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From Lignin‐derived Aromatic Compounds 

to Novel Biobased Polymers 

Audrey Llevot Etienne Grau Stéphane Carlotti Stéphane Grelier Henri Cramail 
 

Abstract 

Nowadays, the synthesis of (semi)aromatic polymers from lignin derivatives is of major interest, as aromatic 
compounds are key intermediates in the manufacture of polymers and lignin is the main source of aromatic 
biobased substrates. Phenols with a variety of chemical structures can be obtained from lignin deconstruction; 
among them, vanillin and ferulic acid are the main ones. Depending on the phenol substrates, different chemical 
modifications and polymerization pathways are developed, leading to (semi)aromatic polymers covering a wide 
range of thermomechanical properties. This review discusses the synthesis and properties of thermosets (vinyl 
ester resins, cyanate ester, epoxy, and benzoxazine resins) and thermoplastic polymers (polyesters, 
polyanhydrides, Schiff base polymers, polyacetals, polyoxalates, polycarbonates, acrylate polymers) prepared 
from vanillin, ferulic acid, guaiacol, syringaldehyde, or 4‐hydroxybenzoic acid. 

 

1 Introduction 

Aromatic compounds constitute platform chemicals to manufacture everyday life items. In polymeric backbones, 

aromatic units offer rigidity, hydrophobicity, as well as resistance against fire. For instance, aromatic polyesters 

such as poly(alkyleneterephtalate)s are widely commercially used, due to their good thermomechanical and 

barrier properties, especially in food packaging and textiles.1, 2 Indeed, the global PET predicted production is 

over 24 million tons for 2015.3 Phenolic compounds are also widely used as raw materials. Among them, 

bisphenol‐A (BPA) is an important monomer for the synthesis of polycarbonates, epoxy resins, and a popular 



plasticizer for thermoplastic polymers. BPA production is predicted to reach 5.4 million tons in 2015.3 Aromatic 

compounds are also essential for the synthesis of high performance materials. For instance, polyaramides, such 

as Kevlar, are important polymers due to their high stability and rigidity. 

Aromatic compounds are mainly petroleum‐based and derived from benzene, xylene and cumene. In terms of 

sustainability, various research has recently been carried out on the investigation of biobased substitutes of 

aromatic petroleum‐based compounds. Thus, the development of aromatic renewable polymers is drawing 

today an enormous interest. 

Biomass constitutes the only source of available renewable carbon. Indeed, the regeneration time of carbon from 

biomass is measured in decades, whereas that of fossil resources reaches several million years.4 Nowadays, the 

use of bio‐resources for the synthesis of polymers is the subject of intensive research.5-12 Some aromatic 

structures can be synthesized from natural compounds or are directly found in limited quantities in Nature. For 

instance, p‐cymene can be easily synthesized from terpenes and transformed into terephtalic acid.13 Some 

polyphenols contained in tannins have been investigated for the synthesis of epoxy resins.8 Cardanol, extracted 

from cashew nut shell liquid,14 the potential production of which reaches 450 000 metric tons per year, was 

employed as monomer for the synthesis of thermoplastics and thermosets.15-17 Finally, hydroxymethyl furfural 

(HMF), synthesized from sugar dehydration, is an important aromatic building block for a wide range of 

applications18, 19 and its derivatives are also used for the synthesis of biobased PET.20 

However, the main renewable source of phenolic and, therefore, aromatic compounds is lignin. Isolated from 

wood or annual plant, this biopolymer constitutes the second most abundant renewable polymer after cellulose, 

with a world production of 40–50 million tons per year.21, 22 The chemical structure of lignin consists of 

phenylpropane units originating from three aromatic alcohols (monolignol): p‐coumaryl, coniferyl, and sinapyl 

alcohols (Scheme 1). The ratio of monolignols depends on the biological species. Lignin deconstruction could lead 

to different phenolic molecules such as 4‐substituted phenol, 4‐substituted‐2‐methoxy phenol, or 4‐substituted‐

2,6‐dimethoxy phenol.23-26 Nowadays, despite extensive research on the recovery of aromatic compounds 

from lignin,27 the only commercial process is the production of vanillin from lignosulfonates, formed as a by‐

product of the sulfite pulping industry.5, 28 



 
Scheme 1 Structure of a) monolignols and b) molecules potentially extracted from lignin. 

The direct use of lignin for the synthesis of polymers is limited because of its ill‐defined structure depending on 

the origin, extraction, and fragmentation processes. However, phenol–formaldehyde resins,29 polyesters, 

phenolic and epoxy resins,30-33 polyurethanes,34-37 or macroinitiators for ATRP polymerization38, 39 have 

been produced by functionalization of the hydroxyl groups of lignin.22 

Together with the research on the controlled deconstruction of lignin, the synthesis of well‐defined polymers 

from aromatic compounds potentially derived from lignin has attracted a growing interest.40 Most of the 

polymers produced from lignin derivatives deal with vanillin,41 ferulic acid, or guaiacol. Examples of 

benzaldehyde and syringaldehyde polymerizations are often described to show the influence of the o‐methoxy 

group on the polymer properties. The synthesis and properties of thermosets and thermoplastic polymers 

synthesized from these theoretically biobased aromatic compounds will be discussed in this review. 

2 Thermoset Polymers 

Very few examples of thermoset polymers using aromatic compounds potentially derived from lignin have been 

reported. Most of them are very recent works, which describe the polymerization of vanillin. The 

thermomechanical properties of the polymers described in this section are summarized in Table 1. 



 
Table 1. Thermomechanical properties of lignin derivative‐based thermosets 

Resins Monomer Tg [°C] Td% [°C] Curing temperature [°C] 

Vinyl ester 1 155 50%: 405 

 

Cyano ester 3 202 5%: 340 

 

 

5 178 5%: 326 

 

 

6 248 5%: 357 

 

 

7 214 5%: 337 

 

 

8 214 5%: 348 

 

Epoxy 12 152 Max degradation: 315 

 

 

13 97 Max degradation: 361 

 

 

14 132 Max degradation: 338 

 

 

15 80–110 

  

Benzoxazine 18 148 5%: 352 219 
 

19 82 5%: 329 232 
 

20 270 5%: 351 179 
 

21 / 333 256 
 

22 / 5%: 283 213 
 

23 255 5%: 339 250 
 

24 231 5%: 352 217 
 

25 227 5%: 322 217 
 

26 170 5%: 412 228 

2.1 Vinyl Ester Resins 

In 2012, Wool and co‐workers prepared 100% biobased vinyl ester resins from vanillin methacrylate and glycerol 

dimethacrylate in a highly sustainable way.42 The monomers were synthesized in a one‐pot, two‐step reaction 

without generating waste, since the by‐product of step one, methacrylic acid, is a reactant of step two 



(Scheme 2). The cured resin was prepared by the free radical polymerization of 1. The conversion reached 60% 

after reaction and 80% after post curing. 

