/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see <http://www.gnu.org/licenses/>. */ // SPDX-License-Identifier: GPL-3.0 /** * @author Christian <c@ethdev.com> * @date 2014 * Solidity AST to EVM bytecode compiler for expressions. */ #include <libsolidity/codegen/ExpressionCompiler.h> #include <libsolidity/codegen/ReturnInfo.h> #include <libsolidity/codegen/CompilerContext.h> #include <libsolidity/codegen/CompilerUtils.h> #include <libsolidity/codegen/LValue.h> #include <libsolidity/ast/AST.h> #include <libsolidity/ast/ASTUtils.h> #include <libsolidity/ast/TypeProvider.h> #include <libevmasm/GasMeter.h> #include <libsolutil/Common.h> #include <libsolutil/FunctionSelector.h> #include <libsolutil/Keccak256.h> #include <libsolutil/Whiskers.h> #include <libsolutil/StackTooDeepString.h> #include <boost/algorithm/string/replace.hpp> #include <numeric> #include <utility> using namespace std; using namespace solidity; using namespace solidity::evmasm; using namespace solidity::frontend; using namespace solidity::langutil; using namespace solidity::util; namespace { Type const* closestType(Type const* _type, Type const* _targetType, bool _isShiftOp) { if (_isShiftOp) return _type->mobileType(); else if (auto const* tupleType = dynamic_cast<TupleType const*>(_type)) { solAssert(_targetType, ""); TypePointers const& targetComponents = dynamic_cast<TupleType const&>(*_targetType).components(); solAssert(tupleType->components().size() == targetComponents.size(), ""); TypePointers tempComponents(targetComponents.size()); for (size_t i = 0; i < targetComponents.size(); ++i) { if (tupleType->components()[i] && targetComponents[i]) { tempComponents[i] = closestType(tupleType->components()[i], targetComponents[i], _isShiftOp); solAssert(tempComponents[i], ""); } } return TypeProvider::tuple(std::move(tempComponents)); } else return _targetType->dataStoredIn(DataLocation::Storage) ? _type->mobileType() : _targetType; } } void ExpressionCompiler::compile(Expression const& _expression) { _expression.accept(*this); } void ExpressionCompiler::appendStateVariableInitialization(VariableDeclaration const& _varDecl) { if (!_varDecl.value()) return; Type const* type = _varDecl.value()->annotation().type; solAssert(!!type, "Type information not available."); CompilerContext::LocationSetter locationSetter(m_context, _varDecl); _varDecl.value()->accept(*this); if (_varDecl.annotation().type->dataStoredIn(DataLocation::Storage)) { // reference type, only convert value to mobile type and do final conversion in storeValue. auto mt = type->mobileType(); solAssert(mt, ""); utils().convertType(*type, *mt); type = mt; } else { utils().convertType(*type, *_varDecl.annotation().type); type = _varDecl.annotation().type; } if (_varDecl.immutable()) ImmutableItem(m_context, _varDecl).storeValue(*type, _varDecl.location(), true); else StorageItem(m_context, _varDecl).storeValue(*type, _varDecl.location(), true); } void ExpressionCompiler::appendConstStateVariableAccessor(VariableDeclaration const& _varDecl) { solAssert(_varDecl.isConstant(), ""); acceptAndConvert(*_varDecl.value(), *_varDecl.annotation().type); // append return m_context << dupInstruction(_varDecl.annotation().type->sizeOnStack() + 1); m_context.appendJump(evmasm::AssemblyItem::JumpType::OutOfFunction); } void ExpressionCompiler::appendStateVariableAccessor(VariableDeclaration const& _varDecl) { solAssert(!_varDecl.isConstant(), ""); CompilerContext::LocationSetter locationSetter(m_context, _varDecl); FunctionType accessorType(_varDecl); TypePointers paramTypes = accessorType.parameterTypes(); if (_varDecl.immutable()) solAssert(paramTypes.empty(), ""); m_context.adjustStackOffset(static_cast<int>(1 + CompilerUtils::sizeOnStack(paramTypes))); if (!_varDecl.immutable()) { // retrieve the position of the variable auto const& location = m_context.storageLocationOfVariable(_varDecl); m_context << location.first << u256(location.second); } Type const* returnType = _varDecl.annotation().type; for (size_t i = 0; i < paramTypes.size(); ++i) { if (auto mappingType = dynamic_cast<MappingType const*>(returnType)) { solAssert(CompilerUtils::freeMemoryPointer >= 0x40, ""); // pop offset m_context << Instruction::POP; if (paramTypes[i]->isDynamicallySized()) { solAssert( dynamic_cast<ArrayType const&>(*paramTypes[i]).isByteArrayOrString(), "Expected string or byte array for mapping key type" ); // stack: <keys..> <slot position> // copy key[i] to top. utils().copyToStackTop(static_cast<unsigned>(paramTypes.size() - i + 1), 1); m_context.appendInlineAssembly(R"({ let key_len := mload(key_ptr) // Temp. use the memory after the array data for the slot // position let post_data_ptr := add(key_ptr, add(key_len, 0x20)) let orig_data := mload(post_data_ptr) mstore(post_data_ptr, slot_pos) let hash := keccak256(add(key_ptr, 0x20), add(key_len, 0x20)) mstore(post_data_ptr, orig_data) slot_pos := hash })", {"slot_pos", "key_ptr"}); m_context << Instruction::POP; } else { solAssert(paramTypes[i]->isValueType(), "Expected value type for mapping key"); // move storage offset to memory. utils().storeInMemory(32); // move key to memory. utils().copyToStackTop(static_cast<unsigned>(paramTypes.size() - i), 1); utils().storeInMemory(0); m_context << u256(64) << u256(0); m_context << Instruction::KECCAK256; } // push offset m_context << u256(0); returnType = mappingType->valueType(); } else if (auto arrayType = dynamic_cast<ArrayType const*>(returnType)) { // pop offset m_context << Instruction::POP; utils().copyToStackTop(static_cast<unsigned>(paramTypes.size() - i + 1), 1); ArrayUtils(m_context).retrieveLength(*arrayType, 1); // Stack: ref [length] index length // check out-of-bounds access m_context << Instruction::DUP2 << Instruction::LT; auto tag = m_context.appendConditionalJump(); m_context << u256(0) << Instruction::DUP1 << Instruction::REVERT; m_context << tag; ArrayUtils(m_context).accessIndex(*arrayType, false); returnType = arrayType->baseType(); } else solAssert(false, "Index access is allowed only for \"mapping\" and \"array\" types."); } // remove index arguments. if (paramTypes.size() == 1) m_context << Instruction::SWAP2 << Instruction::POP << Instruction::SWAP1; else if (paramTypes.size() >= 2) { m_context << swapInstruction(static_cast<unsigned>(paramTypes.size())); m_context << Instruction::POP; m_context << swapInstruction(static_cast<unsigned>(paramTypes.size())); utils().popStackSlots(paramTypes.size() - 1); } unsigned retSizeOnStack = 0; auto returnTypes = accessorType.returnParameterTypes(); solAssert(returnTypes.size() >= 1, ""); if (StructType const* structType = dynamic_cast<StructType const*>(returnType)) { solAssert(!_varDecl.immutable(), ""); // remove offset m_context << Instruction::POP; auto const& names = accessorType.returnParameterNames(); // struct for (size_t i = 0; i < names.size(); ++i) { if (returnTypes[i]->category() == Type::Category::Mapping) continue; if (auto arrayType = dynamic_cast<ArrayType const*>(returnTypes[i])) if (!arrayType->isByteArrayOrString()) continue; pair<u256, unsigned> const& offsets = structType->storageOffsetsOfMember(names[i]); m_context << Instruction::DUP1 << u256(offsets.first) << Instruction::ADD << u256(offsets.second); Type const* memberType = structType->memberType(names[i]); StorageItem(m_context, *memberType).retrieveValue(SourceLocation(), true); utils().convertType(*memberType, *returnTypes[i]); utils().moveToStackTop(returnTypes[i]->sizeOnStack()); retSizeOnStack += returnTypes[i]->sizeOnStack(); } // remove slot m_context << Instruction::POP; } else { // simple value or array solAssert(returnTypes.size() == 1, ""); if (_varDecl.immutable()) ImmutableItem(m_context, _varDecl).retrieveValue(SourceLocation()); else StorageItem(m_context, *returnType).retrieveValue(SourceLocation(), true); utils().convertType(*returnType, *returnTypes.front()); retSizeOnStack = returnTypes.front()->sizeOnStack(); } solAssert(retSizeOnStack == utils().sizeOnStack(returnTypes), ""); if (retSizeOnStack > 15) BOOST_THROW_EXCEPTION( StackTooDeepError() << errinfo_sourceLocation(_varDecl.location()) << util::errinfo_comment(util::stackTooDeepString) ); m_context << dupInstruction(retSizeOnStack + 1); m_context.appendJump(evmasm::AssemblyItem::JumpType::OutOfFunction); } bool ExpressionCompiler::visit(Conditional const& _condition) { CompilerContext::LocationSetter locationSetter(m_context, _condition); _condition.condition().accept(*this); evmasm::AssemblyItem trueTag = m_context.appendConditionalJump(); acceptAndConvert(_condition.falseExpression(), *_condition.annotation().type); evmasm::AssemblyItem endTag = m_context.appendJumpToNew(); m_context << trueTag; int offset = static_cast<int>(_condition.annotation().type->sizeOnStack()); m_context.adjustStackOffset(-offset); acceptAndConvert(_condition.trueExpression(), *_condition.annotation().type); m_context << endTag; return false; } bool ExpressionCompiler::visit(Assignment const& _assignment) { CompilerContext::LocationSetter locationSetter(m_context, _assignment); Token op = _assignment.assignmentOperator(); Token binOp = op == Token::Assign ? op : TokenTraits::AssignmentToBinaryOp(op); Type const& leftType = *_assignment.leftHandSide().annotation().type; if (leftType.category() == Type::Category::Tuple) { solAssert(*_assignment.annotation().type == TupleType(), ""); solAssert(op == Token::Assign, ""); } else solAssert(*_assignment.annotation().type == leftType, ""); bool cleanupNeeded = false; if (op != Token::Assign) cleanupNeeded = cleanupNeededForOp(leftType.category(), binOp, m_context.arithmetic()); _assignment.rightHandSide().accept(*this); // Perform some conversion already. This will convert storage types to memory and literals // to their actual type, but will not convert e.g. memory to storage. Type const* rightIntermediateType = closestType( _assignment.rightHandSide().annotation().type, _assignment.leftHandSide().annotation().type, op != Token::Assign && TokenTraits::isShiftOp(binOp) ); solAssert(rightIntermediateType, ""); utils().convertType(*_assignment.rightHandSide().annotation().type, *rightIntermediateType, cleanupNeeded); _assignment.leftHandSide().accept(*this); solAssert(!!m_currentLValue, "LValue not retrieved."); if (op == Token::Assign) m_currentLValue->storeValue(*rightIntermediateType, _assignment.location()); else // compound assignment { solAssert(binOp != Token::Exp, "Compound exp is not possible."); solAssert(leftType.isValueType(), "Compound operators only available for value types."); unsigned lvalueSize = m_currentLValue->sizeOnStack(); unsigned itemSize = _assignment.annotation().type->sizeOnStack(); if (lvalueSize > 0) { utils().copyToStackTop(lvalueSize + itemSize, itemSize); utils().copyToStackTop(itemSize + lvalueSize, lvalueSize); // value lvalue_ref value lvalue_ref } m_currentLValue->retrieveValue(_assignment.location(), true); utils().convertType(leftType, leftType, cleanupNeeded); if (TokenTraits::isShiftOp(binOp)) appendShiftOperatorCode(binOp, leftType, *rightIntermediateType); else { solAssert(leftType == *rightIntermediateType, ""); appendOrdinaryBinaryOperatorCode(binOp, leftType); } if (lvalueSize > 0) { if (itemSize + lvalueSize > 16) BOOST_THROW_EXCEPTION( StackTooDeepError() << errinfo_sourceLocation(_assignment.location()) << util::errinfo_comment(util::stackTooDeepString) ); // value [lvalue_ref] updated_value for (unsigned i = 0; i < itemSize; ++i) m_context << swapInstruction(itemSize + lvalueSize) << Instruction::POP; } m_currentLValue->storeValue(*_assignment.annotation().type, _assignment.location()); } m_currentLValue.reset(); return false; } bool ExpressionCompiler::visit(TupleExpression const& _tuple) { if (_tuple.isInlineArray()) { ArrayType const& arrayType = dynamic_cast<ArrayType const&>(*_tuple.annotation().type); solAssert(!arrayType.isDynamicallySized(), "Cannot create dynamically sized inline array."); utils().allocateMemory(max(u256(32u), arrayType.memoryDataSize())); m_context << Instruction::DUP1; for (auto const& component: _tuple.components()) { acceptAndConvert(*component, *arrayType.baseType(), true); utils().storeInMemoryDynamic(*arrayType.baseType(), true); } m_context << Instruction::POP; } else { vector<unique_ptr<LValue>> lvalues; for (auto const& component: _tuple.components()) if (component) { component->accept(*this); if (_tuple.annotation().willBeWrittenTo) { solAssert(!!m_currentLValue, ""); lvalues.push_back(std::move(m_currentLValue)); } } else if (_tuple.annotation().willBeWrittenTo) lvalues.push_back(unique_ptr<LValue>()); if (_tuple.annotation().willBeWrittenTo) { if (_tuple.components().size() == 1) m_currentLValue = std::move(lvalues[0]); else m_currentLValue = make_unique<TupleObject>(m_context, std::move(lvalues)); } } return false; } bool ExpressionCompiler::visit(UnaryOperation const& _unaryOperation) { CompilerContext::LocationSetter locationSetter(m_context, _unaryOperation); Type const& type = *_unaryOperation.annotation().type; if (type.category() == Type::Category::RationalNumber) { m_context << type.literalValue(nullptr); return false; } _unaryOperation.subExpression().accept(*this); switch (_unaryOperation.getOperator()) { case Token::Not: // ! m_context << Instruction::ISZERO; break; case Token::BitNot: // ~ m_context << Instruction::NOT; break; case Token::Delete: // delete solAssert(!!m_currentLValue, "LValue not retrieved."); m_currentLValue->setToZero(_unaryOperation.location()); m_currentLValue.reset(); break; case Token::Inc: // ++ (pre- or postfix) case Token::Dec: // -- (pre- or postfix) solAssert(!!m_currentLValue, "LValue not retrieved."); solUnimplementedAssert( type.category() != Type::Category::FixedPoint, "Not yet implemented - FixedPointType." ); m_currentLValue->retrieveValue(_unaryOperation.location()); if (!