Search.setIndex({"alltitles": {"(Generalized) linear models": [[206, "generalized-linear-models"]], "1-way partial dependence with different models": [[184, "way-partial-dependence-with-different-models"]], "20 newsgroups dataset": [[102, "newsgroups-dataset"]], "2D interaction plots": [[184, "d-interaction-plots"]], "3D representation": [[184, "d-representation"]], "A constant prediction baseline": [[206, "a-constant-prediction-baseline"]], "A demo of K-Means clustering on the handwritten digits data": [[91, null]], "A demo of structured Ward hierarchical clustering on an image of coins": [[81, null]], "A demo of the Spectral Biclustering algorithm": [[59, null]], "A demo of the Spectral Co-Clustering algorithm": [[60, null]], "A demo of the mean-shift clustering algorithm": [[96, null]], "A more flexible plotting API": [[315, "a-more-flexible-plotting-api"]], "A note on shuffling": [[407, "a-note-on-shuffling"]], "A qualitative look at the predictions": [[53, "a-qualitative-look-at-the-predictions"]], "A simple algorithmic trick: warm restarts": [[377, "a-simple-algorithmic-trick-warm-restarts"]], "A typical workflow for triaging issues": [[370, "a-typical-workflow-for-triaging-issues"]], "AIC and BIC criteria": [[996, "aic-and-bic-criteria"]], "API Interface": [[394, "api-interface"]], "API Reference": [[2, null]], "API changes": [[1038, "api-changes"]], "API changes summary": [[1031, "api-changes-summary"], [1031, "id4"], [1031, "id7"], [1031, "id10"], [1032, "api-changes-summary"], [1033, "api-changes-summary"], [1034, "api-changes-summary"], [1035, "api-changes-summary"], [1036, "api-changes-summary"], [1037, "api-changes-summary"], [1037, "id6"], [1038, "api-changes-summary"]], "API compatibility checkers": [[42, "module-sklearn.utils.estimator_checks"]], "APIs of scikit-learn objects": [[373, "apis-of-scikit-learn-objects"]], "ARDRegression": [[643, null]], "ARFF parser": [[365, "arff-parser"]], "AWeber": [[1024, "id9"]], "Ability of Gaussian process regression (GPR) to estimate data noise-level": [[173, null]], "Ablation study": [[242, "ablation-study"]], "About the project": [[383, "about-the-project"]], "About us": [[0, null]], "Access pipeline steps": [[404, "access-pipeline-steps"]], "Access to nested parameters": [[404, "access-to-nested-parameters"]], "Accuracy of the Model": [[185, "accuracy-of-the-model"]], "Accuracy score": [[1000, "accuracy-score"]], "Accuracy vs alpha for training and testing sets": [[350, "accuracy-vs-alpha-for-training-and-testing-sets"]], "Active Core Contributors": [[0, "active-core-contributors"]], "AdaBoost": [[410, "adaboost"]], "AdaBoostClassifier": [[550, null]], "AdaBoostRegressor": [[551, null]], "Adapting predefined metrics via make_scorer": [[1000, "adapting-predefined-metrics-via-make-scorer"]], "Add support for monotonic constraints in tree-based models": [[319, "add-support-for-monotonic-constraints-in-tree-based-models"]], "Adding connectivity constraints": [[403, "adding-connectivity-constraints"]], "Additive Chi Squared Kernel": [[992, "additive-chi-squared-kernel"]], "AdditiveChi2Sampler": [[637, null]], "Addressing the problem with a business metric": [[257, "addressing-the-problem-with-a-business-metric"]], "Adjustment for chance in clustering performance evaluation": [[73, null]], "Advanced Plotting With Partial Dependence": [[243, null]], "Advantages:": [[403, null], [403, null], [403, null], [403, null], [403, null], [403, null], [403, null], [403, null]], "Affinity Propagation": [[403, "affinity-propagation"]], "AffinityPropagation": [[436, null]], "Agglomerative clustering with different metrics": [[75, null]], "AgglomerativeClustering": [[437, null]], "Aggressive elimination of candidates": [[989, "aggressive-elimination-of-candidates"]], "Algorithms": [[1004, "algorithms"]], "Almost complete Metadata Routing support": [[321, "almost-complete-metadata-routing-support"]], "Alpine Linux": [[389, "alpine-linux"]], "Alternatives to brute force parameter search": [[989, "alternatives-to-brute-force-parameter-search"]], "Ames Housing dataset": [[242, "ames-housing-dataset"]], "An example custom estimator implementing a simple classifier": [[132, "an-example-custom-estimator-implementing-a-simple-classifier"]], "An example of K-Means++ initialization": [[92, null]], "Anaconda and Enthought Deployment Manager for all supported platforms": [[389, "anaconda-and-enthought-deployment-manager-for-all-supported-platforms"]], "Analysis": [[67, "analysis"], [134, "analysis"]], "Analysis of a bag-of-words document classifier": [[346, "analysis-of-a-bag-of-words-document-classifier"]], "Analysis of the error metrics": [[146, "analysis-of-the-error-metrics"]], "Analysis of the plots": [[184, "analysis-of-the-plots"]], "Analysis of the results": [[65, "analysis-of-the-results"]], "Analyzing results with the cv_results_ attribute": [[989, "analyzing-results-with-the-cv-results-attribute"]], "Analyzing the Bike Sharing Demand dataset": [[53, "analyzing-the-bike-sharing-demand-dataset"]], "Applications and examples": [[411, "applications-and-examples"]], "Approximate nearest neighbors in TSNE": [[283, null]], "Arch Linux": [[389, "arch-linux"]], "Architectural / general goals": [[1020, "architectural-general-goals"]], "Array API support": [[321, "array-api-support"], [322, "array-api-support"]], "Array API support (experimental)": [[399, null]], "Attributes": [[385, "attributes"]], "Authors": [[1031, "authors"], [1031, "id20"]], "Automated Contributions Policy": [[371, "automated-contributions-policy"]], "Automatic Relevance Determination (ARD)": [[194, "automatic-relevance-determination-ard"]], "Automatic Relevance Determination - ARD": [[996, "automatic-relevance-determination-ard"]], "Automatic parameter searches": [[384, "automatic-parameter-searches"]], "Auxiliary functions that operate on arrays": [[42, "module-sklearn.utils.arrayfuncs"]], "Available Plotting Utilities": [[1028, "available-plotting-utilities"]], "Available documentation for scikit-learn": [[1027, null]], "BIRCH": [[403, "birch"]], "BNP Paribas Cardif": [[1024, "id29"]], "Bagging meta-estimator": [[410, "bagging-meta-estimator"]], "BaggingClassifier": [[552, null]], "BaggingRegressor": [[553, null]], "Balance model complexity and cross-validated score": [[262, null]], "Balanced accuracy score": [[1000, "balanced-accuracy-score"]], "Ball Tree": [[1003, "ball-tree"]], "BallTree": [[845, null]], "BaseEstimator": [[417, null]], "Basic kernels": [[413, "basic-kernels"]], "Basic shrinkage": [[405, "basic-shrinkage"]], "Bayesian Regression": [[996, "bayesian-regression"]], "Bayesian Ridge Regression": [[996, "bayesian-ridge-regression"]], "Bayesian regressions with polynomial feature expansion": [[190, "bayesian-regressions-with-polynomial-feature-expansion"]], "Bayesian regressors": [[26, "bayesian-regressors"]], "BayesianGaussianMixture": [[798, null]], "BayesianRidge": [[644, null]], "Benchmark and plot helper functions": [[50, "benchmark-and-plot-helper-functions"]], "Benchmark bulk/atomic prediction speed for various regressors": [[50, "benchmark-bulk-atomic-prediction-speed-for-various-regressors"]], "Benchmark influence": [[47, "benchmark-influence"]], "Benchmark n_features influence on prediction speed": [[50, "benchmark-n-features-influence-on-prediction-speed"]], "Benchmark throughput": [[50, "benchmark-throughput"]], "Benchmarking classifiers": [[346, "benchmarking-classifiers"]], "Bernoulli Naive Bayes": [[1002, "bernoulli-naive-bayes"]], "Bernoulli Restricted Boltzmann machines": [[1005, "bernoulli-restricted-boltzmann-machines"]], "BernoulliNB": [[840, null]], "BernoulliRBM": [[861, null]], "Bestofmedia Group": [[1024, "id13"]], "BiclusterMixin": [[418, null]], "Biclustering": [[57, null], [180, "biclustering"], [367, "biclustering"], [400, null]], "Biclustering documents with the Spectral Co-clustering algorithm": [[58, null]], "Biclustering evaluation": [[400, "biclustering-evaluation"]], "Biclustering metrics": [[28, "biclustering-metrics"]], "Bike sharing dataset preprocessing": [[184, "bike-sharing-dataset-preprocessing"]], "Binarizer": [[868, null]], "Binary Case": [[996, "binary-case"]], "Binary case": [[1000, "binary-case"]], "Binary classification": [[1000, "binary-classification"]], "Birch": [[438, null]], "Birchbox": [[1024, "id12"]], "Bisecting K-Means": [[403, "bisecting-k-means"]], "Bisecting K-Means and Regular K-Means Performance Comparison": [[78, null]], "BisectingKMeans": [[439, null]], "BisectingKMeans: divide and cluster": [[316, "bisectingkmeans-divide-and-cluster"]], "Blind source separation using FastICA": [[121, null]], "Boil down your script to something as small as possible": [[376, "boil-down-your-script-to-something-as-small-as-possible"]], "Booking.com": [[1024, "id8"]], "Branding & Logos": [[0, "branding-logos"]], "Breast cancer Wisconsin (diagnostic) dataset": [[368, "breast-cancer-wisconsin-diagnostic-dataset"]], "Brier score loss": [[1000, "brier-score-loss"]], "Brute Force": [[1003, "brute-force"]], "Bug Tracker": [[1023, "bug-tracker"]], "Bug fixes": [[1034, "bug-fixes"], [1034, "id1"], [1034, "id3"], [1035, "bug-fixes"], [1035, "id3"], [1036, "bug-fixes"], [1036, "id3"], [1037, "bug-fixes"], [1037, "id5"], [1038, "bug-fixes"], [1038, "id4"]], "Bug triaging and issue curation": [[370, null]], "Build a pipeline": [[404, "build-a-pipeline"]], "Build the dataset": [[172, "build-the-dataset"]], "Building a specific version from a tag": [[369, "building-a-specific-version-from-a-tag"]], "Building and testing for the ARM64 platform on a x86_64 machine": [[379, "building-and-testing-for-the-arm64-platform-on-a-x86-64-machine"]], "Building from source": [[369, "building-from-source"]], "Building the documentation": [[371, "building-the-documentation"]], "Bulk versus Atomic mode": [[358, "bulk-versus-atomic-mode"]], "Bunch": [[920, null]], "CCA": [[478, null]], "CCA (PLS mode B with symmetric deflation)": [[115, "cca-pls-mode-b-with-symmetric-deflation"]], "CV splitters": [[354, "cv-splitters"], [354, "id3"]], "Caching nearest neighbors": [[285, null]], "Caching transformers within a Pipeline": [[104, "caching-transformers-within-a-pipeline"]], "Caching transformers: avoid repeated computation": [[404, "caching-transformers-avoid-repeated-computation"]], "CalibratedClassifierCV": [[433, null]], "Calibrating a classifier": [[401, "calibrating-a-classifier"]], "Calibration": [[61, null], [180, "calibration"]], "Calibration curves": [[63, "calibration-curves"], [65, "calibration-curves"], [401, "calibration-curves"]], "Calibration of a pre-fitted classifier": [[165, "calibration-of-a-pre-fitted-classifier"]], "Calibration of the confidence interval": [[146, "calibration-of-the-confidence-interval"]], "CalibrationDisplay": [[434, null]], "California Housing dataset": [[366, "california-housing-dataset"]], "Calinski-Harabasz Index": [[403, "calinski-harabasz-index"]], "Callable scorers": [[1000, "callable-scorers"]], "Canonical (symmetric) PLS": [[115, "canonical-symmetric-pls"]], "Canonical Correlation Analysis": [[406, "canonical-correlation-analysis"]], "Capture local connectivity using a graph": [[100, "capture-local-connectivity-using-a-graph"]], "Cardiotocography dataset": [[242, "cardiotocography-dataset"]], "Categorical Feature Support in Gradient Boosting": [[143, null]], "Categorical Features Support": [[410, "categorical-features-support"]], "Categorical Naive Bayes": [[1002, "categorical-naive-bayes"]], "CategoricalNB": [[841, null]], "Centering kernel matrices": [[1010, "centering-kernel-matrices"]], "Chain of binary classifiers": [[282, "chain-of-binary-classifiers"]], "Change the default value of a parameter": [[371, "change-the-default-value-of-a-parameter"]], "Change.org": [[1024, "id14"]], "Changed displays": [[1047, "changed-displays"]], "Changed models": [[1038, "changed-models"], [1039, "changed-models"], [1039, "id9"], [1039, "id22"], [1040, "changed-models"], [1040, "id6"], [1041, "changed-models"], [1042, "changed-models"], [1042, "id3"], [1043, "changed-models"], [1044, "changed-models"], [1045, "changed-models"], [1045, "id6"], [1046, "changed-models"], [1046, "id7"], [1047, "changed-models"], [1047, "id4"], [1048, "changed-models"], [1048, "id1"], [1049, "changed-models"], [1050, "changed-models"], [1051, "changed-models"]], "Changelog": [[1031, "changelog"], [1031, "id1"], [1031, "id3"], [1031, "id6"], [1031, "id9"], [1031, "id12"], [1031, "id14"], [1031, "id16"], [1031, "id18"], [1031, "id19"], [1032, "changelog"], [1032, "id2"], [1033, "changelog"], [1034, "changelog"], [1035, "changelog"], [1035, "id2"], [1036, "changelog"], [1036, "id2"], [1037, "changelog"], [1037, "id1"], [1037, "id3"], [1038, "changelog"], [1038, "id2"], [1039, "changelog"], [1039, "id1"], [1039, "id5"], [1039, "id10"], [1039, "id23"], [1040, "changelog"], [1040, "id1"], [1040, "id2"], [1040, "id7"], [1041, "changelog"], [1041, "id1"], [1041, "id4"], [1042, "changelog"], [1042, "id1"], [1042, "id4"], [1043, "changelog"], [1043, "id1"], [1043, "id4"], [1044, "changelog"], [1044, "id6"], [1045, "changelog"], [1045, "id1"], [1045, "id7"], [1046, "changelog"], [1046, "id1"], [1046, "id9"], [1047, "changelog"], [1047, "id1"], [1047, "id6"], [1048, "changelog"], [1048, "id3"], [1049, "changelog"], [1049, "id2"], [1049, "id6"]], "Changes impacting all modules": [[1046, "changes-impacting-all-modules"], [1046, "id8"], [1047, "changes-impacting-all-modules"], [1047, "id5"], [1048, "changes-impacting-all-modules"]], "Changes impacting many modules": [[1048, "changes-impacting-many-modules"], [1049, "changes-impacting-many-modules"], [1049, "id1"], [1049, "id5"], [1050, "changes-impacting-many-modules"], [1050, "id1"], [1051, "changes-impacting-many-modules"]], "Changes to estimator checks": [[1039, "changes-to-estimator-checks"], [1040, "changes-to-estimator-checks"], [1041, "changes-to-estimator-checks"]], "Checking out pull requests as remote-tracking branches": [[379, "checking-out-pull-requests-as-remote-tracking-branches"]], "Checking scikit-learn compatibility of an estimator": [[312, "checking-scikit-learn-compatibility-of-an-estimator"]], "Checking the variability of the coefficients": [[183, "checking-the-variability-of-the-coefficients"]], "Chi-squared kernel": [[998, "chi-squared-kernel"]], "Choice of solver for Kernel PCA": [[408, "choice-of-solver-for-kernel-pca"]], "Choose parameters": [[47, "choose-parameters"]], "Choosing the right estimator": [[391, null]], "Citing scikit-learn": [[0, "citing-scikit-learn"]], "Class APIs and Estimator Types": [[385, "class-apis-and-estimator-types"]], "Class Likelihood Ratios to measure classification performance": [[266, null]], "Class likelihood ratios": [[1000, "class-likelihood-ratios"]], "ClassNamePrefixFeaturesOutMixin": [[419, null]], "Classical linear regressors": [[26, "classical-linear-regressors"]], "ClassicalMDS": [[687, null]], "Classification": [[66, null], [69, "classification"], [175, "classification"], [180, "classification"], [996, "classification"], [1003, "id4"], [1004, "classification"], [1014, "classification"], [1015, "classification"], [1016, "classification"]], "Classification and ROC analysis": [[273, "classification-and-roc-analysis"]], "Classification criteria": [[1016, "classification-criteria"]], "Classification metrics": [[28, "classification-metrics"], [1000, "classification-metrics"]], "Classification of text documents using sparse features": [[346, null]], "Classification pipeline": [[102, "classification-pipeline"]], "Classification report": [[1000, "classification-report"]], "Classifier Training": [[200, "classifier-training"]], "Classifier comparison": [[68, null]], "ClassifierChain": [[836, null], [1001, "classifierchain"]], "ClassifierMixin": [[420, null]], "ClassifierTags": [[921, null]], "Clear definition of the public API": [[1041, "clear-definition-of-the-public-api"]], "Cloning": [[373, "cloning"]], "Closing issues: a tough call": [[370, null]], "Cluster centers - MiniBatchKMeans": [[120, "cluster-centers-minibatchkmeans"]], "ClusterMixin": [[421, null]], "Clustering": [[72, null], [180, "clustering"], [403, null]], "Clustering evaluation summary": [[347, "clustering-evaluation-summary"]], "Clustering for dictionary learning": [[408, null]], "Clustering metrics": [[28, "module-sklearn.metrics.cluster"], [1000, "clustering-metrics"]], "Clustering performance evaluation": [[403, "clustering-performance-evaluation"]], "Clustering sparse data with k-means": [[347, "clustering-sparse-data-with-k-means"]], "Clustering text documents using k-means": [[347, null]], "Clustering using affinity propagation": [[52, "clustering-using-affinity-propagation"]], "Code Contributors": [[1035, "code-contributors"], [1036, "code-contributors"], [1037, "code-contributors"], [1037, "id7"]], "Code Review Guidelines": [[371, "code-review-guidelines"]], "Code and Documentation Contributors": [[1038, "code-and-documentation-contributors"], [1038, "id10"], [1039, "code-and-documentation-contributors"], [1039, "id8"], [1039, "id21"], [1039, "id41"]], "Coding Sprints": [[0, "coding-sprints"]], "Coding guidelines": [[373, "coding-guidelines"]], "Coefficients comparison": [[276, "coefficients-comparison"]], "Cohen\u2019s kappa": [[1000, "cohen-s-kappa"]], "Column Transformer with Heterogeneous Data Sources": [[102, null]], "Column Transformer with Mixed Types": [[103, null]], "ColumnTransformer": [[460, null]], "ColumnTransformer for heterogeneous data": [[404, "columntransformer-for-heterogeneous-data"]], "ColumnTransformer is subscriptable": [[320, "columntransformer-is-subscriptable"]], "Combine predictors using stacking": [[154, null]], "Combining the display objects into a single plot": [[233, "combining-the-display-objects-into-a-single-plot"]], "Commit message markers": [[371, "commit-message-markers"]], "Common Vectorizer usage": [[411, "common-vectorizer-usage"]], "Common estimator checks": [[399, "common-estimator-checks"]], "Common pitfalls and recommended practices": [[354, null]], "Common pitfalls and subtleties": [[354, "common-pitfalls-and-subtleties"]], "Common pitfalls in the interpretation of coefficients of linear models": [[183, null]], "Communication Team": [[0, "communication-team"]], "Compact text representation": [[234, "compact-text-representation"]], "Compare BIRCH and MiniBatchKMeans": [[77, null]], "Compare ROC and DET curves": [[260, "compare-roc-and-det-curves"]], "Compare Stochastic learning strategies for MLPClassifier": [[299, null]], "Compare cross decomposition methods": [[115, null]], "Compare different approaches to setting the regularization parameter": [[109, "compare-different-approaches-to-setting-the-regularization-parameter"]], "Compare probabilities": [[64, "compare-probabilities"]], "Compare the effect of different scalers on data with outliers": [[303, null]], "Compare times of SVR and Kernel Ridge Regression": [[238, "compare-times-of-svr-and-kernel-ridge-regression"]], "Compare with SVMs": [[159, "compare-with-svms"]], "Comparing Linear Bayesian Regressors": [[190, null]], "Comparing Nearest Neighbors with and without Neighborhood Components Analysis": [[291, null]], "Comparing QuantileRegressor and LinearRegression": [[208, "comparing-quantileregressor-and-linearregression"]], "Comparing Random Forests and Histogram Gradient Boosting models": [[140, null]], "Comparing Target Encoder with Other Encoders": [[309, null]], "Comparing anomaly detection algorithms for outlier detection on toy datasets": [[232, null]], "Comparing different clustering algorithms on toy datasets": [[79, null]], "Comparing different hierarchical linkage methods on toy datasets": [[95, null]], "Comparing random forests and the multi-output meta estimator": [[153, null]], "Comparing randomized search and grid search for hyperparameter estimation": [[271, null]], "Comparing the results": [[188, "comparing-the-results"]], "Comparing the two Lasso implementations on Dense data": [[195, "comparing-the-two-lasso-implementations-on-dense-data"]], "Comparing the two Lasso implementations on Sparse data": [[195, "comparing-the-two-lasso-implementations-on-sparse-data"]], "Comparing two models: Bayesian approach": [[263, "comparing-two-models-bayesian-approach"]], "Comparing two models: frequentist approach": [[263, "comparing-two-models-frequentist-approach"]], "Comparison between grid search and successive halving": [[274, null]], "Comparison of Calibration of Classifiers": [[65, null]], "Comparison of F-test and mutual information": [[158, null]], "Comparison of LDA and PCA 2D projection of Iris dataset": [[128, null]], "Comparison of LDA and QDA": [[71, "comparison-of-lda-and-qda"]], "Comparison of Manifold Learning methods": [[225, null]], "Comparison of kernel ridge and Gaussian process regression": [[167, null]], "Comparison of kernel ridge regression and SVR": [[238, null]], "Comparison of results": [[111, "comparison-of-results"]], "Comparison of the K-Means and MiniBatchKMeans clustering algorithms": [[97, null]], "Comparison with special purpose text vectorizers": [[348, "comparison-with-special-purpose-text-vectorizers"]], "Comparison with the regularization parameter of SVM": [[996, "comparison-with-the-regularization-parameter-of-svm"]], "Complement Naive Bayes": [[1002, "complement-naive-bayes"]], "ComplementNB": [[842, null]], "Complexity": [[1003, "complexity"], [1004, "complexity"], [1014, "complexity"], [1015, "complexity"], [1016, "complexity"]], "Complexity analysis": [[265, "complexity-analysis"]], "Composite estimators and parameter spaces": [[989, "composite-estimators-and-parameter-spaces"]], "CompoundKernel": [[611, null]], "Compression via vector quantization": [[86, "compression-via-vector-quantization"]], "Compressive sensing: tomography reconstruction with L1 prior (Lasso)": [[54, null]], "Computation methods": [[1007, "computation-methods"]], "Computation times": [[1021, null]], "Computational Performance": [[358, null]], "Compute Affinity Propagation": [[74, "compute-affinity-propagation"]], "Compute DBSCAN": [[82, "compute-dbscan"]], "Compute clustering": [[81, "compute-clustering"]], "Compute clustering with KMeans": [[97, "compute-clustering-with-kmeans"]], "Compute clustering with MeanShift": [[96, "compute-clustering-with-meanshift"]], "Compute clustering with MiniBatchKMeans": [[97, "compute-clustering-with-minibatchkmeans"]], "Compute clustering with connectivity constraints": [[100, "compute-clustering-with-connectivity-constraints"]], "Compute clustering without connectivity constraints": [[100, "compute-clustering-without-connectivity-constraints"]], "Compute paths": [[211, "compute-paths"]], "Compute regularization path": [[201, "compute-regularization-path"]], "Compute score and computation times": [[140, "compute-score-and-computation-times"]], "Compute the likelihood on test data": [[109, "compute-the-likelihood-on-test-data"]], "Computing Centrality scores": [[56, "computing-centrality-scores"]], "Computing Principal Singular Vector using Randomized SVD": [[56, "computing-principal-singular-vector-using-randomized-svd"]], "Computing cross-validated metrics": [[407, "computing-cross-validated-metrics"]], "Computing the Adjacency matrix": [[56, "computing-the-adjacency-matrix"]], "Computing with scikit-learn": [[357, null]], "Concatenating multiple feature extraction methods": [[106, null]], "Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture": [[248, null]], "Concluding remarks": [[44, "concluding-remarks"], [229, "concluding-remarks"]], "Conclusion": [[47, "conclusion"], [53, "conclusion"], [198, "conclusion"], [204, "conclusion"], [262, "conclusion"], [280, "conclusion"], [286, "conclusion"], [310, "conclusion"], [339, "conclusion"]], "Conclusions": [[194, "conclusions"]], "Configuration switches": [[359, "configuration-switches"]], "Configuring Scikit-learn for reduced validation overhead": [[358, "configuring-scikit-learn-for-reduced-validation-overhead"]], "Confusion matrix": [[256, null], [1000, "confusion-matrix"]], "ConfusionMatrixDisplay": [[697, null]], "Connectivity graph of an image": [[411, "connectivity-graph-of-an-image"]], "Consideration regarding model refitting and cross-validation": [[257, "consideration-regarding-model-refitting-and-cross-validation"]], "ConstantKernel": [[612, null]], "Construct the kernel-based regression models": [[238, "construct-the-kernel-based-regression-models"]], "Consuming Estimator": [[239, "consuming-estimator"]], "Consuming and routing Meta-Estimator": [[239, "consuming-and-routing-meta-estimator"]], "Contingency Matrix": [[403, "contingency-matrix"]], "Continuous Integration (CI)": [[371, "continuous-integration-ci"]], "Contributing": [[371, null], [383, "contributing"]], "Contributing code": [[371, "contributing-code"]], "Contributor Experience Team": [[0, "contributor-experience-team"]], "Contributors": [[386, "contributors"]], "Controlling randomness": [[354, "controlling-randomness"]], "Controlling the tree size": [[410, "controlling-the-tree-size"]], "Convergence of the AdaBoostClassifier": [[134, "convergence-of-the-adaboostclassifier"]], "ConvergenceWarning": [[568, null]], "Coordinate Descent with Gap Safe Screening Rules": [[996, "coordinate-descent-with-gap-safe-screening-rules"]], "Core Contributors": [[386, "core-contributors"]], "Cosine similarity": [[998, "cosine-similarity"]], "Cost-sensitive learning when gains and costs are not constant": [[257, "cost-sensitive-learning-when-gains-and-costs-are-not-constant"]], "Cost-sensitive learning with constant gains and costs": [[257, "cost-sensitive-learning-with-constant-gains-and-costs"]], "CountVectorizer": [[586, null]], "Covariance estimation": [[108, null], [180, "covariance-estimation"], [405, null]], "Coverage error": [[1000, "coverage-error"]], "Crafting a minimal reproducer for scikit-learn": [[376, null]], "Create ConfusionMatrixDisplay": [[233, "create-confusionmatrixdisplay"]], "Create PrecisionRecallDisplay": [[233, "create-precisionrecalldisplay"]], "Create RocCurveDisplay": [[233, "create-roccurvedisplay"]], "Create Synthetic Dataset": [[310, "create-synthetic-dataset"]], "Create a random 1D dataset": [[352, "create-a-random-1d-dataset"]], "Create a random dataset": [[352, "create-a-random-dataset"]], "Create multi-label data, fit, and predict": [[270, "create-multi-label-data-fit-and-predict"]], "Create the data": [[127, "create-the-data"]], "Create the pipeline": [[338, "create-the-pipeline"]], "Creating a custom scorer object": [[1000, "creating-a-custom-scorer-object"]], "Creating a dataset": [[339, "creating-a-dataset"]], "Creating a non-noisy data set": [[210, "creating-a-non-noisy-data-set"]], "Creating the dataset": [[134, "creating-the-dataset"]], "Creating transformers": [[102, "creating-transformers"]], "Cross decomposition": [[114, null], [180, "cross-decomposition"], [406, null]], "Cross validation and model selection": [[407, "cross-validation-and-model-selection"]], "Cross validation iterators": [[407, "cross-validation-iterators"]], "Cross validation of time series data": [[407, "cross-validation-of-time-series-data"]], "Cross-validation iterators for grouped data": [[407, "cross-validation-iterators-for-grouped-data"]], "Cross-validation iterators for i.i.d. data": [[407, "cross-validation-iterators-for-i-i-d-data"]], "Cross-validation iterators with stratification based on class labels": [[407, "cross-validation-iterators-with-stratification-based-on-class-labels"]], "Cross-validation of likelihood ratios": [[266, "cross-validation-of-likelihood-ratios"]], "Cross-validation: evaluating estimator performance": [[407, null]], "Curve Fitting with Bayesian Ridge Regression": [[191, null]], "Custom Inspection Points": [[184, "custom-inspection-points"]], "Custom Kernels": [[1015, "custom-kernels"]], "Custom imputation strategies for the SimpleImputer": [[320, "custom-imputation-strategies-for-the-simpleimputer"]], "Custom refit strategy of a grid search with cross-validation": [[261, null]], "Custom transformers": [[1010, "custom-transformers"]], "Custom validation set for histogram-based Gradient Boosting estimators": [[322, "custom-validation-set-for-histogram-based-gradient-boosting-estimators"]], "Customizing the vectorizer classes": [[411, "customizing-the-vectorizer-classes"]], "Cython Best Practices, Conventions and Knowledge": [[372, null]], "DBSCAN": [[403, "dbscan"], [440, null]], "DO NOT report your data unless it is extremely necessary": [[376, "do-not-report-your-data-unless-it-is-extremely-necessary"]], "Data": [[64, "data"]], "Data Loading and Feature Engineering": [[185, "data-loading-and-feature-engineering"]], "Data Loading and Preparation": [[204, "data-loading-and-preparation"]], "Data Preparation": [[144, "data-preparation"]], "Data Publica": [[1024, "id21"]], "Data and sample properties": [[385, "data-and-sample-properties"]], "Data exploration on the Bike Sharing Demand dataset": [[44, "data-exploration-on-the-bike-sharing-demand-dataset"]], "Data generation": [[71, "data-generation"], [82, "data-generation"], [90, "data-generation"], [150, "data-generation"], [162, "data-generation"], [173, "data-generation"], [253, "data-generation"], [324, "data-generation"], [342, "data-generation"]], "Data generation and model fitting": [[141, "data-generation-and-model-fitting"]], "Data leakage": [[354, "data-leakage"]], "Data leakage during pre-processing": [[354, "data-leakage-during-pre-processing"]], "Data loading": [[264, "data-loading"]], "Data preprocessing": [[147, "data-preprocessing"]], "Data: 2D projection of the iris dataset": [[67, "data-2d-projection-of-the-iris-dataset"]], "DataConversionWarning": [[569, null]], "DataDimensionalityWarning": [[570, null]], "DataFrame Support": [[1048, "dataframe-support"]], "DataRobot": [[1024, "id18"]], "Dataiku": [[1024, "id25"]], "Dataset": [[63, "dataset"], [198, "dataset"], [269, "dataset"]], "Dataset Generation": [[200, "dataset-generation"]], "Dataset Versions": [[365, "dataset-versions"]], "Dataset and Gaussian process generation": [[176, "dataset-and-gaussian-process-generation"]], "Dataset and model": [[270, "dataset-and-model"]], "Dataset based latent variables model": [[115, "dataset-based-latent-variables-model"]], "Dataset examples": [[117, null], [180, "dataset-examples"]], "Dataset generation": [[174, "dataset-generation"], [208, "dataset-generation"]], "Dataset loading utilities": [[364, null], [376, "dataset-loading-utilities"]], "Dataset preparation": [[120, "dataset-preparation"], [225, "dataset-preparation"], [228, "dataset-preparation"]], "Dataset preprocessing and model training": [[242, "dataset-preprocessing-and-model-training"]], "Dataset transformations": [[363, null]], "Datasets in svmlight / libsvm format": [[365, "datasets-in-svmlight-libsvm-format"]], "Davies-Bouldin Index": [[403, "davies-bouldin-index"]], "Dealing with multiclass target in classifiers": [[42, "module-sklearn.utils.multiclass"]], "Debian/Ubuntu": [[389, "debian-ubuntu"]], "Debugging CI issues": [[379, "debugging-ci-issues"]], "Debugging memory errors in Cython with valgrind": [[379, "debugging-memory-errors-in-cython-with-valgrind"]], "Decision Boundaries Visualization": [[200, "decision-boundaries-visualization"]], "Decision Boundaries of Multinomial and One-vs-Rest Logistic Regression": [[200, null]], "Decision Making Process": [[386, "decision-making-process"]], "Decision Surfaces of RBF Kernel SVM and Linear SVM": [[237, "decision-surfaces-of-rbf-kernel-svm-and-linear-svm"]], "Decision Tree Regression": [[352, null]], "Decision Tree Regression with AdaBoost": [[135, null]], "Decision Tree Regression with Multi-Output Targets": [[352, "decision-tree-regression-with-multi-output-targets"]], "Decision Tree on a 1D Regression Task": [[352, "decision-tree-on-a-1d-regression-task"]], "Decision Trees": [[180, "decision-trees"], [349, null], [1016, null]], "Decision boundary": [[286, "decision-boundary"]], "Decision boundary of semi-supervised classifiers versus SVM on the Iris dataset": [[329, null]], "Decision path": [[353, "decision-path"]], "DecisionBoundaryDisplay": [[630, null]], "DecisionTreeClassifier": [[913, null]], "DecisionTreeRegressor": [[914, null]], "Decoding text files": [[411, "decoding-text-files"]], "Decomposing signals in components (matrix factorization problems)": [[408, null]], "Decomposition": [[119, null], [120, "decomposition"], [180, "decomposition"]], "Decomposition: Dictionary learning": [[120, "decomposition-dictionary-learning"]], "Define a function to visualize cross-validation behavior": [[258, "define-a-function-to-visualize-cross-validation-behavior"]], "Define algorithms for the manifold learning": [[225, "define-algorithms-for-the-manifold-learning"]], "Define our evaluation benchmark": [[91, "define-our-evaluation-benchmark"]], "Define our grid-search strategy": [[261, "define-our-grid-search-strategy"]], "Define preprocessing functions": [[348, "define-preprocessing-functions"]], "Define structure of the data": [[81, "define-structure-of-the-data"]], "Define the classifiers": [[260, "define-the-classifiers"]], "Defining the list of metrics to evaluate": [[73, "defining-the-list-of-metrics-to-evaluate"]], "Demo of DBSCAN clustering algorithm": [[82, null]], "Demo of HDBSCAN clustering algorithm": [[88, null]], "Demo of OPTICS clustering algorithm": [[98, null]], "Demo of affinity propagation clustering algorithm": [[74, null]], "Demonstrating the different strategies of KBinsDiscretizer": [[306, null]], "Demonstration of k-means assumptions": [[90, null]], "Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV": [[267, null]], "Density Estimation": [[409, null]], "Density Estimation for a Gaussian mixture": [[252, null]], "Density Estimation: Histograms": [[409, "density-estimation-histograms"]], "Density estimation, novelty detection": [[1015, "density-estimation-novelty-detection"]], "DensityMixin": [[422, null]], "Deprecation": [[371, "deprecation"]], "Deprecation / Default Value Change": [[239, "deprecation-default-value-change"]], "Deprecations: using FutureWarning from now on": [[1041, "deprecations-using-futurewarning-from-now-on"]], "Description of the simulated data": [[182, "description-of-the-simulated-data"]], "Design the proper kernel": [[172, "design-the-proper-kernel"]], "DetCurveDisplay": [[698, null]], "Detection error tradeoff (DET)": [[1000, "detection-error-tradeoff-det"]], "Detection error tradeoff (DET) curve": [[260, null]], "Developer API for HTML representation": [[373, "developer-api-for-html-representation"]], "Developer API for check_is_fitted": [[373, "developer-api-for-check-is-fitted"]], "Developer API for set_output": [[373, "developer-api-for-set-output"]], "Developers\u2019 Tips and Tricks": [[379, null]], "Developer\u2019s Guide": [[374, null]], "Developing Estimators": [[131, null], [180, "developing-estimators"]], "Developing scikit-learn estimators": [[373, null]], "Developing with the Plotting API": [[378, null]], "Diabetes dataset": [[368, "diabetes-dataset"]], "DictVectorizer": [[348, "dictvectorizer"], [579, null]], "Dictionary Learning": [[408, "dictionary-learning"]], "Dictionary learning": [[120, "dictionary-learning"]], "Dictionary learning - positive code": [[120, "dictionary-learning-positive-code"]], "Dictionary learning - positive dictionary": [[120, "dictionary-learning-positive-dictionary"]], "Dictionary learning - positive dictionary & code": [[120, "dictionary-learning-positive-dictionary-code"]], "DictionaryLearning": [[528, null]], "Differences between solvers": [[996, "differences-between-solvers"]], "Different label assignment strategies": [[403, "different-label-assignment-strategies"]], "Different linkage type: Ward, complete, average, and single linkage": [[403, "different-linkage-type-ward-complete-average-and-single-linkage"]], "Different objects": [[373, "different-objects"]], "Different scenario and useful concepts": [[996, "different-scenario-and-useful-concepts"]], "Different scoring and fitting weights": [[394, "different-scoring-and-fitting-weights"]], "Digits dataset": [[69, "digits-dataset"]], "Dimensionality Reduction with Neighborhood Components Analysis": [[292, null]], "Dimensionality reduction": [[1003, "dimensionality-reduction"]], "Dimensionality reduction using Linear Discriminant Analysis": [[994, "dimensionality-reduction-using-linear-discriminant-analysis"]], "Discovering scikit-learn objects": [[42, "module-sklearn.utils.discovery"]], "Discretization": [[1010, "discretization"]], "Dispatching": [[381, null]], "Display Objects": [[1028, "display-objects"]], "Display code coverage in pull requests": [[379, "display-code-coverage-in-pull-requests"]], "Display results": [[211, "display-results"]], "Display the distorted image": [[123, "display-the-distorted-image"]], "Displaying Pipelines": [[244, null]], "Displaying a Complex Pipeline Chaining a Column Transformer": [[244, "displaying-a-complex-pipeline-chaining-a-column-transformer"]], "Displaying a Grid Search over a Pipeline with a Classifier": [[244, "displaying-a-grid-search-over-a-pipeline-with-a-classifier"]], "Displaying a Pipeline Chaining Multiple Preprocessing Steps & Classifier": [[244, "displaying-a-pipeline-chaining-multiple-preprocessing-steps-classifier"]], "Displaying a Pipeline and Dimensionality Reduction and Classifier": [[244, "displaying-a-pipeline-and-dimensionality-reduction-and-classifier"]], "Displaying a Pipeline with a Preprocessing Step and Classifier": [[244, "displaying-a-pipeline-with-a-preprocessing-step-and-classifier"]], "Displaying estimators and complex pipelines": [[234, null]], "Distance metrics": [[28, "distance-metrics"]], "DistanceMetric": [[699, null]], "Do you plan to implement transform for target y in a pipeline?": [[383, "do-you-plan-to-implement-transform-for-target-y-in-a-pipeline"]], "Do you support PyPy?": [[383, "do-you-support-pypy"]], "Documentation": [[371, "documentation"], [1031, "documentation"]], "Documentation Resources": [[1023, "documentation-resources"]], "Documentation Team": [[0, "documentation-team"]], "Documentation improvements": [[1034, "documentation-improvements"], [1035, "documentation-improvements"]], "Does scikit-learn work natively with various types of dataframes?": [[383, "does-scikit-learn-work-natively-with-various-types-of-dataframes"]], "Domain specific packages": [[1019, "domain-specific-packages"]], "Donating to the project": [[0, "donating-to-the-project"]], "Donations in Kind": [[0, "donations-in-kind"]], "Dot-Product kernel": [[413, "dot-product-kernel"]], "Dot-product kernel": [[176, "dot-product-kernel"]], "DotProduct": [[613, null]], "Download any dataset from the web": [[321, "download-any-dataset-from-the-web"]], "Download data, if not already on disk": [[56, "download-data-if-not-already-on-disk"]], "Download the data and make missing values sets": [[179, "download-the-data-and-make-missing-values-sets"]], "Download the dataset": [[154, "download-the-dataset"]], "Downloading datasets from the openml.org repository": [[365, "downloading-datasets-from-the-openml-org-repository"]], "Drawbacks:": [[403, null], [403, null], [403, null], [403, null], [403, null], [403, null], [403, null], [403, null]], "Dropping official support for PyPy": [[1050, "dropping-official-support-for-pypy"]], "Dropping support for building with setuptools": [[1050, "dropping-support-for-building-with-setuptools"]], "Dummy estimators": [[1000, "dummy-estimators"]], "DummyClassifier": [[548, null]], "DummyRegressor": [[549, null]], "D\u00b2 score": [[1000, "d2-score"]], "D\u00b2 score for classification": [[1000, "d2-score-for-classification"]], "Earlier versions": [[1031, "earlier-versions"]], "Early stopping in Gradient Boosting": [[144, null]], "Early stopping of Stochastic Gradient Descent": [[213, null]], "Effect of model regularization on training and test error": [[276, null]], "Effect of number of trees and early stopping": [[149, "effect-of-number-of-trees-and-early-stopping"]], "Effect of rescaling on a PCA dimensional reduction": [[308, "effect-of-rescaling-on-a-pca-dimensional-reduction"]], "Effect of rescaling on a k-neighbors models": [[308, "effect-of-rescaling-on-a-k-neighbors-models"]], "Effect of rescaling on model\u2019s performance": [[308, "effect-of-rescaling-on-model-s-performance"]], "Effect of transforming the targets in regression model": [[107, null]], "Effect of varying threshold for self-training": [[327, null]], "EfficiencyWarning": [[571, null]], "Efficient Linear Algebra & Array Operations": [[380, "efficient-linear-algebra-array-operations"]], "Efficient Random Sampling": [[380, "efficient-random-sampling"]], "Efficient Routines for Sparse Matrices": [[380, "efficient-routines-for-sparse-matrices"]], "Eigenfaces - PCA using randomized SVD": [[120, "eigenfaces-pca-using-randomized-svd"]], "Elastic-Net": [[996, "elastic-net"]], "ElasticNet": [[194, "elasticnet"], [645, null]], "ElasticNetCV": [[646, null]], "EllipticEnvelope": [[465, null]], "Embedding in 2D space": [[52, "embedding-in-2d-space"]], "Embedding techniques comparison": [[226, "embedding-techniques-comparison"]], "Emeritus Communication Team": [[0, "emeritus-communication-team"]], "Emeritus Contributor Experience Team": [[0, "emeritus-contributor-experience-team"]], "Emeritus Core Contributors": [[0, "emeritus-core-contributors"]], "Emeritus Maintainers Team": [[0, "emeritus-maintainers-team"]], "Empirical covariance": [[405, "empirical-covariance"]], "Empirical evaluation of the impact of k-means initialization": [[94, null]], "Empirical validation": [[236, "empirical-validation"]], "EmpiricalCovariance": [[466, null]], "Encoding categorical features": [[1010, "encoding-categorical-features"]], "Encoding strategy": [[86, "encoding-strategy"]], "Enforcing keyword-only arguments": [[1042, "enforcing-keyword-only-arguments"], [1044, "enforcing-keyword-only-arguments"]], "Enhancement proposals (SLEPs)": [[386, "enhancement-proposals-sleps"]], "Enhancements": [[1034, "enhancements"], [1035, "enhancements"], [1036, "enhancements"], [1037, "enhancements"], [1037, "id4"], [1038, "enhancements"], [1038, "id3"]], "Enriched estimator displays": [[319, "enriched-estimator-displays"]], "Ensemble methods": [[133, null], [180, "ensemble-methods"]], "Ensembles: Gradient boosting, random forests, bagging, voting, stacking": [[410, null]], "Environment variables": [[359, "environment-variables"]], "Error Calculation": [[144, "error-calculation"]], "Error caused by file path length limit on Windows": [[389, "error-caused-by-file-path-length-limit-on-windows"]], "Errors and weights of the Weak Learners": [[134, "errors-and-weights-of-the-weak-learners"]], "Establishing a baseline model": [[188, "establishing-a-baseline-model"]], "Establishing parity between clusters": [[97, "establishing-parity-between-clusters"]], "Establishing the kernel approximation model": [[188, "establishing-the-kernel-approximation-model"]], "Establishing the kernelized SVM model": [[188, "establishing-the-kernelized-svm-model"]], "Estimate the covariance": [[113, "estimate-the-covariance"]], "Estimate the score": [[179, "estimate-the-score"]], "Estimated Attributes": [[373, "estimated-attributes"]], "Estimation algorithms": [[994, "estimation-algorithms"]], "Estimator Tags": [[373, "estimator-tags"]], "Estimator types": [[373, "estimator-types"]], "EstimatorCheckFailedWarning": [[572, null]], "Estimators": [[354, "estimators"], [354, "id2"], [373, "estimators"], [399, "estimators"], [399, "id2"]], "Estimators that handle NaN values": [[990, "estimators-that-handle-nan-values"]], "Evaluate