 
Scheme 2 The synthesis of vanillin methacrylate and glycerol dimethacrylate. 

The so‐formed resin is a hard transparent thermoset which exhibits a glass transition temperature (Tg) of 155 °C, 

a storage modulus of 3.6 GPa at 25 °C, and a 50% degradation temperature (Td) of 405 °C. In this example, vanillin 

methacrylate 1 proved to be a good substitute for styrene, as the thermomechanical properties of the obtained 

resin are comparable to those of the typical vinyl ester resin synthesized with 45% styrene (Tg of 145 °C, storage 

modulus of 2.7 GPa, and 50% thermal degradation over 400 °C). 

2.2 Cyanate Ester Resins 

Recently, Harvey and co‐workers reported two studies on the synthesis of cyanate ester thermosets from 

vanillin.43, 44 Seven bisphenols were produced from vanillin (Scheme 3). In one study, reductive coupling 

(McMurry coupling) of the vanillin aldehyde in the presence of titanium tetrachloride led to 2 and, after 

hydrogenation, to the saturated compound 3. In the other study, vanillin was hydrogenated to obtain creosol, 

which was then derivatized into several bisphenols.45 The first method consisted of oxidative coupling creosol 

to produce the 2,2‐biphenyl derivative 4, because the phenol group directed the coupling to the ortho position. 

The second route employed the condensation reaction of creosol with formaldehyde, acetaldehyde, or 

propionaldehyde. Zinc acetate was shown to be a selective catalyst for the ortho‐coupling of formaldehyde (5). 

Dilute HCl and HBr solutions were shown to be effective catalysts for the selective coupling of aldehydes in 

the meta position to the hydroxyl group (6, 7, 8). The bisphenols were readily converted to cyanate with 

cyanogen bromide under basic conditions. 

 
Scheme 3 The synthesis of bisphenols from vanillin (a) and of cyanate from the phenol moiety (b). 



Bis(cyanate ester)s were cured at high temperature to produce cyanate ester thermosets. The bis(cyanate ester)s 

exhibited different behaviors and some of them were not suitable for this application. Differential scanning 

calorimetry (DSC) measurements showed that bis(cyanate ester)s derived from 4 and 5 were not able to 

complete their curing efficiently due to the rigidity of the structure and the steric hindrance around the cyanate 

group. The more flexible 2 has a melting point that is too high, over 220 °C, which makes it unsuitable to be used 

by itself. In contrast, the curing of the bis(cyanate ester)s derived from 3, 6, 7, and 8 was complete. The resulting 

thermosets exhibit glass transition temperatures of over 200 °C and 5 wt% degradation temperatures of 300 °C. 

The ortho methoxy group of these resins leads to different properties in curing and to different thermal 

decomposition compared to classical resins. Despite a slight decrease in thermal stability, the vanillin‐based 

resins present properties comparable to the petroleum‐based commercial equivalents. 

2.3 Epoxy Resins 

Two strategies can be developed to synthesize bisepoxides from vanillin: i) chemical modification of the aldehyde 

and phenolic groups, or ii) production of a bisphenol by vanillin coupling. 

Caillol and co‐workers reported the synthesis of epoxy resins from several bisepoxides obtained from vanillin by 

direct chemical modifications (Scheme 4).46 Vanillyl alcohol, 10, and vanillic acid, 9, are common commercial 

compounds, which can be easily produced from vanillin by reduction and oxidation, respectively. 2‐

Methoxyhydroquinone, 11, was prepared from vanillin by a Dakin reaction. Compounds 9, 10, and 11 underwent 

glycidylation reactions, yielding 12, 13, and 14, respectively.47 These bisepoxides reacted with isophorone 

diamine to produce epoxy resins in an epoxy:amine ratio of 2:1. The epoxy resins prepared from these 

bisepoxides exhibit Tgs ranging from 97 to 152 °C and degradation temperatures from 315 to 361 °C. These values 

are influenced by the structure of the monomer. Indeed, the epoxy resin synthesized from 13 exhibits a 

lower Tg because the additional methylene increases the flexibility and lowers the cross‐linking density. On the 

other hand, the ester moiety of 12 induces a higher cross‐linking density and so a higher Tg, but a lower 

degradation temperature. Vanillic bisepoxides are promising compounds as biobased alternatives to the 

diglycidyl ether of bisphenol A (DGEBA) (Tg = 166 °C, Td = 360 °C). However, industrially, epoxy resins are 

produced from DGEBA‐based oligomers, which allow a better processability and control of the 

thermomechanical properties. Following this trend, Caillol and co‐workers prepared epoxy oligomers (15) 

from 11 and 14, in different ratios, by the industrially used “fusion” process with triphenylbutylphosphonium 

bromide.48 By tuning the length of the oligomers, the cross‐linking density of the resulting material is affected, 

thus enabling the researchers to formulate epoxy resins with Tgs ranging from 80 to 110 °C. 



 
Scheme 4 The synthesis of bisepoxides by chemical modification of vanillin. 

Furthermore, bisphenol 16 was synthesized from dehydratation condensation between vanillin and 

pentaerythritol. Further reaction with epichlorhydrin led to bisepoxide 17 (Scheme 5).49 

 
Scheme 5 The synthesis of vanillin bisepoxides by coupling with pentaerythritol. 

Compound 17 reacted with diaminodiphenylmethane to obtain cross‐linked epoxy resins. The authors 

demonstrated the influence of the hydrogen bonding between the methoxy and the hydroxyl group of the resin 

on its mechanical properties. This phenomenon improves the impact and tensile strength of the material and is 

expected in all epoxy resins derived from lignin. 

2.4 Benzoxazine Resins 

Polybenzoxazines are a class of high‐performance materials which exhibit excellent thermomechanical and 

chemical properties. They are synthesized in a one‐pot method from phenolic derivative, primary amine, and 

formaldehyde. The ring‐opening polymerization of benzoxazines proceeds at high temperature, producing 

polymeric resins bearing both phenolic hydroxyl and tertiary amine groups responsible for several hydrogen 

bonds in the material. Guaiacol and vanillin were employed as phenolic monomers for the synthesis of 



polybenzoxazines (Scheme 6 and Scheme 7). Fully biobased benzoxazines were synthesized from guaiacol (a 

theoritically lignin derivative), paraformaldehyde (which could be obtained by oxidation of biomethanol), and 

furfurylamine 18 (derived from furfural) or stearylamine 19 (a fatty acid‐based amine).50 Benzoxazine resins 

with a Tg of 148 °C and 82 °C from 18 and 19, respectively, and exhibiting degradation temperatures of over 330 

°C were produced. The furan moiety showed a positive influence on the polymerization by improving the curing 

process, cross‐linking density, and thermal properties of the resulting material. 

