-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
softmax.ts
69 lines (62 loc) · 2.18 KB
/
softmax.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {ENGINE} from '../engine';
import {Softmax, SoftmaxAttrs, SoftmaxInputs} from '../kernel_names';
import {NamedAttrMap} from '../kernel_registry';
import {Tensor} from '../tensor';
import {NamedTensorMap} from '../tensor_types';
import {convertToTensor} from '../tensor_util_env';
import {TensorLike} from '../types';
import {op} from './operation';
/**
* Computes the softmax normalized vector given the logits.
*
* ```js
* const a = tf.tensor1d([1, 2, 3]);
*
* a.softmax().print(); // or tf.softmax(a)
* ```
*
* ```js
* const a = tf.tensor2d([2, 4, 6, 1, 2, 3], [2, 3]);
*
* a.softmax().print(); // or tf.softmax(a)
* ```
*
* @param logits The logits array.
* @param dim The dimension softmax would be performed on. Defaults to `-1`
* which indicates the last dimension.
*
* @doc {heading: 'Operations', subheading: 'Normalization'}
*/
function softmax_<T extends Tensor>(logits: T|TensorLike, dim = -1): T {
const $logits = convertToTensor(logits, 'logits', 'softmax', 'float32');
if (dim === -1) {
dim = $logits.rank - 1;
}
if (dim !== $logits.rank - 1) {
throw Error(
'Softmax along a non-last dimension is not yet supported. ' +
`Logits was rank ${$logits.rank} and dim was ${dim}`);
}
const inputs: SoftmaxInputs = {logits: $logits};
const attrs: SoftmaxAttrs = {dim};
return ENGINE.runKernel(
Softmax, inputs as unknown as NamedTensorMap,
attrs as unknown as NamedAttrMap);
}
export const softmax = /* @__PURE__ */ op({softmax_});