The values to initialize algorithm 1 are412

J =
{
U0 = [0], σ2

u = 100, kw = 10, βw = 15, kη = 10, βη = 0.1
}

. Three noise standard deviations were tested:413
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0.01 %, 0.1%, and 1% of the response maximum amplitude.414

Among these results, only those of Fig. 4 are excellent even if those of Fig. 5, affected by parasitic415

oscillations, are still acceptable. Note that the delay does not really improve the reconstruction: for a given416

figure, all errors are almost the same whatever the delay. This means that Algorithm 1 is suitable for noise417

low level.418

Algorithm 2, initialized with kw = 1 and βw = 10−5, was also tested with noise standard deviation equal419

to 1 % (Fig.7(a) and Fig.7(b)) and 2 % (Fig.7(c) and Fig.7(d)) of the response maximum amplitude. The420

identified forces are in a very good agreement with the initial force.421

Note also that the delay in signal start contributed to improve slightly the results.422

Thus, Algorithm 2 appears to be more effective compared to Algorithm 1. Indeed, the results obtained are423

excellent until a noise level about 2 %, which highlights its robustness with respect to Algorithm 1. So, in424

the following, Algorithm 2 is used to identify all the actions.425

Figure 3: A pinned-pinned beam

(a) (b)

Figure 4: Force identified superimposed to the true force with a noise standard deviation equal to 0.01 %
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(a) (b)

Figure 5: Force identified superimposed to the true force with a noise standard deviation equal to 0.1 %

(a) (b)

Figure 6: Force identified superimposed to the true force with a noise standard deviation equal to 1 %
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(a) (b)

(c) (d)

Figure 7: Identified force (red solid line) - Actual force (black dotted line)

5.2. Multiple-force identification426

The pinned-pinned beam is discretized in ne Bernoulli beam finite elements and then has 2× ne degrees-of-427

freedom (dof): the dofs are related to translations and rotations. An action is applied along dof iF direction,428

and a direct problem is solved: then some dofs are numerically measured. These measurements are spoilt429

by a random noise whose standard deviation equals to 2 % of the response maximum. The forces along dof430

iF and along another dof are identified.431

The objective is then two-fold: testing the ability to identify two actions, and to assess the identification432

of an identically zero action (IZA). Several cases will be addressed depending on the nature of the action433

(force or moment) and the measurements (number, translation or rotation).434

5.2.1. Identically zero action identification435

The beam is discretized in four elements (see Fig.8); the non zero action (NZA) is applied along one dof436

(translation or rotation) and must be identified; an IZA along another dof (translation or rotation) is437
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case 1 2 3 4 5 6 7 8 9 10
measured dofs 2 & 4 4 & 6 2 & 6 3 & 5 5 & 7 3 & 7 1 & 2 1 & 4 2 & 3 2 & 5

Table 1: Measurement case list

action pair number 1 2 3 4 5
IZA dof 2 1 5 4 4
NZA dof 4 4 4 5 2

Table 2: List of the dofs related to the action pairs to be identified

identified as well.438

Several measurements were considered. They are listed in Table 1. Similarly several action pairs were439

identified: they are listed in Table 2. Identified forces F2 and F4 (force pair 1) are plotted in figure 9: the440

dof responses related to case 1 were used. The NZA is very well identified. Algorithm 2 is also efficient to441

identify IZA: the maximum of F2 is about 25,000 times smaller than the maximum of F4. So, compared to442

F4, F2 may be considered as an IZA.443

To have an opinion on the value given by the discrepancies defined in Eqs. (24-25), the discrepancy of both444

forces plotted in figure 9 is equal to EF2 = 9, 09×10−4% and EF4 = 3, 36% respectively. All the discrepancies445

are plotted in figure 10 in order to check the influence of the measurements (position and nature) on the446

results.447

Figure 8: nodal action and dof of a 4-finite element discretized beam
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(a) (b)

Figure 9: Identified force along (a) dof 2 (b) dof 4

(a) (b)

Figure 10: (a) IZA discrepancy (b) NZA discrepancy

Discussion:448

Figure 10 shows the different discrepancies between the actual actions and the identified actions for different449

cases listed in Tables 1 and 2. All these results are excellent.450

For the NZA (Fig.10 (b)), action pairs 1, 2, and 3 associated with measurement 2, have the highest discrep-451

ancies (about 4 %), which is very satisfactory. Figure 10 (a) shows that the results are also very satisfactory452

for IZA: the highest discrepancy is about 0.02 % and concerns action pair 4 associated with measurement453