the impact of the regularization parameter": [[276, "evaluate-the-impact-of-the-regularization-parameter"]], "Evaluation": [[112, "evaluation"], [301, "evaluation"]], "Evaluation metrics": [[257, "evaluation-metrics"]], "Evaluation of outlier detection estimators": [[242, null]], "Evaluation of the calibration of predictions": [[206, "evaluation-of-the-calibration-of-predictions"]], "Evaluation of the ranking power": [[206, "evaluation-of-the-ranking-power"]], "Evernote": [[1024, "id6"]], "Exact Kernel PCA": [[408, "exact-kernel-pca"]], "Exact PCA and probabilistic interpretation": [[408, "exact-pca-and-probabilistic-interpretation"]], "Example usage": [[399, "example-usage"]], "Example with noise-free target": [[174, "example-with-noise-free-target"]], "Example with noisy targets": [[174, "example-with-noisy-targets"]], "Examples": [[180, null], [360, "examples"], [402, "examples"], [1031, "examples"]], "Examples based on real world datasets": [[43, null], [180, "examples-based-on-real-world-datasets"]], "Examples of Using FrozenEstimator": [[165, null]], "Exhaustive Grid Search": [[989, "exhaustive-grid-search"]], "Exp-Sine-Squared kernel": [[176, "exp-sine-squared-kernel"], [413, "exp-sine-squared-kernel"]], "ExpSineSquared": [[614, null]], "Experimental / Under Development": [[1047, "experimental-under-development"]], "Experimental Array API support in LinearDiscriminantAnalysis": [[317, "experimental-array-api-support-in-lineardiscriminantanalysis"]], "Experimental Features": [[375, "experimental-features"]], "Explained variance score": [[1000, "explained-variance-score"]], "Explicit feature map approximation for RBF kernels": [[237, null]], "Exponentiation": [[615, null]], "Exporting": [[41, "exporting"]], "External Resources, Videos and Talks": [[1018, null]], "External Tutorials": [[1018, "external-tutorials"]], "External dependencies": [[1031, "external-dependencies"]], "ExtraTreeClassifier": [[915, null]], "ExtraTreeRegressor": [[916, null]], "ExtraTreesClassifier": [[554, null]], "ExtraTreesRegressor": [[555, null]], "Extract noisy patches and reconstruct them using the dictionary": [[123, "extract-noisy-patches-and-reconstruct-them-using-the-dictionary"]], "Extract reference patches": [[123, "extract-reference-patches"]], "Extracting features": [[360, "extracting-features"]], "Extremely Randomized Trees": [[410, "extremely-randomized-trees"]], "Face completion with a multi-output estimators": [[241, null]], "Faces dataset decompositions": [[120, null]], "Faces recognition example using eigenfaces and SVMs": [[46, null]], "Factor Analysis": [[408, "factor-analysis"]], "Factor Analysis (with rotation) to visualize patterns": [[130, null]], "Factor Analysis components - FA": [[120, "factor-analysis-components-fa"]], "FactorAnalysis": [[529, null]], "Failure of Machine Learning to infer causal effects": [[182, null]], "FastICA": [[530, null]], "FastICA on 2D point clouds": [[122, null]], "Faster parser in fetch_openml": [[317, "faster-parser-in-fetch-openml"]], "Feature Extraction Latency": [[358, "feature-extraction-latency"]], "Feature Extraction using TfidfVectorizer": [[347, "feature-extraction-using-tfidfvectorizer"]], "Feature Names Support": [[315, "feature-names-support"]], "Feature Selection": [[157, null], [180, "feature-selection"]], "Feature agglomeration": [[84, null], [1017, "feature-agglomeration"]], "Feature agglomeration vs. univariate selection": [[87, null]], "Feature binarization": [[1010, "feature-binarization"]], "Feature discretization": [[305, null]], "Feature extraction": [[411, null]], "Feature hashing": [[411, "feature-hashing"]], "Feature importance based on feature permutation": [[141, "feature-importance-based-on-feature-permutation"]], "Feature importance based on mean decrease in impurity": [[141, "feature-importance-based-on-mean-decrease-in-impurity"]], "Feature importance evaluation": [[410, "feature-importance-evaluation"]], "Feature importance from coefficients": [[163, "feature-importance-from-coefficients"]], "Feature importances with a forest of trees": [[141, null]], "Feature normalization": [[188, "feature-normalization"]], "Feature scaling": [[1017, null]], "Feature selection": [[412, null]], "Feature selection as part of a pipeline": [[412, "feature-selection-as-part-of-a-pipeline"]], "Feature selection using SelectFromModel": [[412, "feature-selection-using-selectfrommodel"]], "Feature selection with sparse data": [[412, null]], "Feature transformations with ensembles of trees": [[139, null]], "FeatureAgglomeration": [[403, null], [441, null]], "FeatureHasher": [[348, "featurehasher"], [580, null]], "FeatureHasher and DictVectorizer Comparison": [[348, null]], "FeatureUnion": [[864, null]], "FeatureUnion: composite feature spaces": [[404, "featureunion-composite-feature-spaces"]], "Features in Histogram Gradient Boosting Trees": [[149, null]], "Fedora": [[389, "fedora"]], "Final conclusion": [[167, "final-conclusion"]], "Final remarks": [[90, "final-remarks"]], "Finding the Nearest Neighbors": [[1003, "finding-the-nearest-neighbors"]], "First example": [[49, "first-example"]], "First experiment: fixed ground truth labels and growing number of clusters": [[73, "first-experiment-fixed-ground-truth-labels-and-growing-number-of-clusters"]], "Fit ICA and PCA models": [[121, "fit-ica-and-pca-models"]], "Fit by cubic polynomial": [[191, "fit-by-cubic-polynomial"]], "Fit models": [[202, "fit-models"], [282, "fit-models"]], "Fit models and plot results": [[90, "fit-models-and-plot-results"]], "Fit regression model": [[147, "fit-regression-model"], [295, "fit-regression-model"], [341, "fit-regression-model"], [352, "fit-regression-model"], [352, "id1"]], "Fit the model for outlier detection (default)": [[290, "fit-the-model-for-outlier-detection-default"]], "Fit the models": [[127, "fit-the-models"]], "Fit the regressors": [[190, "fit-the-regressors"], [190, "id2"]], "FitFailedWarning": [[573, null]], "Fitting": [[373, "fitting"]], "Fitting SpectralBiclustering": [[59, "fitting-spectralbiclustering"]], "Fitting a QuantileRegressor": [[208, "fitting-a-quantileregressor"]], "Fitting additional trees": [[410, "fitting-additional-trees"]], "Fitting additional weak-learners": [[410, "fitting-additional-weak-learners"]], "Fitting an Elastic Net with a precomputed Gram Matrix and Weighted Samples": [[192, null]], "Fitting an elliptic envelope": [[1006, "fitting-an-elliptic-envelope"]], "Fitting and calibration": [[64, "fitting-and-calibration"]], "Fitting and predicting: estimator basics": [[384, "fitting-and-predicting-estimator-basics"]], "Fitting non-linear quantile and least squares regressors": [[146, "fitting-non-linear-quantile-and-least-squares-regressors"]], "Fixed models": [[1044, "fixed-models"]], "FixedThresholdClassifier": [[800, null]], "FixedThresholdClassifier: Setting the decision threshold of a binary classifier": [[320, "fixedthresholdclassifier-setting-the-decision-threshold-of-a-binary-classifier"]], "Fixes": [[1031, "fixes"]], "Flexibility of IterativeImputer": [[990, "flexibility-of-iterativeimputer"]], "Folding and unfolding outdated diffs on pull requests": [[379, "folding-and-unfolding-outdated-diffs-on-pull-requests"]], "Forecasting of CO2 level on Mona Loa dataset using Gaussian process regression (GPR)": [[172, null]], "Forest covertypes": [[366, "forest-covertypes"]], "Forest covertypes dataset": [[242, "forest-covertypes-dataset"]], "Fowlkes-Mallows scores": [[403, "fowlkes-mallows-scores"]], "Free-threaded CPython 3.13 support": [[321, "free-threaded-cpython-3-13-support"], [1050, "free-threaded-cpython-3-13-support"]], "FreeBSD": [[369, "freebsd"]], "Frequency model \u2013 Poisson distribution": [[223, "frequency-model-poisson-distribution"]], "Frequently Asked Questions": [[383, null]], "From binary to multiclass and multilabel": [[1000, "from-binary-to-multiclass-and-multilabel"]], "From images": [[17, "module-sklearn.feature_extraction.image"]], "From text": [[17, "module-sklearn.feature_extraction.text"]], "Frozen Estimators": [[164, null], [180, "frozen-estimators"]], "FrozenEstimator": [[608, null]], "FrozenEstimator: Freezing an estimator": [[321, "frozenestimator-freezing-an-estimator"]], "Fruitful discussions": [[370, null]], "FunctionTransformer": [[869, null]], "Funding": [[0, "funding"]], "GMM Initialization Methods": [[251, null]], "GMM covariances": [[250, null]], "GPC examples": [[413, "gpc-examples"]], "Gallery examples": [[417, "gallery-examples"], [420, "gallery-examples"], [423, "gallery-examples"], [426, "gallery-examples"], [427, "gallery-examples"], [433, "gallery-examples"], [434, "gallery-examples"], [436, "gallery-examples"], [437, "gallery-examples"], [438, "gallery-examples"], [439, "gallery-examples"], [440, "gallery-examples"], [441, "gallery-examples"], [442, "gallery-examples"], [443, "gallery-examples"], [444, "gallery-examples"], [445, "gallery-examples"], [446, "gallery-examples"], [447, "gallery-examples"], [448, "gallery-examples"], [449, "gallery-examples"], [450, "gallery-examples"], [451, "gallery-examples"], [454, "gallery-examples"], [456, "gallery-examples"], [458, "gallery-examples"], [460, "gallery-examples"], [461, "gallery-examples"], [462, "gallery-examples"], [463, "gallery-examples"], [464, "gallery-examples"], [465, "gallery-examples"], [466, "gallery-examples"], [468, "gallery-examples"], [469, "gallery-examples"], [470, "gallery-examples"], [471, "gallery-examples"], [472, "gallery-examples"], [473, "gallery-examples"], [475, "gallery-examples"], [478, "gallery-examples"], [479, "gallery-examples"], [480, "gallery-examples"], [484, "gallery-examples"], [485, "gallery-examples"], [486, "gallery-examples"], [487, "gallery-examples"], [488, "gallery-examples"], [489, "gallery-examples"], [491, "gallery-examples"], [492, "gallery-examples"], [493, "gallery-examples"], [495, "gallery-examples"], [496, "gallery-examples"], [497, "gallery-examples"], [498, "gallery-examples"], [499, "gallery-examples"], [501, "gallery-examples"], [507, "gallery-examples"], [508, "gallery-examples"], [509, "gallery-examples"], [510, "gallery-examples"], [511, "gallery-examples"], [512, "gallery-examples"], [516, "gallery-examples"], [517, "gallery-examples"], [518, "gallery-examples"], [519, "gallery-examples"], [520, "gallery-examples"], [521, "gallery-examples"], [522, "gallery-examples"], [523, "gallery-examples"], [524, "gallery-examples"], [527, "gallery-examples"], [529, "gallery-examples"], [530, "gallery-examples"], [531, "gallery-examples"], [532, "gallery-examples"], [533, "gallery-examples"], [534, "gallery-examples"], [535, "gallery-examples"], [536, "gallery-examples"], [537, "gallery-examples"], [538, "gallery-examples"], [539, "gallery-examples"], [540, "gallery-examples"], [541, "gallery-examples"], [546, "gallery-examples"], [547, "gallery-examples"], [548, "gallery-examples"], [549, "gallery-examples"], [550, "gallery-examples"], [551, "gallery-examples"], [553, "gallery-examples"], [554, "gallery-examples"], [555, "gallery-examples"], [556, "gallery-examples"], [557, "gallery-examples"], [558, "gallery-examples"], [559, "gallery-examples"], [560, "gallery-examples"], [561, "gallery-examples"], [562, "gallery-examples"], [563, "gallery-examples"], [564, "gallery-examples"], [565, "gallery-examples"], [566, "gallery-examples"], [567, "gallery-examples"], [579, "gallery-examples"], [580, "gallery-examples"], [582, "gallery-examples"], [585, "gallery-examples"], [586, "gallery-examples"], [587, "gallery-examples"], [588, "gallery-examples"], [589, "gallery-examples"], [591, "gallery-examples"], [592, "gallery-examples"], [595, "gallery-examples"], [597, "gallery-examples"], [598, "gallery-examples"], [600, "gallery-examples"], [602, "gallery-examples"], [603, "gallery-examples"], [604, "gallery-examples"], [605, "gallery-examples"], [606, "gallery-examples"], [608, "gallery-examples"], [609, "gallery-examples"], [610, "gallery-examples"], [612, "gallery-examples"], [613, "gallery-examples"], [614, "gallery-examples"], [616, "gallery-examples"], [617, "gallery-examples"], [618, "gallery-examples"], [621, "gallery-examples"], [622, "gallery-examples"], [624, "gallery-examples"], [626, "gallery-examples"], [627, "gallery-examples"], [629, "gallery-examples"], [630, "gallery-examples"], [631, "gallery-examples"], [632, "gallery-examples"], [633, "gallery-examples"], [634, "gallery-examples"], [638, "gallery-examples"], [639, "gallery-examples"], [640, "gallery-examples"], [642, "gallery-examples"], [643, "gallery-examples"], [644, "gallery-examples"], [645, "gallery-examples"], [646, "gallery-examples"], [647, "gallery-examples"], [648, "gallery-examples"], [651, "gallery-examples"], [652, "gallery-examples"], [654, "gallery-examples"], [655, "gallery-examples"], [656, "gallery-examples"], [657, "gallery-examples"], [658, "gallery-examples"], [661, "gallery-examples"], [663, "gallery-examples"], [664, "gallery-examples"], [667, "gallery-examples"], [668, "gallery-examples"], [669, "gallery-examples"], [670, "gallery-examples"], [671, "gallery-examples"], [672, "gallery-examples"], [673, "gallery-examples"], [675, "gallery-examples"], [676, "gallery-examples"], [677, "gallery-examples"], [678, "gallery-examples"], [679, "gallery-examples"], [680, "gallery-examples"], [681, "gallery-examples"], [683, "gallery-examples"], [687, "gallery-examples"], [688, "gallery-examples"], [689, "gallery-examples"], [690, "gallery-examples"], [691, "gallery-examples"], [692, "gallery-examples"], [693, "gallery-examples"], [697, "gallery-examples"], [698, "gallery-examples"], [700, "gallery-examples"], [701, "gallery-examples"], [702, "gallery-examples"], [703, "gallery-examples"], [704, "gallery-examples"], [705, "gallery-examples"], [706, "gallery-examples"], [707, "gallery-examples"], [709, "gallery-examples"], [712, "gallery-examples"], [713, "gallery-examples"], [717, "gallery-examples"], [718, "gallery-examples"], [719, "gallery-examples"], [728, "gallery-examples"], [730, "gallery-examples"], [733, "gallery-examples"], [735, "gallery-examples"], [736, "gallery-examples"], [738, "gallery-examples"], [739, "gallery-examples"], [742, "gallery-examples"], [743, "gallery-examples"], [746, "gallery-examples"], [747, "gallery-examples"], [749, "gallery-examples"], [750, "gallery-examples"], [751, "gallery-examples"], [753, "gallery-examples"], [754, "gallery-examples"], [756, "gallery-examples"], [758, "gallery-examples"], [762, "gallery-examples"], [779, "gallery-examples"], [780, "gallery-examples"], [783, "gallery-examples"], [785, "gallery-examples"], [786, "gallery-examples"], [787, "gallery-examples"], [788, "gallery-examples"], [789, "gallery-examples"], [790, "gallery-examples"], [791, "gallery-examples"], [793, "gallery-examples"], [794, "gallery-examples"], [796, "gallery-examples"], [798, "gallery-examples"], [799, "gallery-examples"], [800, "gallery-examples"], [801, "gallery-examples"], [802, "gallery-examples"], [803, "gallery-examples"], [804, "gallery-examples"], [805, "gallery-examples"], [806, "gallery-examples"], [807, "gallery-examples"], [815, "gallery-examples"], [816, "gallery-examples"], [817, "gallery-examples"], [818, "gallery-examples"], [819, "gallery-examples"], [820, "gallery-examples"], [821, "gallery-examples"], [822, "gallery-examples"], [823, "gallery-examples"], [824, "gallery-examples"], [826, "gallery-examples"], [827, "gallery-examples"], [828, "gallery-examples"], [829, "gallery-examples"], [830, "gallery-examples"], [831, "gallery-examples"], [832, "gallery-examples"], [833, "gallery-examples"], [834, "gallery-examples"], [835, "gallery-examples"], [836, "gallery-examples"], [838, "gallery-examples"], [840, "gallery-examples"], [842, "gallery-examples"], [843, "gallery-examples"], [844, "gallery-examples"], [847, "gallery-examples"], [848, "gallery-examples"], [849, "gallery-examples"], [850, "gallery-examples"], [851, "gallery-examples"], [852, "gallery-examples"], [853, "gallery-examples"], [854, "gallery-examples"], [858, "gallery-examples"], [861, "gallery-examples"], [862, "gallery-examples"], [863, "gallery-examples"], [864, "gallery-examples"], [865, "gallery-examples"], [866, "gallery-examples"], [869, "gallery-examples"], [870, "gallery-examples"], [872, "gallery-examples"], [874, "gallery-examples"], [875, "gallery-examples"], [877, "gallery-examples"], [878, "gallery-examples"], [879, "gallery-examples"], [880, "gallery-examples"], [881, "gallery-examples"], [882, "gallery-examples"], [883, "gallery-examples"], [884, "gallery-examples"], [885, "gallery-examples"], [886, "gallery-examples"], [889, "gallery-examples"], [891, "gallery-examples"], [894, "gallery-examples"], [898, "gallery-examples"], [899, "gallery-examples"], [901, "gallery-examples"], [902, "gallery-examples"], [903, "gallery-examples"], [905, "gallery-examples"], [908, "gallery-examples"], [909, "gallery-examples"], [910, "gallery-examples"], [911, "gallery-examples"], [912, "gallery-examples"], [913, "gallery-examples"], [914, "gallery-examples"], [919, "gallery-examples"], [920, "gallery-examples"], [924, "gallery-examples"], [932, "gallery-examples"], [934, "gallery-examples"], [942, "gallery-examples"], [944, "gallery-examples"], [946, "gallery-examples"], [953, "gallery-examples"], [958, "gallery-examples"], [959, "gallery-examples"], [960, "gallery-examples"], [961, "gallery-examples"], [962, "gallery-examples"], [973, "gallery-examples"], [983, "gallery-examples"], [988, "gallery-examples"]], "Gamma loss for gradient boosting": [[318, "gamma-loss-for-gradient-boosting"]], "GammaRegressor": [[647, null]], "Gaussian Mixture": [[999, "gaussian-mixture"]], "Gaussian Mixture Model Ellipsoids": [[249, null]], "Gaussian Mixture Model Selection": [[253, null]], "Gaussian Mixture Model Sine Curve": [[254, null]], "Gaussian Mixture Models": [[180, "gaussian-mixture-models"], [247, null]], "Gaussian Naive Bayes": [[63, "gaussian-naive-bayes"], [1002, "gaussian-naive-bayes"]], "Gaussian Naive-Bayes": [[62, "gaussian-naive-bayes"]], "Gaussian Process Classification (GPC)": [[413, "gaussian-process-classification-gpc"]], "Gaussian Process Regression (GPR)": [[413, "gaussian-process-regression-gpr"]], "Gaussian Process for Machine Learning": [[166, null], [180, "gaussian-process-for-machine-learning"]], "Gaussian Processes": [[413, null]], "Gaussian Processes regression: basic introductory example": [[174, null]], "Gaussian mixture models": [[999, null]], "Gaussian process classification (GPC) on iris dataset": [[169, null], [413, "gaussian-process-classification-gpc-on-iris-dataset"]], "Gaussian process regression": [[167, "gaussian-process-regression"]], "Gaussian processes on discrete data structures": [[175, null]], "Gaussian random projection": [[1012, "gaussian-random-projection"]], "GaussianMixture": [[799, null]], "GaussianNB": [[843, null]], "GaussianProcessClassifier": [[609, null]], "GaussianProcessRegressor": [[610, null]], "GaussianRandomProjection": [[897, null]], "General Concepts": [[385, "general-concepts"]], "General recommendations": [[354, "general-recommendations"]], "Generalized Linear Models": [[180, "generalized-linear-models"], [189, null], [996, "generalized-linear-models"]], "Generalized Linear Models, and Poisson loss for gradient boosting": [[313, "generalized-linear-models-and-poisson-loss-for-gradient-boosting"]], "Generalized linear models (GLM) for regression": [[26, "generalized-linear-models-glm-for-regression"]], "Generate 2D spiral dataset.": [[100, "generate-2d-spiral-dataset"]], "Generate data": [[81, "generate-data"], [111, "generate-data"], [202, "generate-data"], [301, "generate-data"]], "Generate data with outliers": [[290, "generate-data-with-outliers"]], "Generate distorted image": [[123, "generate-distorted-image"]], "Generate sample data": [[59, "generate-sample-data"], [74, "generate-sample-data"], [88, "generate-sample-data"], [96, "generate-sample-data"], [109, "generate-sample-data"], [121, "generate-sample-data"], [122, "generate-sample-data"], [159, "generate-sample-data"], [238, "generate-sample-data"], [276, "generate-sample-data"], [295, "generate-sample-data"], [341, "generate-sample-data"]], "Generate sinusoidal data with noise": [[191, "generate-sinusoidal-data-with-noise"]], "Generate synthetic data": [[260, "generate-synthetic-data"]], "Generate synthetic dataset": [[62, "generate-synthetic-dataset"], [190, "generate-synthetic-dataset"], [190, "id1"], [194, "generate-synthetic-dataset"]], "Generate the Swiss Roll dataset.": [[100, "generate-the-swiss-roll-dataset"]], "Generate the data": [[97, "generate-the-data"], [99, "generate-the-data"], [113, "generate-the-data"]], "Generated datasets": [[367, null]], "Generated documentation on GitHub Actions": [[371, "generated-documentation-on-github-actions"]], "Generating Polars-engineered lagged features": [[53, "generating-polars-engineered-lagged-features"]], "Generating a dataset": [[167, "generating-a-dataset"]], "Generating polynomial features": [[1010, "generating-polynomial-features"]], "Generators for classification and clustering": [[367, "generators-for-classification-and-clustering"]], "Generators for decomposition": [[367, "generators-for-decomposition"]], "Generators for manifold learning": [[367, "generators-for-manifold-learning"]], "Generators for regression": [[367, "generators-for-regression"]], "Generic dictionary learning": [[408, "generic-dictionary-learning"]], "GenericUnivariateSelect": [[590, null]], "Getting Started": [[384, null]], "Getting reproducible results across multiple executions": [[354, "getting-reproducible-results-across-multiple-executions"]], "Gitter": [[1023, "gitter"]], "Glossary of Common Terms and API Elements": [[385, null]], "Good practices": [[376, "good-practices"]], "Governance": [[0, "governance"]], "Governance Model Changes": [[386, "governance-model-changes"]], "Gradient Boosting": [[44, "gradient-boosting"]], "Gradient Boosting Out-of-Bag estimates": [[145, null]], "Gradient Boosting Regression Trees for Poisson regression": [[206, "gradient-boosting-regression-trees-for-poisson-regression"]], "Gradient Boosting regression": [[147, null]], "Gradient Boosting regularization": [[148, null]], "Gradient boosting": [[184, "gradient-boosting"]], "Gradient boosting estimator with dropped categorical features": [[143, "gradient-boosting-estimator-with-dropped-categorical-features"]], "Gradient boosting estimator with native categorical support": [[143, "gradient-boosting-estimator-with-native-categorical-support"]], "Gradient boosting estimator with one-hot encoding": [[143, "gradient-boosting-estimator-with-one-hot-encoding"]], "Gradient boosting estimator with ordinal encoding": [[143, "gradient-boosting-estimator-with-ordinal-encoding"]], "Gradient boosting estimator with target encoding": [[143, "gradient-boosting-estimator-with-target-encoding"]], "Gradient-boosted trees": [[410, "gradient-boosted-trees"]], "GradientBoostingClassifier": [[556, null]], "GradientBoostingClassifier and GradientBoostingRegressor": [[410, "gradientboostingclassifier-and-gradientboostingregressor"]], "GradientBoostingClassifier vs HistGradientBoostingClassifier": [[410, null]], "GradientBoostingRegressor": [[557, null]], "Graph Routines": [[380, "graph-routines"]], "Graphical model and parametrization": [[1005, "graphical-model-and-parametrization"]], "GraphicalLasso": [[467, null]], "GraphicalLassoCV": [[468, null]], "GridSearchCV": [[801, null]], "Group K-fold": [[407, "group-k-fold"]], "Group Shuffle Split": [[407, "group-shuffle-split"]], "GroupKFold": [[802, null]], "GroupShuffleSplit": [[803, null]], "Grouping infrequent categories in OneHotEncoder": [[316, "grouping-infrequent-categories-in-onehotencoder"]], "Grouping infrequent categories in OrdinalEncoder": [[318, "grouping-infrequent-categories-in-ordinalencoder"]], "Guideline for bumping minimum versions of our dependencies": [[375, "guideline-for-bumping-minimum-versions-of-our-dependencies"]], "HDBSCAN": [[403, "hdbscan"], [442, null]], "HDBSCAN: hierarchical density-based clustering": [[318, "hdbscan-hierarchical-density-based-clustering"]], "HalvingGridSearchCV": [[804, null]], "HalvingRandomSearchCV": [[805, null]], "Hamming loss": [[1000, "hamming-loss"]], "Handling Multicollinear Features": [[186, "handling-multicollinear-features"]], "Hash Functions": [[380, "hash-functions"]], "Hashing feature transformation using Totally Random Trees": [[152, null]], "HashingVectorizer": [[347, "hashingvectorizer"], [587, null]], "Helper Functions": [[380, "helper-functions"]], "Helper function": [[176, "helper-function"]], "Helper function to plot embedding": [[226, "helper-function-to-plot-embedding"]], "Helper functions": [[262, "helper-functions"]], "Hessian Eigenmapping": [[997, "hessian-eigenmapping"]], "Hierarchical Clustering": [[403, "id11"]], "Hierarchical clustering": [[403, "hierarchical-clustering"]], "Hierarchical clustering with and without structure": [[100, null]], "Higher-level parallelism with joblib": [[359, "higher-level-parallelism-with-joblib"]], "Highlights": [[1031, "highlights"], [1034, "highlights"], [1035, "highlights"], [1038, "highlights"], [1039, "highlights"]], "Hinge loss": [[1000, "hinge-loss"]], "HistGradientBoosting Natively Supports Categorical DTypes in DataFrames": [[319, "histgradientboosting-natively-supports-categorical-dtypes-in-dataframes"]], "HistGradientBoostingClassifier": [[558, null]], "HistGradientBoostingRegressor": [[559, null]], "Histogram-Based Gradient Boosting": [[410, "histogram-based-gradient-boosting"]], "Histogram-based Gradient Boosting Models are now stable": [[315, "histogram-based-gradient-boosting-models-are-now-stable"]], "History": [[0, "history"]], "Homogeneity, completeness and V-measure": [[403, "homogeneity-completeness-and-v-measure"]], "How can I contribute to scikit-learn?": [[383, "how-can-i-contribute-to-scikit-learn"]], "How can I create a bunch object?": [[383, "how-can-i-create-a-bunch-object"]], "How can I load my own datasets into a format usable by scikit-learn?": [[383, "how-can-i-load-my-own-datasets-into-a-format-usable-by-scikit-learn"]], "How can I obtain permission to use the images in scikit-learn for my work?": [[383, "how-can-i-obtain-permission-to-use-the-images-in-scikit-learn-for-my-work"]], "How do I deal with string data (or trees, graphs\u2026)?": [[383, "how-do-i-deal-with-string-data-or-trees-graphs"]], "How do I get started with scikit-learn?": [[383, "how-do-i-get-started-with-scikit-learn"]], "How do I set a random_state for an entire execution?": [[383, "how-do-i-set-a-random-state-for-an-entire-execution"]], "How do you pronounce the project name?": [[383, "how-do-you-pronounce-the-project-name"]], "How should I save, export or deploy estimators for production?": [[383, "how-should-i-save-export-or-deploy-estimators-for-production"]], "How to avoid data leakage": [[354, "how-to-avoid-data-leakage"]], "How to contribute": [[371, "how-to-contribute"]], "How to make a good bug report": [[371, "how-to-make-a-good-bug-report"]], "How to optimize for speed": [[377, null]], "HowAboutWe": [[1024, "id16"]], "Huber Regression": [[996, "huber-regression"]], "HuberRegressor": [[648, null]], "HuberRegressor vs Ridge on dataset with strong outliers": [[193, null]], "Hugging Face": [[1024, "id5"]], "Hyper-parameter optimizers": [[30, "hyper-parameter-optimizers"]], "Hyperparameter": [[616, null]], "Hyperparameter Robustness": [[88, "hyperparameter-robustness"]], "Hyperplanes Visualization": [[200, "hyperplanes-visualization"]], "ICE vs. PDP": [[184, "ice-vs-pdp"]], "INFONEA": [[1024, "id24"]], "Illustration of GPC on the XOR dataset": [[413, "illustration-of-gpc-on-the-xor-dataset"]], "Illustration of Gaussian process classification (GPC) on the XOR dataset": [[171, null]], "Illustration of Pipeline and GridSearchCV": [[104, "illustration-of-pipeline-and-gridsearchcv"]], "Illustration of prior and posterior Gaussian process for different kernels": [[176, null]], "Image denoising using dictionary learning": [[123, null]], "Image denoising using kernel PCA": [[45, null]], "Image feature extraction": [[411, "image-feature-extraction"]], "Implementation": [[1003, "implementation"]], "Implementation decisions": [[383, "implementation-decisions"]], "Implementation details": [[1014, "implementation-details"], [1015, "implementation-details"]], "Importance of Feature Scaling": [[308, null]], "Important notes regarding the internal cross-validation": [[402, "important-notes-regarding-the-internal-cross-validation"]], "Improved API consistency of Multi-layer Perceptron": [[322, "improved-api-consistency-of-multi-layer-perceptron"]], "Improved efficiency of many estimators": [[317, "improved-efficiency-of-many-estimators"]], "Improved estimator\u2019s HTML representation": [[322, "improved-estimator-s-html-representation"]], "Improved memory and runtime efficiency for PCA on sparse data": [[319, "improved-memory-and-runtime-efficiency-for-pca-on-sparse-data"]], "Improved performances of HistGradientBoosting estimators": [[314, "improved-performances-of-histgradientboosting-estimators"]], "Improvements to the developer API for third party libraries": [[321, "improvements-to-the-developer-api-for-third-party-libraries"]], "Improvements to the histogram-based Gradient Boosting estimators": [[313, "improvements-to-the-histogram-based-gradient-boosting-estimators"]], "Imputation of missing values": [[990, null], [1010, "imputation-of-missing-values"]], "Impute missing values with mean": [[179, "impute-missing-values-with-mean"]], "Impute the missing data and score": [[179, "impute-the-missing-data-and-score"]], "Imputing missing values before building an estimator": [[179, null]], "Imputing missing values with variants of IterativeImputer": [[178, null]], "In binary classification settings": [[270, "in-binary-classification-settings"]], "In multi-label settings": [[270, "in-multi-label-settings"]], "Income prediction with fully observed variables": [[182, "income-prediction-with-fully-observed-variables"]], "Income prediction with partial observations": [[182, "income-prediction-with-partial-observations"]], "Inconsistent preprocessing": [[354, "inconsistent-preprocessing"]], "InconsistentVersionWarning": [[574, null]], "Incremental PCA": [[124, null], [408, "incremental-pca"]], "Incremental learning": [[360, "incremental-learning"]], "IncrementalPCA": [[531, null]], "Independent component analysis (ICA)": [[408, "independent-component-analysis-ica"]], "Independent components - FastICA": [[120, "independent-components-fastica"]], "Individual Conditional Expectation plots": [[314, "individual-conditional-expectation-plots"]], "Individual conditional expectation (ICE) plot": [[1007, "individual-conditional-expectation-ice-plot"]], "Inductive Clustering": [[89, null]], "Influence of the Input Data Representation": [[358, "influence-of-the-input-data-representation"]], "Influence of the Model Complexity": [[358, "influence-of-the-model-complexity"]], "Influence of the Number of Features": [[358, "influence-of-the-number-of-features"]], "Information Criterion": [[989, "information-criterion"]], "Information-criteria based model selection": [[996, "information-criteria-based-model-selection"]], "Infrequent categories": [[1010, "infrequent-categories"]], "Input and output array type handling": [[399, "input-and-output-array-type-handling"]], "Input and parameter validation": [[42, "module-sklearn.utils.validation"]], "Input data": [[403, null]], "Input validation": [[373, "input-validation"]], "InputTags": [[922, null]], "Inria": [[1024, "id3"]], "Inspection": [[180, "inspection"], [181, null], [388, null]], "Installing nightly builds": [[369, "installing-nightly-builds"]], "Installing scikit-learn": [[389, null]], "Installing the development version of scikit-learn": [[369, null]], "Installing the latest release": [[389, "installing-the-latest-release"]], "Instantiation": [[373, "instantiation"]], "Intel Extension for Scikit-learn": [[389, "intel-extension-for-scikit-learn"]], "Interaction constraints": [[410, "interaction-constraints"]], "Interaction constraints in Histogram-based Gradient Boosting Trees": [[317, "interaction-constraints-in-histogram-based-gradient-boosting-trees"]], "Interoperability and framework enhancements": [[1019, "interoperability-and-framework-enhancements"]], "Interpretation of kernel hyperparameters": [[172, "interpretation-of-kernel-hyperparameters"]], "Interpretation with feature importance": [[410, "interpretation-with-feature-importance"]], "Interpreting coefficients: being cautious about causality": [[183, "interpreting-coefficients-being-cautious-about-causality"]], "Interpreting coefficients: scale matters": [[183, "interpreting-coefficients-scale-matters"]], "Interpreting the plots": [[210, "interpreting-the-plots"]], "Introducing the set_output API": [[246, null]], "Introduction": [[262, "introduction"], [997, "introduction"]], "Invariance with respect to prevalence": [[266, "invariance-with-respect-to-prevalence"]], "Inverse Transform": [[1012, "inverse-transform"]], "Iris plants dataset": [[368, "iris-plants-dataset"]], "Iso-probability lines for Gaussian Processes classification (GPC)": [[170, null]], "Isolation Forest": [[1006, "isolation-forest"]], "IsolationForest": [[560, null]], "IsolationForest example": [[150, null]], "Isomap": [[688, null], [997, "isomap"]], "Isomap Embedding": [[225, "isomap-embedding"]], "Isotonic": [[401, "isotonic"]], "Isotonic Regression": [[235, null]], "Isotonic regression": [[991, null]], "IsotonicRegression": [[634, null]], "Issue Tracker Tags": [[371, "issue-tracker-tags"]], "Issues for New Contributors": [[371, "issues-for-new-contributors"]], "Iterative imputation of the missing values": [[179, "iterative-imputation-of-the-missing-values"]], "IterativeImputer": [[626, null]], "J.P.Morgan": [[1024, "id1"]], "Jaccard similarity coefficient score": [[1000, "jaccard-similarity-coefficient-score"]], "Joint feature selection with multi-task Lasso": [[202, null]], "K-D Tree": [[1003, "k-d-tree"]], "K-bins discretization": [[1010, "k-bins-discretization"]], "K-fold": [[407, "k-fold"]], "K-means": [[403, "k-means"]], "K-means clustering on text features": [[347, "k-means-clustering-on-text-features"]], "K-nearest neighbors classifier": [[286, "k-nearest-neighbors-classifier"]], "KBinsDiscretizer": [[870, null]], "KDDCup99 - SA dataset": [[242, "kddcup99-sa-dataset"]], "KDTree": [[846, null]], "KDTree and BallTree Classes": [[1003, "kdtree-and-balltree-classes"]], "KFold": [[806, null]], "KMeans": [[443, null]], "KNN Based Imputation": [[312, "knn-based-imputation"]], "KNNImputer": [[627, null]], "KNeighborsClassifier": [[847, null]], "KNeighborsRegressor": [[848, null]], "KNeighborsTransformer": [[849, null]], "Kddcup 99 dataset": [[366, "kddcup-99-dataset"]], "Keeping the number of features constant": [[990, "keeping-the-number-of-features-constant"]], "Kernel": [[617, null]], "Kernel Approximation": [[180, "kernel-approximation"], [187, null], [992, null]], "Kernel Density Estimate of Species Distributions": [[296, null]], "Kernel Density Estimation": [[287, null], [409, "kernel-density-estimation"]], "Kernel PCA": [[125, null]], "Kernel Principal Component Analysis (kPCA)": [[408, "kernel-principal-component-analysis-kpca"]], "Kernel cookbook": [[176, "kernel-cookbook"]], "Kernel functions": [[1015, "kernel-functions"]], "Kernel methods: kernel ridge and Gaussian process": [[167, "kernel-methods-kernel-ridge-and-gaussian-process"]], "Kernel operators": [[413, "kernel-operators"]], "Kernel ridge": [[167, "kernel-ridge"]], "Kernel ridge regression": [[993, null]], "KernelCenterer": [[871, null]], "KernelDensity": [[850, null]], "KernelPCA": [[532, null]], "KernelRidge": [[642, null]], "Kernels": [[20, "module-sklearn.gaussian_process.kernels"]], "Kernels for Gaussian Processes": [[413, "kernels-for-gaussian-processes"]], "Keyword and positional arguments": [[315, "keyword-and-positional-arguments"]], "Known Major Bugs": [[1039, "known-major-bugs"], [1040, "known-major-bugs"]], "L1 Penalty and Sparsity in Logistic Regression": [[199, null]], "L1-based feature selection": [[412, "l1-based-feature-selection"]], "L1-based models for Sparse Signals": [[194, null]], "L1-penalty case": [[342, "l1-penalty-case"]], "L2-penalty case": [[342, "l2-penalty-case"]], "LARS Lasso": [[996, "lars-lasso"]], "LDA": [[994, "lda"]], "Label Propagation": [[1013, "label-propagation"]], "Label Propagation circles: Learning a complex structure": [[326, null]], "Label Propagation digits: Active learning": [[325, null]], "Label Propagation digits: Demonstrating performance": [[324, null]], "Label binarization": [[1011, "label-binarization"]], "Label encoding": [[1011, "label-encoding"]], "Label ranking average precision": [[1000, "label-ranking-average-precision"]], "LabelBinarizer": [[872, null], [1011, "labelbinarizer"]], "LabelEncoder": [[873, null]], "LabelPropagation": [[900, null]], "LabelSpreading": [[901, null]], "Lagged features for time series forecasting": [[53, null]], "Laplacian kernel": [[998, "laplacian-kernel"]], "Lars": [[649, null]], "LarsCV": [[650, null]], "Lasso": [[194, "lasso"], [651, null], [996, "lasso"]], "Lasso model selection via information criteria": [[196, null]], "Lasso model selection: AIC-BIC / cross-validation": [[198, null]], "Lasso on dense and sparse data": [[195, null]], "Lasso via coordinate descent": [[198, "lasso-via-coordinate-descent"]], "Lasso via least angle regression": [[198, "lasso-via-least-angle-regression"]], "Lasso, Lasso-LARS, and Elastic Net paths": [[197, null]], "LassoCV": [[652, null]], "LassoLars": [[653, null]], "LassoLarsCV": [[654, null]], "LassoLarsIC": [[655, null]], "Latent Dirichlet Allocation (LDA)": [[408, "latent-dirichlet-allocation-lda"]], "LatentDirichletAllocation": [[533, null]], "Learn the PCA basis": [[45, "learn-the-pca-basis"]], "Learn the dictionary from reference patches": [[123, "learn-the-dictionary-from-reference-patches"]], "Learn the dictionary of images": [[83, "learn-the-dictionary-of-images"]], "Learning Curve": [[265, "learning-curve"]], "Learning Git": [[371, null]], "Learning a graph structure": [[52, "learning-a-graph-structure"]], "Learning an embedding": [[293, "learning-an-embedding"]], "Learning curve": [[995, "learning-curve"]], "LearningCurveDisplay": [[807, null]], "Least Angle Regression": [[996, "least-angle-regression"]], "Leave One Group Out": [[407, "leave-one-group-out"]], "Leave One Out (LOO)": [[407, "leave-one-out-loo"]], "Leave P Groups Out": [[407, "leave-p-groups-out"]], "Leave P Out (LPO)": [[407, "leave-p-out-lpo"]], "LeaveOneGroupOut": [[808, null]], "LeaveOneOut": [[809, null]], "LeavePGroupsOut": [[810, null]], "LeavePOut": [[811, null]], "Ledoit-Wolf shrinkage": [[405, "ledoit-wolf-shrinkage"]], "Ledoit-Wolf vs OAS estimation": [[110, null]], "LedoitWolf": [[469, null]], "Lessons learned": [[182, "lessons-learned"], [183, "lessons-learned"]], "Limitations of a simple linear model": [[167, "limitations-of-a-simple-linear-model"]], "Limitations of the Bag of Words representation": [[411, "limitations-of-the-bag-of-words-representation"]], "Limiting Working Memory": [[358, "limiting-working-memory"]], "Limiting the number of splits": [[143, "limiting-the-number-of-splits"]], "Linear Models": [[996, null]], "Linear algebra libraries": [[358, "linear-algebra-libraries"]], "Linear and Quadratic Discriminant Analysis": [[994, null]], "Linear and Quadratic Discriminant Analysis with covariance ellipsoid": [[71, null]], "Linear classifiers": [[26, "linear-classifiers"]], "Linear kernel": [[339, "linear-kernel"], [998, "linear-kernel"]], "Linear models with regularization": [[183, "linear-models-with-regularization"]], "Linear models with sparse coefficients": [[183, "linear-models-with-sparse-coefficients"]], "Linear regression model": [[204, "linear-regression-model"]], "Linear support vector classifier": [[63, "linear-support-vector-classifier"]], "LinearDiscriminantAnalysis": [[546, null]], "LinearRegression": [[656, null]], "LinearSVC": [[905, null]], "LinearSVR": [[906, null]], "Link to R\u00b2 score, the coefficient of determination": [[1000, null]], "Links": [[358, "links"]], "Linnerrud dataset": [[368, "linnerrud-dataset"]], "Linux": [[369, "linux"]], "Linux compilers from conda-forge": [[369, "linux-compilers-from-conda-forge"]], "Linux compilers from the system": [[369, "linux-compilers-from-the-system"]], "Load Ames Housing dataset": [[143, "load-ames-housing-dataset"]], "Load Data": [[348, "load-data"]], "Load Data and Train a SVC": [[245, "load-data-and-train-a-svc"]], "Load Data and train model": [[233, "load-data-and-train-model"]], "Load and prepare data": [[272, "load-and-prepare-data"], [273, "load-and-prepare-data"], [308, "load-and-prepare-data"]], "Load and prepare data set": [[335, "load-and-prepare-data-set"]], "Load data": [[201, "load-data"]], "Load dataset": [[140, "load-dataset"]], "Load digits dataset": [[226, "load-digits-dataset"]], "Load some data to play with": [[338, "load-some-data-to-play-with"]], "Load the data": [[47, "load-the-data"], [83, "load-the-data"], [147, "load-the-data"], [286, "load-the-data"]], "Load the dataset": [[91, "load-the-dataset"]], "Load the dataset via OpenML": [[45, "load-the-dataset-via-openml"]], "Load the digits dataset and fit the model": [[262, "load-the-digits-dataset-and-fit-the-model"]], "Loaders": [[10, "loaders"]], "Loading Data from OpenML": [[309, "loading-data-from-openml"]], "Loading a dataset": [[282, "loading-a-dataset"]], "Loading and vectorizing the 20 newsgroups text dataset": [[346, "loading-and-vectorizing-the-20-newsgroups-text-dataset"]], "Loading datasets, basic feature extraction and target definitions": [[223, "loading-datasets-basic-feature-extraction-and-target-definitions"]], "Loading features from dicts": [[411, "loading-features-from-dicts"]], "Loading from external datasets": [[365, "loading-from-external-datasets"]], "Loading other datasets": [[365, null]], "Loading text data": [[347, "loading-text-data"]], "Loading the Iris dataset": [[126, "loading-the-iris-dataset"]], "Loading the data": [[163, "loading-the-data"]], "Loading the redirect files": [[56, "loading-the-redirect-files"]], "Local Outlier Factor": [[1006, "local-outlier-factor"]], "Local Tangent Space Alignment": [[997, "local-tangent-space-alignment"]], "LocalOutlierFactor": [[851, null]], "Locally Linear Embedding": [[997, "locally-linear-embedding"]], "Locally Linear Embeddings": [[225, "locally-linear-embeddings"]], "LocallyLinearEmbedding": [[689, null]], "Log loss": [[1000, "log-loss"]], "Logistic regression": [[996, "logistic-regression"]], "LogisticRegression": [[657, null]], "LogisticRegression wrapped by OneVsRestClassifier": [[282, "logisticregression-wrapped-by-onevsrestclassifier"]], "LogisticRegressionCV": [[658, null]], "Look at the results": [[238, "look-at-the-results"], [341, "look-at-the-results"]], "Loss Functions": [[410, "loss-functions"]], "Lovely": [[1024, "id20"]], "Low-level parallelism": [[403, "low-level-parallelism"], [410, "low-level-parallelism"]], "Lower-level parallelism with OpenMP": [[359, "lower-level-parallelism-with-openmp"]], "MARS": [[1024, "id28"]], "MDS": [[690, null]], "MLPClassifier": [[862, null]], "MLPRegressor": [[863, null]], "MNIST classification using multinomial logistic + L1": [[221, null]], "MacPorts for Mac OSX": [[389, "macports-for-mac-osx"]], "Machinalis": [[1024, "id22"]], "Mailing