_unaryOperation.isPrefixOperation()) { // store value for later solUnimplementedAssert(type.sizeOnStack() == 1, "Stack size != 1 not implemented."); m_context << Instruction::DUP1; if (m_currentLValue->sizeOnStack() > 0) for (unsigned i = 1 + m_currentLValue->sizeOnStack(); i > 0; --i) m_context << swapInstruction(i); } if (_unaryOperation.getOperator() == Token::Inc) { if (m_context.arithmetic() == Arithmetic::Checked) m_context.callYulFunction(m_context.utilFunctions().incrementCheckedFunction(type), 1, 1); else { m_context << u256(1); m_context << Instruction::ADD; } } else { if (m_context.arithmetic() == Arithmetic::Checked) m_context.callYulFunction(m_context.utilFunctions().decrementCheckedFunction(type), 1, 1); else { m_context << u256(1); m_context << Instruction::SWAP1 << Instruction::SUB; } } // Stack for prefix: [ref...] (*ref)+-1 // Stack for postfix: *ref [ref...] (*ref)+-1 for (unsigned i = m_currentLValue->sizeOnStack(); i > 0; --i) m_context << swapInstruction(i); m_currentLValue->storeValue( *_unaryOperation.annotation().type, _unaryOperation.location(), !_unaryOperation.isPrefixOperation()); m_currentLValue.reset(); break; case Token::Add: // + // unary add, so basically no-op break; case Token::Sub: // - solUnimplementedAssert( type.category() != Type::Category::FixedPoint, "Not yet implemented - FixedPointType." ); if (m_context.arithmetic() == Arithmetic::Checked) m_context.callYulFunction(m_context.utilFunctions().negateNumberCheckedFunction(type), 1, 1); else m_context << u256(0) << Instruction::SUB; break; default: solAssert(false, "Invalid unary operator: " + string(TokenTraits::toString(_unaryOperation.getOperator()))); } return false; } bool ExpressionCompiler::visit(BinaryOperation const& _binaryOperation) { CompilerContext::LocationSetter locationSetter(m_context, _binaryOperation); Expression const& leftExpression = _binaryOperation.leftExpression(); Expression const& rightExpression = _binaryOperation.rightExpression(); solAssert(!!_binaryOperation.annotation().commonType, ""); Type const* commonType = _binaryOperation.annotation().commonType; Token const c_op = _binaryOperation.getOperator(); if (c_op == Token::And || c_op == Token::Or) // special case: short-circuiting appendAndOrOperatorCode(_binaryOperation); else if (commonType->category() == Type::Category::RationalNumber) m_context << commonType->literalValue(nullptr); else { bool cleanupNeeded = cleanupNeededForOp(commonType->category(), c_op, m_context.arithmetic()); Type const* leftTargetType = commonType; Type const* rightTargetType = TokenTraits::isShiftOp(c_op) || c_op == Token::Exp ? rightExpression.annotation().type->mobileType() : commonType; solAssert(rightTargetType, ""); // for commutative operators, push the literal as late as possible to allow improved optimization auto isLiteral = [](Expression const& _e) { return dynamic_cast<Literal const*>(&_e) || _e.annotation().type->category() == Type::Category::RationalNumber; }; bool swap = m_optimiseOrderLiterals && TokenTraits::isCommutativeOp(c_op) && isLiteral(rightExpression) && !isLiteral(leftExpression); if (swap) { acceptAndConvert(leftExpression, *leftTargetType, cleanupNeeded); acceptAndConvert(rightExpression, *rightTargetType, cleanupNeeded); } else { acceptAndConvert(rightExpression, *rightTargetType, cleanupNeeded); acceptAndConvert(leftExpression, *leftTargetType, cleanupNeeded); } if (TokenTraits::isShiftOp(c_op)) // shift only cares about the signedness of both sides appendShiftOperatorCode(c_op, *leftTargetType, *rightTargetType); else if (c_op == Token::Exp) appendExpOperatorCode(*leftTargetType, *rightTargetType); else if (TokenTraits::isCompareOp(c_op)) appendCompareOperatorCode(c_op, *commonType); else appendOrdinaryBinaryOperatorCode(c_op, *commonType); } // do not visit the child nodes, we already did that explicitly return false; } bool ExpressionCompiler::visit(FunctionCall const& _functionCall) { auto functionCallKind = *_functionCall.annotation().kind; CompilerContext::LocationSetter locationSetter(m_context, _functionCall); if (functionCallKind == FunctionCallKind::TypeConversion) { solAssert(_functionCall.arguments().size() == 1, ""); solAssert(_functionCall.names().empty(), ""); auto const& expression = *_functionCall.arguments().front(); auto const& targetType = *_functionCall.annotation().type; if (auto const* typeType = dynamic_cast<TypeType const*>(expression.annotation().type)) if (auto const* addressType = dynamic_cast<AddressType const*>(&targetType)) { auto const* contractType = dynamic_cast<ContractType const*>(typeType->actualType()); solAssert( contractType && contractType->contractDefinition().isLibrary() && addressType->stateMutability() == StateMutability::NonPayable, "" ); m_context.appendLibraryAddress(contractType->contractDefinition().fullyQualifiedName()); return false; } acceptAndConvert(expression, targetType); return false; } FunctionTypePointer functionType; if (functionCallKind == FunctionCallKind::StructConstructorCall) { auto const& type = dynamic_cast<TypeType const&>(*_functionCall.expression().annotation().type); auto const& structType = dynamic_cast<StructType const&>(*type.actualType()); functionType = structType.constructorType(); } else functionType = dynamic_cast<FunctionType const*>(_functionCall.expression().annotation().type); TypePointers parameterTypes = functionType->parameterTypes(); vector<ASTPointer<Expression const>> const& arguments = _functionCall.sortedArguments(); if (functionCallKind == FunctionCallKind::StructConstructorCall) { TypeType const& type = dynamic_cast<TypeType const&>(*_functionCall.expression().annotation().type); auto const& structType = dynamic_cast<StructType const&>(*type.actualType()); utils().allocateMemory(max(u256(32u), structType.memoryDataSize())); m_context << Instruction::DUP1; for (unsigned i = 0; i < arguments.size(); ++i) { acceptAndConvert(*arguments[i], *functionType->parameterTypes()[i]); utils().storeInMemoryDynamic(*functionType->parameterTypes()[i]); } m_context << Instruction::POP; } else { FunctionType const& function = *functionType; if (function.hasBoundFirstArgument()) solAssert( function.kind() == FunctionType::Kind::DelegateCall || function.kind() == FunctionType::Kind::Internal || function.kind() == FunctionType::Kind::ArrayPush || function.kind() == FunctionType::Kind::ArrayPop, ""); switch (function.kind()) { case FunctionType::Kind::Declaration: solAssert(false, "Attempted to generate code for calling a function definition."); break; case FunctionType::Kind::Internal: { // Calling convention: Caller pushes return address and arguments // Callee removes them and pushes return values evmasm::AssemblyItem returnLabel = m_context.pushNewTag(); for (unsigned i = 0; i < arguments.size(); ++i) acceptAndConvert(*arguments[i], *function.parameterTypes()[i]); { bool shortcutTaken = false; if (auto identifier = dynamic_cast<Identifier const*>(&_functionCall.expression())) { solAssert(!function.hasBoundFirstArgument(), ""); if (auto functionDef = dynamic_cast<FunctionDefinition const*>(identifier->annotation().referencedDeclaration)) { // Do not directly visit the identifier, because this way, we can avoid // the runtime entry label to be created at the creation time context. CompilerContext::LocationSetter locationSetter2(m_context, *identifier); solAssert(*identifier->annotation().requiredLookup == VirtualLookup::Virtual, ""); utils().pushCombinedFunctionEntryLabel( functionDef->resolveVirtual(m_context.mostDerivedContract()), false ); shortcutTaken = true; } } if (!shortcutTaken) _functionCall.expression().accept(*this); } unsigned parameterSize = CompilerUtils::sizeOnStack(function.parameterTypes()); if (function.hasBoundFirstArgument()) { // stack: arg2, ..., argn, label, arg1 unsigned depth = parameterSize + 1; utils().moveIntoStack(depth, function.selfType()->sizeOnStack()); parameterSize += function.selfType()->sizeOnStack(); } if (m_context.runtimeContext()) // We have a runtime context, so we need the creation part. utils().rightShiftNumberOnStack(32); else // Extract the runtime part. m_context << ((u256(1) << 32) - 1) << Instruction::AND; m_context.appendJump(evmasm::AssemblyItem::JumpType::IntoFunction); m_context << returnLabel; unsigned returnParametersSize = CompilerUtils::sizeOnStack(function.returnParameterTypes()); // callee adds return parameters, but removes arguments and return label m_context.adjustStackOffset(static_cast<int>(returnParametersSize - parameterSize) - 1); break; } case FunctionType::Kind::BareCall: case FunctionType::Kind::BareDelegateCall: case FunctionType::Kind::BareStaticCall: solAssert(!_functionCall.annotation().tryCall, ""); [[fallthrough]]; case FunctionType::Kind::External: case FunctionType::Kind::DelegateCall: _functionCall.expression().accept(*this); appendExternalFunctionCall(function, arguments, _functionCall.annotation().tryCall); break; case FunctionType::Kind::BareCallCode: solAssert(false, "Callcode has been removed."); case FunctionType::Kind::Creation: { _functionCall.expression().accept(*this); // Stack: [salt], [value] solAssert(!function.gasSet(), "Gas limit set for contract creation."); solAssert(function.returnParameterTypes().size() == 1, ""); TypePointers argumentTypes; for (auto const& arg: arguments) { arg->accept(*this); argumentTypes.push_back(arg->annotation().type); } ContractDefinition const* contract = &dynamic_cast<ContractType const&>(*function.returnParameterTypes().front()).contractDefinition(); utils().fetchFreeMemoryPointer(); utils().copyContractCodeToMemory(*contract, true); utils().abiEncode(argumentTypes, function.parameterTypes()); // now on stack: [salt], [value], memory_end_ptr // need: [salt], size, offset, value if (function.saltSet()) { m_context << dupInstruction(2 + (function.valueSet() ? 1 : 0)); m_context << Instruction::SWAP1; } // now: [salt], [value], [salt], memory_end_ptr utils().toSizeAfterFreeMemoryPointer(); // now: [salt], [value], [salt], size, offset if (function.valueSet()) m_context << dupInstruction(3 + (function.saltSet() ? 