
1

LISFLOOD-FP 8.2: GPU-accelerated multiwavelet discontinuous

Galerkin solver with dynamic resolution adaptivity for rapid,

multiscale flood simulation

Alovya Ahmed Chowdhury1, Georges Kesserwani1

Department of Civil and Structural Engineering, University of Sheffield, Sheffield, S10 2TN, United Kingdom 5

Correspondence: Alovya Chowdhury (alovya.chowdhury@gmail.com) and Georges Kesserwani

(g.kesserwani@sheffield.ac.uk)

Abstract. The second-order discontinuous Galerkin (DG2) solver of the shallow water equations in LISFLOOD-FP 8.0 is 10

well-suited for predicting small-scale transients that emerge in rapid, multiscale floods caused by impact events like

tsunamis. However, this DG2 solver can only be used for simulations on a uniform grid where it may yield inefficient

runtimes even when using its graphics processing unit (GPU) parallelised version (GPU-DG2). To maximise runtime

reduction, the new LISFLOOD-FP 8.2 version integrates GPU parallelised dynamic (in time) grid resolution adaptivity of

multiwavelets (MW) with the DG2 solver (GPU-MWDG2). The GPU-MWDG2 solver requires selecting a maximum 15

refinement level, 𝐿, based on size and resolution of the Digital Elevation Model (DEM) and an error threshold, ε ≤ 10-3, to

preserve similar accuracy as a GPU-DG2 simulation on a uniform grid. The accuracy and efficiency of dynamic GPU-

MWDG2 adaptivity is assessed for four tsunami-induced flooding test cases involving increasingly complex tsunamis: from

single-wave impact events to wave trains. At ε = 10-3, the GPU-MWDG2 simulations yield predictions similar to the GPU-

DG2 simulations, but using ε = 10-4 can improve the accuracy in velocity-related predictions. In terms of efficiency, the 20

GPU-MWDG2 simulations show progressively larger speedups over the GPU-DG2 simulations from 𝐿 ≥ 10, which become

significant (≥ 3.3- and 4.5-fold at ε = 10-4 and 10-3, respectively) for simulating a single-wave impact event. The

LISFLOOD-FP 8.2 code is open source, DOI: 10.5281/zenodo.4073010, as well as the simulation data and the input files

and scripts to reproduce them, DOI: 10.5281/zenodo.13909072, with additional documentation at

https://www.seamlesswave.com/Adaptive (last accessed: 9 October 2024). 25

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

2

1 Introduction

LISFLOOD-FP is a raster-based hydrodynamic modelling framework that has been used to support various geoscientific

modelling applications (e.g. Hajihassanpour et al., 2023; Hunter et al., 2005; Nandi & Reddy, 2022; Zeng et al., 2022; Ziliani

et al., 2020). LISFLOOD-FP has a suite of numerical solvers of the two-dimensional shallow water equations, including a

diffusive wave solver (Hunter et al., 2005), a local inertial solver (Bates et al., 2010), a first-order finite volume solver, and a 30

second-order discontinuous Galerkin (DG2) solver (Shaw et al., 2021). The DG2 solver is the most complex numerically,

requiring three times more degrees of freedom per computed variable and at least twelve times more computations per cell

compared to any of the other solvers in LISFLOOD-FP (Ayog et al., 2021; Kesserwani et al., 2018; Shaw et al., 2021). Even

when parallelised on a graphics processing unit (GPU), the GPU parallelised DG2 solver (GPU-DG2) may still exhibit

prohibitively long runtimes when used to run real-world flood simulations on Digital Elevation Models (DEMs) with raster 35

grid sizes beyond the kilometre scale and/or at grid resolutions near or below the metre scale (Kesserwani & Sharifian, 2023;

Shaw et al., 2021).

Although DG2 simulations are capable of accurately reproducing slow to gradual flooding flows, even at very

coarse DEM resolutions (Ayog et al., 2021; Kesserwani, 2013; Kesserwani & Wang, 2014; Shaw et al., 2021), they

primarily excel at capturing small-scale transients that occur over a wide range of spatial and temporal scales (Kesserwani et 40

al., 2023; Kesserwani & Sharifian, 2023; Sharifian et al., 2018; Sun et al., 2023). Such transients are typical of rapid flooding

flows triggered and driven by multiscale impact event(s) like tsunami(s), which can include zones of flow recirculation past

unsubmerged island(s). Hence, DG2 simulations are well-suited for obtaining detailed modelling of rapid, multiscale

flooding flows, such as in tsunami-induced flooding. Within this scope for the modelling, dynamic (in time) mesh adaptivity

has often been deployed with finite volume based tsunami inundation simulators to reduce simulation runtimes (e.g. Lee, 45

2016; Popinet, 2012). This paper reports the integration of dynamic grid resolution adaptivity with the GPU-DG2 solver in

LISFLOOD-FP to reduce the runtimes of rapid multiscale flow simulations, which are exemplified by tsunami-induced

flooding events.

Unlike static grid resolution adaptivity, which was integrated into LISFLOOD-FP 8.1 (Sharifian et al., 2023), this

LISFLOOD-FP 8.2 version performs dynamic grid resolution adaptivity every simulation timestep to achieve as much local 50

grid resolution coarsening as possible for grid cells covering regions of smooth flow and DEM features, thereby reducing the

computational effort and runtime of a simulation by reducing the number of computational cells in the grid. The

LISFLOOD-FP 8.2 version is unique in providing a single, mathematically sound hydrodynamic modelling framework that

integrates dynamic grid resolution adaptivity on the GPU for achieving raster-grid DG2 simulations that can preserve a

similar level of predictive accuracy and robustness as alternative GPU-DG2 simulations on a uniform grid. In fact, existing 55

hydrodynamic modelling frameworks for tsunami simulation that have integrated dynamic grid resolution adaptivity with

GPU parallelisation were mostly based on finite volume simulators (Berger et al., 2011; de la Asunción & Castro, 2017;

Ferreira & Bader, 2017; Kevlahan & Lemarié, 2022; LeVeque et al., 2011; Liang et al., 2015; J. Park et al., 2019; Popinet,

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

3

2011, 2012; Popinet & Rickard, 2007). Comparatively, there are fewer simulators based on DG methods, mostly in the

context of tsunami inundation simulation and considering triangular or curvilinear meshes, with sparse focusses: either on 60

integrating central processing unit (CPU) parallelisation of extrinsic forms of dynamic adaptivity, or on parallelising (non-

adaptive) DG simulators on the GPU; while, in any of the focusses, addressing the robustness treatments for the integration

of wet-dry fronts and/or the source terms (Blaise et al., 2013; Blaise & St-Cyr, 2012; Bonev et al., 2018; Castro et al., 2016;

Hajihassanpour et al., 2019).

To mention just a few, Blaise & St Cyr (2012) and Blaise et al. (2013) integrated CPU parallelisation with dynamic 65

adaptivity for curvilinear meshes, calling for better forms of adaptivity with better robustness treatments to achieve reliable

DG based tsunami inundation simulations. Rannabauer et al. (2018) addressed wet-dry front treatments with a DG based

simulator of tsunami inundation that integrated CPU parallelised dynamic adaptivity on triangular meshes; further, the

authors identified the benefit of their DG based simulator in comparison with a finite volume simulator. To track tsunami

propagation on the sphere, Bonev et al. (2018) and Hajihassanpour et al. (2019) developed DG based simulators with 70

dynamic adaptivity for curvilinear meshes, highlighting the need to further exploit GPU parallelisation to achieve practical

runtimes. For tsunami inundation simulations, Castro et al. (2016) found that non-adaptive DG simulator on triangular

meshes yield 23-fold faster runtimes when parallelised on the GPU as compared to when parallelised on the CPU with 24

threads. Yet, to the best of the writers’ knowledge, there is no existing DG based hydrodynamic modelling framework that

combines raster grid-based dynamic resolution adaptivity with GPU parallelisation packed within a mathematically sound 75

framework that intrinsically preserves the robustness and predictive accuracy of the DG solver on the uniform grid. In this

paper, such a GPU parallelised adaptive hydrodynamic modelling framework is optimised and newly integrated into

LISFLOOD-FP 8.2; the framework combines dynamic grid resolution adaptivity of multiwavelets (MW) with the DG2

solver formulation – this combination is, hereafter, referred to as dynamic GPU-MWDG2 adaptivity or the GPU-MWDG2

solver. 80

Dynamic MWDG2 adaptivity automates local grid resolution coarsening on a raster-based adaptive grid via the

multiresolution analysis (MRA) of MW applied to scaled DG2 modelled data – considering both (time-varying) flow

solutions and (time-invariant) DEM representations (Kesserwani et al., 2019; Kesserwani & Sharifian, 2020; Sharifian et al.,

2019, 2023). As the scaling, analysis, and reconstruction of DG2 modelled data are all inherent to the MRA procedure, the

existing robustness treatments incorporated in the reference GPU-DG2 solver are readily preserved irrespective of the 85

variability in the resolution scales. Another benefit of the MRA procedure is the reliance on a single criterion, an error

threshold ε, to sensibly control the amount of local grid resolution coarsening. For ε ≤ 10-3, dynamic MWDG2 adaptivity was

shown to preserve similarly accurate simulations as the reference DG2 solver run on the uniform grid (Caviedes-Voullième

et al., 2020; Caviedes-Voullième & Kesserwani, 2015; Gerhard et al., 2015; Kesserwani et al., 2015); and Kesserwani &

Sharifian (2020) formulated CPU-based MWDG2 solvers that further preserve the robustness of a reference DG2 solver 90

designed for realistic, two-dimensional hydrodynamic modelling (Kesserwani et al., 2018).

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

4

Chowdhury et al. (2023) devised an efficient GPU parallelisation of wavelet adaptivity for finite volume

hydrodynamic simulations. Their results show that the speedup afforded by wavelet adaptivity scales up with the maximum

refinement level, 𝐿 – selected from the size and resolution of the raster-formatted DEM file – and starts offering positive

speedups over uniform-grid finite volume GPU simulations starting from 𝐿 ≥ 9. Kesserwani & Sharifian (2023) extended 95

the GPU parallelisation of wavelet adaptivity to produce a GPU-MWDG2 solver and analysed its efficiency using ε = 10-3 in

simulating realistic slow-to-rapid flooding flow scenarios that involved 𝐿 ≥ 10. Their findings revealed that the GPU-

MWDG2 solver is three times faster than the GPU-DG2 solver when simulating a rapid flood scenario driven by an impact

event, requiring 𝐿 = 11, as long as the dynamic GPU-MWDG2 adaptivity does not use more than 85 % the number of cells

on the uniform grid of the GPU-DG2 simulation. These findings motivate for a dedicated study about the potential speedup 100

of GPU-MWDG2 simulations over GPU-DG2 simulations in the context of rapid multiscale flooding scenarios involving 𝐿

≥ 9 and ε ≤ 10-3.

Next, in Sect. 2, the GPU-MWDG2 solver in LISFLOOD-FP 8.2 is described with a focus on its use for running

GPU-MWDG2 simulations from raster-formatted DEM and initial flow setup files (Sect. 2.1), its associated upper memory

limits (Sect. 2.2), and its efficiency analysis using several proposed metrics obtained from postprocessing simulation outputs 105

(Sect. 2.3). In Sect. 3, the efficiency of the GPU-MWDG2 solver using ε = 10-3 and 10-4 is assessed with reference to the

GPU-DG2 solver by considering four test cases of tsunami-induced flooding with increasingly complex tsunamis, from

single-wave impact events to wave trains. Sect. 4 draws conclusions and recommendations as to when the GPU-MWDG2

solver can best lead to considerable speedups over the GPU-DG2 solver. The LISFLOOD-FP 8.2 code is open-source under

the GPL v3.0 licence (LISFLOOD-FP developers, 2024) in addition to the simulation results and the input files and scripts to 110

reproduce them (Chowdhury & Kesserwani, 2024), with further guidance at https://www.seamlesswave.com/Adaptive (last

accessed: 9 October 2024).

2 LISFLOOD-FP 8.2

LISFLOOD-FP 8.2 includes the new capability of running simulations over a non-uniform grid using dynamic GPU-

MWDG2 adaptivity. The GPU-MWDG2 solver can be used as an alternative to the uniform-grid GPU-DG2 solver (Shaw et 115

al., 2021) to potentially reduce simulation runtimes. Unlike with LISFLOOD-FP 8.1, where the MRA procedure of MW is

only applied once at the beginning of the simulation to generate a static non-uniform grid whose grid resolution is locally

coarsened as much as permitted by features of the DEM that are time-invariant (Sharifian et al., 2023), the GPU-MWDG2

solver deploys the MRA procedure every simulation timestep, denoted by Δ𝑡, to also automate grid resolution coarsening

based on the features of the time-varying flow solution. 120

The algorithmic description of the GPU-MWDG2 solver has been reported in previous papers (Kesserwani &

Sharifian, 2020; 2023), which its dynamic adaptivity has been further optimised to improve memory coalescing and

occupancy in the GPU kernels (NVIDIA, 2023). Therefore, the GPU-MWDG2 solver is only briefly overviewed here (see

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

5

Appendix A) with a focus on its operational workflow, shown in Figure 1. Here, the presentation is focussed on describing

the features incorporated into LISFLOOD-FP 8.2 for running the GPU-MWDG2 solver (Sect. 2.1), on identifying the upper 125

limits of its GPU memory consumption in relation to the specification of the GPU card (Sect. 2.2), and on proposing metrics

for detailed analysis of the efficiency of its dynamic adaptivity from output datasets (Sect. 2.3).

