
HAL Id: hal-01522248
https://hal.science/hal-01522248v1

Submitted on 13 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ICP-based pose-graph SLAM
Ellon Mendes, Pierrick Koch, Simon Lacroix

To cite this version:
Ellon Mendes, Pierrick Koch, Simon Lacroix. ICP-based pose-graph SLAM. International Symposium
on Safety, Security and Rescue Robotics (SSRR), Oct 2016, Lausanne, Switzerland. pp.195 - 200,
�10.1109/SSRR.2016.7784298�. �hal-01522248�

https://hal.science/hal-01522248v1
https://hal.archives-ouvertes.fr


ICP-Based Pose-Graph SLAM

Ellon Mendes1 and Pierrick Koch1 and Simon Lacroix1

Abstract— Odometry-like localization solutions can be built
upon Light Detection And Ranging (LIDAR) sensors, by se-
quentially registering the point clouds acquired along a robot
trajectory. Yet such solutions inherently drift over time: we
propose an approach that adds a graphical model layer on
top of such LIDAR odometry layer, using the Iterative Closest
Points (ICP) algorithm for registration. Reference frames called
keyframes are defined along the robot trajectory, and ICP
results are used to build a pose graph, that in turn is used
to solve an optimization problem that provides updates for the
keyframes upon loop closing, enabling the correction of the path
of the robot and of the map of the environment. We present in
details the configuration used to register data from the Velodyne
High Definition LIDAR (HDL), and a strategy to build local
maps upon which current frames are registered, either when
discovering new areas or revisiting previously mapped areas.
Experiments show that it is possible to build the graph using
data from ICP and that the loop closings in the graph level
reduces the overall drift of the system.

I. INTRODUCTION

There is a wide corpus on the use of positioning techniques
in robotics that exploit on-board sources of data as input
to localization systems. If LIDAR sensors, like the Velo-
dyne HDL sensors, have primarily been used for obstacle
detection, they have rapidly been exploited for localization,
using scan registration algorithms. These algorithms find the
transformation that best aligns the points of one point cloud
with respect to a reference point cloud. They have been
used for several LIDAR odometry solutions, that compute the
overall robot position by integrating elementary displacement
estimates. Some solutions perform registration on the basis
of matches established between features extracted from the
scans [1], others directly exploit the scan points [2].

The main scan registration technique is the Iterative Clos-
est Points (ICP) algorithm, originally introduced in [3]. ICP
is a rather simple and modular algorithm, but numerous
variants have been developed along the years, so that se-
lecting the proper configuration and its parameters normally
requires empirical tests and experience. The designer needs
to consider the environment in which the robot evolves,
and especially the sensor being used, the amount of data to
process, how the data is organized, the measurement errors
in the data, and so on.

When properly configured, the scan registration is precise.
But as it is inherent to any odometry systems, the accumu-
lation of errors made at every registration leads to a drift of
the overall position estimate. In the absence of any prior map
of the environment, resorting to a Simultaneous Localization
and Mapping (SLAM) approach is the only way to reduce

1LAAS-CNRS, INSA, Université de Toulouse, CNRS, Toulouse, France.

t

K0 K6 K12 K18 R

x0 x6 x12 x18 GRAPH LAYER

ICP LAYER

SCAN STREAM

Fig. 1: Overview of the system, composed of two layers. Red
vertical lines exhibit the links between the layers associations (see
text for a full explanation).

this drift. A recent trend is to use probabilistic graphical
model theory to solve SLAM problems through optimization
[4]. By exploring the sparsity of the SLAM problem, it is
possible to considerably reduce the computation time needed
to converge to a solution. Also, the graphical models used to
model the optimization problem provide a powerful layer of
abstraction that helps to better understand the problem and
to design powerful solutions, like the iSAM2 algorithm [5].

The main objective of this work is to exploit scan regis-
tration algorithm and graphical model optimization to build
a ICP-based localization system for autonomous mobile
ground robots equipped with LIDAR sensors, for missions
in semi-structured environments. Besides the integration of
these two techniques, the configuration of the registration
algorithm to work with data acquired from Velodyne HDL
point clouds is precisely described.

