Build Your Own Pip-Boy Styled Watch

[Arnov Sharma]’s latest PIP-WATCH version is an homage to Pip-Boys, the multi-function wrist-mounted personal computers of Fallout.

We like the magnetic clasp on the back end.

[Arnov] has created a really clean wearable design with great build instructions, so anyone who wants to make their own should have an easy time. Prefer to put your own spin on it, or feel inspired by the wrist-mounted enclosure? He’s thoughtfully provided the CAD files as well.

Inside the PIP-WATCH is a neat piece of hardware, the Lilygo T-Display-S3 Long. It’s an ESP32-based board with a wide, touch-enabled, color 180 x 640 display attached. That makes it a perfect fit for a project like this, at least in theory. In practice, [Arnov] found the documentation extremely lacking which made the hardware difficult to use, but he provides code and instructions so there’s no need to go through the same hassles he did.

In addition to the Hackaday.io project page, there’s an Instructables walkthrough.

If you put your own spin on a Pip-boy (whether just a project inspired by one, or a no-detail-spared build of dizzying detail) we want to hear about it, so be sure to drop us a tip!

Continue reading “Build Your Own Pip-Boy Styled Watch”

A Label Printer Gets A New Brain

The internals of a printer, whatever technology it may use, are invariably proprietary, with an abstracted more standard language being used to communicate with a host computer. Thus it’s surprisingly rare to see hacks on printers as printers, rather than printer hacks using the parts for some other purpose. This makes [Oelison]’s brain-swap of a Casio thermal label printer a welcome surprise, as it puts an ESP32 in the machine instead of whatever Casio gave it.

The value in the hack lies in the insight it gives into how a thermal printer works as much as it does in the ESP32 and the Casio, as it goes into some detail on the various signals involved. The strobe line for instance to enable the heater is a nuance we were unaware of. The resulting printer will lose its keyboard and display, but  make up for it in connectivity.

Despite what we said earlier this isn’t the first label printer hack we’ve seen. A previous one was Linux-based though.

Automated Brewing

There’s little more to making alcoholic beverages than sugar, water, yeast, and time. Of course those with more refined or less utilitarian tastes may want to invest a bit more care and effort into making their concoctions. For beer making especially this can be a very involved task, but [Fieldman] has come up with a machine that helps automate the process and take away some of the tedium.

[Fieldman] has been making beers in relatively small eight-liter batches for a while now, and although it’s smaller than a lot of home brewers, it lends itself perfectly to automation. Rather than use a gas stove for a larger boil this process is done on a large hot plate, which is much more easily controlled by a microcontroller. The system uses an ESP32 for temperature control, and it also runs a paddle stirrer and controls a screen which lets the brewer know when it’s time to add ingredients or take the next step in the process. Various beers can be programmed in, and the touchscreen makes it easy to know at a glance what’s going on.

For a setup of this size this is a perfect way to take away some of the hassle of beer brewing like making sure the stove didn’t accidentally get too hot or making sure it’s adequately stirred for the large number of hours it might take to brew, but it still leaves the brewer in charge for the important steps.

Beer brewing is a hobby with a lot of rabbit holes to jump down, and it can get as complicated as you like. Just take a look at this larger brewery setup that automates more tasks on a much larger scale.

Continue reading “Automated Brewing”

ESP32 bus pirate

ESP32 Sets Sail As A Modern Bus Pirate Powerhouse

Bus Pirate is nearly a household name in the hardware hacking world. The first version came out way back in 2008, and there have been several revisions since then. You can buy pre-built Bus Pirate devices, but there’s also the option now to build our own. The ESP32 Bus Pirate project has everything you need to turn an ESP32 device into a protocol sniffing/decoding powerhouse—all on a board you may have sitting around from another project.

There are a ton of solutions when it comes to talking to different buses —I2C, UART, JTAG, you name it, there’s a purpose-built device for it. Over a decade ago, Dangerous Prototypes released the Bus Pirate, offering a Swiss Army knife of a tool to interface with this ever-expanding list of communications standards. The ESP32 Bus Pirate project is open-source firmware for ESP32s that gives them the ability to be the multi-tool that lets us communicate with a long list of protocols.