Figure 1: The main operations involved in the GPU-MWDG2 solver (further detailed in Appendix A).

2.1 The GPU-MWDG2 solver 130

Running a simulation of a test case using any solver in LISFLOOD-FP requires setting up several test case-specific input

files1, and the same is required for the GPU-MWDG2 solver. An important input file is the “parameter” file with the

extension .par, which is a text file specifying various solver and simulation parameters2. In the remainder of this paper, the

usability of the GPU-MWDG2 solver will be described for the “Monai valley” test case (explored in Sect. 3.1) – without loss

of generality. Step-by-step instructions on how to use the GPU-MWDG2 solver to run a simulation of the “Monai valley” 135

test case have been provided in Appendix B.

Figure 2: Listing of parameters in the .par file needed to run a GPU-MWDG2 simulation for the “Monai Valley” test case

(Sect. 3.1), with the GPU-MWDG2 specific items highlighted in bold.

1 https://www.seamlesswave.com/Merewether1; https://www.seamlesswave.com/Adaptive
2 https://www.seamlesswave.com/Merewether1-1.html

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

6

 140

The parameters2 or keywords that should be typed in the .par file for running a simulation of the Monai Valley test

case are shown in Figure 2, including seven keywords related to running the GPU-MWDG2 solver highlighted in bold. The

cuda keyword should be typed to access the GPU parallelised models in LISFLOOD-FP, e.g. the GPU-DG2 solver or the

GPU-MWDG2 solver. The mwdg2 keyword should be typed to select the GPU-MWDG2 solver3. The epsilon keyword

followed by a numerical value 0.001 specifies the error threshold 𝜀 = 10-3. The max_ref_lvl keyword followed by an 145

integer value specifies the maximum refinement level 𝐿, specified according to the DEM size and resolution as explained

next.

Figure 3: Initial non-uniform grid generated by the GPU-MWDG2 solver, via the MRA procedure, based on the static

features the bathymetry for the “Monai Valley” test case (Sect. 3.1). 150

The GPU-MWDG2 solver starts a simulation on a square uniform grid made up of 2L × 2L cells, which is the finest-

resolution grid accessible to the GPU-MWDG2 solver (Appendix A). Practically, the DEM often involves a (rectangular)

grid with 𝑀 rows and 𝑁 columns, for which the GPU-MWDG2 solver should still generate a starting square uniform grid

with 2L × 2L cells. The most optimal choice would be by selecting the smallest value of 𝐿 such that 2𝐿 ≥ max(𝑁, 𝑀). For 155

example, in the Monai valley test case, 𝑁 = 784 and 𝑀 = 486, and 𝐿 should be the smallest integer such that 2𝐿 ≥

max(784 , 486), leading to the choice 𝐿 = 10. Figure 3 shows the initial non-uniform grid generated by the GPU-MWDG2

solver. Since the GPU-MWDG2 solver starts from a square uniform grid inclusive of the DEM dimensions, two areas

3 The CPU version of the MWDG2 solver was not integrated on LISFLOOD-FP due to its uncompetitive runtimes.

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

7

emerge in the non-uniform grid: the actual test case area, which includes the DEM data and the initial flow conditions; and,

empty areas where no DEM data are available and where no flow should occur. 160

In the actual test case area, GPU-MWDG2 initialises the data in the cells by using the values specified in .dem and

.start files in raster grid format (see Appendix B). Meanwhile, in the empty areas, it initialises the flow data to zero and

assigns bathymetry data the numerical value that follows the wall_height keyword. This numerical value must be

sufficiently high such that a wall is generated between the test case area and the empty areas (see Figure 3) that prevents any

water from leaving the test case area (e.g. by choosing a numerical value that is higher than the largest water surface 165

elevation). For the Monai valley test case, the wall_height keyword is specified to 0.5 m to generate a wall that is high

enough to prevent any water from leaving the test case area. The refine_wall keyword and the ref_thickness

keyword, followed by an integer for the latter, typically between 16 and 64, should also be typed in the parameter file to

prevent GPU-MWDG2 from excessively coarsening the non-uniform grid around the walls (labelled with the curly braces in

Figure 3). For the Monai valley test case, the refine_wall keyword is specified to trigger refinement around the wall, and 170

ref_thickness is specified as 16 to trigger 16 cells at the highest refinement level between the wall and the test case area.

The remaining keywords in Figure 2 are standard for running simulations using LISFLOOD-FP and were described

previously2. Note that running GPU-MWDG2 on LISFLOOD-FP 8.2 only requires the user to provide the .dem file and

.start files, unlike the DG2 solvers in LISFLOOD-FP 8.0 (Shaw et al., 2021) and the static non-uniform grid generator in

LISFLOOD-FP 8.1 (Sharifian et al., 2023), which require providing .dem1x, .dem1y, .start1x and .start1y raster 175

files to initialise the slope coefficients of the DG2 solver. These coefficients are automatically initialised by the GPU-

MWDG2 solver in LISFLOOD-FP 8.2.

Compared to a GPU-DG2 simulation, a GPU-MWDG2 simulation consumes much more memory. As shown next

in Sect. 2.2, the large memory costs arise from the need to store the objects involved in the GPU-MWDG2 algorithm.

Practically, the largest allowable choice of 𝐿, or largest square uniform grid, is restricted by the memory capacity of the 180

GPU card on which the GPU-MWDG2 simulation is performed.

2.2 GPU memory cost analysis and limits

The scope for running a GPU-MWDG2 simulation depends on the availability of a GPU card that can fit the memory costs

for the specified choice of 𝐿. The left panel in Figure 4 shows the breakdown percentage of the memory consumed by the

objects involved in GPU-MWDG2 simulations, i.e. the GPU-MWDG2 non-uniform grid, the explicit neighbours of each cell 185

in the grid, and the hierarchy of grids involved in the dynamic GPU-MWDG2 adaptivity process (overviewed in Appendix

A). It can be seen that 15% of the memory is allocated for arrays storing the hierarchy of uniform grids, and 6% is allocated

for other miscellaneous purposes. Remarkably however, nearly 80% of the overall GPU memory costs are due to allocating

arrays for the non-uniform grid and its neighbours: 22% from storing the array representing the non-uniform grid, while

another 57% from explicitly storing the four neighbours of each cell in the non-uniform grid. This is because the GPU-190

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

8

MWDG2 solver is coded to allocate GPU memory for the worst-case scenario where there is no grid coarsening at all,

thereby negating the need for memory reallocation after any coarsening to maximise the efficiency of dynamic GPU-

MWDG2 adaptivity, since memory allocation is a relatively slow operation.

Figure 4: GPU memory consumed by dynamic GPU-MWDG2 adaptivity. Left panel shows the percentage breakdown of 195

the GPU memory consumed by the different objects involved in the GPU-MWDG2 solver. Right panel shows the amount of

GPU memory allocated against the maximum refinement level L; The numbers on top of the bars show the number of cells

for a given value of L. The horizontal lines indicate the memory limits of four GPU cards.

The right panel in Figure 4 displays the GPU memory allocated by the GPU-MWDG2 simulations for different 𝐿 200

leading to 2L × 2L cells on the square uniform grid. The coloured lines represent the memory limits of four different GPU

cards. In this figure, the memory limits are considered for 𝐿 ≥ 9, i.e. for the case where wavelet-based adaptive simulations

were shown to start offering speedups over the uniform-grid simulations (Chowdhury et al., 2023; Kesserwani & Sharifian,

2023). As can be seen, dynamic GPU-MWDG2 adaptivity can only allocate GPU memory below the upper memory limit of

the GPU card under consideration, leading to a restriction on the value of L that can be employed. For instance, a GTX 1050 205

card with a memory capacity of 2 GB can only accommodate GPU-MWDG2 simulations up to L = 10, i.e. starting from a

square uniform grid made of 1024 × 1024 cells; this is because any value of 𝐿 > 10 will lead to exceeding this GPU card’s

memory limit. Generally, the larger the value of 𝐿, the larger the 2L × 2L cells on the square uniform grid, thus the larger the

memory requirement for the GPU card. At the time this study was conducted, GPU-MWDG2 simulations involving 𝐿 ≥ 13,

i.e. starting from a square uniform grid from 8192 × 8192 cells, were not feasible because accommodating such values of 𝐿 210

needed >80 GB of GPU memory, which was higher than the memory limit of the latest commercially available GPU card

(i.e. the A100 GPU card, with 80 GB of memory).

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

9

2.3 Metrics for analysing GPU-MWDG2’s runtime efficiency

Assessing the potential speedup that could be afforded by GPU-MWDG2 adaptivity over a GPU-DG2 simulation is essential

for a user. As noted in other works that have explored wavelet adaptivity, the computational effort and speedup of a GPU-215

MWDG2 simulation should ideally be correlated exactly with the number of cells in the GPU-MWDG2 non-uniform grid

(since the number of cells dictates the number of DG2 solver updates to be performed). However, in practice, this rarely

occurs as the ideal speedup is diminished by the additional computational effort spent by GPU-MWDG2 to generate the non-

uniform grid every timestep via the MRA process (Kesserwani et al. 2019; Kesserwani and Sharifian, 2020; Kesserwani and

Sharifian, 2023; Chowdhury et al. 2023). Thus, to thoroughly assess the potential speedup of a GPU-MWDG2 simulation, 220

the user must consider the interdependent effects of the number of cells in the non-uniform grid, the computational effort of

performing the DG2 solver updates, and the computational effort of performing the MRA process.

To this end, starting from LISFLOOD-FP 8.2, the user can include the “cumulative” keyword in the parameter

file to produce a “.cumu” file that contains the time histories of several quantities for analysing the speedup achieved by

GPU-MWDG2 adaptivity [i.e. the number of cells in the non-uniform grid, the computational effort of performing the DG2 225

solver updates per timestep, the timestep size, the timestep count, amongst other items with the full list of items detailed in

any of the the data and script files in Chowdhury and Kesserwani (2024)]. In this paper, the time histories of these quantities

are postprocessed into several time-dependent metrics for analysing the speedups of GPU-MWDG2 simulations compared to

GPU-DG2 simulations (Sect. 3). The metrics are described in Table 1, and their use for analysing the speedup of a GPU-

MWDG2 simulation is explained next by way of an example. 230

Table 1: Time-dependent metrics for evaluating the potential speedup of a GPU-MWDG2 simulation over a GPU-DG2

simulation.

Metric Description

𝑁𝑐𝑒𝑙𝑙𝑠(𝑡)
Number of cells in GPU-MWDG2’s non-uniform grid compared to GPU-DG2’s grid (as a

percentage) against simulation time.

𝑅𝐷𝐺2(𝑡)
Computational effort spent by GPU-MWDG2 to perform the DG2 solver updates at a given

timestep (relative to GPU-DG2 as a percentage) against simulation time.

𝑅𝑀𝑅𝐴(𝑡)
Computational effort spent by GPU-MWDG2 to perform the MRA process and generate the non-

uniform grid at a given timestep (relative to GPU-DG2 as a percentage) against simulation time.

𝑆𝑖𝑛𝑠𝑡(𝑡)
Instantaneous speedup achieved by GPU-MWDG2 over GPU-DG2 at a given timestep against

simulation time.

𝑁Δ𝑡(𝑡) Number of timesteps taken by GPU-MWDG2 to reach a given simulation time.

𝐶𝐷𝐺2(𝑡)
Cumulative computational effort spent by GPU-MWDG2 to perform the DG2 solver updates

(quantified in units of wall clock time) up to a given simulation time.

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

10

𝐶𝑀𝑅𝐴(𝑡)
Cumulative computational effort spent by GPU-MWDG2 to perform the MRA process

(quantified in units of wall clock time) up to a given simulation time.

𝐶𝑡𝑜𝑡(𝑡)
Total cumulative computational effort spent by GPU-MWDG2 to complete a simulation

(quantified in units of wall clock time) up to a given simulation time.

𝑆𝑎𝑐𝑐(𝑡) Accumulated speedup of GPU-MWDG2 over GPU-DG2 up to a given simulation time.

