Global Modeling and Assimilation Office GMAO Office Note No. 19 (Version 1.0) # File Specification for MERRA-2 Climate Statistics Products Release Date: 11/16/2020 This page intentionally left blank. # **File Specification for MERRA-2 Climate Statistics Products** | Document maintained by Allison Collow (GMAO, USRA) | |--| | This document should be cited as Collow, A., M. Bosilovich, A. Dezfuli, and R. Lucchesi, 2020: File Specification for MERRA-2 Climate Statistics Products. GMAO Office Note No. 19 (Version 1.0), 15 pp, available from http://gmao.gsfc.nasa.gov/pubs/office_notes. | | | | | | | | | | | | | | Approved by: | | | | Steven Pawson Date | | Head, Global Modeling and Assimilation Office | | Code 610.1, NASA GSFC | #### **REVISION HISTORY** | Version Number | Revision Date | Extent of Changes | |----------------|----------------------|-------------------| | 1.0 | 11/16/2020 | Baseline | ## **TABLE OF CONTENTS** | 1. INTRODUCTION | 1 | |--|----| | 2. FORMAT AND FILE ORGANIZATION | 2 | | 2.1 Dimensions | | | 2.2 Variables | | | 2.3 Global Attributes | | | 3. GRID STRUCTURE | 6 | | 3.1 Horizontal Structure | 6 | | 3.2 Vertical Structure | | | 4. FILE NAMING CONVENTIONS | 7 | | 4.1 File Names | 7 | | 5.2 EARTH SCIENCE DATA TYPES (ESDT) NAME | 8 | | 5. MERRA-2 CLIMATE STATISTICS DATA COLLECTIONS | 9 | | statM_2d_edi_Nx: Extremes Detection Indices | 9 | | statM_2d_pct_Nx: Percentiles | 11 | | tavgC_2d_ltm_Nx: Long Term Mean | | | tavgC_3d_ltm_Np: Long Term Mean | | | REFERENCES | 15 | | WER RESOURCES | 15 | #### 1. Introduction The Modern Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) contains a wealth of information that can be used for weather and climate studies. By combining the assimilation of observations with a frozen version of the Goddard Earth Observing System (GEOS), a global analysis is produced at an hourly temporal resolution spanning from January 1980 through present (Gelaro et al., 2017). It can be difficult to parse through a multidecadal dataset such as MERRA-2 to evaluate the interannual variability of weather that occurs on a daily timescale, let alone determine the occurrence of an extreme weather event. Furthermore, it was recognized that standard metrics were needed to evaluate climate change among climate models and international research efforts. As a result of these concerns, the Expert Team on Climate Change Detection and Indices (ETCCDI) developed a set of indices that represent the frequency and intensity of extreme weather events using a daily time series of 2-m air temperature (T2m) and precipitation (Alexander et al., 2016). These indices were used as a basis to comprise a list of fields that represent daily extreme temperature and precipitation events, heatwaves, multi-day precipitation, as well monthly percentile statistics from the MERRA-2 dataset. Also included in this data product is a climatological long term mean and standard deviation representing the interannual variability on a monthly timescale. All percentiles computed based on daily temperature and precipitation fields were calculated using a running window of +/- 7 days centered on each day of the year for the climatology period of 1981 though 2010. The monthly percentile statistics were also generated for each grid point using the climatology period of 1981 through 2010. Precipitation used to generate the climate statistics is the model generated version that has not been corrected by observations (Reichle et al., 2017). This document describes the gridded climate statistics files produced using output from the MERRA-2 reanalysis. Further details regarding MERRA-2 can be found in Gelaro et al. (2017), standard output from MERRA-2 is detailed Bosilovich et al. (2016), while a discussion of extreme indices in MERRA-2 can be found in Collow et al. (2017). An example in the literature for heatwave statistics is Perkins et al. (2013). The MERRA-2 climate statistics data products are available online through