<!DOCTYPE html> <!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]--> <!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]--> <head> <meta charset="utf-8"> <meta name="generator" content="Docutils 0.19: https://docutils.sourceforge.io/" /> <meta property="og:title" content="sklearn.cluster.DBSCAN" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://scikit-learn/stable/modules/generated/sklearn.cluster.DBSCAN.html" /> <meta property="og:site_name" content="scikit-learn" /> <meta property="og:description" content="Examples using sklearn.cluster.DBSCAN: Comparing different clustering algorithms on toy datasets Demo of DBSCAN clustering algorithm Demo of HDBSCAN clustering algorithm" /> <meta property="og:image" content="https://scikit-learn/stable/_images/sphx_glr_plot_cluster_comparison_thumb.png" /> <meta property="og:image:alt" content="" /> <meta name="description" content="Examples using sklearn.cluster.DBSCAN: Comparing different clustering algorithms on toy datasets Demo of DBSCAN clustering algorithm Demo of HDBSCAN clustering algorithm" /> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>sklearn.cluster.DBSCAN — scikit-learn 1.4.dev0 documentation</title> <link rel="canonical" href="http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html" /> <link rel="shortcut icon" href="../../_static/favicon.ico"/> <link rel="stylesheet" href="../../_static/css/vendor/bootstrap.min.css" type="text/css" /> <link rel="stylesheet" href="../../_static/pygments.css" type="text/css" /> <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" /> <link rel="stylesheet" href="../../_static/copybutton.css" type="text/css" /> <link rel="stylesheet" href="../../_static/plot_directive.css" type="text/css" /> <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Vibur" type="text/css" /> <link rel="stylesheet" href="../../_static/jupyterlite_sphinx.css" type="text/css" /> <link rel="stylesheet" href="../../_static/sg_gallery.css" type="text/css" /> <link rel="stylesheet" href="../../_static/sg_gallery-binder.css" type="text/css" /> <link rel="stylesheet" href="../../_static/sg_gallery-dataframe.css" type="text/css" /> <link rel="stylesheet" href="../../_static/sg_gallery-rendered-html.css" type="text/css" /> <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" /> <script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script> <script src="../../_static/js/vendor/jquery-3.6.3.slim.min.js"></script> </head> <body> <nav id="navbar" class="sk-docs-navbar navbar navbar-expand-md navbar-light bg-light py-0"> <div class="container-fluid sk-docs-container px-0"> <a class="navbar-brand py-0" href="../../index.html"> <img class="sk-brand-img" src="../../_static/scikit-learn-logo-small.png" alt="logo"/> </a> <button id="sk-navbar-toggler" class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation" > <span class="navbar-toggler-icon"></span> </button> <div class="sk-navbar-collapse collapse navbar-collapse" id="navbarSupportedContent"> <ul class="navbar-nav mr-auto"> <li class="nav-item"> <a class="sk-nav-link nav-link" href="../../install.html">Install</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link" href="../../user_guide.html">User Guide</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link" href="../classes.html">API</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link" href="../../auto_examples/index.html">Examples</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link" target="_blank" rel="noopener noreferrer" href="https://blog.scikit-learn.org/">Community</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../getting_started.html" >Getting Started</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../tutorial/index.html" >Tutorial</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../whats_new/v1.4.html" >What's new</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../glossary.html" >Glossary</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../developers/index.html" >Development</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../faq.html" >FAQ</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../support.html" >Support</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../related_projects.html" >Related packages</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../roadmap.html" >Roadmap</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../governance.html" >Governance</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="../../about.html" >About us</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a> </li> <li class="nav-item"> <a class="sk-nav-link nav-link