4. These results (Figure 10) are due to a good estimate of regularization parameters (σ2
w, σ2

η) that are454

supposed to give a good reconstruction of the actions if they are well estimated. Also, note that a rapid con-455
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vergence of the identification algorithm is related to the initialization of this algorithm and a good estimate456

of regularization parameters depends on the number of iterations. The parameter of interest (the actions)457

and the variance σ2
w are the only parameters to be initialized. The variance σ2

w is initialized via βw and kw458

from its prior distribution. By choosing values such as βw be as low as possible (kw = 2, βw = 10−10 for459

example) and a large number of iterations (about 20,000), the regularization parameters are well estimated460

and therefore the actions are well identified.461

The quality of the results may be due to three main factors. First how to model the data and the problem,462

second, the method used to solve it, and third, obtaining a good estimate of regularization parameters.463

The difficulty in the Bayesian approach lies in its prior distribution that naturally imposes an intrinsic464

regularization: a prior well controlled favors a satisfactory regularized solution. A good modelling of this465

prior is therefore of capital importance. As it is mentioned in [19], this prior information can not be modeled466

exactly: as already mentioned, identifying actions in the CS context enables a better model of the prior467

information. The quantity of interest is reconstructed through its sparse representation which follows a468

normal Gaussian distribution. Algorithm 2 uses the Gibbs sampler method, which is very well adapted to469

identify forces because the laws of probability involved in this algorithm are usual, so samples can be easily470

drawn.471

In the deterministic approach, the reconstruction of actions is much more difficult when at least two actions472

must be identified [51]. This difficulty originates in the choice of the regularization parameter which is473

determined by classical methods such as the L-curve [51]. Indeed, when there are several forces to identify,474

the number of the L-curve corners increases [51]: estimating the regularization parameter is then difficult.475

Thus, it is not easy to do a good choice for the regularization parameter. In the Bayesian formulation, reg-476

ularization parameters (σ2
w and σ2

η) are variable, so they are adaptive. They are determined by an iterative477

process through Gibbs sampling. As a consequence, the regularization parameters are improved gradually478

through the MCMC process. Thus, the higher the number of iterations, the better the estimate of the479

regularization parameters and therefore the quality of identification.480

Figure 10 also shows that it is difficult to predict the benefit of a measurement case to another. Overall,481

the identification is always satisfactory.482

5.2.2. Identification of two forces483

Two forces were applied along dof 2 (F2) and dof 4 (F4). They are identical and proportional to figure 1.484

The identification is achieved with the measurement cases listed in Table 1. The discrepancies are shown in485

Figure 11. Measurement 2 associated with force F4 has a discrepancy of the order of 4 % and discrepancy486

is about 3 % for all the other cases. Also, note that measurement 10 leads to both identified forces closest487

to the initial forces.488

The results given in Fig.12(a) are obtained with measurement case 10. Fig. 12 illustrates the process of489

reconstruction of both NZA. The histograms of the identified forces and the regularization parameters (σ2
w490
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and σ2
η) are plotted in Figs 12 (b) to (d) in order to highlight the convergence of the MCMC. These histograms491

are obtained with samples drawn after the burn-in phase. The figures represent only one component of vector492

F (the 30-th component was taken arbitrarily) and one component of vector σ2
w (the first component was493

taken arbitrarily). The histogram of F (30) looks very like to the Gaussian distribution: so it has converged.494

The same conclusion is reached for σ2
η and σ2

w(1): both histograms converged to the gamma distribution.495

Indeed Fig. 12(d) shows a histogram which looks like to an exponential distribution: it is known that the496

exponential distribution is a gamma distribution with a shape parameter equal to 1.497

To test the robustness of the convergence of the Markov Chain, we doubled the number of points (samples).498

The results obtained with 512 points per force are illustrated on the figure.Thus, all of these histograms give499

us a good sign that the sampling algorithm has converged.500

Figure 11: NZA discrepancy for both forces: F2; F4
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(a) (b)

(c) (d)

Figure 12: identification NZA and Histograms
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(a) (b)

(c) (d)

Figure 13: identification NZA and Histograms

5.2.3. Identification of pressure501

A uniform pressure, p(t), is applied on the third element: the shape of the pressure is still given by Fig.502