 
Scheme 6 The synthesis of benzoxazines from guaiacol or vanillin. 

 
Scheme 7 The synthesis of bis‐benzoxazines from vanillin. 

Varma and co‐workers obtained similar resins from vanillin, paraformaldehyde, and furfurylamine 20.51 They 

evidenced the role of the formyl group in curing: it undergoes decarboxylation leading to an active site in 

the para position. The resin synthesized from 20 exhibits a very high Tg of 270 °C. 

Ishida and co‐workers took advantage of the free aldehyde group of a partially biobased benzoxazine to 

functionalize it with Jeffamine M1000, and produced surfactant 21.52 After curing, this surfactant was used to 

stabilize the polymerization of styrene in mini‐emulsion. 

Varma and co‐workers also synthesized bis‐benzoxazines from vanillin and several petroleum‐based diamines. 

The authors studied their curing behavior and the thermomechanical properties of the resulting materials 

(Scheme 7).53 These characteristics were influenced by the diamine structures. The obtained materials 

presented high Tgs, ranging between 170 and 255 °C, and good adhesive strengths at around 200 °C, making 

them suitable for high‐temperature adhesive applications. 

The works described in this section highlight the synthesis of resins with different chemical structures from 

aromatic compounds potentially derived from lignin. The obtained materials present high thermomechanical 

properties, similar to commercial ones (Table 1). 



3 Thermoplastic Polymers 

The molar masses and thermal properties of the polymers described in this section are reported in Table 2. 

Table 2. Thermomechanical properties of lignin derivative‐based thermoplastics 

Name Monomer Polymerization Mn [g mol−1] Đ Tg [°C] Tm [°C] Td [°C] 

P17 Ferulic acid Polycondensation 5450 1.50 –27 25 

 

P18 Vanillin Polycondensation 16 600 1.81 –13 77 

 

P19 Vanillin Polycondensation 17 800 

 

73 234 50%: 462 

P20 n = 2 Vanillin Polycondensation 
 23 500 

2.69 71 239 50%: 417 

P20 n = 2 Syringaldehyde Polycondensation 
 14 300 

2.08 66 / 50%: 433 

P20 n = 2 Hydroxybenzaldehyde Polycondensation 
 14 000 

6.66 80 203 50%: 433 

P21 Vanillin Polycondensation 11 800 

 

13 / 5%: 357 

P22 Vanillin Polycondensation 14 700 

 

4.4 70.1 5%: 369 

P23 Ferulic acid Polycondensation 
 7500 

2.1 76 / 5%: 351 

P24 Ferulic acid Polycondensation 
 7900 

1.9 35 / 5%: 349 

P25 Ferulic acid Polycondensation 
 10 500 

2.0 26 / 5%: 347 

P26 Ferulic acid Polycondensation 
 8700 

1.7 0.4 / 5%: 360 

P27 Divanillin Polycondensation 65 000 2.1 38 / 5%: 319 

P28 Divanillin Polycondensation / / 5 / 5%: 308 

P29 Divanillin Polycondensation / / 68 / 5%: 270 

P30 Divanillin Polycondensation / / –5 / 5%: 347 

P31 Divanillin Polycondensation / / 102 / 5%: 310 

P32 Divanillin Polycondensation / / 139 / 5%: 342 

P33 Divanillin Polycondensation / / 102 / 5%: 305 



Name Monomer Polymerization Mn [g mol−1] Đ Tg [°C] Tm [°C] Td [°C] 

P34 Ferulic acid ADMET 3100 1.81 7 / 

 

P35 Ferulic acid Thiol‐ene 4200 1.49 –33 / 

 

P36 Vanillin ADMET 49 600 1.96 –31 / 

 

P37 Vanillin Thiol‐ene 15 400 1.77 –32 57.65 

 

P38 Vanillin ADMET 25 600 1.88 –17 / 

 

P39 Vanillin Thiol‐ene 12 100 1.94 –22 68 

 

P40 x = 4 Ferulic acid ADMET 10 600 2.6 18 

 

5%: 314 

P40 x = 8 Ferulic acid ADMET 9900 2.2 7 / 5%: 314 

P41 x = 4 Ferulic acid ADMET 25 400 1.7 –8 / 5%: 291 

P41 x = 8 Ferulic acid ADMET 12 300 1.7 –22 / 5%: 334 

P42 Divanillin ADMET 11 000 1.6 17 / 5%: 310 

P43 Ferulic acid Oxidative coupling 25 000 / 56 / 210 

P44 Ferulic acid Polycondensation 21 700 1.7 82 / 332 

P45 Divanillin Schiff base 7800–9600 / / / 250 

P46 Divanillin Reductive coupling 10 000 

 

/ / 300 

P47 Hydroxybenzaldehyde Polycondensation / / / / 5%: 328 

P47 Vanillin Polycondensation 10 600 2.2 129 / 5%: 308 

P47 Syringaldehyde Polycondensation 18 600 1.9 152 / 5%: 307 

P48 Hydroxybenzaldehyde Polycondensation / 1.4 / 259 5%: 349 

P48 Vanillin Polycondensation 22 200 2.0 80 / 5%: 327 

P48 Syringaldehyde Polycondensation 21 600 1.6 98 / 5%: 320 

P49 Vanillin Polycondensation 22 000 1.6 120 / 

 

P50 Vanillin Polycondensation 4000 1.9 86 / 5%: 290 

P51 Ferulic acid Polycondensation 14 600 2.57 135 / 343 



Name Monomer Polymerization Mn [g mol−1] Đ Tg [°C] Tm [°C] Td [°C] 

P52 Ferulic acid Polycondensation 5600 1.43 134 / 350 

P53 Ferulic acid Polycondensation 8500 2.08 129 / 337 

P54 Ferulic acid Polycondensation 17 700 2.06 130 / 343 

P55 Divanillin ADMET 29 000 1.7 160 / 5%: 380 

P56 Vanillin/guaiacol Radical 11 000 1.6 101 / / 

P57 Vanillin Radical 17 000 1.34 120 / <300 

P58 Vanillin Radical 56 000 1.50 –33 120 <300 

3.1 Polyesters 

3.1.1 First Syntheses of Polyesters from Lignin Derivatives 

To the best of our knowledge, the first example of the polymerization of vanillic acid was described in 1955. 

Indeed, vanillic acid was converted to carboxylate by etherifying the phenolic moiety with ethylene 

dihalides 27 (Scheme 8a). Subsequently, the carboxylate was esterified with ethylene glycol and condensed to 

linear polyester, P1, with a Tg of 80 °C and a melting temperature (Tm) of 210 °C.54 This polymer was studied 

several times between 1955 and 1974.55, 56 Later, in 1981, the same strategy as well as a new one were 

developed by Kordsachia and co‐workers to synthesize vanillic and syringic acid‐based polymers.57 In the second 

synthetic pathway, the phenolic moiety of vanillic acid was reacted with ethylene oxide, yielding 28 (Scheme 8b). 