nav-more-item-mobile-items" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a> </li> <li class="nav-item dropdown nav-more-item-dropdown"> <a class="sk-nav-link nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a> <div class="dropdown-menu" aria-labelledby="navbarDropdown"> <a class="sk-nav-dropdown-item dropdown-item" href="../../getting_started.html" >Getting Started</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../tutorial/index.html" >Tutorial</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../whats_new/v1.4.html" >What's new</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../glossary.html" >Glossary</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../developers/index.html" >Development</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../faq.html" >FAQ</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../support.html" >Support</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../related_projects.html" >Related packages</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../roadmap.html" >Roadmap</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../governance.html" >Governance</a> <a class="sk-nav-dropdown-item dropdown-item" href="../../about.html" >About us</a> <a class="sk-nav-dropdown-item dropdown-item" href="https://github.com/scikit-learn/scikit-learn" >GitHub</a> <a class="sk-nav-dropdown-item dropdown-item" href="https://scikit-learn.org/dev/versions.html" >Other Versions and Download</a> </div> </li> </ul> <div id="searchbox" role="search"> <div class="searchformwrapper"> <form class="search" action="../../search.html" method="get"> <input class="sk-search-text-input" type="text" name="q" aria-labelledby="searchlabel" /> <input class="sk-search-text-btn" type="submit" value="Go" /> </form> </div> </div> </div> </div> </nav> <div class="d-flex" id="sk-doc-wrapper"> <input type="checkbox" name="sk-toggle-checkbox" id="sk-toggle-checkbox"> <label id="sk-sidemenu-toggle" class="sk-btn-toggle-toc btn sk-btn-primary" for="sk-toggle-checkbox">Toggle Menu</label> <div id="sk-sidebar-wrapper" class="border-right"> <div class="sk-sidebar-toc-wrapper"> <div class="btn-group w-100 mb-2" role="group" aria-label="rellinks"> <a href="sklearn.cluster.Birch.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="sklearn.cluster.Birch">Prev</a><a href="../classes.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="API Reference">Up</a> <a href="sklearn.cluster.HDBSCAN.html" role="button" class="btn sk-btn-rellink py-1" sk-rellink-tooltip="sklearn.cluster.HDBSCAN">Next</a> </div> <div class="alert alert-danger p-1 mb-2" role="alert"> <p class="text-center mb-0"> <strong>scikit-learn 1.4.dev0</strong><br/> <a href="http://scikit-learn.org/dev/versions.html">Other versions</a> </p> </div> <div class="alert alert-warning p-1 mb-2" role="alert"> <p class="text-center mb-0"> Please <a class="font-weight-bold" href="../../about.html#citing-scikit-learn"><string>cite us</string></a> if you use the software. </p> </div> <div class="sk-sidebar-toc"> <ul> <li><a class="reference internal" href="#"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.cluster</span></code>.DBSCAN</a><ul> <li><a class="reference internal" href="#sklearn.cluster.DBSCAN"><code class="docutils literal notranslate"><span class="pre">DBSCAN</span></code></a><ul> <li><a class="reference internal" href="#sklearn.cluster.DBSCAN.fit"><code class="docutils literal notranslate"><span class="pre">DBSCAN.fit</span></code></a></li> <li><a class="reference internal" href="#sklearn.cluster.DBSCAN.fit_predict"><code class="docutils literal notranslate"><span class="pre">DBSCAN.fit_predict</span></code></a></li> <li><a class="reference internal" href="#sklearn.cluster.DBSCAN.get_metadata_routing"><code class="docutils literal notranslate"><span class="pre">DBSCAN.get_metadata_routing</span></code></a></li> <li><a class="reference internal" href="#sklearn.cluster.DBSCAN.get_params"><code class="docutils literal notranslate"><span class="pre">DBSCAN.get_params</span></code></a></li> <li><a class="reference internal" href="#sklearn.cluster.DBSCAN.set_fit_request"><code class="docutils literal notranslate"><span class="pre">DBSCAN.set_fit_request</span></code></a></li> <li><a class="reference internal" href="#sklearn.cluster.DBSCAN.set_params"><code class="docutils literal notranslate"><span class="pre">DBSCAN.set_params</span></code></a></li> </ul> </li> <li><a class="reference internal" href="#examples-using-sklearn-cluster-dbscan">Examples using <code class="docutils literal notranslate"><span class="pre">sklearn.cluster.DBSCAN</span></code></a></li> </ul> </li> </ul> </div> </div> </div> <div id="sk-page-content-wrapper"> <div class="sk-page-content container-fluid body px-md-3" role="main"> <section id="sklearn-cluster-dbscan"> <h1><a class="reference internal" href="../classes.html#module-sklearn.cluster" title="sklearn.cluster"><code class="xref py py-mod docutils literal notranslate"><span class="pre">sklearn.cluster</span></code></a>.DBSCAN<a class="headerlink" href="#sklearn-cluster-dbscan" title="Permalink to this heading">¶</a></h1> <dl class="py class"> <dt class="sig sig-object py" id="sklearn.cluster.DBSCAN"> <em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">sklearn.cluster.