1. The pressure is projected on the finite element model dofs, so it is transformed in four actions: forces503

F4 = F6 = p Le/2 and moments M5 = −M7 = p L2
e/12, where Le is the length of a finite element. The504

measurements of ν2, ν4, ν5, and ν6 were used to identify the 4 actions. Indeed, experimentally it is much505

more easy to measure translations than rotations.506

Fig.14 shows that the identified forces are in a very good agreement with the initial force (2.36% for F4507

and 3.26% for F6). However the moments are not satisfactorily identified since the discrepancies are about508

78.29% for M5 and 94.56% for M7.509

This moment identifcation problem is certainly due to the difference in nature between force and moment510

that makes the simultaneous identification difficult.511

However, the work provided by the pressure is mainly reflected in the work provided by the forces: the work512

of the moments is negligible as shown in figure 15. Consequently, this wrong identification of the moments513

would not have a significant incidence on a design of the beam: it is particularly true when the number of514
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finite element increases. So, it is not necessary to identify the moments. In the following all the moments515

will be supposed to be IZA and won’t be identified: this procedure will be referred as “under-identification”.516

The results are satisfactory as a discrepancy of 3.5 % (resp. 3.42 %) is obtained for F4 (resp. F6). It must517

be emphasized that if the responses are evaluated with the identified actions, they are very close to the518

actual responses.519

(a) (b)

(c) (d)

Figure 14: Identified actions: (a) F4 (b) F6 (c) M5 (d) M7
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Figure 15: Work provided by the forces (solid lines) and the moments (dotted lines)

5.2.4. Identification of the force location520

In this subsection, the purpose is to achieve the location through the identification of multiple forces. So,521

impact identification involves both force localization and time history reconstruction. The structure is522

meshed and at each point of the mesh the force is identified: if, at a node of the mesh the force is almost523

equal to zero (IZA) then it is considered that no force is applied at this point. Thus, the location involves524

to identify both NZA and IZA: the forces are located at the points of the mesh where the identified force is525

not equal to zero. Obviously a coarse mesh leads to a coarse estimation of the force location and then there526

is a trade-off between accuracy and numerical cost.527

All the dofs can be considered but it turns out that the results were much better when only translations528

were used: this simplification is more and more efficient when the number of nodes increases.529

The beam is now divided in 7 elements (see Fig. 16). A pressure is applied on the second and the fifth ones:530

that is forces are applied along translations 2, 4, 8 and 10, and moments are applied along rotations 3, 5, 9531

and 11. As explained previously, the forces are identified but the moments are assumed to be equal to zero.532

Also, translations ν2, ν4, ν6, ν8, ν10, and ν12 are measured to identify the forces.533

The shape of pressure p1 (t) on the second element is represented in Fig. 1, whereas pressure p2 (t) applied534

on the fifth element is equal to zero for a period of time and then equal to a sine signal (see 17(d)).535

Note that the accuracy may depend on the size of the mesh, mainly when a distributed force has to be536

identified as the distributed force is replaced with point forces.537

The results are illustrated in Fig. 17. The identification of the NZA is satisfactory. Indeed, the discrepancy538

between the real forces and the identified forces is 3.7 % for F2, 3.7 % for F4, 27.4 % for F8, and 28.2%539

for F10. The large discrepancies observed with forces F8 and F10 come from the very end of the signal. A540

boundary effect could explain this feature. Indeed, the procedure identifies one large vector in which all the541

vectors are gathered. So the procedure must identify the large discontinuity between F8(nt), and M9(1).542

Similarly there is a large discontinuity between F10(nt) and M11(1). It turns out that such discontinuities543
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are difficult to identify. However, it may be considered that F8 and F10 are well identified except at the very544

end of the signal.545

Identification of forces which are supposed to be identically zero is very satisfactory: F6 and F12 can be546

considered identically zero actions and then, dof 6 and 12 are not in the action location.547

Thus, the results show that the Bayesian approach seems to be adapted to locate the action.548

The main drawbacks of the procedure is the number of sensors required to measure displacements: 6 sensors549

were used for identifying 6 forces. However, the CS is claimed to be efficient even when the number of550

sensors is less than the number of actions. So the forces were identified with only 4 measurements: ν2, ν4,551

ν8, and ν10.552

The results plotted in figure 18 are satisfactory and the same conclusions as before can be reached.553

Figure 16: Dofs of a 7-finite element discretized beam
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(a) (b)

(c) (d)

(e) (f)