The self‐condensation of 28 leads to P2. 

 
Scheme 8 The first syntheses of polyester from vanillic acid and syringic acid. 

Molar masses, measured by viscometry, indicate that the first synthetic pathway (a) provides polyesters 

exhibiting higher molar mass, respectively 44 500 g mol−1 and 50 000 g mol−1 for vanillic acid and syringic acid in 



comparison to polyesters produced from the second method (b), 30 000 g mol−1 and 12 000 g mol−1. With respect 

to the first method, the reported polymers showed a Tg of 69 °C and Tm of 212 °C in the case of vanillic acid and 

a Tg of 58 °C and Tm of 172 °C for syringic acid. From the second method, the polymers showed a Tg of 55 °C 

and Tm of 254 °C in the case of vanillic acid and a Tg of 45 °C and Tm of 73 °C for syringic acid. Interestingly, the 

polymer produced from vanillic acid exhibits thermal properties similar to polyethylene terephthalate (PET) (Tm = 

265 °C, Tg = 67 °C). 

3.1.2 Direct Polymerization Methods 

After these first polymerizations of vanillic acid, a wide number of studies on the conversion of vanillic acid, 

syringic acid, and 4‐hydroxybenzoic acid into thermotropic polymers were reported. Thermotropic polymers are 

materials that exhibit liquid crystal formation in the melt form. This next section focuses on the influence of the 

incorporation of vanillic acid on thermotropic polymer properties. Due to their high order and aromatic structure, 

they possess high mechanical strength at high temperatures, extreme chemical resistance, and inherent flame 

retardancy. 

The first report on the incorporation of vanillic acid into thermotropic polymers was from Kricheldorf and co‐

workers in 1995. The authors prepared polyesters derived from vanillic acid.58 The motivation of this work was 

to synthesize whisker‐like crystals with biodegradable properties. Homopolymers of vanillic acid were obtained 

via two synthetic pathways: a silylacetate method and an acetate method (Scheme 9). For the first method, 

trimethylsilyl‐4‐acetoxy‐3‐methoxybenzoate, 29, was homopolymerized, leading to poly(vanillic acid), P3. The 

second approach involved the reaction of free carboxylic acid of the 4‐acetoxy‐3‐methoxybenzoic acid, 30, and 

generated acetic acid. High reaction temperatures, between 300 and 350 °C, were required. The two synthetic 

methods gave different yields, crystallinity ratios, and morphologies. 

 
Scheme 9 The synthesis of poly(vanillic acid). 

Based on this work, several other thermotropic (co)polymers were synthesized from vanillic acid (Scheme 10). 

First, copolyester from 4‐hydroxyphenyl propanoic acid (potentially obtained from lignin) and vanillic acid, P4, 

were produced by the silylated method.59 At a 1:1 molar ratio, the incorporation of vanillic acid in the polyester 

was lower than expected. Probably, the reactivity of the acetoxy group was decreased due to steric and electronic 

effects of the methoxy group in the ortho position. To overcome the low reactivity, Nagata and co‐workers 

developed another synthetic pathway to synthesize 4‐hydroxyphenyl propanoic acid/vanillic acid 

copolyesters.60 They prepared copolymers with different compositions in pyridine, using diphenyl phosphoryl 

chloride and lithium bromide as condensing agents, thus improving the incorporation of vanillic acid into the 

polyester. A molar mass of 21 800 g mol−1 was reached for a composition of 30% vanillic acid. Higher vanillic acid‐



to‐4‐hydroxyphenyl propanoic acid ratios lead to higher Tgs (108 °C for 70% and 83 °C for 30%) but lower thermal 

degradation (356 °C for 70% and 403 °C for 30%). These binary copolymers were not thermotropic. Thus, 

terpolymers with 4‐hydroxybenzoic acid, P5, were investigated (Scheme 10) and were proven to be soluble, 

thermotropic, and to form a homogeneous nematic phase above 250 °C. 

 
Scheme 10 The synthesis of thermotropic polymers from vanillic acid. 

Sun and co‐workers also investigated the properties of liquid‐crystalline polymers.61-63 They synthesized 

terpolymers, P6, by the melt polycondensation of 4‐acetoxybenzoic acid, poly(ethylene terephthalate), and 5% 

of an acetoxy‐based third monomer. Vanillic acid was used as a co‐monomer and was compared to seven other 

molecules including bisphenol A and terephtalic acid. Vanillic acid copolymers exhibited a faster 

polycondensation rate, better spinnability, lower melting temperature, higher molar mass, and thermostability 

than all the other copolymers (Table 3). It also showed a highly oriented fibrillar structure. 

Table 3. Properties of the terpolymers synthesized from p‐hydroxybenzoic acid, polyethylene terephtalate, and 
a third monomer61-63 

Monomer Spinnability Tg [°C] Tm [°C] Td 5% [°C] Mn [g mol−1] G' [GPa] ε [%] 

Vanillic acid Very good 69 183–207 417 7 300 67 9 

Bisphenol A Bad 100 / / 

 

/ / 

Terephtalic acid Medium 64 196–220 / 5 400 / / 



In addition, Kudriavtsev and co‐workers developed a series of polyesters, P7–P9 and polyamides P10–

P13 employing vanillic acid (Scheme 10).64, 65 The same diols and diamines were used to produce terpolymers 

from vanillic acid and p‐hydroxybenzoic acid. The polymers were cast from solutions of N‐methylpyrrolidone on 

glass supports. Depending on the chemical structure of the co‐monomer, elongation at break ranged from 234% 

and 67% for the polyesters and 14.1% and 20.8% for the polyamides. 

The excellent thermomechanical properties and processability of the vanillic acid‐based liquid‐crystalline 

polymers attracted attention for biomedical applications. Indeed, recent studies have reported the synthesis of 

semiaromatic bioresorbable polyester from vanillic and p‐hydroxybenzoic acid, P14.66-68 More precisely, 

polyesters derived from p‐hydroxybenzoic acid, vanillic acid, 4,4′‐sulfonylbis(2‐methylphenol), and various 

aliphatic diacids (spacers) have been developed by the company Smith & Nephew, and in‐vitro and in‐vivo 

biocompatibility has been proven. Selected compositions, such as 50/25/12.5/12.5 in hydroxybenzoic 

acid/vanillic acid/4,4′‐sulfonylbis(2‐methylphenol)/spacer, have been shown to be processable in the nematic 

melt phase. However, the fibers show comparatively low tensile moduli due to the low level of molecular 

orientation in the nematic phase. Further developments are necessary to address the mechanical requirements 

for orthopedic applications. 