the Goddard Earth Sciences (GES) Data and Information Services Center (DISC) (http://disc.sci.gsfc.nasa.gov/mdisc/). All data collections are provided on a monthly time scale at the same horizontal grid as MERRA-2. This grid has 576 points in the longitudinal direction and 361 points in the latitudinal direction, corresponding to a resolution of 0.625° x 0.5°. # 2. Format and File Organization MERRA-2 climate statistics data files are provided in netCDF-4 format. Since netCDF-4 files are actually HDF-5 files that are structured in a special way, netCDF-4 files can also be read by HDF-5 tools. The data files adhere to the netCDF "classic" data model, which will allow source code used to read older netCDF formats to still work when compiled with the netCDF-4 and HDF-5 libraries. The data products will adhere to the older COARDS metadata conventions and many of the CF metadata conventions, although the files are not fully CF-compliant. The conventions for identifying dimension information are followed, which should allow MERRA-2 files to be used by many tools that are CF-compliant. #### 2.1 Dimensions Every MERRA-2 climate statistics collection will contain variables that define the dimensions of longitude, latitude, and time. Although time is included, each data file only contains one time step. Product collections that contain 3-dimensional data will also have a vertical dimension that defines pressure levels (see section 3.2). Dimension variables have an attribute named "units," set to an appropriate string defined by the CF and COARDS conventions that can be used by applications to identify the dimension. | Name | Description | Type | units attribute | |------|----------------------------------|--------|-----------------| | lon | Longitude | double | degrees_east | | lat | Latitude | double | degrees_north | | lev | pressure or layer index | double | hPa or layer | | time | minutes since first time in file | double | minutes | Table 2.1-1. Dimension Variables Contained in GMAO NetCDF Files #### 2.2 Variables Variables are stored as HDF-5 dataset objects. The MERRA-2 climate statistics data product uses the "classic" netCDF data model and does not use any of the extensions supported by netCDF-4 and the underlying HDF-5 format. This allows applications written to read netCDF files to easily read variables without having to modify code. Variable names are listed in Section 6 along with the number and sizes of dimensions. One can quickly list the variables in the file by using common utilities such as *ncdump*, which is distributed with the netCDF-4 library. With the '-h' flag, this utility will display all information about the file and its contents, including metdata associated with each variable. The variable name is analogous to the *short name* in the MERRA-2 climate statistics files. A short description of the variable is provided in the *long_name* and *standard_name* metadata parameters. Each variable has several useful metadata attributes. Many of these attributes are required by the <u>CF</u> and <u>COARDS</u> conventions, while others are specific for GMAO products. The following table lists required attributes. Other attributes may be included for internal GMAO use and can be ignored. Table 2.2-1 Metadata attributes associated with each variable. | Name | Type | Description | |------------|-----------------|--| | _FillValue | 32-bit
float | Floating-point value used to identify missing data. Required by CF. | | long_name | String | A brief description of the variable contents taken from the <i>Description</i> column of the tables in Appendix D. | | units | Char