 In a GPU-MWDG2 simulation of an impact event, the computational effort per timestep changes depending on the 235

change in the number of cells in the GPU-MWDG2 non-uniform grid. The number of cells changes over time because finer

cells are generated by GPU-MWDG2 adaptivity to track the flow features produced by the impact event as it enters and

travels through the bathymetric area. Using the same Monai Valley example (Sect 3.1), the left panel of Figure 5 shows the

initial non-uniform grid generated by GPU-MWDG2 at the start of the simulation, while the right panel shows an

intermediate non-uniform grid generated by GPU-MWDG2 after the simulation has progressed by 17 s, i.e. after an impact 240

event, here a tsunami, has entered and propagated through the bathymetric area. At the start of the simulation, the initial non-

uniform grid is coarsened as much as allowed, based only on the static features of the bathymetric area and initial flow

conditions, leading to a minimal number of cells in the grid, which is quantified by 𝑁𝑐𝑒𝑙𝑙 . The number of cells determines the

number of DG2 solver updates to be performed at a given timestep, leading to a corresponding computational effort per

timestep, which is quantified by 𝑅𝐷𝐺2. There is also the computational effort of performing the MRA process at a given 245

timestep, which is quantified by 𝑅𝑀𝑅𝐴. Based on the combined computational effort of performing both the MRA process

and the DG2 solver updates at a given timestep, the instantaneous speedup in completing one timestep of a GPU-MWDG2

simulation can be computed (relative to the GPU-DG2 simulation), which is quantified by 𝑆𝑖𝑛𝑠𝑡 . In Figure 5, after the

simulation has progressed by 17 s, the number of cells in the non-uniform grid has increased due to using finer cells to track

the tsunami’s wavefronts and wave diffractions, which leads to a higher value of 𝑁𝑐𝑒𝑙𝑙 and 𝑅𝐷𝐺2 (and possibly also to a 250

higher value of 𝑅𝑀𝑅𝐴, as a higher number of cells in the non-uniform grid means more cells must be processed during the

MRA process); thus, 𝑆𝑖𝑛𝑠𝑡 is expected to drop. Generally, the higher the complexity of the impact event, the higher the

number of cells in the GPU-MWDG2 non-uniform grid, and the lower the potential speedup.

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

11

Figure 5: GPU-MWDG2 non-uniform grids generated for the “Monai Valley” test case (Sect. 3.1). Left panel shows the grid 255

at the start of the simulation whereas the right panel shows the grid after the simulation has progressed by 17 s, which tracks

flow dynamics.

The metrics 𝑁𝑐𝑒𝑙𝑙 , 𝑅𝐷𝐺2 , 𝑅𝑀𝑅𝐴 and 𝑆𝑖𝑛𝑠𝑡 quantify the computational effort and speedup of a GPU-MWDG2

simulation per timestep compared to a GPU-DG2 simulation. However, the overall or cumulative computational effort and 260

speedup of a GPU-MWDG2 simulation depends on having accumulated the computational effort and speedup per timestep

from all the timesteps taken by GPU-MWDG2 to reach a given simulation time. The higher the number of timesteps taken

by GPU-MWDG2 to reach a given simulation time (quantified by 𝑁Δ𝑡), the higher the cumulative computational effort spent

by GPU-MWDG2 to reach that simulation time (quantified by 𝐶𝑡𝑜𝑡). The 𝐶𝑡𝑜𝑡 metric is computed by summing the

cumulative computational effort spent by GPU-MWDG2 to perform the DG2 solver updates and the MRA process, which is 265

quantified by 𝐶𝐷𝐺2 and 𝐶𝑀𝑅𝐴 , respectively. Using the cumulative metrics, the overall speedup accumulated by a GPU-

MWDG2 simulation can be computed, which is quantified by 𝑆𝑎𝑐𝑐. The metrics in Table 1 are used in the next section (Sect.

3) to assess the speedup afforded by GPU-MWDG2 adaptivity.

3 Evaluation of GPU-MWDG2 adaptivity

The efficiency of the GPU-MWDG2 solver is evaluated against the GPU-DG2 solver (which is always run on a uniform grid 270

at the finest resolution used by the GPU-MWDG2 solver) by running and comparing GPU-MWDG2 simulations against

GPU-DG2 simulations using the time-dependent metrics proposed in Table 1 (Sect. 2.3). For completeness, the accuracy of

GPU-MWDG2 simulations is also evaluated, namely by quantifying the difference between the predictions of a GPU-

MWDG2 simulation and a GPU-DG2 simulation using the root mean squared error (RMSE) and the correlation coefficient

(𝑟), which are given by: 275

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

12

𝑅𝑀𝑆𝐸 =
√∑ (𝑃𝑖,𝑀𝑊𝐷𝐺2 −𝑃𝑖,𝐷𝐺2)2𝑁𝑠

𝑖

𝑁𝑠
 (1)

𝑟 =
∑ (𝑃𝑖,𝑀𝑊𝐷𝐺2−𝑃𝑀𝑊𝐷𝐺2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑃𝑖,𝐷𝐺2 𝑃𝐷𝐺2̅̅ ̅̅ ̅̅ ̅̅)

𝑁𝑠
𝑖

√[1
𝑁𝑠

∑ (𝑃𝑖,𝑀𝑊𝐷𝐺2−𝑃𝑀𝑊𝐷𝐺2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑁𝑠
𝑖

] [1
𝑁𝑠

 ∑ (𝑃𝑖,𝐷𝐺2−𝑃𝐷𝐺2̅̅ ̅̅ ̅̅ ̅̅)2𝑁𝑠
𝑖

]
 (2)

where, 𝑁𝑠 denotes the number of sampling points, 𝑃𝑖,𝑀𝑊𝐷𝐺2 and 𝑃𝑖,𝐷𝐺2 are the ith points where GPU-MWDG2 and GPU-DG2

predictions are spatially and/or temporally sampled, respectively, and 𝑃𝑀𝑊𝐷𝐺2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ and 𝑃𝐷𝐺2

̅̅ ̅̅ ̅̅ are their mean predictions across all

sampling points. The RMSE measures the closeness between the predictions, whereas the r value measures the correlation 280

(similarity) among these same predictions. The nearer to 0 the RMSE, the closer the predictions, and the nearer to 1 the 𝑟

value, the higher their similarity. The GPU-MWDG2 simulations are run with ε = 10-4 and 10-3, which are the values for

which the GPU-MWDG2 solver preserves the predictive accuracy of the GPU-DG2 solver while achieving a fair level of

efficiency (Kesserwani et al., 2019; Kesserwani & Sharifian, 2020; 2023; Sharifian et al., 2019; 2023).

 285

Table 2: Characteristics of the four selected test cases listed in order of tsunami complexity and including the DEM size and

resolution dictating the choice of L, the Manning coefficient, nM, and the simulation output time, tend.

Test case DEM size Tsunami complexity L tend nM

“Monai Valley”

(Sect. 3.1)

784 rows × 486

columns (0.007 m

resolution)

Single-wave event with a smooth wave peak

during 10 and 15 s, followed by a trough,

during 15 and 20 s.

10 22.5 s 0.01

“Seaside Oregon”

(Sect. 3.2)

2181 rows × 1091

columns (0.02 m

resolution)

Single-wave event with a long wave, without

a trough, that occurs by 10 s, travelling

towards the coast, from 15 s, to then hit a

complex urban town.

12 40 s 0.025

“Tauranga

Harbour”

(Sect. 3.3)

4096 rows × 2196

columns (10 m

resolution)

Wave train event of three low-frequency

waves with troughs (two including noise)

propagating over a long duration of 40 hr.

12 40 hr 0.025

“Hilo Harbour”

(Sect. 3.4)

702 rows × 692

columns (10 m

resolution)

Wave train event with many high-frequency

waves with troughs propagating over a long

duration of 6 hr.

10 6 hr 0.025

As the potential speedup afforded by GPU-MWDG2 adaptivity is hypothesised to depend on the impact event

complexity and the DEM size (dictating the choice of the 𝐿), the speedup evaluation is performed using four realistic 290

tsunami-induced flooding test cases that each feature a unique combination of impact event complexity (either a simple

single-wave tsunami or a complex wave train tsunami) and DEM size (requiring either 𝐿 = 10 or 12). Table 2 includes the

test case-specific DEM sizes and resolutions that dictate the choice of 𝐿 ≥ 10 and the physical set-up parameters, i.e. the

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

13

Manning coefficient, nM, and the simulation end time, tend. The GPU-MWDG2 and GPU-DG2 simulations were run on the

Stanage high performance computing cluster of the University of Sheffield to access the A100 GPU card with 80 GB of 295

memory, necessary for accommodating the memory costs of GPU-MWDG2 simulations requiring an 𝐿 value as high as 12

(Sect. 2.2).

3.1 Monai Valley

This test case was used to validate many hydrodynamic solvers (Caviedes-Voullième et al., 2020; Kesserwani & Liang,

2012; Kesserwani & Sharifian, 2020; Matsuyama & Tanaka, 2001). It involves a 1:400 scaled replica of the 1993 tsunami 300

that flooded Okushiri Island after a wave runup of 30 m at the tip of a very narrow gulley in a small cove at Monai Valley

(Liu et al., 2008). The scaled DEM has 784 × 486 cells for which its associated initial square uniform grid is generated with

L = 10.

Figure 6: Monai Valley. Top-down view of bathymetry (top left panel), where the red arrows indicate the direction and 305

distance travelled by the tsunami; time history of the tsunami entering from the left boundary (bottom left panel); initial

GPU-MWDG2 non-uniform grids (right panels) covering the portion of the bathymetric area framed by the white box (top

left panel).

In Figure 6, a top-down view of the bathymetric area is shown (top left panel), which has a small island in the 310

middle and a coastal shoreline to the right, including Okushiri Island and Monai Valley. The coastal shoreline gets flooded

by a tsunami that initially enters the bathymetric area from the left boundary and then travels to the right by 4.5 m (indicated

by the red arrows), interacting with the small island as it travels through the bathymetric area. This tsunami is simulated for

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

14

22.5 s, during which it travels through the bathymetric area in three stages of flow over time: the entry stage (0 to 7 s), the

travelling stage (7 to 17 s) and the flooding stage (17 to 22 s). During the entry stage, the tsunami does not enter the 315

bathymetric area, as seen in the hydrograph of the tsunami’s water surface elevation (bottom left panel of Figure 6). During

the travelling stage, the tsunami enters from the left boundary and travels right towards the coastal shoreline. Lastly, during

the flooding stage, the tsunami floods the coastal shoreline, due to which many flow dynamics such as wave reflections and

diffractions are produced that must be tracked using finer cells, thus increasing the number of cells in the GPU-MWDG2

non-uniform grid. In the right panels of Figure 6, the initial GPU-MWDG2 grids at ε = 10-3 and 10-4 are depicted for the 320

portion of the bathymetric area framed by the white box (top left panel of Figure 6). With ε = 10-3 and 10-4, the initial GPU-

MWDG2 grid has 6% and 12% of the number of cells as in the GPU-DG2 uniform grid, respectively.

Figure 7: Monai Valley. Metrics of Table 1 applied to the GPU-MWDG2 and GPU-DG2 simulations. Also shown is a time

history of Δ𝑡 (centre panel). 325

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

15

In Figure 7, an analysis of the runtimes of the GPU-DG2 and GPU-MWDG2 simulations using the time-dependent

metrics of Table 1 is shown; a time history of Δ𝑡 is also included. The dashed lines in the top left panel indicate the initial

value of 𝑁𝑐𝑒𝑙𝑙 , i.e. 𝑁𝑐𝑒𝑙𝑙 of the initial GPU-MWDG2 non-uniform grids. Up to 15 s, i.e. before the flooding stage of flow

begins, the time history of 𝑁𝑐𝑒𝑙𝑙 remains flat, meaning that the number of cells in the GPU-MWDG2 non-uniform grid does 330

not change over time. Once the flooding stage begins however, 𝑁𝑐𝑒𝑙𝑙 increases slightly, particularly at ε = 10-4. With an

increased number of cells in the non-uniform grid, the computational effort of performing the DG2 solver updates per

timestep should increase, which is confirmed by the time history of 𝑅𝐷𝐺2, which is flat before the flooding stage of flow, but

thereafter increases, particularly at ε = 10-4. Conversely, unlike 𝑅𝐷𝐺2, the time history of 𝑅𝑀𝑅𝐴 is similar for both values of ε,

and stays flat for most of the simulation except for an initial decrease at the start, meaning that the computational effort of 335

performing the MRA process per timestep is similar for both values of ε and remains fixed throughout the simulation. Thus,

the drop in the speedup of completing a single timestep of the GPU-MWDG2 simulation compared to the GPU-DG2

simulation is mostly due to the increase in 𝑅𝐷𝐺2 at ε = 10-4, with 𝑆𝑖𝑛𝑠𝑡 dropping from 2.0 to 1.8 (which otherwise stays flat at

2.7 for ε = 10-3).

Besides analysing the computational effort and speedups of the GPU-MWDG2 simulations per timestep, there is 340

also the question of analysing the cumulative computational effort of running the simulations, which depends on the timestep

size (Δ𝑡) and the number of timesteps taken to reach a given simulation time (𝑁Δ𝑡). In this test case, the time histories of Δ𝑡

of the GPU-DG2 simulation and the GPU-MWDG2 simulation using ε = 10-4 are very similar, but with ε = 10-3, Δ𝑡 drops at

7 s, i.e. as soon as the travelling stage of flow begins. This slight drop in Δ𝑡 is likely dictated by wetting and drying on the

cells associated with more frequent and aggressive grid resolution coarsening at ε = 10-3 than 10-4. Due to the smaller Δ𝑡 at ε 345

= 10-3, the trend in 𝑁Δ𝑡 is steeper at ε = 10-3 than 10-4, i.e. more timesteps are taken and thus more computational effort is

spent by GPU-MWDG2 to reach a given simulation time at ε = 10-3 than 10-4. Still, despite the steeper trend in 𝑁Δ𝑡, the

cumulative computational effort of performing the MRA process is similar using both ε = 10-3 and 10-4, which is expected

given that 𝑅𝑀𝑅𝐴 is also very similar for values of ε. In contrast, the cumulative computational effort of performing the DG2

solver updates is considerably higher at ε = 10-4 than 10-3, likely due to the higher 𝑅𝐷𝐺2 at ε = 10-4, which seems correct since 350

a higher computational effort to perform the DG2 solver updates per timestep should lead to a higher cumulative

computational effort (assuming that the time histories of 𝑁Δ𝑡 are similar for the different values of ε, which is the case here).