Finally, a very recent study reported the synthesis of biobased thermotropic polyesters from 2,5‐

furandicarboxylic acid, 4‐hydroxybenzoic acid, 4,4'‐bisphenol, and vanillic acid, P15.19, 69 First, the polymers 

were formed without vanillic acid, but the rapid crystallization of the mixture from the melt did not allow it to 

reach a high molar mass. The introduction of vanillic acid as a co‐monomer prevents crystallization during 

polymerization, thus allowing transesterification reactions, which decreased the formation of blocks. The 

polymer incorporating 20% of vanillic acid showed a Tg of 109 °C and a melting temperature of 230 °C (versus 97 

°C and 336 °C without vanillin). This phenomenon was also evidenced by a similar study on the synthesis of 

thermotropic polymers from 4‐hydroxybenzoic acid, suberic acid, 1,4‐dihydroxybenzene, 2,5‐furandicarboxylic 

acid, and vanillic acid, P16 (Scheme 10). 

In the current context of “green” chemistry, 100% biobased polymers were synthetized from vanillin, ferulic acid, 

and vegetable oil derivatives. Meier and co‐workers produced a polyester from ferulic acid by polycondensation 

(Scheme 11).70 Ferulic acid was transformed into a more reactive monomer. The carboxylic acid was first 

esterified with methanol and the resulting compound was hydrogenated. Hydrogenated methyl ferulate was 

then reacted with two equivalents of ethyl carbonate, yielding an AB monomer, 31. P17 was produced by the 

homopolymerization of 31, performed with 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD) as a catalyst; it exhibits a 

molar mass of 5400 g mol−1 and a semicrystalline feature with a Tg of –27 °C and a Tm of 25 °C. Amorphous 

polymers were also synthesized by copolymerization of 31 with methyloleate and methylerucate derivatives. 



 
Scheme 11 The synthesis of ferulic acid and vanillin‐based polyesters by polycondensation in a sustainable way. 

The polycondensation of vanillin derivatives and fatty acid derivatives was also investigated by the same group 

(Scheme 11).71 The intermediate 32 was prepared by reduction of the aldehyde moiety to alcohol and the 

etherification of the phenol moiety with an undecenoic acid derivative. The thiol‐ene addition of 

methylthioglycolate on 32 leads to an AB monomer 33, able to undergo homopolymerization, yielding P18. The 

latter is a semicrystalline polymer with a Tg of –13 °C and a Tm of 77 °C. Polymers with a higher crystallinity were 

also synthesized by copolymerization of 33 with fatty acid‐derived esters. 

In 2010, Miller and co‐workers reported the synthesis of biorenewable poly(ethylene terephthalate) mimics, P19, 

derived from lignin and acetic acid (Scheme 12).72 The reaction of vanillin and acetic anhydride leads to both a 

Perkin reaction and acetylation of the phenolic group. The resulting compound was hydrogenated and the 

generated acetyldihydroferulic acid, 34, was homopolymerized, yielding P19. Zinc acetate proved to be the most 

efficient catalyst. P19 exhibits a molar mass of 17 800 g mol−1 (degree of polymerization around 100), a melting 

temperature of 234 °C, a transition temperature of 73 °C and a 50% thermal decomposition at 462 °C. All these 

values are similar to the corresponding values of PET (Tm = 265 °C, Tg = 67 °C, Td 50% = 470 °C). 

 
Scheme 12 The synthesis of poly(alkylenehydroxybenzoate)s from lignin derivatives. 

The same group also synthesized poly(alkylenehydroxybenzoate)s (PAHBs) from three lignin derivatives, vanillin, 

4‐hydroxybenzoic acid, and syringic acid (Scheme 12), in order to target materials with a wide range of 

thermomechanical properties.73 These aromatic aldehydes were oxidized into the corresponding carboxylic 

acids and the phenol moiety was derivatized with 2‐chloroethanol or 3‐chloropropan‐1‐ol. The resulting hydroxy 

acid monomers (AB), 35, were homopolymerized, yielding P20, using antimony oxide as a catalyst. The 

thermomechanical properties of P25 vary with respect to the aromatic unit substitution. Indeed, substitution on 

the aromatic ring increases the free volume of the polymer chains, which decreases the glass transition 

temperature. Additionally, the length of the aliphatic segment between the aromatic units also has an impact on 



the thermal properties. The thermal stability of all the polymers is high (Table 3). In this series of polymers, the 

glass transition temperature was tuned between 50 and 70 °C and the melting temperature between 170 and 

239 °C. 

3.1.3 Synthesis and Polymerization of Symmetrical Difunctional Monomers 

An alternative path toward difunctional monomers from vanillin or lignin derivatives is based on the coupling of 

phenolic substrates. This coupling could occur either on the phenol, yielding dicarbonyl, or on the carbonyl, 

yielding bisphenol (Scheme 13). For instance, the diester 36 was synthesized via the Williamson ether synthesis 

reaction of two equivalents of methylvanillate and one equivalent of 1,4‐dibromobutane.74 The 

bisphenols 37 and 38 were obtained via a chemoenzymatic pathway. First, ethyl dihydroferulate was 

synthesized, from vanillin by reaction with malonic acid, piperidine, and pyridine, followed by hydrogenation. 

The transesterification of this compound with isosorbide, 1,3‐propanediol, and 1,4‐butanediol was performed in 

the presence of lipase. One of the main advantages of using Candida Antarctica lipase B (CAL‐B) lies on its 

inactivity toward phenol. In each case, a yield of about 90% was achieved without the presence of by‐products 

after a reaction time of three days.75 These building blocks were used for polyester synthesis. 

 
Scheme 13 The synthesis of building blocks from coupling lignin derivatives, and the resulting polymers. 

In 2014, Ma and co‐workers copolymerized 36 with vegetable oil derivatives in order to synthesize fully biobased 

semiaromatic polyesters (Scheme 13).74 The vegetable oil‐based diols were prepared via thiol‐ene addition on 

undecenol. The resulting polyesters P21 and P22 exhibit molar masses of, respectively, 11 800 and 14 700 g 

mol−1 and dispersities around 2. The shorter aliphatic chain of P21 leads to a polyester with better thermal 

stability (Td 5% of 357 °C versus 339 °C), a higher Young's modulus (99.7 MPa versus 66.2 MPa) and a lower strain‐

at‐break (22.8% versus 43.7%) than P22. Moreover, P21 is amorphous, with a Tg of 13.0 °C, whereas P22 is 

semicrystalline, with a Tg of –4.4 °C and a Tm of 70.1 °C. 



A similar study concerning the influence of aliphatic or cycloaliphatic segments on the thermomechanical 

properties of polyesters was conducted on 37 and 38 by Allais and co‐workers.76 The bisphenols were 

copolymerized with diacyl chloride (succinic or azelaic) in o‐dichlorobenzene or in bulk, yielding low molar mass 

polymers (3700 g mol−1 < Mn < 5200 g mol−1), P23–26. The glass transition temperatures were tuned from 0.4 °C 

to 75.6 °C by the design of the monomers. All the polymers exhibit good thermal stability with 5% weight loss at 

temperatures over 347 °C. 