Lists": [[1023, "mailing-lists"]], "Main": [[48, "main"]], "Main takeaways": [[206, "main-takeaways"]], "Maintainer Information": [[375, null]], "Maintainers Team": [[0, "maintainers-team"]], "Maintaining backwards compatibility": [[371, "maintaining-backwards-compatibility"]], "Majority Class Labels (Majority/Hard Voting)": [[410, "majority-class-labels-majority-hard-voting"]], "Make pipeline to preprocess the data": [[154, "make-pipeline-to-preprocess-the-data"]], "Making predictions": [[156, "making-predictions"]], "Manifold Learning methods on a severed sphere": [[227, null]], "Manifold learning": [[180, "manifold-learning"], [224, null], [997, null]], "Manifold learning on handwritten digits: Locally Linear Embedding, Isomap\u2026": [[226, null]], "Manually setting the decision threshold": [[402, "manually-setting-the-decision-threshold"]], "Manually setting the decision threshold instead of tuning it": [[257, "manually-setting-the-decision-threshold-instead-of-tuning-it"]], "Map data to a normal distribution": [[307, null]], "Mapping to a Gaussian distribution": [[1010, "mapping-to-a-gaussian-distribution"]], "Mapping to a Uniform distribution": [[1010, "mapping-to-a-uniform-distribution"]], "Marking imputed values": [[990, "marking-imputed-values"]], "Matern": [[618, null]], "Mathematical Definition": [[1007, "mathematical-definition"]], "Mathematical Details": [[992, "mathematical-details"]], "Mathematical formulation": [[400, "mathematical-formulation"], [400, "id3"], [410, "mathematical-formulation"], [1003, "mathematical-formulation"], [1014, "mathematical-formulation"], [1015, "mathematical-formulation"], [1016, "mathematical-formulation"]], "Mathematical formulation of LDA dimensionality reduction": [[994, "mathematical-formulation-of-lda-dimensionality-reduction"]], "Mathematical formulation of the LDA and QDA classifiers": [[994, "mathematical-formulation-of-the-lda-and-qda-classifiers"]], "Matthews correlation coefficient": [[1000, "matthews-correlation-coefficient"]], "Mat\u00e9rn kernel": [[176, "matern-kernel"], [413, "matern-kernel"]], "Max error": [[1000, "max-error"]], "MaxAbsScaler": [[303, "maxabsscaler"], [874, null]], "Mean Poisson, Gamma, and Tweedie deviances": [[1000, "mean-poisson-gamma-and-tweedie-deviances"]], "Mean Shift": [[403, "mean-shift"]], "Mean absolute error": [[1000, "mean-absolute-error"]], "Mean absolute percentage error": [[1000, "mean-absolute-percentage-error"]], "Mean squared error": [[1000, "mean-squared-error"]], "Mean squared logarithmic error": [[1000, "mean-squared-logarithmic-error"]], "MeanShift": [[444, null]], "Measure and plot the results": [[154, "measure-and-plot-the-results"]], "Median absolute error": [[1000, "median-absolute-error"]], "Memory footprint": [[86, "memory-footprint"]], "Memory usage profiling": [[377, "memory-usage-profiling"]], "Merging Pull Requests": [[375, "merging-pull-requests"]], "Meta-estimators": [[42, "module-sklearn.utils.metaestimators"], [399, "meta-estimators"]], "MetaEstimatorMixin": [[423, null]], "Metadata Routing": [[239, null], [318, "metadata-routing"], [385, "metadata-routing"], [394, null], [1048, "metadata-routing"], [1048, "id2"], [1049, "metadata-routing"]], "Metadata Routing Support": [[319, "metadata-routing-support"]], "Metadata Routing Support Status": [[394, "metadata-routing-support-status"]], "Metadata routing": [[42, "module-sklearn.utils.metadata_routing"], [1050, "metadata-routing"], [1051, "metadata-routing"], [1052, "metadata-routing"]], "MetadataRequest": [[957, null]], "MetadataRouter": [[958, null]], "MethodMapping": [[959, null]], "Methods": [[385, "methods"]], "Metrics": [[399, "metrics"]], "Metrics and scoring: quantifying the quality of predictions": [[1000, null]], "Migration toward sparse arrays": [[322, "migration-toward-sparse-arrays"]], "MinCovDet": [[470, null]], "MinMaxScaler": [[303, "minmaxscaler"], [875, null]], "Mini Batch K-Means": [[403, "mini-batch-k-means"]], "Mini-batch Non Negative Matrix Factorization": [[408, "mini-batch-non-negative-matrix-factorization"]], "Mini-batch dictionary learning": [[408, "mini-batch-dictionary-learning"]], "MiniBatchDictionaryLearning": [[534, null]], "MiniBatchKMeans": [[445, null]], "MiniBatchNMF": [[535, null]], "MiniBatchNMF: an online version of NMF": [[316, "minibatchnmf-an-online-version-of-nmf"]], "MiniBatchSparsePCA": [[536, null]], "Minimal Cost-Complexity Pruning": [[1016, "minimal-cost-complexity-pruning"]], "Minimal dependencies": [[1044, "minimal-dependencies"], [1045, "minimal-dependencies"]], "Minimum Covariance Determinant": [[405, "minimum-covariance-determinant"]], "Minimum Covariance Determinant Estimator": [[112, "minimum-covariance-determinant-estimator"]], "Misc": [[1031, "misc"]], "Miscellaneous": [[26, "miscellaneous"], [180, "miscellaneous"], [231, null], [1039, "miscellaneous"], [1039, "id40"], [1040, "miscellaneous"], [1041, "miscellaneous"], [1042, "miscellaneous"], [1042, "id13"], [1043, "miscellaneous"], [1044, "miscellaneous"], [1047, "miscellaneous"]], "Misleading values on strongly correlated features": [[1008, "misleading-values-on-strongly-correlated-features"]], "Missing Value Imputation": [[177, null], [180, "missing-value-imputation"]], "Missing Values Support": [[1016, "missing-values-support"]], "Missing value support for Extra Trees": [[321, "missing-value-support-for-extra-trees"]], "Missing value support for Random Forest": [[319, "missing-value-support-for-random-forest"]], "Missing values support": [[410, "missing-values-support"]], "Missing values support in decision trees": [[318, "missing-values-support-in-decision-trees"]], "MissingIndicator": [[628, null]], "Model Complexity Influence": [[47, null]], "Model Compression": [[358, "model-compression"]], "Model Reshaping": [[358, "model-reshaping"]], "Model Selection": [[180, "model-selection"], [255, null]], "Model Selection Enhancements and API Changes": [[1037, "model-selection-enhancements-and-api-changes"]], "Model Training and Comparison": [[144, "model-training-and-comparison"]], "Model comparison": [[143, "model-comparison"]], "Model definition": [[276, "model-definition"]], "Model evaluation": [[204, "model-evaluation"], [384, "model-evaluation"]], "Model fitting and extrapolation": [[172, "model-fitting-and-extrapolation"]], "Model persistence": [[397, null]], "Model selection and evaluation": [[398, null]], "Model selection interface": [[28, "model-selection-interface"]], "Model selection with Probabilistic PCA and Factor Analysis (FA)": [[127, null]], "Model selection: development and evaluation": [[989, "model-selection-development-and-evaluation"]], "Model specific cross-validation": [[989, "model-specific-cross-validation"]], "Model training and selection": [[162, "model-training-and-selection"], [253, "model-training-and-selection"]], "Model validation": [[30, "model-validation"]], "Model with metadata stripping": [[346, "model-with-metadata-stripping"]], "Model without metadata stripping": [[346, "model-without-metadata-stripping"]], "Model-based and sequential feature selection": [[163, null]], "Modeling non-linear feature interactions with kernels": [[44, "modeling-non-linear-feature-interactions-with-kernels"]], "Modeling pairwise interactions with splines and polynomial features": [[44, "modeling-pairwise-interactions-with-splines-and-polynomial-features"]], "Modeling predictive uncertainty via quantile regression": [[53, "modeling-predictive-uncertainty-via-quantile-regression"]], "Models definition": [[301, "models-definition"]], "Models robustness to recover the ground truth weights": [[190, "models-robustness-to-recover-the-ground-truth-weights"]], "Modified Locally Linear Embedding": [[997, "modified-locally-linear-embedding"]], "Monitoring performance": [[371, "monitoring-performance"]], "Monotonic Constraints": [[151, null], [410, "monotonic-constraints"]], "Monotonic constraints": [[149, "monotonic-constraints"]], "More control with warm_start": [[1004, "more-control-with-warm-start"]], "Multi-Scale Clustering": [[88, "multi-scale-clustering"]], "Multi-class AdaBoosted Decision Trees": [[134, null]], "Multi-class case": [[1000, "multi-class-case"]], "Multi-class classification": [[1015, "multi-class-classification"]], "Multi-core parallelism using joblib.Parallel": [[377, "multi-core-parallelism-using-joblib-parallel"]], "Multi-dimensional Scaling (MDS)": [[997, "multi-dimensional-scaling-mds"]], "Multi-dimensional scaling": [[228, null]], "Multi-label case": [[1000, "multi-label-case"]], "Multi-label confusion matrix": [[1000, "multi-label-confusion-matrix"]], "Multi-layer Perceptron": [[1004, "multi-layer-perceptron"]], "Multi-layer perceptron": [[184, "multi-layer-perceptron"]], "Multi-output problems": [[1016, "multi-output-problems"]], "Multi-task Elastic-Net": [[996, "multi-task-elastic-net"]], "Multi-task Lasso": [[996, "multi-task-lasso"]], "Multi-task linear regressors with variable selection": [[26, "multi-task-linear-regressors-with-variable-selection"]], "MultiLabelBinarizer": [[876, null], [1011, "multilabelbinarizer"]], "MultiOutputClassifier": [[837, null], [1001, "multioutputclassifier"]], "MultiOutputRegressor": [[838, null], [1001, "multioutputregressor"]], "MultiTaskElasticNet": [[659, null]], "MultiTaskElasticNetCV": [[660, null]], "MultiTaskLasso": [[661, null]], "MultiTaskLassoCV": [[662, null]], "Multiclass Receiver Operating Characteristic (ROC)": [[272, null]], "Multiclass and multilabel classification": [[1000, "multiclass-and-multilabel-classification"]], "Multiclass and multilabel utility function": [[380, "multiclass-and-multilabel-utility-function"]], "Multiclass and multioutput algorithms": [[1001, null]], "Multiclass classification": [[1001, "multiclass-classification"]], "Multiclass methods": [[180, "multiclass-methods"], [279, null]], "Multiclass sparse logistic regression on 20newgroups": [[220, null]], "Multiclass support": [[401, "multiclass-support"]], "Multiclass support for LogisticRegression(solver=\"newton-cholesky\")": [[321, "multiclass-support-for-logisticregression-solver-newton-cholesky"]], "Multiclass-multioutput classification": [[1001, "multiclass-multioutput-classification"]], "Multidimensional scaling": [[225, "multidimensional-scaling"]], "Multilabel": [[367, "multilabel"]], "Multilabel classification": [[240, null], [1001, "multilabel-classification"]], "Multilabel classification using a classifier chain": [[282, null]], "Multilabel ranking metrics": [[28, "multilabel-ranking-metrics"], [1000, "multilabel-ranking-metrics"]], "Multinomial Case": [[996, "multinomial-case"]], "Multinomial Naive Bayes": [[1002, "multinomial-naive-bayes"]], "MultinomialNB": [[844, null]], "Multioutput methods": [[180, "multioutput-methods"], [281, null]], "Multioutput regression": [[1001, "multioutput-regression"]], "Multiple modules": [[1039, "multiple-modules"], [1040, "multiple-modules"]], "Multiple vs. Single Imputation": [[990, "multiple-vs-single-imputation"]], "Multivariate feature imputation": [[990, "multivariate-feature-imputation"]], "Mutual Information based scores": [[403, "mutual-information-based-scores"]], "Mutual Reachability Graph": [[403, "mutual-reachability-graph"]], "NMF": [[537, null]], "NMF with a beta-divergence": [[408, "nmf-with-a-beta-divergence"]], "NMF with the Frobenius norm": [[408, "nmf-with-the-frobenius-norm"]], "Naive Bayes": [[1002, null]], "Naive evaluation of the next hour bike demand regression": [[53, "naive-evaluation-of-the-next-hour-bike-demand-regression"]], "Naive linear regression": [[44, "naive-linear-regression"]], "Native Categorical Feature Support": [[309, "native-categorical-feature-support"]], "Native support for categorical features in HistGradientBoosting estimators": [[314, "native-support-for-categorical-features-in-histgradientboosting-estimators"]], "Native support for missing values for gradient boosting": [[312, "native-support-for-missing-values-for-gradient-boosting"]], "Nearest Centroid Classification": [[294, null]], "Nearest Centroid Classifier": [[1003, "nearest-centroid-classifier"]], "Nearest Neighbor Algorithms": [[1003, "nearest-neighbor-algorithms"]], "Nearest Neighbors": [[180, "nearest-neighbors"], [284, null], [1003, null]], "Nearest Neighbors Classification": [[286, null], [1003, "nearest-neighbors-classification"]], "Nearest Neighbors Regression": [[1003, "nearest-neighbors-regression"]], "Nearest Neighbors Transformer": [[1003, "nearest-neighbors-transformer"]], "Nearest Neighbors regression": [[295, null]], "Nearest Shrunken Centroid": [[1003, "nearest-shrunken-centroid"]], "Nearest neighbors imputation": [[990, "nearest-neighbors-imputation"]], "NearestCentroid": [[852, null]], "NearestNeighbors": [[853, null]], "Neighborhood Components Analysis": [[1003, "neighborhood-components-analysis"]], "Neighborhood Components Analysis Illustration": [[293, null]], "NeighborhoodComponentsAnalysis": [[854, null]], "Nested versus non-nested cross-validation": [[268, null]], "NetBSD": [[389, "netbsd"]], "Neural Networks": [[180, "neural-networks"], [297, null]], "Neural network models (supervised)": [[1004, null]], "Neural network models (unsupervised)": [[1005, null]], "New Estimator Classes": [[1032, "new-estimator-classes"]], "New Poisson splitting criterion for DecisionTreeRegressor": [[314, "new-poisson-splitting-criterion-for-decisiontreeregressor"]], "New PolynomialCountSketch kernel approximation function": [[314, "new-polynomialcountsketch-kernel-approximation-function"]], "New SequentialFeatureSelector transformer": [[314, "new-sequentialfeatureselector-transformer"]], "New and enhanced displays": [[317, "new-and-enhanced-displays"]], "New classes": [[1031, "new-classes"]], "New display ValidationCurveDisplay": [[318, "new-display-validationcurvedisplay"]], "New documentation improvements": [[314, "new-documentation-improvements"], [315, "new-documentation-improvements"]], "New features": [[1034, "new-features"], [1035, "new-features"], [1036, "new-features"], [1037, "new-features"], [1038, "new-features"]], "New plotting API": [[312, "new-plotting-api"]], "New self-training meta-estimator": [[314, "new-self-training-meta-estimator"]], "New to Scientific Python?": [[1018, "new-to-scientific-python"]], "Next steps": [[384, "next-steps"]], "Non-Negative Least Squares": [[996, "non-negative-least-squares"]], "Non-informative classifier baseline for the ROC and DET curves": [[260, "non-informative-classifier-baseline-for-the-roc-and-det-curves"]], "Non-linear transformation": [[1010, "non-linear-transformation"]], "Non-negative components - NMF": [[120, "non-negative-components-nmf"]], "Non-negative least squares": [[203, null]], "Non-negative matrix factorization (NMF or NNMF)": [[408, "non-negative-matrix-factorization-nmf-or-nnmf"]], "Normal, Ledoit-Wolf and OAS Linear Discriminant Analysis for classification": [[70, null]], "Normalization": [[1010, "normalization"]], "Normalized Discounted Cumulative Gain": [[1000, "normalized-discounted-cumulative-gain"]], "Normalizer": [[303, "normalizer"], [877, null]], "NotFittedError": [[575, null]], "Note on MPS device support": [[399, "note-on-mps-device-support"]], "Note on device support for float64": [[399, "note-on-device-support-for-float64"]], "Notes": [[360, "notes"]], "Novelty Detection": [[1006, "novelty-detection"]], "Novelty and Outlier Detection": [[1006, null]], "Novelty detection with Local Outlier Factor": [[1006, "novelty-detection-with-local-outlier-factor"]], "Novelty detection with Local Outlier Factor (LOF)": [[289, null]], "NuSVC": [[907, null]], "NuSVR": [[908, null]], "NumPy": [[376, "numpy"]], "Number of candidates and amount of resource at each iteration": [[275, "number-of-candidates-and-amount-of-resource-at-each-iteration"]], "Numerical assertions in tests": [[373, "numerical-assertions-in-tests"]], "Nystroem": [[638, null]], "Nystroem Method for Kernel Approximation": [[992, "nystroem-method-for-kernel-approximation"]], "OAS": [[471, null]], "ONNX": [[397, "onnx"]], "OOB Errors for Random Forests": [[138, null]], "OPTICS": [[403, "optics"], [446, null]], "Obtaining predictions by cross-validation": [[407, "obtaining-predictions-by-cross-validation"]], "OkCupid": [[1024, "id19"]], "Older Versions": [[1031, null]], "One-Class SVM versus One-Class SVM using Stochastic Gradient Descent": [[219, null]], "One-class SVM with non-linear kernel (RBF)": [[334, null]], "One-vs-One multiclass ROC": [[272, "one-vs-one-multiclass-roc"]], "One-vs-Rest multiclass ROC": [[272, "one-vs-rest-multiclass-roc"]], "OneClassSVM": [[909, null]], "OneHotEncoder": [[878, null]], "OneToOneFeatureMixin": [[424, null]], "OneVsOneClassifier": [[833, null], [1001, "onevsoneclassifier"]], "OneVsRestClassifier": [[834, null], [1001, "onevsrestclassifier"]], "Online One-Class SVM": [[315, "online-one-class-svm"], [1014, "online-one-class-svm"]], "Online learning of a dictionary of parts of faces": [[83, null]], "Optical recognition of handwritten digits dataset": [[368, "optical-recognition-of-handwritten-digits-dataset"]], "Optimal mathematical operations": [[42, "module-sklearn.utils.extmath"]], "Optimisation of kernel hyperparameters in GPR": [[173, "optimisation-of-kernel-hyperparameters-in-gpr"]], "Options to tune the decision threshold": [[402, "options-to-tune-the-decision-threshold"]], "Oracle Approximating Shrinkage": [[405, "oracle-approximating-shrinkage"]], "OrdinalEncoder": [[879, null]], "Ordinary Least Squares": [[996, "ordinary-least-squares"]], "Ordinary Least Squares Complexity": [[996, "ordinary-least-squares-complexity"]], "Ordinary Least Squares and Ridge Regression": [[204, null]], "Ordinary Least Squares and Ridge Regression Variance": [[204, "ordinary-least-squares-and-ridge-regression-variance"]], "Original data": [[269, "original-data"], [303, "original-data"]], "Original image": [[86, "original-image"]], "Original points": [[293, "original-points"]], "Orthogonal Matching Pursuit": [[205, null]], "Orthogonal Matching Pursuit (OMP)": [[996, "orthogonal-matching-pursuit-omp"]], "OrthogonalMatchingPursuit": [[663, null]], "OrthogonalMatchingPursuitCV": [[664, null]], "Other changes": [[1031, "other-changes"]], "Other estimators and tasks": [[1019, "other-estimators-and-tasks"]], "Otto Group": [[1024, "id26"]], "Our community, our values": [[371, null]], "Our vanilla classifier": [[277, "our-vanilla-classifier"]], "Out of Bag Estimates": [[989, "out-of-bag-estimates"]], "Out-of-core classification of text documents": [[48, null]], "Out-of-core naive Bayes model fitting": [[1002, "out-of-core-naive-bayes-model-fitting"]], "Outlier Detection": [[1006, "id1"]], "Outlier detection on a real data set": [[49, null]], "Outlier detection with Local Outlier Factor (LOF)": [[290, null]], "Outlier-robust regressors": [[26, "outlier-robust-regressors"]], "OutlierMixin": [[425, null]], "Outliers in the X direction": [[222, "outliers-in-the-x-direction"]], "Outliers only in the y direction": [[222, "outliers-only-in-the-y-direction"]], "Outline of the permutation importance algorithm": [[1008, "outline-of-the-permutation-importance-algorithm"]], "OutputCodeClassifier": [[835, null], [1001, "outputcodeclassifier"]], "Oversubscription: spawning too many threads": [[359, "oversubscription-spawning-too-many-threads"]], "Overview of clustering methods": [[403, "overview-of-clustering-methods"]], "Overview of multiclass training meta-estimators": [[280, null]], "Overview of outlier detection methods": [[1006, "overview-of-outlier-detection-methods"]], "PCA": [[538, null]], "PCA using randomized SVD": [[408, "pca-using-randomized-svd"]], "PCA: principal component analysis": [[1017, "pca-principal-component-analysis"]], "PHIMECA Engineering": [[1024, "id15"]], "PLS regression, with multivariate response, a.k.a. PLS2": [[115, "pls-regression-with-multivariate-response-a-k-a-pls2"]], "PLS regression, with univariate response, a.k.a. PLS1": [[115, "pls-regression-with-univariate-response-a-k-a-pls1"]], "PLSCanonical": [[406, "plscanonical"], [479, null]], "PLSRegression": [[406, "plsregression"], [480, null]], "PLSSVD": [[406, "plssvd"], [481, null]], "Packaging": [[1043, "packaging"]], "Paid support": [[1023, "paid-support"]], "Pair Confusion Matrix": [[403, "pair-confusion-matrix"]], "Pairwise comparison of all models: Bayesian approach": [[263, "pairwise-comparison-of-all-models-bayesian-approach"]], "Pairwise comparison of all models: frequentist approach": [[263, "pairwise-comparison-of-all-models-frequentist-approach"]], "Pairwise distances with non-numeric arrays": [[320, "pairwise-distances-with-non-numeric-arrays"]], "Pairwise metrics": [[28, "module-sklearn.metrics.pairwise"]], "Pairwise metrics, Affinities and Kernels": [[998, null]], "PairwiseKernel": [[619, null]], "Pandas": [[376, "pandas"]], "Pandas output with set_output API": [[317, "pandas-output-with-set-output-api"]], "Parallel": [[967, null]], "Parallel NumPy and SciPy routines from numerical libraries": [[359, "parallel-numpy-and-scipy-routines-from-numerical-libraries"]], "Parallel computing": [[42, "module-sklearn.utils.parallel"]], "Parallelism": [[359, "parallelism"], [989, "parallelism"]], "Parallelism, resource management, and configuration": [[359, null]], "Parallelization": [[410, "parallelization"]], "ParameterGrid": [[812, null]], "ParameterSampler": [[813, null]], "Parameters": [[385, "parameters"], [410, "parameters"]], "Parameters of the RBF Kernel": [[1015, "parameters-of-the-rbf-kernel"]], "Partial Dependence and Individual Conditional Expectation Plots": [[184, null]], "Partial Dependence and Individual Conditional Expectation plots": [[1007, null]], "Partial dependence plots": [[1007, "partial-dependence-plots"]], "PartialDependenceDisplay": [[631, null]], "Partitioning the data": [[188, "partitioning-the-data"]], "Passive Aggressive Algorithms": [[996, "passive-aggressive-algorithms"]], "PassiveAggressiveClassifier": [[665, null]], "PassiveAggressiveRegressor": [[666, null]], "Past Sponsors": [[0, "past-sponsors"]], "Patch extraction": [[411, "patch-extraction"]], "PatchExtractor": [[581, null]], "PeerIndex": [[1024, "id17"]], "People": [[1031, "people"], [1031, "id2"], [1031, "id5"], [1031, "id8"], [1031, "id11"], [1031, "id13"], [1031, "id15"], [1031, "id17"], [1032, "people"], [1032, "id3"], [1033, "people"], [1034, "people"]], "Perceptron": [[667, null], [996, "perceptron"]], "Perform the search with GridSearchCV": [[262, "perform-the-search-with-gridsearchcv"]], "Performance improvements": [[316, "performance-improvements"]], "Performance improvements in PCA": [[320, "performance-improvements-in-pca"]], "Performing dimensionality reduction using LSA": [[347, "performing-dimensionality-reduction-using-lsa"]], "Periodic Splines": [[207, "periodic-splines"]], "Periodic spline features": [[44, "periodic-spline-features"]], "Permutation Importance vs Random Forest Feature Importance (MDI)": [[185, null]], "Permutation Importance with Multicollinear or Correlated Features": [[186, null]], "Permutation feature importance": [[1008, null]], "Permutation test score": [[269, "permutation-test-score"], [407, "permutation-test-score"]], "Permutation-based feature importance": [[312, "permutation-based-feature-importance"]], "Pinball loss": [[1000, "pinball-loss"]], "Pipeline": [[865, null]], "Pipeline ANOVA SVM": [[160, null]], "Pipeline with hyperparameter tuning": [[264, "pipeline-with-hyperparameter-tuning"]], "Pipeline: chaining estimators": [[404, "pipeline-chaining-estimators"]], "Pipelines and composite estimators": [[101, null], [180, "pipelines-and-composite-estimators"], [404, null]], "Pipelines: chaining pre-processors and estimators": [[384, "pipelines-chaining-pre-processors-and-estimators"]], "Pipelining": [[1017, null]], "Pipelining: chaining a PCA and a logistic regression": [[105, null]], "Platform-specific instructions": [[369, "platform-specific-instructions"]], "Plot Hierarchical Clustering Dendrogram": [[76, null]], "Plot Precision-Recall curve for each class and iso-f1 curves": [[270, "plot-precision-recall-curve-for-each-class-and-iso-f1-curves"]], "Plot Ridge coefficients as a function of the regularization": [[211, null]], "Plot a PCA representation": [[126, "plot-a-pca-representation"]], "Plot accuracy, training and test time of each classifier": [[346, "plot-accuracy-training-and-test-time-of-each-classifier"]], "Plot all OvO ROC curves together": [[272, "plot-all-ovo-roc-curves-together"]], "Plot all OvR ROC curves together": [[272, "plot-all-ovr-roc-curves-together"]], "Plot and analysis of the results": [[194, "plot-and-analysis-of-the-results"]], "Plot and interpret results": [[242, "plot-and-interpret-results"]], "Plot classification boundaries with different SVM Kernels": [[339, null]], "Plot classification probability": [[67, null]], "Plot clustering with and without structure": [[100, "plot-clustering-with-and-without-structure"]], "Plot data and the predicted probabilities": [[62, "plot-data-and-the-predicted-probabilities"]], "Plot different SVM classifiers in the iris dataset": [[332, null]], "Plot discrete decision boundary": [[150, "plot-discrete-decision-boundary"]], "Plot feature importance": [[147, "plot-feature-importance"]], "Plot individual and voting regression predictions": [[156, null]], "Plot multi-class SGD on the iris dataset": [[214, null]], "Plot number of features VS. cross-validation scores": [[162, "plot-number-of-features-vs-cross-validation-scores"]], "Plot of pairs of features of the Iris dataset": [[126, "plot-of-pairs-of-features-of-the-iris-dataset"]], "Plot path length decision boundary": [[150, "plot-path-length-decision-boundary"]], "Plot randomly generated multilabel dataset": [[118, null]], "Plot regularization path": [[201, "plot-regularization-path"]], "Plot result": [[74, "plot-result"], [96, "plot-result"]], "Plot results": [[48, "plot-results"], [82, "plot-results"], [109, "plot-results"], [121, "plot-results"], [122, "plot-results"], [140, "plot-results"], [282, "plot-results"], [290, "plot-results"], [328, "plot-results"]], "Plot support and time series": [[202, "plot-support-and-time-series"]], "Plot the BIC scores": [[253, "plot-the-bic-scores"]], "Plot the Precision-Recall curve": [[270, "plot-the-precision-recall-curve"]], "Plot the best model": [[253, "plot-the-best-model"]], "Plot the cross-validation score as a function of percentile of features": [[338, "plot-the-cross-validation-score-as-a-function-of-percentile-of-features"]], "Plot the decision surface of decision trees trained on the iris dataset": [[351, null]], "Plot the decision surfaces of ensembles of trees on the iris dataset": [[142, null]], "Plot the marginal log-likelihood": [[190, "plot-the-marginal-log-likelihood"]], "Plot the micro-averaged Precision-Recall curve": [[270, "plot-the-micro-averaged-precision-recall-curve"]], "Plot the most uncertain predictions": [[324, "plot-the-most-uncertain-predictions"]], "Plot the results": [[83, "plot-the-results"], [113, "plot-the-results"], [156, "plot-the-results"], [179, "plot-the-results"], [352, "plot-the-results"], [352, "id3"]], "Plot the results on an image": [[81, "plot-the-results-on-an-image"]], "Plot the support vectors in LinearSVC": [[333, null]], "Plot the true and estimated coefficients": [[190, "plot-the-true-and-estimated-coefficients"]], "Plot the true and predicted curves with log marginal likelihood (L)": [[191, "plot-the-true-and-predicted-curves-with-log-marginal-likelihood-l"]], "Plot training deviance": [[147, "plot-training-deviance"]], "Plotting": [[22, "plotting"], [28, "plotting"], [41, "plotting"], [301, "plotting"]], "Plotting API Overview": [[378, "plotting-api-overview"]], "Plotting Cross-Validated Predictions": [[259, null]], "Plotting Functions": [[71, "plotting-functions"]], "Plotting Learning Curves and Checking Models\u2019 Scalability": [[265, null]], "Plotting ROC curves from cross-validation results": [[322, "plotting-roc-curves-from-cross-validation-results"]], "Plotting four circles": [[99, "plotting-four-circles"]], "Plotting partial dependence for one feature": [[243, "plotting-partial-dependence-for-one-feature"]], "Plotting partial dependence for two features": [[243, "plotting-partial-dependence-for-two-features"]], "Plotting partial dependence of the two models together": [[243, "plotting-partial-dependence-of-the-two-models-together"]], "Plotting polynomial regressions with std errors of the scores": [[190, "plotting-polynomial-regressions-with-std-errors-of-the-scores"]], "Plotting results": [[59, "plotting-results"]], "Plotting the ROC Curve": [[245, "plotting-the-roc-curve"]], "Plotting the Results": [[309, "plotting-the-results"]], "Plotting the decision boundaries": [[67, "plotting-the-decision-boundaries"]], "Plotting the result": [[267, "plotting-the-result"]], "Plotting the results": [[97, "plotting-the-results"], [135, "plotting-the-results"], [204, "plotting-the-results"]], "Plotting trained Coefficients and Mean Squared Errors": [[210, "plotting-trained-coefficients-and-mean-squared-errors"]], "Plotting two circles": [[99, "plotting-two-circles"]], "Plotting with Multiple Axes": [[378, "plotting-with-multiple-axes"]], "Poisson regression and non-normal loss": [[206, null]], "PoissonRegressor": [[668, null]], "Polars output in set_output": [[319, "polars-output-in-set-output"]], "Polynomial Kernel Approximation via Tensor Sketch": [[992, "polynomial-kernel-approximation-via-tensor-sketch"]], "Polynomial and Spline interpolation": [[207, null]], "Polynomial features": [[1010, "polynomial-features"]], "Polynomial kernel": [[339, "polynomial-kernel"], [998, "polynomial-kernel"]], "Polynomial regression: extending linear models with basis functions": [[996, "polynomial-regression-extending-linear-models-with-basis-functions"]], "PolynomialCountSketch": [[639, null]], "PolynomialFeatures": [[880, null]], "Possible solutions": [[90, "possible-solutions"]], "Post pruning decision trees with cost complexity pruning": [[350, null]], "Post-fit model tuning": [[30, "post-fit-model-tuning"]], "Post-hoc tuning the cut-off point of decision function": [[277, null]], "Post-tuning the decision threshold": [[402, "post-tuning-the-decision-threshold"]], "Post-tuning the decision threshold for cost-sensitive learning": [[257, null]], "PowerTransformer": [[303, "powertransformer"], [881, null]], "Pre-test vs. post-test analysis": [[266, "pre-test-vs-post-test-analysis"]], "Precision, recall and F-measures": [[1000, "precision-recall-and-f-measures"]], "Precision-Recall": [[270, null]], "PrecisionRecallDisplay": [[700, null]], "Precomputed sparse nearest neighbors graph": [[312, "precomputed-sparse-nearest-neighbors-graph"]], "Predefined fold-splits / Validation-sets": [[407, "predefined-fold-splits-validation-sets"]], "PredefinedSplit": [[814, null]], "Predict": [[352, "predict"], [352, "id2"]], "Prediction Intervals for Gradient Boosting Regression": [[146, null]], "Prediction Latency": [[50, null], [358, "prediction-latency"]], "Prediction Throughput": [[358, "prediction-throughput"]], "PredictionErrorDisplay": [[701, null]], "Preparing the data": [[135, "preparing-the-data"], [149, "preparing-the-data"], [188, "preparing-the-data"]], "Preprocessing": [[180, "preprocessing"], [302, null]], "Preprocessing data": [[1010, null]], "Preprocessing numerical variables": [[183, "preprocessing-numerical-variables"]], "Preprocessor for machine-learning models": [[184, "preprocessor-for-machine-learning-models"]], "Preprocessor for the gradient boosting model": [[184, "preprocessor-for-the-gradient-boosting-model"]], "Preprocessor for the neural network model": [[184, "preprocessor-for-the-neural-network-model"]], "Principal Component Analysis (PCA) on Iris Dataset": [[126, null]], "Principal Component Regression vs Partial Least Squares Regression": [[116, null]], "Principal component analysis (PCA)": [[408, "principal-component-analysis-pca"]], "Print the results": [[262, "print-the-results"]], "Private Loss Function Module": [[1048, "private-loss-function-module"]], "Probabilistic classifiers": [[67, "probabilistic-classifiers"]], "Probabilistic predictions with GPC": [[413, "probabilistic-predictions-with-gpc"]], "Probabilistic predictions with Gaussian process classification (GPC)": [[168, null]], "Probability Calibration curves": [[63, null]], "Probability Calibration for 3-class classification": [[64, null]], "Probability calibration": [[401, null]], "Probability calibration of classifiers": [[62, null]], "Processing the dataset": [[183, "processing-the-dataset"]], "Product": [[620, null]], "Productivity and sanity-preserving tips": [[379, "productivity-and-sanity-preserving-tips"]], "Profiling Python code": [[377, "profiling-python-code"]], "Profiling compiled extensions": [[377, "profiling-compiled-extensions"]], "Project template:": [[373, null]], "Projecting data: PCA vs. KernelPCA": [[125, "projecting-data-pca-vs-kernelpca"]], "Projecting into the original feature space": [[125, "projecting-into-the-original-feature-space"]], "Projection on one component and predictive power": [[116, "projection-on-one-component-and-predictive-power"]], "Proper next hour forecasting evaluation": [[53, "proper-next-hour-forecasting-evaluation"]], "Provide a failing code example with minimal comments": [[376, "provide-a-failing-code-example-with-minimal-comments"]], "Pull request checklist": [[371, "pull-request-checklist"]], "Pure Premium Modeling via a Product Model vs single TweedieRegressor": [[223, "pure-premium-modeling-via-a-product-model-vs-single-tweedieregressor"]], "Purpose of this document": [[1020, "purpose-of-this-document"]], "Purpose of this example": [[210, "purpose-of-this-example"]], "PyTorch Support": [[399, "pytorch-support"]], "Python API": [[359, "python-api"]], "Python package and dataset imports, load dataset": [[237, "python-package-and-dataset-imports-load-dataset"]], "Python, Cython or C/C++?": [[377, "python-cython-or-c-c"]], "QDA": [[994, "qda"]], "QuadraticDiscriminantAnalysis": [[547, null]], "Qualitative analysis of the impact of features on linear model predictions": [[44, "qualitative-analysis-of-the-impact-of-features-on-linear-model-predictions"]], "Quantifying the quality of clustering results": [[347, "quantifying-the-quality-of-clustering-results"]], "Quantile Regression": [[996, "quantile-regression"]], "Quantile Regressor": [[315, "quantile-regressor"]], "Quantile loss in HistGradientBoostingRegressor": [[316, "quantile-loss-in-histgradientboostingregressor"]], "Quantile regression": [[208, null]], "QuantileRegressor": [[669, null]], "QuantileTransformer": [[882, null]], "QuantileTransformer (Gaussian output)": [[303, "quantiletransformer-gaussian-output"]], "QuantileTransformer (uniform output)": [[303, "quantiletransformer-uniform-output"]], "Quantitative evaluation": [[67, "quantitative-evaluation"]], "RANSAC: RANdom SAmple Consensus": [[996, "ransac-random-sample-consensus"]], "RANSACRegressor": [[670, null]], "RBF": [[621, null]], "RBF SVM parameters": [[335, null]], "RBF kernel": [[339, "rbf-kernel"], [998, "rbf-kernel"]], "RBFSampler": [[640, null]], "RCV1 dataset": [[366, "rcv1-dataset"]], "RFE": [[591, null]], "RFECV": [[592, null]], "ROC AUC now supports multiclass classification": [[312, "roc-auc-now-supports-multiclass-classification"]], "ROC Curve with Visualization API": [[245, null]], "ROC curve showing a specific class": [[272, "roc-curve-showing-a-specific-class"]], "ROC curve using micro-averaged OvR": [[272, "roc-curve-using-micro-averaged-ovr"]], "ROC curve using the OvO macro-average": [[272, "roc-curve-using-the-ovo-macro-average"]], "ROC curve using the OvR macro-average": [[272, "roc-curve-using-the-ovr-macro-average"]], "Radial Basis Function Kernel": [[992, "radial-basis-function-kernel"]], "Radial Basis Function kernel": [[176, "radial-basis-function-kernel"]], "Radial basis function (RBF) kernel": [[413, "radial-basis-function-rbf-kernel"]], "RadiusNeighborsClassifier": [[855, null]], "RadiusNeighborsRegressor": [[856, null]], "RadiusNeighborsTransformer": [[857, null]], "Rand index": [[403, "rand-index"]], "Random Forest Feature Importance on Breast Cancer Data": [[186, "random-forest-feature-importance-on-breast-cancer-data"]], "Random Forests": [[410, "random-forests"]], "Random Numbers": [[373, "random-numbers"]], "Random Projection": [[1012, null]], "Random data": [[269, "random-data"]], "Random forests and other randomized tree ensembles": [[410, "random-forests-and-other-randomized-tree-ensembles"]], "Random permutations cross-validation a.k.a. Shuffle & Split": [[407, "random-permutations-cross-validation-a-k-a-shuffle-split"]], "Random projections": [[1017, "random-projections"]], "Random sampling": [[42, "module-sklearn.utils.random"]], "RandomForestClassifier": [[561, null]], "RandomForestRegressor": [[562, null]], "RandomTreesEmbedding": [[563, null]], "Randomized Parameter Optimization": [[989, "randomized-parameter-optimization"]], "RandomizedSearchCV": [[815, null]], "Rangespan": [[1024, "id11"]], "Ranking loss": [[1000, "ranking-loss"]], "Rational Quadratic kernel": [[176, "rational-quadratic-kernel"]], "Rational quadratic kernel": [[413, "rational-quadratic-kernel"]], "RationalQuadratic": [[622, null]], "Reading the existing code base": [[371, "reading-the-existing-code-base"]], "Real world datasets": [[366, null]], "Real-world data set": [[107, "real-world-data-set"]], "Receiver Operating Characteristic (ROC) with cross validation": [[273, null]], "Receiver operating characteristic (ROC)": [[1000, "receiver-operating-characteristic-roc"]], "Recently Deprecated": [[1, null]], "Recognizing hand-written digits": [[69, null]], "Recommendation Engine packages": [[1019, "recommendation-engine-packages"]], "Reconstruct and denoise test images": [[45, "reconstruct-and-denoise-test-images"]], "Recursive feature elimination": [[161, null], [412, "recursive-feature-elimination"]], "Recursive feature elimination with cross-validation": [[162, null]], "Reference Steps": [[375, "reference-steps"]], "References": [[51, "references"], [63, "references"], [65, "references"], [112, "references"], [137, "references"], [188, "references"], [194, "references"], [280, "references"], [296, "references"], [413, "references"]], "Region of Practical Equivalence": [[263, "region-of-practical-equivalence"]], "Regression": [[175, "regression"], [996, "regression"], [1004, "regression"], [1014, "regression"], [1015, "regression"], [1016, "regression"]], "Regression criteria": [[1016, "regression-criteria"]], "Regression metrics": [[28, "regression-metrics"], [1000, "regression-metrics"]], "RegressorChain": [[839, null], [1001, "regressorchain"]], "RegressorMixin": [[426, null]], "RegressorTags": [[923, null]], "Regressors with variable selection": [[26, "regressors-with-variable-selection"]], "Regularization": [[1004, "regularization"]], "Regularization path of L1- Logistic Regression": [[201, null]], "Related Projects": [[1019, null]], "Related changes": [[1038, "related-changes"]], "Relation to impurity-based importance in trees": [[1008, "relation-to-impurity-based-importance-in-trees"]], "Release Highlights": [[180, "release-highlights"], [311, null]], "Release Highlights for scikit-learn 0.22": [[312, null]], "Release Highlights for scikit-learn 0.23": [[313, null]], "Release Highlights for scikit-learn 0.24": [[314, null]], "Release Highlights for scikit-learn 1.0": [[315, null]], "Release Highlights for scikit-learn 1.1": [[316, null]], "Release Highlights for scikit-learn 1.2": [[317, null]], "Release Highlights for scikit-learn 1.3": [[318, null]], "Release Highlights for scikit-learn 1.4": [[319, null]], "Release Highlights for scikit-learn 1.5": [[320, null]], "Release Highlights for scikit-learn 1.6": [[321, null]], "Release Highlights for scikit-learn 1.7": [[322, null]], "Release History": [[1029, null]], "Releasing": [[375, "releasing"]], "Remarks": [[236, "remarks"]], "Removed modules": [[1031, "removed-modules"]], "Removing features with low variance": [[412, "removing-features-with-low-variance"]], "Repeated K-Fold": [[407, "repeated-k-fold"]], "RepeatedKFold": [[816, null]], "RepeatedStratifiedKFold": [[817, null]], "Replace missing values by 0": [[179, "replace-missing-values-by-0"]], "Replicating the training environment in production": [[397, "replicating-the-training-environment-in-production"]], "Resolve conflicts in lock files": [[371, "resolve-conflicts-in-lock-files"]], "Restricted Boltzmann Machine features for digit classification": [[301, null]], "Restricted Boltzmann machines": [[1005, "restricted-boltzmann-machines"]], "Results interpretation": [[282, "results-interpretation"]], "Retrieve dataframes from OpenML": [[312, "retrieve-dataframes-from-openml"]], "Retrieve the data from Internet": [[52, "retrieve-the-data-from-internet"]], "Reuters Dataset related routines": [[48, "reuters-dataset-related-routines"]], "Rich HTML representation": [[234, "rich-html-representation"]], "Rich visual representation of estimators": [[313, "rich-visual-representation-of-estimators"]], "Ridge": [[671, null]], "Ridge Complexity": [[996, "ridge-complexity"]], "Ridge coefficients as a function of the L2 Regularization": [[210, null]], "Ridge regression and classification": [[996, "ridge-regression-and-classification"]], "RidgeCV": [[672, null]], "RidgeClassifier": [[673, null]], "RidgeClassifierCV": [[674, null]], "Roadmap": [[1020, null]], "Robust Covariance Estimation": [[405, "robust-covariance-estimation"]], "Robust covariance estimation and Mahalanobis distances relevance": [[111, null]], "Robust linear estimator fitting": [[212, null]], "Robust linear model estimation using RANSAC": [[209, null]], "Robust vs Empirical covariance estimate": [[112, null]], "RobustScaler": [[303, "robustscaler"], [883, null]], "Robustness of cross-validation results": [[354, "robustness-of-cross-validation-results"]], "Robustness regression: outliers and modeling errors": [[996, "robustness-regression-outliers-and-modeling-errors"]], "Robustness to failure": [[989, "robustness-to-failure"]], "RocCurveDisplay": [[702, null]], "Roles And Responsibilities": [[386, "roles-and-responsibilities"]], "Rolling your own estimator": [[373, "rolling-your-own-estimator"]], "Routing Meta-Estimator": [[239, "routing-meta-estimator"]], "Run the benchmark": [[91, "run-the-benchmark"]], "Run the code and plot the results": [[47, "run-the-code-and-plot-the-results"]], "Running GridSearchCV using multiple evaluation metrics": [[267, "running-gridsearchcv-using-multiple-evaluation-metrics"]], "R\u00b2 score, the coefficient of determination": [[1000, "r2-score-the-coefficient-of-determination"]], "SGD": [[1014, "id5"]], "SGD: Maximum margin separating hyperplane": [[217, null]], "SGD: Penalties": [[216, null]], "SGD: Weighted samples": [[218, null]], "SGD: convex loss functions": [[215, null]], "SGDClassifier": [[675, null]], "SGDOneClassSVM": [[676, null]], "SGDRegressor": [[677, null]], "SKLEARN_ASSUME_FINITE": [[359, "sklearn-assume-finite"]], "SKLEARN_BUILD_ENABLE_DEBUG_SYMBOLS": [[359, "sklearn-build-enable-debug-symbols"]], "SKLEARN_ENABLE_DEBUG_CYTHON_DIRECTIVES": [[359, "sklearn-enable-debug-cython-directives"]], "SKLEARN_PAIRWISE_DIST_CHUNK_SIZE": [[359, "sklearn-pairwise-dist-chunk-size"]], "SKLEARN_RUN_FLOAT32_TESTS": [[359, "sklearn-run-float32-tests"]], "SKLEARN_SEED": [[359, "sklearn-seed"]], "SKLEARN_SKIP_NETWORK_TESTS": [[359, "sklearn-skip-network-tests"]], "SKLEARN_TESTS_GLOBAL_RANDOM_SEED": [[359, "sklearn-tests-global-random-seed"]], "SKLEARN_WARNINGS_AS_ERRORS": [[359, "sklearn-warnings-as-errors"]], "SKLEARN_WORKING_MEMORY": [[359, "sklearn-working-memory"]], "SVC": [[910, null], [1015, "svc"]], "SVM