It supports a wide variety of devices, from the straightforward ESP32 S3 Dev Kit available from a long list of suppliers to the more specialized M5 Cardputer equipped with its own keyboard. The original Bus Pirate required plugging the board into a PC to use it; with this being ESP32-based, that’s no longer a limitation. So long as you can supply power to the ESP32, you can connect and control it via WiFi and a web browser. In addition to the Bus Pirate protocols, the project allows us to directly control the pins on the ESP32 board, should you want to do more with it besides interfacing with one of the supported protocols. Be sure to check out some of our other articles about Bus Pirate, as it’s been a fantastic tool for the hacker community over the years.

Digital Etch-A-Sketch Also Plays Snake

The Etch-A-Sketch has been a popular toy for decades. It can be fun to draw on, but you have to get things right the first time, because there’s no undo button. [Tekavou] decided to recreate this popular toy in digital form instead to give it more capabilities. 

The build relies on an Inkplate e-paper screen as a display, which is probably as close you can get in appearance to the aluminium dust and glass screen used in an Etch-a-Sketch. The display is hooked up to an ESP32 microcontroller, which is charged with reading inputs from a pair of rotary encoders. In standard drawing mode, it emulates the behavior of an Etch-A-Sketch, with the ESP32 drawing to the e-paper display as the user turns the encoders to move the cursor. However, it has a magical “undo” feature, where pressing the encoder undoes the last movement, allowing you to craft complex creations without having to get every move perfect on your first attempt. As a fun aside, [Tekavou] also included a fun Snake game. More specifically, it’s inspired by NIBBLES.BAS, a demo program included with Microsoft QBasic back in the day.

We’ve seen all kinds of Etch-A-Sketch builds around these parts, including this impressive roboticized version. Video after the break.

Continue reading “Digital Etch-A-Sketch Also Plays Snake”

Continuous-Path 3D Printed Case Is Clearly Superior

[porchlogic] had a problem. The desire was to print a crystal-like case for an ESP32 project, reminiscent of so many glorious game consoles and other transparent hardware of the 1990s. However, with 3D printing the only realistic option on offer, it seemed difficult to achieve a nice visual result. The solution? Custom G-code to produce as nice a print as possible, by having the hot end trace a single continuous path.

The first job was to pick a filament. Transparent PLA didn’t look great, and was easily dented—something [porchlogic] didn’t like given the device was intended to be pocketable. PETG promised better results, but stringing was common and tended to reduce the visual appeal. The solution to avoid stringing would be to stop the hot end lifting away from the print and moving to different areas of the part. Thus, [porchlogic] had to find a way to make the hot end move in a single continuous path—something that isn’t exactly a regular feature of common 3D printing slicer utilities.

The enclosure itself was designed from the ground up to enable this method of printing. Rhino and Grasshopper were used to create the enclosure and generate the custom G-code for an all-continuous print. Or, almost—there is a single hop across the USB port opening, which creates a small blob of plastic that is easy to remove once the print is done, along with strings coming off the start and end points of the print.

Designing an enclosure in this way isn’t easy, per se, but it did net [porchLogic] the results desired. We’ve seen some other neat hacks in this vein before, too, like using innovative non-planar infill techniques to improve the strength of prints.

Continue reading “Continuous-Path 3D Printed Case Is Clearly Superior”

Building A 7-Segment Shadow Clock

There are plenty of conventional timepieces out there in the world; we’ve also featured a great many that are aesthetically beautiful while being unreadably esoteric. This neat “shadow clock” from [Smart Solutions for Home] is not conventional, but it’s still a clock you could use every day.

The display is made of four seven-segment digits, which have a subtle appearance. Each segment uses a solenoid to extend it forward out of the display, or to retract it flush with the faceplate. This creates a numerical display in all one color, with the physical protrusion doing the job of making the numbers visible. This is perhaps where the “shadow clock” name comes from, though you notice the protruding segments moreso than the shadows they cast on the faceplate.

Running the show is an ESP32, paired with H-bridges to drive the solenoids that make up the 7-segment displays. The H-bridges are driven via shift registers to reduce the number of GPIO pins needed. Unlike many other ESP32 clock builds, this one uses a DS3231 real-time clock module to keep accurate time, rather than solely relying on Internet-based NTP time servers. Configuring the clock can be done via a web interface. Design files are available online.

If you think you’ve seen this recently, maybe you’re thinkig of this prototype for a very similar display by [indoorgeek]. And that’s not the only way to make shadow clocks either. After all, the term is not enforced or defined by any global horological organization. Maybe that’s a good thing! Video after the break.

Continue reading “Building A 7-Segment Shadow Clock”