1 : 0)); else m_context << u256(0); // now: [salt], [value], [salt], size, offset, value if (function.saltSet()) m_context << Instruction::CREATE2; else m_context << Instruction::CREATE; // now: [salt], [value], address if (function.valueSet()) m_context << swapInstruction(1) << Instruction::POP; if (function.saltSet()) m_context << swapInstruction(1) << Instruction::POP; // Check if zero (reverted) m_context << Instruction::DUP1 << Instruction::ISZERO; if (_functionCall.annotation().tryCall) { // If this is a try call, return "<address> 1" in the success case and // "0" in the error case. AssemblyItem errorCase = m_context.appendConditionalJump(); m_context << u256(1); m_context << errorCase; } else m_context.appendConditionalRevert(true); break; } case FunctionType::Kind::SetGas: { // stack layout: contract_address function_id [gas] [value] _functionCall.expression().accept(*this); acceptAndConvert(*arguments.front(), *TypeProvider::uint256(), true); // Note that function is not the original function, but the ".gas" function. // Its values of gasSet and valueSet is equal to the original function's though. unsigned stackDepth = (function.gasSet() ? 1u : 0u) + (function.valueSet() ? 1u : 0u); if (stackDepth > 0) m_context << swapInstruction(stackDepth); if (function.gasSet()) m_context << Instruction::POP; break; } case FunctionType::Kind::SetValue: // stack layout: contract_address function_id [gas] [value] _functionCall.expression().accept(*this); // Note that function is not the original function, but the ".value" function. // Its values of gasSet and valueSet is equal to the original function's though. if (function.valueSet()) m_context << Instruction::POP; arguments.front()->accept(*this); break; case FunctionType::Kind::Send: case FunctionType::Kind::Transfer: { _functionCall.expression().accept(*this); // Provide the gas stipend manually at first because we may send zero ether. // Will be zeroed if we send more than zero ether. m_context << u256(evmasm::GasCosts::callStipend); acceptAndConvert(*arguments.front(), *function.parameterTypes().front(), true); // gas <- gas * !value m_context << Instruction::SWAP1 << Instruction::DUP2; m_context << Instruction::ISZERO << Instruction::MUL << Instruction::SWAP1; FunctionType::Options callOptions; callOptions.valueSet = true; callOptions.gasSet = true; appendExternalFunctionCall( FunctionType( TypePointers{}, TypePointers{}, strings(), strings(), FunctionType::Kind::BareCall, StateMutability::NonPayable, nullptr, callOptions ), {}, false ); if (function.kind() == FunctionType::Kind::Transfer) { // Check if zero (out of stack or not enough balance). m_context << Instruction::ISZERO; // Revert message bubbles up. m_context.appendConditionalRevert(true); } break; } case FunctionType::Kind::Selfdestruct: acceptAndConvert(*arguments.front(), *function.parameterTypes().front(), true); m_context << Instruction::SELFDESTRUCT; break; case FunctionType::Kind::Revert: { if (arguments.empty()) m_context.appendRevert(); else { // function-sel(Error(string)) + encoding solAssert(arguments.size() == 1, ""); solAssert(function.parameterTypes().size() == 1, ""); if (m_context.revertStrings() == RevertStrings::Strip) { if (!*arguments.front()->annotation().isPure) { arguments.front()->accept(*this); utils().popStackElement(*arguments.front()->annotation().type); } m_context.appendRevert(); } else { arguments.front()->accept(*this); utils().revertWithStringData(*arguments.front()->annotation().type); } } break; } case FunctionType::Kind::KECCAK256: { solAssert(arguments.size() == 1, ""); solAssert(!function.padArguments(), ""); Type const* argType = arguments.front()->annotation().type; solAssert(argType, ""); arguments.front()->accept(*this); if (auto const* stringLiteral = dynamic_cast<StringLiteralType const*>(argType)) // Optimization: Compute keccak256 on string literals at compile-time. m_context << u256(keccak256(stringLiteral->value())); else if (*argType == *TypeProvider::bytesMemory() || *argType == *TypeProvider::stringMemory()) { // Optimization: If type is bytes or string, then do not encode, // but directly compute keccak256 on memory. ArrayUtils(m_context).retrieveLength(*TypeProvider::bytesMemory()); m_context << Instruction::SWAP1 << u256(0x20) << Instruction::ADD; m_context << Instruction::KECCAK256; } else { utils().fetchFreeMemoryPointer(); utils().packedEncode({argType}, TypePointers()); utils().toSizeAfterFreeMemoryPointer(); m_context << Instruction::KECCAK256; } break; } case FunctionType::Kind::Event: { _functionCall.expression().accept(*this); auto const& event = dynamic_cast<EventDefinition const&>(function.declaration()); unsigned numIndexed = 0; TypePointers paramTypes = function.parameterTypes(); // All indexed arguments go to the stack for (size_t arg = arguments.size(); arg > 0; --arg) if (event.parameters()[arg - 1]->isIndexed()) { ++numIndexed; arguments[arg - 1]->accept(*this); if (auto const& referenceType = dynamic_cast<ReferenceType const*>(paramTypes[arg - 1])) { utils().fetchFreeMemoryPointer(); utils().packedEncode( {arguments[arg - 1]->annotation().type}, {referenceType} ); utils().toSizeAfterFreeMemoryPointer(); m_context << Instruction::KECCAK256; } else { solAssert(paramTypes[arg - 1]->isValueType(), ""); if (auto functionType = dynamic_cast<FunctionType const*>(paramTypes[arg - 1])) { auto argumentType = dynamic_cast<FunctionType const*>(arguments[arg-1]->annotation().type); solAssert( argumentType && functionType->kind() == FunctionType::Kind::External && argumentType->kind() == FunctionType::Kind::External && !argumentType->hasBoundFirstArgument(), "" ); utils().combineExternalFunctionType(true); } else utils().convertType( *arguments[arg - 1]->annotation().type, *paramTypes[arg - 1], true ); } } if (!event.isAnonymous()) { m_context << u256(h256::Arith(keccak256(function.externalSignature()))); ++numIndexed; } solAssert(numIndexed <= 4, "Too many indexed arguments."); // Copy all non-indexed arguments to memory (data) // Memory position is only a hack and should be removed once we have free memory pointer. TypePointers nonIndexedArgTypes; TypePointers nonIndexedParamTypes; for (unsigned arg = 0; arg < arguments.size(); ++arg) if (!event.parameters()[arg]->isIndexed()) { arguments[arg]->accept(*this); nonIndexedArgTypes.push_back(arguments[arg]->annotation().type); nonIndexedParamTypes.push_back(paramTypes[arg]); } utils().fetchFreeMemoryPointer(); utils().abiEncode(nonIndexedArgTypes, nonIndexedParamTypes); // need: topic1 ... topicn memsize memstart utils().toSizeAfterFreeMemoryPointer(); m_context << logInstruction(numIndexed); break; } case FunctionType::Kind::Error: { _functionCall.expression().accept(*this); vector<Type const*> argumentTypes; for (ASTPointer<Expression const> const& arg: _functionCall.sortedArguments()) { arg->accept(*this); argumentTypes.push_back(arg->annotation().type); } solAssert(dynamic_cast<ErrorDefinition const*>(&function.declaration()), ""); utils().revertWithError( function.externalSignature(), function.parameterTypes(), argumentTypes ); break; } case FunctionType::Kind::Wrap: case FunctionType::Kind::Unwrap: { solAssert(arguments.size() == 1, ""); Type const* argumentType = arguments.at(0)->annotation().type; Type const* functionCallType = _functionCall.annotation().type; solAssert(argumentType, ""); solAssert(functionCallType, ""); FunctionType::Kind kind = functionType->kind(); if (kind == FunctionType::Kind::Wrap) { solAssert( argumentType->isImplicitlyConvertibleTo( dynamic_cast<UserDefinedValueType const&>(*functionCallType).underlyingType() ), "" ); solAssert(argumentType->isImplicitlyConvertibleTo(*function.parameterTypes()[0]), ""); } else solAssert( dynamic_cast<UserDefinedValueType const&>(*argumentType) == dynamic_cast<UserDefinedValueType const&>(*function.parameterTypes()[0]), "" ); acceptAndConvert(*arguments[0], *function.parameterTypes()[0]); break; } case FunctionType::Kind::BlockHash: { acceptAndConvert(*arguments[0], *function.parameterTypes()[0], true); m_context << Instruction::BLOCKHASH; break; } case FunctionType::Kind::AddMod: case FunctionType::Kind::MulMod: { acceptAndConvert(*arguments[2], *TypeProvider::uint256()); m_context << Instruction::DUP1 << Instruction::ISZERO; m_context.appendConditionalPanic(util::PanicCode::DivisionByZero); for (unsigned i = 1; i < 3; i ++) acceptAndConvert(*arguments[2 - i], *TypeProvider::uint256()); if (function.kind() == FunctionType::Kind::AddMod) m_context << Instruction::ADDMOD; else m_context << Instruction::MULMOD; break; } case FunctionType::Kind::ECRecover: case FunctionType::Kind::SHA256: case FunctionType::Kind::RIPEMD160: { _functionCall.expression().accept(*this); static map<FunctionType::Kind, u256> const contractAddresses{ {FunctionType::Kind::ECRecover, 1}, {FunctionType::Kind::SHA256, 2}, {FunctionType::Kind::RIPEMD160, 3} }; m_context << contractAddresses.at(function.kind()); for (unsigned i = function.sizeOnStack(); i > 0; --i) m_context << swapInstruction(i); solAssert(!_functionCall.annotation().tryCall, ""); appendExternalFunctionCall(function, arguments, false); break; } case FunctionType::Kind::ArrayPush: { solAssert(function.hasBoundFirstArgument(), ""); _functionCall.expression().accept(*this); if (function.parameterTypes().size() == 0) { auto paramType = function.returnParameterTypes().at(0); solAssert(paramType, ""); ArrayType const* arrayType = dynamic_cast<ArrayType const*>(function.selfType()); solAssert(arrayType, ""); // stack: ArrayReference m_context << u256(1) << Instruction::DUP2; ArrayUtils(m_context).incrementDynamicArraySize(*arrayType); // stack: ArrayReference 1 newLength m_context << Instruction::SUB; // stack: ArrayReference (newLength-1) ArrayUtils(m_context).accessIndex(*arrayType, false); if (arrayType->isByteArrayOrString()) setLValue<StorageByteArrayElement>(_functionCall); else setLValueToStorageItem(_functionCall); } else { solAssert(function.parameterTypes().size() == 1, ""); solAssert(!!function.parameterTypes()[0], ""); Type const* paramType = function.parameterTypes()[0]; ArrayType const* arrayType = dynamic_cast<ArrayType const*>(function.selfType()); solAssert(arrayType, ""); // stack: ArrayReference arguments[0]->accept(*this); Type const* argType = arguments[0]->annotation().type; // stack: ArrayReference argValue utils().moveToStackTop(argType->sizeOnStack(), 1); // stack: argValue ArrayReference m_context << Instruction::DUP1; ArrayUtils(m_context).incrementDynamicArraySize(*arrayType); // stack: argValue ArrayReference newLength m_context << u256(1) << Instruction::SWAP1 << Instruction::SUB; // stack: argValue ArrayReference (newLength-1) ArrayUtils(m_context).accessIndex(*arrayType, false); // stack: argValue storageSlot slotOffset utils().moveToStackTop(2, argType->sizeOnStack()); // stack: storageSlot slotOffset argValue Type const* type = arrayType->baseType()->dataStoredIn(DataLocation::Storage) ? arguments[0]->annotation().type->mobileType() : arrayType->baseType(); solAssert(type, ""); utils().convertType(*argType, *type); utils().moveToStackTop(1 + type->sizeOnStack()); utils().moveToStackTop(1 + type->sizeOnStack()); // stack: argValue storageSlot slotOffset if (!arrayType->isByteArrayOrString()) StorageItem(m_context, *paramType).storeValue(*type, _functionCall.location(), true); else StorageByteArrayElement(m_context).storeValue(*type, _functionCall.location(), true); } break; } case FunctionType::Kind::ArrayPop: { _functionCall.expression().accept(*this); solAssert(function.hasBoundFirstArgument(), ""); solAssert(function.parameterTypes().empty(), ""); ArrayType const* arrayType = dynamic_cast<ArrayType const*>(function.selfType()); solAssert(arrayType && arrayType->dataStoredIn(DataLocation::Storage), ""); ArrayUtils(m_context).popStorageArrayElement(*arrayType); break; } case FunctionType::Kind::StringConcat: case FunctionType::Kind::BytesConcat: { _functionCall.expression().accept(*this); vector<Type const*> argumentTypes; vector<Type const*> targetTypes; for (auto const& argument: arguments) { argument->accept(*this); solAssert(argument->annotation().type, ""); argumentTypes.emplace_back(argument->annotation().type); if (argument->annotation().type->category() == Type::Category::FixedBytes) targetTypes.emplace_back(argument->annotation().type); else if ( auto const* literalType = dynamic_cast<StringLiteralType const*>(argument->annotation().type); literalType && !literalType->value().empty() && literalType->value().size() <= 