Figure 17: True force (dotted line) and identified force (solid line) (a) F2, (b) F4, (c) F6, (d) F8, (e) F10, (f) F12
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(a) (b)

(c) (d)

(e) (f)

Figure 18: True force (dotted line) and identified force (solid line) (a) F2, (b) F4, (c) F6, (d) F8, (e) F10, (f) F12
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case 1 2 3 4 5 6 7 8 9 10
measured dofs 2 & 4 4 & 6 1 & 4 4 & 5 2 & 6 1 & 2 2 & 3 2 & 5 2 & 4 & 6 all

Table 3: Measurement case list

action pair number 1 2 3 4
IZA dof 2 1 5 4
NZA dof 4 4 4 5

Table 4: List of the dofs related to the action pairs to be identified

5.3. conclusions554

A Bayesian method for multiple-force reconstruction has been proposed, discussed and validated on numer-555

ical examples. It was shown that identifying the signals in a basis where they are sparse is much robust556

with respect of the noise level.557

In the numerical example, the identification of forces and moments applied on a beam was discussed. To558

improve the force identification problem, an under-identification was performed: the moments are supposed559

to be equal to zero. Finally, it was demonstrated it is possible to find the force location by identifying560

accurately an identically zero action from the identification of all the forces. The results obtained were561

conclusive. The possibility to identify actions with less sensors than forces was also discussed.562

It is noted that the Bayesian approach has several advantages. First, the priori information in the form of563

a probability density function imposes an intrinsic regularization. Second, the Bayesian approach provides564

a rigorous probabilistic framework that takes into account all possible sources of errors (noise measurement565

and modeling error). Finally, it proposes the solution of the inverse problem in the posteriori probability566

density form from which drawings can be made. One of the key points that makes this approach feasible is567

its implementation using MCMC methods.568

5.4. Multi-forces identification by Tikhonov regularization569

In order to better control the degrees of freedom influencing the quality of reconstruction, Table 1 and 2570

have been slightly modified. Thus, we consider the tables 3 and 4 in the rest of the manuscript. Unless571

specified, the beam in 8 is considered in all that follows. Several measurements were considered. They are572

listed in Table 3. Similarly several action pairs were identified: they are listed in table 4.573
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5.4.1. Identically zero action identification574

(a) (b)

Figure 19: Identified force along (a) dof 2 (b) dof 4

Identified forces F2 and F4 (force pair 1) are plotted in figure 19: the dof responses related to case 1 were575

used. The criterion to assess the discrepancy between the identified action (Aid) and the true action (Atr)576

for ANN ( F4 for example ) is rewritten :577

D24(F4) =
∥F id

4 − F tr
4 ∥

∥F tr
4 ∥

× 100 (29)

578

In order to better appreciate discrepancy of IZA, a new criterion is proposed for the IZA:579

D0
24(F2) =

1

nt

∥F id
2 ∥

max(∥F tr
4 ∥)

(30)

In this latter expression max(∥F tr
4 ∥) is a kind of scaling factor. However, if one action is a force and the580

other one is a moment, then D0
ij has a unity. That is why it is not very obvious to compare the discrepancies581

between different IZAs. To make an opinion on these discrepancies, the discrepancy of the forces plotted in582

figure 19 is equal to D0
24(F2) = 0.2 and D24(F4) = 8.95 % respectively. All the discrepancies are plotted in583

figure 20 in order to check the influence of the measurements (position and nature) on the results.584

585
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(a) (b)

Figure 20: (a) IZA discrepancy (b) NZA discrepancy vs. the measurement cases for the different action pairs; pair 1: ’o’; pair
2: ’+’; pair 3: ’*’; pair 4: ’x’

Discussion:586

− Regularization parameter :587

The worst configuration turned out to be for identifying an IZA along the translation at mid-span and588

a NZA along the rotation at mid-span for measurement case 8. These actions are depicted in figure589

21. It is clear that a large spurious oscillation spoils the identified actions: the identification process590

does not provide a good result.591

(a) (b)

Figure 21: Identified action along (a) dof 5 (M5) (b) dof 4 (F4) for measurement case 8.