This work has similarities with the work in [6] (a 3D
extension of the work presented in [7] for 2D) that also uses
ICP to localize the robot and achieves a global consistent
map on loop closures using graph based optimization. The
differences between this work and [6] will be detailed in the
conclusion.

II. SYSTEM OVERVIEW

This section provides an overview of the system, and
the outline for of the remainder of the paper. The diagram
shown in Fig. 1 describes an hypothetical state of the overall
system after processing some scans. It exhibits the two main
layers plus the scan stream, which is simply the history of
acquired scans. The ICP layer is composed by keyframes Ki,
and their associated scans (cloud shapes in the image), also
called keyframe scans. To each keyframe Ki is associated
a node xi in the graph layer. Some of these keyframe
scans are selected to compose local maps (blue clouds), that
are used as reference input for the ICP process. The other
keyframe scans (gray clouds) are stored, and may be later
used to compose a local map if the robot revisits this part
of the environment. The robot frame R is always expressed



with respect to the closest keyframe in the current local
map. The system does not require a complete map of the
environment, yet such a map can be computed on demand
as the concatenation of all keyframe scans.

As the robot starts, a first keyframe K0 is associated to the
first acquired scan. The associated node x0 is also created in
the graph, and a factor representing the initial robot position
with respect to the world origin is added to the graph (black
square).

In nominal mode, every time a new scan (green cloud) is
available at the current robot position R, the ICP finds the
transformation that aligns it with the current local map (green
arrow), correcting the robot position. If the overlap between
the current scan and the current local map is lower than a
threshold, a new keyframe is created – otherwise the scan
is just discarded (crossed circles in the scan stream level).
Section III depicts the ICP algorithm and how it is configured
for the Velodyne HDL scans.

When a new keyframe is created, it is initialized with the
corrected robot frame: a new frame variable is then added
as a node to the graph, as well as a factor (blue squares)
containing the transformation between the new and former
keyframes (blue arrows). Finally the local map is rebuilt by
incorporating the newest keyframe scan and removing the
furthest keyframe scan. Section IV depicts the selection of
keyframes and management of the local maps. The graph
layer and the theory behind are presented in Section VI.

When the system detects a potential loop closing between
two keyframes (not shown in Fig. 1 for simplicity), a local
map is built around the oldest between these loop closing
keyframes. Then an ICP call tries to align the scan of
the other loop closing keyframes with this local map. If
the ICP is successful, a new factor is added to the graph
between the variables associated with these loop closing
keyframes, closing a loop in the graph level. An optimization
using the graph data is then triggered (also Section VI).
The loop closing process ends with the repositioning of
keyframes using the optimization result, and local maps are
reconstructed using these new keyframe values. The robot
frame R being expressed in the closest keyframe, it is also
updated by the loop closing process. Section V presents the
details of this loop closing procedure.

The following sections present the details all these pro-
cesses, followed by Section VII with the presentation and
analyses of the results obtained, and Section VIII that con-
cludes the paper.

III. POINT CLOUD REGISTRATION

The first building block of the system is the well known
Iterative Closest Points (ICP) registration algorithm. This
section presents an overview of the ICP algorithm, followed
by the details of the ICP solution designed for this work.

A. Overview of ICP

We present the ICP algorithm according to the in-depth
review [8]. The ICP is responsible to find the transformation
that best aligns a geometric shape called reading, to another

shape called reference. This operation is known as registra-
tion. In our case, a shape S is a set of 3D points extracted
from a LIDAR scan: as it is usual for ICP implementations,
filters are applied to augment the points characteristics (e.g.
add normal vectors), or to remove points that does not bring
valuable information for the registration.

Let AP the reading set, BQ the reference set, and
AP ′,BQ′ the filtered version of the respective sets. The
registration algorithm estimates the transformation ATB that
minimizes an error function e(P,Q):