String | The units of the variable. Must be a string that can be recognized by UNIDATA's Udunits package. | #### 2.3 Global Attributes In addition to dataset variables and dimension scales, global metadata is also stored in GMAO netCDF-4 files. Some metadata are required by the CF/COARDS conventions, some are present to meet ECS requirements, and others as a convenience to users of GMAO products. A summary of global attributes present in all MERRA-2 files is shown in Table 2.3-1. All global metadata parameters are of type character Table 2.3-1 Global metadata attributes associated with each SDS. | Name | Description | |----------------------------------|--| | Institution | "NASA Global Modeling and Assimilation Office" | | Conventions | CF1.7 | | Format | "NetCDF-4" | | SpatialCoverage | global | | VersionID | The version of the data product | | Temporal Range | The beginning and ending dates of the data used to produce the granule | | identifier_product_doi_authority | "http://dx.doi.org" | | ShortName | Product short name used by GESDISC | | RangeBeginningDate | Date corresponding to the first timestep in this file. | | RangeBeginningTime | Time corresponding to the first timestep in this file. | | RangeEndingDate | Date corresponding to the last timestep in this file. | | RangeEndingTime | Time corresponding to the last timestep in this file. | | ProcessingLevel | "Level 4" | | GranuleID | Filename for this product | | ProductionDateTime | Production date & time of this granule. | | LongName | Description of product type. | | Title | Description of product type. | | MapProjuection | Latitude-Longitude | | Name | Description | |------------------------|----------------------------------| | SouthernmostLatitude | "-90.0" | | NorthernmostLatitude | "90.0" | | WesternmostLatitude | "-180.0" | | EasternmostLatitude | "179.375" | | LatitudeResolution | "0.5" | | LongitudeResolution | "0.625" | | identifier_product_doi | Unique Digital Object Identifier | | Source | CVS tag: GEOSadas-5_12_4 | | Contact | "http://gmao.gsfc.nasa.gov" | ### 3. Grid Structure #### 3.1 Horizontal Structure All fields are provided on the same 5/8 longitude by $\frac{1}{2}$ latitude grid as MERRA-2. The GEOS MERRA-2 *native grid* is a cubed sphere, however the output is on a global horizontal grid, consisting of **IMn=576** points in the longitudinal direction and **JMn=361** points in the latitudinal direction. The horizontal native grid origin, associated with variables indexed (i=1, j=1) represents a grid point located at $(180^{\circ}\text{W}, 90^{\circ}\text{S})$. Latitude (φ) and longitude (λ) of grid points as a function of their indices (i, j) can be determined by: $$\lambda_i = -180 + (\Delta \lambda)_n (i-1), \quad i = 1, \text{IMn}$$ $$\varphi_j = -90 + (\Delta \varphi)_n (j-1), \quad j = 1, \text{JMn}$$ Where $(\Delta \lambda)_n = 5/8^{\circ}$ and $(\Delta \varphi)_n = 1/2^{\circ}$. For example, (i = 289, j = 181) corresponds to a grid point at $(\lambda = 0, \varphi = 0)$. #### 3.2 Vertical Structure Gridded products use two different vertical configurations: Horizontal-only (can be vertical averages, single level, or surface values) or pressure-level. Horizontal-only data for a given variable appear as 2-dimensional fields (x, y), while pressure-level data appear as 3-dimensional fields (x, y, z). In all cases the time dimension spans multiple files. Pressure-level data is output on the **LMp=12** pressure levels shown in Table 3.2-1. Table 3.2-1: Pressure-level data is output on the following 12 pressure levels: | Level | Pressure (hPa) | Level | Pressure (hPa) | |-------|----------------|-------|----------------| | 1 | 1000 | 7 | 400 | | 2 | 925 | 8 | 300 | | 3 | 850 | 9 | 200 | | 4 | 700 | 10 | 100 | | 5 | 600 | 11 | 30 | | 6 | 500 | 12 | 10 | # 4. File Naming Conventions Each GEOS-5 product file will have a complete file name identified in the EOSDIS metadata as "LocalGranuleID". EOSDIS also requires eight-character abbreviated naming indices for each Earth Science Data Type (ESDT). In MERRA-2 each file collection has a unique ESDT index. The ESDT index convention is described in section 4.2. #### 4.1 File Names The standard full name for the MERRA-2 Climate Statistics products will consist of three dot-delimited nodes: ### runid. collection.timestamp