This is due to a bad estimation of the regularisation parameter by the GCV method. Indeed, by using592

the regularization parameter given by the L-curve criterion, the results are excellent: the discrepancy593

of the forces is equal to D0
25(F4) = 0.4 and D25(M5) = 2.7 % respectively. This was observed for each594

bad result: usually, the GCV criterion gave the best estimation of the regularization parameter except595
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in some cases; in that case, the one given by the L-curve provides a quite good result, that is with a596

discrepancy less than 15 % for the NZA.597

The choice of the regularization parameter is much difficult when two actions have to be identified598

rather than one. Indeed, if the L-curve criterion, the GCV criterion or the quasi-optimality crite-599

rion seem to be suitable for a one load identification it is not always the case for the multiple action600

identification. So, a maximum of curvature is seek for the L-curve criterion. However, as shown in601

figure 22(a), several corners arise and the best choice is not always the maximum curvature corner.602

It is similar for the GCV and the quasi-optimality criteria where a minimum is sought: several local603

minima are found (see figures 22(b) and 22(c)) and the minimum-minimorum is not always a good604

choice. That is an additional difficulty compared to the one action identification: in general, the605

number of corners or minima raises with the number of actions to be identified. So the advice is to606

combine the three criteria to make an opinion on the “best” choice, as already mentioned in [11]. It is607

also of interest to mention the poor results given by the quasi-optimality criterion: in almost all the608

cases, it provides the worst choice, and it leads quite often to very poor identified actions.609

610
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(a) (b)

(c)

Figure 22: Regularization parameter criterion: (a) L-curve, (b) GCV, (c) quasi-optimality

− Measurements :611

The results plotted in figure 20 did not show any influence on the location and the nature (translation612

or rotation) of the measured dofs, as far as two dofs are used.613

Case 9 requires to measure the three translations (dofs 2, 4 and 6) but the results are not much better614

than case 5 where dofs 2 and 6 are measured. It is probably a consequence of the symmetry of the615

loading. However, a case involving a force acting along dof 2 only (not presented here) showed that a616

third measured dof does not improve significantly the identification.617

All the simulations showed that the best case is when all the dof are measured: this is in agreement618

with the study on the sensor location and number [15, 17], and this is expected as more information is619

used. This may be explained by checking the singular values of the transfer function, as explained in620

[23]. Indeed, when 2 or even with 3 dofs are used, the inverse problem may be not only ill-posed but621

also rank deficient. This is the case when case 2 of measurement points is used. Figure 23(a) shows a622
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large gap between the first generalized singular value and the next one: so the first singular value is623

less than the computer precision. On the contrary, when all the dofs are used (case 10) the problem624

is not rank-deficient: the lower singular value is approximately 10−3 and the singular value evolution625

does not show any large gap (see figure 23(b)). Case 10 is not the only case for which the rank is626

full: this is the case as soon as a measurement is done along each action (e.g. measurement case 1 for627

action pair 1). However, it was remarked that case 10 corresponds to the best conditioned case: in628

that specific case the regularization is even not needed as the least-square solution corresponds to a629

very good solution.630

631

(a) (b)

Figure 23: Generalized singular values: (a) measurement case 1, (b) measurement case 10

5.4.2. Two forces ANN632

Two forces were applied along dof 2 (F2) and dof 4 (F4). They are identical but a delay is introduced in633

force F2 (see figure 24).634

The errors were evaluated for the different measurement cases: the results are plotted in figure 25 for635

measurement case 1. No specific dof seems to be better than others. It was not expected that the error may636

be different for F2 and F4, for the same case: cases 4 and 8 are even better than case 10 (all the dofs are637

used) to identify F2, but the error on F4 is 4 time larger. The only case with low errors for both identified638

forces is case 10: once more, the redundancy helps.639
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(a) (b)

Figure 24: Actual forces (dotted line) and identified forces (solid line) applied along (a) dof 4 and (b) dof 2

Figure 25: NZA discrepancy vs. the measurement cases for both forces: F2: ’o’; F4: ’+’

5.4.3. Pressure640

The pressure is projected on the finite element model dofs, so it is transformed in four actions: forces641

F4 = F6 = p Le/2 and moments M5 = −M7 = p L2
e/12, where Le is the length of a finite element. All the642

dof are used. Note that the regularization requires at least as measurements as identified actions, that is at643

least four measurements. Case 10 (all the dofs are measured) was used to identify the 4 actions.644

The results shown in figure 26 show that the identified forces are quite acceptable (discrepancy approximately645

30 %) whereas the moments are not satisfactory (discrepancy approximately 90 %). However it is of interest646

to be aware that much of the work provided by the pressure is related to the work of the forces: figure647

27 shows that the work of the moments is quite low compared to the work of the forces. Also, in this648

configuration the GCV was not suitable to provide the regularization parameter (see figure 28). Indeed the649