In order to produce difunctional symmetrical monomers, we investigated the enzymatic coupling of several 

phenolic compounds potentially derived from lignin.77 Employing a laccase from Trametes Versicolor, we 

developed a process to synthesize bisphenyl compounds. This process presents several advantages: i) the 

divanillin formation occurs at room temperature under oxygen (which could be replaced by air), and employs a 

low‐toxicity co‐solvent (10% acetone); ii) the product extraction is easy and the purity is high (95%) due to the 

solvent conditions, which enables reactant solubility while the dimer precipitates out of the solution; iii) a low 

enzyme loading is employed and can be reused, which makes the process economically valuable. The excellent 

purity of the obtained bisphenyl compounds together with their easy large‐scale synthesis constitute important 

parameters for the production of synthons for polymer synthesis. We chemically modified some of the dimers 

and polymerized them. A methylated divanillyl diol, 41, and a methylated dimethylvanillate dimer, 42, were 

synthesized from divanillin and dimethylvanillate, respectively, and employed as (co)monomers for the design 

of renewable (semi)aromatic polyesters (Scheme 14).78 The methylation of the phenol allowed polymerization 

in bulk and prevented the phenol moiety from being involved in the polycondensation. The reactivity 

of 41 and 42 towards polycondensation was investigated on the copolymerization with dimethyl sebacate and 

1,10‐decanediol. Polyester molar masses of 65 000 g mol−1 were reached for 41 and 20 000 g mol−1 for 42. 

Considering this difference in reactivity, a series of polyesters were synthesized by the transesterification 

of 41 with several diesters of aromatic, aliphatic, or cycloaliphatic structures (Scheme 15). The polyesters 

displayed glass transition temperatures ranging from –5 to 139 °C, influenced by the structure of the co‐

monomer and 5 wt% loss a temperatures above 300 °C. 

 
Scheme 14 The synthesis of methylated divanillyl diol, 41, and methylated dimethyl divanillate, 42, from vanillin, 
with their respective yields. 



 
Scheme 15 The structures of polyesters synthesized from methylated divanillyl diol 4 and diesters with different 
structures. 

3.1.4 Synthesis and Polymerization of bis‐Unsaturated Esters 

Other polymerization techniques were also employed to produce polyesters from lignin derivatives (Scheme 16). 

Indeed, Meier and co‐workers prepared bis‐unsaturated esters from ferulic acid and vanillin, which were 

polymerized via the ADMET or thiol‐ene methodologies.71, 79 First, hydrogenation of the internal double bond 

of ferulic acid was performed to avoid side reactions during polymerization. The resulting compound reacted 

with allyl bromide, leading simultaneously to the formation of the allyl ester from the carboxylic acid and an allyl 

ether on the phenol moiety. Among seven tested catalysts, only Hoveyda Grubbs 2nd generation, Zhan, and M51 

(Umicore company) metathesis catalysts were able to oligomerize the bis‐unsaturated 43, leading to P34 with 

molar masses between 2150 g mol−1 and 3050 g mol−1. The polyaddition of 43 was performed with 1,4‐

butanedithiol and AIBN as radical initiator, yielding P35. In comparison to ADMET, a slightly higher molar mass 

was observed (4150 g mol−1). These techniques led to amorphous polymers, with a low glass transition 

temperature of –33 °C for P35, due to the presence of a long alkyl chain. The same group also provided two bis‐

unsaturated compounds, 45 and 46, from the intermediate compound 40 derived from vanillin. 

Compound 44 was prepared by reduction of the aldehyde moiety into alcohol, and etherification of the phenol 

moiety with an undecenoic acid derivative. In order to get difunctional compounds 45 and 46, the alcohol was 

esterified with methyl undecenoate in a 1:1 molar ratio, or with dimethyl adipate, a biobased compound, in a 

2:1 molar ratio, respectively. Compounds 45 and 46 were polymerized by ADMET or thiol‐ene addition to lead 

to P36–P39. The difference with the previous study is the length of the alkyl chain between the aromatic moiety 

and the double bond. This longer chain allows higher molar masses to be reached by ADMET. The polymers 

synthesized via thiol‐ene polyaddition are semicrystalline, whereas the ones synthesized by ADMET are 

amorphous (Table 2). 



 
Scheme 16 The synthesis of ferulic acid and vanillin‐based polyesters by ADMET polymerization and thiol‐ene 
addition. 

Allais and co‐workers modified the bisphenols 37 and 38 derived from ferulic acid to obtained bis‐unsaturated 

esters by etherification with three bromoalkenes (3‐bromoprop‐1‐ene, 6‐bromohex‐1‐ene, and 10‐(bromodec‐

1‐ene)) (Scheme 17).80 ADMET polymerization of 47 and 48 was conducted under different conditions, 

yielding P40 and P41. Although the polymerization of allyl monomers only gave oligomers, optimized conditions 

led to polymers with molar masses ranging from 9900 to 25 900 g mol−1, depending on the employed monomer. 

Amorphous polymers were obtained with low glass transition temperatures, from –21.6 to 18.2 °C and 5 wt% 

loss temperatures between 291 and 333 °C. 

 
Scheme 17 The synthesis of polyesters by ADMET polymerization from bisphenol‐based polyesters. 



We also reported the synthesis of a bis‐unsaturated diester, 49, and its polymerization by 

ADMET.81 Diester 49 was obtained from methylated dimethylvanillate dimer 42 and undecenol (Scheme 18). 

ADMET polymerization was performed in Polarclean solvent, which was selected for its high boiling point, its 

compatibility with Grubbs catalyst, and its sustainability.82 The highest polymer molar masses, 11 000 g mol−1, 

were achieved employing Grubbs 1st generation and Hoveyda Grubbs 2nd generation catalysts. The obtained 

polymer, P42, showed no isomerization of the double bond. P42 exhibits a Tg of 17 °C due to its C12 aliphatic 

chain and a good thermal stability with a 5 wt% loss temperature of 310 °C. 

 
Scheme 18 The synthesis and polymerization via ADMET of the diester obtained by the esterification of a 
biphenyl compound and undecenol. 

3.1.5 Synthesis and Polymerization of bis‐Acetylenic Esters 

Ogaw and co‐workers synthesized a bisacetylene monomer, 50, from ferulic acid and polymerized it by oxidative 

coupling polymerization (Scheme 19).83 This polymerization technique is a living polymerization, which occurs 

without a termination step. The presence of diacetylene groups in the polymer chain enables cross‐linking. 