</span></span><span class="sig-name descname"><span class="pre">DBSCAN</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">eps</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_samples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metric</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'euclidean'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">metric_params</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">algorithm</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'auto'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">leaf_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">30</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/702316c27/sklearn/cluster/_dbscan.py#L168"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cluster.DBSCAN" title="Permalink to this definition">¶</a></dt> <dd><p>Perform DBSCAN clustering from vector array or distance matrix.</p> <p>DBSCAN - Density-Based Spatial Clustering of Applications with Noise. Finds core samples of high density and expands clusters from them. Good for data which contains clusters of similar density.</p> <p>Read more in the <a class="reference internal" href="../clustering.html#dbscan"><span class="std std-ref">User Guide</span></a>.</p> <dl class="field-list"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl> <dt><strong>eps</strong><span class="classifier">float, default=0.5</span></dt><dd><p>The maximum distance between two samples for one to be considered as in the neighborhood of the other. This is not a maximum bound on the distances of points within a cluster. This is the most important DBSCAN parameter to choose appropriately for your data set and distance function.</p> </dd> <dt><strong>min_samples</strong><span class="classifier">int, default=5</span></dt><dd><p>The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself.</p> </dd> <dt><strong>metric</strong><span class="classifier">str, or callable, default=’euclidean’</span></dt><dd><p>The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by <a class="reference internal" href="sklearn.metrics.pairwise_distances.html#sklearn.metrics.pairwise_distances" title="sklearn.metrics.pairwise_distances"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.metrics.pairwise_distances</span></code></a> for its metric parameter. If metric is “precomputed”, X is assumed to be a distance matrix and must be square. X may be a <a class="reference internal" href="../../glossary.html#term-sparse-graph"><span class="xref std std-term">sparse graph</span></a>, in which case only “nonzero” elements may be considered neighbors for DBSCAN.</p> <div class="versionadded"> <p><span class="versionmodified added">New in version 0.17: </span>metric <em>precomputed</em> to accept precomputed sparse matrix.</p> </div> </dd> <dt><strong>metric_params</strong><span class="classifier">dict, default=None</span></dt><dd><p>Additional keyword arguments for the metric function.</p> <div class="versionadded"> <p><span class="versionmodified added">New in version 0.19.</span></p> </div> </dd> <dt><strong>algorithm</strong><span class="classifier">{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default=’auto’</span></dt><dd><p>The algorithm to be used by the NearestNeighbors module to compute pointwise distances and find nearest neighbors. See NearestNeighbors module documentation for details.</p> </dd> <dt><strong>leaf_size</strong><span class="classifier">int, default=30</span></dt><dd><p>Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem.</p> </dd> <dt><strong>p</strong><span class="classifier">float, default=None</span></dt><dd><p>The power of the Minkowski metric to be used to calculate distance between points. If None, then <code class="docutils literal notranslate"><span class="pre">p=2</span></code> (equivalent to the Euclidean distance).