Margins Example": [[340, null]], "SVM Tie Breaking Example": [[343, null]], "SVM with custom kernel": [[331, null]], "SVM-Anova: SVM with univariate feature selection": [[338, null]], "SVM: Maximum margin separating hyperplane": [[336, null]], "SVM: Separating hyperplane for unbalanced classes": [[337, null]], "SVM: Weighted samples": [[344, null]], "SVR": [[911, null], [1015, "svr"]], "Sample generators": [[10, "sample-generators"]], "Sample images": [[365, "sample-images"]], "Sample pipeline for text feature extraction and evaluation": [[264, null]], "Sample weight support": [[410, "sample-weight-support"]], "Sample-weight support for Lasso and ElasticNet": [[313, "sample-weight-support-for-lasso-and-elasticnet"]], "Scalability and stability improvements to KMeans": [[313, "scalability-and-stability-improvements-to-kmeans"]], "Scalable learning with polynomial kernel approximation": [[188, null]], "Scale Invariance": [[88, "scale-invariance"]], "Scaling data with outliers": [[1010, "scaling-data-with-outliers"]], "Scaling features to a range": [[1010, "scaling-features-to-a-range"]], "Scaling sparse data": [[1010, "scaling-sparse-data"]], "Scaling the regularization parameter for SVCs": [[342, null]], "Scaling up the One-Class SVM": [[1006, "scaling-up-the-one-class-svm"]], "Scaling with instances using out-of-core learning": [[360, "scaling-with-instances-using-out-of-core-learning"]], "Scatter plot of scores": [[115, "scatter-plot-of-scores"]], "Scikit-learn governance and decision-making": [[386, null]], "Scores and probabilities": [[1015, "scores-and-probabilities"]], "Scoring API overview": [[1000, "scoring-api-overview"]], "Scoring functions": [[399, "scoring-functions"]], "Searching for optimal parameters with successive halving": [[989, "searching-for-optimal-parameters-with-successive-halving"]], "Second example": [[49, "second-example"]], "Second experiment: varying number of classes and clusters": [[73, "second-experiment-varying-number-of-classes-and-clusters"]], "Security": [[1049, "security"]], "Security & Maintainability Limitations": [[397, "security-maintainability-limitations"]], "Segmenting the picture of greek coins in regions": [[80, null]], "SelectFdr": [[593, null]], "SelectFpr": [[594, null]], "SelectFromModel": [[595, null]], "SelectFwe": [[596, null]], "SelectKBest": [[597, null]], "SelectPercentile": [[598, null]], "Selecting Lasso via an information criterion": [[198, "selecting-lasso-via-an-information-criterion"]], "Selecting Lasso via cross-validation": [[198, "selecting-lasso-via-cross-validation"]], "Selecting dimensionality reduction with Pipeline and GridSearchCV": [[104, null]], "Selecting features based on importance": [[163, "selecting-features-based-on-importance"]], "Selecting features with Sequential Feature Selection": [[163, "selecting-features-with-sequential-feature-selection"]], "Selecting the number of clusters with silhouette analysis on KMeans clustering": [[93, null]], "SelectorMixin": [[599, null]], "Self Training": [[1013, "self-training"]], "SelfTrainingClassifier": [[902, null]], "Semi Supervised Classification": [[180, "semi-supervised-classification"], [323, null]], "Semi-supervised Classification on a Text Dataset": [[328, null]], "Semi-supervised learning": [[324, "semi-supervised-learning"], [1013, null]], "Sequence similarity matrix under the kernel": [[175, "sequence-similarity-matrix-under-the-kernel"]], "Sequential Feature Selection": [[412, "sequential-feature-selection"]], "SequentialFeatureSelector": [[600, null]], "Serving the model artifact": [[397, "serving-the-model-artifact"]], "Set up the pipeline and parameter grid": [[262, "set-up-the-pipeline-and-parameter-grid"]], "Setting a decision threshold for a pre-fitted classifier": [[165, "setting-a-decision-threshold-for-a-pre-fitted-classifier"]], "Setting regularization parameter": [[996, "setting-regularization-parameter"]], "Setting the regularization parameter: leave-one-out Cross-Validation": [[996, "setting-the-regularization-parameter-leave-one-out-cross-validation"]], "Severity Model - Gamma distribution": [[223, "severity-model-gamma-distribution"]], "Shrinkage and Covariance Estimator": [[994, "shrinkage-and-covariance-estimator"]], "Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood": [[109, null]], "Shrinkage via learning rate": [[410, "shrinkage-via-learning-rate"]], "Shrunk Covariance": [[405, "shrunk-covariance"]], "ShrunkCovariance": [[472, null]], "ShuffleSplit": [[818, null]], "Sigmoid": [[401, "sigmoid"]], "Sigmoid kernel": [[339, "sigmoid-kernel"], [998, "sigmoid-kernel"]], "Silhouette Coefficient": [[403, "silhouette-coefficient"]], "Simple 1D Kernel Density Estimation": [[288, null]], "Simple Pipeline": [[239, "simple-pipeline"]], "SimpleImputer": [[629, null]], "Single estimator versus bagging: bias-variance decomposition": [[137, null]], "Single label": [[367, "single-label"]], "Skewed Chi Squared Kernel": [[992, "skewed-chi-squared-kernel"]], "SkewedChi2Sampler": [[641, null]], "Social Media": [[1023, "social-media"]], "Solvers": [[996, "solvers"]], "Sparse coding with a precomputed dictionary": [[129, null], [408, "sparse-coding-with-a-precomputed-dictionary"]], "Sparse components - MiniBatchSparsePCA": [[120, "sparse-components-minibatchsparsepca"]], "Sparse input": [[1010, null]], "Sparse inverse covariance": [[405, "sparse-inverse-covariance"]], "Sparse inverse covariance estimation": [[113, null]], "Sparse principal components analysis (SparsePCA and MiniBatchSparsePCA)": [[408, "sparse-principal-components-analysis-sparsepca-and-minibatchsparsepca"]], "Sparse random projection": [[1012, "sparse-random-projection"]], "SparseCoder": [[539, null]], "SparsePCA": [[540, null]], "SparseRandomProjection": [[898, null]], "Sparsity": [[411, "sparsity"]], "Species distribution dataset": [[366, "species-distribution-dataset"]], "Species distribution modeling": [[51, null]], "Specifying an objective metric": [[989, "specifying-an-objective-metric"]], "Specifying multiple metrics for evaluation": [[989, "specifying-multiple-metrics-for-evaluation"]], "Spectral Biclustering": [[400, "spectral-biclustering"]], "Spectral Clustering Graphs": [[403, "spectral-clustering-graphs"]], "Spectral Co-Clustering": [[400, "spectral-co-clustering"]], "Spectral Embedding": [[997, "spectral-embedding"]], "Spectral clustering": [[403, "spectral-clustering"]], "Spectral clustering for image segmentation": [[99, null]], "Spectral embedding for non-linear dimensionality reduction": [[225, "spectral-embedding-for-non-linear-dimensionality-reduction"]], "SpectralBiclustering": [[447, null]], "SpectralClustering": [[448, null]], "SpectralCoclustering": [[449, null]], "SpectralEmbedding": [[691, null]], "Sphinx version": [[371, null]], "Spline Transformers": [[315, "spline-transformers"]], "Spline transformer": [[1010, "spline-transformer"]], "SplineTransformer": [[884, null]], "Splitters": [[30, "splitters"]], "Spotify": [[1024, "id2"]], "Stack of predictors on a single data set": [[154, "stack-of-predictors-on-a-single-data-set"]], "Stacked generalization": [[410, "stacked-generalization"]], "Stacking Classifier and Regressor": [[312, "stacking-classifier-and-regressor"]], "StackingClassifier": [[564, null]], "StackingRegressor": [[565, null]], "Stalled and Unclaimed Issues": [[371, "stalled-and-unclaimed-issues"]], "Stalled pull requests": [[371, "stalled-pull-requests"]], "Standard replies for reviewing": [[379, "standard-replies-for-reviewing"]], "StandardScaler": [[303, "standardscaler"], [885, null]], "Standardization, or mean removal and variance scaling": [[1010, "standardization-or-mean-removal-and-variance-scaling"]], "Statement of purpose: Scikit-learn in 2018": [[1020, "statement-of-purpose-scikit-learn-in-2018"]], "Statistical comparison of models using grid search": [[263, null]], "Statistical learning with Python": [[1019, "statistical-learning-with-python"]], "Stochastic Gradient Descent": [[1014, null]], "Stochastic Gradient Descent - SGD": [[996, "stochastic-gradient-descent-sgd"]], "Stochastic Gradient Descent for sparse data": [[1014, "stochastic-gradient-descent-for-sparse-data"]], "Stochastic Maximum Likelihood learning": [[1005, "stochastic-maximum-likelihood-learning"]], "Stopping criterion": [[1014, "stopping-criterion"]], "Strategies comparison": [[280, "strategies-comparison"]], "Strategies to scale computationally: bigger data": [[360, null]], "Stratified K-fold": [[407, "stratified-k-fold"]], "Stratified Shuffle Split": [[407, "stratified-shuffle-split"]], "StratifiedGroupKFold": [[407, "stratifiedgroupkfold"], [819, null]], "StratifiedKFold": [[820, null]], "StratifiedShuffleSplit": [[821, null]], "Streaming instances": [[360, "streaming-instances"]], "String name scorers": [[1000, "string-name-scorers"]], "Submitting a bug report or a feature request": [[371, "submitting-a-bug-report-or-a-feature-request"]], "Subsampling": [[410, "subsampling"]], "Successive Halving Iterations": [[275, null]], "Successive Halving estimators for tuning hyper-parameters": [[314, "successive-halving-estimators-for-tuning-hyper-parameters"]], "Sum": [[623, null]], "Summarizing the key points": [[397, "summarizing-the-key-points"]], "Summary": [[63, "summary"], [144, "summary"], [348, "summary"]], "Summary of cross-validation approach": [[198, "summary-of-cross-validation-approach"]], "Summary of model persistence methods": [[397, "id2"]], "Supervised learning": [[1022, null]], "Support": [[1023, null]], "Support Vector Machines": [[180, "support-vector-machines"], [330, null], [1015, null]], "Support Vector Regression (SVR) using linear and non-linear kernels": [[341, null]], "Support for Array API": [[1048, "support-for-array-api"], [1049, "support-for-array-api"], [1050, "support-for-array-api"], [1051, "support-for-array-api"], [1052, "support-for-array-api"]], "Support for Array API-compatible inputs": [[399, "support-for-array-api-compatible-inputs"]], "Support for SciPy sparse arrays": [[1048, "support-for-scipy-sparse-arrays"]], "Support for building with Meson": [[1049, "support-for-building-with-meson"]], "Support for missing values": [[149, "support-for-missing-values"]], "Support for quantile loss": [[149, "support-for-quantile-loss"]], "Swiss Roll": [[229, "swiss-roll"]], "Swiss Roll And Swiss-Hole Reduction": [[229, null]], "Swiss-Hole": [[229, "swiss-hole"]], "Synthetic dataset": [[376, "synthetic-dataset"]], "Synthetic example": [[107, "synthetic-example"]], "T-distributed Stochastic Neighbor Embedding": [[225, "t-distributed-stochastic-neighbor-embedding"]], "TSNE": [[692, null]], "Table of Contents": [[383, "table-of-contents"]], "Tags": [[924, null]], "Take-home messages": [[263, "take-home-messages"]], "Target Encoder": [[1010, "target-encoder"]], "Target Encoder\u2019s Internal Cross fitting": [[310, null]], "Target Types": [[385, "target-types"]], "Target format": [[1001, "target-format"], [1001, "id5"], [1001, "id8"], [1001, "id10"]], "TargetEncoder": [[886, null]], "TargetEncoder: a new category encoding strategy": [[318, "targetencoder-a-new-category-encoding-strategy"]], "TargetTags": [[925, null]], "Technical Committee": [[386, "technical-committee"]], "Temperature Scaling": [[401, "temperature-scaling"]], "Test with permutations the significance of a classification score": [[269, null]], "Testing Functions": [[380, "testing-functions"]], "Testing and improving test coverage": [[371, "testing-and-improving-test-coverage"]], "Text feature extraction": [[411, "text-feature-extraction"]], "TfidfTransformer": [[588, null]], "TfidfVectorizer": [[348, "tfidfvectorizer"], [589, null]], "Tf\u2013idf term weighting": [[411, "tfidf-term-weighting"]], "The 20 newsgroups text dataset": [[366, "the-20-newsgroups-text-dataset"]], "The Bag of Words representation": [[411, "the-bag-of-words-representation"]], "The Dirichlet Process": [[999, "the-dirichlet-process"]], "The French Motor Third-Party Liability Claims dataset": [[206, "the-french-motor-third-party-liability-claims-dataset"]], "The Johnson-Lindenstrauss bound for embedding with random projections": [[236, null]], "The Johnson-Lindenstrauss lemma": [[1012, "the-johnson-lindenstrauss-lemma"]], "The Labeled Faces in the Wild face recognition dataset": [[366, "the-labeled-faces-in-the-wild-face-recognition-dataset"]], "The Meson Build Backend": [[379, "the-meson-build-backend"]], "The Olivetti faces dataset": [[366, "the-olivetti-faces-dataset"]], "The Yeast UCI dataset": [[280, "the-yeast-uci-dataset"]], "The average precision score in multi-label settings": [[270, "the-average-precision-score-in-multi-label-settings"]], "The credit card dataset": [[257, "the-credit-card-dataset"]], "The cross_validate function and multiple metric evaluation": [[407, "the-cross-validate-function-and-multiple-metric-evaluation"]], "The data": [[116, "the-data"]], "The dataset": [[261, "the-dataset"]], "The dataset: simulated hourly wages": [[182, "the-dataset-simulated-hourly-wages"]], "The dataset: wages": [[183, "the-dataset-wages"]], "The diabetes dataset": [[277, "the-diabetes-dataset"]], "The importance of hyperparameters search": [[280, "the-importance-of-hyperparameters-search"]], "The machine-learning pipeline": [[183, "the-machine-learning-pipeline"]], "The people behind scikit-learn": [[0, "the-people-behind-scikit-learn"]], "The problem of correlated variables": [[183, "the-problem-of-correlated-variables"]], "The scikit-learn MOOC": [[1018, "the-scikit-learn-mooc"]], "The scikit-learn.org Website": [[375, "the-scikit-learn-org-website"]], "The scoring parameter: defining model evaluation rules": [[1000, "the-scoring-parameter-defining-model-evaluation-rules"]], "Theil-Sen Regression": [[222, null]], "Theil-Sen estimator: generalized-median-based estimator": [[996, "theil-sen-estimator-generalized-median-based-estimator"]], "TheilSenRegressor": [[678, null]], "Theoretical bounds": [[236, "theoretical-bounds"]], "Third Party Development and scikit-learn Dependency": [[239, "third-party-development-and-scikit-learn-dependency"]], "Third party distributions of scikit-learn": [[389, "third-party-distributions-of-scikit-learn"]], "Time Series Split": [[407, "time-series-split"]], "Time-based cross-validation": [[44, "time-based-cross-validation"]], "Time-related feature engineering": [[44, null]], "Time-steps as categories": [[44, "time-steps-as-categories"]], "TimeSeriesSplit": [[822, null]], "Timing and accuracy plots": [[237, "timing-and-accuracy-plots"]], "Tips and Tricks": [[358, "tips-and-tricks"]], "Tips for developing with Cython in scikit-learn": [[372, "tips-for-developing-with-cython-in-scikit-learn"]], "Tips for parameter search": [[989, "tips-for-parameter-search"]], "Tips for performance": [[372, "tips-for-performance"]], "Tips on Practical Use": [[1004, "tips-on-practical-use"], [1014, "tips-on-practical-use"], [1015, "tips-on-practical-use"]], "Tips on practical use": [[997, "tips-on-practical-use"], [1016, "tips-on-practical-use"]], "Tips to ease development": [[372, "tips-to-ease-development"]], "Tools": [[399, "tools"]], "Top terms per cluster": [[347, "top-terms-per-cluster"]], "Top-k accuracy score": [[1000, "top-k-accuracy-score"]], "Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation": [[55, null]], "Total impurity of leaves vs effective alphas of pruned tree": [[350, "total-impurity-of-leaves-vs-effective-alphas-of-pruned-tree"]], "Totally Random Trees Embedding": [[410, "totally-random-trees-embedding"]], "Toy datasets": [[368, null]], "Tracking feature names in a pipeline": [[404, "tracking-feature-names-in-a-pipeline"]], "Trade-offs: which estimator ?": [[996, null]], "Train and Persist the Model": [[397, "train-and-persist-the-model"]], "Train classifiers": [[335, "train-classifiers"]], "Train models on the diabetes dataset": [[243, "train-models-on-the-diabetes-dataset"]], "Train tree classifier": [[353, "train-tree-classifier"]], "Training": [[301, "training"], [1003, "training"]], "Training SVC model and plotting decision boundaries": [[339, "training-svc-model-and-plotting-decision-boundaries"]], "Training a Random Forest and Plotting the ROC Curve": [[245, "training-a-random-forest-and-plotting-the-roc-curve"]], "Training a Ridge Regressor": [[310, "training-a-ridge-regressor"]], "Training and Evaluating Pipelines with Different Encoders": [[309, "training-and-evaluating-pipelines-with-different-encoders"]], "Training and prediction with DecisionTree and AdaBoost Regressors": [[135, "training-and-prediction-with-decisiontree-and-adaboost-regressors"]], "Training classifiers": [[156, "training-classifiers"]], "Training of the model": [[150, "training-of-the-model"]], "Training the AdaBoostClassifier": [[134, "training-the-adaboostclassifier"]], "Training the Ridge Regressor": [[210, "training-the-ridge-regressor"]], "Transform": [[1003, "transform"]], "Transform data": [[115, "transform-data"]], "TransformedTargetRegressor": [[461, null]], "TransformerMixin": [[427, null]], "TransformerTags": [[926, null]], "Transformers and pre-processors": [[384, "transformers-and-pre-processors"]], "Transforming data other than X in a Pipeline": [[321, "transforming-data-other-than-x-in-a-pipeline"]], "Transforming target in regression": [[404, "transforming-target-in-regression"]], "Transforming the prediction target (y)": [[1011, null]], "Translations of scikit-learn documentation": [[1019, "translations-of-scikit-learn-documentation"]], "Tree algorithms: ID3, C4.5, C5.0 and CART": [[1016, "tree-algorithms-id3-c4-5-c5-0-and-cart"]], "Tree pruning": [[312, "tree-pruning"]], "Tree structure": [[353, "tree-structure"]], "Tree-based feature selection": [[412, "tree-based-feature-selection"]], "Tree\u2019s Feature Importance from Mean Decrease in Impurity (MDI)": [[185, "tree-s-feature-importance-from-mean-decrease-in-impurity-mdi"]], "Triaging operations for members of the core and contributor experience teams": [[370, "triaging-operations-for-members-of-the-core-and-contributor-experience-teams"]], "Trigonometric features": [[44, "trigonometric-features"]], "Troubleshooting": [[389, "troubleshooting"]], "Truncated singular value decomposition and latent semantic analysis": [[408, "truncated-singular-value-decomposition-and-latent-semantic-analysis"]], "TruncatedSVD": [[541, null]], "TunedThresholdClassifierCV": [[823, null]], "TunedThresholdClassifierCV: Tuning the decision threshold of a binary classifier": [[320, "tunedthresholdclassifiercv-tuning-the-decision-threshold-of-a-binary-classifier"]], "Tuning hyper-parameters": [[261, "tuning-hyper-parameters"]], "Tuning the cut-off point": [[257, "tuning-the-cut-off-point"]], "Tuning the decision threshold": [[257, "tuning-the-decision-threshold"], [277, "tuning-the-decision-threshold"]], "Tuning the decision threshold for class prediction": [[402, null]], "Tuning the hyper-parameters of an estimator": [[989, null]], "Tuning the hyper-parameters of the quantile regressors": [[146, "tuning-the-hyper-parameters-of-the-quantile-regressors"]], "Tweedie regression on insurance claims": [[223, null]], "TweedieRegressor": [[679, null]], "Two-class AdaBoost": [[136, null]], "Types": [[372, "types"]], "T\u00e9l\u00e9com ParisTech": [[1024, "id7"]], "Unbalanced problems": [[1015, "unbalanced-problems"]], "UndefinedMetricWarning": [[576, null]], "Underfitting vs. Overfitting": [[278, null]], "Understanding the decision tree structure": [[353, null]], "Univariate Feature Selection": [[159, null]], "Univariate feature imputation": [[990, "univariate-feature-imputation"]], "Univariate feature selection": [[159, "id1"], [412, "univariate-feature-selection"]], "Univariate vs. Multivariate Imputation": [[990, "univariate-vs-multivariate-imputation"]], "Universal attributes": [[373, "universal-attributes"]], "Unlabeled entries in y": [[1013, null]], "Unsupervised Nearest Neighbors": [[1003, "unsupervised-nearest-neighbors"]], "Unsupervised dimensionality reduction": [[1017, null]], "Unsupervised learning": [[1025, null]], "Unweighted feature selection": [[394, "unweighted-feature-selection"]], "Updating Authors List": [[375, "updating-authors-list"]], "Usage": [[401, "usage"], [404, "usage"], [404, "id1"], [410, "usage"], [410, "id24"], [410, "id25"], [410, "id27"], [410, "id35"], [996, "usage"]], "Usage Examples": [[394, "usage-examples"]], "Use markdown formatting": [[376, "use-markdown-formatting"]], "Useful pytest aliases and flags": [[379, "useful-pytest-aliases-and-flags"]], "User Guide": [[1026, null]], "User Questions": [[1023, "user-questions"]], "Using Cython": [[377, "using-cython"]], "Using KBinsDiscretizer to discretize continuous features": [[304, null]], "Using None or RandomState instances, and repeated calls to fit and split": [[354, "using-none-or-randomstate-instances-and-repeated-calls-to-fit-and-split"]], "Using OpenMP": [[372, "using-openmp"]], "Using a debugger, gdb": [[377, "using-a-debugger-gdb"]], "Using a lock-file to get an environment close to the CI": [[379, "using-a-lock-file-to-get-an-environment-close-to-the-ci"]], "Using cross-validation": [[996, "using-cross-validation"]], "Using cross-validation iterators to split train and test": [[407, "using-cross-validation-iterators-to-split-train-and-test"]], "Using feature names to specify monotonic constraints": [[151, "using-feature-names-to-specify-monotonic-constraints"]], "Using gprof": [[377, "using-gprof"]], "Using multiple metric evaluation": [[1000, "using-multiple-metric-evaluation"]], "Using negative tolerance values": [[163, "using-negative-tolerance-values"]], "Using scikit-learn": [[383, "using-scikit-learn"]], "Using stop words": [[411, "using-stop-words"]], "Using valgrind / callgrind / kcachegrind": [[377, "using-valgrind-callgrind-kcachegrind"]], "Using yep and gperftools": [[377, "using-yep-and-gperftools"]], "Utilities for Developers": [[380, null]], "Validation Tools": [[380, "validation-tools"]], "Validation curve": [[995, "validation-curve"]], "Validation curves: plotting scores to evaluate models": [[995, null]], "ValidationCurveDisplay": [[824, null]], "Vanilla predictive model": [[257, "vanilla-predictive-model"]], "VarianceThreshold": [[601, null]], "Variational Bayesian Gaussian Mixture": [[999, "variational-bayesian-gaussian-mixture"]], "Various Agglomerative Clustering on a 2D embedding of digits": [[85, null]], "Varying regularization in Multi-layer Perceptron": [[298, null]], "Varying the metric": [[403, "varying-the-metric"]], "Vector Quantization Example": [[86, null]], "Vectorizing a large text corpus with the hashing trick": [[411, "vectorizing-a-large-text-corpus-with-the-hashing-trick"]], "Version 0.10": [[1031, "version-0-10"]], "Version 0.11": [[1031, "version-0-11"]], "Version 0.12": [[1031, "version-0-12"]], "Version 0.12.1": [[1031, "version-0-12-1"]], "Version 0.13": [[1032, null], [1032, "changes-0-13"]], "Version 0.13.1": [[1032, "version-0-13-1"]], "Version 0.14": [[1033, null], [1033, "changes-0-14"]], "Version 0.15": [[1034, null], [1034, "changes-0-15"]], "Version 0.15.1": [[1034, "version-0-15-1"]], "Version 0.15.2": [[1034, "version-0-15-2"]], "Version 0.16": [[1035, null], [1035, "changes-0-16"]], "Version 0.16.1": [[1035, "version-0-16-1"]], "Version 0.17": [[1036, null], [1036, "changes-0-17"]], "Version 0.17.1": [[1036, "version-0-17-1"]], "Version 0.18": [[1037, null], [1037, "changes-0-18"]], "Version 0.18.1": [[1037, "version-0-18-1"]], "Version 0.18.2": [[1037, "version-0-18-2"]], "Version 0.19": [[1038, null], [1038, "id1"]], "Version 0.19.1": [[1038, "version-0-19-1"]], "Version 0.19.2": [[1038, "version-0-19-2"]], "Version 0.20": [[1039, null]], "Version 0.20.0": [[1039, "version-0-20-0"]], "Version 0.20.1": [[1039, "version-0-20-1"]], "Version 0.20.2": [[1039, "version-0-20-2"]], "Version 0.20.3": [[1039, "version-0-20-3"]], "Version 0.20.4": [[1039, "version-0-20-4"]], "Version 0.21": [[1040, null]], "Version 0.21.0": [[1040, "version-0-21-0"]], "Version 0.21.1": [[1040, "version-0-21-1"]], "Version 0.21.2": [[1040, "version-0-21-2"]], "Version 0.21.3": [[1040, "version-0-21-3"]], "Version 0.22": [[1041, null]], "Version 0.22.0": [[1041, "version-0-22-0"]], "Version 0.22.1": [[1041, "version-0-22-1"]], "Version 0.22.2.post1": [[1041, "version-0-22-2-post1"]], "Version 0.23": [[1042, null]], "Version 0.23.0": [[1042, "version-0-23-0"]], "Version 0.23.1": [[1042, "version-0-23-1"]], "Version 0.23.2": [[1042, "version-0-23-2"]], "Version 0.24": [[1043, null]], "Version 0.24.0": [[1043, "version-0-24-0"]], "Version 0.24.1": [[1043, "version-0-24-1"]], "Version 0.24.2": [[1043, "version-0-24-2"]], "Version 0.4": [[1031, "version-0-4"]], "Version 0.5": [[1031, "version-0-5"]], "Version 0.6": [[1031, "version-0-6"]], "Version 0.7": [[1031, "version-0-7"]], "Version 0.8": [[1031, "version-0-8"]], "Version 0.9": [[1031, "version-0-9"]], "Version 1.0": [[1044, null]], "Version 1.0.0": [[1044, "version-1-0-0"]], "Version 1.0.1": [[1044, "version-1-0-1"]], "Version 1.0.2": [[1044, "version-1-0-2"]], "Version 1.1": [[1045, null]], "Version 1.1.0": [[1045, "version-1-1-0"]], "Version 1.1.1": [[1045, "version-1-1-1"]], "Version 1.1.2": [[1045, "version-1-1-2"]], "Version 1.1.3": [[1045, "version-1-1-3"]], "Version 1.2": [[1046, null]], "Version 1.2.0": [[1046, "version-1-2-0"]], "Version 1.2.1": [[1046, "version-1-2-1"]], "Version 1.2.2": [[1046, "version-1-2-2"]], "Version 1.3": [[1047, null]], "Version 1.3.0": [[1047, "version-1-3-0"]], "Version 1.3.1": [[1047, "version-1-3-1"]], "Version 1.3.2": [[1047, "version-1-3-2"]], "Version 1.4": [[1048, null]], "Version 1.4.0": [[1048, "version-1-4-0"]], "Version 1.4.1": [[1048, "version-1-4-1"]], "Version 1.4.2": [[1048, "version-1-4-2"]], "Version 1.5": [[1049, null]], "Version 1.5.0": [[1049, "version-1-5-0"]], "Version 1.5.1": [[1049, "version-1-5-1"]], "Version 1.5.2": [[1049, "version-1-5-2"]], "Version 1.6": [[1050, null]], "Version 1.6.0": [[1050, "version-1-6-0"]], "Version 1.6.1": [[1050, "version-1-6-1"]], "Version 1.7": [[1051, null]], "Version 1.7.0": [[1051, "version-1-7-0"]], "Version 1.7.1": [[1051, "version-1-7-1"]], "Version 1.7.2": [[1051, "version-1-7-2"]], "Version 1.8": [[1052, null]], "Version 1.8.dev0": [[1052, "version-1-8-dev0"]], "Video resources": [[371, "video-resources"]], "Videos": [[1018, "videos"]], "Visual evaluation of regression models": [[1000, "visual-evaluation-of-regression-models"]], "Visualization": [[5, "visualization"], [30, "visualization"], [52, "visualization"], [335, "visualization"]], "Visualization of MLP weights on MNIST": [[300, null]], "Visualization of cluster hierarchy": [[403, "visualization-of-cluster-hierarchy"]], "Visualizations": [[1028, null]], "Visualizations with Display Objects": [[233, null]], "Visualize Comparison": [[144, "visualize-comparison"]], "Visualize cross-validation indices for many CV objects": [[258, "visualize-cross-validation-indices-for-many-cv-objects"]], "Visualize our data": [[258, "visualize-our-data"]], "Visualize the learning curves": [[238, "visualize-the-learning-curves"]], "Visualize the results": [[262, "visualize-the-results"]], "Visualize the results on PCA-reduced data": [[91, "visualize-the-results-on-pca-reduced-data"]], "Visualize training and prediction times": [[238, "visualize-training-and-prediction-times"]], "Visualizing Composite Estimators": [[404, "visualizing-composite-estimators"]], "Visualizing cross-validation behavior in scikit-learn": [[258, null]], "Visualizing the probabilistic predictions of a VotingClassifier": [[155, null]], "Visualizing the stock market structure": [[52, null]], "Voting Classifier": [[410, "voting-classifier"]], "Voting Regressor": [[410, "voting-regressor"]], "VotingClassifier": [[566, null]], "VotingRegressor": [[567, null]], "Warnings and Exceptions": [[380, "warnings-and-exceptions"]], "Ways to contribute": [[371, "ways-to-contribute"]], "Website update": [[1041, "website-update"]], "Weight handling based on class labels": [[42, "module-sklearn.utils.class_weight"]], "Weighted Average Probabilities (Soft Voting)": [[410, "weighted-average-probabilities-soft-voting"]], "Weighted scoring and fitting": [[394, "weighted-scoring-and-fitting"]], "Weighted scoring and unweighted fitting": [[394, "weighted-scoring-and-unweighted-fitting"]], "What are the inclusion criteria for new algorithms?": [[383, "what-are-the-inclusion-criteria-for-new-algorithms"]], "What does the \u201cspam\u201d label for issues or pull requests mean?": [[383, "what-does-the-spam-label-for-issues-or-pull-requests-mean"]], "What is the project name (a lot of people get it wrong)?": [[383, "what-is-the-project-name-a-lot-of-people-get-it-wrong"]], "What is the values array used here?": [[353, "what-is-the-values-array-used-here"]], "What\u2019s the best way to get help on scikit-learn usage?": [[383, "what-s-the-best-way-to-get-help-on-scikit-learn-usage"]], "Which scoring function should I use?": [[1000, "which-scoring-function-should-i-use"]], "WhiteKernel": [[624, null]], "Who is using scikit-learn?": [[1024, null]], "Why are there so many different estimators for linear models?": [[383, "why-are-there-so-many-different-estimators-for-linear-models"]], "Why are you so selective on what algorithms you include in scikit-learn?": [[383, "why-are-you-so-selective-on-what-algorithms-you-include-in-scikit-learn"]], "Why did you remove HMMs from scikit-learn?": [[383, "why-did-you-remove-hmms-from-scikit-learn"]], "Why do I sometimes get a crash/freeze with n_jobs > 1 under OSX or Linux?": [[383, "why-do-i-sometimes-get-a-crash-freeze-with-n-jobs-1-under-osx-or-linux"]], "Why do categorical variables need preprocessing in scikit-learn, compared to other tools?": [[383, "why-do-categorical-variables-need-preprocessing-in-scikit-learn-compared-to-other-tools"]], "Why does my job use more cores than specified with n_jobs?": [[383, "why-does-my-job-use-more-cores-than-specified-with-n-jobs"]], "Why is my pull request not getting any attention?": [[383, "why-is-my-pull-request-not-getting-any-attention"]], "Why is there no support for deep or reinforcement learning? Will there be such support in the future?": [[383, "why-is-there-no-support-for-deep-or-reinforcement-learning-will-there-be-such-support-in-the-future"]], "Why it\u2019s faster": [[410, "why-it-s-faster"]], "Why scikit?": [[383, "why-scikit"]], "Wikipedia principal eigenvector": [[56, null]], "Will you add GPU support?": [[383, "will-you-add-gpu-support"]], "Will you add graphical models or sequence prediction to scikit-learn?": [[383, "will-you-add-graphical-models-or-sequence-prediction-to-scikit-learn"]], "WinPython for Windows": [[389, "winpython-for-windows"]], "Windows": [[369, "windows"]], "Wine recognition dataset": [[368, "wine-recognition-dataset"]], "Workflow Overview": [[397, "workflow-overview"]], "Working on PRs to help review": [[370, "working-on-prs-to-help-review"]], "Working on issues to improve them": [[370, "working-on-issues-to-improve-them"]], "Working with graphs": [[42, "module-sklearn.utils.graph"]], "Working with sparse matrices and arrays": [[42, "module-sklearn.utils.sparsefuncs"]], "Working with text documents": [[180, "working-with-text-documents"], [345, null]], "Wrong causal interpretation": [[183, "wrong-causal-interpretation"]], "XOR dataset": [[339, "xor-dataset"]], "Yhat": [[1024, "id10"]], "Zero one loss": [[1000, "zero-one-loss"]], "Zopa": [[1024, "id27"]], "__sklearn_is_fitted__ as Developer API": [[132, null]], "_safe_indexing": [[927, null]], "accuracy_score": [[703, null]], "add_dummy_feature": [[887, null]], "additive_chi2_kernel": [[759, null]], "adjusted_mutual_info_score": [[704, null]], "adjusted_rand_score": [[705, null]], "affinity_propagation": [[450, null]], "all_displays": [[939, null]], "all_estimators": [[940, null]], "all_functions": [[941, null]], "as_float_array": [[929, null]], "assert_all_finite": [[930, null]], "auc": [[706, null]], "available_if": [[962, null]], "average_precision_score": [[707, null]], "balanced_accuracy_score": [[708, null]], "base.BaseEstimator and mixins:": [[373, null]], "betaworks": [[1024, "id4"]], "binarize": [[888, null]], "brier_score_loss": [[709, null]], "calibration_curve": [[435, null]], "calinski_harabasz_score": [[710, null]], "check_X_y": [[931, null]], "check_array": [[932, null]], "check_consistent_length": [[933, null]], "check_cv": [[825, null]], "check_estimator": [[942, null]], "check_increasing": [[635, null]], "check_is_fitted": [[983, null]], "check_memory": [[984, null]], "check_random_state": [[934, null]], "check_scalar": [[935, null]], "check_scoring": [[711, null]], "check_symmetric": [[985, null]], "chi2": [[602, null]], "chi2_kernel": [[760, null]], "class_likelihood_ratios": [[712, null]], "classification_report": [[713, null]], "clear_data_home": [[482, null]], "clone": [[428, null]], "cluster_optics_dbscan": [[451, null]], "cluster_optics_xi": [[452, null]], "cohen_kappa_score": [[716, null]], "column_or_1d": [[986, null]], "completeness_score": [[717, null]], "compute_class_weight": [[936, null]], "compute_optics_graph": [[453, null]], "compute_sample_weight": [[937, null]], "config_context": [[464, null]], "confusion_matrix": [[718, null]], "consensus_score": [[719, null]], "contingency_matrix": [[714, null]], "cosine_distances": [[761, null]], "cosine_similarity": [[762, null]], "coverage_error": [[720, null]], "cross_val_predict": [[826, null]], "cross_val_score": [[827, null]], "cross_validate": [[828, null]], "d2_absolute_error_score": [[721, null]], "d2_brier_score": [[722, null]], "d2_log_loss_score": [[723, null]], "d2_pinball_score": [[724, null]], "d2_tweedie_score": [[725, null]], "davies_bouldin_score": [[726, null]], "dbscan": [[414, null]], "dbscan_clustering": [[88, "dbscan-clustering"]], "dcg_score": [[727, null]], "delayed": [[968, null]], "density": [[946, null]], "deprecated": [[938, null]], "det_curve": [[728, null]], "dict_learning": [[542, null]], "dict_learning_online": [[543, null]], "distance_metrics": [[763, null]], "dump_svmlight_file": [[483, null]], "empirical_covariance": [[473, null]], "enable_halving_search_cv": [[577, null]], "enable_iterative_imputer": [[578, null]], "enet_path": [[680, null]], "estimate_bandwidth": [[454, null]], "estimator_checks_generator": [[943, null]], "estimator_html_repr": [[945, null]], "euclidean_distances": [[764, null]], "explained_variance_score": [[729, null]], "export_graphviz": [[917, null]], "export_text": [[918, null]], "extract_patches_2d": [[582, null]], "f1_score": [[730, null]], "f_classif": [[603, null]], "f_regression": [[604, null]], "fast_logdet": [[947, null]], "fastica": [[415, null]], "fbeta_score": [[731, null]], "fetch_20newsgroups": [[484, null]], "fetch_20newsgroups_vectorized": [[485, null]], "fetch_california_housing": [[486, null]], "fetch_covtype": [[487, null]], "fetch_file": [[488, null]], "fetch_kddcup99": [[489, null]], "fetch_lfw_pairs": [[490, null]], "fetch_lfw_people": [[491, null]], "fetch_olivetti_faces": [[492, null]], "fetch_openml": [[493, null]], "fetch_rcv1": [[494, null]], "fetch_species_distributions": [[495, null]], "fowlkes_mallows_score": [[732, null]], "gen_batches": [[952, null]], "gen_even_slices": [[953, null]], "get_config": [[625, null]], "get_data_home": [[496, null]], "get_feature_names_out Available in all Transformers": [[316, "get-feature-names-out-available-in-all-transformers"]], "get_params and set_params": [[373, "get-params-and-set-params"]], "get_routing_for_object": [[960, null]], "get_scorer": [[733, null]], "get_scorer_names": [[734, null]], "get_tags": [[954, null]], "graphical_lasso": [[474, null]], "grid_to_graph": [[583, null]], "hamming_loss": [[735, null]], "has_fit_parameter": [[987, null]], "haversine_distances": [[765, null]], "hinge_loss": [[736, null]], "homogeneity_completeness_v_measure": [[737, null]], "homogeneity_score": [[738, null]], "img_to_graph": [[584, null]], "incr_mean_variance_axis": [[974, null]], "indexable": [[956, null]], "inplace_column_scale": [[975, null]], "inplace_csr_column_scale": [[976, null]], "inplace_csr_row_normalize_l1": [[981, null]], "inplace_csr_row_normalize_l2": [[982, null]], "inplace_row_scale": [[977, null]], "inplace_swap_column": [[978, null]], "inplace_swap_row": [[979, null]], "is_classifier": [[429, null]], "is_clusterer": [[430, null]], "is_multilabel": [[963, null]], "is_outlier_detector": [[431, null]], "is_regressor": [[432, null]], "isotonic_regression": [[636, null]], "jaccard_score": [[739, null]], "johnson_lindenstrauss_min_dim": [[899, null]], "kNN-imputation of the missing values": [[179, "knn-imputation-of-the-missing-values"]], "k_means": [[455, null]], "kcachegrind": [[377, "kcachegrind"]], "kernel_metrics": [[766, null]], "kmeans_plusplus": [[456, null]], "kneighbors_graph": [[858, null]], "l1_min_c": [[912, null]], "label_binarize": [[889, null]], "label_ranking_average_precision_score": [[740, null]], "label_ranking_loss": [[741, null]], "laplacian_kernel": [[767, null]], "lars_path": [[681, null]], "lars_path_gram": [[682, null]], "lasso_path": [[683, null]], "learning_curve": [[829, null]], "ledoit_wolf": [[475, null]], "ledoit_wolf_shrinkage": [[476, null]], "linear_kernel": [[768, null]], "load_breast_cancer": [[497, null]], "load_diabetes": [[498, null]], "load_digits": [[499, null]], "load_files": [[500, null]], "load_iris": [[501, null]], "load_linnerud": [[502, null]], "load_sample_image": [[503, null]], "load_sample_images": [[504, null]], "load_svmlight_file": [[505, null]], "load_svmlight_files": [[506, null]], "load_wine": [[507, null]], "locally_linear_embedding": [[693, null]], "log_loss": [[742, null]], "macOS": [[369, "macos"]], "macOS compilers from Homebrew": [[369, "macos-compilers-from-homebrew"]], "macOS compilers from conda-forge": [[369, "macos-compilers-from-conda-forge"]], "make_biclusters": [[508, null]], "make_blobs": [[376, "make-blobs"], [509, null]], "make_checkerboard": [[510, null]], "make_circles": [[511, null]], "make_classification": [[376, "make-classification"], [512, null]], "make_column_selector": [[462, null]], "make_column_transformer": [[463, null]], "make_friedman1": [[513, null]], "make_friedman2": [[514, null]], "make_friedman3": [[515, null]], "make_gaussian_quantiles": [[516, null]], "make_hastie_10_2": [[517, null]], "make_low_rank_matrix": [[518, null]], "make_moons": [[519, null]], "make_multilabel_classification": [[520, null]], "make_pipeline": [[866, null]], "make_regression": [[376, "make-regression"], [521, null]], "make_s_curve": [[522, null]], "make_scorer": [[743, null]], "make_sparse_coded_signal": [[523, null]], "make_sparse_spd_matrix": [[524, null]], "make_sparse_uncorrelated": [[525, null]], "make_spd_matrix": [[526, null]], "make_swiss_roll": [[527, null]], "make_union": [[867, null]], "manhattan_distances": [[769, null]], "matthews_corrcoef": [[744, null]], "max_error": [[745, null]], "maxabs_scale": [[890, null]], "mean_absolute_error": [[746, null]], "mean_absolute_percentage_error": [[747, null]], "mean_gamma_deviance": [[748, null]], "mean_pinball_loss": [[749, null]], "mean_poisson_deviance": [[750, null]], "mean_shift": [[457, null]], "mean_squared_error": [[751, null]], "mean_squared_log_error": [[752, null]], "mean_tweedie_deviance": [[753, null]], "mean_variance_axis": [[980, null]], "median_absolute_error": [[754, null]], "min_cluster_size": [[88, "min-cluster-size"]], "min_pos": [[928, null]], "min_samples": [[88, "min-samples"]], "minmax_scale": [[891, null]], "multilabel_confusion_matrix": [[755, null]], "murmurhash3_32": [[966, null]], "mutual_info_classif": [[605, null]], "mutual_info_regression": [[606, null]], "mutual_info_score": [[756, null]], "nan_euclidean_distances": [[770, null]], "ndcg_score": [[757, null]], "non_negative_factorization": [[544, null]], "normalize": [[892, null]], "normalized_mutual_info_score": [[758, null]], "oas": [[416, null]], "orthogonal_mp": [[684, null]], "orthogonal_mp_gram": [[685, null]], "pair_confusion_matrix": [[715, null]], "paired_cosine_distances": [[771, null]], "paired_distances": [[772, null]], "paired_euclidean_distances": [[773, null]], "paired_manhattan_distances": [[774, null]], "pairwise_distances": [[779, null]], "pairwise_distances_argmin": [[780, null]], "pairwise_distances_argmin_min": [[781, null]], "pairwise_distances_chunked": [[782, null]], "pairwise_kernels": [[775, null]], "parametrize_with_checks": [[944, null]], "partial_dependence": [[632, null]], "permutation_importance": [[633, null]], "permutation_test_score": [[830, null]], "pickle, joblib, and cloudpickle": [[397, "pickle-joblib-and-cloudpickle"]], "plot_tree": [[919, null]], "polynomial_kernel": [[776, null]], "power_transform": [[893, null]], "precision_recall_curve": [[783, null]], "precision_recall_fscore_support": [[784, null]], "precision_score": [[785, null]], "process_routing": [[961, null]], "quantile_transform": [[894, null]], "r2_score": [[786, null]], "r_regression": [[607, null]], "radius_neighbors_graph": [[859, null]], "rand_score": [[787, null]], "randomized_range_finder": [[948, null]], "randomized_svd": [[949, null]], "rbf_kernel": [[777, null]], "recall_score": [[788, null]], "reconstruct_from_patches_2d": [[585, null]], "resample": [[970, null]], "ridge_regression": [[686, null]], "robust_scale": [[895, null]], "roc_auc_score": [[789, null]], "roc_curve": [[790, null]], "root_mean_squared_error": [[791, null]], "root_mean_squared_log_error": [[792, null]], "safe_mask": [[971, null]], "safe_sparse_dot": [[950, null]], "safe_sqr": [[972, null]], "sample_without_replacement": [[969, null]], "scale": [[896, null]], "scikit-learn