32 ) targetTypes.emplace_back(TypeProvider::fixedBytes(static_cast<unsigned>(literalType->value().size()))); else { solAssert(!dynamic_cast<RationalNumberType const*>(argument->annotation().type), ""); if (function.kind() == FunctionType::Kind::StringConcat) { solAssert(argument->annotation().type->isImplicitlyConvertibleTo(*TypeProvider::stringMemory()), ""); targetTypes.emplace_back(TypeProvider::stringMemory()); } else if (function.kind() == FunctionType::Kind::BytesConcat) { solAssert(argument->annotation().type->isImplicitlyConvertibleTo(*TypeProvider::bytesMemory()), ""); targetTypes.emplace_back(TypeProvider::bytesMemory()); } } } utils().fetchFreeMemoryPointer(); // stack: <arg1> <arg2> ... <argn> <free mem> m_context << u256(32) << Instruction::ADD; utils().packedEncode(argumentTypes, targetTypes); utils().fetchFreeMemoryPointer(); m_context.appendInlineAssembly(R"({ mstore(mem_ptr, sub(sub(mem_end, mem_ptr), 0x20)) })", {"mem_end", "mem_ptr"}); m_context << Instruction::SWAP1; utils().storeFreeMemoryPointer(); break; } case FunctionType::Kind::ObjectCreation: { ArrayType const& arrayType = dynamic_cast<ArrayType const&>(*_functionCall.annotation().type); _functionCall.expression().accept(*this); solAssert(arguments.size() == 1, ""); // Fetch requested length. acceptAndConvert(*arguments[0], *TypeProvider::uint256()); // Make sure we can allocate memory without overflow m_context << u256(0xffffffffffffffff); m_context << Instruction::DUP2; m_context << Instruction::GT; m_context.appendConditionalPanic(PanicCode::ResourceError); // Stack: requested_length utils().fetchFreeMemoryPointer(); // Stack: requested_length memptr m_context << Instruction::SWAP1; // Stack: memptr requested_length // store length m_context << Instruction::DUP1 << Instruction::DUP3 << Instruction::MSTORE; // Stack: memptr requested_length // update free memory pointer m_context << Instruction::DUP1; // Stack: memptr requested_length requested_length if (arrayType.isByteArrayOrString()) // Round up to multiple of 32 m_context << u256(31) << Instruction::ADD << u256(31) << Instruction::NOT << Instruction::AND; else m_context << arrayType.baseType()->memoryHeadSize() << Instruction::MUL; // stacK: memptr requested_length data_size m_context << u256(32) << Instruction::ADD; m_context << Instruction::DUP3 << Instruction::ADD; utils().storeFreeMemoryPointer(); // Stack: memptr requested_length // Check if length is zero m_context << Instruction::DUP1 << Instruction::ISZERO; auto skipInit = m_context.appendConditionalJump(); // Always initialize because the free memory pointer might point at // a dirty memory area. m_context << Instruction::DUP2 << u256(32) << Instruction::ADD; utils().zeroInitialiseMemoryArray(arrayType); m_context << skipInit; m_context << Instruction::POP; break; } case FunctionType::Kind::Assert: case FunctionType::Kind::Require: { acceptAndConvert(*arguments.front(), *function.parameterTypes().front(), false); bool haveReasonString = arguments.size() > 1 && m_context.revertStrings() != RevertStrings::Strip; if (arguments.size() > 1) { // Users probably expect the second argument to be evaluated // even if the condition is false, as would be the case for an actual // function call. solAssert(arguments.size() == 2, ""); solAssert(function.kind() == FunctionType::Kind::Require, ""); if (m_context.revertStrings() == RevertStrings::Strip) { if (!*arguments.at(1)->annotation().isPure) { arguments.at(1)->accept(*this); utils().popStackElement(*arguments.at(1)->annotation().type); } } else { arguments.at(1)->accept(*this); utils().moveIntoStack(1, arguments.at(1)->annotation().type->sizeOnStack()); } } // Stack: <error string (unconverted)> <condition> // jump if condition was met m_context << Instruction::ISZERO << Instruction::ISZERO; auto success = m_context.appendConditionalJump(); if (function.kind() == FunctionType::Kind::Assert) // condition was not met, flag an error m_context.appendPanic(util::PanicCode::Assert); else if (haveReasonString) { utils().revertWithStringData(*arguments.at(1)->annotation().type); // Here, the argument is consumed, but in the other branch, it is still there. m_context.adjustStackOffset(static_cast<int>(arguments.at(1)->annotation().type->sizeOnStack())); } else m_context.appendRevert(); // the success branch m_context << success; if (haveReasonString) utils().popStackElement(*arguments.at(1)->annotation().type); break; } case FunctionType::Kind::ABIEncode: case FunctionType::Kind::ABIEncodePacked: case FunctionType::Kind::ABIEncodeWithSelector: case FunctionType::Kind::ABIEncodeCall: case FunctionType::Kind::ABIEncodeWithSignature: { bool const isPacked = function.kind() == FunctionType::Kind::ABIEncodePacked; bool const hasSelectorOrSignature = function.kind() == FunctionType::Kind::ABIEncodeWithSelector || function.kind() == FunctionType::Kind::ABIEncodeCall || function.kind() == FunctionType::Kind::ABIEncodeWithSignature; TypePointers argumentTypes; TypePointers targetTypes; ASTNode::listAccept(arguments, *this); if (function.kind() == FunctionType::Kind::ABIEncodeCall) { solAssert(arguments.size() == 2); // Account for tuples with one component which become that component if (auto const tupleType = dynamic_cast<TupleType const*>(arguments[1]->annotation().type)) argumentTypes = tupleType->components(); else argumentTypes.emplace_back(arguments[1]->annotation().type); auto functionPtr = dynamic_cast<FunctionTypePointer>(arguments[0]->annotation().type); solAssert(functionPtr); functionPtr = functionPtr->asExternallyCallableFunction(false); solAssert(functionPtr); targetTypes = functionPtr->parameterTypes(); } else for (unsigned i = 0; i < arguments.size(); ++i) { // Do not keep the selector as part of the ABI encoded args if (!hasSelectorOrSignature || i > 0) argumentTypes.push_back(arguments[i]->annotation().type); } utils().fetchFreeMemoryPointer(); // stack now: [<selector/functionPointer/signature>] <arg1> .. <argN> <free_mem> // adjust by 32(+4) bytes to accommodate the length(+selector) m_context << u256(32 + (hasSelectorOrSignature ? 4 : 0)) << Instruction::ADD; // stack now: [<selector/functionPointer/signature>] <arg1> .. <argN> <data_encoding_area_start> if (isPacked) { solAssert(!function.padArguments(), ""); utils().packedEncode(argumentTypes, targetTypes); } else { solAssert(function.padArguments(), ""); utils().abiEncode(argumentTypes, targetTypes); } utils().fetchFreeMemoryPointer(); // stack: [<selector/functionPointer/signature>] <data_encoding_area_end> <bytes_memory_ptr> // size is end minus start minus length slot m_context.appendInlineAssembly(R"({ mstore(mem_ptr, sub(sub(mem_end, mem_ptr), 0x20)) })", {"mem_end", "mem_ptr"}); m_context << Instruction::SWAP1; utils().storeFreeMemoryPointer(); // stack: [<selector/functionPointer/signature>] <memory ptr> if (hasSelectorOrSignature) { // stack: <selector/functionPointer/signature> <memory pointer> solAssert(arguments.size() >= 1, ""); Type const* selectorType = arguments[0]->annotation().type; utils().moveIntoStack(selectorType->sizeOnStack()); Type const* dataOnStack = selectorType; // stack: <memory pointer> <selector/functionPointer/signature> if (function.kind() == FunctionType::Kind::ABIEncodeWithSignature) { // hash the signature if (auto const* stringType = dynamic_cast<StringLiteralType const*>(selectorType)) { m_context << util::selectorFromSignatureU256(stringType->value()); dataOnStack = TypeProvider::fixedBytes(4); } else { utils().fetchFreeMemoryPointer(); // stack: <memory pointer> <signature> <free mem ptr> utils().packedEncode(TypePointers{selectorType}, TypePointers()); utils().toSizeAfterFreeMemoryPointer(); m_context << Instruction::KECCAK256; // stack: <memory pointer> <hash> dataOnStack = TypeProvider::fixedBytes(32); } } else if (function.kind() == FunctionType::Kind::ABIEncodeCall) { auto const& funType = dynamic_cast<FunctionType const&>(*selectorType); if (funType.kind() == FunctionType::Kind::Declaration) { solAssert(funType.hasDeclaration()); solAssert(selectorType->sizeOnStack() == 0); m_context << funType.externalIdentifier(); } else { solAssert(selectorType->sizeOnStack() == 2); // stack: <memory pointer> <functionPointer> // Extract selector from the stack m_context << Instruction::SWAP1 << Instruction::POP; } // Conversion will be done below dataOnStack = TypeProvider::uint(32); } else solAssert(function.kind() == FunctionType::Kind::ABIEncodeWithSelector, ""); utils().convertType(*dataOnStack, FixedBytesType(4), true); // stack: <memory pointer> <selector> // load current memory, mask and combine the selector string mask = formatNumber((u256(-1) >> 32)); m_context.appendInlineAssembly(R"({ let data_start := add(mem_ptr, 0x20) let data := mload(data_start) let mask := )" + mask + R"( mstore(data_start, or(and(data, mask), selector)) })", {"mem_ptr", "selector"}); m_context << Instruction::POP; } // stack now: <memory pointer> break; } case FunctionType::Kind::ABIDecode: { arguments.front()->accept(*this); Type const* firstArgType = arguments.front()->annotation().type; TypePointers targetTypes; if (TupleType const* targetTupleType = dynamic_cast<TupleType const*>(_functionCall.annotation().type)) targetTypes = targetTupleType->components(); else targetTypes = TypePointers{_functionCall.annotation().type}; if ( auto referenceType = dynamic_cast<ReferenceType const*>(firstArgType); referenceType && referenceType->dataStoredIn(DataLocation::CallData) ) { solAssert(referenceType->isImplicitlyConvertibleTo(*TypeProvider::bytesCalldata()), ""); utils().convertType(*referenceType, *TypeProvider::bytesCalldata()); utils().abiDecode(targetTypes, false); } else { utils().convertType(*firstArgType, *TypeProvider::bytesMemory()); m_context << Instruction::DUP1 << u256(32) << Instruction::ADD; m_context << Instruction::SWAP1 << Instruction::MLOAD; // stack now: <mem_pos> <length> utils().abiDecode(targetTypes, true); } break; } case FunctionType::Kind::GasLeft: m_context << Instruction::GAS; break; case FunctionType::Kind::MetaType: // No code to generate. break; } } return false; } bool ExpressionCompiler::visit(FunctionCallOptions const& _functionCallOptions) { _functionCallOptions.expression().accept(*this); // Desired Stack: [salt], [gas], [value] enum Option { Salt, Gas, Value }; vector<Option> presentOptions; FunctionType const& funType = dynamic_cast<FunctionType const&>( *_functionCallOptions.expression().annotation().type ); if (funType.saltSet()) presentOptions.emplace_back(Salt); if (funType.gasSet()) presentOptions.emplace_back(Gas); if (funType.valueSet()) presentOptions.emplace_back(Value); for (size_t i = 0; i < _functionCallOptions.options().size(); ++i) { string const& name = *_functionCallOptions.names()[i]; Type const* requiredType = TypeProvider::uint256(); Option newOption; if (name == "salt") { newOption = Salt; requiredType = TypeProvider::fixedBytes(32); } else if (name == "gas") newOption = Gas; else if (name == "value") newOption = Value; else solAssert(false, "Unexpected option name!"); acceptAndConvert(*_functionCallOptions.options()[i], *requiredType); solAssert(!util::contains(presentOptions, newOption), ""); ptrdiff_t insertPos = presentOptions.end() - lower_bound(presentOptions.begin(), presentOptions.end(), newOption); utils().moveIntoStack(static_cast<unsigned>(insertPos), 1); presentOptions.insert(presentOptions.end() - insertPos, newOption); } return false; } bool ExpressionCompiler::visit(NewExpression const&) { // code is created for the function call (CREATION) only return false; } bool ExpressionCompiler::visit(MemberAccess const& _memberAccess) { CompilerContext::LocationSetter locationSetter(m_context, _memberAccess); // Check whether the member is an attached function. ASTString const& member = _memberAccess.memberName(); if (auto funType = dynamic_cast<FunctionType const*>(_memberAccess.annotation().type)) if (funType->hasBoundFirstArgument()) { acceptAndConvert(_memberAccess.expression(), *funType->selfType(), true); if (funType->kind() == FunctionType::Kind::Internal) { FunctionDefinition const& funDef = dynamic_cast<decltype(funDef)>(funType->declaration()); solAssert(*_memberAccess.annotation().requiredLookup == VirtualLookup::Static, ""); utils().pushCombinedFunctionEntryLabel(funDef); utils().moveIntoStack(funType->selfType()->sizeOnStack(), 1); } else if ( funType->kind() == FunctionType::Kind::ArrayPop || funType->kind() == FunctionType::Kind::ArrayPush ) { } else { solAssert(funType->kind() == FunctionType::Kind::DelegateCall, ""); auto contract = dynamic_cast<ContractDefinition const*>(funType->declaration().scope()); solAssert(contract && contract->isLibrary(), ""); m_context.appendLibraryAddress(contract->fullyQualifiedName()); m_context << funType->externalIdentifier(); utils().moveIntoStack(funType->selfType()->sizeOnStack(), 2); } return false; } // Special processing for TypeType because we do not want to visit the library itself // for internal functions, or enum/struct definitions. if (TypeType const* type = dynamic_cast<TypeType const*>(_memberAccess.expression().annotation().type)) { if (auto contractType = dynamic_cast<ContractType const*>(type->actualType())) { solAssert(_memberAccess.annotation().type, "_memberAccess has no type"); if (contractType->isSuper()) { _memberAccess.expression().accept(*this); solAssert(_memberAccess.annotation().referencedDeclaration, "Referenced declaration not resolved."); solAssert(*_memberAccess.annotation().requiredLookup == VirtualLookup::Super, ""); utils().pushCombinedFunctionEntryLabel(m_context.superFunction( dynamic_cast<FunctionDefinition const&>(*_memberAccess.annotation().referencedDeclaration), contractType->contractDefinition() )); } else { if (auto variable = dynamic_cast<VariableDeclaration const*>(_memberAccess.annotation().referencedDeclaration)) appendVariable(*variable, static_cast<Expression const&>(_memberAccess)); else if (auto funType = dynamic_cast<FunctionType const*>(_memberAccess.annotation().type)) { switch (funType->kind()) { case FunctionType::Kind::Declaration: break; case FunctionType::Kind::Internal: // We do not visit the expression here on purpose, because in the case of an // internal library function call, this would push the library address forcing // us to link against it although we actually do not need it. if (auto const* function = dynamic_cast<FunctionDefinition const*>(_memberAccess.annotation().referencedDeclaration)) { solAssert(*_memberAccess.annotation().requiredLookup == VirtualLookup::Static, ""); utils().pushCombinedFunctionEntryLabel(*function); } else solAssert(false, "Function not found in member access"); break; case FunctionType::Kind::Event: if (!dynamic_cast<EventDefinition const*>(_memberAccess.annotation().referencedDeclaration)) solAssert(false, "event not found"); // no-op, because the parent node will do the job break; case FunctionType::Kind::Error: if (!dynamic_cast<ErrorDefinition const*>(_memberAccess.annotation().referencedDeclaration)) solAssert(false, "error not found"); // no-op, because the parent node will do the job break; case FunctionType::Kind::DelegateCall: _memberAccess.expression().accept(*this); m_context << funType->externalIdentifier(); break; case FunctionType::Kind::External: case FunctionType::Kind::Creation: case FunctionType::Kind::Send: case FunctionType::Kind::BareCall: case FunctionType::Kind::BareCallCode: case FunctionType::Kind::BareDelegateCall: case FunctionType::Kind::BareStaticCall: case FunctionType::Kind::Transfer: case FunctionType::Kind::ECRecover: case FunctionType::Kind::SHA256: case FunctionType::Kind::RIPEMD160: default: solAssert(false, "unsupported member function"); } } else if (dynamic_cast<TypeType const*>(_memberAccess.annotation().type)) { // no-op } else _memberAccess.expression().accept(*this); } } else if (auto enumType = dynamic_cast<EnumType const*>(type->actualType())) { _memberAccess.expression().accept(*this); m_context << enumType->memberValue(_memberAccess.memberName()); } else _memberAccess.expression().accept(*this); return false; } // Another special case for `this.f.selector` and for ``C.f.selector`` which do not need the address. // There are other uses of `.selector` which do need the address, but we want these // specific uses to be pure expressions. if ( auto const* functionType = dynamic_cast<FunctionType const*>(_memberAccess.expression().annotation().type); functionType && member == "selector" ) { if (functionType->hasDeclaration()) { if (functionType->kind() == FunctionType::Kind::Event) m_context << u256(h256::Arith(util::keccak256(functionType->externalSignature()))); else { m_context << functionType->externalIdentifier(); /// need to store it as bytes4 utils().leftShiftNumberOnStack(224); } return false; } else if (auto const* expr = dynamic_cast<MemberAccess const*>(&_memberAccess.expression())) if (auto const* exprInt = dynamic_cast<Identifier const*>(&expr->expression())) if (exprInt->name() == "this") if (Declaration const* declaration = expr->annotation().referencedDeclaration) { u256 identifier; if (auto const* variable = dynamic_cast<VariableDeclaration const*>(declaration)) identifier = FunctionType(*variable).externalIdentifier(); else if (auto const* function = dynamic_cast<FunctionDefinition const*>(declaration)) identifier = FunctionType(*function).externalIdentifier(); else solAssert(false, "Contract member is neither variable nor function."); m_context << identifier; /// need to store it as bytes4 utils().leftShiftNumberOnStack(224); return false; } } // Another special case for `address(this).balance`. Post-Istanbul, we can use the selfbalance // opcode. if ( m_context.evmVersion().hasSelfBalance() && member == "balance" && _memberAccess.expression().annotation().type->category() == Type::Category::Address ) if (FunctionCall const* funCall = dynamic_cast<FunctionCall const*>(&_memberAccess.expression())) if (auto const* addr = dynamic_cast<ElementaryTypeNameExpression const*>(&funCall->expression())) if ( addr->type().typeName().token() == Token::Address && funCall->arguments().size() == 1 ) if (auto arg = dynamic_cast<Identifier const*>( funCall->arguments().front().get())) if ( arg->name() == "this" && dynamic_cast<MagicVariableDeclaration const*>(arg->annotation().referencedDeclaration) ) { m_context << Instruction::SELFBALANCE; return false; } // Another special case for `address.code.length`, which should simply call extcodesize if ( auto innerExpression = dynamic_cast<MemberAccess const*>(&_memberAccess.expression()); member == "length" && innerExpression && innerExpression->memberName() == "code" && innerExpression->expression().annotation().type->category() == Type::Category::Address ) { solAssert(innerExpression->annotation().type->category() == Type::Category::Array, ""); innerExpression->expression().accept(*this); utils().convertType( *innerExpression->expression().annotation().type, *TypeProvider::address(), true ); m_context << Instruction::EXTCODESIZE; return false; } _memberAccess.expression().accept(*this); switch (_memberAccess.expression().annotation().type->category()) { case Type::Category::Contract: { ContractType const& type = dynamic_cast<ContractType const&>(*_memberAccess.expression().annotation().type); // ordinary contract type if (Declaration const* declaration = _memberAccess.annotation().referencedDeclaration) { u256 identifier; if (auto const* variable = dynamic_cast<VariableDeclaration const*>(declaration)) identifier = FunctionType(*variable).externalIdentifier(); else if (auto const* function = dynamic_cast<FunctionDefinition const*>(declaration)) identifier = FunctionType(*function).externalIdentifier(); else solAssert(false, "Contract member is neither variable nor function."); utils().convertType(type, type.isPayable() ? *TypeProvider::payableAddress() : *TypeProvider::address(), true); m_context << identifier; } else solAssert(false, "Invalid member access in contract"); break; } case Type::Category::Integer: { solAssert(false, "Invalid member access to integer"); break; } case Type::Category::Address: { if (member == "balance") { utils().convertType( *_memberAccess.expression().annotation().type, *TypeProvider::address(), true ); m_context << Instruction::BALANCE; } else if (member == "code") { // Stack: <address> utils().convertType( *_memberAccess.expression().annotation().type, *TypeProvider::address(), true ); m_context << Instruction::DUP1 << Instruction::EXTCODESIZE; // Stack post: <address> <size> m_context << Instruction::DUP1; // Account for the size field of `bytes memory` m_context << u256(32) << Instruction::ADD; utils().allocateMemory(); // Stack post: <address> <size> <mem_offset> // Store size at mem_offset m_context << Instruction::DUP2 << Instruction::DUP2 << Instruction::MSTORE; m_context << u256(0) << Instruction::SWAP1 << Instruction::DUP1; // Stack post: <address> <size> 0 <mem_offset> <mem_offset> m_context << u256(32) << Instruction::ADD << Instruction::SWAP1; // Stack post: <address> <size> 0 <mem_offset_adjusted> <mem_offset> m_context << Instruction::SWAP4; // Stack post: <mem_offset> <size> 0 <mem_offset_adjusted> <address> m_context << Instruction::EXTCODECOPY; // Stack post: <mem_offset> } else if (member == "codehash") { utils().convertType( *_memberAccess.expression().annotation().type, *TypeProvider::address(), true ); m_context << Instruction::EXTCODEHASH; } else if ((set<string>{"send", "transfer"}).count(member)) { solAssert(dynamic_cast<AddressType const&>(*_memberAccess.expression().annotation().type).stateMutability() == StateMutability::Payable, ""); utils().convertType( *_memberAccess.expression().annotation().type, AddressType(StateMutability::Payable), true ); } else if ((set<string>{"call", "callcode", "delegatecall", "staticcall"}).count(member)) utils().convertType( *_memberAccess.expression().annotation().type, *TypeProvider::address(), true ); else solAssert(false, "Invalid member access to address"); break; } case Type::Category::Function: if (member == "selector") { auto const& functionType = dynamic_cast<FunctionType const&>(*_memberAccess.expression().annotation().type); // all events should have already been caught by this stage solAssert(!(functionType.kind() == FunctionType::Kind::Event)); if (functionType.kind() == FunctionType::Kind::External) CompilerUtils(m_context).popStackSlots(functionType.sizeOnStack() - 2); m_context << Instruction::SWAP1 << Instruction::POP; /// need to store it as bytes4 utils().leftShiftNumberOnStack(224); } else if (member == "address") { auto const& functionType = dynamic_cast<FunctionType const&>(*_memberAccess.expression().annotation().type); solAssert(functionType.kind() == FunctionType::Kind::External, ""); CompilerUtils(m_context).popStackSlots(functionType.sizeOnStack() - 1); } else solAssert( !!