GCV is much too flat around the minimum and it turns out that the best solution was not for a minimum650

of the GCV function but for a corner of the L-curve: the latter value was in the flat part of the GCV curve.651
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(a) (b)

(c) (d)

Figure 26: Identified actions: (a) F4 (b) F6 (c) M5 (d) M7

Figure 27: Work provided by the forces (solid lines) and the moments (dotted lines)
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(a) (b)

Figure 28: Regularization parameter criterion for pressure identification: (a) L-curve, (b) GCV

5.4.4. Under-identification of the pressure652

In this section, “under-identification” means that a NZA occurred but this action is supposed to be an IZA653

and then is not identified. The idea is to deal with the pressure identification issue and then to identify654

only the forces as the moments are poorly identified and the related work is low. Further, experimentally655

it is much more easy to measure translations than rotations. So the forces that come from the projected656

pressure on the finite element dofs are identified from the translations measurements.657

The results are satisfactory as a discrepancy of 14 % (resp. 24 %) is obtained for F4 (resp. F6) that is658

even better than the previous ones whereas less measurements are used. It must be emphasized that if the659

responses are evaluated with the identified actions, they are very close to the actual responses (ie the ones660

given by the actual actions): this is observed for the response of all the dofs, even the rotations whereas661

the moments were neglected. Then from a design point of view the identified actions are really satisfactory:662

figure 29 shows that the work provided by the identified forces is quite close to the work of the actual actions.663

(a) (b)

Figure 29: True work (dotted line) and identified work (solid line) (a) of F4 and (b) F6
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5.4.5. Application on identification of the load location664

As it is possible to identify several NZA and IZA, it may be possible to locate the forces actually applied665

on a structure, without any additional effort. To address this issue, the beam of Fig. 16 is considered. A666

pressure is applied on the second and the fifth ones: that is forces are applied along translations 2, 4, 8 and667

10 and, moments are applied along rotations 3, 5, 9 and 11. As explained in the previous subsection, the668

forces are identified but the moments are assumed to be equal to zero.669

The pressure on the second element is similar to the one proposed in the last two subsections, whereas the670

pressure applied on the fifth element is equal to zero for a period of time and then equal to a sine signal671

(see figures 30(a) and 30(e) for the shapes of the pressure).672

The results are given in figure 30. As it is expected from the previous subsections, the NZA identification673

is satisfactory: the discrepancies are approximately 15 %. Similarly, the responses evaluated from the674

identified forces are very close to the true responses whereas the moments are neglected. However, the675

spurious oscillations that appear in the IZA have an amplitude much higher than observed previously: then676

from these results it is not possible de firmly decide whether F6 and F12 are an IZA. As a consequence, it677

is not obvious from these results that the third and the fifth elements are the only loaded elements.678

A calculation was performed to identify all the actions (forces and moments): the results were almost679

unchanged regarding the forces. The moments were all almost equal to zero.Then it does not seem possible680

to locate the actions with only a force identification: further work is needed to identify better an IZA, even681

when several actions have to be identified.682
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(a) (b)

(c) (d)

(e) (f)

Figure 30: True force (dotted line) and identified force (solid line) (a) F2, (b) F4, (c) F6, (d) F8, (e) F10, (f) F12

5.5. Conclusions683

Multi action identification was addressed: the inverse problem was solved with a Tikhonov regularization684

associated with a GCV criterion to find out the regularization parameter. First, this identification process685
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was assessed by testing the ability to identify an identically zero action. The results were satisfactory. It686

appears that the quality of the identification does not seem to be correlated to a specific dof (location,687

translation or rotation), but it is improved when all the possible measurements are used.688

Then several NZA were applied and the results were still satisfactory except for identifying moments.689

However, it was shown that it is possible to identify a pressure on an element as soon as it is considered as690

two identical forces located on the nodes of the element and it is assumed that the moments related to the691

pressure projected on the finite element dofs are zero. However, when several actions that are very different692

are applied on a structure, it is almost impossible to identify know whether an action is identically zero or693

non zero.694

The key point of a multiple load identification is the determination of the regularization parameter. It695

appeared that several minima occurred in the GCV function or in the quasi-optimality criterion, and the696