</p> </dd> <dt><strong>n_jobs</strong><span class="classifier">int, default=None</span></dt><dd><p>The number of parallel jobs to run. <code class="docutils literal notranslate"><span class="pre">None</span></code> means 1 unless in a <a class="reference external" href="https://joblib.readthedocs.io/en/latest/generated/joblib.parallel_backend.html#joblib.parallel_backend" title="(in joblib v1.3.1)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">joblib.parallel_backend</span></code></a> context. <code class="docutils literal notranslate"><span class="pre">-1</span></code> means using all processors. See <a class="reference internal" href="../../glossary.html#term-n_jobs"><span class="xref std std-term">Glossary</span></a> for more details.</p> </dd> </dl> </dd> <dt class="field-even">Attributes<span class="colon">:</span></dt> <dd class="field-even"><dl> <dt><strong>core_sample_indices_</strong><span class="classifier">ndarray of shape (n_core_samples,)</span></dt><dd><p>Indices of core samples.</p> </dd> <dt><strong>components_</strong><span class="classifier">ndarray of shape (n_core_samples, n_features)</span></dt><dd><p>Copy of each core sample found by training.</p> </dd> <dt><strong>labels_</strong><span class="classifier">ndarray of shape (n_samples)</span></dt><dd><p>Cluster labels for each point in the dataset given to fit(). Noisy samples are given the label -1.</p> </dd> <dt><strong>n_features_in_</strong><span class="classifier">int</span></dt><dd><p>Number of features seen during <a class="reference internal" href="../../glossary.html#term-fit"><span class="xref std std-term">fit</span></a>.</p> <div class="versionadded"> <p><span class="versionmodified added">New in version 0.24.</span></p> </div> </dd> <dt><strong>feature_names_in_</strong><span class="classifier">ndarray of shape (<code class="docutils literal notranslate"><span class="pre">n_features_in_</span></code>,)</span></dt><dd><p>Names of features seen during <a class="reference internal" href="../../glossary.html#term-fit"><span class="xref std std-term">fit</span></a>. Defined only when <code class="docutils literal notranslate"><span class="pre">X</span></code> has feature names that are all strings.</p> <div class="versionadded"> <p><span class="versionmodified added">New in version 1.0.</span></p> </div> </dd> </dl> </dd> </dl> <div class="admonition seealso"> <p class="admonition-title">See also</p> <dl class="simple"> <dt><a class="reference internal" href="sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS" title="sklearn.cluster.OPTICS"><code class="xref py py-obj docutils literal notranslate"><span class="pre">OPTICS</span></code></a></dt><dd><p>A similar clustering at multiple values of eps. Our implementation is optimized for memory usage.</p> </dd> </dl> </div> <p class="rubric">Notes</p> <p>For an example, see <a class="reference internal" href="../../auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py"><span class="std std-ref">examples/cluster/plot_dbscan.py</span></a>.</p> <p>This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n). It may attract a higher memory complexity when querying these nearest neighborhoods, depending on the <code class="docutils literal notranslate"><span class="pre">algorithm</span></code>.</p> <p>One way to avoid the query complexity is to pre-compute sparse neighborhoods in chunks using <a class="reference internal" href="sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors.radius_neighbors_graph" title="sklearn.neighbors.NearestNeighbors.radius_neighbors_graph"><code class="xref py py-func docutils literal notranslate"><span class="pre">NearestNeighbors.radius_neighbors_graph</span></code></a> with <code class="docutils literal notranslate"><span class="pre">mode='distance'</span></code>, then using <code class="docutils literal notranslate"><span class="pre">metric='precomputed'</span></code> here.</p> <p>Another way to reduce memory and computation time is to remove (near-)duplicate points and use <code class="docutils literal notranslate"><span class="pre">sample_weight</span></code> instead.</p> <p><a class="reference internal" href="sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS" title="sklearn.cluster.OPTICS"><code class="xref py py-class docutils literal notranslate"><span class="pre">OPTICS</span></code></a> provides a similar clustering with lower memory usage.</p> <p class="rubric">References</p> <p>Ester, M., H. P. Kriegel, J. Sander, and X. Xu, <a class="reference external" href="https://www.dbs.ifi.lmu.de/Publikationen/Papers/KDD-96.final.frame.pdf">“A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise”</a>. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996</p> <p>Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). <a class="reference external" href="https://doi.org/10.1145/3068335">“DBSCAN revisited, revisited: why and how you should (still) use DBSCAN.”</a> ACM Transactions on Database Systems (TODS), 42(3), 19.</p> <p class="rubric">Examples</p> <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">from</span> <span class="nn">sklearn.cluster</span> <span class="kn">import</span> <span class="n">DBSCAN</span> <span class="gp">>>> </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="gp">>>> </span><span class="n">X</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="gp">... </span> <span class="p">[</span><span class="mi">8</span><span class="p">,</span> <span class="mi">7</span><span class="p">],</span> <span class="p">[</span><span class="mi">8</span><span class="p">,</span> <span class="mi">8</span><span class="p">],</span> <span class="p">[</span><span class="mi">25</span><span class="p">,</span> <span class="mi">80</span><span class="p">]])</span> <span class="gp">>>> </span><span class="n">clustering</span> <span class="o">=</span> <span class="n">DBSCAN</span><span class="p">(</span><span class="n">eps</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">min_samples</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="gp">>>> </span><span class="n">clustering</span><span class="o">.</span><span class="n">labels_</span> <span class="go">array([ 0, 0, 0, 1, 1, -1])</span> <span class="gp">>>> </span><span class="n">clustering</span> <span class="go">DBSCAN(eps=3, min_samples=2)</span> </pre></div> </div> <p class="rubric">Methods</p> <table class="autosummary longtable docutils align-default"> <tbody> <tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.cluster.DBSCAN.fit" title="sklearn.cluster.DBSCAN.fit"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fit</span></code></a>(X[, y, sample_weight])</p></td> <td><p>Perform DBSCAN clustering from features, or distance matrix.</p></td> </tr> <tr class="row-even"><td><p><a class="reference internal" href="#sklearn.cluster.DBSCAN.fit_predict" title="sklearn.cluster.DBSCAN.fit_predict"><code class="xref py py-obj docutils literal notranslate"><span class="pre">fit_predict</span></code></a>(X[, y, sample_weight])</p></td> <td><p>Compute clusters from a data or distance matrix and predict labels.</p></td> </tr> <tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.cluster.DBSCAN.get_metadata_routing" title="sklearn.cluster.DBSCAN.get_metadata_routing"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_metadata_routing</span></code></a>()</p></td> <td><p>Get metadata routing of this object.</p></td> </tr> <tr class="row-even"><td><p><a class="reference internal" href="#sklearn.cluster.DBSCAN.get_params" title="sklearn.cluster.DBSCAN.get_params"><code class="xref py py-obj docutils literal notranslate"><span class="pre">get_params</span></code></a>([deep])</p></td> <td><p>Get parameters for this estimator.</p></td> </tr> <tr class="row-odd"><td><p><a class="reference internal" href="#sklearn.cluster.DBSCAN.set_fit_request" title="sklearn.cluster.DBSCAN.set_fit_request"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_fit_request</span></code></a>(*[, sample_weight])</p></td> <td><p>Request metadata passed to the <code class="docutils literal notranslate"><span class="pre">fit</span></code> method.</p></td> </tr> <tr class="row-even"><td><p><a class="reference internal" href="#sklearn.cluster.DBSCAN.set_params" title="sklearn.cluster.DBSCAN.set_params"><code class="xref py py-obj docutils literal notranslate"><span class="pre">set_params</span></code></a>(**params)</p></td> <td><p>Set the parameters of this estimator.</p></td> </tr> </tbody> </table> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.cluster.DBSCAN.fit"> <span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_weight</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/702316c27/sklearn/cluster/_dbscan.py#L341"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cluster.DBSCAN.fit" title="Permalink to this definition">¶</a></dt> <dd><p>Perform DBSCAN clustering from features, or distance matrix.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>X</strong><span class="classifier">{array-like, sparse matrix} of shape (n_samples, n_features), or (n_samples, n_samples)</span></dt><dd><p>Training instances to cluster, or distances between instances if <code class="docutils literal notranslate"><span class="pre">metric='precomputed'</span></code>. If a sparse matrix is provided, it will be converted into a sparse <code class="docutils literal notranslate"><span class="pre">csr_matrix</span></code>.