Overall, for both values of ε, the total computational effort of running the GPU-MWDG2 simulations is always lower than

that of the GPU-DG2 simulation, with 𝐶𝑡𝑜𝑡 always being lower than that of GPU-DG2 at both ε = 10-3 and 10-4. The

accumulated speedups of the GPU-MWDG2 simulations, 𝑆𝑎𝑐𝑐 , finish at around 2.5 and 2.0 using ε = 10-3 and 10-4, 355

respectively.

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

16

Figure 8: Monai Valley. Time series of the water surface elevation (h + z) predicted by GPU-DG2 and GPU-MWDG2 at the

three sampling points (shown in Figure 6, top left panel) compared to the experimental results.

 360

Table 3: Monai valley. RMSE and r scores from the GPU-MWDG2 predictions versus the GPU-DG2 prediction.
RMSE r

Prediction dataset ε = 10-3 ε = 10-4 ε = 10-3 ε = 10-4

Time series at Point 1 4.19 × 10-4 1.36 × 10-4 0.9995 0.9999

Time series at Point 2 1.40 × 10-3 7.55 × 10-4 0.9935 0.9979

Time series at Point 3 4.53 × 10-4 1.91 × 10-4 0.9994 0.9999

Flood map at tend 1.81× 10-3 1.00 × 10-3 0.9978 0.9993

In Figure 8 and Table 3, the difference between the GPU-MWDG2 predictions at ε = 10-3 and 10-4 and the GPU-DG2

prediction are evaluated for the time series of the water surface elevation at Points 1, 2 and 3 (coloured points in the top left

panel of Figure 7), at which all the predictions agree well with the measured time series. With both ε values and at all three 365

points, the GPU-MWDG2 predictions match those of GPU-DG2, yielding close RMSE and 𝑟 scores, including for the spatial

flood map predictions at tend. Overall, GPU-MWDG2 competitively reproduces the GPU-DG2 water surface elevation

predictions with both ε values while being more than 2 times faster than GPU-DG2 due to using L = 10, i.e. the “borderline”

value of L where GPU-MWDG2 adaptivity reliable yields a speedup. In the next test case, the impact of a larger DEM size,

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

17

requiring a larger 𝐿 value, on the speedup of the GPU-MWDG2 solver is evaluated, while further considering the prediction 370

of more complex velocity-related quantities.

3.2 Seaside Oregon

This is another popular benchmark test case used to validate hydrodynamic solvers for nearshore tsunami inundation

simulation (Gao et al., 2020; Macías et al., 2020; Park et al., 2013; Qin et al., 2018; Violeau et al., 2016). It involves a 1:50

scaled replica of an urban town in Seaside, Oregon, flooded by a tsunami travelling along a scaled DEM made up of 2181 × 375

1091 cells, here requiring a larger L = 12 to generate the initial square uniform grid.

Figure 9: Seaside Oregon. Top-down view of bathymetry (top left panel), where the red arrows indicate the direction and

distance travelled; tsunami time history entering the left boundary (bottom left panel); initial GPU-MWDG2 grids (right

panels) for the potion in white box (top left panel). 380

In Figure 9, the bathymetric area is shown (top left panel), which is very plain everywhere except to the right where

very complex terrain features of the urban town, such as buildings and streets, are located. The urban town is flooded by a

tsunami that enters from the left boundary and travels a distance of 33 m to the right before hitting and flooding the town (as

shown by the red arrows). This tsunami is simulated for 40 s, during which it travels through the bathymetric area in four 385

stages of flow over time, much like in the last test case (Sect. 3.1): the entry stage (0 to 10 s), the travelling stage (10 to 25 s),

the flooding stage (25 to 35 s) and the inundation stage (35 to 40 s). During the entry stage, the tsunami is not yet in the

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

18

bathymetric area. During the travelling stage, the tsunami starts to enter the bathymetric area from the left boundary and

travels right towards the town. During the flooding stage, the tsunami hits the town, flooding the streets and overtopping

some of the buildings, causing vigorous flow dynamics. Finally, during the inundation stage, the tsunami inundates the town 390

and eventually interacts with the right boundary, causing wave reflections. The water surface elevation hydrograph of the

tsunami is plotted in the bottom left panel of Figure 9: it only has a single peak, indicating low tsunami complexity. The right

panels show the initial GPU-MWDG2 non-uniform grids at ε = 10-3 and 10-4, respectively (again for the portion of the

bathymetric area framed by the white box in top left panel): at ε = 10-3, greater grid coarsening is achieved, with the grid

including only 2% of the number of cells as in the GPU-DG2 uniform grid, whereas at ε = 10-4 it is 5% since more cells are 395

used due to retention of finer resolution around and within complex terrain features of the urban town.

Figure 10: Seaside Oregon. Metrics of Table 1 applied to the GPU-MWDG2 and GPU-DG2 simulations. Also shown is a

time history of Δ𝑡 (centre panel).

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

19

 400

In Figure 10, an analysis of runtimes of the GPU-MWDG2 and GPU-DG2 simulations are shown. As indicated by

the time history of 𝑁𝑐𝑒𝑙𝑙 , the number of cells in the GPU-MWDG2 non-uniform grid does not increase significantly for either

value of ε until the flooding stage of flow at 25 s, where 𝑁𝑐𝑒𝑙𝑙 starts increasing more noticeably. Once the number of cells

starts increasing, there is a corresponding increase in 𝑅𝐷𝐺2. On the other hand, the time history of 𝑅𝑀𝑅𝐴 quite flat during the

entire simulation, except for a small decrease during the first 10 s of the simulation, and a small increasing trend in the final 405

5 s of the simulation, i.e. during the inundation stage of flow when the number of cells increases relatively sharply compared

to the rest of the simulation. Driven primarily by the increase in 𝑅𝐷𝐺2 at the flooding stage at 25 s, the time history of 𝑆𝑖𝑛𝑠𝑡 is

quite stable until 25 s and thereafter shows a decreasing trend that is particularly steep at ε = 10-3.

Like the previous test case (Sect. 3.1), the time histories of Δ𝑡 in the GPU-DG2 simulation and GPU-MWDG2

simulation at ε = 10-4 are very similar, but at ε = 10-3, there is a sharp drop in Δ𝑡 after 32 s, i.e. when the flooding stage of 410

flow starts transitioning to the inundation stage. This sharp drop in Δ𝑡 is triggered by wet/dry fronts at coarse cells that are

present in the non-uniform grid with ε = 10-3, but not with 10-4. The first drop in Δ𝑡, which occurs at 25 s when the flooding

stage starts, leads to a locally steeper trend in the time history of 𝑁Δ𝑡, as indicated by the kink at 25 s. The second drop in Δ𝑡,

which is seen only for ε = 10-3 after 32 s, leads to a sustained steepness in the time history of 𝑁Δ𝑡 after 32 s. This steepness

means that GPU-MWDG2 takes more timesteps and thus accumulates more computational effort to reach a given simulation 415

time at ε = 10-3 than 10-4, which is confirmed by the final value of 𝐶𝑀𝑅𝐴, which is higher at the end of the simulation at ε =

10-3 compared to 10-4, even though its time history at ε = 10-3 was consistently lower than at ε = 10-4 before this. Since 𝑅𝑀𝑅𝐴

was always lower at ε = 10-3 than 10-4, this observation about 𝐶𝑀𝑅𝐴 suggests that even if the computational effort per

timestep is lower throughout the simulation, a high timestep count can sufficiently increase the cumulative computational

effort such that it becomes higher at ε = 10-3 than 10-4. Nonetheless, the time history of 𝐶𝑡𝑜𝑡 in the GPU-MWDG2 420

simulations always remains well below that of the GPU-DG2 simulation, with 𝑆𝑖𝑛𝑠𝑡 finishing at 3.5 and 3.0 with ε = 10-3 and

10-4, respectively.

In Figure 11 and Table 4, the difference between the GPU-MWDG2 predictions at ε = 10-3 and 10-4 and the GPU-

DG2 prediction are evaluated in terms of time series of the water surface elevation, ℎ + 𝑧, the 𝑢 component of the velocity

field, and the associated momentum, Mx = 0.5ℎ𝑢2 , at points A1 (one of the left-most crosses in Figure 9), B6 (one of the 425

central crosses) and D4 (one of the right-most crosses), all showing a good agreement with the measured time series (also

plotted in Figure 11). Point A1 is located at the bottom left corner at the start of the town, at which GPU-MWDG2 closely

trails the GPU-DG2 predictions for both ε values (𝑟 scores of 0.99 and the same order-of-magnitude for the RMSE scores).

Point B6 is located in the middle of the urban town, at which the RMSE and 𝑟 scores are similar to those obtained at point

A1; however, GPU-MWDG2 at ε = 10-3 provides improved visual trailing of the GPU-DG2 predicted velocity. Point D4 is 430

located at the downstream end of the upper area in the urban town, at which less similarity is detected between the GPU-

MWDG2 predictions and the GPU-DG2 prediction for u and Mx: at ε = 10-3, lower 𝑟 scores of around 0.88 and 0.77 are

detected, respectively, compared to the 𝑟 scores of around 0.91 and 0.92 reached at ε = 10-4, for which the u velocity is more

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

20

closely predicted (RSME score of 9.51 × 10-2 at ε = 10-4 versus a score of 1.30 × 10-1 at ε = 10-3). In terms of spatial flood

map at tend, the same discrepancies between the 𝑟 scores can be seen for the u velocity predictions, and between the RSME 435

score for the Mx predictions (Table 4). Hence, ε = 10-4 can be a better choice to acquire more accurate velocity-related

predictions in the zones inside and around fine-scale terrain features of urban town, while ε = 10-3 remains a competitive

choice to maximise the speedup throughout the simulation by an order-of-magnitude. This and the previous test cases (Sects.

3.1 and 3.2) show that the GPU-MWDG2 solver can achieve at least a 2-fold speedup over the GPU-DG2 solver for tsunami

simulations involving a single-wave impact event. In the following Sects. 3.3 and 3.4, the speedup of the GPU-MWDG2 440

solver is evaluated for field-scale scenarios involving more complex tsunami impact events.

Figure 11: Seaside Oregon. Time series of the water surface elevation (h + z), 𝑢 velocity component and momentum Mx for

the GPU-DG2 and GPU-MWDG2 predictions at points A1, B6 and D4 (Figure 9), compared to the experimental data.

 445

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

21

Table 4: Seaside Oregon. RMSE and r scores from GPU-MWDG2 predictions versus the GPU-DG2 prediction. 450

 RMSE r

Prediction dataset Quantity ε = 10-3 ε = 10-4 ε = 10-3 ε = 10-4

Time series at A1

ℎ + 𝑧 3.04 × 10-3 2.68 × 10-3 0.9979 0.9982

𝑢 6.86 × 10-2 4.54 × 10-2 0.9905 0.9958

Mx 2.90 × 10-3 1.01 × 10-3 0.9995 0.9999

Time series at B6

ℎ + 𝑧 4.48 × 10-3 2.46 × 10-3 0.9931 0.9976

𝑢 5.65 × 10-2 4.29 × 10-2 0.9944 0.9968

Mx 7.40 × 10-3 3.87 × 10-3 0.9943 0.9982

Time series at D4

ℎ + 𝑧 5.87 × 10-3 3.75 × 10-3 0.9841 0.9897

𝑢 1.30 × 10-1 9.51 × 10-2 0.8889 0.9176

Mx 6.52 × 10-3 2.20 × 10-3 0.7746 0.9214

Spatial map at tend

ℎ + 𝑧 5.58 × 10-3 1.50 × 10-3 0.9999 0.9999

𝑢 6.66 × 10-2 3.52 × 10-2 0.8303 0.9502

Mx 2.03 × 10-3 5.89 × 10-4 0.9350 0.9945

3.3 Tauranga Harbour

This test case reproduces the 2011 Japan tsunami event in Tauranga Harbour, New Zealand (Borrero et al., 2015; Macías et

al., 2015; 2020). The bathymetric area has a DEM made of 4096 × 2196 cells, requiring L = 12 to generate the initial square

uniform grid. As shown by the red arrows in Figure 12, the tsunami enters from the top boundary and travels a short distance 455

downwards before quickly hitting the coast at y = 16 km. As shown by the time history of the water surface elevation

(bottom left panel of Figure 12), the tsunami is a wave train made up of three wave peaks and troughs that enter that

bathymetric area one after the other at 0, 12 and 24 hr during the 40-hr tsunami event, with the latter two waves also

exhibiting noise. Due to the wave train, the short travel distance before flooding the harbour, and the highly irregular

bathymetric zones that trigger wave reflections and diffractions, vigorous flow dynamics occur within the bathymetric area 460

from the very beginning of the simulation. The right panels of Figure 6 include the GPU-MWDG2 grids generated at ε = 10-3

and 10-4 for the region bounded by the white box (top left panel). With ε = 10-3, the number of cells in the grid is 5% of the

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

22

GPU-DG2 uniform grid, whereas with ε = 10-4, it is 15%, due to less coarsening in and around the irregular bathymetric

zones.