_memberAccess.expression().annotation().type->memberType(member), "Invalid member access to function." ); break; case Type::Category::Magic: // we can ignore the kind of magic and only look at the name of the member if (member == "coinbase") m_context << Instruction::COINBASE; else if (member == "timestamp") m_context << Instruction::TIMESTAMP; else if (member == "difficulty" || member == "prevrandao") m_context << Instruction::PREVRANDAO; else if (member == "number") m_context << Instruction::NUMBER; else if (member == "gaslimit") m_context << Instruction::GASLIMIT; else if (member == "sender") m_context << Instruction::CALLER; else if (member == "value") m_context << Instruction::CALLVALUE; else if (member == "origin") m_context << Instruction::ORIGIN; else if (member == "gasprice") m_context << Instruction::GASPRICE; else if (member == "chainid") m_context << Instruction::CHAINID; else if (member == "basefee") m_context << Instruction::BASEFEE; else if (member == "data") m_context << u256(0) << Instruction::CALLDATASIZE; else if (member == "sig") m_context << u256(0) << Instruction::CALLDATALOAD << (u256(0xffffffff) << (256 - 32)) << Instruction::AND; else if (member == "gas") solAssert(false, "Gas has been removed."); else if (member == "blockhash") solAssert(false, "Blockhash has been removed."); else if (member == "creationCode" || member == "runtimeCode") { Type const* arg = dynamic_cast<MagicType const&>(*_memberAccess.expression().annotation().type).typeArgument(); auto const& contractType = dynamic_cast<ContractType const&>(*arg); solAssert(!contractType.isSuper(), ""); ContractDefinition const& contract = contractType.contractDefinition(); utils().fetchFreeMemoryPointer(); m_context << Instruction::DUP1 << u256(32) << Instruction::ADD; utils().copyContractCodeToMemory(contract, member == "creationCode"); // Stack: start end m_context.appendInlineAssembly( Whiskers(R"({ mstore(start, sub(end, add(start, 0x20))) mstore(<free>, and(add(end, 31), not(31))) })")("free", to_string(CompilerUtils::freeMemoryPointer)).render(), {"start", "end"} ); m_context << Instruction::POP; } else if (member == "name") { Type const* arg = dynamic_cast<MagicType const&>(*_memberAccess.expression().annotation().type).typeArgument(); auto const& contractType = dynamic_cast<ContractType const&>(*arg); ContractDefinition const& contract = contractType.isSuper() ? *contractType.contractDefinition().superContract(m_context.mostDerivedContract()) : dynamic_cast<ContractType const&>(*arg).contractDefinition(); utils().allocateMemory(((contract.name().length() + 31) / 32) * 32 + 32); // store string length m_context << u256(contract.name().length()) << Instruction::DUP2 << Instruction::MSTORE; // adjust pointer m_context << Instruction::DUP1 << u256(32) << Instruction::ADD; utils().storeStringData(contract.name()); } else if (member == "interfaceId") { Type const* arg = dynamic_cast<MagicType const&>(*_memberAccess.expression().annotation().type).typeArgument(); ContractDefinition const& contract = dynamic_cast<ContractType const&>(*arg).contractDefinition(); m_context << (u256{contract.interfaceId()} << (256 - 32)); } else if (member == "min" || member == "max") { MagicType const* arg = dynamic_cast<MagicType const*>(_memberAccess.expression().annotation().type); if (IntegerType const* integerType = dynamic_cast<IntegerType const*>(arg->typeArgument())) m_context << (member == "min" ? integerType->min() : integerType->max()); else if (EnumType const* enumType = dynamic_cast<EnumType const*>(arg->typeArgument())) m_context << (member == "min" ? enumType->minValue() : enumType->maxValue()); else solAssert(false, "min/max not available for the given type."); } else if ((set<string>{"encode", "encodePacked", "encodeWithSelector", "encodeWithSignature", "decode"}).count(member)) { // no-op } else solAssert(false, "Unknown magic member."); break; case Type::Category::Struct: { StructType const& type = dynamic_cast<StructType const&>(*_memberAccess.expression().annotation().type); Type const* memberType = _memberAccess.annotation().type; switch (type.location()) { case DataLocation::Storage: { pair<u256, unsigned> const& offsets = type.storageOffsetsOfMember(member); m_context << offsets.first << Instruction::ADD << u256(offsets.second); setLValueToStorageItem(_memberAccess); break; } case DataLocation::Memory: { m_context << type.memoryOffsetOfMember(member) << Instruction::ADD; setLValue<MemoryItem>(_memberAccess, *memberType); break; } case DataLocation::CallData: { if (_memberAccess.annotation().type->isDynamicallyEncoded()) { m_context << Instruction::DUP1; m_context << type.calldataOffsetOfMember(member) << Instruction::ADD; CompilerUtils(m_context).accessCalldataTail(*memberType); } else { m_context << type.calldataOffsetOfMember(member) << Instruction::ADD; // For non-value types the calldata offset is returned directly. if (memberType->isValueType()) { solAssert(memberType->calldataEncodedSize() > 0, ""); solAssert(memberType->storageBytes() <= 32, ""); if (memberType->storageBytes() < 32 && m_context.useABICoderV2()) { m_context << u256(32); CompilerUtils(m_context).abiDecodeV2({memberType}, false); } else CompilerUtils(m_context).loadFromMemoryDynamic(*memberType, true, true, false); } else solAssert( memberType->category() == Type::Category::Array || memberType->category() == Type::Category::Struct, "" ); } break; } default: solAssert(false, "Illegal data location for struct."); } break; } case Type::Category::Enum: { EnumType const& type = dynamic_cast<EnumType const&>(*_memberAccess.expression().annotation().type); m_context << type.memberValue(_memberAccess.memberName()); break; } case Type::Category::Array: { auto const& type = dynamic_cast<ArrayType const&>(*_memberAccess.expression().annotation().type); if (member == "length") { if (!type.isDynamicallySized()) { utils().popStackElement(type); m_context << type.length(); } else switch (type.location()) { case DataLocation::CallData: m_context << Instruction::SWAP1 << Instruction::POP; break; case DataLocation::Storage: ArrayUtils(m_context).retrieveLength(type); m_context << Instruction::SWAP1 << Instruction::POP; break; case DataLocation::Memory: m_context << Instruction::MLOAD; break; } } else if (member == "push" || member == "pop") { solAssert( type.isDynamicallySized() && type.location() == DataLocation::Storage && type.category() == Type::Category::Array, "Tried to use ." + member + "() on a non-dynamically sized array" ); } else solAssert(false, "Illegal array member."); break; } case Type::Category::FixedBytes: { auto const& type = dynamic_cast<FixedBytesType const&>(*_memberAccess.expression().annotation().type); utils().popStackElement(type); if (member == "length") m_context << u256(type.numBytes()); else solAssert(false, "Illegal fixed bytes member."); break; } case Type::Category::Module: { Type::Category category = _memberAccess.annotation().type->category(); solAssert( dynamic_cast<VariableDeclaration const*>(_memberAccess.annotation().referencedDeclaration) || dynamic_cast<FunctionDefinition const*>(_memberAccess.annotation().referencedDeclaration) || dynamic_cast<ErrorDefinition const*>(_memberAccess.annotation().referencedDeclaration) || category == Type::Category::TypeType || category == Type::Category::Module, "" ); if (auto variable = dynamic_cast<VariableDeclaration const*>(_memberAccess.annotation().referencedDeclaration)) { solAssert(variable->isConstant(), ""); appendVariable(*variable, static_cast<Expression const&>(_memberAccess)); } else if (auto const* function = dynamic_cast<FunctionDefinition const*>(_memberAccess.annotation().referencedDeclaration)) { auto funType = dynamic_cast<FunctionType const*>(_memberAccess.annotation().type); solAssert(function && function->isFree(), ""); solAssert(funType->kind() == FunctionType::Kind::Internal, ""); solAssert(*_memberAccess.annotation().requiredLookup == VirtualLookup::Static, ""); utils().pushCombinedFunctionEntryLabel(*function); } else if (auto const* contract = dynamic_cast<ContractDefinition const*>(_memberAccess.annotation().referencedDeclaration)) { if (contract->isLibrary()) m_context.appendLibraryAddress(contract->fullyQualifiedName()); } break; } default: solAssert(false, "Member access to unknown type."); } return false; } bool ExpressionCompiler::visit(IndexAccess const& _indexAccess) { CompilerContext::LocationSetter locationSetter(m_context, _indexAccess); _indexAccess.baseExpression().accept(*this); Type const& baseType = *_indexAccess.baseExpression().annotation().type; switch (baseType.category()) { case Type::Category::Mapping: { // stack: storage_base_ref Type const* keyType = dynamic_cast<MappingType const&>(baseType).keyType(); solAssert(_indexAccess.indexExpression(), "Index expression expected."); if (keyType->isDynamicallySized()) { _indexAccess.indexExpression()->accept(*this); utils().fetchFreeMemoryPointer(); // stack: base index mem // note: the following operations must not allocate memory! utils().packedEncode( TypePointers{_indexAccess.indexExpression()->annotation().type}, TypePointers{keyType} ); m_context << Instruction::SWAP1; utils().storeInMemoryDynamic(*TypeProvider::uint256()); utils().toSizeAfterFreeMemoryPointer(); } else { m_context << u256(0); // memory position appendExpressionCopyToMemory(*keyType, *_indexAccess.indexExpression()); m_context << Instruction::SWAP1; solAssert(CompilerUtils::freeMemoryPointer >= 0x40, ""); utils().storeInMemoryDynamic(*TypeProvider::uint256()); m_context << u256(0); } m_context << Instruction::KECCAK256; m_context << u256(0); setLValueToStorageItem(_indexAccess); break; } case Type::Category::ArraySlice: { auto const& arrayType = dynamic_cast<ArraySliceType const&>(baseType).arrayType(); solAssert( arrayType.location() == DataLocation::CallData && arrayType.isDynamicallySized() && !arrayType.baseType()->isDynamicallyEncoded(), "" ); solAssert(_indexAccess.indexExpression(), "Index expression expected."); acceptAndConvert(*_indexAccess.indexExpression(), *TypeProvider::uint256(), true); ArrayUtils(m_context).accessCallDataArrayElement(arrayType); break; } case Type::Category::Array: { ArrayType const& arrayType = dynamic_cast<ArrayType const&>(baseType); solAssert(_indexAccess.indexExpression(), "Index expression expected."); acceptAndConvert(*_indexAccess.indexExpression(), *TypeProvider::uint256(), true); // stack layout: <base_ref> [<length>] <index> switch (arrayType.location()) { case DataLocation::Storage: ArrayUtils(m_context).accessIndex(arrayType); if (arrayType.isByteArrayOrString()) { solAssert(!arrayType.isString(), "Index access to string is not allowed."); setLValue<StorageByteArrayElement>(_indexAccess); } else setLValueToStorageItem(_indexAccess); break; case DataLocation::Memory: ArrayUtils(m_context).accessIndex(arrayType); setLValue<MemoryItem>(_indexAccess, *_indexAccess.annotation().type, !arrayType.isByteArrayOrString()); break; case DataLocation::CallData: ArrayUtils(m_context).accessCallDataArrayElement(arrayType); break; } break; } case Type::Category::FixedBytes: { FixedBytesType const& fixedBytesType = dynamic_cast<FixedBytesType const&>(baseType); solAssert(_indexAccess.indexExpression(), "Index expression expected."); acceptAndConvert(*_indexAccess.indexExpression(), *TypeProvider::uint256(), true); // stack layout: <value> <index> // check out-of-bounds access m_context << u256(fixedBytesType.numBytes()); m_context << Instruction::DUP2 << Instruction::LT << Instruction::ISZERO; // out-of-bounds access throws exception m_context.appendConditionalPanic(util::PanicCode::ArrayOutOfBounds); m_context << Instruction::BYTE; utils().leftShiftNumberOnStack(256 - 8); break; } case Type::Category::TypeType: { solAssert(baseType.sizeOnStack() == 0, ""); solAssert(_indexAccess.annotation().type->sizeOnStack() == 0, ""); // no-op - this seems to be a lone array type (`structType[];`) break; } default: solAssert(false, "Index access only allowed for mappings or arrays."); break; } return false; } bool ExpressionCompiler::visit(IndexRangeAccess const& _indexAccess) { CompilerContext::LocationSetter locationSetter(m_context, _indexAccess); _indexAccess.baseExpression().accept(*this); // stack: offset length Type const& baseType = *_indexAccess.baseExpression().annotation().type; ArrayType const *arrayType = dynamic_cast<ArrayType const*>(&baseType); if (!arrayType) if (ArraySliceType const* sliceType = dynamic_cast<ArraySliceType const*>(&baseType)) arrayType = &sliceType->arrayType(); solAssert(arrayType, ""); solUnimplementedAssert( arrayType->location() == DataLocation::CallData && arrayType->isDynamicallySized() && !arrayType->baseType()->isDynamicallyEncoded() ); if (_indexAccess.startExpression()) acceptAndConvert(*_indexAccess.startExpression(), *TypeProvider::uint256()); else m_context << u256(0); // stack: offset length sliceStart m_context << Instruction::SWAP1; // stack: offset sliceStart length if (_indexAccess.endExpression()) acceptAndConvert(*_indexAccess.endExpression(), *TypeProvider::uint256()); else m_context << Instruction::DUP1; // stack: offset sliceStart length sliceEnd m_context << Instruction::SWAP3; // stack: sliceEnd sliceStart length offset m_context.callYulFunction(m_context.utilFunctions().calldataArrayIndexRangeAccess(*arrayType), 4, 2); return false; } void ExpressionCompiler::endVisit(Identifier const& _identifier) { CompilerContext::LocationSetter locationSetter(m_context, _identifier); Declaration