</p> </dd> <dt><strong>y</strong><span class="classifier">Ignored</span></dt><dd><p>Not used, present here for API consistency by convention.</p> </dd> <dt><strong>sample_weight</strong><span class="classifier">array-like of shape (n_samples,), default=None</span></dt><dd><p>Weight of each sample, such that a sample with a weight of at least <code class="docutils literal notranslate"><span class="pre">min_samples</span></code> is by itself a core sample; a sample with a negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>self</strong><span class="classifier">object</span></dt><dd><p>Returns a fitted instance of self.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.cluster.DBSCAN.fit_predict"> <span class="sig-name descname"><span class="pre">fit_predict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_weight</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/702316c27/sklearn/cluster/_dbscan.py#L423"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cluster.DBSCAN.fit_predict" title="Permalink to this definition">¶</a></dt> <dd><p>Compute clusters from a data or distance matrix and predict labels.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>X</strong><span class="classifier">{array-like, sparse matrix} of shape (n_samples, n_features), or (n_samples, n_samples)</span></dt><dd><p>Training instances to cluster, or distances between instances if <code class="docutils literal notranslate"><span class="pre">metric='precomputed'</span></code>. If a sparse matrix is provided, it will be converted into a sparse <code class="docutils literal notranslate"><span class="pre">csr_matrix</span></code>.</p> </dd> <dt><strong>y</strong><span class="classifier">Ignored</span></dt><dd><p>Not used, present here for API consistency by convention.</p> </dd> <dt><strong>sample_weight</strong><span class="classifier">array-like of shape (n_samples,), default=None</span></dt><dd><p>Weight of each sample, such that a sample with a weight of at least <code class="docutils literal notranslate"><span class="pre">min_samples</span></code> is by itself a core sample; a sample with a negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>labels</strong><span class="classifier">ndarray of shape (n_samples,)</span></dt><dd><p>Cluster labels. Noisy samples are given the label -1.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.cluster.DBSCAN.get_metadata_routing"> <span class="sig-name descname"><span class="pre">get_metadata_routing</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/702316c27/sklearn/utils/_metadata_requests.py#L1287"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cluster.DBSCAN.get_metadata_routing" title="Permalink to this definition">¶</a></dt> <dd><p>Get metadata routing of this object.</p> <p>Please check <a class="reference internal" href="../../metadata_routing.html#metadata-routing"><span class="std std-ref">User Guide</span></a> on how the routing mechanism works.</p> <dl class="field-list simple"> <dt class="field-odd">Returns<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>routing</strong><span class="classifier">MetadataRequest</span></dt><dd><p>A <a class="reference internal" href="sklearn.utils.metadata_routing.MetadataRequest.html#sklearn.utils.metadata_routing.MetadataRequest" title="sklearn.utils.metadata_routing.MetadataRequest"><code class="xref py py-class docutils literal notranslate"><span class="pre">MetadataRequest</span></code></a> encapsulating routing information.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.cluster.DBSCAN.get_params"> <span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/702316c27/sklearn/base.py#L178"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cluster.DBSCAN.get_params" title="Permalink to this definition">¶</a></dt> <dd><p>Get parameters for this estimator.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>deep</strong><span class="classifier">bool, default=True</span></dt><dd><p>If True, will return the parameters for this estimator and contained subobjects that are estimators.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>params</strong><span class="classifier">dict</span></dt><dd><p>Parameter names mapped to their values.