 465

Figure 12: Tauranga Harbour. Top-down view of bathymetry (top left panel), where the red arrows indicate the direction

and distance travelled; tsunami time history entering the top boundary (bottom left panel); initial GPU-MWDG2 grids (right

panels) for the potion in white box (top left panel).

In Figure 13, an analysis of the runtimes of the GPU-MWDG2 and GPU-DG2 simulations is shown. Unlike the 470

previous test cases (Sects. 3.1 and 3.2), the first wave of the tsunami wave train enters the bathymetric immediately, causing

𝑁𝑐𝑒𝑙𝑙 to increase very sharply and immediately from its the initial value for both values of ε, which thereafter fluctuates due

to the periodic tsunami signal. Following the sharp increase and fluctuations in 𝑁𝑐𝑒𝑙𝑙 , 𝑅𝐷𝐺2 also sharply increases and

fluctuates. However, 𝑅𝑀𝑅𝐴 does not and stays stable and flat throughout the simulation. Thus, driven primarily by the sharp

decrease in 𝑅𝐷𝐺2, 𝑆𝑖𝑛𝑠𝑡 decreases sharply from 4.0 to 1.6. The time histories of Δ𝑡 in the GPU-DG2 simulation and the GPU-475

MWDG2 simulation using ε = 10-4 follow each other quite closely, but at ε = 10-3, the time history of Δ𝑡 shows two periodic

drops after 24 h, likely due to periodic wetting and drying processes around coarse cells that are present in the non-uniform

grid at ε = 10-3 but not at 10-4. Due to the smaller Δ𝑡 at ε = 10-3, the time history of 𝑁Δ𝑡 is locally steeper (see the kinks at 25

and 35 h), but this does not lead to significant differences between the cumulative computational effort at ε = 10-3 versus 10-

4. The time history of 𝐶𝑡𝑜𝑡 in the GPU-MWDG2 simulations consistently remains below that of the GPU-DG2 simulation for 480

both values of ε, but they are relatively close to each other compared to the previous test cases (Sects. 3.1 and 3.2). Thus,

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

23

even though 𝑆𝑎𝑐𝑐 starts at around 4, like in the previous test case with 𝐿 = 12 (Sect. 3.2), it drops sharply to 1.6 and 1.4 at ε =

10-3 and 10-4, respectively.

Figure 13: Tauranga Harbour. Metrics of Table 1 applied to the GPU-MWDG2 and GPU-DG2 simulations. Also shown is a 485

time history of Δ𝑡 (centre panel).

In Figure 14 and Table 5, the difference between the GPU-MWDG2 predictions at ε = 10-3 and 10-4 and the GPU-

DG2 prediction is evaluated for the time series of water surface elevation at sampling points A Beacon, Tug Harbour,

Sulphur Point and Moturiki (top left panel of Figure 12), all of which show a good agreement with the measured time series. 490

The GPU-MWDG2 predicted water surface elevations are very close to those predicted by GPU-DG2 regardless of ε, as

confirmed by the 𝑟 scores, around 0.99, and by the RSME scores, which remain in the same order-of-magnitude (Table 5).

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

24

Moreover, the difference for the 𝑆𝑝𝑒𝑒𝑑 = √𝑢2 + 𝑣2 time series at point ADCP (top left panel of Figure 12) is evaluated,

showing less agreement with the measured time series compared to the water surface elevation: the GPU-MWDG2

predictions at ε = 10-4 shows 5% better similarity to the GPU-DG2 predictions compared to at ε = 10-3 (𝑟 scores of 0.9527 495

and 0.9023, respectively). However, the better similarity score at ε = 10-4 is mostly detectable in the prediction of the final

flood map at tend leading to a 15% higher 𝑟 score of 0.89 compared to the score of 0.75 at ε = 10-3 (Table 5).

Figure 14: Tauranga Harbour. Time series of the water surface elevation (h + z) produced by GPU-DG2 and GPU-MWDG2

at the points labelled A Beacon, Tug Harbour, Sulphur Point and Moturiki (labelled in Figure 12) and for the 𝑆𝑝𝑒𝑒𝑑, at the 500

point ADCP (also labelled in Figure 12), compared to the experimental results.

Overall, this test case features a more complex tsunami compared to the previous test cases (Sects. 3.1 and 3.2),

which sharply increases the number of cells in the GPU-MWDG2 non-uniform grid and thus also increases the

computational effort of performing the DG2 solver updates. Hence, despite requiring the same 𝐿 = 12 as the previous test 505

case (Sect. 3.2), the final speedups are lower in this test case due to the more complex tsunami, with 𝑆𝑎𝑐𝑐 finishing at 1.6-

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

25

and 1.4-fold with ε = 10-3 and 10-4, respectively. Using ε = 10-4 would improve the closeness to the GPU-DG2 predicted

velocities, while using ε = 10-3 leads to very close water surface elevation predictions and fairly accurate velocity predictions,

although without a major improvement in the speedup. In the next test case, another complex tsunami with higher frequency

impact event peaks is considered, but now with a smaller DEM size requiring 𝐿 = 10. 510

Table 5: Tauranga Harbour. RMSE and r scores for GPU-MWDG2 predictions versus the GPU-DG2 prediction.

 RMSE r

Prediction dataset Quantity ε = 10-3 ε = 10-4 ε = 10-3 ε = 10-4

Time series at A Beacon ℎ + 𝑧 7.46 × 10-2 1.28 × 10-2 0.9986 0.9999

Time series at Tug Harbour ℎ + 𝑧 6.86 × 10-2 8.99 × 10-2 0.9984 0.9972

Time series at Sulphur Point ℎ + 𝑧 1.62 × 10-1 1.43 × 10-1 0.9916 0.9933

Time series at Moturiki ℎ + 𝑧 7.81 × 10-2 2.35 × 10-2 0.9935 0.9993

Time series at ACDP 𝑆𝑝𝑒𝑒𝑑 3.45 × 10-1 2.40 × 10-1 0.9023 0.9527

Spatial map at tend

ℎ + 𝑧 7.33 × 10-2 3.10 × 10-2 0.9999 0.9999

𝑆𝑝𝑒𝑒𝑑 8.01 × 10-2 4.80 × 10-2 0.7556 0.8950

3.4 Hilo Harbour

This test case reproduces the 2011 Japan tsunami event at Hilo Harbour in Hawaii, USA (Arcos & LeVeque, 2014; Lynett et 515

al., 2017; Macías et al., 2020; Velioglu-Sogut & Yalciner, 2019). It involves a complex tsunami made up of a high-

frequency wave train that propagates for 6 hr into a bathymetric area that is smaller than the previous test case (Sect. 3.3).

The latter bathymetric area has a DEM size made of 702 × 692 cells, requiring a smaller L = 10 to generate the initial square

uniform grid. As shown in Figure 15, the tsunami enters from the top boundary and travels south to flood and interact with

the coast at y = 4 km. The wave train occurs over the entire 6 hr simulation time, from a reference timestamp of 7 hr to 13 hr 520

post-earthquake. In Figure 15, the time history of the wave train is shown during the 8.5 to 11 hr time period (bottom left

panel): from the very beginning and during the entire simulation, violent flow dynamics occur in the bathymetric area. The

right panels show the initial GPU-MWDG2 non-uniform grids generated at ε = 10-3 and 10-4 for the region bounded by the

white box (top left panel): the number of cells in the initial non-uniform grids are at 10.0% and 22.5% of the GPU-DG2

uniform grid at ε = 10-3 and ε = 10-4, respectively. 525

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

26

Figure 15: Hilo Harbour test case. Top-down view of bathymetry (top left panel), where the red arrows indicate the

direction and distance travelled; tsunami time history entering the top boundary (bottom left panel); initial GPU-MWDG2

grids (right panels) for the potion in white box (top left panel).

 530

In Figure 16, an analysis of runtimes of the GPU-MWDG2 and GPU-DG2 simulations is shown. Like the last test

case (Sect. 3.3), since the wave train enters the bathymetric area immediately, 𝑁𝑐𝑒𝑙𝑙 increases sharply and immediately to

maximum values of 32% and 40% at ε = 10-3 and 10-4, respectively. The time history of 𝑁𝑐𝑒𝑙𝑙 stays at this maximum for the

simulation except for (somewhat less sharp) localised drops at certain simulation times, e.g. at 8 hr. Following 𝑁𝑐𝑒𝑙𝑙 , 𝑅𝐷𝐺2

also increases sharply and immediately (to maximum values of 50% and 55% at ε = 10-3 and 10-4, respectively), and shows 535

localised drops at the same timestamps as the drops in 𝑁𝑐𝑒𝑙𝑙 . In contrast, the time history of 𝑅𝑀𝑅𝐴 stays very flat throughout

the simulation, except for a small, temporary drop at 8 hr, which is when the largest drop in 𝑁𝑐𝑒𝑙𝑙 occurs. Due to the

generally flat time histories of 𝑅𝐷𝐺2 and 𝑅𝑀𝑅𝐴, the time history of 𝑆𝑖𝑛𝑠𝑡 is also flat except for localised peaks that occur at the

same timestamps as the localised drops in 𝑅𝐷𝐺2 and 𝑅𝑀𝑅𝐴. Unlike all of the previous test cases (Sect. 3.1 - 3.3), the time

history of Δ𝑡 is very similar between the GPU-DG2 simulation and the GPU-MWDG2 simulations, regardless of the ε value 540

as they both yield high number of cells compared to the uniform GPU-DG2 grid. Thus, the time history of 𝑁Δ𝑡 is virtually

identical across all simulations. Given that the time histories of 𝑁Δ𝑡, 𝑅𝐷𝐺2 and 𝑅𝑀𝑅𝐴 are similar for both ε values, the time

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

27

histories of 𝐶𝐷𝐺2 and 𝐶𝑀𝑅𝐴 are also very similar. The time history of 𝐶𝑡𝑜𝑡 is very close between the GPU-DG2 simulation

and the GPU-MWDG2 simulations in this test case (even more so than in the last case, Sect. 3.3), so 𝑆𝑎𝑐𝑐 is the lowest out of

all the test cases, finishing at 1.25 and 1.10 using ε = 10-3 and 10-4, respectively. 545

Figure 16: Hilo Harbour. Metrics of Table 1 applied to the GPU-MWDG2 and GPU-DG2 simulations. Also shown is a time

history of Δ𝑡 (centre panel).

In Figure 17 and Table 6, the difference between the GPU-MWDG2 predictions at ε = 10-3 and 10-4 and the GPU-550

DG2 prediction is evaluated in terms of the time series of the water surface elevation at points labelled "Control point" and

"Tide gauge", and 𝑢 and 𝑣 velocity components at the points labelled "ADCP HA1125" and "ADCP HA1126" (top left panel

in Figure 15), all showing a fair agreement with the measured time series. For both ε, the GPU-MWDG2 predicted water

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

28

surface elevations are more than 97% similar to those predicted by GPU-DG2 (Table 6), with broadly comparable closeness

for the RMSEs that tends to improve at ε = 10-4 for the spatial map at 𝑡𝑒𝑛𝑑 and the time series at "Control point". In terms of 555

the GPU-MWDG2 predicted velocities, the closeness is comparable in terms of the RMSE scores, but the 𝑟 scores can vary

by 10% depending on the choice of ε: ε = 10-4 yield betters 𝑟 scores between around 0.82 and 0.91, whereas the scores

yielded at ε = 10-3 varied between around 0.70 and 0.83 – the highest discrepancies occurred in the spatial flood maps at 𝑡𝑒𝑛𝑑

(Table 6).

 560

Table 6: Hilo Harbour. RMSE and r scores for GPU-MWDG2 predictions versus the GPU-DG2 prediction.

 RMSE r

Prediction dataset Quantity ε = 10-3 ε = 10-4 ε = 10-3 ε = 10-4

Control point ℎ + 𝑧 1.11 × 10-1 5.45 × 10-2 0.9767 0.9923

Tide gauge ℎ + 𝑧 1.81 × 10-1 1.10 × 10-1 0.9827 0.9938

ADCP HA1125 𝑣 3.63 × 10-1 2.91 × 10-1 0.7884 0.8252

ADCP HA1126 𝑢 3.23 × 10-1 2.23 × 10-1 0.8343 0.9193

Spatial map at tend

h + z 5.31 × 10-2 6.20 × 10-3 0.9999 0.9999

𝑣 9.17 × 10-2 6.09 × 10-2 0.7063 0.8134

𝑢 9.01 × 10-2 5.93 × 10-2 0.7465 0.8387

Figure 17: Hilo Harbour. Time series produced by GPU-DG2 and GPU-MWDG2, for the water surface elevation (h + z) at

“control point” and “Tide gauge” (labelled in Figure 17), and for the velocity components at “ADCP HA1125” and ADCP

HA 1126 (labelled in Figure 17), compared to the experimental results. 565

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

29

Overall, despite simulating a test case with a complex tsunami impact event and also a DEM size that requires

selecting a small 𝐿 = 10, GPU-MWDG2 still manages to attain speedups over GPU-DG2 in this test case: around 1.25 at ε =

10-3 and 1.10 at ε = 10-4. This seems to suggest that the GPU-MWDG2 solver can reliably be used to gain speedups over the

GPU-DG2 solver even if simulating complex tsunami impact events, using ε = 10-3 to boost the speedup, or using ε = 10-4

increase the quality of velocity predictions. 570

4 Conclusions and recommendations

This work reported the version release of the LISFLOOD-FP 8.2 hydrodynamic modelling framework, which integrates the

GPU parallelised grid resolution adaptivity of multiwavelets (MW) within the second-order discontinuous Galerkin (DG2)

solver of the shallow water equations (GPU-MWDG2) to run simulations on a non-uniform grid. The GPU-MWDG2 solver 575

enables dynamic (in time) grid resolution adaptivity based on both the (time-varying) flow solutions and the (time-invariant)

Digital Elevation Model (DEM) representations. It has been aimed at reducing the runtime of the existing uniform grid GPU

parallelised DG2 solver (GPU-DG2) for flood simulation driven by rapid, multiscale impact events, which were exemplified

by tsunami-induced flooding.