const* declaration = _identifier.annotation().referencedDeclaration; if (MagicVariableDeclaration const* magicVar = dynamic_cast<MagicVariableDeclaration const*>(declaration)) { switch (magicVar->type()->category()) { case Type::Category::Contract: if (dynamic_cast<ContractType const*>(magicVar->type())) { solAssert(_identifier.name() == "this", ""); m_context << Instruction::ADDRESS; } break; default: break; } } else if (FunctionDefinition const* functionDef = dynamic_cast<FunctionDefinition const*>(declaration)) { // If the identifier is called right away, this code is executed in visit(FunctionCall...), because // we want to avoid having a reference to the runtime function entry point in the // constructor context, since this would force the compiler to include unreferenced // internal functions in the runtime context. solAssert(*_identifier.annotation().requiredLookup == VirtualLookup::Virtual, ""); utils().pushCombinedFunctionEntryLabel(functionDef->resolveVirtual(m_context.mostDerivedContract())); } else if (auto variable = dynamic_cast<VariableDeclaration const*>(declaration)) appendVariable(*variable, static_cast<Expression const&>(_identifier)); else if (auto contract = dynamic_cast<ContractDefinition const*>(declaration)) { if (contract->isLibrary()) m_context.appendLibraryAddress(contract->fullyQualifiedName()); } else if (dynamic_cast<EventDefinition const*>(declaration)) { // no-op } else if (dynamic_cast<ErrorDefinition const*>(declaration)) { // no-op } else if (dynamic_cast<EnumDefinition const*>(declaration)) { // no-op } else if (dynamic_cast<UserDefinedValueTypeDefinition const*>(declaration)) { // no-op } else if (dynamic_cast<StructDefinition const*>(declaration)) { // no-op } else if (dynamic_cast<ImportDirective const*>(declaration)) { // no-op } else { solAssert(false, "Identifier type not expected in expression context."); } } void ExpressionCompiler::endVisit(Literal const& _literal) { CompilerContext::LocationSetter locationSetter(m_context, _literal); Type const* type = _literal.annotation().type; switch (type->category()) { case Type::Category::RationalNumber: case Type::Category::Bool: case Type::Category::Address: m_context << type->literalValue(&_literal); break; case Type::Category::StringLiteral: break; // will be done during conversion default: solUnimplemented("Only integer, boolean and string literals implemented for now."); } } void ExpressionCompiler::appendAndOrOperatorCode(BinaryOperation const& _binaryOperation) { Token const c_op = _binaryOperation.getOperator(); solAssert(c_op == Token::Or || c_op == Token::And, ""); _binaryOperation.leftExpression().accept(*this); m_context << Instruction::DUP1; if (c_op == Token::And) m_context << Instruction::ISZERO; evmasm::AssemblyItem endLabel = m_context.appendConditionalJump(); m_context << Instruction::POP; _binaryOperation.rightExpression().accept(*this); m_context << endLabel; } void ExpressionCompiler::appendCompareOperatorCode(Token _operator, Type const& _type) { if (_operator == Token::Equal || _operator == Token::NotEqual) { FunctionType const* functionType = dynamic_cast<decltype(functionType)>(&_type); if (functionType && functionType->kind() == FunctionType::Kind::External) { solUnimplementedAssert(functionType->sizeOnStack() == 2, ""); m_context << Instruction::SWAP3; m_context << ((u256(1) << 160) - 1) << Instruction::AND; m_context << Instruction::SWAP1; m_context << ((u256(1) << 160) - 1) << Instruction::AND; m_context << Instruction::EQ; m_context << Instruction::SWAP2; m_context << ((u256(1) << 32) - 1) << Instruction::AND; m_context << Instruction::SWAP1; m_context << ((u256(1) << 32) - 1) << Instruction::AND; m_context << Instruction::EQ; m_context << Instruction::AND; } else { solAssert(_type.sizeOnStack() == 1, "Comparison of multi-slot types."); if (functionType && functionType->kind() == FunctionType::Kind::Internal) { // We have to remove the upper bits (construction time value) because they might // be "unknown" in one of the operands and not in the other. m_context << ((u256(1) << 32) - 1) << Instruction::AND; m_context << Instruction::SWAP1; m_context << ((u256(1) << 32) - 1) << Instruction::AND; } m_context << Instruction::EQ; } if (_operator == Token::NotEqual) m_context << Instruction::ISZERO; } else { solAssert(_type.sizeOnStack() == 1, "Comparison of multi-slot types."); bool isSigned = false; if (auto type = dynamic_cast<IntegerType const*>(&_type)) isSigned = type->isSigned(); switch (_operator) { case Token::GreaterThanOrEqual: m_context << (isSigned ? Instruction::SLT : Instruction::LT) << Instruction::ISZERO; break; case Token::LessThanOrEqual: m_context << (isSigned ? Instruction::SGT : Instruction::GT) << Instruction::ISZERO; break; case Token::GreaterThan: m_context << (isSigned ? Instruction::SGT : Instruction::GT); break; case Token::LessThan: m_context << (isSigned ? Instruction::SLT : Instruction::LT); break; default: solAssert(false, "Unknown comparison operator."); } } } void ExpressionCompiler::appendOrdinaryBinaryOperatorCode(Token _operator, Type const& _type) { if (TokenTraits::isArithmeticOp(_operator)) appendArithmeticOperatorCode(_operator, _type); else if (TokenTraits::isBitOp(_operator)) appendBitOperatorCode(_operator); else solAssert(false, "Unknown binary operator."); } void ExpressionCompiler::appendArithmeticOperatorCode(Token _operator, Type const& _type) { if (_type.category() == Type::Category::FixedPoint) solUnimplemented("Not yet implemented - FixedPointType."); IntegerType const& type = dynamic_cast<IntegerType const&>(_type); if (m_context.arithmetic() == Arithmetic::Checked) { string functionName; switch (_operator) { case Token::Add: functionName = m_context.utilFunctions().overflowCheckedIntAddFunction(type); break; case Token::Sub: functionName = m_context.utilFunctions().overflowCheckedIntSubFunction(type); break; case Token::Mul: functionName = m_context.utilFunctions().overflowCheckedIntMulFunction(type); break; case Token::Div: functionName = m_context.utilFunctions().overflowCheckedIntDivFunction(type); break; case Token::Mod: functionName = m_context.utilFunctions().intModFunction(type); break; case Token::Exp: // EXP is handled in a different function. default: solAssert(false, "Unknown arithmetic operator."); } // TODO Maybe we want to force-inline this? m_context.callYulFunction(functionName, 2, 1); } else { bool const c_isSigned = type.isSigned(); switch (_operator) { case Token::Add: m_context << Instruction::ADD; break; case Token::Sub: m_context << Instruction::SUB; break; case Token::Mul: m_context << Instruction::MUL; break; case Token::Div: case Token::Mod: { // Test for division by zero m_context << Instruction::DUP2 << Instruction::ISZERO; m_context.appendConditionalPanic(util::PanicCode::DivisionByZero); if (_operator == Token::Div) m_context << (c_isSigned ? Instruction::SDIV : Instruction::DIV); else m_context << (c_isSigned ? Instruction::SMOD : Instruction::MOD); break; } default: solAssert(false, "Unknown arithmetic operator."); } } } void ExpressionCompiler::appendBitOperatorCode(Token _operator) { switch (_operator) { case Token::BitOr: m_context << Instruction::OR; break; case Token::BitAnd: m_context << Instruction::AND; break; case Token::BitXor: m_context << Instruction::XOR; break; default: solAssert(false, "Unknown bit operator."); } } void ExpressionCompiler::appendShiftOperatorCode(Token _operator, Type const& _valueType, Type const& _shiftAmountType) { // stack: shift_amount value_to_shift bool c_valueSigned = false; if (auto valueType = dynamic_cast<IntegerType const*>(&_valueType)) c_valueSigned = valueType->isSigned(); else solAssert(dynamic_cast<FixedBytesType const*>(&_valueType), "Only integer and fixed bytes type supported for shifts."); // The amount can be a RationalNumberType too. if (auto amountType = dynamic_cast<RationalNumberType const*>(&_shiftAmountType)) { // This should be handled by the type checker. solAssert(amountType->integerType(), ""); solAssert(!amountType->integerType()->isSigned(), ""); } else if (auto amountType = dynamic_cast<IntegerType const*>(&_shiftAmountType)) solAssert(!amountType->isSigned(), ""); else solAssert(false, "Invalid shift amount type."); m_context << Instruction::SWAP1; // stack: value_to_shift shift_amount switch (_operator) { case Token::SHL: if (m_context.evmVersion().hasBitwiseShifting()) m_context << Instruction::SHL; else m_context << u256(2) << Instruction::EXP << Instruction::MUL; break; case Token::SAR: if (m_context.evmVersion().hasBitwiseShifting()) m_context << (c_valueSigned ? Instruction::SAR : Instruction::SHR); else { if (c_valueSigned) // In the following assembly snippet, xor_mask will be zero, if value_to_shift is positive. // Therefore xor'ing with xor_mask is the identity and the computation reduces to // div(value_to_shift, exp(2, shift_amount)), which is correct, since for positive values // arithmetic right shift is dividing by a power of two (which, as a bitwise operation, results // in discarding bits on the right and filling with zeros from the left). // For negative values arithmetic right shift, viewed as a bitwise operation, discards bits to the // right and fills in ones from the left. This is achieved as follows: // If value_to_shift is negative, then xor_mask will have all bits set, so xor'ing with xor_mask // will flip all bits. First all bits in value_to_shift are flipped. As for the positive case, // dividing by a power of two using integer arithmetic results in discarding bits to the right // and filling with zeros from the left. Flipping all bits in the result again, turns all zeros // on the left to ones and restores the non-discarded, shifted bits to their original value (they // have now been flipped twice). In summary we now have discarded bits to the right and filled with // ones from the left, i.e. we have performed an arithmetic right shift. m_context.appendInlineAssembly(R"({ let xor_mask := sub(0, slt(value_to_shift, 0)) value_to_shift := xor(div(xor(value_to_shift, xor_mask), exp(2, shift_amount)), xor_mask) })", {"value_to_shift", "shift_amount"}); else m_context.appendInlineAssembly(R"({ value_to_shift := div(value_to_shift, exp(2, shift_amount)) })", {"value_to_shift", "shift_amount"}); m_context << Instruction::POP; } break; case Token::SHR: default: solAssert(false, "Unknown shift operator."); } } void ExpressionCompiler::appendExpOperatorCode(Type const& _valueType, Type const& _exponentType) { solAssert(_valueType.category() == Type::Category::Integer, ""); solAssert(!dynamic_cast<IntegerType const&>(_exponentType).isSigned(), ""); if (m_context.arithmetic() == Arithmetic::Checked) m_context.callYulFunction(m_context.utilFunctions().overflowCheckedIntExpFunction( dynamic_cast<IntegerType const&>(_valueType), dynamic_cast<IntegerType const&>(_exponentType) ), 2, 1); else m_context << Instruction::EXP; } void ExpressionCompiler::appendExternalFunctionCall( FunctionType const& _functionType, vector<ASTPointer<Expression const>> const& _arguments, bool _tryCall ) { solAssert( _functionType.takesArbitraryParameters() || _arguments.size() == _functionType.parameterTypes().size(), "" ); // Assumed stack content here: // <stack top> // value [if _functionType.valueSet()] // gas [if _functionType.gasSet()] // self object [if bound - moved to top right away] // function identifier [unless bare] // contract address unsigned selfSize = _functionType.hasBoundFirstArgument() ? _functionType.selfType()->sizeOnStack() : 0; unsigned gasValueSize = (_functionType.gasSet() ? 1u : 0u) + (_functionType.valueSet() ? 1u : 0u); unsigned contractStackPos = m_context.currentToBaseStackOffset(1 + gasValueSize + selfSize + (_functionType.isBareCall() ? 