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.cluster.DBSCAN.set_fit_request"> <span class="sig-name descname"><span class="pre">set_fit_request</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_weight</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/typing.html#typing.Union" title="(in Python v3.11)"><span class="pre">Union</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.11)"><span class="pre">bool</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/constants.html#None" title="(in Python v3.11)"><span class="pre">None</span></a><span class="p"><span class="pre">,</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.11)"><span class="pre">str</span></a><span class="p"><span class="pre">]</span></span></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">'$UNCHANGED$'</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">→</span> <span class="sig-return-typehint"><a class="reference internal" href="#sklearn.cluster.DBSCAN" title="sklearn.cluster._dbscan.DBSCAN"><span class="pre">DBSCAN</span></a></span></span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/702316c27/sklearn/utils/_metadata_requests.py#L1077"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cluster.DBSCAN.set_fit_request" title="Permalink to this definition">¶</a></dt> <dd><p>Request metadata passed to the <code class="docutils literal notranslate"><span class="pre">fit</span></code> method.</p> <p>Note that this method is only relevant if <code class="docutils literal notranslate"><span class="pre">enable_metadata_routing=True</span></code> (see <a class="reference internal" href="sklearn.set_config.html#sklearn.set_config" title="sklearn.set_config"><code class="xref py py-func docutils literal notranslate"><span class="pre">sklearn.set_config</span></code></a>). Please see <a class="reference internal" href="../../metadata_routing.html#metadata-routing"><span class="std std-ref">User Guide</span></a> on how the routing mechanism works.</p> <p>The options for each parameter are:</p> <ul class="simple"> <li><p><code class="docutils literal notranslate"><span class="pre">True</span></code>: metadata is requested, and passed to <code class="docutils literal notranslate"><span class="pre">fit</span></code> if provided. The request is ignored if metadata is not provided.</p></li> <li><p><code class="docutils literal notranslate"><span class="pre">False</span></code>: metadata is not requested and the meta-estimator will not pass it to <code class="docutils literal notranslate"><span class="pre">fit</span></code>.</p></li> <li><p><code class="docutils literal notranslate"><span class="pre">None</span></code>: metadata is not requested, and the meta-estimator will raise an error if the user provides it.</p></li> <li><p><code class="docutils literal notranslate"><span class="pre">str</span></code>: metadata should be passed to the meta-estimator with this given alias instead of the original name.</p></li> </ul> <p>The default (<code class="docutils literal notranslate"><span class="pre">sklearn.utils.metadata_routing.UNCHANGED</span></code>) retains the existing request. This allows you to change the request for some parameters and not others.</p> <div class="versionadded"> <p><span class="versionmodified added">New in version 1.3.</span></p> </div> <div class="admonition note"> <p class="admonition-title">Note</p> <p>This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a <a class="reference internal" href="sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a>. Otherwise it has no effect.</p> </div> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>sample_weight</strong><span class="classifier">str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED</span></dt><dd><p>Metadata routing for <code class="docutils literal notranslate"><span class="pre">sample_weight</span></code> parameter in <code class="docutils literal notranslate"><span class="pre">fit</span></code>.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>self</strong><span class="classifier">object</span></dt><dd><p>The updated object.</p> </dd> </dl> </dd> </dl> </dd></dl> <dl class="py method"> <dt class="sig sig-object py" id="sklearn.cluster.DBSCAN.set_params"> <span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">params</span></span></em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/702316c27/sklearn/base.py#L202"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#sklearn.cluster.DBSCAN.set_params" title="Permalink to this definition">¶</a></dt> <dd><p>Set the parameters of this estimator.</p> <p>The method works on simple estimators as well as on nested objects (such as <a class="reference internal" href="sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline" title="sklearn.pipeline.Pipeline"><code class="xref py py-class docutils literal notranslate"><span class="pre">Pipeline</span></code></a>). The latter have parameters of the form <code class="docutils literal notranslate"><span class="pre"><component>__<parameter></span></code> so that it’s possible to update each component of a nested object.