The node fields, which vary from file to file, are defined as follows: #### collection: All MERRA-2 Climate Statistics data are organized into file *collections* that contain fields with common characteristics. These collections are used to make the data more accessible for specific purposes. Collection names are of the form *freq dims group HV*, where the four attributes are: *freq*: statistics (**stat***F*) or time-average (**tavg***F*), where *F* indicates the frequency or averaging interval and can be any of the following: M = Monthly Value C = Climatological Value dims: 2d for collections with only 2-dimensional fields or 3d for collections with a mix of 2- and 3-dimensional fields. group: A three-letter mnemonic for the type of fields in the collection. It is a lowercase version of the group designation used in the ESDT name, as <u>listed in the next section</u>. HV: Horizontal and Vertical grid. *H* can be: N: Native $(5/8 \times \frac{1}{2})$ horizontal resolution V can be: x: horizontal-only data (surface, single level, etc.); *dims* must be **2D** p: pressure-level data (see Section 3.2 for levels); *dims* must be **3D** #### timestamp: This node defines the date and time associated with the data in the file. It has the yyyymm for monthly statistics files and yyyymm_yyyymm for long term mean files to denote the climatology period used. ``` yyyy - year string (e.g., "2002") mm - month string (e.g., "09" for September) ``` #### **EXAMPLE**: #### MERRA2.statM 2d edi Nx.200209.nc4 This is an example of a MERRA-2 Climate Statistics filename. The data are monthly statistics ("statM"), two-dimensional ("2d"), extremes detection indices products ("edi"), at native horizontal resolution ("Nx"). The file contains a monthly value for September 2002 and is in "nc4" format. ### 5.2 Earth Science Data Types (ESDT) Name To accommodate EOSDIS toolkit requirements, all files are associated with a nine-character ESDT. The ESDT is a short handle for users to access sets of files. Like with MERRA-2, the ESDT will be used to identify the *Mainstream collections* and consists of a compressed version of the collection name of the form: #### **M**2TFHVGGG where *T*: Time Description: T = Time-averaged C = Time-independent *F*: Frequency $\mathbf{M} = \mathbf{Monthly}$ 0 = Not Applicable *H*: Horizontal Resolution N = Native V: Vertical Location X = Two-dimensional P = Pressure GGG: Group **EDI** = extremes detection indices LTM = long term mean PCT = percentiles # 5. MERRA-2 Climate Statistics Data Collections This section lists the variables in each data collection. ## statM_2d_edi_Nx: Extremes Detection Indices Frequency: Monthly **Spatial Grid:** 2D, single-level, full horizontal resolution **Dimensions:** *longitude*=576, *latitude*=361 **Granule Size:** ~51 MB | Name | Dim | Description | Units | |---------|-----|---|----------| | CDD | yx | consecutive dry days (maximum number of consecutive days when precipitation < 1 mm) | days | | CSDI | yx | cold spell duration index (count when at least 6 consecutive days of min temperature < 10th percentile) | days | | CWD | yx | consecutive wet days (maximum number of consecutive days when precipitation > 1 mm) | days | | drydays | yx | count of days with < 1 mm of precipitation | 1 | | DTR | yx | diurnal temperature range | K | | HWA | yx | temperature on hottest heat wave day | K | | HWD | yx | length of longest heat wave | days | | HWF | yx | count of heat wave days | 1 | | HWM | yx | average temperature anomaly on heat wave days | K | | HMN | yx | count of heat wave events | 1 | | LCS | yx | length of longest cold spell | days | | LWS | yx | length of longest warm spell days | | | PRCPTOT | yx | total precipitation on days with at least 1 mm | mm day-1 | | W | | | |----|---|---| | yx | count of days with at least 10 mm of precipitation | 1 | | yx | count of days with at least 20 mm of precipitation | 1 | | yx | count of days with precipitation > 90th percentile | 1 | | yx | total precipitation from days > 90th percentile | mm day-1 | | yx | count of days with precipitation > 95th percentile | 1 | | yx | total precipitation from days > 95 th percentile | mm day-1 | | yx | count of days with precipitation > 99th percentile | 1 | | yx | total precipitation from days > 99th percentile | mm day-1 | | yx | maximum one day precipitation amount | mm day-1 | | yx | highest precipitation amount for a five day interval | mm day-1 | | yx | count of five-day heavy precipitation periods | 1 | | yx | ratio of total precipitation to the number of wet days | mm day-1 | | yx | 2-m temperature | K | | yx | percentage of time when daily min 2-m temperature < 10th percentile | % | | yx | percentage of time when daily min 2-m temperature > % 90th percentile | | | yx | percentage of time when daily max 2-m temperature < % 10th percentile | | | yx | percentage of time when daily max 2-m temperature > % 90th percentile | | | yx | count of days with >1 mm of precipitation 1 | | | yx | warm spell duration index (count when at least 6 consecutive days of max temperature > 90th percentile) | | | | ух
ух
ух
ух
ух
ух
ух
ух
ух
ух | yx count of days with at least 20 mm of precipitation yx count of days with precipitation > 90 th percentile yx total precipitation from days > 90 th percentile yx count of days with precipitation > 95 th percentile yx total precipitation from days > 95 th percentile yx count of days with precipitation > 99 th percentile yx total precipitation from days > 99 th percentile yx maximum one day precipitation amount yx highest precipitation amount for a five day interval yx count of five-day heavy precipitation periods yx ratio of total precipitation to the number of wet days yx 2-m temperature yx percentage of time when daily min 2-m temperature < 10th percentile yx percentage of time when daily max 2-m temperature > 90th percentile yx percentage of time when daily max 2-m temperature > 90th percentile yx count of days with >1 mm of precipitation yx warm spell duration index (count when at least 6 consecutive days of max temperature > 90th | # statM_2d_pct_Nx: Percentiles **Frequency:** *Monthly* **Spatial Grid:** 2D, single-level, full horizontal resolution **Dimensions:** *longitude*=576, *latitude*=361 **Granule Size:** ~7 MB | Name | Dim | Description | Units | |---------|-----|--|------------| | PRECTOT | yx | Percentile for total precipitation | Percentile | | T2MMAX | yx | Percentile for maximum 2-m air temperature | Percentile | | T2MMEAN | yx | Percentile for mean 2-m air temperature | Percentile | | T2MMIN | yx | Percentile for minimum 2-m air temperature | Percentile | # tavgC_2d_ltm_Nx: Long Term Mean Frequency: *Monthly* **Spatial Grid:** 2D, single-level, full horizontal resolution **Dimensions:** *longitude*=576, *latitude*=361 **Granule Size:** ~55 MB | Name | Dim | Description | Units | |----------|-----|---------------------------------|------------------------------------| | EMD | Dim | | 121 | | EMP | yx | evaporation minus precipitation | kg m ⁻² s ⁻¹ | | EVAP | yx | evaporation from turbulence | kg m ⁻² s ⁻¹ | | EVLAND | yx | land evaporation | kg m ⁻² s ⁻¹ | | GWETROOT | yx | root zone soil wetness | 1 | | GWETOP | yx | surface soil wetness | 1 | | H200 | yx | height at 200 hPa | m | | H500 | yx | height at 500 hPa | m | | H850 | yx | height at 850 hPa | m | |-------------|----|--|------------------------------------| | LWTUP | yx | upwelling longwave flux at top of the atmosphere | W m ⁻² | | PRECTOT | yx | total precipitation | kg m ⁻² s ⁻¹ | | PRECTOTCORR | yx | bias corrected total precipitation | kg m ⁻² s ⁻¹ | | PS | yx | surface pressure | Pa | | SLP | yx | sea level pressure | Pa | | SWGDN | yx | surface incoming shortwave flux | W m ⁻² | | T2MMAX | yx | maximum 2-m air temperature | K | | T2MMEAN | yx | 2-m air temperature | K | | T2MMIN | yx | minimum 2-m air temperature | K | | TQV | yx | total precipitable water vapor | kg m ⁻² | | TS | yx | surface