Swag": [[0, "scikit-learn-swag"]], "set_config": [[903, null]], "show_versions": [[904, null]], "shrunk_covariance": [[477, null]], "shuffle": [[973, null]], "sigmoid_kernel": [[778, null]], "silhouette_samples": [[793, null]], "silhouette_score": [[794, null]], "single_source_shortest_path_length": [[955, null]], "sklearn": [[3, null], [1047, "sklearn"]], "sklearn.base": [[4, null], [1040, "sklearn-base"], [1041, "sklearn-base"], [1043, "sklearn-base"], [1044, "sklearn-base"], [1045, "sklearn-base"], [1046, "sklearn-base"], [1046, "id2"], [1046, "id10"], [1047, "sklearn-base"], [1048, "sklearn-base"], [1050, "sklearn-base"], [1051, "sklearn-base"], [1051, "id2"], [1052, "sklearn-base"]], "sklearn.calibration": [[5, null], [1040, "sklearn-calibration"], [1041, "sklearn-calibration"], [1043, "sklearn-calibration"], [1044, "sklearn-calibration"], [1044, "id7"], [1045, "sklearn-calibration"], [1046, "sklearn-calibration"], [1046, "id11"], [1047, "sklearn-calibration"], [1047, "id7"], [1048, "sklearn-calibration"], [1048, "id4"], [1049, "sklearn-calibration"], [1049, "id7"], [1050, "sklearn-calibration"], [1051, "sklearn-calibration"], [1052, "sklearn-calibration"]], "sklearn.cluster": [[6, null], [1039, "sklearn-cluster"], [1039, "id2"], [1039, "id11"], [1039, "id24"], [1040, "sklearn-cluster"], [1040, "id8"], [1041, "sklearn-cluster"], [1041, "id5"], [1042, "sklearn-cluster"], [1042, "id2"], [1042, "id5"], [1043, "sklearn-cluster"], [1044, "sklearn-cluster"], [1044, "id1"], [1044, "id8"], [1045, "sklearn-cluster"], [1045, "id8"], [1046, "sklearn-cluster"], [1046, "id12"], [1047, "sklearn-cluster"], [1047, "id8"], [1048, "sklearn-cluster"], [1048, "id5"], [1049, "sklearn-cluster"], [1050, "sklearn-cluster"], [1052, "sklearn-cluster"]], "sklearn.compose": [[7, null], [1039, "sklearn-compose"], [1039, "id3"], [1039, "id6"], [1039, "id12"], [1039, "id25"], [1040, "sklearn-compose"], [1040, "id9"], [1041, "sklearn-compose"], [1042, "sklearn-compose"], [1043, "sklearn-compose"], [1043, "id5"], [1044, "sklearn-compose"], [1045, "sklearn-compose"], [1046, "sklearn-compose"], [1047, "sklearn-compose"], [1048, "sklearn-compose"], [1048, "id6"], [1049, "sklearn-compose"], [1049, "id3"], [1049, "id8"], [1050, "sklearn-compose"], [1051, "sklearn-compose"], [1051, "id1"], [1051, "id3"]], "sklearn.covariance": [[8, null], [1039, "sklearn-covariance"], [1039, "id26"], [1043, "sklearn-covariance"], [1044, "sklearn-covariance"], [1045, "sklearn-covariance"], [1047, "sklearn-covariance"], [1048, "sklearn-covariance"], [1050, "sklearn-covariance"], [1051, "sklearn-covariance"]], "sklearn.cross_decomposition": [[9, null], [1041, "sklearn-cross-decomposition"], [1043, "sklearn-cross-decomposition"], [1043, "id6"], [1045, "sklearn-cross-decomposition"], [1047, "sklearn-cross-decomposition"], [1049, "sklearn-cross-decomposition"], [1050, "sklearn-cross-decomposition"]], "sklearn.datasets": [[10, null], [1039, "sklearn-datasets"], [1039, "id13"], [1039, "id27"], [1040, "sklearn-datasets"], [1040, "id10"], [1041, "sklearn-datasets"], [1042, "sklearn-datasets"], [1043, "sklearn-datasets"], [1044, "sklearn-datasets"], [1044, "id9"], [1045, "sklearn-datasets"], [1045, "id9"], [1046, "sklearn-datasets"], [1046, "id13"], [1047, "sklearn-datasets"], [1047, "id9"], [1048, "sklearn-datasets"], [1049, "sklearn-datasets"], [1050, "sklearn-datasets"], [1051, "sklearn-datasets"], [1051, "id4"]], "sklearn.decomposition": [[11, null], [1039, "sklearn-decomposition"], [1039, "id4"], [1039, "id14"], [1039, "id28"], [1040, "sklearn-decomposition"], [1040, "id11"], [1041, "sklearn-decomposition"], [1042, "sklearn-decomposition"], [1042, "id6"], [1043, "sklearn-decomposition"], [1043, "id7"], [1044, "sklearn-decomposition"], [1044, "id10"], [1045, "sklearn-decomposition"], [1045, "id10"], [1046, "sklearn-decomposition"], [1046, "id14"], [1047, "sklearn-decomposition"], [1047, "id10"], [1048, "sklearn-decomposition"], [1049, "sklearn-decomposition"], [1049, "id9"], [1050, "sklearn-decomposition"], [1051, "sklearn-decomposition"], [1052, "sklearn-decomposition"]], "sklearn.discriminant_analysis": [[12, null], [1039, "sklearn-discriminant-analysis"], [1040, "sklearn-discriminant-analysis"], [1043, "sklearn-discriminant-analysis"], [1045, "sklearn-discriminant-analysis"], [1046, "sklearn-discriminant-analysis"], [1047, "sklearn-discriminant-analysis"], [1050, "sklearn-discriminant-analysis"]], "sklearn.dummy": [[13, null], [1039, "sklearn-dummy"], [1040, "sklearn-dummy"], [1041, "sklearn-dummy"], [1044, "sklearn-dummy"], [1045, "sklearn-dummy"], [1049, "sklearn-dummy"]], "sklearn.ensemble": [[14, null], [1039, "sklearn-ensemble"], [1039, "id29"], [1040, "sklearn-ensemble"], [1040, "id12"], [1041, "sklearn-ensemble"], [1042, "sklearn-ensemble"], [1042, "id7"], [1043, "sklearn-ensemble"], [1043, "id8"], [1044, "sklearn-ensemble"], [1044, "id2"], [1044, "id11"], [1045, "sklearn-ensemble"], [1046, "sklearn-ensemble"], [1046, "id3"], [1046, "id15"], [1047, "sklearn-ensemble"], [1047, "id11"], [1048, "sklearn-ensemble"], [1048, "id7"], [1049, "sklearn-ensemble"], [1050, "sklearn-ensemble"], [1051, "sklearn-ensemble"], [1052, "sklearn-ensemble"]], "sklearn.exceptions": [[15, null], [1043, "sklearn-exceptions"], [1047, "sklearn-exceptions"]], "sklearn.experimental": [[16, null]], "sklearn.externals": [[1040, "sklearn-externals"]], "sklearn.feature_extraction": [[17, null], [1039, "sklearn-feature-extraction"], [1039, "id15"], [1039, "id30"], [1040, "sklearn-feature-extraction"], [1041, "sklearn-feature-extraction"], [1042, "sklearn-feature-extraction"], [1042, "id8"], [1043, "sklearn-feature-extraction"], [1043, "id9"], [1044, "sklearn-feature-extraction"], [1044, "id12"], [1045, "sklearn-feature-extraction"], [1046, "sklearn-feature-extraction"], [1047, "sklearn-feature-extraction"], [1048, "sklearn-feature-extraction"], [1049, "sklearn-feature-extraction"], [1050, "sklearn-feature-extraction"], [1051, "sklearn-feature-extraction"]], "sklearn.feature_selection": [[18, null], [1039, "sklearn-feature-selection"], [1041, "sklearn-feature-selection"], [1042, "sklearn-feature-selection"], [1043, "sklearn-feature-selection"], [1044, "sklearn-feature-selection"], [1044, "id13"], [1045, "sklearn-feature-selection"], [1045, "id2"], [1045, "id11"], [1046, "sklearn-feature-selection"], [1046, "id16"], [1047, "sklearn-feature-selection"], [1047, "id12"], [1048, "sklearn-feature-selection"], [1049, "sklearn-feature-selection"], [1051, "sklearn-feature-selection"]], "sklearn.frozen": [[19, null], [1050, "sklearn-frozen"]], "sklearn.gaussian_process": [[20, null], [1039, "sklearn-gaussian-process"], [1041, "sklearn-gaussian-process"], [1042, "sklearn-gaussian-process"], [1043, "sklearn-gaussian-process"], [1043, "id10"], [1044, "sklearn-gaussian-process"], [1045, "sklearn-gaussian-process"], [1046, "sklearn-gaussian-process"], [1047, "sklearn-gaussian-process"], [1051, "sklearn-gaussian-process"], [1052, "sklearn-gaussian-process"]], "sklearn.impute": [[21, null], [1039, "sklearn-impute"], [1039, "id31"], [1040, "sklearn-impute"], [1040, "id13"], [1041, "sklearn-impute"], [1041, "id6"], [1042, "sklearn-impute"], [1043, "sklearn-impute"], [1044, "sklearn-impute"], [1045, "sklearn-impute"], [1045, "id12"], [1046, "sklearn-impute"], [1047, "sklearn-impute"], [1047, "id13"], [1048, "sklearn-impute"], [1049, "sklearn-impute"], [1050, "sklearn-impute"], [1051, "sklearn-impute"]], "sklearn.inspection": [[22, null], [1040, "sklearn-inspection"], [1040, "id3"], [1040, "id14"], [1041, "sklearn-inspection"], [1041, "id7"], [1042, "sklearn-inspection"], [1042, "id11"], [1043, "sklearn-inspection"], [1044, "sklearn-inspection"], [1045, "sklearn-inspection"], [1046, "sklearn-inspection"], [1046, "id17"], [1047, "sklearn-inspection"], [1048, "sklearn-inspection"], [1048, "id8"], [1049, "sklearn-inspection"], [1051, "sklearn-inspection"], [1051, "id5"]], "sklearn.isotonic": [[23, null], [1039, "sklearn-isotonic"], [1040, "sklearn-isotonic"], [1041, "sklearn-isotonic"], [1043, "sklearn-isotonic"], [1045, "sklearn-isotonic"], [1046, "sklearn-isotonic"]], "sklearn.kernel_approximation": [[24, null], [1041, "sklearn-kernel-approximation"], [1043, "sklearn-kernel-approximation"], [1044, "sklearn-kernel-approximation"], [1045, "sklearn-kernel-approximation"], [1046, "sklearn-kernel-approximation"], [1047, "sklearn-kernel-approximation"]], "sklearn.kernel_ridge": [[25, null], [1048, "sklearn-kernel-ridge"]], "sklearn.linear_model": [[26, null], [1039, "sklearn-linear-model"], [1039, "id16"], [1039, "id32"], [1040, "sklearn-linear-model"], [1040, "id15"], [1041, "sklearn-linear-model"], [1042, "sklearn-linear-model"], [1042, "id9"], [1043, "sklearn-linear-model"], [1043, "id11"], [1044, "sklearn-linear-model"], [1044, "id3"], [1044, "id14"], [1045, "sklearn-linear-model"], [1045, "id13"], [1046, "sklearn-linear-model"], [1046, "id18"], [1047, "sklearn-linear-model"], [1048, "sklearn-linear-model"], [1048, "id9"], [1049, "sklearn-linear-model"], [1050, "sklearn-linear-model"], [1051, "sklearn-linear-model"], [1051, "id6"], [1052, "sklearn-linear-model"]], "sklearn.manifold": [[27, null], [1039, "sklearn-manifold"], [1040, "sklearn-manifold"], [1041, "sklearn-manifold"], [1042, "sklearn-manifold"], [1043, "sklearn-manifold"], [1044, "sklearn-manifold"], [1044, "id15"], [1045, "sklearn-manifold"], [1045, "id14"], [1046, "sklearn-manifold"], [1046, "id19"], [1047, "sklearn-manifold"], [1049, "sklearn-manifold"], [1050, "sklearn-manifold"], [1051, "sklearn-manifold"], [1052, "sklearn-manifold"]], "sklearn.metrics": [[28, null], [1039, "sklearn-metrics"], [1039, "id17"], [1039, "id33"], [1040, "sklearn-metrics"], [1040, "id4"], [1040, "id16"], [1041, "sklearn-metrics"], [1041, "id2"], [1041, "id8"], [1042, "sklearn-metrics"], [1042, "id10"], [1043, "sklearn-metrics"], [1043, "id2"], [1043, "id12"], [1044, "sklearn-metrics"], [1044, "id16"], [1045, "sklearn-metrics"], [1045, "id3"], [1045, "id15"], [1046, "sklearn-metrics"], [1047, "sklearn-metrics"], [1047, "id2"], [1047, "id14"], [1048, "sklearn-metrics"], [1049, "sklearn-metrics"], [1049, "id4"], [1049, "id10"], [1050, "sklearn-metrics"], [1050, "id2"], [1051, "sklearn-metrics"], [1052, "sklearn-metrics"]], "sklearn.mixture": [[29, null], [1039, "sklearn-mixture"], [1039, "id34"], [1040, "sklearn-mixture"], [1044, "sklearn-mixture"], [1045, "sklearn-mixture"], [1047, "sklearn-mixture"], [1047, "id15"], [1049, "sklearn-mixture"], [1051, "sklearn-mixture"]], "sklearn.model_selection": [[30, null], [1039, "sklearn-model-selection"], [1039, "id35"], [1040, "sklearn-model-selection"], [1041, "sklearn-model-selection"], [1041, "id9"], [1041, "id13"], [1042, "sklearn-model-selection"], [1043, "sklearn-model-selection"], [1043, "id13"], [1044, "sklearn-model-selection"], [1045, "sklearn-model-selection"], [1046, "sklearn-model-selection"], [1046, "id20"], [1047, "sklearn-model-selection"], [1048, "sklearn-model-selection"], [1049, "sklearn-model-selection"], [1049, "id11"], [1050, "sklearn-model-selection"], [1050, "id3"], [1051, "sklearn-model-selection"]], "sklearn.multiclass": [[31, null], [1040, "sklearn-multiclass"], [1043, "sklearn-multiclass"], [1044, "sklearn-multiclass"], [1045, "sklearn-multiclass"], [1051, "sklearn-multiclass"], [1052, "sklearn-multiclass"]], "sklearn.multioutput": [[32, null], [1039, "sklearn-multioutput"], [1040, "sklearn-multioutput"], [1041, "sklearn-multioutput"], [1042, "sklearn-multioutput"], [1043, "sklearn-multioutput"], [1043, "id14"], [1046, "sklearn-multioutput"], [1047, "sklearn-multioutput"], [1048, "sklearn-multioutput"], [1049, "sklearn-multioutput"], [1051, "sklearn-multioutput"]], "sklearn.naive_bayes": [[33, null], [1039, "sklearn-naive-bayes"], [1041, "sklearn-naive-bayes"], [1041, "id10"], [1042, "sklearn-naive-bayes"], [1043, "sklearn-naive-bayes"], [1044, "sklearn-naive-bayes"], [1046, "sklearn-naive-bayes"], [1047, "sklearn-naive-bayes"], [1051, "sklearn-naive-bayes"]], "sklearn.neighbors": [[34, null], [1039, "sklearn-neighbors"], [1039, "id7"], [1039, "id18"], [1039, "id36"], [1040, "sklearn-neighbors"], [1040, "id5"], [1040, "id17"], [1041, "sklearn-neighbors"], [1041, "id11"], [1043, "sklearn-neighbors"], [1044, "sklearn-neighbors"], [1044, "id4"], [1044, "id17"], [1045, "sklearn-neighbors"], [1046, "sklearn-neighbors"], [1047, "sklearn-neighbors"], [1047, "id16"], [1048, "sklearn-neighbors"], [1049, "sklearn-neighbors"], [1050, "sklearn-neighbors"]], "sklearn.neural_network": [[35, null], [1039, "sklearn-neural-network"], [1040, "sklearn-neural-network"], [1041, "sklearn-neural-network"], [1042, "sklearn-neural-network"], [1043, "sklearn-neural-network"], [1044, "sklearn-neural-network"], [1045, "sklearn-neural-network"], [1046, "sklearn-neural-network"], [1046, "id21"], [1047, "sklearn-neural-network"], [1050, "sklearn-neural-network"], [1051, "sklearn-neural-network"]], "sklearn.pipeline": [[36, null], [1039, "sklearn-pipeline"], [1040, "sklearn-pipeline"], [1041, "sklearn-pipeline"], [1042, "sklearn-pipeline"], [1043, "sklearn-pipeline"], [1044, "sklearn-pipeline"], [1044, "id18"], [1045, "sklearn-pipeline"], [1046, "sklearn-pipeline"], [1047, "sklearn-pipeline"], [1049, "sklearn-pipeline"], [1050, "sklearn-pipeline"], [1051, "sklearn-pipeline"], [1051, "id7"]], "sklearn.preprocessing": [[37, null], [1039, "sklearn-preprocessing"], [1039, "id19"], [1039, "id37"], [1040, "sklearn-preprocessing"], [1040, "id18"], [1041, "sklearn-preprocessing"], [1041, "id12"], [1042, "sklearn-preprocessing"], [1043, "sklearn-preprocessing"], [1043, "id15"], [1044, "sklearn-preprocessing"], [1044, "id19"], [1045, "sklearn-preprocessing"], [1045, "id4"], [1045, "id16"], [1046, "sklearn-preprocessing"], [1046, "id4"], [1046, "id22"], [1047, "sklearn-preprocessing"], [1047, "id17"], [1048, "sklearn-preprocessing"], [1048, "id10"], [1049, "sklearn-preprocessing"], [1050, "sklearn-preprocessing"], [1051, "sklearn-preprocessing"], [1052, "sklearn-preprocessing"]], "sklearn.random_projection": [[38, null], [1045, "sklearn-random-projection"]], "sklearn.semi_supervised": [[39, null], [1041, "sklearn-semi-supervised"], [1042, "sklearn-semi-supervised"], [1043, "sklearn-semi-supervised"], [1043, "id3"], [1043, "id16"], [1047, "sklearn-semi-supervised"], [1050, "sklearn-semi-supervised"]], "sklearn.svm": [[40, null], [1039, "sklearn-svm"], [1039, "id38"], [1040, "sklearn-svm"], [1041, "sklearn-svm"], [1042, "sklearn-svm"], [1043, "sklearn-svm"], [1044, "sklearn-svm"], [1044, "id20"], [1045, "sklearn-svm"], [1046, "sklearn-svm"], [1047, "sklearn-svm"], [1049, "sklearn-svm"], [1051, "sklearn-svm"]], "sklearn.tree": [[41, null], [1039, "sklearn-tree"], [1040, "sklearn-tree"], [1040, "id19"], [1041, "sklearn-tree"], [1042, "sklearn-tree"], [1043, "sklearn-tree"], [1043, "id17"], [1044, "sklearn-tree"], [1044, "id21"], [1045, "sklearn-tree"], [1045, "id5"], [1045, "id17"], [1046, "sklearn-tree"], [1046, "id5"], [1046, "id23"], [1047, "sklearn-tree"], [1047, "id3"], [1047, "id18"], [1048, "sklearn-tree"], [1048, "id11"], [1049, "sklearn-tree"], [1049, "id12"], [1050, "sklearn-tree"], [1050, "id4"], [1052, "sklearn-tree"]], "sklearn.utils": [[42, null], [1039, "sklearn-utils"], [1039, "id20"], [1039, "id39"], [1040, "sklearn-utils"], [1041, "sklearn-utils"], [1041, "id14"], [1042, "sklearn-utils"], [1042, "id12"], [1043, "sklearn-utils"], [1043, "id18"], [1044, "sklearn-utils"], [1044, "id5"], [1044, "id22"], [1045, "sklearn-utils"], [1045, "id18"], [1046, "sklearn-utils"], [1046, "id6"], [1046, "id24"], [1047, "sklearn-utils"], [1048, "sklearn-utils"], [1048, "id12"], [1049, "sklearn-utils"], [1049, "id13"], [1050, "sklearn-utils"], [1050, "id5"], [1051, "sklearn-utils"], [1051, "id8"], [1052, "sklearn-utils"]], "sklearn.utils.sparsefuncs": [[1040, "sklearn-utils-sparsefuncs"]], "skops.io": [[397, "skops-io"]], "smacof": [[694, null]], "solido": [[1024, "id23"]], "sort_graph_by_row_values": [[860, null]], "sparse_encode": [[545, null]], "spectral_clustering": [[458, null]], "spectral_embedding": [[695, null]], "t-SNE: The effect of various perplexity values on the shape": [[230, null]], "t-distributed Stochastic Neighbor Embedding (t-SNE)": [[997, "t-distributed-stochastic-neighbor-embedding-t-sne"]], "top_k_accuracy_score": [[795, null]], "train_test_split": [[831, null]], "trustworthiness": [[696, null]], "type_of_target": [[964, null]], "unique_labels": [[965, null]], "v_measure_score": [[796, null]], "validate_data": [[988, null]], "validation_curve": [[832, null]], "ward_tree": [[459, null]], "weighted_mode": [[951, null]], "zero_one_loss": [[797, null]], "\u201cStatlog\u201d German credit dataset": [[257, "statlog-german-credit-dataset"]]}, "docnames": ["about", "api/deprecated", "api/index", "api/sklearn", "api/sklearn.base", "api/sklearn.calibration", "api/sklearn.cluster", "api/sklearn.compose", "api/sklearn.covariance", "api/sklearn.cross_decomposition", "api/sklearn.datasets", "api/sklearn.decomposition", "api/sklearn.discriminant_analysis", "api/sklearn.dummy", "api/sklearn.ensemble", "api/sklearn.exceptions", "api/sklearn.experimental", "api/sklearn.feature_extraction", "api/sklearn.feature_selection", "api/sklearn.frozen", "api/sklearn.gaussian_process", "api/sklearn.impute", "api/sklearn.inspection", "api/sklearn.isotonic", "api/sklearn.kernel_approximation", "api/sklearn.kernel_ridge", "api/sklearn.linear_model", "api/sklearn.manifold", "api/sklearn.metrics", "api/sklearn.mixture", "api/sklearn.model_selection", "api/sklearn.multiclass", "api/sklearn.multioutput", "api/sklearn.naive_bayes", "api/sklearn.neighbors", "api/sklearn.neural_network", "api/sklearn.pipeline", "api/sklearn.preprocessing", "api/sklearn.random_projection", "api/sklearn.semi_supervised", "api/sklearn.svm", "api/sklearn.tree", "api/sklearn.utils", "auto_examples/applications/index", "auto_examples/applications/plot_cyclical_feature_engineering", "auto_examples/applications/plot_digits_denoising", "auto_examples/applications/plot_face_recognition", "auto_examples/applications/plot_model_complexity_influence", "auto_examples/applications/plot_out_of_core_classification", "auto_examples/applications/plot_outlier_detection_wine", "auto_examples/applications/plot_prediction_latency", "auto_examples/applications/plot_species_distribution_modeling", "auto_examples/applications/plot_stock_market", "auto_examples/applications/plot_time_series_lagged_features", "auto_examples/applications/plot_tomography_l1_reconstruction", "auto_examples/applications/plot_topics_extraction_with_nmf_lda", "auto_examples/applications/wikipedia_principal_eigenvector", "auto_examples/bicluster/index", "auto_examples/bicluster/plot_bicluster_newsgroups", "auto_examples/bicluster/plot_spectral_biclustering", "auto_examples/bicluster/plot_spectral_coclustering", "auto_examples/calibration/index", "auto_examples/calibration/plot_calibration", "auto_examples/calibration/plot_calibration_curve", "auto_examples/calibration/plot_calibration_multiclass", "auto_examples/calibration/plot_compare_calibration", "auto_examples/classification/index", "auto_examples/classification/plot_classification_probability", "auto_examples/classification/plot_classifier_comparison", "auto_examples/classification/plot_digits_classification", "auto_examples/classification/plot_lda", "auto_examples/classification/plot_lda_qda", "auto_examples/cluster/index", "auto_examples/cluster/plot_adjusted_for_chance_measures", "auto_examples/cluster/plot_affinity_propagation", "auto_examples/cluster/plot_agglomerative_clustering_metrics", "auto_examples/cluster/plot_agglomerative_dendrogram", "auto_examples/cluster/plot_birch_vs_minibatchkmeans", "auto_examples/cluster/plot_bisect_kmeans", "auto_examples/cluster/plot_cluster_comparison", "auto_examples/cluster/plot_coin_segmentation", "auto_examples/cluster/plot_coin_ward_segmentation", "auto_examples/cluster/plot_dbscan", "auto_examples/cluster/plot_dict_face_patches", "auto_examples/cluster/plot_digits_agglomeration", "auto_examples/cluster/plot_digits_linkage", "auto_examples/cluster/plot_face_compress", "auto_examples/cluster/plot_feature_agglomeration_vs_univariate_selection", "auto_examples/cluster/plot_hdbscan", "auto_examples/cluster/plot_inductive_clustering", "auto_examples/cluster/plot_kmeans_assumptions", "auto_examples/cluster/plot_kmeans_digits", "auto_examples/cluster/plot_kmeans_plusplus", "auto_examples/cluster/plot_kmeans_silhouette_analysis", "auto_examples/cluster/plot_kmeans_stability_low_dim_dense", "auto_examples/cluster/plot_linkage_comparison", "auto_examples/cluster/plot_mean_shift", "auto_examples/cluster/plot_mini_batch_kmeans", "auto_examples/cluster/plot_optics", "auto_examples/cluster/plot_segmentation_toy", "auto_examples/cluster/plot_ward_structured_vs_unstructured", "auto_examples/compose/index", "auto_examples/compose/plot_column_transformer", "auto_examples/compose/plot_column_transformer_mixed_types", "auto_examples/compose/plot_compare_reduction", "auto_examples/compose/plot_digits_pipe", "auto_examples/compose/plot_feature_union", "auto_examples/compose/plot_transformed_target", "auto_examples/covariance/index", "auto_examples/covariance/plot_covariance_estimation", "auto_examples/covariance/plot_lw_vs_oas", "auto_examples/covariance/plot_mahalanobis_distances", "auto_examples/covariance/plot_robust_vs_empirical_covariance", "auto_examples/covariance/plot_sparse_cov", "auto_examples/cross_decomposition/index", "auto_examples/cross_decomposition/plot_compare_cross_decomposition", "auto_examples/cross_decomposition/plot_pcr_vs_pls", "auto_examples/datasets/index", "auto_examples/datasets/plot_random_multilabel_dataset", "auto_examples/decomposition/index", "auto_examples/decomposition/plot_faces_decomposition", "auto_examples/decomposition/plot_ica_blind_source_separation", "auto_examples/decomposition/plot_ica_vs_pca", "auto_examples/decomposition/plot_image_denoising", "auto_examples/decomposition/plot_incremental_pca", "auto_examples/decomposition/plot_kernel_pca", "auto_examples/decomposition/plot_pca_iris", "auto_examples/decomposition/plot_pca_vs_fa_model_selection", "auto_examples/decomposition/plot_pca_vs_lda", "auto_examples/decomposition/plot_sparse_coding", "auto_examples/decomposition/plot_varimax_fa", "auto_examples/developing_estimators/index", "auto_examples/developing_estimators/sklearn_is_fitted", "auto_examples/ensemble/index", "auto_examples/ensemble/plot_adaboost_multiclass", "auto_examples/ensemble/plot_adaboost_regression", "auto_examples/ensemble/plot_adaboost_twoclass", "auto_examples/ensemble/plot_bias_variance", "auto_examples/ensemble/plot_ensemble_oob", "auto_examples/ensemble/plot_feature_transformation", "auto_examples/ensemble/plot_forest_hist_grad_boosting_comparison", "auto_examples/ensemble/plot_forest_importances", "auto_examples/ensemble/plot_forest_iris", "auto_examples/ensemble/plot_gradient_boosting_categorical", "auto_examples/ensemble/plot_gradient_boosting_early_stopping", "auto_examples/ensemble/plot_gradient_boosting_oob", "auto_examples/ensemble/plot_gradient_boosting_quantile", "auto_examples/ensemble/plot_gradient_boosting_regression", "auto_examples/ensemble/plot_gradient_boosting_regularization", "auto_examples/ensemble/plot_hgbt_regression", "auto_examples/ensemble/plot_isolation_forest", "auto_examples/ensemble/plot_monotonic_constraints", "auto_examples/ensemble/plot_random_forest_embedding", "auto_examples/ensemble/plot_random_forest_regression_multioutput", "auto_examples/ensemble/plot_stack_predictors", "auto_examples/ensemble/plot_voting_decision_regions", "auto_examples/ensemble/plot_voting_regressor", "auto_examples/feature_selection/index", "auto_examples/feature_selection/plot_f_test_vs_mi", "auto_examples/feature_selection/plot_feature_selection", "auto_examples/feature_selection/plot_feature_selection_pipeline", "auto_examples/feature_selection/plot_rfe_digits", "auto_examples/feature_selection/plot_rfe_with_cross_validation", "auto_examples/feature_selection/plot_select_from_model_diabetes", "auto_examples/frozen/index", "auto_examples/frozen/plot_frozen_examples", "auto_examples/gaussian_process/index", "auto_examples/gaussian_process/plot_compare_gpr_krr", "auto_examples/gaussian_process/plot_gpc", "auto_examples/gaussian_process/plot_gpc_iris", "auto_examples/gaussian_process/plot_gpc_isoprobability", "auto_examples/gaussian_process/plot_gpc_xor", "auto_examples/gaussian_process/plot_gpr_co2", "auto_examples/gaussian_process/plot_gpr_noisy", "auto_examples/gaussian_process/plot_gpr_noisy_targets", "auto_examples/gaussian_process/plot_gpr_on_structured_data", "auto_examples/gaussian_process/plot_gpr_prior_posterior", "auto_examples/impute/index", "auto_examples/impute/plot_iterative_imputer_variants_comparison", "auto_examples/impute/plot_missing_values", "auto_examples/index", "auto_examples/inspection/index", "auto_examples/inspection/plot_causal_interpretation", "auto_examples/inspection/plot_linear_model_coefficient_interpretation", "auto_examples/inspection/plot_partial_dependence", "auto_examples/inspection/plot_permutation_importance", "auto_examples/inspection/plot_permutation_importance_multicollinear", "auto_examples/kernel_approximation/index", "auto_examples/kernel_approximation/plot_scalable_poly_kernels", "auto_examples/linear_model/index", "auto_examples/linear_model/plot_ard", "auto_examples/linear_model/plot_bayesian_ridge_curvefit", "auto_examples/linear_model/plot_elastic_net_precomputed_gram_matrix_with_weighted_samples", "auto_examples/linear_model/plot_huber_vs_ridge", "auto_examples/linear_model/plot_lasso_and_elasticnet", "auto_examples/linear_model/plot_lasso_dense_vs_sparse_data", "auto_examples/linear_model/plot_lasso_lars_ic", "auto_examples/linear_model/plot_lasso_lasso_lars_elasticnet_path", "auto_examples/linear_model/plot_lasso_model_selection", "auto_examples/linear_model/plot_logistic_l1_l2_sparsity", "auto_examples/linear_model/plot_logistic_multinomial", "auto_examples/linear_model/plot_logistic_path", "auto_examples/linear_model/plot_multi_task_lasso_support", "auto_examples/linear_model/plot_nnls", "auto_examples/linear_model/plot_ols_ridge", "auto_examples/linear_model/plot_omp", "auto_examples/linear_model/plot_poisson_regression_non_normal_loss", "auto_examples/linear_model/plot_polynomial_interpolation", "auto_examples/linear_model/plot_quantile_regression", "auto_examples/linear_model/plot_ransac", "auto_examples/linear_model/plot_ridge_coeffs", "auto_examples/linear_model/plot_ridge_path", "auto_examples/linear_model/plot_robust_fit", "auto_examples/linear_model/plot_sgd_early_stopping", "auto_examples/linear_model/plot_sgd_iris", "auto_examples/linear_model/plot_sgd_loss_functions", "auto_examples/linear_model/plot_sgd_penalties", "auto_examples/linear_model/plot_sgd_separating_hyperplane", "auto_examples/linear_model/plot_sgd_weighted_samples", "auto_examples/linear_model/plot_sgdocsvm_vs_ocsvm", "auto_examples/linear_model/plot_sparse_logistic_regression_20newsgroups", "auto_examples/linear_model/plot_sparse_logistic_regression_mnist", "auto_examples/linear_model/plot_theilsen", "auto_examples/linear_model/plot_tweedie_regression_insurance_claims", "auto_examples/manifold/index", "auto_examples/manifold/plot_compare_methods", "auto_examples/manifold/plot_lle_digits", "auto_examples/manifold/plot_manifold_sphere", "auto_examples/manifold/plot_mds", "auto_examples/manifold/plot_swissroll", "auto_examples/manifold/plot_t_sne_perplexity", "auto_examples/miscellaneous/index", "auto_examples/miscellaneous/plot_anomaly_comparison", "auto_examples/miscellaneous/plot_display_object_visualization", "auto_examples/miscellaneous/plot_estimator_representation", "auto_examples/miscellaneous/plot_isotonic_regression", "auto_examples/miscellaneous/plot_johnson_lindenstrauss_bound", "auto_examples/miscellaneous/plot_kernel_approximation", "auto_examples/miscellaneous/plot_kernel_ridge_regression", "auto_examples/miscellaneous/plot_metadata_routing", "auto_examples/miscellaneous/plot_multilabel", "auto_examples/miscellaneous/plot_multioutput_face_completion", "auto_examples/miscellaneous/plot_outlier_detection_bench", "auto_examples/miscellaneous/plot_partial_dependence_visualization_api", "auto_examples/miscellaneous/plot_pipeline_display", "auto_examples/miscellaneous/plot_roc_curve_visualization_api", "auto_examples/miscellaneous/plot_set_output", "auto_examples/mixture/index", "auto_examples/mixture/plot_concentration_prior", "auto_examples/mixture/plot_gmm", "auto_examples/mixture/plot_gmm_covariances", "auto_examples/mixture/plot_gmm_init", "auto_examples/mixture/plot_gmm_pdf", "auto_examples/mixture/plot_gmm_selection", "auto_examples/mixture/plot_gmm_sin", "auto_examples/model_selection/index", "auto_examples/model_selection/plot_confusion_matrix", "auto_examples/model_selection/plot_cost_sensitive_learning", "auto_examples/model_selection/plot_cv_indices", "auto_examples/model_selection/plot_cv_predict", "auto_examples/model_selection/plot_det", "auto_examples/model_selection/plot_grid_search_digits", "auto_examples/model_selection/plot_grid_search_refit_callable", "auto_examples/model_selection/plot_grid_search_stats", "auto_examples/model_selection/plot_grid_search_text_feature_extraction", "auto_examples/model_selection/plot_learning_curve", "auto_examples/model_selection/plot_likelihood_ratios", "auto_examples/model_selection/plot_multi_metric_evaluation", "auto_examples/model_selection/plot_nested_cross_validation_iris", "auto_examples/model_selection/plot_permutation_tests_for_classification", "auto_examples/model_selection/plot_precision_recall", "auto_examples/model_selection/plot_randomized_search", "auto_examples/model_selection/plot_roc", "auto_examples/model_selection/plot_roc_crossval", "auto_examples/model_selection/plot_successive_halving_heatmap", "auto_examples/model_selection/plot_successive_halving_iterations", "auto_examples/model_selection/plot_train_error_vs_test_error", "auto_examples/model_selection/plot_tuned_decision_threshold", "auto_examples/model_selection/plot_underfitting_overfitting", "auto_examples/multiclass/index", "auto_examples/multiclass/plot_multiclass_overview", "auto_examples/multioutput/index", "auto_examples/multioutput/plot_classifier_chain_yeast", "auto_examples/neighbors/approximate_nearest_neighbors", "auto_examples/neighbors/index", "auto_examples/neighbors/plot_caching_nearest_neighbors", "auto_examples/neighbors/plot_classification", "auto_examples/neighbors/plot_digits_kde_sampling", "auto_examples/neighbors/plot_kde_1d", "auto_examples/neighbors/plot_lof_novelty_detection", "auto_examples/neighbors/plot_lof_outlier_detection", "auto_examples/neighbors/plot_nca_classification", "auto_examples/neighbors/plot_nca_dim_reduction", "auto_examples/neighbors/plot_nca_illustration", "auto_examples/neighbors/plot_nearest_centroid", "auto_examples/neighbors/plot_regression", "auto_examples/neighbors/plot_species_kde", "auto_examples/neural_networks/index", "auto_examples/neural_networks/plot_mlp_alpha", "auto_examples/neural_networks/plot_mlp_training_curves", "auto_examples/neural_networks/plot_mnist_filters", "auto_examples/neural_networks/plot_rbm_logistic_classification", "auto_examples/preprocessing/index", "auto_examples/preprocessing/plot_all_scaling", "auto_examples/preprocessing/plot_discretization", "auto_examples/preprocessing/plot_discretization_classification", "auto_examples/preprocessing/plot_discretization_strategies", "auto_examples/preprocessing/plot_map_data_to_normal", "auto_examples/preprocessing/plot_scaling_importance", "auto_examples/preprocessing/plot_target_encoder", "auto_examples/preprocessing/plot_target_encoder_cross_val", "auto_examples/release_highlights/index", "auto_examples/release_highlights/plot_release_highlights_0_22_0", "auto_examples/release_highlights/plot_release_highlights_0_23_0", "auto_examples/release_highlights/plot_release_highlights_0_24_0", "auto_examples/release_highlights/plot_release_highlights_1_0_0", "auto_examples/release_highlights/plot_release_highlights_1_1_0", "auto_examples/release_highlights/plot_release_highlights_1_2_0", "auto_examples/release_highlights/plot_release_highlights_1_3_0", "auto_examples/release_highlights/plot_release_highlights_1_4_0", "auto_examples/release_highlights/plot_release_highlights_1_5_0", "auto_examples/release_highlights/plot_release_highlights_1_6_0", "auto_examples/release_highlights/plot_release_highlights_1_7_0", "auto_examples/semi_supervised/index", "auto_examples/semi_supervised/plot_label_propagation_digits", "auto_examples/semi_supervised/plot_label_propagation_digits_active_learning", "auto_examples/semi_supervised/plot_label_propagation_structure", "auto_examples/semi_supervised/plot_self_training_varying_threshold", "auto_examples/semi_supervised/plot_semi_supervised_newsgroups", "auto_examples/semi_supervised/plot_semi_supervised_versus_svm_iris", "auto_examples/svm/index", "auto_examples/svm/plot_custom_kernel", "auto_examples/svm/plot_iris_svc", "auto_examples/svm/plot_linearsvc_support_vectors", "auto_examples/svm/plot_oneclass", "auto_examples/svm/plot_rbf_parameters", "auto_examples/svm/plot_separating_hyperplane", "auto_examples/svm/plot_separating_hyperplane_unbalanced", "auto_examples/svm/plot_svm_anova", "auto_examples/svm/plot_svm_kernels", "auto_examples/svm/plot_svm_margin", "auto_examples/svm/plot_svm_regression", "auto_examples/svm/plot_svm_scale_c", "auto_examples/svm/plot_svm_tie_breaking", "auto_examples/svm/plot_weighted_samples", "auto_examples/text/index", "auto_examples/text/plot_document_classification_20newsgroups", "auto_examples/text/plot_document_clustering", "auto_examples/text/plot_hashing_vs_dict_vectorizer", "auto_examples/tree/index", "auto_examples/tree/plot_cost_complexity_pruning", "auto_examples/tree/plot_iris_dtc", "auto_examples/tree/plot_tree_regression", "auto_examples/tree/plot_unveil_tree_structure", "common_pitfalls", "communication_team", "communication_team_emeritus", "computing", "computing/computational_performance", "computing/parallelism", "computing/scaling_strategies", "contributor_experience_team", "contributor_experience_team_emeritus", "data_transforms", "datasets", "datasets/loading_other_datasets", "datasets/real_world", "datasets/sample_generators", "datasets/toy_dataset", "developers/advanced_installation", "developers/bug_triaging", "developers/contributing", "developers/cython", "developers/develop", "developers/index", "developers/maintainer", "developers/minimal_reproducer", "developers/performance", "developers/plotting", "developers/tips", "developers/utilities", "dispatching", "documentation_team", "faq", "getting_started", "glossary", "governance", "index", "inspection", "install", "install_instructions_conda", "machine_learning_map", "maintainers", "maintainers_emeritus", "metadata_routing", "min_dependency_substitutions", "min_dependency_table", "model_persistence", "model_selection", "modules/array_api", "modules/biclustering", "modules/calibration", "modules/classification_threshold", "modules/clustering", "modules/compose", "modules/covariance", "modules/cross_decomposition", "modules/cross_validation", "modules/decomposition", "modules/density", "modules/ensemble", "modules/feature_extraction", "modules/feature_selection", "modules/gaussian_process", "modules/generated/dbscan-function", "modules/generated/fastica-function", "modules/generated/oas-function", "modules/generated/sklearn.base.BaseEstimator", "modules/generated/sklearn.base.BiclusterMixin", "modules/generated/sklearn.base.ClassNamePrefixFeaturesOutMixin", "modules/generated/sklearn.base.ClassifierMixin", "modules/generated/sklearn.base.ClusterMixin", "modules/generated/sklearn.base.DensityMixin", "modules/generated/sklearn.base.MetaEstimatorMixin", "modules/generated/sklearn.base.OneToOneFeatureMixin", "modules/generated/sklearn.base.OutlierMixin", "modules/generated/sklearn.base.RegressorMixin", "modules/generated/sklearn.base.TransformerMixin", "modules/generated/sklearn.base.clone", "modules/generated/sklearn.base.is_classifier", "modules/generated/sklearn.base.is_clusterer", "modules/generated/sklearn.base.is_outlier_detector", "modules/generated/sklearn.base.is_regressor", "modules/generated/sklearn.calibration.CalibratedClassifierCV", "modules/generated/sklearn.calibration.CalibrationDisplay", "modules/generated/sklearn.calibration.calibration_curve", "modules/generated/sklearn.cluster.AffinityPropagation", "modules/generated/sklearn.cluster.AgglomerativeClustering", "modules/generated/sklearn.cluster.Birch", "modules/generated/sklearn.cluster.BisectingKMeans", "modules/generated/sklearn.cluster.DBSCAN", "modules/generated/sklearn.cluster.FeatureAgglomeration", "modules/generated/sklearn.cluster.HDBSCAN", "modules/generated/sklearn.cluster.KMeans", "modules/generated/sklearn.cluster.MeanShift", "modules/generated/sklearn.cluster.MiniBatchKMeans", "modules/generated/sklearn.cluster.OPTICS", "modules/generated/sklearn.cluster.SpectralBiclustering", "modules/generated/sklearn.cluster.SpectralClustering", "modules/generated/sklearn.cluster.SpectralCoclustering", "modules/generated/sklearn.cluster.affinity_propagation", "modules/generated/sklearn.cluster.cluster_optics_dbscan", "modules/generated/sklearn.cluster.cluster_optics_xi", "modules/generated/sklearn.cluster.compute_optics_graph", "modules/generated/sklearn.cluster.estimate_bandwidth", "modules/generated/sklearn.cluster.k_means", "modules/generated/sklearn.cluster.kmeans_plusplus", "modules/generated/sklearn.cluster.mean_shift", "modules/generated/sklearn.cluster.spectral_clustering", "modules/generated/sklearn.cluster.ward_tree", "modules/generated/sklearn.compose.ColumnTransformer", "modules/generated/sklearn.compose.TransformedTargetRegressor", "modules/generated/sklearn.compose.make_column_selector", "modules/generated/sklearn.compose.make_column_transformer", "modules/generated/sklearn.config_context", "modules/generated/sklearn.covariance.EllipticEnvelope", "modules/generated/sklearn.covariance.EmpiricalCovariance", "modules/generated/sklearn.covariance.GraphicalLasso", "modules/generated/sklearn.covariance.GraphicalLassoCV", "modules/generated/sklearn.covariance.LedoitWolf", "modules/generated/sklearn.covariance.MinCovDet", "modules/generated/sklearn.covariance.OAS", "modules/generated/sklearn.covariance.ShrunkCovariance", "modules/generated/sklearn.covariance.empirical_covariance", "modules/generated/sklearn.covariance.graphical_lasso", "modules/generated/sklearn.covariance.ledoit_wolf", "modules/generated/sklearn.covariance.ledoit_wolf_shrinkage", "modules/generated/sklearn.covariance.shrunk_covariance", "modules/generated/sklearn.cross_decomposition.CCA", "modules/generated/sklearn.cross_decomposition.PLSCanonical", "modules/generated/sklearn.cross_decomposition.PLSRegression", "modules/generated/sklearn.cross_decomposition.PLSSVD", "modules/generated/sklearn.datasets.clear_data_home", "modules/generated/sklearn.datasets.dump_svmlight_file", "modules/generated/sklearn.datasets.fetch_20newsgroups", "modules/generated/sklearn.datasets.fetch_20newsgroups_vectorized", "modules/generated/sklearn.datasets.fetch_california_housing", "modules/generated/sklearn.datasets.fetch_covtype", "modules/generated/sklearn.datasets.fetch_file", "modules/generated/sklearn.datasets.fetch_kddcup99", "modules/generated/sklearn.datasets.fetch_lfw_pairs", "modules/generated/sklearn.datasets.fetch_lfw_people", "modules/generated/sklearn.datasets.fetch_olivetti_faces", "modules/generated/sklearn.datasets.fetch_openml", "modules/generated/sklearn.datasets.fetch_rcv1", "modules/generated/sklearn.datasets.fetch_species_distributions", "modules/generated/sklearn.datasets.get_data_home", "modules/generated/sklearn.datasets.load_breast_cancer", "modules/generated/sklearn.datasets.load_diabetes", "modules/generated/sklearn.datasets.load_digits", "modules/generated/sklearn.datasets.load_files", "modules/generated/sklearn.datasets.load_iris", "modules/generated/sklearn.datasets.load_linnerud", "modules/generated/sklearn.datasets.load_sample_image", "modules/generated/sklearn.datasets.load_sample_images", "modules/generated/sklearn.datasets.load_svmlight_file", "modules/generated/sklearn.datasets.load_svmlight_files", "modules/generated/sklearn.datasets.load_wine", "modules/generated/sklearn.datasets.make_biclusters", "modules/generated/sklearn.datasets.make_blobs", "modules/generated/sklearn.datasets.make_checkerboard", "modules/generated/sklearn.datasets.make_circles", "modules/generated/sklearn.datasets.make_classification", "modules/generated/sklearn.datasets.make_friedman1", "modules/generated/sklearn.datasets.make_friedman2", "modules/generated/sklearn.datasets.make_friedman3", "modules/generated/sklearn.datasets.make_gaussian_quantiles", "modules/generated/sklearn.datasets.make_hastie_10_2", "modules/generated/sklearn.datasets.make_low_rank_matrix", "modules/generated/sklearn.datasets.make_moons", "modules/generated/sklearn.datasets.make_multilabel_classification", "modules/generated/sklearn.datasets.make_regression", "modules/generated/sklearn.datasets.make_s_curve", "modules/generated/sklearn.datasets.make_sparse_coded_signal", "modules/generated/sklearn.datasets.make_sparse_spd_matrix", "modules/generated/sklearn.datasets.make_sparse_uncorrelated", "modules/generated/sklearn.datasets.make_spd_matrix", "modules/generated/sklearn.datasets.make_swiss_roll", "modules/generated/sklearn.decomposition.DictionaryLearning", "modules/generated/sklearn.decomposition.FactorAnalysis", "modules/generated/sklearn.decomposition.FastICA", "modules/generated/sklearn.decomposition.IncrementalPCA", "modules/generated/sklearn.decomposition.KernelPCA", "modules/generated/sklearn.decomposition.LatentDirichletAllocation", "modules/generated/sklearn.decomposition.MiniBatchDictionaryLearning", "modules/generated/sklearn.decomposition.MiniBatchNMF", "modules/generated/sklearn.decomposition.MiniBatchSparsePCA", "modules/generated/sklearn.decomposition.NMF", "modules/generated/sklearn.decomposition.PCA", "modules/generated/sklearn.decomposition.SparseCoder", "modules/generated/sklearn.decomposition.SparsePCA", "modules/generated/sklearn.decomposition.TruncatedSVD", "modules/generated/sklearn.decomposition.dict_learning", "modules/generated/sklearn.decomposition.dict_learning_online", "modules/generated/sklearn.decomposition.non_negative_factorization", "modules/generated/sklearn.decomposition.sparse_encode", "modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis", "modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis", "modules/generated/sklearn.dummy.DummyClassifier", "modules/generated/sklearn.dummy.DummyRegressor", "modules/generated/sklearn.ensemble.AdaBoostClassifier", "modules/generated/sklearn.ensemble.AdaBoostRegressor", "modules/generated/sklearn.ensemble.BaggingClassifier", "modules/generated/sklearn.ensemble.BaggingRegressor", "modules/generated/sklearn.ensemble.ExtraTreesClassifier", "modules/generated/sklearn.ensemble.ExtraTreesRegressor", "modules/generated/sklearn.ensemble.GradientBoostingClassifier", "modules/generated/sklearn.ensemble.GradientBoostingRegressor", "modules/generated/sklearn.ensemble.HistGradientBoostingClassifier", "modules/generated/sklearn.ensemble.HistGradientBoostingRegressor", "modules/generated/sklearn.ensemble.IsolationForest", "modules/generated/sklearn.ensemble.RandomForestClassifier", "modules/generated/sklearn.ensemble.RandomForestRegressor", "modules/generated/sklearn.ensemble.RandomTreesEmbedding", "modules/generated/sklearn.ensemble.StackingClassifier", "modules/generated/sklearn.ensemble.StackingRegressor", "modules/generated/sklearn.ensemble.VotingClassifier", "modules/generated/sklearn.ensemble.VotingRegressor", "modules/generated/sklearn.exceptions.ConvergenceWarning", "modules/generated/sklearn.exceptions.DataConversionWarning", "modules/generated/sklearn.exceptions.DataDimensionalityWarning", "modules/generated/sklearn.exceptions.EfficiencyWarning", "modules/generated/sklearn.exceptions.EstimatorCheckFailedWarning", "modules/generated/sklearn.exceptions.FitFailedWarning", "modules/generated/sklearn.exceptions.InconsistentVersionWarning", "modules/generated/sklearn.exceptions.NotFittedError", "modules/generated/sklearn.exceptions.UndefinedMetricWarning", "modules/generated/sklearn.experimental.enable_halving_search_cv", "modules/generated/sklearn.experimental.enable_iterative_imputer", "modules/generated/sklearn.feature_extraction.DictVectorizer", "modules/generated/sklearn.feature_extraction.FeatureHasher", "modules/generated/sklearn.feature_extraction.image.PatchExtractor", "modules/generated/sklearn.feature_extraction.image.extract_patches_2d", "modules/generated/sklearn.feature_extraction.image.grid_to_graph", "modules/generated/sklearn.feature_extraction.image.img_to_graph", "modules/generated/sklearn.feature_extraction.image.reconstruct_from_patches_2d", "modules/generated/sklearn.feature_extraction.text.CountVectorizer", "modules/generated/sklearn.feature_extraction.text.HashingVectorizer", "modules/generated/sklearn.feature_extraction.text.TfidfTransformer", "modules/generated/sklearn.feature_extraction.text.TfidfVectorizer", "modules/generated/sklearn.feature_selection.GenericUnivariateSelect", "modules/generated/sklearn.feature_selection.RFE", "modules/generated/sklearn.feature_selection.RFECV", "modules/generated/sklearn.feature_selection.SelectFdr", "modules/generated/sklearn.feature_selection.SelectFpr", "modules/generated/sklearn.feature_selection.SelectFromModel", "modules/generated/sklearn.feature_selection.SelectFwe", "modules/generated/sklearn.feature_selection.SelectKBest", "modules/generated/sklearn.feature_selection.SelectPercentile", "modules/generated/sklearn.feature_selection.SelectorMixin", "modules/generated/sklearn.feature_selection.SequentialFeatureSelector", "modules/generated/sklearn.feature_selection.VarianceThreshold", "modules/generated/sklearn.feature_selection.chi2", "modules/generated/sklearn.feature_selection.f_classif", "modules/generated/sklearn.feature_selection.f_regression", "modules/generated/sklearn.feature_selection.mutual_info_classif", "modules/generated/sklearn.feature_selection.mutual_info_regression", "modules/generated/sklearn.feature_selection.r_regression", "modules/generated/sklearn.frozen.FrozenEstimator", "modules/generated/sklearn.gaussian_process.GaussianProcessClassifier", "modules/generated/sklearn.gaussian_process.GaussianProcessRegressor", "modules/generated/sklearn.gaussian_process.kernels.CompoundKernel", "modules/generated/sklearn.gaussian_process.kernels.ConstantKernel", "modules/generated/sklearn.gaussian_process.kernels.DotProduct", "modules/generated/sklearn.gaussian_process.kernels.ExpSineSquared", "modules/generated/sklearn.gaussian_process.kernels.Exponentiation", "modules/generated/sklearn.gaussian_process.kernels.Hyperparameter", "modules/generated/sklearn.gaussian_process.kernels.Kernel", "modules/generated/sklearn.gaussian_process.kernels.Matern", "modules/generated/sklearn.gaussian_process.kernels.PairwiseKernel", "modules/generated/sklearn.gaussian_process.kernels.Product", "modules/generated/sklearn.gaussian_process.kernels.RBF", "modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic", "modules/generated/sklearn.gaussian_process.kernels.Sum", "modules/generated/sklearn.gaussian_process.kernels.WhiteKernel", "modules/generated/sklearn.get_config", "modules/generated/sklearn.impute.IterativeImputer", "modules/generated/sklearn.impute.KNNImputer", "modules/generated/sklearn.impute.MissingIndicator", "modules/generated/sklearn.impute.SimpleImputer", "modules/generated/sklearn.inspection.DecisionBoundaryDisplay", "modules/generated/sklearn.inspection.PartialDependenceDisplay", "modules/generated/sklearn.inspection.partial_dependence", "modules/generated/sklearn.inspection.permutation_importance", "modules/generated/sklearn.isotonic.IsotonicRegression", "modules/generated/sklearn.isotonic.check_increasing", "modules/generated/sklearn.isotonic.isotonic_regression", "modules/generated/sklearn.kernel_approximation.AdditiveChi2Sampler", "modules/generated/sklearn.kernel_approximation.Nystroem", "modules/generated/sklearn.kernel_approximation.PolynomialCountSketch", "modules/generated/sklearn.kernel_approximation.RBFSampler", "modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler", "modules/generated/sklearn.kernel_ridge.KernelRidge", "modules/generated/sklearn.linear_model.ARDRegression", "modules/generated/sklearn.linear_model.BayesianRidge", "modules/generated/sklearn.linear_model.ElasticNet", "modules/generated/sklearn.linear_model.ElasticNetCV", "modules/generated/sklearn.linear_model.GammaRegressor", "modules/generated/sklearn.linear_model.HuberRegressor", "modules/generated/sklearn.linear_model.Lars", "modules/generated/sklearn.linear_model.LarsCV", "modules/generated/sklearn.linear_model.Lasso", "modules/generated/sklearn.linear_model.LassoCV", "modules/generated/sklearn.linear_model.LassoLars", "modules/generated/sklearn.linear_model.LassoLarsCV", "modules/generated/sklearn.linear_model.LassoLarsIC", "modules/generated/sklearn.linear_model.LinearRegression", "modules/generated/sklearn.linear_model.LogisticRegression", "modules/generated/sklearn.linear_model.LogisticRegressionCV", "modules/generated/sklearn.linear_model.MultiTaskElasticNet", "modules/generated/sklearn.linear_model.MultiTaskElasticNetCV", "modules/generated/sklearn.linear_model.MultiTaskLasso", "modules/generated/sklearn.linear_model.MultiTaskLassoCV", "modules/generated/sklearn.linear_model.OrthogonalMatchingPursuit", "modules/generated/sklearn.linear_model.OrthogonalMatchingPursuitCV", "modules/generated/sklearn.linear_model.PassiveAggressiveClassifier", "modules/generated/sklearn.linear_model.PassiveAggressiveRegressor", "modules/generated/sklearn.linear_model.Perceptron", "modules/generated/sklearn.linear_model.PoissonRegressor", "modules/generated/sklearn.linear_model.QuantileRegressor", "modules/generated/sklearn.linear_model.RANSACRegressor", "modules/generated/sklearn.linear_model.Ridge", "modules/generated/sklearn.linear_model.RidgeCV", "modules/generated/sklearn.linear_model.RidgeClassifier", "modules/generated/sklearn.linear_model.RidgeClassifierCV", "modules/generated/sklearn.linear_model.SGDClassifier", "modules/generated/sklearn.linear_model.SGDOneClassSVM", "modules/generated/sklearn.linear_model.SGDRegressor", "modules/generated/sklearn.linear_model.TheilSenRegressor", "modules/generated/sklearn.linear_model.TweedieRegressor", "modules/generated/sklearn.linear_model.enet_path", "modules/generated/sklearn.linear_model.lars_path", "modules/generated/sklearn.linear_model.lars_path_gram", "modules/generated/sklearn.linear_model.lasso_path", "modules/generated/sklearn.linear_model.orthogonal_mp", "modules/generated/sklearn.linear_model.orthogonal_mp_gram", "modules/generated/sklearn.linear_model.ridge_regression", "modules/generated/sklearn.manifold.ClassicalMDS", "modules/generated/sklearn.manifold.Isomap", "modules/generated/sklearn.manifold.LocallyLinearEmbedding", "modules/generated/sklearn.manifold.MDS", "modules/generated/sklearn.manifold.SpectralEmbedding", "modules/generated/sklearn.manifold.TSNE", "modules/generated/sklearn.manifold.locally_linear_embedding", "modules/generated/sklearn.manifold.smacof", "modules/generated/sklearn.manifold.spectral_embedding", "modules/generated/sklearn.manifold.trustworthiness", "modules/generated/sklearn.metrics.ConfusionMatrixDisplay", "modules/generated/sklearn.metrics.DetCurveDisplay", "modules/generated/sklearn.metrics.DistanceMetric", "modules/generated/sklearn.metrics.PrecisionRecallDisplay", "modules/generated/sklearn.metrics.PredictionErrorDisplay", "modules/generated/sklearn.metrics.RocCurveDisplay", "modules/generated/sklearn.metrics.accuracy_score", "modules/generated/sklearn.metrics.adjusted_mutual_info_score", "modules/generated/sklearn.metrics.adjusted_rand_score", "modules/generated/sklearn.metrics.auc", "modules/generated/sklearn.metrics.average_precision_score", "modules/generated/sklearn.metrics.balanced_accuracy_score", "modules/generated/sklearn.metrics.brier_score_loss", "modules/generated/sklearn.metrics.calinski_harabasz_score", "modules/generated/sklearn.metrics.check_scoring", "modules/generated/sklearn.metrics.class_likelihood_ratios", "modules/generated/sklearn.metrics.classification_report", "modules/generated/sklearn.metrics.cluster.contingency_matrix", "modules/generated/sklearn.metrics.cluster.pair_confusion_matrix", "modules/generated/sklearn.metrics.cohen_kappa_score", "modules/generated/sklearn.metrics.completeness_score", "modules/generated/sklearn.metrics.confusion_matrix", "modules/generated/sklearn.metrics.consensus_score", "modules/generated/sklearn.metrics.coverage_error", "modules/generated/sklearn.metrics.d2_absolute_error_score", "modules/generated/sklearn.metrics.d2_brier_score", "modules/generated/sklearn.metrics.d2_log_loss_score", "modules/generated/sklearn.metrics.d2_pinball_score", "modules/generated/sklearn.metrics.d2_tweedie_score", "modules/generated/sklearn.metrics.davies_bouldin_score", "modules/generated/sklearn.metrics.dcg_score", "modules/generated/sklearn.metrics.det_curve", "modules/generated/sklearn.metrics.explained_variance_score", "modules/generated/sklearn.metrics.f1_score", "modules/generated/sklearn.metrics.fbeta_score", "modules/generated/sklearn.metrics.fowlkes_mallows_score", "modules/generated/sklearn.metrics.get_scorer", "modules/generated/sklearn.metrics.get_scorer_names", "modules/generated/sklearn.metrics.hamming_loss", "modules/generated/sklearn.metrics.hinge_loss", "modules/generated/sklearn.metrics.homogeneity_completeness_v_measure", "modules/generated/sklearn.metrics.homogeneity_score", "modules/generated/sklearn.metrics.jaccard_score", "modules/generated/sklearn.metrics.label_ranking_average_precision_score", "modules/generated/sklearn.metrics.label_ranking_loss", "modules/generated/sklearn.metrics.log_loss", "modules/generated/sklearn.metrics.make_scorer", "modules/generated/sklearn.metrics.matthews_corrcoef", "modules/generated/sklearn.metrics.max_error", "modules/generated/sklearn.metrics.mean_absolute_error", "modules/generated/sklearn.metrics.mean_absolute_percentage_error", "modules/generated/sklearn.metrics.mean_gamma_deviance", "modules/generated/sklearn.metrics.mean_pinball_loss", "modules/generated/sklearn.metrics.mean_poisson_deviance", "modules/generated/sklearn.metrics.mean_squared_error", "modules/generated/sklearn.metrics.mean_squared_log_error", "modules/generated/sklearn.metrics.mean_tweedie_deviance", "modules/generated/sklearn.metrics.median_absolute_error", "modules/generated/sklearn.metrics.multilabel_confusion_matrix", "modules/generated/sklearn.metrics.mutual_info_score", "modules/generated/sklearn.metrics.ndcg_score", "modules/generated/sklearn.metrics.normalized_mutual_info_score", "modules/generated/sklearn.metrics.pairwise.additive_chi2_kernel", "modules/generated/sklearn.metrics.pairwise.chi2_kernel", "modules/generated/sklearn.metrics.pairwise.cosine_distances", "modules/generated/sklearn.metrics.pairwise.cosine_similarity", "modules/generated/sklearn.metrics.pairwise.distance_metrics", "modules/generated/sklearn.metrics.pairwise.euclidean_distances", "modules/generated/sklearn.metrics.pairwise.haversine_distances", "modules/generated/sklearn.metrics.pairwise.kernel_metrics", "modules/generated/sklearn.metrics.pairwise.laplacian_kernel", "modules/generated/sklearn.metrics.pairwise.linear_kernel", "modules/generated/sklearn.metrics.pairwise.manhattan_distances", "modules/generated/sklearn.metrics.pairwise.nan_euclidean_distances", "modules/generated/sklearn.metrics.pairwise.paired_cosine_distances", "modules/generated/sklearn.metrics.pairwise.paired_distances", "modules/generated/sklearn.metrics.pairwise.paired_euclidean_distances", "modules/generated/sklearn.metrics.pairwise.paired_manhattan_distances", "modules/generated/sklearn.metrics.pairwise.pairwise_kernels", "modules/generated/sklearn.metrics.pairwise.polynomial_kernel", "modules/generated/sklearn.metrics.pairwise.rbf_kernel", "modules/generated/sklearn.metrics.pairwise.sigmoid_kernel", "modules/generated/sklearn.metrics.pairwise_distances", "modules/generated/sklearn.metrics.pairwise_distances_argmin", "modules/generated/sklearn.metrics.pairwise_distances_argmin_min", "modules/generated/sklearn.metrics.pairwise_distances_chunked", "modules/generated/sklearn.metrics.precision_recall_curve", "modules/generated/sklearn.metrics.precision_recall_fscore_support", "modules/generated/sklearn.metrics.precision_score", "modules/generated/sklearn.metrics.r2_score", "modules/generated/sklearn.metrics.rand_score", "modules/generated/sklearn.metrics.recall_score", "modules/generated/sklearn.metrics.roc_auc_score", "modules/generated/sklearn.metrics.roc_curve", "modules/generated/sklearn.metrics.root_mean_squared_error", "modules/generated/sklearn.metrics.root_mean_squared_log_error", "modules/generated/sklearn.metrics.silhouette_samples", "modules/generated/sklearn.metrics.silhouette_score", "modules/generated/sklearn.metrics.top_k_accuracy_score", "modules/generated/sklearn.metrics.v_measure_score", "modules/generated/sklearn.metrics.zero_one_loss", "modules/generated/sklearn.mixture.BayesianGaussianMixture", "modules/generated/sklearn.mixture.GaussianMixture", "modules/generated/sklearn.model_selection.FixedThresholdClassifier", "modules/generated/sklearn.model_selection.GridSearchCV", "modules/generated/sklearn.model_selection.GroupKFold", "modules/generated/sklearn.model_selection.GroupShuffleSplit", "modules/generated/sklearn.model_selection.HalvingGridSearchCV", "modules/generated/sklearn.model_selection.HalvingRandomSearchCV", "modules/generated/sklearn.model_selection.KFold", "modules/generated/sklearn.model_selection.LearningCurveDisplay", "modules/generated/sklearn.model_selection.LeaveOneGroupOut", "modules/generated/sklearn.model_selection.LeaveOneOut", "modules/generated/sklearn.model_selection.LeavePGroupsOut", "modules/generated/sklearn.model_selection.LeavePOut", "modules/generated/sklearn.model_selection.ParameterGrid", "modules/generated/sklearn.model_selection.ParameterSampler", "modules/generated/sklearn.model_selection.PredefinedSplit", "modules/generated/sklearn.model_selection.RandomizedSearchCV", "modules/generated/sklearn.model_selection.RepeatedKFold", "modules/generated/sklearn.model_selection.RepeatedStratifiedKFold", "modules/generated/sklearn.model_selection.ShuffleSplit", "modules/generated/sklearn.model_selection.StratifiedGroupKFold", "modules/generated/sklearn.model_selection.StratifiedKFold", "modules/generated/sklearn.model_selection.StratifiedShuffleSplit", "modules/generated/sklearn.model_selection.TimeSeriesSplit", "modules/generated/sklearn.model_selection.TunedThresholdClassifierCV", "modules/generated/sklearn.model_selection.ValidationCurveDisplay", "modules/generated/sklearn.model_selection.check_cv", "modules/generated/sklearn.model_selection.cross_val_predict", "modules/generated/sklearn.model_selection.cross_val_score", "modules/generated/sklearn.model_selection.cross_validate", "modules/generated/sklearn.model_selection.learning_curve", "modules/generated/sklearn.model_selection.permutation_test_score", "modules/generated/sklearn.model_selection.train_test_split", "modules/generated/sklearn.model_selection.validation_curve", "modules/generated/sklearn.multiclass.OneVsOneClassifier", "modules/generated/sklearn.multiclass.OneVsRestClassifier", "modules/generated/sklearn.multiclass.OutputCodeClassifier", "modules/generated/sklearn.multioutput.ClassifierChain", "modules/generated/sklearn.multioutput.MultiOutputClassifier", "modules/generated/sklearn.multioutput.MultiOutputRegressor", "modules/generated/sklearn.multioutput.RegressorChain", "modules/generated/sklearn.naive_bayes.BernoulliNB", "modules/generated/sklearn.naive_bayes.CategoricalNB", "modules/generated/sklearn.naive_bayes.ComplementNB", "modules/generated/sklearn.naive_bayes.GaussianNB", "modules/generated/sklearn.naive_bayes.MultinomialNB", "modules/generated/sklearn.neighbors.BallTree", "modules/generated/sklearn.neighbors.KDTree", "modules/generated/sklearn.neighbors.KNeighborsClassifier", "modules/generated/sklearn.neighbors.KNeighborsRegressor", "modules/generated/sklearn.neighbors.KNeighborsTransformer", "modules/generated/sklearn.neighbors.KernelDensity", "modules/generated/sklearn.neighbors.LocalOutlierFactor", "modules/generated/sklearn.neighbors.NearestCentroid", "modules/generated/sklearn.neighbors.NearestNeighbors", "modules/generated/sklearn.neighbors.NeighborhoodComponentsAnalysis", "modules/generated/sklearn.neighbors.RadiusNeighborsClassifier", "modules/generated/sklearn.neighbors.RadiusNeighborsRegressor", "modules/generated/sklearn.neighbors.RadiusNeighborsTransformer", "modules/generated/sklearn.neighbors.kneighbors_graph", "modules/generated/sklearn.neighbors.radius_neighbors_graph", "modules/generated/sklearn.neighbors.sort_graph_by_row_values", "modules/generated/sklearn.neural_network.BernoulliRBM", "modules/generated/sklearn.neural_network.MLPClassifier", "modules/generated/sklearn.neural_network.MLPRegressor", "modules/generated/sklearn.pipeline.FeatureUnion", "modules/generated/sklearn.pipeline.Pipeline", "modules/generated/sklearn.pipeline.make_pipeline", "modules/generated/sklearn.pipeline.make_union", "modules/generated/sklearn.preprocessing.Binarizer", "modules/generated/sklearn.preprocessing.FunctionTransformer", "modules/generated/sklearn.preprocessing.KBinsDiscretizer", "modules/generated/sklearn.preprocessing.KernelCenterer", "modules/generated/sklearn.preprocessing.LabelBinarizer", "modules/generated/sklearn.preprocessing.LabelEncoder", "modules/generated/sklearn.preprocessing.MaxAbsScaler", "modules/generated/sklearn.preprocessing.MinMaxScaler", "modules/generated/sklearn.preprocessing.MultiLabelBinarizer", "modules/generated/sklearn.preprocessing.Normalizer", "modules/generated/sklearn.preprocessing.OneHotEncoder", "modules/generated/sklearn.preprocessing.OrdinalEncoder", "modules/generated/sklearn.preprocessing.PolynomialFeatures", "modules/generated/sklearn.preprocessing.PowerTransformer", "modules/generated/sklearn.preprocessing.QuantileTransformer", "modules/generated/sklearn.preprocessing.RobustScaler", "modules/generated/sklearn.preprocessing.SplineTransformer", "modules/generated/sklearn.preprocessing.StandardScaler", "modules/generated/sklearn.preprocessing.TargetEncoder", "modules/generated/sklearn.preprocessing.add_dummy_feature", "modules/generated/sklearn.preprocessing.binarize", "modules/generated/sklearn.preprocessing.label_binarize", "modules/generated/sklearn.preprocessing.maxabs_scale", "modules/generated/sklearn.preprocessing.minmax_scale", "modules/generated/sklearn.preprocessing.normalize", "modules/generated/sklearn.preprocessing.power_transform", "modules/generated/sklearn.preprocessing.quantile_transform", "modules/generated/sklearn.preprocessing.robust_scale", "modules/generated/sklearn.preprocessing.scale", "modules/generated/sklearn.random_projection.GaussianRandomProjection", "modules/generated/sklearn.random_projection.SparseRandomProjection", "modules/generated/sklearn.random_projection.johnson_lindenstrauss_min_dim", "modules/generated/sklearn.semi_supervised.LabelPropagation", "modules/generated/sklearn.semi_supervised.LabelSpreading", "modules/generated/sklearn.semi_supervised.SelfTrainingClassifier", "modules/generated/sklearn.set_config", "modules/generated/sklearn.show_versions", "modules/generated/sklearn.svm.LinearSVC", "modules/generated/sklearn.svm.LinearSVR", "modules/generated/sklearn.svm.NuSVC", "modules/generated/sklearn.svm.NuSVR", "modules/generated/sklearn.svm.OneClassSVM", "modules/generated/sklearn.svm.SVC", "modules/generated/sklearn.svm.SVR", "modules/generated/sklearn.svm.l1_min_c", "modules/generated/sklearn.tree.DecisionTreeClassifier", "modules/generated/sklearn.tree.DecisionTreeRegressor", "modules/generated/sklearn.tree.ExtraTreeClassifier", "modules/generated/sklearn.tree.ExtraTreeRegressor", "modules/generated/sklearn.tree.export_graphviz", "modules/generated/sklearn.tree.export_text", "modules/generated/sklearn.tree.plot_tree", "modules/generated/sklearn.utils.Bunch", "modules/generated/sklearn.utils.ClassifierTags", "modules/generated/sklearn.utils.InputTags", "modules/generated/sklearn.utils.RegressorTags", "modules/generated/sklearn.utils.Tags", "modules/generated/sklearn.utils.TargetTags", "modules/generated/sklearn.utils.TransformerTags", "modules/generated/sklearn.utils._safe_indexing", "modules/generated/sklearn.utils.arrayfuncs.min_pos", "modules/generated/sklearn.utils.as_float_array", "modules/generated/sklearn.utils.assert_all_finite", "modules/generated/sklearn.utils.check_X_y", "modules/generated/sklearn.utils.check_array", "modules/generated/sklearn.utils.check_consistent_length", "modules/generated/sklearn.utils.check_random_state", "modules/generated/sklearn.utils.check_scalar", "modules/generated/sklearn.utils.class_weight.compute_class_weight", "modules/generated/sklearn.utils.class_weight.compute_sample_weight", "modules/generated/sklearn.utils.deprecated", "modules/generated/sklearn.utils.discovery.all_displays", "modules/generated/sklearn.utils.discovery.all_estimators", "modules/generated/sklearn.utils.discovery.all_functions", "modules/generated/sklearn.utils.estimator_checks.check_estimator", "modules/generated/sklearn.utils.estimator_checks.estimator_checks_generator", "modules/generated/sklearn.utils.estimator_checks.parametrize_with_checks", "modules/generated/sklearn.utils.estimator_html_repr", "modules/generated/sklearn.utils.extmath.density", "modules/generated/sklearn.utils.extmath.fast_logdet", "modules/generated/sklearn.utils.extmath.randomized_range_finder", "modules/generated/sklearn.utils.extmath.randomized_svd", "modules/generated/sklearn.utils.extmath.safe_sparse_dot", "modules/generated/sklearn.utils.extmath.weighted_mode", "modules/generated/sklearn.utils.gen_batches", "modules/generated/sklearn.utils.gen_even_slices", "modules/generated/sklearn.utils.get_tags", "modules/generated/sklearn.utils.graph.single_source_shortest_path_length", "modules/generated/sklearn.utils.indexable", "modules/generated/sklearn.utils.metadata_routing.MetadataRequest", "modules/generated/sklearn.utils.metadata_routing.MetadataRouter", "modules/generated/sklearn.utils.metadata_routing.MethodMapping", "modules/generated/sklearn.utils.metadata_routing.get_routing_for_object", "modules/generated/sklearn.utils.metadata_routing.process_routing", "modules/generated/sklearn.utils.metaestimators.available_if", "modules/generated/sklearn.utils.multiclass.is_multilabel", "modules/generated/sklearn.utils.multiclass.type_of_target", "modules/generated/sklearn.utils.multiclass.unique_labels", "modules/generated/sklearn.utils.murmurhash3_32", "modules/generated/sklearn.utils.parallel.Parallel", "modules/generated/sklearn.utils.parallel.delayed", "modules/generated/sklearn.utils.random.sample_without_replacement", "modules/generated/sklearn.utils.resample", "modules/generated/sklearn.utils.safe_mask", "modules/generated/sklearn.utils.safe_sqr", "modules/generated/sklearn.utils.shuffle", "modules/generated/sklearn.utils.sparsefuncs.incr_mean_variance_axis", "modules/generated/sklearn.utils.sparsefuncs.inplace_column_scale", "modules/generated/sklearn.utils.sparsefuncs.inplace_csr_column_scale", "modules/generated/sklearn.utils.sparsefuncs.inplace_row_scale", "modules/generated/sklearn.utils.sparsefuncs.inplace_swap_column", "modules/generated/sklearn.utils.sparsefuncs.inplace_swap_row", "modules/generated/sklearn.utils.sparsefuncs.mean_variance_axis", "modules/generated/sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l1", "modules/generated/sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l2", "modules/generated/sklearn.utils.validation.check_is_fitted", "modules/generated/sklearn.utils.validation.check_memory", "modules/generated/sklearn.utils.validation.check_symmetric", "modules/generated/sklearn.utils.validation.column_or_1d", "modules/generated/sklearn.utils.validation.has_fit_parameter", "modules/generated/sklearn.utils.validation.validate_data", "modules/grid_search", "modules/impute", "modules/isotonic", "modules/kernel_approximation", "modules/kernel_ridge", "modules/lda_qda", "modules/learning_curve", "modules/linear_model", "modules/manifold", "modules/metrics", "modules/mixture", "modules/model_evaluation", "modules/multiclass", "modules/naive_bayes", "modules/neighbors", "modules/neural_networks_supervised", "modules/neural_networks_unsupervised", "modules/outlier_detection", "modules/partial_dependence", "modules/permutation_importance", "modules/pipeline", "modules/preprocessing", "modules/preprocessing_targets", "modules/random_projection", "modules/semi_supervised", "modules/sgd", "modules/svm", "modules/tree", "modules/unsupervised_reduction", "presentations", "related_projects", "roadmap", "sg_execution_times", "supervised_learning", "support", "testimonials/testimonials", "unsupervised_learning", "user_guide", "versions", "visualizations", "whats_new", "whats_new/_contributors", "whats_new/older_versions", "whats_new/v0.13", "whats_new/v0.14", "whats_new/v0.15", "whats_new/v0.16", "whats_new/v0.17", "whats_new/v0.18", "whats_new/v0.19", "whats_new/v0.20", "whats_new/v0.21", "whats_new/v0.22", "whats_new/v0.23", "whats_new/v0.24", "whats_new/v1.0", "whats_new/v1.1", "whats_new/v1.2", "whats_new/v1.3", "whats_new/v1.4", "whats_new/v1.5", "whats_new/v1.6", "whats_new/v1.7", "whats_new/v1.8"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinxext.opengraph": 1}, "filenames": ["about.rst", "api/deprecated.rst", "api/index.rst", "api/sklearn.rst", "api/sklearn.base.rst", "api/sklearn.calibration.rst", "api/sklearn.cluster.rst", "api/sklearn.compose.rst", "api/sklearn.covariance.rst", "api/sklearn.cross_decomposition.rst", "api/sklearn.datasets.rst", "api/sklearn.decomposition.rst", "api/sklearn.discriminant_analysis.rst", "api/sklearn.dummy.rst", "api/sklearn.ensemble.rst", "api/sklearn.exceptions.rst", "api/sklearn.experimental.rst", "api/sklearn.feature_extraction.rst", "api/sklearn.feature_selection.rst", "api/sklearn.frozen.rst", "api/sklearn.gaussian_process.rst", "api/sklearn.impute.rst", "api/sklearn.inspection.rst", "api/sklearn.isotonic.rst", "api/sklearn.kernel_approximation.rst", "api/sklearn.kernel_ridge.rst", "api/sklearn.linear_model.rst", "api/sklearn.manifold.rst", "api/sklearn.metrics.rst", "api/sklearn.mixture.rst", "api/sklearn.model_selection.rst", "api/sklearn.multiclass.rst", "api/sklearn.multioutput.rst", "api/sklearn.naive_bayes.rst", "api/sklearn.neighbors.rst", "api/sklearn.neural_network.rst", "api/sklearn.pipeline.rst", "api/sklearn.preprocessing.rst", "api/sklearn.random_projection.rst", "api/sklearn.semi_supervised.rst", "api/sklearn.svm.rst", "api/sklearn.tree.rst", "api/sklearn.utils.rst", "auto_examples/applications/index.rst", "auto_examples/applications/plot_cyclical_feature_engineering.rst", "auto_examples/applications/plot_digits_denoising.rst", "auto_examples/applications/plot_face_recognition.rst", "auto_examples/applications/plot_model_complexity_influence.rst", "auto_examples/applications/plot_out_of_core_classification.rst", "auto_examples/applications/plot_outlier_detection_wine.rst", "auto_examples/applications/plot_prediction_latency.rst", "auto_examples/applications/plot_species_distribution_modeling.rst", "auto_examples/applications/plot_stock_market.rst", "auto_examples/applications/plot_time_series_lagged_features.rst", "auto_examples/applications/plot_tomography_l1_reconstruction.rst", "auto_examples/applications/plot_topics_extraction_with_nmf_lda.rst", "auto_examples/applications/wikipedia_principal_eigenvector.rst", "auto_examples/bicluster/index.rst", "auto_examples/bicluster/plot_bicluster_newsgroups.rst", "auto_examples/bicluster/plot_spectral_biclustering.rst", "auto_examples/bicluster/plot_spectral_coclustering.rst", "auto_examples/calibration/index.rst", "auto_examples/calibration/plot_calibration.rst", "auto_examples/calibration/plot_calibration_curve.rst", "auto_examples/calibration/plot_calibration_multiclass.rst", "auto_examples/calibration/plot_compare_calibration.rst", "auto_examples/classification/index.rst", "auto_examples/classification/plot_classification_probability.rst", "auto_examples/classification/plot_classifier_comparison.rst", "auto_examples/classification/plot_digits_classification.rst", "auto_examples/classification/plot_lda.rst", "auto_examples/classification/plot_lda_qda.rst", "auto_examples/cluster/index.rst", "auto_examples/cluster/plot_adjusted_for_chance_measures.rst", "auto_examples/cluster/plot_affinity_propagation.rst", "auto_examples/cluster/plot_agglomerative_clustering_metrics.rst", "auto_examples/cluster/plot_agglomerative_dendrogram.rst", "auto_examples/cluster/plot_birch_vs_minibatchkmeans.rst", "auto_examples/cluster/plot_bisect_kmeans.rst", "auto_examples/cluster/plot_cluster_comparison.rst", "auto_examples/cluster/plot_coin_segmentation.rst", "auto_examples/cluster/plot_coin_ward_segmentation.rst", "auto_examples/cluster/plot_dbscan.rst", "auto_examples/cluster/plot_dict_face_patches.rst", "auto_examples/cluster/plot_digits_agglomeration.rst", "auto_examples/cluster/plot_digits_linkage.rst", "auto_examples/cluster/plot_face_compress.rst", "auto_examples/cluster/plot_feature_agglomeration_vs_univariate_selection.rst", "auto_examples/cluster/plot_hdbscan.rst", "auto_examples/cluster/plot_inductive_clustering.rst", "auto_examples/cluster/plot_kmeans_assumptions.rst", "auto_examples/cluster/plot_kmeans_digits.rst", "auto_examples/cluster/plot_kmeans_plusplus.rst", "auto_examples/cluster/plot_kmeans_silhouette_analysis.rst", "auto_examples/cluster/plot_kmeans_stability_low_dim_dense.rst", "auto_examples/cluster/plot_linkage_comparison.rst", "auto_examples/cluster/plot_mean_shift.rst", "auto_examples/cluster/plot_mini_batch_kmeans.rst", "auto_examples/cluster/plot_optics.rst", "auto_examples/cluster/plot_segmentation_toy.rst", "auto_examples/cluster/plot_ward_structured_vs_unstructured.rst", "auto_examples/compose/index.rst", "auto_examples/compose/plot_column_transformer.rst", "auto_examples/compose/plot_column_transformer_mixed_types.rst", "auto_examples/compose/plot_compare_reduction.rst", "auto_examples/compose/plot_digits_pipe.rst", "auto_examples/compose/plot_feature_union.rst", "auto_examples/compose/plot_transformed_target.rst", "auto_examples/covariance/index.rst", "auto_examples/covariance/plot_covariance_estimation.rst", "auto_examples/covariance/plot_lw_vs_oas.rst", "auto_examples/covariance/plot_mahalanobis_distances.rst", "auto_examples/covariance/plot_robust_vs_empirical_covariance.rst", "auto_examples/covariance/plot_sparse_cov.rst", "auto_examples/cross_decomposition/index.rst", "auto_examples/cross_decomposition/plot_compare_cross_decomposition.rst", "auto_examples/cross_decomposition/plot_pcr_vs_pls.rst", "auto_examples/datasets/index.rst", "auto_examples/datasets/plot_random_multilabel_dataset.rst", "auto_examples/decomposition/index.rst", "auto_examples/decomposition/plot_faces_decomposition.rst", "auto_examples/decomposition/plot_ica_blind_source_separation.rst", "auto_examples/decomposition/plot_ica_vs_pca.rst", "auto_examples/decomposition/plot_image_denoising.rst", "auto_examples/decomposition/plot_incremental_pca.rst", "auto_examples/decomposition/plot_kernel_pca.rst", "auto_examples/decomposition/plot_pca_iris.rst", "auto_examples/decomposition/plot_pca_vs_fa_model_selection.rst", "auto_examples/decomposition/plot_pca_vs_lda.rst", "auto_examples/decomposition/plot_sparse_coding.rst", "auto_examples/decomposition/plot_varimax_fa.rst", "auto_examples/developing_estimators/index.rst", "auto_examples/developing_estimators/sklearn_is_fitted.rst", "auto_examples/ensemble/index.rst", "auto_examples/ensemble/plot_adaboost_multiclass.rst", "auto_examples/ensemble/plot_adaboost_regression.rst", "auto_examples/ensemble/plot_adaboost_twoclass.rst", "auto_examples/ensemble/plot_bias_variance.rst", "auto_examples/ensemble/plot_ensemble_oob.rst", "auto_examples/ensemble/plot_feature_transformation.rst", "auto_examples/ensemble/plot_forest_hist_grad_boosting_comparison.rst", "auto_examples/ensemble/plot_forest_importances.rst", "auto_examples/ensemble/plot_forest_iris.rst", "auto_examples/ensemble/plot_gradient_boosting_categorical.rst", "auto_examples/ensemble/plot_gradient_boosting_early_stopping.rst", "auto_examples/ensemble/plot_gradient_boosting_oob.rst", "auto_examples/ensemble/plot_gradient_boosting_quantile.rst", "auto_examples/ensemble/plot_gradient_boosting_regression.rst", "auto_examples/ensemble/plot_gradient_boosting_regularization.rst", "auto_examples/ensemble/plot_hgbt_regression.rst", "auto_examples/ensemble/plot_isolation_forest.rst", "auto_examples/ensemble/plot_monotonic_constraints.rst", "auto_examples/ensemble/plot_random_forest_embedding.rst", "auto_examples/ensemble/plot_random_forest_regression_multioutput.rst", "auto_examples/ensemble/plot_stack_predictors.rst", "auto_examples/ensemble/plot_voting_decision_regions.rst", "auto_examples/ensemble/plot_voting_regressor.rst", "auto_examples/feature_selection/index.rst", "auto_examples/feature_selection/plot_f_test_vs_mi.rst", "auto_examples/feature_selection/plot_feature_selection.rst", "auto_examples/feature_selection/plot_feature_selection_pipeline.rst", "auto_examples/feature_selection/plot_rfe_digits.rst", "auto_examples/feature_selection/plot_rfe_with_cross_validation.rst", "auto_examples/feature_selection/plot_select_from_model_diabetes.rst", "auto_examples/frozen/index.rst", "auto_examples/frozen/plot_frozen_examples.rst", "auto_examples/gaussian_process/index.rst", "auto_examples/gaussian_process/plot_compare_gpr_krr.rst", "auto_examples/gaussian_process/plot_gpc.rst", "auto_examples/gaussian_process/plot_gpc_iris.rst", "auto_examples/gaussian_process/plot_gpc_isoprobability.rst", "auto_examples/gaussian_process/plot_gpc_xor.rst", "auto_examples/gaussian_process/plot_gpr_co2.rst", "auto_examples/gaussian_process/plot_gpr_noisy.rst", "auto_examples/gaussian_process/plot_gpr_noisy_targets.rst", "auto_examples/gaussian_process/plot_gpr_on_structured_data.rst", "auto_examples/gaussian_process/plot_gpr_prior_posterior.rst", "auto_examples/impute/index.rst", "auto_examples/impute/plot_iterative_imputer_variants_comparison.rst", "auto_examples/impute/plot_missing_values.rst", "auto_examples/index.rst", "auto_examples/inspection/index.rst", "auto_examples/inspection/plot_causal_interpretation.rst", "auto_examples/inspection/plot_linear_model_coefficient_interpretation.rst", "auto_examples/inspection/plot_partial_dependence.rst", "auto_examples/inspection/plot_permutation_importance.rst", "auto_examples/inspection/plot_permutation_importance_multicollinear.rst", "auto_examples/kernel_approximation/index.rst", "auto_examples/kernel_approximation/plot_scalable_poly_kernels.rst", "auto_examples/linear_model/index.rst", "auto_examples/linear_model/plot_ard.rst", "auto_examples/linear_model/plot_bayesian_ridge_curvefit.rst", "auto_examples/linear_model/plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.rst", "auto_examples/linear_model/plot_huber_vs_ridge.rst", "auto_examples/linear_model/plot_lasso_and_elasticnet.rst", "auto_examples/linear_model/plot_lasso_dense_vs_sparse_data.rst", "auto_examples/linear_model/plot_lasso_lars_ic.rst", "auto_examples/linear_model/plot_lasso_lasso_lars_elasticnet_path.rst", "auto_examples/linear_model/plot_lasso_model_selection.rst", "auto_examples/linear_model/plot_logistic_l1_l2_sparsity.rst", "auto_examples/linear_model/plot_logistic_multinomial.rst", "auto_examples/linear_model/plot_logistic_path.rst", "auto_examples/linear_model/plot_multi_task_lasso_support.rst", "auto_examples/linear_model/plot_nnls.rst", "auto_examples/linear_model/plot_ols_ridge.rst", "auto_examples/linear_model/plot_omp.rst", "auto_examples/linear_model/plot_poisson_regression_non_normal_loss.rst", "auto_examples/linear_model/plot_polynomial_interpolation.rst", "auto_examples/linear_model/plot_quantile_regression.rst", "auto_examples/linear_model/plot_ransac.rst", "auto_examples/linear_model/plot_ridge_coeffs.rst", "auto_examples/linear_model/plot_ridge_path.rst", "auto_examples/linear_model/plot_robust_fit.rst", "auto_examples/linear_model/plot_sgd_early_stopping.rst", "auto_examples/linear_model/plot_sgd_iris.rst", "auto_examples/linear_model/plot_sgd_loss_functions.rst", "auto_examples/linear_model/plot_sgd_penalties.rst", "auto_examples/linear_model/plot_sgd_separating_hyperplane.rst", "auto_examples/linear_model/plot_sgd_weighted_samples.rst", "auto_examples/linear_model/plot_sgdocsvm_vs_ocsvm.rst", "auto_examples/linear_model/plot_sparse_logistic_regression_20newsgroups.rst", "auto_examples/linear_model/plot_sparse_logistic_regression_mnist.rst", "auto_examples/linear_model/plot_theilsen.rst", "auto_examples/linear_model/plot_tweedie_regression_insurance_claims.rst", "auto_examples/manifold/index.rst", "auto_examples/manifold/plot_compare_methods.rst", "auto_examples/manifold/plot_lle_digits.rst", "auto_examples/manifold/plot_manifold_sphere.rst", "auto_examples/manifold/plot_mds.rst", "auto_examples/manifold/plot_swissroll.rst", "auto_examples/manifold/plot_t_sne_perplexity.rst", "auto_examples/miscellaneous/index.rst", "auto_examples/miscellaneous/plot_anomaly_comparison.rst", "auto_examples/miscellaneous/plot_display_object_visualization.rst", "auto_examples/miscellaneous/plot_estimator_representation.rst", "auto_examples/miscellaneous/plot_isotonic_regression.rst", "auto_examples/miscellaneous/plot_johnson_lindenstrauss_bound.rst", "auto_examples/miscellaneous/plot_kernel_approximation.rst", "auto_examples/miscellaneous/plot_kernel_ridge_regression.rst", "auto_examples/miscellaneous/plot_metadata_routing.rst", "auto_examples/miscellaneous/plot_multilabel.rst", "auto_examples/miscellaneous/plot_multioutput_face_completion.rst", "auto_examples/miscellaneous/plot_outlier_detection_bench.rst", "auto_examples/miscellaneous/plot_partial_dependence_visualization_api.rst", "auto_examples/miscellaneous/plot_pipeline_display.rst", "auto_examples/miscellaneous/plot_roc_curve_visualization_api.rst", "auto_examples/miscellaneous/plot_set_output.rst", "auto_examples/mixture/index.rst", "auto_examples/mixture/plot_concentration_prior.rst", "auto_examples/mixture/plot_gmm.rst", "auto_examples/mixture/plot_gmm_covariances.rst", "auto_examples/mixture/plot_gmm_init.rst", "auto_examples/mixture/plot_gmm_pdf.rst", "auto_examples/mixture/plot_gmm_selection.rst", "auto_examples/mixture/plot_gmm_sin.rst", "auto_examples/model_selection/index.rst", "auto_examples/model_selection/plot_confusion_matrix.rst", "auto_examples/model_selection/plot_cost_sensitive_learning.rst", "auto_examples/model_selection/plot_cv_indices.rst", "auto_examples/model_selection/plot_cv_predict.rst", "auto_examples/model_selection/plot_det.rst", "auto_examples/model_selection/plot_grid_search_digits.rst", "auto_examples/model_selection/plot_grid_search_refit_callable.rst", "auto_examples/model_selection/plot_grid_search_stats.rst", "auto_examples/model_selection/plot_grid_search_text_feature_extraction.rst", "auto_examples/model_selection/plot_learning_curve.rst", "auto_examples/model_selection/plot_likelihood_ratios.rst", "auto_examples/model_selection/plot_multi_metric_evaluation.rst", "auto_examples/model_selection/plot_nested_cross_validation_iris.rst", "auto_examples/model_selection/plot_permutation_tests_for_classification.rst", "auto_examples/model_selection/plot_precision_recall.rst", "auto_examples/model_selection/plot_randomized_search.rst", "auto_examples/model_selection/plot_roc.rst", "auto_examples/model_selection/plot_roc_crossval.rst", "auto_examples/model_selection/plot_successive_halving_heatmap.rst", "auto_examples/model_selection/plot_successive_halving_iterations.rst", "auto_examples/model_selection/plot_train_error_vs_test_error.rst", "auto_examples/model_selection/plot_tuned_decision_threshold.rst", "auto_examples/model_selection/plot_underfitting_overfitting.rst", "auto_examples/multiclass/index.rst", "auto_examples/multiclass/plot_multiclass_overview.rst", "auto_examples/multioutput/index.rst", "auto_examples/multioutput/plot_classifier_chain_yeast.rst", "auto_examples/neighbors/approximate_nearest_neighbors.rst", "auto_examples/neighbors/index.rst", "auto_examples/neighbors/plot_caching_nearest_neighbors.rst", "auto_examples/neighbors/plot_classification.rst", "auto_examples/neighbors/plot_digits_kde_sampling.rst", "auto_examples/neighbors/plot_kde_1d.rst", "auto_examples/neighbors/plot_lof_novelty_detection.rst", "auto_examples/neighbors/plot_lof_outlier_detection.rst", "auto_examples/neighbors/plot_nca_classification.rst", "auto_examples/neighbors/plot_nca_dim_reduction.rst", "auto_examples/neighbors/plot_nca_illustration.rst", "auto_examples/neighbors/plot_nearest_centroid.rst", "auto_examples/neighbors/plot_regression.rst", "auto_examples/neighbors/plot_species_kde.rst", "auto_examples/neural_networks/index.rst", "auto_examples/neural_networks/plot_mlp_alpha.rst", "auto_examples/neural_networks/plot_mlp_training_curves.rst", "auto_examples/neural_networks/plot_mnist_filters.rst", "auto_examples/neural_networks/plot_rbm_logistic_classification.rst", "auto_examples/preprocessing/index.rst", "auto_examples/preprocessing/plot_all_scaling.rst", "auto_examples/preprocessing/plot_discretization.rst", "auto_examples/preprocessing/plot_discretization_classification.rst", "auto_examples/preprocessing/plot_discretization_strategies.rst", "auto_examples/preprocessing/plot_map_data_to_normal.rst", "auto_examples/preprocessing/plot_scaling_importance.rst", "auto_examples/preprocessing/plot_target_encoder.rst", "auto_examples/preprocessing/plot_target_encoder_cross_val.rst", "auto_examples/release_highlights/index.rst", "auto_examples/release_highlights/plot_release_highlights_0_22_0.rst", "auto_examples/release_highlights/plot_release_highlights_0_23_0.rst", "auto_examples/release_highlights/plot_release_highlights_0_24_0.rst", "auto_examples/release_highlights/plot_release_highlights_1_0_0.rst", "auto_examples/release_highlights/plot_release_highlights_1_1_0.rst", "auto_examples/release_highlights/plot_release_highlights_1_2_0.rst", "auto_examples/release_highlights/plot_release_highlights_1_3_0.rst", "auto_examples/release_highlights/plot_release_highlights_1_4_0.rst", "auto_examples/release_highlights/plot_release_highlights_1_5_0.rst", "auto_examples/release_highlights/plot_release_highlights_1_6_0.rst", "auto_examples/release_highlights/plot_release_highlights_1_7_0.rst", "auto_examples/semi_supervised/index.rst", "auto_examples/semi_supervised/plot_label_propagation_digits.rst", "auto_examples/semi_supervised/plot_label_propagation_digits_active_learning.rst", "auto_examples/semi_supervised/plot_label_propagation_structure.rst", "auto_examples/semi_supervised/plot_self_training_varying_threshold.rst", "auto_examples/semi_supervised/plot_semi_supervised_newsgroups.rst", "auto_examples/semi_supervised/plot_semi_supervised_versus_svm_iris.rst", "auto_examples/svm/index.rst", "auto_examples/svm/plot_custom_kernel.rst", "auto_examples/svm/plot_iris_svc.rst", "auto_examples/svm/plot_linearsvc_support_vectors.rst", "auto_examples/svm/plot_oneclass.rst", "auto_examples/svm/plot_rbf_parameters.rst", "auto_examples/svm/plot_separating_hyperplane.rst", "auto_examples/svm/plot_separating_hyperplane_unbalanced.rst", "auto_examples/svm/plot_svm_anova.rst", "auto_examples/svm/plot_svm_kernels.rst", "auto_examples/svm/plot_svm_margin.rst", "auto_examples/svm/plot_svm_regression.rst", "auto_examples/svm/plot_svm_scale_c.rst", "auto_examples/svm/plot_svm_tie_breaking.rst", "auto_examples/svm/plot_weighted_samples.rst", "auto_examples/text/index.rst", "auto_examples/text/plot_document_classification_20newsgroups.rst", "auto_examples/text/plot_document_clustering.rst", "auto_examples/text/plot_hashing_vs_dict_vectorizer.rst", "auto_examples/tree/index.rst", "auto_examples/tree/plot_cost_complexity_pruning.rst", "auto_examples/tree/plot_iris_dtc.rst", "auto_examples/tree/plot_tree_regression.rst", "auto_examples/tree/plot_unveil_tree_structure.rst", "common_pitfalls.rst", "communication_team.rst", "communication_team_emeritus.rst", "computing.rst", "computing/computational_performance.rst", "computing/parallelism.rst", "computing/scaling_strategies.rst", "contributor_experience_team.rst", "contributor_experience_team_emeritus.rst", "data_transforms.rst", "datasets.rst", "datasets/loading_other_datasets.rst", "datasets/real_world.rst", "datasets/sample_generators.rst", "datasets/toy_dataset.rst", "developers/advanced_installation.rst", "developers/bug_triaging.rst", "developers/contributing.rst", "developers/cython.rst", "developers/develop.rst", "developers/index.rst", "developers/maintainer.rst", "developers/minimal_reproducer.rst", "developers/performance.rst", "developers/plotting.rst", "developers/tips.rst", "developers/utilities.rst", "dispatching.rst", "documentation_team.rst", "faq.rst", "getting_started.rst", "glossary.rst", "governance.rst", "index.rst", "inspection.rst", "install.rst", "install_instructions_conda.rst", "machine_learning_map.rst", "maintainers.rst", "maintainers_emeritus.rst", "metadata_routing.rst", "min_dependency_substitutions.rst", "min_dependency_table.rst", "model_persistence.rst", "model_selection.rst", "modules/array_api.rst", "modules/biclustering.rst", "modules/calibration.rst", "modules/classification_threshold.rst", "modules/clustering.rst", "modules/compose.rst", "modules/covariance.rst", "modules/cross_decomposition.rst", "modules/cross_validation.rst", "modules/decomposition.rst", "modules/density.rst", "modules/ensemble.rst", "modules/feature_extraction.rst", "modules/feature_selection.rst", "modules/gaussian_process.rst", "modules/generated/dbscan-function.rst", "modules/generated/fastica-function.rst", "modules/generated/oas-function.rst", "modules/generated/sklearn.base.BaseEstimator.rst", "modules/generated/sklearn.base.BiclusterMixin.rst", "modules/generated/sklearn.base.ClassNamePrefixFeaturesOutMixin.rst", "modules/generated/sklearn.base.ClassifierMixin.rst", "modules/generated/sklearn.base.ClusterMixin.rst", "modules/generated/sklearn.base.DensityMixin.rst", "modules/generated/sklearn.base.MetaEstimatorMixin.rst", "modules/generated/sklearn.base.OneToOneFeatureMixin.rst", "modules/generated/sklearn.base.OutlierMixin.rst", "modules/generated/sklearn.base.RegressorMixin.rst", "modules/generated/sklearn.base.TransformerMixin.rst", "modules/generated/sklearn.base.clone.rst", "modules/generated/sklearn.base.is_classifier.rst", "modules/generated/sklearn.base.is_clusterer.rst", "modules/generated/sklearn.base.is_outlier_detector.rst", "modules/generated/sklearn.base.is_regressor.rst", "modules/generated/sklearn.calibration.CalibratedClassifierCV.rst", "modules/generated/sklearn.calibration.CalibrationDisplay.rst", "modules/generated/sklearn.calibration.calibration_curve.rst", "modules/generated/sklearn.cluster.AffinityPropagation.rst", "modules/generated/sklearn.cluster.AgglomerativeClustering.rst", "modules/generated/sklearn.cluster.Birch.rst", "modules/generated/sklearn.cluster.BisectingKMeans.rst", "modules/generated/sklearn.cluster.DBSCAN.rst", "modules/generated/sklearn.cluster.FeatureAgglomeration.rst", "modules/generated/sklearn.cluster.HDBSCAN.rst", "modules/generated/sklearn.cluster.KMeans.rst", "modules/generated/sklearn.cluster.MeanShift.rst", "modules/generated/sklearn.cluster.MiniBatchKMeans.rst", "modules/generated/sklearn.cluster.OPTICS.rst", "modules/generated/sklearn.cluster.SpectralBiclustering.rst", "modules/generated/sklearn.cluster.SpectralClustering.rst", "modules/generated/sklearn.cluster.SpectralCoclustering.rst", "modules/generated/sklearn.cluster.affinity_propagation.rst", "modules/generated/sklearn.cluster.cluster_optics_dbscan.rst", "modules/generated/sklearn.cluster.cluster_optics_xi.rst", "modules/generated/sklearn.cluster.compute_optics_graph.rst", "modules/generated/sklearn.cluster.estimate_bandwidth.rst", "modules/generated/sklearn.cluster.k_means.rst", "modules/generated/sklearn.cluster.kmeans_plusplus.rst", "modules/generated/sklearn.cluster.mean_shift.rst", "modules/generated/sklearn.cluster.spectral_clustering.rst", "modules/generated/sklearn.cluster.ward_tree.rst", "modules/generated/sklearn.compose.ColumnTransformer.rst", "modules/generated/sklearn.compose.TransformedTargetRegressor.rst", "modules/generated/sklearn.compose.make_column_selector.rst", "modules/generated/sklearn.compose.make_column_transformer.rst", "modules/generated/sklearn.config_context.rst", "modules/generated/sklearn.covariance.EllipticEnvelope.rst", "modules/generated/sklearn.covariance.EmpiricalCovariance.rst", "modules/generated/sklearn.covariance.GraphicalLasso.rst", "modules/generated/sklearn.covariance.GraphicalLassoCV.rst", "modules/generated/sklearn.covariance.LedoitWolf.rst", "modules/generated/sklearn.covariance.MinCovDet.rst", "modules/generated/sklearn.covariance.OAS.rst", "modules/generated/sklearn.covariance.ShrunkCovariance.rst", "modules/generated/sklearn.covariance.empirical_covariance.rst", "modules/generated/sklearn.covariance.graphical_lasso.rst", "modules/generated/sklearn.covariance.ledoit_wolf.rst", "modules/generated/sklearn.covariance.ledoit_wolf_shrinkage.rst", "modules/generated/sklearn.covariance.shrunk_covariance.rst", "modules/generated/sklearn.cross_decomposition.CCA.rst", "modules/generated/sklearn.cross_decomposition.PLSCanonical.rst", "modules/generated/sklearn.cross_decomposition.PLSRegression.rst", "modules/generated/sklearn.cross_decomposition.PLSSVD.rst", "modules/generated/sklearn.datasets.clear_data_home.rst", "modules/generated/sklearn.datasets.dump_svmlight_file.rst", "modules/generated/sklearn.datasets.fetch_20newsgroups.rst", "modules/generated/sklearn.datasets.fetch_20newsgroups_vectorized.rst", "modules/generated/sklearn.datasets.fetch_california_housing.rst", "modules/generated/sklearn.datasets.fetch_covtype.rst", "modules/generated/sklearn.datasets.fetch_file.rst", "modules/generated/sklearn.datasets.fetch_kddcup99.rst", "modules/generated/sklearn.datasets.fetch_lfw_pairs.rst", "modules/generated/sklearn.datasets.fetch_lfw_people.rst", "modules/generated/sklearn.datasets.fetch_olivetti_faces.rst", "modules/generated/sklearn.datasets.fetch_openml.rst", "modules/generated/sklearn.datasets.fetch_rcv1.rst", "modules/generated/sklearn.datasets.fetch_species_distributions.rst", "modules/generated/sklearn.datasets.get_data_home.rst", "modules/generated/sklearn.datasets.load_breast_cancer.rst", "modules/generated/sklearn.datasets.load_diabetes.rst", "modules/generated/sklearn.datasets.load_digits.rst", "modules/generated/sklearn.datasets.load_files.rst", "modules/generated/sklearn.datasets.load_iris.rst", "modules/generated/sklearn.datasets.load_linnerud.rst", "modules/generated/sklearn.datasets.load_sample_image.rst", "modules/generated/sklearn.datasets.load_sample_images.rst", "modules/generated/sklearn.datasets.load_svmlight_file.rst", "modules/generated/sklearn.datasets.load_svmlight_files.rst", "modules/generated/sklearn.datasets.load_wine.rst", "modules/generated/sklearn.datasets.make_biclusters.rst", "modules/generated/sklearn.datasets.make_blobs.rst", "modules/generated/sklearn.datasets.make_checkerboard.rst", "modules/generated/sklearn.datasets.make_circles.rst", "modules/generated/sklearn.datasets.make_classification.rst", "modules/generated/sklearn.datasets.make_friedman1.rst", "modules/generated/sklearn.datasets.make_friedman2.rst", "modules/generated/sklearn.datasets.make_friedman3.rst", "modules/generated/sklearn.datasets.make_gaussian_quantiles.rst", "modules/generated/sklearn.datasets.make_hastie_10_2.rst", "modules/generated/sklearn.datasets.make_low_rank_matrix.rst", "modules/generated/sklearn.datasets.make_moons.rst", "modules/generated/sklearn.datasets.make_multilabel_classification.rst", "modules/generated/sklearn.datasets.make_regression.rst", "modules/generated/sklearn.datasets.make_s_curve.rst", "modules/generated/sklearn.datasets.make_sparse_coded_signal.rst", "modules/generated/sklearn.datasets.make_sparse_spd_matrix.rst", "modules/generated/sklearn.datasets.make_sparse_uncorrelated.rst", "modules/generated/sklearn.datasets.make_spd_matrix.rst", "modules/generated/sklearn.datasets.make_swiss_roll.rst", "modules/generated/sklearn.decomposition.DictionaryLearning.rst", "modules/generated/sklearn.decomposition.FactorAnalysis.rst", "modules/generated/sklearn.decomposition.FastICA.rst", "modules/generated/sklearn.decomposition.IncrementalPCA.rst", "modules/generated/sklearn.decomposition.KernelPCA.rst", "modules/generated/sklearn.decomposition.LatentDirichletAllocation.rst", "modules/generated/sklearn.decomposition.MiniBatchDictionaryLearning.rst", "modules/generated/sklearn.decomposition.MiniBatchNMF.rst", "modules/generated/sklearn.decomposition.MiniBatchSparsePCA.rst", "modules/generated/sklearn.decomposition.NMF.rst", "modules/generated/sklearn.decomposition.PCA.rst", "modules/generated/sklearn.decomposition.SparseCoder.rst", "modules/generated/sklearn.decomposition.SparsePCA.rst", "modules/generated/sklearn.decomposition.TruncatedSVD.rst", "modules/generated/sklearn.decomposition.dict_learning.rst", "modules/generated/sklearn.decomposition.dict_learning_online.rst", "modules/generated/sklearn.decomposition.non_negative_factorization.rst", "modules/generated/sklearn.decomposition.sparse_encode.rst", "modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.rst", "modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.rst", "modules/generated/sklearn.dummy.DummyClassifier.rst", "modules/generated/sklearn.dummy.DummyRegressor.rst", "modules/generated/sklearn.ensemble.AdaBoostClassifier.rst", "modules/generated/sklearn.ensemble.AdaBoostRegressor.rst", "modules/generated/sklearn.ensemble.BaggingClassifier.rst", "modules/generated/sklearn.ensemble.BaggingRegressor.rst", "modules/generated/sklearn.ensemble.ExtraTreesClassifier.rst", "modules/generated/sklearn.ensemble.ExtraTreesRegressor.rst", "modules/generated/sklearn.ensemble.GradientBoostingClassifier.rst", "modules/generated/sklearn.ensemble.GradientBoostingRegressor.rst", "modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.rst", "modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.rst", "modules/generated/sklearn.ensemble.IsolationForest.rst", "modules/generated/sklearn.ensemble.RandomForestClassifier.rst", "modules/generated/sklearn.ensemble.RandomForestRegressor.rst", "modules/generated/sklearn.ensemble.RandomTreesEmbedding.rst", "modules/generated/sklearn.ensemble.StackingClassifier.rst", "modules/generated/sklearn.ensemble.StackingRegressor.rst", "modules/generated/sklearn.ensemble.VotingClassifier.rst", "modules/generated/sklearn.ensemble.VotingRegressor.rst", "modules/generated/sklearn.exceptions.ConvergenceWarning.rst", "modules/generated/sklearn.exceptions.DataConversionWarning.rst", "modules/generated/sklearn.exceptions.DataDimensionalityWarning.rst", "modules/generated/sklearn.exceptions.EfficiencyWarning.rst", "modules/generated/sklearn.exceptions.EstimatorCheckFailedWarning.rst", "modules/generated/sklearn.exceptions.FitFailedWarning.rst", "modules/generated/sklearn.exceptions.InconsistentVersionWarning.rst", "modules/generated/sklearn.exceptions.NotFittedError.rst", "modules/generated/sklearn.exceptions.UndefinedMetricWarning.rst", "modules/generated/sklearn.experimental.enable_halving_search_cv.rst", "modules/generated/sklearn.experimental.enable_iterative_imputer.rst", "modules/generated/sklearn.feature_extraction.DictVectorizer.rst", "modules/generated/sklearn.feature_extraction.FeatureHasher.rst", "modules/generated/sklearn.feature_extraction.image.PatchExtractor.rst", "modules/generated/sklearn.feature_extraction.image.extract_patches_2d.rst", "modules/generated/sklearn.feature_extraction.image.grid_to_graph.rst", "modules/generated/sklearn.feature_extraction.image.img_to_graph.rst", "modules/generated/sklearn.feature_extraction.image.reconstruct_from_patches_2d.rst", "modules/generated/sklearn.feature_extraction.text.CountVectorizer.rst", "modules/generated/sklearn.feature_extraction.text.HashingVectorizer.rst", "modules/generated/sklearn.feature_extraction.text.TfidfTransformer.rst", "modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.rst", "modules/generated/sklearn.feature_selection.GenericUnivariateSelect.rst", "modules/generated/sklearn.feature_selection.RFE.rst", "modules/generated/sklearn.feature_selection.RFECV.rst", "modules/generated/sklearn.feature_selection.SelectFdr.rst", "modules/generated/sklearn.feature_selection.SelectFpr.rst", "modules/generated/sklearn.feature_selection.SelectFromModel.rst", "modules/generated/sklearn.feature_selection.SelectFwe.rst", "modules/generated/sklearn.feature_selection.SelectKBest.rst", "modules/generated/sklearn.feature_selection.SelectPercentile.rst", "modules/generated/sklearn.feature_selection.SelectorMixin.rst", "modules/generated/sklearn.feature_selection.SequentialFeatureSelector.rst", "modules/generated/sklearn.feature_selection.VarianceThreshold.rst", "modules/generated/sklearn.feature_selection.chi2.rst", "modules/generated/sklearn.feature_selection.f_classif.rst", "modules/generated/sklearn.feature_selection.f_regression.rst", "modules/generated/sklearn.feature_selection.mutual_info_classif.rst", "modules/generated/sklearn.feature_selection.mutual_info_regression.rst", "modules/generated/sklearn.feature_selection.r_regression.rst", "modules/generated/sklearn.frozen.FrozenEstimator.rst", "modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.rst", "modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.rst", "modules/generated/sklearn.gaussian_process.kernels.CompoundKernel.rst", "modules/generated/sklearn.gaussian_process.kernels.ConstantKernel.rst", "modules/generated/sklearn.gaussian_process.kernels.DotProduct.rst", "modules/generated/sklearn.gaussian_process.kernels.ExpSineSquared.rst", "modules/generated/sklearn.gaussian_process.kernels.Exponentiation.rst", "modules/generated/sklearn.gaussian_process.kernels.Hyperparameter.rst", "modules/generated/sklearn.gaussian_process.kernels.Kernel.rst", "modules/generated/sklearn.gaussian_process.kernels.Matern.rst", "modules/generated/sklearn.gaussian_process.kernels.PairwiseKernel.rst", "modules/generated/sklearn.gaussian_process.kernels.Product.rst", "modules/generated/sklearn.gaussian_process.kernels.RBF.rst", "modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.rst", "modules/generated/sklearn.gaussian_process.kernels.Sum.rst", "modules/generated/sklearn.gaussian_process.kernels.WhiteKernel.rst", "modules/generated/sklearn.get_config.rst", "modules/generated/sklearn.impute.IterativeImputer.rst", "modules/generated/sklearn.impute.KNNImputer.rst", "modules/generated/sklearn.impute.MissingIndicator.rst", "modules/generated/sklearn.impute.SimpleImputer.rst", "modules/generated/sklearn.inspection.DecisionBoundaryDisplay.rst", "modules/generated/sklearn.inspection.PartialDependenceDisplay.rst", "modules/generated/sklearn.inspection.partial_dependence.rst", "modules/generated/sklearn.inspection.permutation_importance.rst", "modules/generated/sklearn.isotonic.IsotonicRegression.rst", "modules/generated/sklearn.isotonic.check_increasing.rst", "modules/generated/sklearn.isotonic.isotonic_regression.rst", "modules/generated/sklearn.kernel_approximation.AdditiveChi2Sampler.rst", "modules/generated/sklearn.kernel_approximation.Nystroem.rst", "modules/generated/sklearn.kernel_approximation.PolynomialCountSketch.rst", "modules/generated/sklearn.kernel_approximation.RBFSampler.rst", "modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler.rst", "modules/generated/sklearn.kernel_ridge.KernelRidge.rst", "modules/generated/sklearn.linear_model.ARDRegression.rst", "modules/generated/sklearn.linear_model.BayesianRidge.rst", "modules/generated/sklearn.linear_model.ElasticNet.rst", "modules/generated/sklearn.linear_model.ElasticNetCV.rst", "modules/generated/sklearn.linear_model.GammaRegressor.rst", "modules/generated/sklearn.linear_model.HuberRegressor.rst", "modules/generated/sklearn.linear_model.Lars.rst", "modules/generated/sklearn.linear_model.LarsCV.rst", "modules/generated/sklearn.linear_model.Lasso.rst", "modules/generated/sklearn.linear_model.LassoCV.rst", "modules/generated/sklearn.linear_model.LassoLars.rst", "modules/generated/sklearn.linear_model.LassoLarsCV.rst", "modules/generated/sklearn.linear_model.LassoLarsIC.rst", "modules/generated/sklearn.linear_model.LinearRegression.rst", "modules/generated/sklearn.linear_model.LogisticRegression.rst", "modules/generated/sklearn.linear_model.LogisticRegressionCV.rst", "modules/generated/sklearn.linear_model.MultiTaskElasticNet.rst", "modules/generated/sklearn.linear_model.MultiTaskElasticNetCV.rst", "modules/generated/sklearn.linear_model.MultiTaskLasso.rst", "modules/generated/sklearn.linear_model.MultiTaskLassoCV.rst", "modules/generated/sklearn.linear_model.OrthogonalMatchingPursuit.rst", "modules/generated/sklearn.linear_model.OrthogonalMatchingPursuitCV.rst", "modules/generated/sklearn.linear_model.PassiveAggressiveClassifier.rst", "modules/generated/sklearn.linear_model.PassiveAggressiveRegressor.rst", "modules/generated/sklearn.linear_model.Perceptron.rst", "modules/generated/sklearn.linear_model.PoissonRegressor.rst", "modules/generated/sklearn.linear_model.QuantileRegressor.rst", "modules/generated/sklearn.linear_model.RANSACRegressor.rst", "modules/generated/sklearn.linear_model.Ridge.rst", "modules/generated/sklearn.linear_model.RidgeCV.rst", "modules/generated/sklearn.linear_model.RidgeClassifier.rst", "modules/generated/sklearn.linear_model.RidgeClassifierCV.rst", "modules/generated/sklearn.linear_model.SGDClassifier.rst", "modules/generated/sklearn.linear_model.SGDOneClassSVM.rst", "modules/generated/sklearn.linear_model.SGDRegressor.rst", "modules/generated/sklearn.linear_model.TheilSenRegressor.rst", "modules/generated/sklearn.linear_model.TweedieRegressor.rst", "modules/generated/sklearn.linear_model.enet_path.rst", "modules/generated/sklearn.linear_model.lars_path.rst", "modules/generated/sklearn.linear_model.lars_path_gram.rst", "modules/generated/sklearn.linear_model.lasso_path.rst", "modules/generated/sklearn.linear_model.orthogonal_mp.rst", "modules/generated/sklearn.linear_model.orthogonal_mp_gram.rst", "modules/generated/sklearn.linear_model.ridge_regression.rst", "modules/generated/sklearn.manifold.ClassicalMDS.rst", "modules/generated/sklearn.manifold.Isomap.rst", "modules/generated/sklearn.manifold.LocallyLinearEmbedding.rst", "modules/generated/sklearn.manifold.MDS.rst", "modules/generated/sklearn.manifold.SpectralEmbedding.rst", "modules/generated/sklearn.manifold.TSNE.rst", "modules/generated/sklearn.manifold.locally_linear_embedding.rst", "modules/generated/sklearn.manifold.smacof.rst", "modules/generated/sklearn.manifold.spectral_embedding.rst", "modules/generated/sklearn.manifold.trustworthiness.rst", "modules/generated/sklearn.metrics.ConfusionMatrixDisplay.rst", "modules/generated/sklearn.metrics.DetCurveDisplay.rst", "modules/generated/sklearn.metrics.DistanceMetric.rst", "modules/generated/sklearn.metrics.PrecisionRecallDisplay.rst", "modules/generated/sklearn.metrics.PredictionErrorDisplay.rst", "modules/generated/sklearn.metrics.RocCurveDisplay.rst", "modules/generated/sklearn.metrics.accuracy_score.rst", "modules/generated/sklearn.metrics.adjusted_mutual_info_score.rst", "modules/generated/sklearn.metrics.adjusted_rand_score.rst", "modules/generated/sklearn.metrics.auc.rst", "modules/generated/sklearn.metrics.average_precision_score.rst", "modules/generated/sklearn.metrics.balanced_accuracy_score.rst", "modules/generated/sklearn.metrics.brier_score_loss.rst", "modules/generated/sklearn.metrics.calinski_harabasz_score.rst", "modules/generated/sklearn.metrics.check_scoring.rst", "modules/generated/sklearn.metrics.class_likelihood_ratios.rst", "modules/generated/sklearn.metrics.classification_report.rst", "modules/generated/sklearn.metrics.cluster.contingency_matrix.rst", "modules/generated/sklearn.metrics.cluster.pair_confusion_matrix.rst", "modules/generated/sklearn.metrics.cohen_kappa_score.rst", "modules/generated/sklearn.metrics.completeness_score.rst", "modules/generated/sklearn.metrics.confusion_matrix.rst", "modules/generated/sklearn.metrics.consensus_score.rst", "modules/generated/sklearn.metrics.coverage_error.rst", "modules/generated/sklearn.metrics.d2_absolute_error_score.rst", "modules/generated/sklearn.metrics.d2_brier_score.rst", "modules/generated/sklearn.metrics.d2_log_loss_score.rst", "modules/generated/sklearn.metrics.d2_pinball_score.rst", "modules/generated/sklearn.metrics.d2_tweedie_score.rst", "modules/generated/sklearn.metrics.davies_bouldin_score.rst", "modules/generated/sklearn.metrics.dcg_score.rst", "modules/generated/sklearn.metrics.det_curve.rst", "modules/generated/sklearn.metrics.explained_variance_score.rst", "modules/generated/sklearn.metrics.f1_score.rst", "modules/generated/sklearn.metrics.fbeta_score.rst", "modules/generated/sklearn.metrics.fowlkes_mallows_score.rst", "modules/generated/sklearn.metrics.get_scorer.rst", "modules/generated/sklearn.metrics.get_scorer_names.rst", "modules/generated/sklearn.metrics.hamming_loss.rst", "modules/generated/sklearn.metrics.hinge_loss.rst", "modules/generated/sklearn.metrics.homogeneity_completeness_v_measure.rst", "modules/generated/sklearn.metrics.homogeneity_score.rst", "modules/generated/sklearn.metrics.jaccard_score.rst", "modules/generated/sklearn.metrics.label_ranking_average_precision_score.rst", "modules/generated/sklearn.metrics.label_ranking_loss.rst", "modules/generated/sklearn.metrics.log_loss.rst", "modules/generated/sklearn.metrics.make_scorer.rst", "modules/generated/sklearn.metrics.matthews_corrcoef.rst", "modules/generated/sklearn.metrics.max_error.rst", "modules/generated/sklearn.metrics.mean_absolute_error.rst", "modules/generated/sklearn.metrics.mean_absolute_percentage_error.rst", "modules/generated/sklearn.metrics.mean_gamma_deviance.rst", "modules/generated/sklearn.metrics.mean_pinball_loss.rst", "modules/generated/sklearn.metrics.mean_poisson_deviance.rst", "modules/generated/sklearn.metrics.mean_squared_error.rst", "modules/generated/sklearn.metrics.mean_squared_log_error.rst", "modules/generated/sklearn.metrics.mean_tweedie_deviance.rst", "modules/generated/sklearn.metrics.median_absolute_error.rst", "modules/generated/sklearn.metrics.multilabel_confusion_matrix.rst", "modules/generated/sklearn.metrics.mutual_info_score.rst", "modules/generated/sklearn.metrics.ndcg_score.rst", "modules/generated/sklearn.metrics.normalized_mutual_info_score.rst", "modules/generated/sklearn.metrics.pairwise.additive_chi2_kernel.rst", "modules/generated/sklearn.metrics.pairwise.chi2_kernel.rst", "modules/generated/sklearn.metrics.pairwise.cosine_distances.rst", "modules/generated/sklearn.metrics.pairwise.cosine_similarity.rst", "modules/generated/sklearn.metrics.pairwise.distance_metrics.rst", "modules/generated/sklearn.metrics.pairwise.euclidean_distances.rst", "modules/generated/sklearn.metrics.pairwise.haversine_distances.rst", "modules/generated/sklearn.metrics.pairwise.kernel_metrics.rst", "modules/generated/sklearn.metrics.pairwise.laplacian_kernel.rst", "modules/generated/sklearn.metrics.pairwise.linear_kernel.rst", "modules/generated/sklearn.metrics.pairwise.manhattan_distances.rst", "modules/generated/sklearn.metrics.pairwise.nan_euclidean_distances.rst", "modules/generated/sklearn.metrics.pairwise.paired_cosine_distances.rst", "modules/generated/sklearn.metrics.pairwise.paired_distances.rst", "modules/generated/sklearn.metrics.pairwise.paired_euclidean_distances.rst", "modules/generated/sklearn.metrics.pairwise.paired_manhattan_distances.rst", "modules/generated/sklearn.metrics.pairwise.pairwise_kernels.rst", "modules/generated/sklearn.metrics.pairwise.polynomial_kernel.rst", "modules/generated/sklearn.metrics.pairwise.rbf_kernel.rst", "modules/generated/sklearn.metrics.pairwise.sigmoid_kernel.rst", "modules/generated/sklearn.metrics.pairwise_distances.rst", "modules/generated/sklearn.metrics.pairwise_distances_argmin.rst", "modules/generated/sklearn.metrics.pairwise_distances_argmin_min.rst", "modules/generated/sklearn.metrics.pairwise_distances_chunked.rst", "modules/generated/sklearn.metrics.precision_recall_curve.rst", "modules/generated/sklearn.metrics.precision_recall_fscore_support.rst", "modules/generated/sklearn.metrics.precision_score.rst", "modules/generated/sklearn.metrics.r2_score.rst", "modules/generated/sklearn.metrics.rand_score.rst", "modules/generated/sklearn.metrics.recall_score.rst", "modules/generated/sklearn.metrics.roc_auc_score.rst", "modules/generated/sklearn.metrics.roc_curve.rst", "modules/generated/sklearn.metrics.root_mean_squared_error.rst", "modules/generated/sklearn.metrics.root_mean_squared_log_error.rst", "modules/generated/sklearn.metrics.silhouette_samples.rst", "modules/generated/sklearn.metrics.silhouette_score.rst", "modules/generated/sklearn.metrics.top_k_accuracy_score.rst", "modules/generated/sklearn.metrics.v_measure_score.rst", "modules/generated/sklearn.metrics.zero_one_loss.rst", "modules/generated/sklearn.mixture.BayesianGaussianMixture.rst", "modules/generated/sklearn.mixture.GaussianMixture.rst", "modules/generated/sklearn.model_selection.FixedThresholdClassifier.rst", "modules/generated/sklearn.model_selection.GridSearchCV.rst", "modules/generated/sklearn.model_selection.GroupKFold.rst", "modules/generated/sklearn.model_selection.GroupShuffleSplit.rst", "modules/generated/sklearn.model_selection.HalvingGridSearchCV.rst", "modules/generated/sklearn.model_selection.HalvingRandomSearchCV.rst", "modules/generated/sklearn.model_selection.KFold.rst", "modules/generated/sklearn.model_selection.LearningCurveDisplay.rst", "modules/generated/sklearn.model_selection.LeaveOneGroupOut.rst", "modules/generated/sklearn.model_selection.LeaveOneOut.rst", "modules/generated/sklearn.model_selection.LeavePGroupsOut.rst", "modules/generated/sklearn.model_selection.LeavePOut.rst", "modules/generated/sklearn.model_selection.ParameterGrid.rst", "modules/generated/sklearn.model_selection.ParameterSampler.rst", "modules/generated/sklearn.model_selection.PredefinedSplit.rst", "modules/generated/sklearn.model_selection.RandomizedSearchCV.rst", "modules/generated/sklearn.model_selection.RepeatedKFold.rst", "modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.rst", "modules/generated/sklearn.model_selection.ShuffleSplit.rst", "modules/generated/sklearn.model_selection.StratifiedGroupKFold.rst", "modules/generated/sklearn.model_selection.StratifiedKFold.rst", "modules/generated/sklearn.model_selection.StratifiedShuffleSplit.rst", "modules/generated/sklearn.model_selection.TimeSeriesSplit.rst", "modules/generated/sklearn.model_selection.TunedThresholdClassifierCV.rst", "modules/generated/sklearn.model_selection.ValidationCurveDisplay.rst", "modules/generated/sklearn.model_selection.check_cv.rst", "modules/generated/sklearn.model_selection.cross_val_predict.rst", "modules/generated/sklearn.model_selection.cross_val_score.rst", "modules/generated/sklearn.model_selection.cross_validate.rst", "modules/generated/sklearn.model_selection.learning_curve.rst", "modules/generated/sklearn.model_selection.permutation_test_score.rst", "modules/generated/sklearn.model_selection.train_test_split.rst", "modules/generated/sklearn.model_selection.validation_curve.rst", "modules/generated/sklearn.multiclass.OneVsOneClassifier.rst", "modules/generated/sklearn.multiclass.OneVsRestClassifier.rst", "modules/generated/sklearn.multiclass.OutputCodeClassifier.rst", "modules/generated/sklearn.multioutput.ClassifierChain.rst", "modules/generated/sklearn.multioutput.MultiOutputClassifier.rst", "modules/generated/sklearn.multioutput.MultiOutputRegressor.rst", "modules/generated/sklearn.multioutput.RegressorChain.rst", "modules/generated/sklearn.naive_bayes.BernoulliNB.rst", "modules/generated/sklearn.naive_bayes.CategoricalNB.rst", "modules/generated/sklearn.naive_bayes.ComplementNB.rst", "modules/generated/sklearn.naive_bayes.GaussianNB.rst", "modules/generated/sklearn.naive_bayes.MultinomialNB.rst", "modules/generated/sklearn.neighbors.BallTree.rst", "modules/generated/sklearn.neighbors.KDTree.rst", "modules/generated/sklearn.neighbors.KNeighborsClassifier.rst", "modules/generated/sklearn.neighbors.KNeighborsRegressor.rst", "modules/generated/sklearn.neighbors.KNeighborsTransformer.rst", "modules/generated/sklearn.neighbors.KernelDensity.rst", "modules/generated/sklearn.neighbors.LocalOutlierFactor.rst", "modules/generated/sklearn.neighbors.NearestCentroid.rst", "modules/generated/sklearn.neighbors.NearestNeighbors.rst", "modules/generated/sklearn.neighbors.NeighborhoodComponentsAnalysis.rst", "modules/generated/sklearn.neighbors.RadiusNeighborsClassifier.rst", "modules/generated/sklearn.neighbors.RadiusNeighborsRegressor.rst", "modules/generated/sklearn.neighbors.RadiusNeighborsTransformer.rst", "modules/generated/sklearn.neighbors.kneighbors_graph.rst", "modules/generated/sklearn.neighbors.radius_neighbors_graph.rst", "modules/generated/sklearn.neighbors.sort_graph_by_row_values.rst", "modules/generated/sklearn.neural_network.BernoulliRBM.rst", "modules/generated/sklearn.neural_network.MLPClassifier.rst", "modules/generated/sklearn.neural_network.MLPRegressor.rst", "modules/generated/sklearn.pipeline.FeatureUnion.rst", "modules/generated/sklearn.pipeline.Pipeline.rst", "modules/generated/sklearn.pipeline.make_pipeline.rst", "modules/generated/sklearn.pipeline.make_union.rst", "modules/generated/sklearn.preprocessing.Binarizer.rst", "modules/generated/sklearn.preprocessing.FunctionTransformer.rst", "modules/generated/sklearn.preprocessing.KBinsDiscretizer.rst", "modules/generated/sklearn.preprocessing.KernelCenterer.rst", "modules/generated/sklearn.preprocessing.LabelBinarizer.rst", "modules/generated/sklearn.preprocessing.LabelEncoder.rst", "modules/generated/sklearn.preprocessing.MaxAbsScaler.rst", "modules/generated/sklearn.preprocessing.MinMaxScaler.rst", "modules/generated/sklearn.preprocessing.MultiLabelBinarizer.rst", "modules/generated/sklearn.preprocessing.Normalizer.rst", "modules/generated/sklearn.preprocessing.OneHotEncoder.rst", "modules/generated/sklearn.preprocessing.OrdinalEncoder.rst", "modules/generated/sklearn.preprocessing.PolynomialFeatures.rst", "modules/generated/sklearn.preprocessing.PowerTransformer.rst", "modules/generated/sklearn.preprocessing.QuantileTransformer.rst", "modules/generated/sklearn.preprocessing.RobustScaler.rst", "modules/generated/sklearn.preprocessing.SplineTransformer.rst", "modules/generated/sklearn.preprocessing.StandardScaler.rst", "modules/generated/sklearn.preprocessing.TargetEncoder.rst", "modules/generated/sklearn.preprocessing.add_dummy_feature.rst", "modules/generated/sklearn.preprocessing.binarize.rst", "modules/generated/sklearn.preprocessing.label_binarize.rst", "modules/generated/sklearn.preprocessing.maxabs_scale.rst", "modules/generated/sklearn.preprocessing.minmax_scale.rst", "modules/generated/sklearn.preprocessing.normalize.rst", "modules/generated/sklearn.preprocessing.power_transform.rst", "modules/generated/sklearn.preprocessing.quantile_transform.rst", "modules/generated/sklearn.preprocessing.robust_scale.rst", "modules/generated/sklearn.preprocessing.scale.rst", "modules/generated/sklearn.random_projection.GaussianRandomProjection.rst", "modules/generated/sklearn.random_projection.SparseRandomProjection.rst", "modules/generated/sklearn.random_projection.johnson_lindenstrauss_min_dim.rst", "modules/generated/sklearn.semi_supervised.LabelPropagation.rst", "modules/generated/sklearn.semi_supervised.LabelSpreading.rst", "modules/generated/sklearn.semi_supervised.SelfTrainingClassifier.rst", "modules/generated/sklearn.set_config.rst", "modules/generated/sklearn.show_versions.rst", "modules/generated/sklearn.svm.LinearSVC.rst", "modules/generated/sklearn.svm.LinearSVR.rst", "modules/generated/sklearn.svm.NuSVC.rst", "modules/generated/sklearn.svm.NuSVR.rst", "modules/generated/sklearn.svm.OneClassSVM.rst", "modules/generated/sklearn.svm.SVC.rst", "modules/generated/sklearn.svm.SVR.rst", "modules/generated/sklearn.svm.l1_min_c.rst", "modules/generated/sklearn.tree.DecisionTreeClassifier.rst", "modules/generated/sklearn.tree.DecisionTreeRegressor.rst", "modules/generated/sklearn.tree.ExtraTreeClassifier.rst", "modules/generated/sklearn.tree.ExtraTreeRegressor.rst", "modules/generated/sklearn.tree.export_graphviz.rst", "modules/generated/sklearn.tree.export_text.rst", "modules/generated/sklearn.tree.plot_tree.rst", "modules/generated/sklearn.utils.Bunch.rst", "modules/generated/sklearn.utils.ClassifierTags.rst", "modules/generated/sklearn.utils.InputTags.rst", "modules/generated/sklearn.utils.RegressorTags.rst", "modules/generated/sklearn.utils.Tags.rst", "modules/generated/sklearn.utils.TargetTags.rst", "modules/generated/sklearn.utils.TransformerTags.rst", "modules/generated/sklearn.utils._safe_indexing.rst", "modules/generated/sklearn.utils.arrayfuncs.min_pos.rst", "modules/generated/sklearn.utils.as_float_array.rst", "modules/generated/sklearn.utils.assert_all_finite.rst", "modules/generated/sklearn.utils.check_X_y.rst", "modules/generated/sklearn.utils.check_array.rst", "modules/generated/sklearn.utils.check_consistent_length.rst", "modules/generated/sklearn.utils.check_random_state.rst", "modules/generated/sklearn.utils.check_scalar.rst", "modules/generated/sklearn.utils.class_weight.compute_class_weight.rst", "modules/generated/sklearn.utils.class_weight.compute_sample_weight.rst", "modules/generated/sklearn.utils.deprecated.rst", "modules/generated/sklearn.utils.discovery.all_displays.rst", "modules/generated/sklearn.utils.discovery.all_estimators.rst", "modules/generated/sklearn.utils.discovery.all_functions.rst", "modules/generated/sklearn.utils.estimator_checks.check_estimator.rst", "modules/generated/sklearn.utils.estimator_checks.estimator_checks_generator.rst", "modules/generated/sklearn.utils.estimator_checks.parametrize_with_checks.rst", "modules/generated/sklearn.utils.estimator_html_repr.rst", "modules/generated/sklearn.utils.extmath.density.rst", "modules/generated/sklearn.utils.extmath.fast_logdet.rst", "modules/generated/sklearn.utils.extmath.randomized_range_finder.rst", "modules/generated/sklearn.utils.extmath.randomized_svd.rst", "modules/generated/sklearn.utils.extmath.safe_sparse_dot.rst", "modules/generated/sklearn.utils.extmath.weighted_mode.rst", "modules/generated/sklearn.utils.gen_batches.rst", "modules/generated/sklearn.utils.gen_even_slices.rst", "modules/generated/sklearn.utils.get_tags.rst", "modules/generated/sklearn.utils.graph.single_source_shortest_path_length.rst", "modules/generated/sklearn.utils.indexable.rst", "modules/generated/sklearn.utils.metadata_routing.MetadataRequest.rst", "modules/generated/sklearn.utils.metadata_routing.MetadataRouter.rst", "modules/generated/sklearn.utils.metadata_routing.MethodMapping.rst", "modules/generated/sklearn.utils.metadata_routing.get_routing_for_object.rst", "modules/generated/sklearn.utils.metadata_routing.process_routing.rst", "modules/generated/sklearn.utils.metaestimators.available_if.rst", "modules/generated/sklearn.utils.multiclass.is_multilabel.rst", "modules/generated/sklearn.utils.multiclass.type_of_target.rst", "modules/generated/sklearn.utils.multiclass.unique_labels.rst", "modules/generated/sklearn.utils.murmurhash3_32.rst", "modules/generated/sklearn.utils.parallel.Parallel.rst", "modules/generated/sklearn.utils.parallel.delayed.rst", "modules/generated/sklearn.utils.random.sample_without_replacement.rst", "modules/generated/sklearn.utils.resample.rst", "modules/generated/sklearn.utils.safe_mask.rst", "modules/generated/sklearn.utils.safe_sqr.rst", "modules/generated/sklearn.utils.shuffle.rst", "modules/generated/sklearn.utils.sparsefuncs.incr_mean_variance_axis.rst", "modules/generated/sklearn.utils.sparsefuncs.inplace_column_scale.rst", "modules/generated/sklearn.utils.sparsefuncs.inplace_csr_column_scale.rst", "modules/generated/sklearn.utils.sparsefuncs.inplace_row_scale.rst", "modules/generated/sklearn.utils.sparsefuncs.inplace_swap_column.rst", "modules/generated/sklearn.utils.sparsefuncs.inplace_swap_row.rst", "modules/generated/sklearn.utils.sparsefuncs.mean_variance_axis.rst", "modules/generated/sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l1.rst", "modules/generated/sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l2.rst", "modules/generated/sklearn.utils.validation.check_is_fitted.rst", "modules/generated/sklearn.utils.validation.check_memory.rst", "modules/generated/sklearn.utils.validation.check_symmetric.rst", "modules/generated/sklearn.utils.validation.column_or_1d.rst", "modules/generated/sklearn.utils.validation.has_fit_parameter.rst", "modules/generated/sklearn.utils.validation.validate_data.rst", "modules/grid_search.rst", "modules/impute.rst", "modules/isotonic.rst", "modules/kernel_approximation.rst", "modules/kernel_ridge.rst", "modules/lda_qda.rst", "modules/learning_curve.rst", "modules/linear_model.rst", "modules/manifold.rst", "modules/metrics.rst", "modules/mixture.rst", "modules/model_evaluation.rst", "modules/multiclass.rst", "modules/naive_bayes.rst", "modules/neighbors.rst", "modules/neural_networks_supervised.rst", "modules/neural_networks_unsupervised.rst", "modules/outlier_detection.rst", "modules/partial_dependence.rst", "modules/permutation_importance.rst", "modules/pipeline.rst", "modules/preprocessing.rst", "modules/preprocessing_targets.rst", "modules/random_projection.rst", "modules/semi_supervised.rst", "modules/sgd.rst", "modules/svm.rst", "modules/tree.rst", "modules/unsupervised_reduction.rst", "presentations.rst", "related_projects.rst", "roadmap.rst", "sg_execution_times.rst", "supervised_learning.rst", "support.rst", "testimonials/testimonials.rst", "unsupervised_learning.rst", "user_guide.rst", "versions.rst", "visualizations.rst", "whats_new.rst", "whats_new/_contributors.rst", "whats_new/older_versions.rst", "whats_new/v0.13.rst", "whats_new/v0.14.rst", "whats_new/v0.15.rst", "whats_new/v0.16.rst", "whats_new/v0.17.rst", "whats_new/v0.18.rst", "whats_new/v0.19.rst", "whats_new/v0.20.rst", "whats_new/v0.21.rst", "whats_new/v0.22.rst", "whats_new/v0.23.rst", "whats_new/v0.24.rst", "whats_new/v1.0.rst", "whats_new/v1.1.rst", "whats_new/v1.2.rst", "whats_new/v1.3.rst", "whats_new/v1.4.rst", "whats_new/v1.5.rst", "whats_new/v1.6.rst", "whats_new/v1.7.rst", "whats_new/v1.8.rst"], "indexentries": {"1d": [[385, "term-1d", true]], "1d array": [[385, "term-1d-array", true]], "2d": [[385, "term-2d", true]], "2d array": [[385, "term-2d-array", true]], "__call__() (sklearn.compose.make_column_selector method)": [[462, "sklearn.compose.make_column_selector.__call__", false]], "__call__() (sklearn.gaussian_process.kernels.compoundkernel method)": [[611, "sklearn.gaussian_process.kernels.CompoundKernel.__call__", false]], "__call__() (sklearn.gaussian_process.kernels.constantkernel method)": [[612, "sklearn.gaussian_process.kernels.ConstantKernel.__call__", false]], "__call__() (sklearn.gaussian_process.kernels.dotproduct method)": [[613, "sklearn.gaussian_process.kernels.DotProduct.__call__", false]], "__call__() (sklearn.gaussian_process.kernels.exponentiation method)": [[615, "sklearn.gaussian_process.kernels.Exponentiation.__call__", false]], "__call__() (sklearn.gaussian_process.kernels.expsinesquared method)": [[614, "sklearn.gaussian_process.kernels.ExpSineSquared.__call__", false]], "__call__() (sklearn.gaussian_process.kernels.kernel method)": [[617, "sklearn.gaussian_process.kernels.Kernel.__call__", false]], "__call__() (sklearn.gaussian_process.kernels.matern method)": [[618, "sklearn.gaussian_process.kernels.Matern.__call__", false]], "__call__() (sklearn.gaussian_process.kernels.pairwisekernel method)": [[619, "sklearn.gaussian_process.kernels.PairwiseKernel.__call__", false]], "__call__() (sklearn.gaussian_process.kernels.product method)": [[620, "sklearn.gaussian_process.kernels.Product.__call__", false]], "__call__() (sklearn.gaussian_process.kernels.rationalquadratic method)": [[622, "sklearn.gaussian_process.kernels.RationalQuadratic.__call__", false]], "__call__() (sklearn.gaussian_process.kernels.rbf method)": [[621, "sklearn.gaussian_process.kernels.RBF.__call__", false]], "__call__() (sklearn.gaussian_process.kernels.sum method)": [[623, "sklearn.gaussian_process.kernels.Sum.__call__", false]], "__call__() (sklearn.gaussian_process.kernels.whitekernel method)": [[624, "sklearn.gaussian_process.kernels.WhiteKernel.__call__", false]], "__call__() (sklearn.utils.deprecated method)": [[938, "sklearn.utils.deprecated.__call__", false]], "__call__() (sklearn.utils.parallel.parallel method)": [[967, "sklearn.utils.parallel.Parallel.