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Abstract

We present a set of novel, energy-based mod-
els built on top of graph neural networks (GNN-
EBMs) to estimate the unnormalized density of
a distribution of graphs. GNN-EBMs can gener-
ate graphs implicitly via MCMC sampling. We
compare the performance of GNN-EBMs trained
using 3 different estimators: pseudolikelihood,
conditional noise contrastive estimation, and per-
sistent contrastive divergence (PCD). We find that
all 3 estimators result in models that generalize
well, while models trained with PCD generate
samples that are competitive with state-of-the-art
baselines. Finally, we discuss the potential of
GNN-EBMs beyond generation for diverse tasks
such as semi-supervised learning and outlier de-
tection.

1. Introduction

Recent work on learning generative models has focused on
distributions over graphs. Many datasets can be succinctly
expressed in graph form, and generative models over these
structures can be used in problems such as molecule design
(Gilmer et al., 2017), robotics (Wang et al., 2018), recom-
mender systems (Ying et al., 2018), and more. There have
been a number of proposals based on adapting generative
models from other domains such as vision and natural lan-
guage. These include auto-regressive models (You et al.,
2018b), normalizing flows (Liu et al., 2019), and variational
auto-encoders (Simonovsky & Komodakis, 2018).

In this paper, we propose energy-based models for mod-
elling distributions over graph structures. EBMs have a rich
history in generative modelling (Hinton et al., 2006b;a) and
have recently shown promising results and desirable proper-
ties for image generation (Du & Mordatch, 2019; Grathwohl
et al., 2019). EBMs are flexible: they only require a map-
ping from a graph structure to a scalar. Many domains have
important constraints; for example, in molecule design the
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generated molecules must be physically possible. EBMs al-
low a natural specification of constraints through the energy
function. Closely related to our model are recent proposals
based on denoising auto-encoders (Seff et al., 2019), and
score function estimation (Niu et al., 2020); both implicitly
define an EBM, whereas we define ours explicitly.

However, EBMs also require the estimation of an often in-
tractable normalization constant. This poses challenges for
parameter estimation, likelihood evaluation, and sampling.
We explore proposed estimators from the literature, apply
them to graph data, and show they generate robust energy
landscapes. We further describe our sampling procedure,
and approximation strategies to improve computational ef-
ficiency. We find that GNN-EBMs trained with persistent
contrastive divergence (Tieleman, 2008) in particular gener-
ate samples competitive with current state-of-the-art base-
lines. Finally, we discuss future research directions towards
improving and scaling the EBM approach.

2. Background
2.1. Graph Neural Networks

Graph Neural Networks (GNNs) or Message Passing Neural
Nets (Scarselli et al., 2008; Gilmer et al., 2017) typically
use message passing (MP) steps to update node features,
followed by global pooling to construct a single graph em-
bedding. One useful MP aggregation is graph attention
(Velickovic et al., 2017), which uses attention (Vaswani
et al., 2017; Bahdanau et al., 2015) to weight messages.

2.2. Energy-Based Models

Energy-based models (EBMs) define a distribution over the
input data as py(x) = %. Given an input domain 2,
EBMs assign each point an unnormalized log probability
fo(x) : Q@ — R. Here, 0 represents the model parame-
ters, and Z(0) = > . exp(fo(x)) is the normalization
constant. EBMs get their name from the so-called energy
Sfunction, which is simply — f. This function fully specifies
the distribution. Because Z () is typically intractable, most
EBMs cannot be trained by maximum likelihood and in-
stead must rely on alternative estimators. We will describe
several such estimators in the remainder of this section.

Pseudolikelihood (Besag, 1975) approximates p(x; ) as:
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where x € R™ and z_; denotes x with its ith element
removed. With pseudolikelihood, we only need to be able
to compute the conditional distribution of each component,
fixing all others. The log-pseudolikelihood objective is
n f(x:0)
e
leu(0;%) = ) _log ef (-i:0) 4 e/ (x:)

=1

Conditional noise contrastive estimation (CNCE) (Cey-
lan & Gutmann, 2018) and noise contrastive estimation
(NCE) (Gutmann & Hyvirinen, 2010) reformulate the es-
timation problem as one of discriminating between true
data and noise samples. NCE is more efficient when the
noise distribution closely resembles the data distribution,
and CNCE achieves this by using corrupted data as the noise
distribution.

Using x’ to denote corrupted data, the CNCE loss of an
observation is as follows:

lence(0;x) = log[1 + exp(—F(x,x';6))]
F(x,x';0) = f(x;0) — f(x;0)
+ log pe(x]x") — log p.(x'|x) (1)

where p.(x’|x) is the probability of observing corrupted
sample x’ given data x.