ATB = arg min
T

(e(T (AP ′),BQ′)) (1)

where T (S) is the transformation applied to a set S.
The error function is in fact computed on pairs of points

that have been associated between the input sets. The asso-
ciation is produced by a matching function, and is usually
solved by associating to each point of the reading the closest
point in the reference. For the sake of robustness, weights
can be provided by an outlier rejection function to change
the influence of the matches in the error function. Thus,
if M = match(P,Q) = {(p, q) : p ∈ P, q ∈ Q} and
W = outlier(M) = {w(p, q) : ∀(p, q) ∈ M}, the error
function is given by:

e(P,Q) =
∑

(p,q)∈M

w(p, q)d(p, q) (2)

where d(p, q) is a distance function between two points.
In practice the associations from the matching function

are not perfect, and the best estimate for ATB cannot be
found perfectly by (1). Nevertheless, the idea behind ICP is
that even with imperfect matches, minimizing the error can
provide an estimation that, in turn, provides better matches,
and so on. This leads to a iterative algorithm where each
iteration provides a intermediary transformation i+1Ti from:

i+1Ti = arg min
T

(e(T (iP ′),BQ′)) (3)

where iP ′ is the filtered cloud that is iteratively transformed
by the intermediary transformations. The final estimate is
given by the iterative composition of all intermediary trans-
formations and the initial transformation between the shapes,
that is supplied to ICP at the beginning of the registration
process. Note that the initial transformation is important,
since initial transformations that does not provide enough
good matches may cause ICP’s minimization procedure to
be trapped in a local minima.

B. Configuration of ICP
There is a wide spectrum of ICP solutions that can be

implemented by different combinations of filters and match,
outlier, and distance functions. The good choices for an
ICP solution are strongly dependent on the environment,
the computing resources, and the sensing capabilities of
the robot: assessing them requires a significant amount of
expertise. This section presents the details of the ICP solution
used in this work for mobile robots with the Velodyne HDL
64 sensor in mostly urban areas, along with the rationale
behind them.



1) Filters: The filters handle the transformation of input
scans S into filtered scans S ′. The scans acquired from the
Velodyne sensor contain a very large number of points, of
which a large part is redundant data. To reduce the compu-
tational time of ICP, a first filter is applied to subsample the
point cloud by keeping one of every N points in the scan.
This systematic sub-sampling can be used because the scan
data is somehow organized (points are stored in rows – if
not, some randomness can be used to subsample the points).
With Velodyne HDL 64 data, up to 80% to 90% of points
can be removed without loosing the environment structure.

A second filter computes the normals for each point using
Principal Component Analysis (PCA) with the K nearest-
neighbors of each point. The good number of nearest neigh-
bors depends on the resultant structure of the cloud after
applying the first filter. Normals are important scan features
for our ICP solution: they are used in the outlier rejection
and distance function, as explained in paragraphs III-B.3 and
III-B.4.

The last two filters adjust the direction of the computed
normals: one computes the observation vector that links the
sensor origin to each point in the scan, and the second one
orients the normal vector of each point so that the angle
between the observation vector and the normals are minimal.

2) Match Function: The matching function M =
match(P,Q) pairs each point of the reading shape P with
the 3 nearest neighbor points in the reference cloud Q.
The decision to match the same point more than once adds
robustness to the ICP, and 3 matches has shown to be a good
compromise.

3) Outlier Rejection: The rejection function W =
outlier(M) uses a hard outlier rejection, meaning that the
weights w(p, q) for a match are either zero or one. We
consider that even if noisy, the initial transformation is
close enough to the correct transformation. Thus matches
whose euclidean distance are greater than a threshold are
rejected (i.e. given zero weight). Matches whose point nor-
mals present angles greater than a threshold are also rejected.
This makes ICP to consider only matches between points that
belong to similar planes, and avoid matches made in cluttered
areas (e.g. vegetation), that impede a good convergence.

4) Distance Function: The distance function d(p, q) is
the distance from a point p in the reading cloud to the
plane defined by the normal of the matched point q in the
reference cloud. This is known as point-to-plane distance.
This distance function is best suited for the environments
that partly exhibit planar structures, and also handles well
multiple matches for the same reading point since the error
is minimal when all the matched points belong to the same
plane.