L-curve has several corners. All these criteria must be used, compared, and analysed in order to find out697

the optimal parameter. However, when actions of different nature must be identified (force and moment for698

example), several regularization parameters should be introduced: at least one for the force and another for699

the moments.700

Further efforts may be done to improve the identification of an identically zero force in order to be able to701

locate the forces without any additional work.702

6. Final conclusions703

The main objective of this manuscript has been to study the possibility to locate load location through704

an identification of multiple forces that act on a linear elastic structure. The Bayesian approach together705

with the so-called compressed sensing technique as well as Tikhonov regularization associated with the GCV706

criterion were the two methods used to achieve this purpose.707

The possibility to locate load location through an identification of multiple forces was based on an important708

note. It is important to note that if the structure is studied thanks to a finite element modelling, this includes709

the distributed force identification, such as a loading is transformed in some point loads (forces, moments)710

applied at the mesh nodes. Then, if it is possible to identify all the loads acting along all the degrees-of-711

freedom (dof) of the structure, the location of the loads is also identified: a force (almost) equals to zero712

must be satisfactorily identified where no force is actually applied. This remark was the central theme of713

this paper and was used to validate (or not) the results. The quality of the result is therefore directly related714

to the ability of the methods used to identify a constantly effort equal to zero and to simultaneously identify715

multiple actions.716

The results obtained by the Bayesian approach were much more eloquent than those obtained by the717

regularization of Tikhonv.718
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AppendixA. Comparison between the Bayesian approach and the classical Tikhonov regularization [45], [52]719

Consider the following linear model:720

Y = AX+E (A.1)

721

with A ∈ Rm×n a known matrix; X ∈ Rn, Y ∈ Rm and E ∈ Rm are random vectors/matrices. E is an722

additive noise. Suppose further that X and E are mutually independent Gaussian vectors with probability723

densities:724

πpr (x) ∝ exp

(
−1

2
(x− x0)

t Γpr
−1 (x− x0)

)
(A.2)

and725

πnoise (e) ∝ exp

(
−1

2
(e− e0)

t Γpr
−1 (e− e0)

)
(A.3)

With this information, Bayes’ formula provides the posterior distribution of X knowing Y:726

π (x|y) = πpr (x)πnoise (y −Ax|x) (A.4)

π (x|y) ∝ exp

(
−1

2
(x− x0)

t Γpr
−1 (x− x0)−

1

2
(e− e0)

T Γpr
−1 (e− e0)

)
(A.5)

727

If Γnoise = σ2
NI and e0 = 0 , then728

π (x|y) ∝ exp

(
−

{
φ (x)

2
+

σ−2
N

2
∥y −Ax∥22

})
(A.6)

with729

φ (x) = (x− x0)
T Γpr

−1 (x− x0) (A.7)

Therefore, if one chooses a MAP estimator, the optimization problem is equivalent to finding the minimum730

of the following criteria:731

Γ (x) =
φ (x)

2
+

σ−2
N

2
∥y −Ax∥22 (A.8)

This corresponds to Tikhonov regularization where φ(x)/2 plays the role of the stabilizer functional. The732

minimum of this criterion is given by the relation:733

x̄ =
(
Γpr

−1 +AtΓnoise
−1A

)−1 (
AtΓnoise

−1 (y − e0) + Γpr
−1x0

)
(A.9)

=
(
Γpr

−1 + σ−2
N AtA

)−1 (
σ−2
N Aty + Γpr

−1x0

)
(A.10)

AppendixB. Detailed description of the conditional pdfs in Algorithm 1734

Conditional p.d.f. of the force735

π(w |s, w0, σ−2
w (i) , σ−2

η ) ∝ π(s|w, w0, σ−2
w (i) , σ−2

η )× π(w| w0, σ−2
w (i) , σ−2

η ) (B.1)
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736

where:737

π(s | w, w0, σ−2
w (i) , σ−2

η ) = π(s|w, w0, σ−2
η ) ∝ exp−

(s−Aw)tΓ−1
noise(s−A)

2
(B.2)

π(w | w0, σ−2
w (i) , σ−2

η ) = π(w| w0, σ−2
w (i)) ∝ exp−

(w −w0)
tΓ−1

pr (w −w0)

2
(B.3)

Hence:738

π(w| w0, σ
−2
w (i) , σ−2

η , s) ∝ exp−
(s−Aw)tΓ−1

noise(s−Aw)

2
× exp−

(w −w0)
tΓ−1

pr (w −w0)

2

∝ exp−1

2
{wt(AtΓ−1

noiseA+ Γ−1
pr )w−wt(AtΓ−1

noises+ Γ−1
pr w0)