The framework integrating dynamic GPU-MWDG2 adaptivity in LISFLOOD-FP 8.2 was reported with a focus on: 580

how to run GPU-MWDG2 simulations from raster-formatted DEM and initial flow condition setup files, requiring a user-

specified maximum refinement level, 𝐿, and an error threshold, ε; consideration of the memory limits affordable per selected

𝐿 and per GPU card; and, the development of a suite of time-dependent metrics for assessing the potential speedup afforded

by GPU-MWDG2 adaptivity. The accuracy and efficiency of dynamic GPU-MWDG2 adaptivity was assessed for tsunami-

induced flood simulations featuring different levels of impact event complexity, ranging from a single-wave tsunami to a 585

wave train of multiple tsunamis. The assessments qualitatively and quantitatively evaluated the capability of dynamic GPU-

MWDG2 adaptivity, using ε = 10-3 and 10-4, in reproducing spatial and temporal GPU-DG2 predictions of water levels and

velocity-related quantities. The evaluations consistently demonstrated that the GPU-MWDG2 simulations using ε = 10-3

yield water level predictions as accurate as the GPU-DG2 simulations, and that using the smaller ε = 10-4 would only be a

potential option to improve the accuracy of velocity-related predictions if needed. 590

In terms of the average speedup that can be achieved by dynamic GPU-MWDG2 adaptivity, it seems to be

maximised depending on whether: (i) the size and resolution of the DEM area corresponds to a choice for 𝐿 ≥ 9 and (ii) the

simulated impact event is single-peaked, such as a single-wave tsunami. As shown in Table 7, for the impact events that are

single-peaked: when the DEM area required 𝐿 = 10, the average speedups would be around 2.0 times faster than the GPU-

DG2 simulations (i.e. “Monai Valley”); whereas, with the DEM area requiring a larger 𝐿 = 12, considerable average 595

speedups of 3.3-fold were achieved at ε = 10-4, which increased to 4.5-fold at ε = 10-3 (i.e. “Seaside, Oregon”). Meanwhile,

for the multi-peaked impact events, the average speedups reduced to 1.8-fold for a DEM area requiring 𝐿 = 12 (i.e.

“Tauranga Harbour”) and to 1.2-fold for a smaller DEM requiring a smaller 𝐿 = 10 (i.e. “Hilo Harbour”).

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

30

Table 7: Summary of GPU-MWDG2 runtimes and potential average speedups with respect to GPU-DG2. 600
 GPU-MWDG2 GPU-DG2

Tsunami (impact) event L (Max cells) Runtime, ε Speedup, ε Runtime

Test case tend Single-wave tsunami ---- 10-3 10-4 10-3 10-4 ----

Monai Valley 22.5 (9000 s*) Yes 10 (> 1.04m) 16 s 20 s 2.5 2.0 40 s

Seaside Oregon 40 s (33 min*) Yes 12 (> 16.7m) 3.5 min 5.2 min 4.5 3.3 13 min**

Tauranga Harbour 40 hr No (three peaks) 12 (> 16.7m) 7.5 hr 8.1 hr 1.8 1.4 11.3 hr

Hilo Harbour 6 hr No (eleven peaks) 10 (> 1.04m) 5.3 min 5.8 min 1.3 1.2 6.9 min

* By accounting for the physical scaling factor of the replica.

In summary, the GPU-MWDG2 solver in LISFLOOD-FP 8.2 accelerates GPU-DG2 simulations of rapid multiscale

flooding flows, yielding the greatest speedups for simulations needed 𝐿 ≥ 10 (i.e., ratio the DEM area to DEM resolution)

and driven by single-peaked impact events. The LISFLOOD-FP 8.2 code is accessible on Zenodo, DOI: 605

10.5281/zenodo.4073010, together with the input files and scripts for reproducing the simulation data, DOI:

10.5281/zenodo.13909072, with step-by-step guidance at https://www.seamlesswave.com/Adaptive (last accessed: 9 October

2024).

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

31

Code and data availability. LISFLOOD-FP 8.2 source code is available from Zenodo (LISFLOOD-FP developers, 2024; 610

https://zenodo.org/doi/10.5281/zenodo.4073010) as well as the simulation data and input files and scripts for reproducing

them (Chowdhury, 2024; https://doi/org/10.5281/zenodo.13909072).

Video supplement. Step-by-step instructions on how to download and install and run the LISFLOOD-FP-8.2 code for the

“Hilo Harbour” (Sect. 3.4) is available from Zenodo (Chowdhury, 2024). The video demo also includes updates on the 615

changes made to the CMake build process for compatibility with different versions of the CUDA toolkit.

Author contributions. AAC coded, optimised and integrated the GPU-MWDG2 into the LISFLOOD-FP framework

(methodology; software; validation; investigation; data curation; visualization; formal analysis). GK contributed to the

conceptualisation, formal analysis, funding acquisition and project administration. Both AAC and GK conceived and wrote 620

the paper (original draft; review and editing).

Competing interests. The contact author has declared that none of the authors has any competing interests.

Acknowledgements. The authors are extremely grateful for Charles Rougé from the University of Sheffield for his feedback 625

on the efficiency analysis of Sect. 3, and Paul Bates and Jefferey Neal from the University of Bristol for their support of the

collaborative open source LISFLOOD-FP project.

Financial Support. AAC and GK were supported by the UK Engineering and Physical Sciences Research Council (EPSRC)

grant EP/R007349/1. 630

References

Arcos, M., & LeVeque, R. (2014). Validating Velocities in the GeoClaw Tsunami Model using Observations Near Hawaii

from the 2011 Tohoku Tsunami. Pure and Applied Geophysics, 172. https://doi.org/10.1007/s00024-014-0980-y

Ayog, J. L., Kesserwani, G., & Baú, D. (2021). Well-resolved velocity fields using discontinuous Galerkin shallow

water solutions. In arXiv [physics.flu-dyn]. http://arxiv.org/abs/2104.11308 635

Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for

efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1), 33–45.

https://doi.org/https://doi.org/10.1016/j.jhydrol.2010.03.027

Berger, M. J., George, D. L., LeVeque, R. J., & Mandli, K. T. (2011). The GeoClaw software for depth-averaged flows with

adaptive refinement. Advances in Water Resources, 34(9), 1195–1206. 640

https://doi.org/10.1016/J.ADVWATRES.2011.02.016

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

32

Blaise, S., & St-Cyr, A. (2012). A Dynamic hp-Adaptive Discontinuous Galerkin Method for Shallow-Water Flows on the

Sphere with Application to a Global Tsunami Simulation. Monthly Weather Review, 140(3), 978–996.

https://doi.org/https://doi.org/10.1175/MWR-D-11-00038.1

Blaise, S., St-Cyr, A., Mavriplis, D., & Lockwood, B. (2013). Discontinuous Galerkin unsteady discrete adjoint method for 645

real-time efficient tsunami simulations. Journal of Computational Physics, 232(1), 416–430.

https://doi.org/https://doi.org/10.1016/j.jcp.2012.08.022

Bonev, B., Hesthaven, J. S., Giraldo, F. X., & Kopera, M. A. (2018). Discontinuous Galerkin scheme for the spherical

shallow water equations with applications to tsunami modeling and prediction. Journal of Computational Physics, 362,

425–448. https://doi.org/https://doi.org/10.1016/j.jcp.2018.02.008 650

Borrero, J. C., LeVeque, R. J., Greer, S. D., O’Neill, S., & Davis, B. N. (2015). Observations and modelling of tsunami

currents at the port of Tauranga, New Zealand. Australasian Coasts & Ports Conference 2015: 22nd Australasian

Coastal and Ocean Engineering Conference and the 15th Australasian Port and Harbour Conference.

https://search.informit.org/doi/10.3316/informit.703156566786424

Castro, C. E., Behrens, J., & Pelties, C. (2016). Optimization of the ADER-DG method in GPU applied to linear hyperbolic 655

PDEs. International Journal for Numerical Methods in Fluids, 81(4), 195–219.

https://doi.org/https://doi.org/10.1002/fld.4179

Caviedes-Voullième, D., Gerhard, N., Sikstel, A., & Müller, S. (2020). Multiwavelet-based mesh adaptivity with

Discontinuous Galerkin schemes: Exploring 2D shallow water problems. Advances in Water Resources, 138, 103559.

https://doi.org/10.1016/J.ADVWATRES.2020.103559 660

Caviedes-Voullième, D., & Kesserwani, G. (2015). Benchmarking a multiresolution discontinuous Galerkin shallow water

model: Implications for computational hydraulics. Advances in Water Resources, 86, 14–31.

https://doi.org/10.1016/J.ADVWATRES.2015.09.016

Chowdhury, A. A., & Kesserwani, G. (2024). Dataset for the paper “LISFLOOD-FP 8.2: Dynamic multiwavelet grid

resolution adaptivity for faster, GPU-accelerated discontinuous Galerkin simulations of rapid multiscale floods.” 665

10.5281/zenodo.13909072

Chowdhury, A. A., Kesserwani, G., Rougé, C., & Richmond, P. (2023). GPU-parallelisation of Haar wavelet-based grid

resolution adaptation for fast finite volume modelling: application to shallow water flows. Journal of

Hydroinformatics, 25(4), 1210–1234. https://doi.org/10.2166/hydro.2023.154

de la Asunción, M., & Castro, M. J. (2017). Simulation of tsunamis generated by landslides using adaptive mesh refinement 670

on GPU. Journal of Computational Physics, 345, 91–110. https://doi.org/10.1016/J.JCP.2017.05.016

Ferreira, C. R., & Bader, M. (2017). Load Balancing and Patch-Based Parallel Adaptive Mesh Refinement for Tsunami

Simulation on Heterogeneous Platforms Using Xeon Phi Coprocessors. Proceedings of the Platform for Advanced

Scientific Computing Conference, 12. https://doi.org/10.1145/3093172.3093237

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

33

Gao, S., Collecutt, G., Syme, W. J., & Ryan, P. (2020). HIGH RESOLUTION NUMERICAL MODELLING OF TSUNAMI 675

INUNDATION USING QUADTREE METHOD AND GPU ACCELERATION.

Gerhard, N., Caviedes-Voullième, D., Müller, S., & Kesserwani, G. (2015). Multiwavelet-based grid adaptation with

discontinuous Galerkin schemes for shallow water equations. Journal of Computational Physics, 301, 265–288.

https://doi.org/10.1016/J.JCP.2015.08.030

Hajihassanpour, M., Bonev, B., & Hesthaven, J. S. (2019). A comparative study of earthquake source models in high-order 680

accurate tsunami simulations. Ocean Modelling, 141, 101429.

https://doi.org/https://doi.org/10.1016/j.ocemod.2019.101429

Hajihassanpour, M., Kesserwani, G., Pettersson, P., & Bellos, V. (2023). Sampling-Based Methods for Uncertainty

Propagation in Flood Modeling Under Multiple Uncertain Inputs: Finding Out the Most Efficient Choice. Water

Resources Research, 59(7), e2022WR034011. https://doi.org/https://doi.org/10.1029/2022WR034011 685

Hunter, N. M., Horritt, M. S., Bates, P. D., Wilson, M. D., & Werner, M. G. F. (2005). An adaptive time step solution for

raster-based storage cell modelling of floodplain inundation. Advances in Water Resources, 28(9), 975–991.

https://doi.org/https://doi.org/10.1016/j.advwatres.2005.03.007

Kesserwani, G. (2013). Topography discretization techniques for Godunov-type shallow water numerical models: a

comparative study. Journal of Hydraulic Research, 51(4), 351–367. https://doi.org/10.1080/00221686.2013.796574 690

Kesserwani, G., Ayog, J. L., & Bau, D. (2018). Discontinuous Galerkin formulation for 2D hydrodynamic modelling: Trade-

offs between theoretical complexity and practical convenience. Computer Methods in Applied Mechanics and

Engineering, 342, 710–741. https://doi.org/10.1016/J.CMA.2018.08.003

Kesserwani, G., Ayog, J. L., Sharifian, M. K., & Baú, D. (2023). Shallow-Flow Velocity Predictions Using Discontinuous

Galerkin Solutions. Journal of Hydraulic Engineering, 149(5), 04023008. https://doi.org/10.1061/JHEND8.HYENG-695

13244

Kesserwani, G., Caviedes-Voullième, D., Gerhard, N., & Müller, S. (2015). Multiwavelet discontinuous Galerkin h-adaptive

shallow water model. Computer Methods in Applied Mechanics and Engineering, 294, 56–71.

https://doi.org/https://doi.org/10.1016/j.cma.2015.05.016

Kesserwani, G., & Liang, Q. (2012). Locally Limited and Fully Conserved RKDG2 Shallow Water Solutions with Wetting 700

and Drying. Journal of Scientific Computing, 50(1), 120–144. https://doi.org/10.1007/s10915-011-9476-4

Kesserwani, G., & Sharifian, M. K. (2020). (Multi)wavelets increase both accuracy and efficiency of standard Godunov-type

hydrodynamic models: Robust 2D approaches. Advances in Water Resources, 144, 103693.

https://doi.org/10.1016/J.ADVWATRES.2020.103693

Kesserwani, G., & Sharifian, M. K. (2023). (Multi)wavelet-based Godunov-type simulators of flood inundation: Static 705

versus dynamic adaptivity. Advances in Water Resources, 171, 104357.

https://doi.org/https://doi.org/10.1016/j.advwatres.2022.104357

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

34

Kesserwani, G., Shaw, J., Sharifian, M. K., Bau, D., Keylock, C. J., Bates, P. D., & Ryan, J. K. (2019). (Multi)wavelets

increase both accuracy and efficiency of standard Godunov-type hydrodynamic models. Advances in Water Resources,

129, 31–55. https://doi.org/10.1016/J.ADVWATRES.2019.04.019 710

Kesserwani, G., & Wang, Y. (2014). Discontinuous Galerkin flood model formulation: Luxury or necessity? Water

Resources Research, 50(8), 6522–6541. https://doi.org/https://doi.org/10.1002/2013WR014906

Kevlahan, N. K.-R., & Lemarié, F. (2022). wavetrisk-2.1: an adaptive dynamical core for ocean modelling. Geosci. Model

Dev., 15(17), 6521–6539. https://doi.org/10.5194/gmd-15-6521-2022

Lee, H. S. (2016). Tsunami Run-up Modeling with Adaptive Mesh Refinement Method: A Case Study for Monai Village Run-715

up Experiment.