Compound 50 was prepared by reacting ferulic acid with propargyl bromide. The oxidative coupling 

polymerization of 50 led to P43 with a molar mass of 25 000 g mol−1, a Tg of 56 °C and a degradation temperature 

of 201 °C. The good solubility of P43 in organic solvents enables the cast polymer to give a transparent film. 

Acetylene groups started to cross‐link under heating and UV irradiation, leading to an increase of the polymer 

thermomechanical properties. 

 
Scheme 19 Polymerization by the oxidative coupling of bisacetylenic esters derived from ferulic acid. 

3.2 Polyanhydrides 

The synthesis of biodegradable polyesters from ferulic acid is very interesting due to their antioxidant properties. 

Polyanhydrides constitute a class of polymers that are easily hydrolysable. For these reasons, Uhrich and co‐

workers prepared ferulic‐containing poly(anhydride ester)s (Scheme 20).84] t‐Butyl ferulate synthesized by a 

Knoevenagel condensation reaction (t‐butanol was reacted with Meldrum's acid to form a malonic acid 

monoester, which was immediately reacted with vanillin), underwent a coupling reaction with adipoyl chloride. 

After deprotection, the diacid 51 was recovered. Polycondensation of 51 with triphosgene led to 

polyanhydride P44 with a molar mass of 21 700 g mol−1, a Tg of 82 °C, and a degradation temperature of 332 °C. 

The hydrolytic degradation of P44 led to products with antioxidant and antibacterial properties similar to free 

ferulic acid. 



 
Scheme 20 The synthesis of poly(anhydride ester) from ferulic acid. 

3.3 Schiff Base Polymers 

The oxidative coupling of vanillin leading to dialdehyde compounds is also suitable for Schiff base polymerization. 

Razzaq and co‐workers synthesized 52 by the oxidative dimerization of vanillin following an enzymatic pathway 

reported by Vosburg and co‐workers in 2010, employing Horseradish Peroxidase.85 The dialdehyde 

compound 52 and alkyl diamine (1,2‐diaminoethane, 1,3‐diaminopropane, 1,6‐diaminohexane) were refluxed in 

ethanol, leading to polymer P45 with a degree of polymerization between 25 and 32 (Scheme 21).85 The three 

polymers were stable up to 250 °C. The polymer synthesized with 1,6‐diaminohexane complexed with Cu(II), 

Fe(II), and Co(II). 

 
Scheme 21 The synthesis of Schiff base polymers from divanillin. 

3.4 Electrochemistry Route 

Divanillin was also polymerized by an electrochemical route yielding polyvanillin P46 (Scheme 22).86 Polyvanillin 

was prepared by the reductive coupling of the aldehyde group of divanillin using an electrochemical 

polymerization cell (catholyte: 0.175 M divanillin, 1 M NaOH in water, anolyte: 1 M NaOH (aq), conditions: 12 V, 

1.1 A, 3 h, 25 °C). P46 was obtained with a molar mass of about 10 000 g mol−1 and dispersity of 1.5. The polymer 

exhibits good thermal stability with an onset temperature of 300 °C. 

 



Scheme 22 Polymerization by the reductive coupling of divanillin. 

3.5 Polyacetals 

Dialdehydes are also important monomers for the synthesis of polyacetals, a class of biodegradable polymer, as 

acetal linkages are sensitive to hydrolysis. Miller and co‐workers synthesized cyclic and polycyclic polyacetal 

ethers from lignin‐based aromatics.87 4‐Hydroxybenzaldehyde, vanillin, and syringaldehyde were investigated 

in this study. The dialdehydes 53 were prepared by the reaction of lignin derivatives with 1,2‐dibromoethane 

using sodium hydroxide and potassium iodide in water.87 Polycondensation of the dialdehydes 53 with tetraol 

yields cyclic polyacetal ethers (P47) in the case of di‐trimethylolpropane and spirocyclic acetal (P48) in the case 

of pentaerythritol (Scheme 23). Molar masses ranging between 10 600 and 22 200 g mol−1 were reached. 

Polymers from 4‐hydroxybenzaldehyde are semicrystalline, whereas polymers synthesized from vanillin and 

syringaldehyde are amorphous due to the presence of methoxy groups. Spirocyclic polyacetals exhibit higher 

glass transition temperatures than the cyclic equivalent ones (for vanillin: 129 °C versus 80 °C). As already 

reported, syringaldehyde‐based polymers show higher glass transitions than vanillin‐based ones (152 °C for the 

spirocyclic one and 98 °C for the cyclic equivalent). All the polymers present high 5 wt% degradation temperature, 

between 307 and 349 °C. 

 
Scheme 23 The synthetic pathway of polyacetals from lignin derivatives. 

3.6 Polyoxalates 

In 2013, Lee and co‐workers synthesized poly(vanillin oxalate), P49, as inflammation‐responsive antioxidant 

polymeric prodrug (Scheme 24).88 4‐(5‐(Hydroxymethyl)‐5‐methyl‐1,3‐dioxan‐2‐yl)‐2‐methoxyphenol, 54, was 

synthesized from vanillin and 2‐methylpropane‐1,3‐diol. The step growth polymerization of 54 using oxalyl 

chloride led to the polyoxalate P49, which exhibits a molar mass of 22 000 g mol−1 with a dispersity of 1.6 and a 

glass transition temperature of 120 °C. As poly(vanillin oxalate) has an hydrophobic backbone, it could be 

formulated into nanoparticles by a conventional emulsion method. Poly(vanillin oxalate) releases vanillin during 

H2O2 and acid‐mediated hydrolytic degradation due to the presence of acid‐cleavable acetal linkages in its 

backbone. H2O2 was chosen because it is an essential metabolite in living organisms and it could serve as a 

potential biomarker of various oxidative stress‐associated inflammatory diseases. The nanoparticles showed 

excellent biocompatibility, antioxidant, and anti‐inflammatory activity and could potentially be used as 

therapeutics. 



 
Scheme 24 The synthesis of poly(vanillin oxalate) and vanillin release of under H2O2 stimulus. 

3.7 Polycarbonates 

Polycarbonates are a class of material between the commodity and the engineering plastics. They are synthesized 

by the transesterification of bisphenols and phosgenes or carbonates. Harvey and co‐workers synthesized 

polycarbonate P50 by a transesterification reaction between the bisphenol 3 and diphenylcarbonate 

(Scheme 25).89 The non‐optimized reaction conditions led to a polymer with a molar mass of 4000 g mol−1. 

A Tg of 86 °C and 5 wt% loss temperature of 290 °C were measured but these values are affected by the low molar 

mass. The authors expect that a higher reaction temperature or the use of phosgene would increase the molar 

mass of the polymer. 

 
Scheme 25 The synthesis of polycarbonates from vanillin. 