0 : 1)); unsigned gasStackPos = m_context.currentToBaseStackOffset(gasValueSize); unsigned valueStackPos = m_context.currentToBaseStackOffset(1); // move self object to top if (_functionType.hasBoundFirstArgument()) utils().moveToStackTop(gasValueSize, _functionType.selfType()->sizeOnStack()); auto funKind = _functionType.kind(); solAssert(funKind != FunctionType::Kind::BareStaticCall || m_context.evmVersion().hasStaticCall(), ""); solAssert(funKind != FunctionType::Kind::BareCallCode, "Callcode has been removed."); bool returnSuccessConditionAndReturndata = funKind == FunctionType::Kind::BareCall || funKind == FunctionType::Kind::BareDelegateCall || funKind == FunctionType::Kind::BareStaticCall; bool isDelegateCall = funKind == FunctionType::Kind::BareDelegateCall || funKind == FunctionType::Kind::DelegateCall; bool useStaticCall = funKind == FunctionType::Kind::BareStaticCall || (_functionType.stateMutability() <= StateMutability::View && m_context.evmVersion().hasStaticCall()); if (_tryCall) { solAssert(!returnSuccessConditionAndReturndata, ""); solAssert(!_functionType.isBareCall(), ""); } ReturnInfo const returnInfo{m_context.evmVersion(), _functionType}; bool const haveReturndatacopy = m_context.evmVersion().supportsReturndata(); unsigned const retSize = returnInfo.estimatedReturnSize; bool const dynamicReturnSize = returnInfo.dynamicReturnSize; TypePointers const& returnTypes = returnInfo.returnTypes; // Evaluate arguments. TypePointers argumentTypes; TypePointers parameterTypes = _functionType.parameterTypes(); if (_functionType.hasBoundFirstArgument()) { argumentTypes.push_back(_functionType.selfType()); parameterTypes.insert(parameterTypes.begin(), _functionType.selfType()); } for (size_t i = 0; i < _arguments.size(); ++i) { _arguments[i]->accept(*this); argumentTypes.push_back(_arguments[i]->annotation().type); } if (funKind == FunctionType::Kind::ECRecover) { // Clears 32 bytes of currently free memory and advances free memory pointer. // Output area will be "start of input area" - 32. // The reason is that a failing ECRecover cannot be detected, it will just return // zero bytes (which we cannot detect). solAssert(0 < retSize && retSize <= 32, ""); utils().fetchFreeMemoryPointer(); m_context << u256(0) << Instruction::DUP2 << Instruction::MSTORE; m_context << u256(32) << Instruction::ADD; utils().storeFreeMemoryPointer(); } if (!m_context.evmVersion().canOverchargeGasForCall()) { // Touch the end of the output area so that we do not pay for memory resize during the call // (which we would have to subtract from the gas left) // We could also just use MLOAD; POP right before the gas calculation, but the optimizer // would remove that, so we use MSTORE here. if (!_functionType.gasSet() && retSize > 0) { m_context << u256(0); utils().fetchFreeMemoryPointer(); // This touches too much, but that way we save some rounding arithmetic m_context << u256(retSize) << Instruction::ADD << Instruction::MSTORE; } } // Copy function identifier to memory. utils().fetchFreeMemoryPointer(); if (!_functionType.isBareCall()) { m_context << dupInstruction(2 + gasValueSize + CompilerUtils::sizeOnStack(argumentTypes)); utils().storeInMemoryDynamic(IntegerType(8 * CompilerUtils::dataStartOffset), false); } // If the function takes arbitrary parameters or is a bare call, copy dynamic length data in place. // Move arguments to memory, will not update the free memory pointer (but will update the memory // pointer on the stack). bool encodeInPlace = _functionType.takesArbitraryParameters() || _functionType.isBareCall(); if (_functionType.kind() == FunctionType::Kind::ECRecover) // This would be the only combination of padding and in-place encoding, // but all parameters of ecrecover are value types anyway. encodeInPlace = false; bool encodeForLibraryCall = funKind == FunctionType::Kind::DelegateCall; utils().encodeToMemory( argumentTypes, parameterTypes, _functionType.padArguments(), encodeInPlace, encodeForLibraryCall ); // Stack now: // <stack top> // input_memory_end // value [if _functionType.valueSet()] // gas [if _functionType.gasSet()] // function identifier [unless bare] // contract address // Output data will replace input data, unless we have ECRecover (then, output // area will be 32 bytes just before input area). // put on stack: <size of output> <memory pos of output> <size of input> <memory pos of input> m_context << u256(retSize); utils().fetchFreeMemoryPointer(); // This is the start of input if (funKind == FunctionType::Kind::ECRecover) { // In this case, output is 32 bytes before input and has already been cleared. m_context << u256(32) << Instruction::DUP2 << Instruction::SUB << Instruction::SWAP1; // Here: <input end> <output size> <outpos> <input pos> m_context << Instruction::DUP1 << Instruction::DUP5 << Instruction::SUB; m_context << Instruction::SWAP1; } else { m_context << Instruction::DUP1 << Instruction::DUP4 << Instruction::SUB; m_context << Instruction::DUP2; } // CALL arguments: outSize, outOff, inSize, inOff (already present up to here) // [value,] addr, gas (stack top) if (isDelegateCall) solAssert(!_functionType.valueSet(), "Value set for delegatecall"); else if (useStaticCall) solAssert(!_functionType.valueSet(), "Value set for staticcall"); else if (_functionType.valueSet()) m_context << dupInstruction(m_context.baseToCurrentStackOffset(valueStackPos)); else m_context << u256(0); m_context << dupInstruction(m_context.baseToCurrentStackOffset(contractStackPos)); bool existenceChecked = false; // Check the target contract exists (has code) for non-low-level calls. if (funKind == FunctionType::Kind::External || funKind == FunctionType::Kind::DelegateCall) { size_t encodedHeadSize = 0; for (auto const& t: returnTypes) encodedHeadSize += t->decodingType()->calldataHeadSize(); // We do not need to check extcodesize if we expect return data, since if there is no // code, the call will return empty data and the ABI decoder will revert. if ( encodedHeadSize == 0 || !haveReturndatacopy || m_context.revertStrings() >= RevertStrings::Debug ) { m_context << Instruction::DUP1 << Instruction::EXTCODESIZE << Instruction::ISZERO; m_context.appendConditionalRevert(false, "Target contract does not contain code"); existenceChecked = true; } } if (_functionType.gasSet()) m_context << dupInstruction(m_context.baseToCurrentStackOffset(gasStackPos)); else if (m_context.evmVersion().canOverchargeGasForCall()) // Send all gas (requires tangerine whistle EVM) m_context << Instruction::GAS; else { // send all gas except the amount needed to execute "SUB" and "CALL" // @todo this retains too much gas for now, needs to be fine-tuned. u256 gasNeededByCaller = evmasm::GasCosts::callGas(m_context.evmVersion()) + 10; if (_functionType.valueSet()) gasNeededByCaller += evmasm::GasCosts::callValueTransferGas; if (!existenceChecked) gasNeededByCaller += evmasm::GasCosts::callNewAccountGas; // we never know m_context << gasNeededByCaller << Instruction::GAS << Instruction::SUB; } // Order is important here, STATICCALL might overlap with DELEGATECALL. if (isDelegateCall) m_context << Instruction::DELEGATECALL; else if (useStaticCall) m_context << Instruction::STATICCALL; else m_context << Instruction::CALL; unsigned remainsSize = 2u + // contract address, input_memory_end (_functionType.valueSet() ? 1 : 0) + (_functionType.gasSet() ? 1 : 0) + (!_functionType.isBareCall() ? 1 : 0); evmasm::AssemblyItem endTag = m_context.newTag(); if (!returnSuccessConditionAndReturndata && !_tryCall) { // Propagate error condition (if CALL pushes 0 on stack). m_context << Instruction::ISZERO; m_context.appendConditionalRevert(true); } else m_context << swapInstruction(remainsSize); utils().popStackSlots(remainsSize); // Only success flag is remaining on stack. if (_tryCall) { m_context << Instruction::DUP1 << Instruction::ISZERO; m_context.appendConditionalJumpTo(endTag); m_context << Instruction::POP; } if (returnSuccessConditionAndReturndata) { // success condition is already there // The return parameter types can be empty, when this function is used as // an internal helper function e.g. for ``send`` and ``transfer``. In that // case we're only interested in the success condition, not the return data. if (!_functionType.returnParameterTypes().empty()) utils().returnDataToArray(); } else if (funKind == FunctionType::Kind::RIPEMD160) { // fix: built-in contract returns right-aligned data utils().fetchFreeMemoryPointer(); utils().loadFromMemoryDynamic(IntegerType(160), false, true, false); utils().convertType(IntegerType(160), FixedBytesType(20)); } else if (funKind == FunctionType::Kind::ECRecover) { // Output is 32 bytes before input / free mem pointer. // Failing ecrecover cannot be detected, so we clear output before the call. m_context << u256(32); utils().fetchFreeMemoryPointer(); m_context << Instruction::SUB << Instruction::MLOAD; } else if (!returnTypes.empty()) { utils().fetchFreeMemoryPointer(); // Stack: return_data_start // The old decoder did not allocate any memory (i.e. did not touch the free // memory pointer), but kept references to the return data for // (statically-sized) arrays bool needToUpdateFreeMemoryPtr = false; if (dynamicReturnSize || m_context.useABICoderV2()) needToUpdateFreeMemoryPtr = true; else for (auto const& retType: returnTypes) if (dynamic_cast<ReferenceType const*>(retType)) needToUpdateFreeMemoryPtr = true; // Stack: return_data_start if (dynamicReturnSize) { solAssert(haveReturndatacopy, ""); m_context.appendInlineAssembly("{ returndatacopy(return_data_start, 0, returndatasize()) }", {"return_data_start"}); } else solAssert(retSize > 0, ""); // Always use the actual return length, and not our calculated expected length, if returndatacopy is supported. // This ensures it can catch badly formatted input from external calls. m_context << (haveReturndatacopy ? evmasm::AssemblyItem(Instruction::RETURNDATASIZE) : u256(retSize)); // Stack: return_data_start return_data_size if (needToUpdateFreeMemoryPtr) m_context.appendInlineAssembly(R"({ // round size to the next multiple of 32 let newMem := add(start, and(add(size, 0x1f), not(0x1f))) mstore(0x40, newMem) })", {"start", "size"}); utils().abiDecode(returnTypes, true); } if (_tryCall) { // Success branch will reach this, failure branch will directly jump to endTag. m_context << u256(1); m_context << endTag; } } void ExpressionCompiler::appendExpressionCopyToMemory(Type const& _expectedType, Expression const& _expression) { solUnimplementedAssert(_expectedType.isValueType(), "Not implemented for non-value types."); acceptAndConvert(_expression, _expectedType, true); utils().storeInMemoryDynamic(_expectedType); } void ExpressionCompiler::appendVariable(VariableDeclaration const& _variable, Expression const& _expression) { if (_variable.isConstant()) acceptAndConvert(*_variable.value(), *_variable.annotation().type); else if (_variable.immutable()) setLValue<ImmutableItem>(_expression, _variable); else setLValueFromDeclaration(_variable, _expression); } void ExpressionCompiler::setLValueFromDeclaration(Declaration const& _declaration, Expression const& _expression) { if (m_context.isLocalVariable(&_declaration)) setLValue<StackVariable>(_expression, dynamic_cast<VariableDeclaration const&>(_declaration)); else if (m_context.isStateVariable(&_declaration)) setLValue<StorageItem>(_expression, dynamic_cast<VariableDeclaration const&>(_declaration)); else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_expression.location()) << util::errinfo_comment("Identifier type not supported or identifier not found.")); } void ExpressionCompiler::setLValueToStorageItem(Expression const& _expression) { setLValue<StorageItem>(_expression, *_expression.annotation().type); } bool ExpressionCompiler::cleanupNeededForOp(Type::Category _type, Token _op, Arithmetic _arithmetic) { if (TokenTraits::isCompareOp(_op) || TokenTraits::isShiftOp(_op)) return true; else if ( _arithmetic == Arithmetic::Wrapping && _type == Type::Category::Integer && (_op == Token::Div || _op == Token::Mod || _op == Token::Exp) ) // We need cleanup for EXP because 0**0 == 1, but 0**0x100 == 0 // It would suffice to clean the exponent, though. return true; else return false; } void ExpressionCompiler::acceptAndConvert(Expression const& _expression, Type const& _type, bool _cleanupNeeded) { _expression.accept(*this); utils().convertType(*_expression.annotation().type, _type, _cleanupNeeded); } CompilerUtils ExpressionCompiler::utils() { return CompilerUtils(m_context); }