5) Convergence Tests: As an iterative algorithm, ICP
needs some criteria to assess the minimization conver-
gence. The main convergence test is the differential test,
where we consider the ICP converged if the translational
and rotational differences between transformation increments
drops below given thresholds. This computed difference is
normally smoothed through a few iterations for increased

TABLE I: ICP Configuration for Velodyne HDL-64

ICP elements Details

Filters Keep one point in every 20 points
Compute normals using 10 nearest neighbors
Add observation vector pointing to sensor origin
Orient normals using the observation vectors

Matching Match to 3-nearest neighbors

Rejection Remove pairs if distance is greater than 1m
Remove pairs if normal angle is greater than 60◦

Distance Use distance from the point to plane

Convergence Success if relative motions goes below 0.01m and
0.001rad.
Failure if reaches 80 iterations
Failure if transform goes beyond 0.8rad and 15m
Failure if final error is above 70m (loop closing
only)

robustness. Also, we consider that the convergence failed
if we reach a maximum number of allowed iterations or
if the relative transformation between the initial and last
computed transformation exceeds a maximum rotational and
translational threshold. For the case where ICP is used in
loop closing events, we also consider a failure if the final
error is above a given threshold (this error is the sum of the
distances d(p, q) between matched points after convergence).

The main elements of our ICP solution are summarized in
Table I.

IV. KEYFRAMES AND LOCAL MAPS

An essential prerequisite for the registration is to have
enough overlap of the observed environment in both reading
and reference scans. Otherwise not enough good matches are
found, compromising the quality of the resulting transforma-
tion.

An issue with Velodyne LIDARs (as with most LIDARs
actually) is that the produced point clouds have a spatial
resolution that drastically reduces with distance: the overlap-
ping area between two scans acquired at different positions
is sampled with very different spatial resolutions. As a
result, the precision of the computed normal between the
reading and reference scans is different, and matches can
be established on points that do not correspond to the same
scene element.

In our approach, reference clouds used by ICP are local
maps, that are the concatenation of n selected keyframe
scans. The points of these scans are expressed in the
keyframe of the local map that is the closest to the reading
scan frame. The reading frame is usually the robot frame, but
it can also be another keyframe when attempting to close a
loop.

The overlap between the new scans and the current local
map decreases as the robot moves away from the local
map. In order to always have enough overlap, the current
overlap is estimated after every ICP call, and a new local
map is composed if this estimate drops below a threshold.
The overlap estimation used is simply the ratio between the
number of matched points in the filtered reading scan after



1

2
3

4

5
6

R

1

2
3

4

5
6

7

8

R

Fig. 2: Two possibilities to build local maps: exploration (left); and
revisiting (right). The robot trajectory is represented by the dashed
line, clouds represent keyframe scans. Keyframes are identified by
numbers, and R represents the robot frame. Local maps are here
composed of 3 scans, and are expressed in the frames shown in
red. Green arrows represents the transformation from the local map
to robot frame. For clarity reading scans are not shown.

outlier rejection and the total number of points in the filtered
reading scan.

To control the local map building we use the a concept of
state: the robot may be exploring if it is moving towards a
unknown part of the environment; or it may be revisiting if
it is moving in a region that was already mapped.

In its nominal operation the robot is exploring. If the over-
lap drops below the threshold when exploring, the system
attempts to find a set of keyframes in sequence along the
robot path that would provide a good overlap. If a set is
found this means the robot is going back through the path
it was exploring, so the state changes to revisiting. If no
set is found, a new keyframe is created and initialized to
the current robot frame, with the last reading scan set as its
associated scan. Then a loop closing may be performed using
this new keyframe (more on this in Section V), and the state
is changed to revisiting if the loop closing succeeds.

When the robot is in revisiting state, attempts to compose
new local maps are also performed when the overlap drops
below the threshold, but any set of keyframes may be used
to build the local map, in opposition to the constraint in the
exploring state. If no new set is found it means the robot
started to explore the environment again, therefore a new
keyframe is created as explained before and the state changes
back to exploring. Fig. 2 shows the principle of local map
building for both system states, with local map size n = 3.

Note that no new keyframes will be added when the robot
moves in already mapped regions, this allows the number of
keyframes to scale with the size of the environment being
explored, instead of the length of the robot path, as done in
FrameSLAM [9]. Note also that when the robot starts again
to explore the environment from a region it was revisiting,
new keyframes being created during this exploration will
gradually replace the keyframes that are more distant to the
robot in the local map of the last revisited region.