Biocompatible and biodegradable poly(carbonate‐amide)s were also synthesized from ferulic acid and tyrosine 

(Scheme 26).90 The peptidic coupling of ferulic acid and tyrosine led to the bisphenol 55. P51, obtained by 

polycondensation of 55 with diphosgene, is a regio‐random polymer. However, good control of the regio‐

selectivity was achieved by the design of other monomers. Using BA' monomer, 56 and 57 were synthesized to 

produce a regio‐regular head‐to‐tail polymer. To reach this goal, the phenol of the ferulic acid moiety was 

activated to a p‐nitrophenylcarbonate, 56, or to a chloroformate, 57. Their polymerization respectively led to the 

targeted regio‐regular polymers P52 and P53, with regio‐selectivities of 63% and 90%, respectively. The A'AAA' 

diphenol 58 was synthesized to produce, by polycondensation with phosgene, a regio‐regular head‐to‐head‐to‐

tail‐to‐tail polymer, P54. In this study, the obtained polymers exhibited molar masses between 6000 and 19 000 

g mol−1, Tgs of around 130 °C, and degradation temperatures of around 340 °C. Although the thermomechanical 

properties were not influenced by the regio‐selectivity, the fluorescence properties were impacted. These 

biodegradable and biocompatible materials are therefore interesting for sensing or imaging applications. 



 
Scheme 26 The synthesis of poly(carbonate‐amide)s from ferulic acid. 

3.8 Conjugated Polymers by ADMET Polymerization 

Dihaldehydes are key intermediates in polymer chemistry as they can undergo a wide range of chemical 

modifications and thus lead to polymers with different structures and properties. We performed a Wittig reaction 

on methylated divanillin yielding a divinyl compound, 59 (Scheme 27).81 The ADMET polymerization of 59 in 

Polarclean solvent yielded P55. The highest polymer molar mass, 29 000 g mol−1, was achieved employing 

Hoveyda Grubbs 2nd generation catalyst. The polymers displayed only trans configuration of the vinylene 

bonds. P55 exhibited high thermomechanical properties, due to the conjugation of the double bond and the 

aromatic ring. Indeed, the Tg was observed at around 160 °C by DSC, while dynamic mechanical analysis (DMA) 

revealed a glass transition temperature (Tα) at 209 °C. The 5 wt% loss temperature occured at 380 °C. 

 
Scheme 27 The synthesis of divinyl compound from divanillin and ADMET polymerization. 

3.9 Radical Polymerization 

Lignin derivatives were also modified into acrylamide and acrylate derivatives and polymerized by radical 

polymerization. Thermoplastic polymers with lignin derivatives as side chain groups are obtained (Scheme 28). 

Roger and co‐workers synthesized the acrylamide derivative 60 from guaiacol and vanillin.91 The first pathway 

involves the Friedel–Craft alkylation reaction of N‐hydroxymethylacrylamide with guaiacol. The second approach 

is based on vanillin and requires a three‐step reaction: the oxime is prepared, reduced and the resulting amine 



reacts with acryloyl chloride. The obtained acrylamide 60 was polymerized by free radical polymerization, 

employing AIBN as initiator. Despite a screening of the conditions, polymers with relatively low molar masses 

below 11 000 g mol−1 were obtained; branched structures and broad molar mass distributions were observed at 

high conversion. These observations can be attributed to the phenoxy radicals known to inhibit radical 

polymerization by acting as scavengers. Polymers P56 displayed a Tg of around 100 °C, and showed antibacterial 

activity. 

 
Scheme 28 The synthesis of thermoplastic polymers by the radical polymerization of lignin‐derived acrylamides. 

Controlled radical polymerization was used to synthesize homopolymers and block copolymers from vanillin‐

derived acrylate.92 An acrylate derivative, 61, was synthesized from vanillin by esterification of the phenolic 

group with methacrylic anhydride (Scheme 29). 61 was polymerized by reversible addition–fragmentation chain 

transfer (RAFT), yielding P57 with a molar mass of 17 000 g mol−1 and a dispersity of 1.34. P57 was employed as 

a macro‐chain transfer agent (CTA) for the polymerization of lauryl methacrylate, a fatty acid derivative, yielding 

the copolymer P58 with a molar mass of 56 000 g mol−1 and a dispersity of 1.50. The vanillin 

homopolymer P57 exhibits a Tg of 120 °C and a degradation temperature over 300 °C, similar to the values of 

polystyrene. The copolymer P58 self‐assembles into body‐centered cubic nanospheres. Other morphologies 

could be reached by increasing the volume fraction of vanillin. 

 
Scheme 29 The synthesis of thermoplastic polymers by the radical polymerization of lignin‐derived acrylates. 

In conclusion, a multitude of thermoplastic polymers have been synthesized from vanillin, ferulic acid, 

syringaldehyde, hydroxybenzaldehyde, and guaiacol by different polymerization methods. Due to chemical 

modifications or copolymerization, the resulting polymers cover a wide range of thermal properties (see Table 2). 

4 Conclusion 

The majority of the studies described in this review were published very recently, showing the growing interest 

of researchers in the synthesis of lignin‐based derivatives polymers. The preparation of thermosets with different 

structures such as vinyl ester resins, cyanate ester, epoxy, and benzoxazine resins from vanillin or guaiacol have 

led to various high‐performance materials. Different polymerization techniques were also employed for the 

synthesis of thermoplastic polymers. Indeed, although in the past decades lignin derivatives have been widely 



used for thermotropic polymers, in the current context of sustainability, mainly vanillin‐based thermoplastic 

polymers have been recently re‐explored. For instance, vanillin, syringaldehyde, or ferulic acid have been used 

for the synthesis of PET mimic polymers or for designing fully biobased copolymers with fatty acids and a wide 

range of other polymers such as Schiff base polymers, polyacetals, polyanhydrides, and polyacrylates. Through 

all these examples of polymerization, lignin derivatives were proven to enhance the rigidity and thermostability 

of the obtained polymers. It is important to notice that the presence of methoxy substituent(s) on the aromatic 

ring, due to the inherent structure of lignin, affects the thermomechanical properties polymers by decreasing 

the crystallinity or increasing some mechanical properties such as impact strength. Despite this difference with 

petroleum‐based molecules, lignin derivatives have proven good substitutes for aromatic molecules such as 

styrene, terephtalic acid, or bisphenol‐A. A wide range of applications can be reached with such lignin derivative‐

based polymers, such as high‐performance materials or for biomedical applications. All these applications in the 

field of polymer materials valorize the extensive research carried out on the fractionation of lignocellulosic 

biomass. Indeed, before producing and commercializing renewable polymers derived from lignin, it is essential 

to develop green, efficient, and economic processes to produce selectively and on a large scale small aromatic 

molecules from lignin. Improved processes should include both the fractionation of lignocellulosic biomass and 

the depolymerization of lignin. Moreover, this review only focuses on the use of bioresources; in terms of 

sustainability, the impact of the overall reactions should be also considered. 
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