Persistent contrastive divergence (PCD) (Younes, 1989;
Tieleman, 2008) trains by approximating the gradient of
the log-likelihood with:

Vologp(x;0) = Vo f(x;0) — Expx0) [Vaf(X;0)]

where x are samples drawn from the model distribution.
Computing the expectation in this estimator is intractable
in general, however we can approximate it via Monte Carlo
sampling. Contrastive divergence (Hinton, 2002; Carreira-
Perpinan & Hinton, 2005) runs a short Markov chain Monte
Carlo (MCMC) chain initialized from x. PCD instead main-
tains a persistent chain by initializing each short MCMC
chain from the previous one. This provides better ex-
ploratory behavior, and lower bias.

3. Methods
3.1. GNN-EBMs

Here we present GNN-EBMs, which use GNNs to define
graph distributions under the energy-based framework. We
describe the methods we use to adapt each estimator to
graph-structured data. We note that these methods can be
easily applied to a wide range of GNN architectures, though
we are able to use standard components like Velickovic et al.
(2017) as described in Section 4.1 to attain useful models.
We include the algorithms described in this section in the
supplementary material, Section 7.1.

3.2. Notation

Our training set consists of N wundirected graphs,
(G1,Ga,...,GN). A graph G consists of a set of nodes Vg
and a set of edges &g. Its structure can also be expressed as
an upper triangular adjacency matrix A € {0, 1}/Vol*IVel,
We use Afj to denote an adjacency matrix A where the entry
in the ith row and jth column has been flipped.

We learn function f(G;60), where f : G — R. f(G;0)
is defined by a GNN that maps graphs to unnormalized
log probabilities, or negative energies. To slightly abuse

notation, we also allow f to take in an adjacency matrix, so
f(A;0) is valid.

3.3. Pseudolikelihood

For graphs, we can model the elements of a graph’s adja-
cency matrix as a collection of binary-valued random vari-
ables. Computing the conditional for each element is easy,
as we only need the energy of the original adjacency and
the energy of the adjacency with that element flipped. We
can express this conditional as:

ef(A;0)

A7i0) 4 of (A56)

Ai' =lo
p(Aij) gef(

Thus, we can interpret pseudolikelihood as maximizing
the conditional probability of each element in a graph’s
adjacency matrix, with all other elements fixed.

3.4. Conditional Noise Contrastive Estimation

To adapt CNCE to graph data, we must decide on the appro-
priate conditional noise distribution p.(G’|G), where we use
G’ to denote a noise graph. In most cases, this distribution
is not permutation invariant, and doing the proper marginal-
ization over all permutations is intractable for larger graphs.
However, if we define a symmetric conditional noise dis-
tribution, then the two conditional noise terms cancel each
other out in Equation 1.

In Algorithm 1, we define a simple, symmetric way to gen-
erate noise graphs. By independently sampling noise param-
eter p from a Beta distribution for every new noise graph,
we induce more diversity in the samples. We can also tune
Beta to generate noise samples that are closer to the data.

3.5. Persistent Contrastive Divergence

To adapt PCD to graph data, we need to generate G from the
model distribution. We can do this using Gibbs sampling as
described in Algorithm 2. While previous approaches for
training restricted Boltzmann machines have relied on block
Gibbs sampling to parallelize this process (Fischer & Igel,
2014), we must do sequential sampling. This potentially
slows down training as a full Gibbs step involves iterating
through all ('¥1) entries of the adjacency. To mitigate this,
we carefully tune the number of Gibbs “mini-steps” we
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use over the adjacency entries to balance training time with
approximation accuracy.

3.6. Implicit Generation

Exact sampling from the GNN-EBM is intractable, as it is in
most EBMs. Instead, we rely on sampling through MCMC.
Here, we describe our sampling strategies. Note that our
sampling methods are currently designed for a fixed number
of nodes, N. We sample this from the empirical training
distribution, and then run MCMC over the edges to sample
adjacency matrices.

Gibbs Sampling. As described in Algorithm 2, starting
with some initial graph, we can use Gibbs sampling for
generation by continuously iterating through its adjacency
matrix and sampling from the full conditional distribution
for each edge, which in this case corresponds to a Bernoulli
distribution. Given enough iterations, this process will even-
tually converge to sampling from the true model distribution.

Greedy Generation. Although Gibbs sampling will even-
tually generate samples from the true distribution, it may
take an impractical number of burn-in samples to generate
reasonable results. As a practical alternative, we experiment
with greedy optimization from a random graph by greedily
flipping edges so as to minimize the energy function. This
will seek out local modes of the distribution, and empirically
yields good results. This is also reminiscent of the peturb-
and-MAP framework (Papandreou & Yuille, 2011), which
generates exact samples from an approximate distribution
that closely resembles the trained EBM.