The keyframes are important in the system because it is
through them that the information flows between the ICP
localization level and the pose graph level. Every time a
new keyframe is created a pose variable is added to the pose
graph, and the last computed transformation along with the

1

2
3

4

5
6

7

8

Fig. 3: Loop closing candidate selection and local map. The circle
shows the maximum distance from keyframe 8 to allow the loop
closing. Keyframes 3 and 7 are not possible candidates because they
are inside the no loop window (shown in red). Possible candidates
are keyframes 1 and 2, in green. The loop closing candidate is
keyframe 2 since it is the closest between the possible candidates.
A local map is build around it following the robot path when it first
visited the region.

estimation of its covariance is added as a constraint (factor)
in the pose graph. The keyframes are always positioned at
the poses represented by their associated pose variables in
the pose graph. Updates on these variables happens when
loop closings are performed, as explained in the following
section.

V. LOOP CLOSING

Every time a new keyframe is created the system verifies
if a loop can be closed. For this, the distances between the
newest keyframe and the other keyframes are computed, and
the candidate selection process illustrated in figure Fig. 3 is
run. We assume that the robot is a ground robot and that
the environment being explored does not contain tunnels or
bridges, thus if the robot returns to a previously visited place
along its path it should be at the same elevation as before.
The keyframe distance for loop closing verification is then
performed only in the 2D plane defined by the x and y axes
of the first keyframe.

Note that we do not consider the m most recent keyframes
as possible candidates for the loop closing. This is needed
to avoid creating small loops in the graph, favorizing the
creation of longer loops that provides a better correction of
odometry drift. This set of m keyframes is called no-loop
window, and it should be greater than the local map size.

The closest keyframe between the ones satisfying the
previous conditions is defined as the loop closing candidate.
A local map around the candidate keyframe is built, and
a loop closing ICP is performed. Besides the normal ICP
convergence tests described on Section III-B.5, the final value
for the error function is also analyzed, and the loop closing
is considered successful if it also lies below a threshold. This
is important because sometimes the initial transform is not
precise enough to ensure the overlap between the scans of the
loop closing ICP. This additional test helps to avoid closing
the loop with an incorrect transformation.

A successful loop closing ICP then adds a loop closing
constraint to the factor graph between the variables asso-
ciated to the newest keyframe and the candidate keyframe.
The optimization using the graph data can be performed,



which updates the variables in a way that the overall robot
drift along the loop is reduced. The optimization is reflected
back to the ICP level by repositioning the keyframes with
the poses in the associated graph values.

VI. POSE-GRAPH BUILDING

The second main feature of the proposed system is the use
of a pose graph to reduce the accumulated errors from ICP
odometry when a loop closing is detected. A pose graph is
a special case of a factor graph when all the variables being
estimated are robot poses along the robot trajectory, and the
factors are relative pose measurements between these poses.

Formally, a factor graph [10] is a bipartite graph G =
(F ,X , E) with factor nodes fi ∈ F and variable nodes xj ∈
X . Edges eij ∈ E always connect factor nodes and variable
nodes. The factor graph defines the factorization of a function
g(X ) as:

g(X ) =
∏
i

fi(Xi) (4)

where Xi is the set of variables xj adjacent to fi (i.e variables
connected to fi through an edge eij). Thus each factor fi is
a function of the variables Xi. The set E can be implicitly
defined by Xi and is generally omitted. An example of factor
graph can be seen in the GRAPH LAYER of Fig. 1, with
factors represented as small squares, and variables as circles.

Each factor fi encodes a measurement function hi(Xi) and
a measurement zi. When assuming Gaussian measurement
models, fi is defined as:

fi(Xi) ∝ exp
(

1

2
‖hi(Xi)− zi‖2Σ

)
(5)

with ‖e‖2Σ = eT Σ−1e being the Mahalanobis distance with
covariance matrix Σ. Then, finding the configuration for the
variable nodes X ∗ that maximizes (4) comes to solve the
nonlinear least-squares problem:

X ∗ = arg min
X

1

2

∑
i

‖hi(Xi)− zi‖2Σ (6)

In our proposed approach, each variable in the pose graph
represents a 3D pose and is associated with a keyframe of
the ICP layer, and each factor is a constraint between two
variables. Each factor encodes the following measurement
function:

h(xa, xb) = ẑab = (	xa)⊕ xb (7)

where 	 and ⊕ are respectively the inverse and composition
operators, a and b the indexes of keyframes, and xb the pose
obtained by composing xa with the transformation ẑab. The
transformation measurement zab to be used together with
h(xa, xb) in (6) is set to be an appropriate transformation
obtained from the ICP layer: it is the one computed and used
to re-localize the robot then the keyframe Kb was created
during exploration; or it is the one obtained from loop closing
ICP if the factor produces a loop in the graph.