</p> <dl class="field-list simple"> <dt class="field-odd">Parameters<span class="colon">:</span></dt> <dd class="field-odd"><dl class="simple"> <dt><strong>**params</strong><span class="classifier">dict</span></dt><dd><p>Estimator parameters.</p> </dd> </dl> </dd> <dt class="field-even">Returns<span class="colon">:</span></dt> <dd class="field-even"><dl class="simple"> <dt><strong>self</strong><span class="classifier">estimator instance</span></dt><dd><p>Estimator instance.</p> </dd> </dl> </dd> </dl> </dd></dl> </dd></dl> <section id="examples-using-sklearn-cluster-dbscan"> <h2>Examples using <code class="docutils literal notranslate"><span class="pre">sklearn.cluster.DBSCAN</span></code><a class="headerlink" href="#examples-using-sklearn-cluster-dbscan" title="Permalink to this heading">¶</a></h2> <div class="sphx-glr-thumbnails"><div class="sphx-glr-thumbcontainer" tooltip="This example shows characteristics of different clustering algorithms on datasets that are "int..."><img alt="" src="../../_images/sphx_glr_plot_cluster_comparison_thumb.png" /> <p><a class="reference internal" href="../../auto_examples/cluster/plot_cluster_comparison.html#sphx-glr-auto-examples-cluster-plot-cluster-comparison-py"><span class="std std-ref">Comparing different clustering algorithms on toy datasets</span></a></p> <div class="sphx-glr-thumbnail-title">Comparing different clustering algorithms on toy datasets</div> </div><div class="sphx-glr-thumbcontainer" tooltip="DBSCAN (Density-Based Spatial Clustering of Applications with Noise) finds core samples in regi..."><img alt="" src="../../_images/sphx_glr_plot_dbscan_thumb.png" /> <p><a class="reference internal" href="../../auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py"><span class="std std-ref">Demo of DBSCAN clustering algorithm</span></a></p> <div class="sphx-glr-thumbnail-title">Demo of DBSCAN clustering algorithm</div> </div><div class="sphx-glr-thumbcontainer" tooltip="In this demo we will take a look at cluster.HDBSCAN from the perspective of generalizing the cl..."><img alt="" src="../../_images/sphx_glr_plot_hdbscan_thumb.png" /> <p><a class="reference internal" href="../../auto_examples/cluster/plot_hdbscan.html#sphx-glr-auto-examples-cluster-plot-hdbscan-py"><span class="std std-ref">Demo of HDBSCAN clustering algorithm</span></a></p> <div class="sphx-glr-thumbnail-title">Demo of HDBSCAN clustering algorithm</div> </div></div><div class="clearer"></div></section> </section> </div> <div class="container"> <footer class="sk-content-footer"> © 2007 - 2023, scikit-learn developers (BSD License). <a href="../../_sources/modules/generated/sklearn.cluster.DBSCAN.rst.txt" rel="nofollow">Show this page source</a> </footer> </div> </div> </div> <script src="../../_static/js/vendor/bootstrap.min.js"></script> <script> window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date; ga('create', 'UA-22606712-2', 'auto'); ga('set', 'anonymizeIp', true); ga('send', 'pageview'); </script> <script async src='https://www.google-analytics.com/analytics.js'></script> <script defer data-domain="scikit-learn.org" src="https://views.scientific-python.org/js/script.js"> </script> <script src="../../_static/clipboard.min.js"></script> <script src="../../_static/copybutton.js"></script> <script> $(document).ready(function() { /* Add a [>>>] button on the top-right corner of code samples to hide * the >>> and ... prompts and the output and thus make the code * copyable. */ var div = $('.highlight-python .highlight,' + '.highlight-python3 .highlight,' + '.highlight-pycon .highlight,' + '.highlight-default .highlight') var pre = div.find('pre'); // get the styles from the current theme pre.parent().parent().css('position', 'relative'); // create and add the button to all the code blocks that contain >>> div.each(function(index) { var jthis = $(this); // tracebacks (.gt) contain bare text elements that need to be // wrapped in a span to work with .nextUntil() (see later) jthis.find('pre:has(.gt)').contents().filter(function() { return ((this.nodeType == 3) && (this.data.trim().length > 0)); }).wrap('<span>'); }); /*** Add permalink buttons next to glossary terms ***/ $('dl.glossary > dt[id]').append(function() { return ('<a class="headerlink" href="#' + this.getAttribute('id') + '" title="Permalink to this term">¶</a>'); }); }); </script> <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script> <script src="https://scikit-learn.org/versionwarning.js"></script> </body> </html>