We can also combine sampling strategies: initialize the chain
via optimization, and then perform Gibbs sampling. This
allows us to trade-off computation time and fidelity.

If we are working in a domain with known constraints on the
generation process, such as molecular data, we can also use
Metropolis-Hastings to incorporate these constraints into
the proposal distribution, similar to (Seff et al., 2019).

4. Experiments
4.1. Setup

Baselines. We train our models on two graph datasets intro-
duced in You et al. (2018b):

Ego-small. 200 graphs with 4 < |V| < 18, drawn from the
larger Citeseer network dataset (Sen et al., 2008).

Community-small. 100 2-community graphs that were gen-
erated procedurally, with 12 < |V| < 20.

We compare with 3 recent, state-of-the-art baselines:
GraphRNN (You et al., 2018b), Graph Normalizing Flows
(GNF) (Liu et al., 2019), and EDP-GNN (Niu et al.,
2020). We follow the same dataset train-test splits as the

GraphRNN codebase (You et al., 2018a).

Evaluation. We use the evaluation script from You et al.
(2018a), which computes MMD scores between generated
samples and the test set for 3 graph statistics: degree, orbit,
and cluster.

Training. We train a GNN-EBM for each dataset using
three different estimators: pseudolikelihood, CNCE, and
PCD. We use the same GNN architecture throughout, which
consists of attention for each MP step, mean global pooling,
and finally an MLP that outputs a single scalar. For CNCE,
we tune the Beta noise distribution. For PCD, we tune the
number of Gibbs steps needed to approximate a sample
from the model.

For the initial node features, we compared Gaussian, one-
hot, random binary, and Laplacian features and found that
one-hot worked the best. We use these for all experiments.

Generation. We use the Erdos-Renyi model (Erdds &
Rényi, 1960) with p = 0.1 as our initial distribution. We
do greedy generation until the model reaches a local mini-
mum, which typically takes 30-70 steps. We then do Gibbs
sampling and find 1000 “mini-steps” is enough to generate
high-quality samples. Each mini-step involves sampling the
conditional for a single edge, as defined in Algorithm 2.

For more details on the setup and how we tuned hyperpa-
rameters, see Section 7.2.

4.2. Results

We include Figures 2-5 referenced in this section in the
supplementary material, Section 7.

Generated Samples. We show samples in Figure 3.

Quantitative Evaluation. In Table 1, we compare the
MMD scores for GNN-EBM trained with the different es-
timators. Pseudolikelihood and CNCE give competitive
results on Ego-small but fail on the more complicated
Community-small dataset. PCD is the clear winner, per-
forming competitively against all baselines on both datasets.

Generalization. We investigated the generalization of the
PCD-trained EBM in Figure 1. For each Community-small
graph, we drew 100 permutations for its initial one-hot node
features and plotted the average of the corresponding 100
negative energies. The train and test energies are overlap-
ping and indistinguishable. We provide a similar plot for
Ego-small in Figure 2. The same trend generally holds as
well; the large test graph appearing at the bottom of the
plot is the exception. We suspect the model struggles to
generalize on larger graphs because there are so few of them
in the Ego-small dataset.

We note an interesting trend: the model assigns higher nega-
tive energies to larger graphs. We will continue investigating
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Figure 1. Left: For each Community-small graph we drew 100 random permutations of its initial node features, computed the corresponding
100 negative energies, and plotted the average as a single point. Datapoints sorted by number of nodes. Middle, Right: negative energies
for random perturbations of a single Community-small test graph. Each column corresponds to 100 random perturbations.

Table 1. MMD scores for various graph statistics between 1024 graphs generated from each model and the test set. The scores for
GRAPHRNN and GNF are copied directly from Liu et al. (2019). The scores for EDP-GNN are copied directly from Niu et al. (2020).

COMMUNITY-SMALL EGO-SMALL
MODEL DEGREE CLUSTER ORBIT DEGREE CLUSTER ORBIT
GRAPHRNN 0.030 0.010 0.010 0.040 0.050 0.060
GNF 0.120 0.150 0.020 0.010 0.030 0.0008
EDP-GNN 0.006 0.127 0.018 0.010 0.025 0.003
PSEUDOLIKELIHOOD 0.390 0.630 0.335 0.030 0.065 0.014
CNCE 0.187 0.567 0.245 0.021 0.043 0.007
PCD 0.039 0.082 0.016 0.023 0.027 0.006

this and whether a different architecture or normalization
scheme would help.