Each factor should also be associated to a covariance
matrix Σ to be used in ‖e‖2Σ. Since the ICP only produces
transformations as outputs, the covariance matrix Σab for zab
estimated using the technique proposed on [11].

0 200 400 600

−200

0

200

x (m)

y
(m

)

Ground Truth

ICP Only

ICP + Graph

Fig. 4: Plot of final trajectories for the KITTI dataset. The visible
deformations when using ICP only is caused mostly by accumulated
angular errors, that makes the estimation drift along the z-axis. A
much smaller drift occur when using the ICP together with the pose
graph, being most visible in the regions far from the origin (right
side of the plot).

TABLE II: Thresholds Used In The System

Dataset KITTI

Local map size 3
No-loop window size 10
Overlap to create Kf 0.75
Max dist. to loop closing 15m
Max error for loop closing 5000

VII. RESULTS

The proposed system was implemented using libpoint-
matcher [12] for the scan registration in the ICP layer,
and GTSAM [13] for the optimizations in the graph layer.
Experiments were performed using the KITTI dataset [14].
Noisy odometry measurements were drawn from the ground
truth in order to provide a realistic initial transformation
to ICP when the robot explores the environment. It was
used a Gaussian noise of N (µ, σ) = N (0, 0.1 m) for each
translation component and N (0, 1 deg) for each orientation
component. Also, the scans are converted from the sensor
frame to the robot frame after filtering but before the calls
to ICP, in a way that the resulting transformations represent
robot frame displacements, instead of sensor frame displace-
ments. The 2D plots of the estimated trajectory can be seen
in Fig. 4, and the thresholds used for each dataset are shown
in Table II.

For the long run of KITTI dataset, initial orientation error
is the main reason for the plot differences when the robot
moves in regions far from the origin. This is mainly due to
the fact that at the beginning we only have one keyframe
(the initial one) that can be used to create a local map.
Nevertheless, the robot was able to close a loop with the
origin near the end of its trajectory.The state of the system
before and after closing this loop can be seen in figure Fig. 5.

During the experiments, the covariances estimates used



(a) before (b) after

Fig. 5: Top-view before and after closing the loop at the origin of
the KITTI dataset. The black line shows the ground truth, and the
current local map is shown in gray. Compare the correction in the
keyframe positions, and the local maps used before and after the
loop closure.

to create factors in the graph were found to be remarkably
small. Although the expected results were achieved, small
covariances may lead to over-confident systems, or even to
pose graphs whose optimization matrix are ill-posed and
cannot be solved.

VIII. DISCUSSION

This paper presented a system that uses transformations
computed from ICP to feed a pose graph structure, that
in turn is used on loop closings to build an optimization
problem that provide updates of keyframes selected along
the robot trajectory. These updates correct the map of the
environment being built and reduce the accumulated errors
from the ICP odometry. The paper also detailed the ICP
configuration for Velodyne HDL-64 sensor.

The main difference between this work and [6] is the way
the optimization problem is constructed: in [6] the optimiza-
tion finds the robot poses that minimizes the positional error
of points matched between two neighbor scans in the graph,
resulting in very large linearized system to be solved at every
iteration, and requiring a large amount of time to converge
to the solution. In this work the transformations between
keyframes outputed from ICP are used as measurements
between keyframes in the graph, and the covariances are
estimated as proposed by [11]. This leads to a system that
is faster to solve, and may benefit from the new techniques
based on factor graphs, like ISAM2.

One interesting feature of [6] is that edges may be added
to or removed from the graph in between the optimization
iterations, while in this work the graph is static. Other
differences are: our use of an overlap criteria to create new
keyframes, in contrast to a fixed distance criteria; and the
restriction to create new keyframes only when exploring new
parts of the environment, that was not addressed in [6].