skin temperature | K | | U10M | yx | 10-meter eastward wind | m s ⁻¹ | | U200 | yx | eastward wind at 200 hPa | m s ⁻¹ | | U2M | yx | 2-meter eastward wind | m s ⁻¹ | | U500 | yx | eastward wind at 500 hPa | m s ⁻¹ | | U50M | yx | eastward wind at 50 meters | m s ⁻¹ | | U850 | yx | eastward wind at 850 hPa | m s ⁻¹ | | UFLXQV | yx | eastward flux of atmospheric water vapor | kg m ⁻¹ s ⁻¹ | | V10M | yx | 10-meter northward wind | m s ⁻¹ | | V200 | yx | northward wind at 200 hPa | m s ⁻¹ | | V2M | yx | 2-meter northward wind | m s ⁻¹ | | V500 | yx | northward wind at 500 hPa | m s ⁻¹ | | V50M | yx | northward wind at 50 meters | m s ⁻¹ | | V850 | yx | northward wind at 850 hPa | m s ⁻¹ | | VFLXQV | yx | northward flux of atmospheric water vapor | kg m ⁻¹ s ⁻¹ | ## tavgC_3d_ltm_Np: Long Term Mean **Frequency:** *Monthly* **Spatial Grid:** 2D, single-level, full horizontal resolution **Dimensions:** *longitude*=576, *latitude*=361 **Granule Size:** ~153 MB | Name | Dim | Description | Units | |-------|-----|----------------------------|-------------------------------------| | Н | zyx | layer heights | m | | OMEGA | zyx | vertical pressure velocity | Pa s ⁻¹ | | QV | zyx | specific humidity | kg kg ⁻¹ | | RH | zyx | relative humidity | 1 | | T | zyx | air temperature | K | | U | zyx | eastward wind | m s ⁻¹ | | V | zyx | northward wind | m s ⁻¹ | | Var_V | zyx | variance of northward wind | m s ⁻¹ m s ⁻¹ | # 6. Data Object Identifiers Digital Object Identifiers are attached to each MERRA-2 climate statistics collection. Users should cite the data used in research papers following these DOI's. #### Example Citation: Global Modeling and Assimilation Office (GMAO) (2020) MERRA-2 statM_2d_edi_Nx: 2d, Single-Level, Monthly Extremes Detection Indices V1, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [Data Access Date], 10.5067/QFJ13GEGDI99 Note that complete citations for each file collection are provided at the GES-DISC download site. Table 6.1 DOIs for MERRA-2 Climate Statistics Products | Descriptive Short Name | Short Name | DOI | |------------------------|------------|----------------------| | statM_2d_edi_Nx | M2SMNXEDI | 10.5067/QFJ13GEGDI99 | | statM 2d pct Nx | M2SMNXPCT | 10.5067/JGAV2VDLRY9G | | tavgC_2d_ltm_Nx | M2TCNXLTM | 10.5067/HWSZE7YK7L81 | | tavgC_3d_ltm_Np | M2TCNPLTM | 10.5067/HQR1D9MPSEJN | ### References Alexander L. V., 2016: Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather and Climate Extremes, 11, 4-6, doi:10.1016/j.wace.2015.10.007. Bosilovich, M. G., R. Lucchesi, and M. Suarez, 2016: MERRA-2: File Specification. GMAO Office Note No. 9 (Version 1.1), 73 pp, available from http://gmao.gsfc.nasa.gov/pubs/office notes. Collow, A. B. M., S. P. Mahanama, M. G. Bosilovich, R. D. Koster, and Siegfried D. Schubert, 2017: An Evaluation of Teleconnections Over the United States in an Ensemble of AMIP Simulations with the MERRA-2 Configuration of the GEOS Atmospheric Model. NASA/TM-2017-104606, Vol. 47, 68 pp, https://gmao.gsfc.nasa.gov/pubs/docs/Collow963.pdf. Gelaro, R., W. McCarty, M.J. Suárez, R. Todling, A. Molod, L. Takacs, C.A. Randles, A. Darmenov, M.G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A.M. da Silva, W. Gu, G. Kim, R. Koster, R. Lucchesi, D. Merkova, J.E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S.D. Schubert, M. Sienkiewicz, and B. Zhao, 2017: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1. Perkins, S.E. and L.V. Alexander, 2013: On the Measurement of Heat Waves. J. Climate, 26, 4500–4517, doi: 10.1175/JCLI-D-12-00383.1. Reichle, R.H., Q. Liu, R.D. Koster, C.S. Draper, S.P. Mahanama, and G.S. Partyka, 2017: Land Surface Precipitation in MERRA-2. J. Climate, 30, 1643–1664, https://doi.org/10.1175/JCLI-D-16-0570.1. # **Web Resources** GMAO web site: http://gmao.gsfc.nasa.gov/ GMAO Operations page: http://gmao.gsfc.nasa.gov/products/ CF Standard Description: http://cf-pcmdi.llnl.gov/ FLUID Visualizations: https://fluid.nccs.nasa.gov/reanalysis/