While pseudolikelihood and CNCE fail to produce high-
quality samples for Community-small, we note that our
models still generalize well over the test data and have
included plots illustrating this in Figure 5. This suggests
that the local energy landscape around data is well-formed.

Energy of Graph Perturbations. In Figure 1, we investi-
gate the energy landscape around the dataset graphs. Taking
a single test graph from Community-small, we generate
random perturbations by adding or removing an increas-
ing number of edges and observe that the negative energy
decreases smoothly.

Permutation Invariance. While any GNN that uses the
same MP function over all nodes is naturally permutation
equivariant, it is not necessarily permutation invariant. If we
generate one-hot node features and randomly assign them
to a graph’s nodes, the GNN will not necessarily map to
the same output for each random assignment. However, we
hope that our GNN would still learn some notion of permu-
tation invariance. We investigate this in Figure 4, where we
show the negative energy variance for different random node
feature assignments for each dataset graph. Each column
corresponds to a graph, and we sort by increasing number
of nodes from left to right within the two partitions. While
there are some outliers, the set of each graph’s negative
energies typically displays low variance and is outweighed

by the variance between different graphs. The plots suggest
our model has learned to assign similar energies to different
assignments of the initial node features, with the variance
increasing as the number of nodes (and thus, number of pos-
sible permutations) of a graph increases. We note that for
Ego-small, there is much higher variance for larger graphs
because there are so few of them in the dataset.

S. Conclusion

In this work we explored the use of GNN-EBMs for model-
ing distributions of graphs, applying various training tech-
niques to produce a generative model which performs com-
parably to recent baselines.

Clear directions for future work include scaling our ap-
proach to larger graphs (You et al., 2018b), which presents
interesting scalability challenges. Additionally, the energy-
based parameterization of our model opens up a number of
interesting applications. As in Grathwohl et al. (2019) we
can re-purpose classification architectures to define EBMs,
thus leveraging state-of-the-art graph classification models
for challenging tasks such as molecular property predic-
tion (Schiitt et al., 2018; Klicpera et al., 2020) and train
them as generative models, enabling intuitive approaches
for semi-supervised classification and outlier detection.
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7. Supplementary Material
7.1. Algorithms

Algorithm 1 CNCE Corrupted Graph Generation

Input: graph G with |V| nodes
Initialize A = adjacency(G).
Sample p ~ Beta(a, 3)
fori =1to |V|do
forj=i+1to|V|do
Sample U ~ Unif(0,1)
if U < p then
end if
end for
end for
return graph(A)
from A.

/I Create a new corrupted graph

7.2. Training Details

GNN Architecture. We use 6 MP steps. Each MP step
consists of dot-product attention (Vaswani et al., 2017) as
the aggregation function and an MLP with 3 layers and
1024 hidden units per layer. We follow this with mean
global pooling to generate a graph-level embedding. We
feed this into an MLP with 3 layers and 1024 hidden units,
which outputs our negative energies.

Hyperparameter Search. For the CNCE corrupted graph
generation, we searched over the following parameters for

Algorithm 2 Gibbs Sampling

Input: initial graph G with |V| nodes, Gibbs steps NV
Initialize A = adjacency(G)
fori =1to N do
/I One full step.
for j = 1to V| do
for k= j+ 1to |V|do
// One “ministep”.
A Ajilc
o7 (A30)
P& GF@e ferane

Sample U ~ Unif(0,1)
if U > p then
A+ A
end if
end for
end for
end for
return graph(A)
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Figure 2. For each graph in Ego-small we drew 100 random per-
mutations for its initial one-hot node features, computed the corre-
sponding 100 negative energies using our PCD-trained EBM, and
plotted the average as a single point. Points sorted by number of
nodes in the graph.

the Beta distribution: {(a = 1,8 = 10),(a = 1,8 =
20), (e =2,8 =8)}. (o = 1, 8 = 20) worked the best.

For the number of Gibbs “mini-steps” in PCD training, we
searched over N = {25, 50,100, 200}. 100 was sufficient,
50 was not enough.

Following You et al. (2018b), we tune parameters by gener-
ating 1024 samples from the model, computing the MMD
scores between these samples and the train graphs, and pick-
ing the parameters that result in the best score, averaged
across the three statistics.
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Figure 3. Graph samples. Top: Ego-small, bottom: Community-small. EDP-GNN samples are copied from Niu et al. (2020), and
GraphRNN samples are generated by training a model using their provided code (You et al., 2018a).
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Figure 4. Top: Ego-small. Bottom: Community-small. Boxplots depicting variance in negative energy over permutations of each dataset
graph. For each graph, we drew 100 random permutations for its initial one-hot node features and plotted the corresponding 100 negative
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to right. We randomly subsampled Ego-small to make the plot more readable.
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