LeVeque, R. J., George, D. L., & Berger, M. J. (2011). Tsunami modelling with adaptively refined finite volume methods.

Acta Numerica, 20, 211–289. https://doi.org/DOI: 10.1017/S0962492911000043

Liang, Q., Hou, J., & Amouzgar, R. (2015). Simulation of Tsunami Propagation Using Adaptive Cartesian Grids. Coastal

Engineering Journal, 57(4), 1550016-1-1550016–1550030. https://doi.org/10.1142/S0578563415500163 720

LISFLOOD-FP developers. (2024). LISFLOOD-FP 8.2. https://doi.org/https://zenodo.org/records/6912932

Lynett, P. J., Gately, K., Wilson, R., Montoya, L., Arcas, D., Aytore, B., Bai, Y., Bricker, J. D., Castro, M. J., Cheung, K. F.,

David, C. G., Dogan, G. G., Escalante, C., González-Vida, J. M., Grilli, S. T., Heitmann, T. W., Horrillo, J., Kânoğlu,

U., Kian, R., … Zhang, Y. J. (2017). Inter-model analysis of tsunami-induced coastal currents. Ocean Modelling, 114,

14–32. https://doi.org/https://doi.org/10.1016/j.ocemod.2017.04.003 725

Macías, J., Castro, M. J., & Escalante, C. (2020). Performance assessment of the Tsunami-HySEA model for NTHMP

tsunami currents benchmarking. Laboratory data. Coastal Engineering, 158, 103667.

https://doi.org/https://doi.org/10.1016/j.coastaleng.2020.103667

Macías, J., Castro, M. J., Ortega, S., & González-Vida, J. M. (2020). Performance assessment of Tsunami-HySEA model for

NTHMP tsunami currents benchmarking. Field cases. Ocean Modelling, 152, 101645. 730

https://doi.org/https://doi.org/10.1016/j.ocemod.2020.101645

Macías, J., Castro, M., Ortega, S., Escalante Sánchez, C., & González Vida, J. (2015). Tsunami currents benchmarking

results for Tsunami-HySEA. In Report on the 2015 NTHMP Current Modeling Workshop.

https://doi.org/10.13140/RG.2.2.22999.47527

Matsuyama, M., & Tanaka, H. (2001). An experimental study of the highest run-up height in the 1993 Hokkaido Nansei-Oki 735

earthquake tsunami. 7.

Nandi, S., & Reddy, M. J. (2022). An integrated approach to streamflow estimation and flood inundation mapping using

VIC, RAPID and LISFLOOD-FP. Journal of Hydrology, 610, 127842.

https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.127842

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

35

Park, H., Cox, D. T., Lynett, P. J., Wiebe, D. M., & Shin, S. (2013). Tsunami inundation modeling in constructed 740

environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum flux. Coastal

Engineering, 79, 9–21. https://doi.org/https://doi.org/10.1016/j.coastaleng.2013.04.002

Park, J., Yuk, J.-H., Joo, W., & Lee, H. S. (2019). Wave Run-up Modeling with Adaptive Mesh Refinement (AMR) Method

in the Busan Marine City during Typhoon Chaba (1618). Journal of Coastal Research, 91, 56.

https://doi.org/10.2112/SI91-012.1 745

Popinet, S. (2011). Quadtree-adaptive tsunami modelling. Ocean Dynamics, 61(9), 1261–1285.

https://doi.org/10.1007/s10236-011-0438-z

Popinet, S. (2012). Adaptive modelling of long-distance wave propagation and fine-scale flooding during the Tohoku

tsunami. Nat. Hazards Earth Syst. Sci., 12(4), 1213–1227. https://doi.org/10.5194/nhess-12-1213-2012

Popinet, S., & Rickard, G. (2007). A tree-based solver for adaptive ocean modelling. Ocean Modelling, 16(3), 224–249. 750

https://doi.org/https://doi.org/10.1016/j.ocemod.2006.10.002

Qin, X., Motley, M., LeVeque, R., Gonzalez, F., & Mueller, K. (2018). A comparison of a two-dimensional depth-averaged

flow model and a three-dimensional RANS model for predicting tsunami inundation and fluid forces. Nat. Hazards

Earth Syst. Sci., 18(9), 2489–2506. https://doi.org/10.5194/nhess-18-2489-2018

Sharifian, M. K., Hassanzadeh, Y., Kesserwani, G., & Shaw, J. (2019). Performance study of the multiwavelet discontinuous 755

Galerkin approach for solving the Green-Naghdi equations. International Journal for Numerical Methods in Fluids,

90(10), 501–521. https://doi.org/https://doi.org/10.1002/fld.4732

Sharifian, M. K., Kesserwani, G., Chowdhury, A. A., Neal, J., & Bates, P. (2023). LISFLOOD-FP 8.1: new GPU-accelerated

solvers for faster fluvial/pluvial flood simulations. Geosci. Model Dev., 16(9), 2391–2413.

https://doi.org/10.5194/gmd-16-2391-2023 760

Sharifian, M. K., Kesserwani, G., & Hassanzadeh, Y. (2018). A discontinuous Galerkin approach for conservative modeling

of fully nonlinear and weakly dispersive wave transformations. Ocean Modelling, 125, 61–79.

https://doi.org/https://doi.org/10.1016/j.ocemod.2018.03.006

Shaw, J., Kesserwani, G., Neal, J., Bates, P., & Sharifian, M. K. (2021). LISFLOOD-FP 8.0: the new discontinuous Galerkin

shallow-water solver for multi-core CPUs and GPUs. Geosci. Model Dev., 14(6), 3577–3602. 765

https://doi.org/10.5194/gmd-14-3577-2021

Sun, X., Kesserwani, G., Sharifian, M. K., & Stovin, V. (2023). Simulation of laminar to transitional wakes past cylinders

with a discontinuous Galerkin inviscid shallow water model. Journal of Hydraulic Research, 61(5), 631–650.

https://doi.org/10.1080/00221686.2023.2239750

Velioglu Sogut, D., & Yalciner, A. C. (2019). Performance Comparison of NAMI DANCE and FLOW-3D® Models in 770

Tsunami Propagation, Inundation and Currents using NTHMP Benchmark Problems. Pure and Applied Geophysics,

176(7), 3115–3153. https://doi.org/10.1007/s00024-018-1907-9

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

36

Violeau, D., Ata, R., Benoit, M., Joly, A., Abadie, S., Clous, L., Martin Medina, M., Morichon, D., Chicheportiche, J., Le

Gal, M., Gailler, A., Hebert, H., Imbert, D., Kazolea, M., Ricchiuto, M., Le Roy, S., Pedreros, R., Rousseau, M., Pons,

K., … Silva Jacinto, R. (2016). Database of Validation Cases for Tsunami Numerical Modelling. 775

Wilson, M. D., & Coulthard, T. J. (2023). Tracing and visualisation of contributing water sources in the LISFLOOD-FP

model of flood inundation (within CAESAR-Lisflood version 1.9j-WS). Geosci. Model Dev., 16(9), 2415–2436.

https://doi.org/10.5194/gmd-16-2415-2023

Zeng, Z., Wang, Z., & Lai, C. (2022). Simulation Performance Evaluation and Uncertainty Analysis on a Coupled

Inundation Model Combining SWMM and WCA2D. International Journal of Disaster Risk Science, 13(3), 448–464. 780

https://doi.org/10.1007/s13753-022-00416-3

Ziliani, L., Surian, N., Botter, G., & Mao, L. (2020). Assessment of the geomorphic effectiveness of controlled floods in a

braided river using a reduced-complexity numerical model. Hydrol. Earth Syst. Sci., 24(6), 3229–3250.

https://doi.org/10.5194/hess-24-3229-2020

 785

Appendix A: The GPU-MWDG2 algorithm

The GPU-MWDG2 algorithm that is integrated into LISFLOOD-FP 8.2 solves the two-dimensional shallow water equations

over a non-uniform grid that locally adapts its grid resolution to the flow solutions and DEM representation every simulation

timestep. The conservative form of the shallow water equations in vectorial format is as follows:

𝜕𝑡𝑼 + 𝜕𝑥𝑭(𝑼) + 𝜕𝑦𝑮(𝑼) = 𝑺𝑏(𝑼) + 𝑺𝑓(𝑼) (A1)

Where 𝜕⬚ represents a partial derivative operator; 𝑼 = [ℎ, ℎ𝑢, ℎ𝑣]𝑇 is the vector of the flow variables where 𝑇 790

stands for the transpose operator, ℎ(𝑥, 𝑦, 𝑡) is the water depth (m) at time 𝑡 and location (𝑥, 𝑦), and 𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡)

are the 𝑥 - and 𝑦 -component of the velocity field (m/s) in the two-dimensional Cartesian space; 𝑭 = [ℎ𝑢, (ℎ𝑢)2ℎ−1 +

0.5 𝑔ℎ2, ℎ𝑢𝑣]𝑇 and 𝑮 = [ℎ𝑣, ℎ𝑢𝑣, (ℎ𝑣)2ℎ−1 + 0.5𝑔ℎ2]𝑇 are the components of the flux vector in which g is the

gravitational acceleration constant (m/s2); 𝐒𝑏 = [0, −𝑔ℎ𝜕𝑥𝑧, −𝑔ℎ𝜕𝑦𝑧] 𝑇 is the bed-slope source term vector incorporating the

partial derivative of the bed elevation function 𝑧(𝑥, 𝑦); and 𝐒𝑓 = [0, −𝐶𝑓𝑢√𝑢2 + 𝑣2, −𝐶𝑓𝑣√𝑢2 + 𝑣2] T is the friction source 795

term vector including the friction effects as function of 𝐶𝑓 = 𝑔𝑛𝑀
2 ℎ−1/3 in which 𝑛𝑀 is Manning’s roughness parameter. For

ease of presentation, the scalar variable 𝑠 will hereafter be used to represent any of the physical flow quantities in 𝑼 as well

as the bed elevation 𝑧.

Over each computational cell c, the DG2 modelled data for any of the any physical flow quantities, 𝑠 ∈ {ℎ, ℎ𝑢, ℎ𝑣},

follows a piecewise-planar solution, denoted by sc(𝑥, 𝑦, 𝑡) (Kesserwani & Sharifian, 2020). The piecewise-planar solution, 800

sc(𝑥, 𝑦, 𝑡), is expanded onto local basis functions from the scaled and truncated Legendre basis (Kesserwani et al., 2018;

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

37

Kesserwani & Sharifian, 2020) to become spanned by three shape coefficients: 𝐬𝐜
= [𝑠𝑐

0(𝑡), 𝑠𝑐
1𝑥(𝑡), 𝑠𝑐

1𝑦
(𝑡)]𝑇 , where 𝑠𝑐

0(𝑡) is

a coefficient of an average; and 𝑠𝑐
1𝑥(𝑡) and 𝑠𝑐

1𝑦
(𝑡) are x- and y-directional slope coefficients, respectively (see Eq. 10 in

Kesserwani & Sharifian, 2020). The bed-elevation, 𝑠 ∈ {𝑧} , is also represented as piecewise-planar, sc(𝑥, 𝑦) , but it is

spanned by time-independent shape coefficients. The shape coefficients in 𝒔𝑐, 𝑠 ∈ {ℎ, ℎ𝑢, ℎ𝑣, 𝑧}, must be initialised (Eq. 11 805

in Kesserwani & Sharifian, 2020), while the time-dependent ones, with 𝑠 ∈ {ℎ, ℎ𝑢, ℎ𝑣}, are updated using “DG2 solver

updates” by an explicit two-stage Runge-Rutta scheme solving three ordinary differential equations:

𝜕𝑡𝒔𝑐
(𝑡) = 𝑳c (A2)

Where, 𝑳𝑐 = [𝐿𝑐
0 , 𝐿𝑐

1𝑥 , 𝐿𝑐
1𝑦

]𝑇 includes the respective components of the local discrete spatial DG2 operators, to

update each of the coefficients in 𝒔𝑐
= [𝑠𝑐

0(𝑡), 𝑠𝑐
1𝑥(𝑡), 𝑠𝑐

1𝑦
(𝑡)]𝑇. The operators in 𝑳𝑐 were already designed to incorporate 810

robust treatments of the bed and friction source terms and of moving wet-dry fronts (Kesserwani & Sharifian, 2020; Shaw et

al., 2021).