The overlap threshold used to define new keyframes is a
critical parameter of the system. This is due to the way the
overlap is estimated and the influence that the filters have in
the estimation: hard rejection based on normal angles helps
to avoid unexpected drifts caused by vegetation, but also
makes the overlap estimation go fast below the threshold.
This results in keyframes that are close one to each other,
and consequently in local maps that cover smaller areas of
the environment. A more robust way to compute the overlap
between shapes would benefit the proposed system.

Even if the proposed system improves the estimation of
the robot trajectory through loop closings, it remains prone to
local minima in which ICP can converge: the transformations
computed in such cases are propagated to the graph level and
cause discrepancies in the final map. Local minima occur
more often when the environment is mostly symmetric, or
if it has repetitive patterns. They can be avoided with good
initial estimations for the registration, for example exploiting
IMU-based initial estimations. IMU data can also be used
with pre-integrated IMU factors [15] that can be added to
the graph as constraints between keyframe variables instead
of ICP- based ones. In this case, more variables would need
to be added per keyframe (namely the velocity, and the
accelerometer and gyrometer biases) and the graph would
not be a pose graph anymore. Still the ICP transforms could
be used to create small loop closings between keyframe poses
along the path, helping to constrain these extra variables and
allowing successful optimizations in the graph level.

ACKNOWLEDGMENTS

The first author would like to thank the Brazilian council
CNPq and the Ciência Sem Fronteiras program for the
financial support.

REFERENCES

[1] J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in
Real-time,” in Robotics: Science and Systems Conference, July 2014.

[2] F. Pomerleau, S. Magnenat, F. Colas, M. Liu, and R. Siegwart,
“Tracking a depth camera: Parameter exploration for fast ICP,” in
IEEE/RSJ IROS, Sept 2011.

[3] P. J. Besl and H. D. McKay, “A method for registration of 3-D shapes,”
IEEE PAMI, vol. 14, no. 2, pp. 239–256, Feb 1992.

[4] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A Tutorial
on Graph-Based SLAM,” Intelligent Transportation Systems Maga-
zine, IEEE, vol. 2, no. 4, pp. 31–43, winter 2010.

[5] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping using the
Bayes tree,” IJRR, vol. 31, no. 2, pp. 216–235, 2012.

[6] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and
J. Hertzberg, “Globally consistent 3d mapping with scan matching,”
Robot. Auton. Syst., vol. 56, no. 2, pp. 130–142, Feb. 2008.

[7] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous Robots, vol. 4, no. 4, pp. 333–
349, 1997.

[8] F. Pomerleau, F. Colas, and R. Siegwart, “A Review of Point
Cloud Registration Algorithms for Mobile Robotics,” Foundations
and Trends in Robotics, vol. 4, no. 1, 2013.

[9] K. Konolige and M. Agrawal, “FrameSLAM: From Bundle
Adjustment to Real-Time Visual Mapping,” Trans. Rob., vol. 24,
no. 5, pp. 1066–1077, Oct. 2008.

[10] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs
and the sum-product algorithm,” IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 498–519, Feb 2001.

[11] A. Censi, “An accurate closed-form estimate of ICP’s covariance,” in
IEEE ICRA, April 2007, pp. 3167–3172.

[12] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing
ICP Variants on Real-World Data Sets,” Autonomous Robots, vol. 34,
no. 3, Feb. 2013.

[13] F. Dellaert, “Factor Graphs and GTSAM: A Hands-on Introduction,”
GT RIM, Tech. Rep. GT-RIM-CP&R-2012-002, Sept 2012.

[14] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets Robotics:
The KITTI Dataset,” IJRR, 2013.

[15] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “IMU
preintegration on manifold for efficient visual-inertial maximum-a-
posteriori estimation,” in Robotics: Science and Systems XI, Sapienza
University of Rome, Rome, Italy, July 13-17, 2015, 2015.


	Introduction
	System Overview
	Point Cloud Registration
	Overview of ICP
	Configuration of ICP
	Filters
	Match Function
	Outlier Rejection
	Distance Function
	Convergence Tests


	Keyframes and Local Maps
	Loop Closing
	Pose-Graph Building
	Results
	Discussion
	References