−(AtΓ−1
noises+ Γ−1

pr w0)
tw} (B.4)

∝ exp−
(w − w̄)tΓ−1

post(w − w̄)

2
(B.5)

with739

Γpost =
(
At Γ−1

noise A + Γ−1
pr

)−1 (B.6)

w̄ = Γpost (A
t Γ−1

noise s + Γ−1
pr w0) (B.7)

Conditional p.d.f. of the noise740

π(σ−2
η | w, s) ∝ π(s|w, σ−2

η )× π(σ−2
η | w)

∝ π(s−Aw|σ−2
η )× π(σ−2

η )

∝ 1

|Γnoise|1/2
exp−

(s−Aw)tΓ−1
noise(s−Aw)

2
× π(σ−2

η ) (B.8)

Where:741

Γnoise = σ2
η Int (B.9)

π(σ−2
η ) = (σ−2

η )(kη−1) exp−(βη σ−2
η ) (B.10)

|Γnoise|1/2 = ( (σ−2
η )nt )1/2 = (σ−2

η )nt/2 (B.11)

π(σ−2
η |w, s) ∝ (σ−2

η )kη−1+nt/2 exp−
(
(s−Aw)t(s−Aw)

2
+ βη

)
σ−2
η (B.12)

Hence, we have:742

σ−2
η | w, s ∼ Γ(k̂η, β̂η) (B.13)

with:743 
k̂η = kη +

nt

2

β̂η =
∥s−Aw∥22

2
+ βη

(B.14)
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Conditional p.d.f. of w0744

π(w0|w,Γpr) ∝ π(w|w0,Γpr)× π(w0)

∝ exp−
(w −w0)

tΓ−1
pr (w −w0)

2
× exp−(w0 −U0)

tC−1
u (w0 −Cu)

2

∝ exp−1

2

(
w0

tΓ−1
pr w0 −wtΓ−1

pr w0 −w0
tΓ−1

pr w
)
× exp−1

2

(
w0

tC−1
u w0 −w0

tC−1
u U0 −U0

tC−1
u w0

)
∝ exp−1

2

(
w0

t(Γ−1
pr +C−1

u )w0 −w0
t(Γ−1

pr w+C−1
u U0)U0

)
× exp−1

2

(
−U0

t(Γ−1
pr w +C−1

u U0)w0

)
(B.15)

Hence:745

π(w0 | w, Γpr) ∼ Nnt(Û0, Ĉu) (B.16)

with746

Ĉ−1
u = Γ−1

pr +C−1
u (B.17)

Û0 = Ĉu (Γ−1
pr w + C−1

u U0) (B.18)

Conditional p.d.f. of σ−2
w747

π(σ−2
w (i) | w, w0) ∝ π(w|w0, σ−2

w (i))× π(σ−2
w (i) | w0)

∝ π(w|w0, σ−2
w (i))× π(σ−2

w (i))

∝ 1

|Γpr|1/2
exp−

(w −w0)
tΓ−1

pr (w −w0)

2
× π(σ−2

w (i)) (B.19)

Where:748

Γpr = σ−2
w (i) Int (B.20)

π(σ−2
w (i)) = (σ−2

w (i))(kw−1) exp−(βw σ−2
w (i)) (B.21)

|Γpr|1/2 = ( (σ−2
w (i))nt )1/2 = (σ−2

w (i))nt/2 (B.22)

π(σ−2
w (i) |w,w0) ∝ (σ−2

w (i))kw−1+nt/2 exp−
(
∥w −w0∥22

2
+ βw

)
σ−2
w (i) (B.23)

Hence749

σ−2
w (i) | w, w0 ∼ Γ(k̂w, β̂w) (B.24)

with:750 
k̂w = kw +

nt

2

β̂w =
∥w −w0∥22

2
+ βw

(B.25)

751

752
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AppendixC. Identification of multiple forces753

When only one force, F, has to be identified, the problem to be solved is:754

s = GF+ η (a)

whereas in the case of multiple forces, it is:755

s = G1F1 +G2F2 + . . .+GnFn + η = HF̃+ η (b)

with : H = [G1 G2 . . . Gn] and F̃ = [F1 F2 . . . Fn]
t

756

Equations (a) and (b) are similar. Thus, identifying n forces F1, F2, …, Fn is equivalent to identify one757

force F̃: the latter is then divided in n subvectors, which are the n forces.758
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