The MWDG2 algorithm involves the MRA procedure to decompose, analyse and assemble the shape coefficients

𝒔𝐜
, 𝑠 ∈ {ℎ, ℎ𝑢, ℎ𝑣, 𝑧}, to produce a non-uniform grid over which the DG2 solver updates are applied (Eq. A2). The MWDG2

algorithm was substantially redesigned to enable efficient parallelisation on the GPU (Chowdhury et al., 2023; Kesserwani & 815

Sharifian, 2023). An overview of the GPU parallelised MWDG2 algorithm (GPU-MWDG2) is provided next.

In the CUDA programming model for parallelisation the GPU (NVIDIA, 2023), instructions are executed in parallel

by workers called “threads”, and a group of 32 consecutive threads that operate in lockstep is called a “warp”. To devise an

efficiently parallelised GPU-MWDG2 code, coalesced memory access, occurring when threads in a warp access contiguous

memory locations, should be maximised, and warp divergence, occurring when threads within a single warp perform 820

different instructions, should be minimised. To achieve these requirements in the GPU-MWDG2 code, the implementation

of the MRA procedure had to be reformulated so as to ensure the DG2 solver updates are applicable cell-wise, like with

GPU-DG2 (Shaw et al., 2021).

A.1. MRA procedure 825

The MRA procedure must start from a square uniform grid at the finest resolution, namely at the given DEM resolution, that

is taken to have a maximum refinement level, 𝐿. This finest grid contains 2𝐿 × 2𝐿 cells, on which the shape coefficients 𝒔c
(𝐿)

are initialised. From the finest grid, the MRA procedure can be applied to build a hierarchy of grids of successively coarser

resolution, at levels 𝑛 = 𝐿 − 1, …, 1, 0, with 2𝑛 × 2𝑛 cells. Using the “encoding” operation, the shape coefficients, 𝒔c
(𝑛)

, and

their associated “details”, 𝒅𝑐,𝛩
(𝑛)

= [𝑑𝑐,𝛩
0,(𝑛)

, 𝑑𝑐,𝛩
1𝑥,(𝑛)

, 𝑑𝑐,𝛩
1𝑦,(𝑛)

]𝑇 , 𝛩 = 𝛼, 𝛽, 𝛾, can be produced on the “parent” cells of the coarser 830

resolution grids, at level n, from the shape coefficients 𝒔[0]
(𝑛+1)

, 𝒔[1]
(𝑛+1)

, 𝒔[2]
(𝑛+1)

 and 𝒔[3]
(𝑛+1)

 of the four “children” cells at the

finer resolution grids, at level n + 1 (Eq. 30 in Kesserwani & Sharifian, 2020). However, with the GPU-MWDG2 solver, 𝒔c
(𝑛)

and 𝒅𝑐,𝛩
(𝑛)

 are stored in arrays in GPU memory that are indexed using Z-order curves (Chowdhury et al., 2023), as exemplified

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

38

in Figure A1a for a simplistic case with 𝐿 = 2. With this indexing, coalesced memory access was ensured with the GPU-

MWDG2 solver because the shape vectors, 𝒔[0]
(𝑛+1)

, 𝒔[1]
(𝑛+1)

, 𝒔[2]
(𝑛+1)

 and 𝒔[3]
(𝑛+1)

 reside in adjacent memory locations when used 835

to produce 𝒔c
(𝑛)

 and 𝒅𝑐,𝛩
(𝑛)

 (see Figure A1b).

Figure A1: Indexing and storage for the MRA procedure on the GPU. Left panel shows a hierarchy of grids across which

cells are indexed along the Z-order curve. Right panel shows how four “children” cells at resolution level n + 1, and their

“parent” cell at resolution level n, noting that the shape coefficients at the “children” cells are stored in adjacent GPU 840

memory locations.

While encoding, the magnitude of all the details 𝒅𝑐,𝛩
(𝑛)

 is analysed in order to identify significant details (Kesserwani

& Sharifian, 2020), which results in a tree-like structure of significant details (Figure A2a). The MRA procedure then refers

to this tree to generate the non-uniform grid via the “decoding” operation. Decoding is applied within the hierarchy of grids, 845

starting from the coarsest resolution grid until reaching the “leaf” cells, where significant details belong (i.e. a branch of the

tree terminates, see Figure A2a where leaf cells are coloured). After decoding, the shape vectors, 𝒔[0]
(𝑛+1)

, 𝒔[1]
(𝑛+1)

, 𝒔[2]
(𝑛+1)

 and

𝒔[3]
(𝑛+1)

 at the leaf cells are restored on the non-uniform grid (Eq. 31 in Kesserwani & Sharifian, 2020) to be updated in time.

With the GPU-MWDG2 solver, decoding must be performed using a parallel tree traversal algorithm (PTT) to

minimise warp divergence (Chowdhury et al., 2023). To do so, the PTT starts by launching as many threads 𝑡𝑛 as the 850

number of cells on the finest resolution grid; for example, 16 threads t0 to t15 for traversing the tree in Figure A2a. Each

thread independently traverses the tree starting from the cell on the coarsest resolution grid until it reaches its leaf cell 𝑐 and

records its index (Figures A2b and A2c).

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

39

Figure A2: Parallel tree traversal (PTT) and neighbour finding. (a) The tree-like structure obtained after flagging significant 855

details during the process of encoding; (b) The leaf cells where the tree terminates (highlighted in green and blue); (c) Leaf

cells are assembly into the non-uniform grid; (e) Possible scenarios of neighbouring cells to leaf cell c; and (e) leaf and

neighbour cells storage as arrays in GPU memory.

Figure A2b shows the indices of the leaf cells identified by each thread once PTT is complete. Since the PTT started 860

with 16 threads and there are fewer leaf cells than the threads, many of threads ended up identifying the same index of the

leaf cell (e.g., t0 to t3 identified the leaf cell with index 1 and t12 to t15 identified the leaf cell with index 4). Threads with

duplicate indices are re-used, alongside the other threads, to search and record the indices of east, west, north, and south

neighbouring cells of each leaf cell by making each thread look up, down, left, and right. For example, t0 to t3 of the leaf cell

with index 1 will identify the east neighbour cells 9 and 11 (Figure A2c). Since the DG2 solver updates on the leaf cell with 865

index 1 requires the (shape coefficients of the) east neighbour cells (shaded red, Figure A2d) to be at the same resolution

level as the coarser leaf cell, the PPT will instead record the index of coarsened east neighbour cells (yellow shaded, Figure

A2d). For any other scenario (e.g., west, north, or south neighbour cells in Figure A2d), the actual indices and shape

coefficients are recorded by the PTT. After recording the indices and shape coefficients, 𝒔𝑐
(𝑛)

, which are to unique each leaf

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

40

cell 𝑐, and its neighbours, 𝒔𝑛𝑜𝑟𝑡ℎ
(𝑛)

, 𝒔𝑠𝑜𝑢𝑡ℎ
(𝑛)

, 𝒔𝑒𝑎𝑠𝑡
(𝑛)

 and 𝒔𝑤𝑒𝑠𝑡
(𝑛)

, they are stored on the non-uniform grid (Figure A2c). In particular, 870

shape coefficients for the leaf cells, 𝒔𝑐
(𝑛)

, are stored in a separate arrays in GPU memory, and separate arrays are also used to

do the same for the shape coefficients of their neighbour cells, 𝒔𝑛𝑜𝑟𝑡ℎ
(𝑛)

, 𝒔𝑠𝑜𝑢𝑡ℎ
(𝑛)

, 𝒔𝑒𝑎𝑠𝑡
(𝑛)

 and 𝒔𝑤𝑒𝑠𝑡
(𝑛)

 (see Figure A2e). With this

cell-wise storage of indices and shape coefficients, the DG2 solver updates, Eq. A2, can be applied in a straightforward

manner.

 875

A.2 DG2 solver update on the non-uniform grid

On the non-uniform grid, the DG2 solver updates, Eq. A2, are applied to update the shape coefficients 𝒔𝑐
(𝑛)

 by half a timestep

over the first Runge-Kutta time stage. After this, another re-encoding step must be applied to the update shape coefficients

𝒔𝑐
(𝑛)

 so that the stored shape coefficients of the four neighbours, 𝐬𝑛𝑜𝑟𝑡ℎ
(𝑛)

, 𝐬𝑠𝑜𝑢𝑡ℎ
(𝑛)

, 𝐬𝑒𝑎𝑠𝑡
(𝑛)

 and 𝐬𝑤𝑒𝑠𝑡
(𝑛)

, are also lifted by half a

timestep. Now, the shape coefficients 𝒔𝑐
(𝑛)

 can be updated by a full timestep by completing the second of Runge-Kutta time 880

stage.

Appendix B: Step-by-step instructions for running the “Monai valley” example

This Appendix shows how to run a simulation of the “Monai valley” example (Sect. 3.1) using the GPU-MWDG2 solver

step-by-step. To use the GPU-MWDG2 solver, the LISFLOOD-FP source code has to be downloaded (LISFLOOD-FP

developers, 2024; https://zenodo.org/doi/10.5281/zenodo.4073010), and then an executable file that can be run has to be 885

built, either on Windows or Linux. To build the executable file on Windows, 1) the LISFLOOD-FP folder should be opened

in Visual Studio, 2) either the x64-Debug or x64-Release option should be selected from the dropdown menu near the

toolbar at the top; and, 3) the Build > Rebuild All option should be clicked. If the x64-Debug option was selected, the

executable file, named lisflood.exe and containing the GPU-MWDG2 solver, should be built and located in the folder at

LISFLOOD-FP\out\build\x64-Debug or similar (or LISFLOOD-FP\out\build\x64-Release if the x64-Release 890

option was selected). To build on Linux, the steps are 1) navigating to the LISFLOOD-FP directory, 2) running cmake

-S . -B build in the terminal; and, 3) running cmake --build build. The executable file, named lisflood, should

be built and located in the LISFLOOD-FP/build directory.

After the executable file has been built, it can be run in order to run simulations of the “Monai valley” example

using the GPU-MWDG2 solver. Before running the simulation, several input files must be prepared, which are listed in 895

Table B.1. To prepare the input files, a number of Python scripts should be used that are available in the monai folder

uploaded alongside the input files made publicly available online for reproducing the results and simulations reported in this

paper (Chowdhury, 2024; https://doi.org/10.5281/zenodo.13909072). The usage of these Python scripts is as follows.

 900

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

41

Table B.1: Input files needed to run simulations of the Monai valley example using the GPU-MWDG2 solver.

Input file File name Description

Digital elevation

model
monai.dem

ASCII raster file containing the numerical values of

the bathymetric elevation pixel-by-pixel.

Initial flow

conditions
monai.start

ASCII raster file containing the numerical values of

the initial water depth and discharge pixel-by-pixel.

Boundary

conditions
monai.bci

Text file specifying where boundary conditions are

enforced and what type (fixed versus time-varying).

Time series at

boundaries
monai.bdy

Text file containing time series in case time-varying

boundary conditions and/or point sources have been

specified in the .bci file.

Stage locations monai.stage
Text file containing the locations of virtual stage

points where simulated time histories of the water

depth are recorded.

Parameter file monai.par
Text file containing parameters to access various

solver and simulation features.

Figure B.1: Input files prepared for the “Monai valley” example after running the Python scripts available in the monai

folder. 905

To prepare the input files for the Monai valley simulation using the Python scripts, 1) the monai folder should be

copied to the same location as the lisflood.exe executable file, e.g. LISFLOOD-FP\out\build\x64-Release if on

Windows or LISFLOOD-FP/build if on Linux, 2) the monai folder should be navigated to, 3) the monai.stage file

should be generated by typing and running python stage.py in a command prompt, 4) the monai.dem and 910

monai.start raster files should be generated by running python raster.py, 5) the monai.bci and monai.bdy files

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

42

should be generated by running python inflow.py, 6) the parameter file monai.par should be prepared as shown in

Figure 2; and, 7) the simulation should be run by typing and running ..\lisflood.exe monai.par in a command

prompt. Following steps (1) to (7) should result in the files shown in Figure B.1. Steps (1) to (7) can be performed as a fully

automated process by running python run-simulations.py: this Python script will automatically prepare the input files 915

(steps 3 to 6), run several simulations (step 7), and postprocess the results. Note that if run-simulations.py is run inside

the downloaded monai folder before running any simulations, and with the self.run() function in the Python file

commented out, it will reproduce the results in Sect. 3.1 (i.e. it will generate Figures 7 and 8 and the data for Table 3).

https://doi.org/10.5194/gmd-2024-152
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.