__call__", false]], "_safe_indexing() (in module sklearn.utils)": [[927, "sklearn.utils._safe_indexing", false]], "accuracy_score() (in module sklearn.metrics)": [[703, "sklearn.metrics.accuracy_score", false]], "adaboostclassifier (class in sklearn.ensemble)": [[550, "sklearn.ensemble.AdaBoostClassifier", false]], "adaboostregressor (class in sklearn.ensemble)": [[551, "sklearn.ensemble.AdaBoostRegressor", false]], "add() (sklearn.utils.metadata_routing.metadatarouter method)": [[958, "sklearn.utils.metadata_routing.MetadataRouter.add", false]], "add() (sklearn.utils.metadata_routing.methodmapping method)": [[959, "sklearn.utils.metadata_routing.MethodMapping.add", false]], "add_dummy_feature() (in module sklearn.preprocessing)": [[887, "sklearn.preprocessing.add_dummy_feature", false]], "add_self_request() (sklearn.utils.metadata_routing.metadatarouter method)": [[958, "sklearn.utils.metadata_routing.MetadataRouter.add_self_request", false]], "additive_chi2_kernel() (in module sklearn.metrics.pairwise)": [[759, "sklearn.metrics.pairwise.additive_chi2_kernel", false]], "additivechi2sampler (class in sklearn.kernel_approximation)": [[637, "sklearn.kernel_approximation.AdditiveChi2Sampler", false]], "adjusted_mutual_info_score() (in module sklearn.metrics)": [[704, "sklearn.metrics.adjusted_mutual_info_score", false]], "adjusted_rand_score() (in module sklearn.metrics)": [[705, "sklearn.metrics.adjusted_rand_score", false]], "affinity_propagation() (in module sklearn.cluster)": [[450, "sklearn.cluster.affinity_propagation", false]], "affinitypropagation (class in sklearn.cluster)": [[436, "sklearn.cluster.AffinityPropagation", false]], "agglomerativeclustering (class in sklearn.cluster)": [[437, "sklearn.cluster.AgglomerativeClustering", false]], "aic() (sklearn.mixture.gaussianmixture method)": [[799, "sklearn.mixture.GaussianMixture.aic", false]], "all_displays() (in module sklearn.utils.discovery)": [[939, "sklearn.utils.discovery.all_displays", false]], "all_estimators() (in module sklearn.utils.discovery)": [[940, "sklearn.utils.discovery.all_estimators", false]], "all_functions() (in module sklearn.utils.discovery)": [[941, "sklearn.utils.discovery.all_functions", false]], "api": [[385, "term-API", true]], "apply() (sklearn.ensemble.extratreesclassifier method)": [[554, "sklearn.ensemble.ExtraTreesClassifier.apply", false]], "apply() (sklearn.ensemble.extratreesregressor method)": [[555, "sklearn.ensemble.ExtraTreesRegressor.apply", false]], "apply() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.apply", false]], "apply() (sklearn.ensemble.gradientboostingregressor method)": [[557, "sklearn.ensemble.GradientBoostingRegressor.apply", false]], "apply() (sklearn.ensemble.randomforestclassifier method)": [[561, "sklearn.ensemble.RandomForestClassifier.apply", false]], "apply() (sklearn.ensemble.randomforestregressor method)": [[562, "sklearn.ensemble.RandomForestRegressor.apply", false]], "apply() (sklearn.ensemble.randomtreesembedding method)": [[563, "sklearn.ensemble.RandomTreesEmbedding.apply", false]], "apply() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.apply", false]], "apply() (sklearn.tree.decisiontreeregressor method)": [[914, "sklearn.tree.DecisionTreeRegressor.apply", false]], "apply() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.apply", false]], "apply() (sklearn.tree.extratreeregressor method)": [[916, "sklearn.tree.ExtraTreeRegressor.apply", false]], "ardregression (class in sklearn.linear_model)": [[643, "sklearn.linear_model.ARDRegression", false]], "array-like": [[385, "term-array-like", true]], "as_float_array() (in module sklearn.utils)": [[929, "sklearn.utils.as_float_array", false]], "assert_all_finite() (in module sklearn.utils)": [[930, "sklearn.utils.assert_all_finite", false]], "attribute": [[385, "term-attribute", true]], "attributes": [[385, "term-attributes", true]], "auc() (in module sklearn.metrics)": [[706, "sklearn.metrics.auc", false]], "available_if() (in module sklearn.utils.metaestimators)": [[962, "sklearn.utils.metaestimators.available_if", false]], "average_precision_score() (in module sklearn.metrics)": [[707, "sklearn.metrics.average_precision_score", false]], "backwards compatibility": [[385, "term-backwards-compatibility", true]], "baggingclassifier (class in sklearn.ensemble)": [[552, "sklearn.ensemble.BaggingClassifier", false]], "baggingregressor (class in sklearn.ensemble)": [[553, "sklearn.ensemble.BaggingRegressor", false]], "balanced_accuracy_score() (in module sklearn.metrics)": [[708, "sklearn.metrics.balanced_accuracy_score", false]], "balltree (class in sklearn.neighbors)": [[845, "sklearn.neighbors.BallTree", false]], "baseestimator (class in sklearn.base)": [[417, "sklearn.base.BaseEstimator", false]], "bayesiangaussianmixture (class in sklearn.mixture)": [[798, "sklearn.mixture.BayesianGaussianMixture", false]], "bayesianridge (class in sklearn.linear_model)": [[644, "sklearn.linear_model.BayesianRidge", false]], "bernoullinb (class in sklearn.naive_bayes)": [[840, "sklearn.naive_bayes.BernoulliNB", false]], "bernoullirbm (class in sklearn.neural_network)": [[861, "sklearn.neural_network.BernoulliRBM", false]], "bic() (sklearn.mixture.gaussianmixture method)": [[799, "sklearn.mixture.GaussianMixture.bic", false]], "biclustermixin (class in sklearn.base)": [[418, "sklearn.base.BiclusterMixin", false]], "binarize() (in module sklearn.preprocessing)": [[888, "sklearn.preprocessing.binarize", false]], "binarizer (class in sklearn.preprocessing)": [[868, "sklearn.preprocessing.Binarizer", false]], "binary": [[385, "term-binary", true]], "birch (class in sklearn.cluster)": [[438, "sklearn.cluster.Birch", false]], "bisectingkmeans (class in sklearn.cluster)": [[439, "sklearn.cluster.BisectingKMeans", false]], "bounds (sklearn.gaussian_process.kernels.compoundkernel property)": [[611, "sklearn.gaussian_process.kernels.CompoundKernel.bounds", false]], "bounds (sklearn.gaussian_process.kernels.constantkernel property)": [[612, "sklearn.gaussian_process.kernels.ConstantKernel.bounds", false]], "bounds (sklearn.gaussian_process.kernels.dotproduct property)": [[613, "sklearn.gaussian_process.kernels.DotProduct.bounds", false]], "bounds (sklearn.gaussian_process.kernels.exponentiation property)": [[615, "sklearn.gaussian_process.kernels.Exponentiation.bounds", false]], "bounds (sklearn.gaussian_process.kernels.expsinesquared property)": [[614, "sklearn.gaussian_process.kernels.ExpSineSquared.bounds", false]], "bounds (sklearn.gaussian_process.kernels.hyperparameter attribute)": [[616, "sklearn.gaussian_process.kernels.Hyperparameter.bounds", false]], "bounds (sklearn.gaussian_process.kernels.kernel property)": [[617, "sklearn.gaussian_process.kernels.Kernel.bounds", false]], "bounds (sklearn.gaussian_process.kernels.matern property)": [[618, "sklearn.gaussian_process.kernels.Matern.bounds", false]], "bounds (sklearn.gaussian_process.kernels.pairwisekernel property)": [[619, "sklearn.gaussian_process.kernels.PairwiseKernel.bounds", false]], "bounds (sklearn.gaussian_process.kernels.product property)": [[620, "sklearn.gaussian_process.kernels.Product.bounds", false]], "bounds (sklearn.gaussian_process.kernels.rationalquadratic property)": [[622, "sklearn.gaussian_process.kernels.RationalQuadratic.bounds", false]], "bounds (sklearn.gaussian_process.kernels.rbf property)": [[621, "sklearn.gaussian_process.kernels.RBF.bounds", false]], "bounds (sklearn.gaussian_process.kernels.sum property)": [[623, "sklearn.gaussian_process.kernels.Sum.bounds", false]], "bounds (sklearn.gaussian_process.kernels.whitekernel property)": [[624, "sklearn.gaussian_process.kernels.WhiteKernel.bounds", false]], "brier_score_loss() (in module sklearn.metrics)": [[709, "sklearn.metrics.brier_score_loss", false]], "build_analyzer() (sklearn.feature_extraction.text.countvectorizer method)": [[586, "sklearn.feature_extraction.text.CountVectorizer.build_analyzer", false]], "build_analyzer() (sklearn.feature_extraction.text.hashingvectorizer method)": [[587, "sklearn.feature_extraction.text.HashingVectorizer.build_analyzer", false]], "build_analyzer() (sklearn.feature_extraction.text.tfidfvectorizer method)": [[589, "sklearn.feature_extraction.text.TfidfVectorizer.build_analyzer", false]], "build_preprocessor() (sklearn.feature_extraction.text.countvectorizer method)": [[586, "sklearn.feature_extraction.text.CountVectorizer.build_preprocessor", false]], "build_preprocessor() (sklearn.feature_extraction.text.hashingvectorizer method)": [[587, "sklearn.feature_extraction.text.HashingVectorizer.build_preprocessor", false]], "build_preprocessor() (sklearn.feature_extraction.text.tfidfvectorizer method)": [[589, "sklearn.feature_extraction.text.TfidfVectorizer.build_preprocessor", false]], "build_tokenizer() (sklearn.feature_extraction.text.countvectorizer method)": [[586, "sklearn.feature_extraction.text.CountVectorizer.build_tokenizer", false]], "build_tokenizer() (sklearn.feature_extraction.text.hashingvectorizer method)": [[587, "sklearn.feature_extraction.text.HashingVectorizer.build_tokenizer", false]], "build_tokenizer() (sklearn.feature_extraction.text.tfidfvectorizer method)": [[589, "sklearn.feature_extraction.text.TfidfVectorizer.build_tokenizer", false]], "bunch (class in sklearn.utils)": [[920, "sklearn.utils.Bunch", false]], "calibratedclassifiercv (class in sklearn.calibration)": [[433, "sklearn.calibration.CalibratedClassifierCV", false]], "calibration_curve() (in module sklearn.calibration)": [[435, "sklearn.calibration.calibration_curve", false]], "calibrationdisplay (class in sklearn.calibration)": [[434, "sklearn.calibration.CalibrationDisplay", false]], "calinski_harabasz_score() (in module sklearn.metrics)": [[710, "sklearn.metrics.calinski_harabasz_score", false]], "callable": [[385, "term-callable", true]], "categorical feature": [[385, "term-categorical-feature", true]], "categoricalnb (class in sklearn.naive_bayes)": [[841, "sklearn.naive_bayes.CategoricalNB", false]], "cca (class in sklearn.cross_decomposition)": [[478, "sklearn.cross_decomposition.CCA", false]], "check_array() (in module sklearn.utils)": [[932, "sklearn.utils.check_array", false]], "check_consistent_length() (in module sklearn.utils)": [[933, "sklearn.utils.check_consistent_length", false]], "check_cv() (in module sklearn.model_selection)": [[825, "sklearn.model_selection.check_cv", false]], "check_estimator() (in module sklearn.utils.estimator_checks)": [[942, "sklearn.utils.estimator_checks.check_estimator", false]], "check_increasing() (in module sklearn.isotonic)": [[635, "sklearn.isotonic.check_increasing", false]], "check_is_fitted() (in module sklearn.utils.validation)": [[983, "sklearn.utils.validation.check_is_fitted", false]], "check_memory() (in module sklearn.utils.validation)": [[984, "sklearn.utils.validation.check_memory", false]], "check_random_state() (in module sklearn.utils)": [[934, "sklearn.utils.check_random_state", false]], "check_scalar() (in module sklearn.utils)": [[935, "sklearn.utils.check_scalar", false]], "check_scoring() (in module sklearn.metrics)": [[711, "sklearn.metrics.check_scoring", false]], "check_symmetric() (in module sklearn.utils.validation)": [[985, "sklearn.utils.validation.check_symmetric", false]], "check_x_y() (in module sklearn.utils)": [[931, "sklearn.utils.check_X_y", false]], "chi2() (in module sklearn.feature_selection)": [[602, "sklearn.feature_selection.chi2", false]], "chi2_kernel() (in module sklearn.metrics.pairwise)": [[760, "sklearn.metrics.pairwise.chi2_kernel", false]], "class_likelihood_ratios() (in module sklearn.metrics)": [[712, "sklearn.metrics.class_likelihood_ratios", false]], "class_weight": [[385, "term-class_weight", true]], "classes_": [[385, "term-classes_", true]], "classicalmds (class in sklearn.manifold)": [[687, "sklearn.manifold.ClassicalMDS", false]], "classification_report() (in module sklearn.metrics)": [[713, "sklearn.metrics.classification_report", false]], "classifier": [[385, "term-classifier", true]], "classifierchain (class in sklearn.multioutput)": [[836, "sklearn.multioutput.ClassifierChain", false]], "classifiermixin (class in sklearn.base)": [[420, "sklearn.base.ClassifierMixin", false]], "classifiers": [[385, "term-classifiers", true]], "classifiertags (class in sklearn.utils)": [[921, "sklearn.utils.ClassifierTags", false]], "classnameprefixfeaturesoutmixin (class in sklearn.base)": [[419, "sklearn.base.ClassNamePrefixFeaturesOutMixin", false]], "clear() (sklearn.utils.bunch method)": [[920, "sklearn.utils.Bunch.clear", false]], "clear_data_home() (in module sklearn.datasets)": [[482, "sklearn.datasets.clear_data_home", false]], "clone": [[385, "term-clone", true]], "clone() (in module sklearn.base)": [[428, "sklearn.base.clone", false]], "clone_with_theta() (sklearn.gaussian_process.kernels.compoundkernel method)": [[611, "sklearn.gaussian_process.kernels.CompoundKernel.clone_with_theta", false]], "clone_with_theta() (sklearn.gaussian_process.kernels.constantkernel method)": [[612, "sklearn.gaussian_process.kernels.ConstantKernel.clone_with_theta", false]], "clone_with_theta() (sklearn.gaussian_process.kernels.dotproduct method)": [[613, "sklearn.gaussian_process.kernels.DotProduct.clone_with_theta", false]], "clone_with_theta() (sklearn.gaussian_process.kernels.exponentiation method)": [[615, "sklearn.gaussian_process.kernels.Exponentiation.clone_with_theta", false]], "clone_with_theta() (sklearn.gaussian_process.kernels.expsinesquared method)": [[614, "sklearn.gaussian_process.kernels.ExpSineSquared.clone_with_theta", false]], "clone_with_theta() (sklearn.gaussian_process.kernels.kernel method)": [[617, "sklearn.gaussian_process.kernels.Kernel.clone_with_theta", false]], "clone_with_theta() (sklearn.gaussian_process.kernels.matern method)": [[618, "sklearn.gaussian_process.kernels.Matern.clone_with_theta", false]], "clone_with_theta() (sklearn.gaussian_process.kernels.pairwisekernel method)": [[619, "sklearn.gaussian_process.kernels.PairwiseKernel.clone_with_theta", false]], "clone_with_theta() (sklearn.gaussian_process.kernels.product method)": [[620, "sklearn.gaussian_process.kernels.Product.clone_with_theta", false]], "clone_with_theta() (sklearn.gaussian_process.kernels.rationalquadratic method)": [[622, "sklearn.gaussian_process.kernels.RationalQuadratic.clone_with_theta", false]], "clone_with_theta() (sklearn.gaussian_process.kernels.rbf method)": [[621, "sklearn.gaussian_process.kernels.RBF.clone_with_theta", false]], "clone_with_theta() (sklearn.gaussian_process.kernels.sum method)": [[623, "sklearn.gaussian_process.kernels.Sum.clone_with_theta", false]], "clone_with_theta() (sklearn.gaussian_process.kernels.whitekernel method)": [[624, "sklearn.gaussian_process.kernels.WhiteKernel.clone_with_theta", false]], "cloned": [[385, "term-cloned", true]], "cluster_optics_dbscan() (in module sklearn.cluster)": [[451, "sklearn.cluster.cluster_optics_dbscan", false]], "cluster_optics_xi() (in module sklearn.cluster)": [[452, "sklearn.cluster.cluster_optics_xi", false]], "clusterer": [[385, "term-clusterer", true]], "clusterers": [[385, "term-clusterers", true]], "clustermixin (class in sklearn.base)": [[421, "sklearn.base.ClusterMixin", false]], "coef_": [[385, "term-coef_", true]], "cohen_kappa_score() (in module sklearn.metrics)": [[716, "sklearn.metrics.cohen_kappa_score", false]], "column_or_1d() (in module sklearn.utils.validation)": [[986, "sklearn.utils.validation.column_or_1d", false]], "columntransformer (class in sklearn.compose)": [[460, "sklearn.compose.ColumnTransformer", false]], "common tests": [[385, "term-common-tests", true]], "complementnb (class in sklearn.naive_bayes)": [[842, "sklearn.naive_bayes.ComplementNB", false]], "completeness_score() (in module sklearn.metrics)": [[717, "sklearn.metrics.completeness_score", false]], "components_": [[385, "term-components_", true]], "compoundkernel (class in sklearn.gaussian_process.kernels)": [[611, "sklearn.gaussian_process.kernels.CompoundKernel", false]], "compute_class_weight() (in module sklearn.utils.class_weight)": [[936, "sklearn.utils.class_weight.compute_class_weight", false]], "compute_optics_graph() (in module sklearn.cluster)": [[453, "sklearn.cluster.compute_optics_graph", false]], "compute_sample_weight() (in module sklearn.utils.class_weight)": [[937, "sklearn.utils.class_weight.compute_sample_weight", false]], "config_context() (in module sklearn)": [[464, "sklearn.config_context", false]], "confusion_matrix() (in module sklearn.metrics)": [[718, "sklearn.metrics.confusion_matrix", false]], "confusionmatrixdisplay (class in sklearn.metrics)": [[697, "sklearn.metrics.ConfusionMatrixDisplay", false]], "consensus_score() (in module sklearn.metrics)": [[719, "sklearn.metrics.consensus_score", false]], "constantkernel (class in sklearn.gaussian_process.kernels)": [[612, "sklearn.gaussian_process.kernels.ConstantKernel", false]], "consumer": [[385, "term-consumer", true]], "consumes() (sklearn.utils.metadata_routing.metadatarequest method)": [[957, "sklearn.utils.metadata_routing.MetadataRequest.consumes", false]], "consumes() (sklearn.utils.metadata_routing.metadatarouter method)": [[958, "sklearn.utils.metadata_routing.MetadataRouter.consumes", false]], "contingency_matrix() (in module sklearn.metrics.cluster)": [[714, "sklearn.metrics.cluster.contingency_matrix", false]], "continuous": [[385, "term-continuous", true]], "continuous multi-output": [[385, "term-continuous-multi-output", true]], "continuous multioutput": [[385, "term-continuous-multioutput", true]], "convergencewarning": [[568, "sklearn.exceptions.ConvergenceWarning", false]], "copy() (sklearn.utils.bunch method)": [[920, "sklearn.utils.Bunch.copy", false]], "correct_covariance() (sklearn.covariance.ellipticenvelope method)": [[465, "sklearn.covariance.EllipticEnvelope.correct_covariance", false]], "correct_covariance() (sklearn.covariance.mincovdet method)": [[470, "sklearn.covariance.MinCovDet.correct_covariance", false]], "cosine_distances() (in module sklearn.metrics.pairwise)": [[761, "sklearn.metrics.pairwise.cosine_distances", false]], "cosine_similarity() (in module sklearn.metrics.pairwise)": [[762, "sklearn.metrics.pairwise.cosine_similarity", false]], "cost_complexity_pruning_path() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.cost_complexity_pruning_path", false]], "cost_complexity_pruning_path() (sklearn.tree.decisiontreeregressor method)": [[914, "sklearn.tree.DecisionTreeRegressor.cost_complexity_pruning_path", false]], "cost_complexity_pruning_path() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.cost_complexity_pruning_path", false]], "cost_complexity_pruning_path() (sklearn.tree.extratreeregressor method)": [[916, "sklearn.tree.ExtraTreeRegressor.cost_complexity_pruning_path", false]], "count() (sklearn.gaussian_process.kernels.hyperparameter method)": [[616, "sklearn.gaussian_process.kernels.Hyperparameter.count", false]], "countvectorizer (class in sklearn.feature_extraction.text)": [[586, "sklearn.feature_extraction.text.CountVectorizer", false]], "coverage_error() (in module sklearn.metrics)": [[720, "sklearn.metrics.coverage_error", false]], "cross fitting": [[385, "term-0", true]], "cross validation": [[385, "term-1", true]], "cross-fitting": [[385, "term-cross-fitting", true]], "cross-validation": [[385, "term-cross-validation", true]], "cross-validation estimator": [[385, "term-cross-validation-estimator", true]], "cross-validation generator": [[385, "term-cross-validation-generator", true]], "cross-validation splitter": [[385, "term-cross-validation-splitter", true]], "cross_val_predict() (in module sklearn.model_selection)": [[826, "sklearn.model_selection.cross_val_predict", false]], "cross_val_score() (in module sklearn.model_selection)": [[827, "sklearn.model_selection.cross_val_score", false]], "cross_validate() (in module sklearn.model_selection)": [[828, "sklearn.model_selection.cross_validate", false]], "cv": [[385, "term-cv", true]], "cv splitter": [[385, "term-CV-splitter", true]], "d2_absolute_error_score() (in module sklearn.metrics)": [[721, "sklearn.metrics.d2_absolute_error_score", false]], "d2_brier_score() (in module sklearn.metrics)": [[722, "sklearn.metrics.d2_brier_score", false]], "d2_log_loss_score() (in module sklearn.metrics)": [[723, "sklearn.metrics.d2_log_loss_score", false]], "d2_pinball_score() (in module sklearn.metrics)": [[724, "sklearn.metrics.d2_pinball_score", false]], "d2_tweedie_score() (in module sklearn.metrics)": [[725, "sklearn.metrics.d2_tweedie_score", false]], "data leakage": [[385, "term-data-leakage", true]], "data type": [[385, "term-data-type", true]], "dataconversionwarning": [[569, "sklearn.exceptions.DataConversionWarning", false]], "datadimensionalitywarning": [[570, "sklearn.exceptions.DataDimensionalityWarning", false]], "davies_bouldin_score() (in module sklearn.metrics)": [[726, "sklearn.metrics.davies_bouldin_score", false]], "dbscan (class in sklearn.cluster)": [[440, "sklearn.cluster.DBSCAN", false]], "dbscan() (in module sklearn.cluster)": [[414, "sklearn.cluster.dbscan", false]], "dbscan_clustering() (sklearn.cluster.hdbscan method)": [[442, "sklearn.cluster.HDBSCAN.dbscan_clustering", false]], "dcg_score() (in module sklearn.metrics)": [[727, "sklearn.metrics.dcg_score", false]], "decision_function": [[385, "term-decision_function", true]], "decision_function() (sklearn.covariance.ellipticenvelope method)": [[465, "sklearn.covariance.EllipticEnvelope.decision_function", false]], "decision_function() (sklearn.discriminant_analysis.lineardiscriminantanalysis method)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis.decision_function", false]], "decision_function() (sklearn.discriminant_analysis.quadraticdiscriminantanalysis method)": [[547, "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.decision_function", false]], "decision_function() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.decision_function", false]], "decision_function() (sklearn.ensemble.baggingclassifier method)": [[552, "sklearn.ensemble.BaggingClassifier.decision_function", false]], "decision_function() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.decision_function", false]], "decision_function() (sklearn.ensemble.histgradientboostingclassifier method)": [[558, "sklearn.ensemble.HistGradientBoostingClassifier.decision_function", false]], "decision_function() (sklearn.ensemble.isolationforest method)": [[560, "sklearn.ensemble.IsolationForest.decision_function", false]], "decision_function() (sklearn.ensemble.stackingclassifier method)": [[564, "sklearn.ensemble.StackingClassifier.decision_function", false]], "decision_function() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.decision_function", false]], "decision_function() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.decision_function", false]], "decision_function() (sklearn.linear_model.logisticregression method)": [[657, "sklearn.linear_model.LogisticRegression.decision_function", false]], "decision_function() (sklearn.linear_model.logisticregressioncv method)": [[658, "sklearn.linear_model.LogisticRegressionCV.decision_function", false]], "decision_function() (sklearn.linear_model.passiveaggressiveclassifier method)": [[665, "sklearn.linear_model.PassiveAggressiveClassifier.decision_function", false]], "decision_function() (sklearn.linear_model.perceptron method)": [[667, "sklearn.linear_model.Perceptron.decision_function", false]], "decision_function() (sklearn.linear_model.ridgeclassifier method)": [[673, "sklearn.linear_model.RidgeClassifier.decision_function", false]], "decision_function() (sklearn.linear_model.ridgeclassifiercv method)": [[674, "sklearn.linear_model.RidgeClassifierCV.decision_function", false]], "decision_function() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.decision_function", false]], "decision_function() (sklearn.linear_model.sgdoneclasssvm method)": [[676, "sklearn.linear_model.SGDOneClassSVM.decision_function", false]], "decision_function() (sklearn.model_selection.fixedthresholdclassifier method)": [[800, "sklearn.model_selection.FixedThresholdClassifier.decision_function", false]], "decision_function() (sklearn.model_selection.gridsearchcv method)": [[801, "sklearn.model_selection.GridSearchCV.decision_function", false]], "decision_function() (sklearn.model_selection.halvinggridsearchcv method)": [[804, "sklearn.model_selection.HalvingGridSearchCV.decision_function", false]], "decision_function() (sklearn.model_selection.halvingrandomsearchcv method)": [[805, "sklearn.model_selection.HalvingRandomSearchCV.decision_function", false]], "decision_function() (sklearn.model_selection.randomizedsearchcv method)": [[815, "sklearn.model_selection.RandomizedSearchCV.decision_function", false]], "decision_function() (sklearn.model_selection.tunedthresholdclassifiercv method)": [[823, "sklearn.model_selection.TunedThresholdClassifierCV.decision_function", false]], "decision_function() (sklearn.multiclass.onevsoneclassifier method)": [[833, "sklearn.multiclass.OneVsOneClassifier.decision_function", false]], "decision_function() (sklearn.multiclass.onevsrestclassifier method)": [[834, "sklearn.multiclass.OneVsRestClassifier.decision_function", false]], "decision_function() (sklearn.multioutput.classifierchain method)": [[836, "sklearn.multioutput.ClassifierChain.decision_function", false]], "decision_function() (sklearn.neighbors.localoutlierfactor method)": [[851, "sklearn.neighbors.LocalOutlierFactor.decision_function", false]], "decision_function() (sklearn.neighbors.nearestcentroid method)": [[852, "sklearn.neighbors.NearestCentroid.decision_function", false]], "decision_function() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.decision_function", false]], "decision_function() (sklearn.semi_supervised.selftrainingclassifier method)": [[902, "sklearn.semi_supervised.SelfTrainingClassifier.decision_function", false]], "decision_function() (sklearn.svm.linearsvc method)": [[905, "sklearn.svm.LinearSVC.decision_function", false]], "decision_function() (sklearn.svm.nusvc method)": [[907, "sklearn.svm.NuSVC.decision_function", false]], "decision_function() (sklearn.svm.oneclasssvm method)": [[909, "sklearn.svm.OneClassSVM.decision_function", false]], "decision_function() (sklearn.svm.svc method)": [[910, "sklearn.svm.SVC.decision_function", false]], "decision_path() (sklearn.ensemble.extratreesclassifier method)": [[554, "sklearn.ensemble.ExtraTreesClassifier.decision_path", false]], "decision_path() (sklearn.ensemble.extratreesregressor method)": [[555, "sklearn.ensemble.ExtraTreesRegressor.decision_path", false]], "decision_path() (sklearn.ensemble.randomforestclassifier method)": [[561, "sklearn.ensemble.RandomForestClassifier.decision_path", false]], "decision_path() (sklearn.ensemble.randomforestregressor method)": [[562, "sklearn.ensemble.RandomForestRegressor.decision_path", false]], "decision_path() (sklearn.ensemble.randomtreesembedding method)": [[563, "sklearn.ensemble.RandomTreesEmbedding.decision_path", false]], "decision_path() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.decision_path", false]], "decision_path() (sklearn.tree.decisiontreeregressor method)": [[914, "sklearn.tree.DecisionTreeRegressor.decision_path", false]], "decision_path() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.decision_path", false]], "decision_path() (sklearn.tree.extratreeregressor method)": [[916, "sklearn.tree.ExtraTreeRegressor.decision_path", false]], "decisionboundarydisplay (class in sklearn.inspection)": [[630, "sklearn.inspection.DecisionBoundaryDisplay", false]], "decisiontreeclassifier (class in sklearn.tree)": [[913, "sklearn.tree.DecisionTreeClassifier", false]], "decisiontreeregressor (class in sklearn.tree)": [[914, "sklearn.tree.DecisionTreeRegressor", false]], "decode() (sklearn.feature_extraction.text.countvectorizer method)": [[586, "sklearn.feature_extraction.text.CountVectorizer.decode", false]], "decode() (sklearn.feature_extraction.text.hashingvectorizer method)": [[587, "sklearn.feature_extraction.text.HashingVectorizer.decode", false]], "decode() (sklearn.feature_extraction.text.tfidfvectorizer method)": [[589, "sklearn.feature_extraction.text.TfidfVectorizer.decode", false]], "delayed() (in module sklearn.utils.parallel)": [[968, "sklearn.utils.parallel.delayed", false]], "densify() (sklearn.linear_model.logisticregression method)": [[657, "sklearn.linear_model.LogisticRegression.densify", false]], "densify() (sklearn.linear_model.logisticregressioncv method)": [[658, "sklearn.linear_model.LogisticRegressionCV.densify", false]], "densify() (sklearn.linear_model.passiveaggressiveclassifier method)": [[665, "sklearn.linear_model.PassiveAggressiveClassifier.densify", false]], "densify() (sklearn.linear_model.passiveaggressiveregressor method)": [[666, "sklearn.linear_model.PassiveAggressiveRegressor.densify", false]], "densify() (sklearn.linear_model.perceptron method)": [[667, "sklearn.linear_model.Perceptron.densify", false]], "densify() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.densify", false]], "densify() (sklearn.linear_model.sgdoneclasssvm method)": [[676, "sklearn.linear_model.SGDOneClassSVM.densify", false]], "densify() (sklearn.linear_model.sgdregressor method)": [[677, "sklearn.linear_model.SGDRegressor.densify", false]], "densify() (sklearn.svm.linearsvc method)": [[905, "sklearn.svm.LinearSVC.densify", false]], "density estimator": [[385, "term-density-estimator", true]], "density() (in module sklearn.utils.extmath)": [[946, "sklearn.utils.extmath.density", false]], "densitymixin (class in sklearn.base)": [[422, "sklearn.base.DensityMixin", false]], "deprecated (class in sklearn.utils)": [[938, "sklearn.utils.deprecated", false]], "deprecation": [[385, "term-deprecation", true]], "det_curve() (in module sklearn.metrics)": [[728, "sklearn.metrics.det_curve", false]], "detcurvedisplay (class in sklearn.metrics)": [[698, "sklearn.metrics.DetCurveDisplay", false]], "diag() (sklearn.gaussian_process.kernels.compoundkernel method)": [[611, "sklearn.gaussian_process.kernels.CompoundKernel.diag", false]], "diag() (sklearn.gaussian_process.kernels.constantkernel method)": [[612, "sklearn.gaussian_process.kernels.ConstantKernel.diag", false]], "diag() (sklearn.gaussian_process.kernels.dotproduct method)": [[613, "sklearn.gaussian_process.kernels.DotProduct.diag", false]], "diag() (sklearn.gaussian_process.kernels.exponentiation method)": [[615, "sklearn.gaussian_process.kernels.Exponentiation.diag", false]], "diag() (sklearn.gaussian_process.kernels.expsinesquared method)": [[614, "sklearn.gaussian_process.kernels.ExpSineSquared.diag", false]], "diag() (sklearn.gaussian_process.kernels.kernel method)": [[617, "sklearn.gaussian_process.kernels.Kernel.diag", false]], "diag() (sklearn.gaussian_process.kernels.matern method)": [[618, "sklearn.gaussian_process.kernels.Matern.diag", false]], "diag() (sklearn.gaussian_process.kernels.pairwisekernel method)": [[619, "sklearn.gaussian_process.kernels.PairwiseKernel.diag", false]], "diag() (sklearn.gaussian_process.kernels.product method)": [[620, "sklearn.gaussian_process.kernels.Product.diag", false]], "diag() (sklearn.gaussian_process.kernels.rationalquadratic method)": [[622, "sklearn.gaussian_process.kernels.RationalQuadratic.diag", false]], "diag() (sklearn.gaussian_process.kernels.rbf method)": [[621, "sklearn.gaussian_process.kernels.RBF.diag", false]], "diag() (sklearn.gaussian_process.kernels.sum method)": [[623, "sklearn.gaussian_process.kernels.Sum.diag", false]], "diag() (sklearn.gaussian_process.kernels.whitekernel method)": [[624, "sklearn.gaussian_process.kernels.WhiteKernel.diag", false]], "dict_learning() (in module sklearn.decomposition)": [[542, "sklearn.decomposition.dict_learning", false]], "dict_learning_online() (in module sklearn.decomposition)": [[543, "sklearn.decomposition.dict_learning_online", false]], "dictionarylearning (class in sklearn.decomposition)": [[528, "sklearn.decomposition.DictionaryLearning", false]], "dictvectorizer (class in sklearn.feature_extraction)": [[579, "sklearn.feature_extraction.DictVectorizer", false]], "dimensionality": [[385, "term-dimensionality", true]], "dispatch_next() (sklearn.utils.parallel.parallel method)": [[967, "sklearn.utils.parallel.Parallel.dispatch_next", false]], "dispatch_one_batch() (sklearn.utils.parallel.parallel method)": [[967, "sklearn.utils.parallel.Parallel.dispatch_one_batch", false]], "distance_metrics() (in module sklearn.metrics.pairwise)": [[763, "sklearn.metrics.pairwise.distance_metrics", false]], "distancemetric (class in sklearn.metrics)": [[699, "sklearn.metrics.DistanceMetric", false]], "docstring": [[385, "term-docstring", true]], "dotproduct (class in sklearn.gaussian_process.kernels)": [[613, "sklearn.gaussian_process.kernels.DotProduct", false]], "double underscore": [[385, "term-double-underscore", true]], "double underscore notation": [[385, "term-double-underscore-notation", true]], "dtype": [[385, "term-dtype", true]], "duck typing": [[385, "term-duck-typing", true]], "dummyclassifier (class in sklearn.dummy)": [[548, "sklearn.dummy.DummyClassifier", false]], "dummyregressor (class in sklearn.dummy)": [[549, "sklearn.dummy.DummyRegressor", false]], "dump_svmlight_file() (in module sklearn.datasets)": [[483, "sklearn.datasets.dump_svmlight_file", false]], "early stopping": [[385, "term-early-stopping", true]], "efficiencywarning": [[571, "sklearn.exceptions.EfficiencyWarning", false]], "elasticnet (class in sklearn.linear_model)": [[645, "sklearn.linear_model.ElasticNet", false]], "elasticnetcv (class in sklearn.linear_model)": [[646, "sklearn.linear_model.ElasticNetCV", false]], "ellipticenvelope (class in sklearn.covariance)": [[465, "sklearn.covariance.EllipticEnvelope", false]], "embedding_": [[385, "term-embedding_", true]], "empirical_covariance() (in module sklearn.covariance)": [[473, "sklearn.covariance.empirical_covariance", false]], "empiricalcovariance (class in sklearn.covariance)": [[466, "sklearn.covariance.EmpiricalCovariance", false]], "enet_path() (in module sklearn.linear_model)": [[680, "sklearn.linear_model.enet_path", false]], "error_norm() (sklearn.covariance.ellipticenvelope method)": [[465, "sklearn.covariance.EllipticEnvelope.error_norm", false]], "error_norm() (sklearn.covariance.empiricalcovariance method)": [[466, "sklearn.covariance.EmpiricalCovariance.error_norm", false]], "error_norm() (sklearn.covariance.graphicallasso method)": [[467, "sklearn.covariance.GraphicalLasso.error_norm", false]], "error_norm() (sklearn.covariance.graphicallassocv method)": [[468, "sklearn.covariance.GraphicalLassoCV.error_norm", false]], "error_norm() (sklearn.covariance.ledoitwolf method)": [[469, "sklearn.covariance.LedoitWolf.error_norm", false]], "error_norm() (sklearn.covariance.mincovdet method)": [[470, "sklearn.covariance.MinCovDet.error_norm", false]], "error_norm() (sklearn.covariance.oas method)": [[471, "sklearn.covariance.OAS.error_norm", false]], "error_norm() (sklearn.covariance.shrunkcovariance method)": [[472, "sklearn.covariance.ShrunkCovariance.error_norm", false]], "estimate_bandwidth() (in module sklearn.cluster)": [[454, "sklearn.cluster.estimate_bandwidth", false]], "estimator": [[385, "term-estimator", true]], "estimator instance": [[385, "term-estimator-instance", true]], "estimator tags": [[385, "term-estimator-tags", true]], "estimator_checks_generator() (in module sklearn.utils.estimator_checks)": [[943, "sklearn.utils.estimator_checks.estimator_checks_generator", false]], "estimator_html_repr() (in module sklearn.utils)": [[945, "sklearn.utils.estimator_html_repr", false]], "estimatorcheckfailedwarning": [[572, "sklearn.exceptions.EstimatorCheckFailedWarning", false]], "estimators": [[385, "term-estimators", true]], "euclidean_distances() (in module sklearn.metrics.pairwise)": [[764, "sklearn.metrics.pairwise.euclidean_distances", false]], "evaluation metric": [[385, "term-evaluation-metric", true]], "evaluation metrics": [[385, "term-evaluation-metrics", true]], "examples": [[385, "term-examples", true]], "experimental": [[385, "term-experimental", true]], "explained_variance_score() (in module sklearn.metrics)": [[729, "sklearn.metrics.explained_variance_score", false]], "exponentiation (class in sklearn.gaussian_process.kernels)": [[615, "sklearn.gaussian_process.kernels.Exponentiation", false]], "export_graphviz() (in module sklearn.tree)": [[917, "sklearn.tree.export_graphviz", false]], "export_text() (in module sklearn.tree)": [[918, "sklearn.tree.export_text", false]], "expsinesquared (class in sklearn.gaussian_process.kernels)": [[614, "sklearn.gaussian_process.kernels.ExpSineSquared", false]], "extract_patches_2d() (in module sklearn.feature_extraction.image)": [[582, "sklearn.feature_extraction.image.extract_patches_2d", false]], "extratreeclassifier (class in sklearn.tree)": [[915, "sklearn.tree.ExtraTreeClassifier", false]], "extratreeregressor (class in sklearn.tree)": [[916, "sklearn.tree.ExtraTreeRegressor", false]], "extratreesclassifier (class in sklearn.ensemble)": [[554, "sklearn.ensemble.ExtraTreesClassifier", false]], "extratreesregressor (class in sklearn.ensemble)": [[555, "sklearn.ensemble.ExtraTreesRegressor", false]], "f1_score() (in module sklearn.metrics)": [[730, "sklearn.metrics.f1_score", false]], "f_classif() (in module sklearn.feature_selection)": [[603, "sklearn.feature_selection.f_classif", false]], "f_regression() (in module sklearn.feature_selection)": [[604, "sklearn.feature_selection.f_regression", false]], "factoranalysis (class in sklearn.decomposition)": [[529, "sklearn.decomposition.FactorAnalysis", false]], "fast_logdet() (in module sklearn.utils.extmath)": [[947, "sklearn.utils.extmath.fast_logdet", false]], "fastica (class in sklearn.decomposition)": [[530, "sklearn.decomposition.FastICA", false]], "fastica() (in module sklearn.decomposition)": [[415, "sklearn.decomposition.fastica", false]], "fbeta_score() (in module sklearn.metrics)": [[731, "sklearn.metrics.fbeta_score", false]], "feature": [[385, "term-feature", true]], "feature extractor": [[385, "term-feature-extractor", true]], "feature extractors": [[385, "term-feature-extractors", true]], "feature vector": [[385, "term-feature-vector", true]], "feature_importances_": [[385, "term-feature_importances_", true]], "featureagglomeration (class in sklearn.cluster)": [[441, "sklearn.cluster.FeatureAgglomeration", false]], "featurehasher (class in sklearn.feature_extraction)": [[580, "sklearn.feature_extraction.FeatureHasher", false]], "features": [[385, "term-features", true]], "featureunion (class in sklearn.pipeline)": [[864, "sklearn.pipeline.FeatureUnion", false]], "fetch_20newsgroups() (in module sklearn.datasets)": [[484, "sklearn.datasets.fetch_20newsgroups", false]], "fetch_20newsgroups_vectorized() (in module sklearn.datasets)": [[485, "sklearn.datasets.fetch_20newsgroups_vectorized", false]], "fetch_california_housing() (in module sklearn.datasets)": [[486, "sklearn.datasets.fetch_california_housing", false]], "fetch_covtype() (in module sklearn.datasets)": [[487, "sklearn.datasets.fetch_covtype", false]], "fetch_file() (in module sklearn.datasets)": [[488, "sklearn.datasets.fetch_file", false]], "fetch_kddcup99() (in module sklearn.datasets)": [[489, "sklearn.datasets.fetch_kddcup99", false]], "fetch_lfw_pairs() (in module sklearn.datasets)": [[490, "sklearn.datasets.fetch_lfw_pairs", false]], "fetch_lfw_people() (in module sklearn.datasets)": [[491, "sklearn.datasets.fetch_lfw_people", false]], "fetch_olivetti_faces() (in module sklearn.datasets)": [[492, "sklearn.datasets.fetch_olivetti_faces", false]], "fetch_openml() (in module sklearn.datasets)": [[493, "sklearn.datasets.fetch_openml", false]], "fetch_rcv1() (in module sklearn.datasets)": [[494, "sklearn.datasets.fetch_rcv1", false]], "fetch_species_distributions() (in module sklearn.datasets)": [[495, "sklearn.datasets.fetch_species_distributions", false]], "fit": [[385, "term-fit", true]], "fit() (sklearn.calibration.calibratedclassifiercv method)": [[433, "sklearn.calibration.CalibratedClassifierCV.fit", false]], "fit() (sklearn.cluster.affinitypropagation method)": [[436, "sklearn.cluster.AffinityPropagation.fit", false]], "fit() (sklearn.cluster.agglomerativeclustering method)": [[437, "sklearn.cluster.AgglomerativeClustering.fit", false]], "fit() (sklearn.cluster.birch method)": [[438, "sklearn.cluster.Birch.fit", false]], "fit() (sklearn.cluster.bisectingkmeans method)": [[439, "sklearn.cluster.BisectingKMeans.fit", false]], "fit() (sklearn.cluster.dbscan method)": [[440, "sklearn.cluster.DBSCAN.fit", false]], "fit() (sklearn.cluster.featureagglomeration method)": [[441, "sklearn.cluster.FeatureAgglomeration.fit", false]], "fit() (sklearn.cluster.hdbscan method)": [[442, "sklearn.cluster.HDBSCAN.fit", false]], "fit() (sklearn.cluster.kmeans method)": [[443, "sklearn.cluster.KMeans.fit", false]], "fit() (sklearn.cluster.meanshift method)": [[444, "sklearn.cluster.MeanShift.fit", false]], "fit() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.fit", false]], "fit() (sklearn.cluster.optics method)": [[446, "sklearn.cluster.OPTICS.fit", false]], "fit() (sklearn.cluster.spectralbiclustering method)": [[447, "sklearn.cluster.SpectralBiclustering.fit", false]], "fit() (sklearn.cluster.spectralclustering method)": [[448, "sklearn.cluster.SpectralClustering.fit", false]], "fit() (sklearn.cluster.spectralcoclustering method)": [[449, "sklearn.cluster.SpectralCoclustering.fit", false]], "fit() (sklearn.compose.columntransformer method)": [[460, "sklearn.compose.ColumnTransformer.fit", false]], "fit() (sklearn.compose.transformedtargetregressor method)": [[461, "sklearn.compose.TransformedTargetRegressor.fit", false]], "fit() (sklearn.covariance.ellipticenvelope method)": [[465, "sklearn.covariance.EllipticEnvelope.fit", false]], "fit() (sklearn.covariance.empiricalcovariance method)": [[466, "sklearn.covariance.EmpiricalCovariance.fit", false]], "fit() (sklearn.covariance.graphicallasso method)": [[467, "sklearn.covariance.GraphicalLasso.fit", false]], "fit() (sklearn.covariance.graphicallassocv method)": [[468, "sklearn.covariance.GraphicalLassoCV.fit", false]], "fit() (sklearn.covariance.ledoitwolf method)": [[469, "sklearn.covariance.LedoitWolf.fit", false]], "fit() (sklearn.covariance.mincovdet method)": [[470, "sklearn.covariance.MinCovDet.fit", false]], "fit() (sklearn.covariance.oas method)": [[471, "sklearn.covariance.OAS.fit", false]], "fit() (sklearn.covariance.shrunkcovariance method)": [[472, "sklearn.covariance.ShrunkCovariance.fit", false]], "fit() (sklearn.cross_decomposition.cca method)": [[478, "sklearn.cross_decomposition.CCA.fit", false]], "fit() (sklearn.cross_decomposition.plscanonical method)": [[479, "sklearn.cross_decomposition.PLSCanonical.fit", false]], "fit() (sklearn.cross_decomposition.plsregression method)": [[480, "sklearn.cross_decomposition.PLSRegression.fit", false]], "fit() (sklearn.cross_decomposition.plssvd method)": [[481, "sklearn.cross_decomposition.PLSSVD.fit", false]], "fit() (sklearn.decomposition.dictionarylearning method)": [[528, "sklearn.decomposition.DictionaryLearning.fit", false]], "fit() (sklearn.decomposition.factoranalysis method)": [[529, "sklearn.decomposition.FactorAnalysis.fit", false]], "fit() (sklearn.decomposition.fastica method)": [[530, "sklearn.decomposition.FastICA.fit", false]], "fit() (sklearn.decomposition.incrementalpca method)": [[531, "sklearn.decomposition.IncrementalPCA.fit", false]], "fit() (sklearn.decomposition.kernelpca method)": [[532, "sklearn.decomposition.KernelPCA.fit", false]], "fit() (sklearn.decomposition.latentdirichletallocation method)": [[533, "sklearn.decomposition.LatentDirichletAllocation.fit", false]], "fit() (sklearn.decomposition.minibatchdictionarylearning method)": [[534, "sklearn.decomposition.MiniBatchDictionaryLearning.fit", false]], "fit() (sklearn.decomposition.minibatchnmf method)": [[535, "sklearn.decomposition.MiniBatchNMF.fit", false]], "fit() (sklearn.decomposition.minibatchsparsepca method)": [[536, "sklearn.decomposition.MiniBatchSparsePCA.fit", false]], "fit() (sklearn.decomposition.nmf method)": [[537, "sklearn.decomposition.NMF.fit", false]], "fit() (sklearn.decomposition.pca method)": [[538, "sklearn.decomposition.PCA.fit", false]], "fit() (sklearn.decomposition.sparsecoder method)": [[539, "sklearn.decomposition.SparseCoder.fit", false]], "fit() (sklearn.decomposition.sparsepca method)": [[540, "sklearn.decomposition.SparsePCA.fit", false]], "fit() (sklearn.decomposition.truncatedsvd method)": [[541, "sklearn.decomposition.TruncatedSVD.fit", false]], "fit() (sklearn.discriminant_analysis.lineardiscriminantanalysis method)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis.fit", false]], "fit() (sklearn.discriminant_analysis.quadraticdiscriminantanalysis method)": [[547, "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.fit", false]], "fit() (sklearn.dummy.dummyclassifier method)": [[548, "sklearn.dummy.DummyClassifier.fit", false]], "fit() (sklearn.dummy.dummyregressor method)": [[549, "sklearn.dummy.DummyRegressor.fit", false]], "fit() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.fit", false]], "fit() (sklearn.ensemble.adaboostregressor method)": [[551, "sklearn.ensemble.AdaBoostRegressor.fit", false]], "fit() (sklearn.ensemble.baggingclassifier method)": [[552, "sklearn.ensemble.BaggingClassifier.fit", false]], "fit() (sklearn.ensemble.baggingregressor method)": [[553, "sklearn.ensemble.BaggingRegressor.fit", false]], "fit() (sklearn.ensemble.extratreesclassifier method)": [[554, "sklearn.ensemble.ExtraTreesClassifier.fit", false]], "fit() (sklearn.ensemble.extratreesregressor method)": [[555, "sklearn.ensemble.ExtraTreesRegressor.fit", false]], "fit() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.fit", false]], "fit() (sklearn.ensemble.gradientboostingregressor method)": [[557, "sklearn.ensemble.GradientBoostingRegressor.fit", false]], "fit() (sklearn.ensemble.histgradientboostingclassifier method)": [[558, "sklearn.ensemble.HistGradientBoostingClassifier.fit", false]], "fit() (sklearn.ensemble.histgradientboostingregressor method)": [[559, "sklearn.ensemble.HistGradientBoostingRegressor.fit", false]], "fit() (sklearn.ensemble.isolationforest method)": [[560, "sklearn.ensemble.IsolationForest.fit", false]], "fit() (sklearn.ensemble.randomforestclassifier method)": [[561, "sklearn.ensemble.RandomForestClassifier.fit", false]], "fit() (sklearn.ensemble.randomforestregressor method)": [[562, "sklearn.ensemble.RandomForestRegressor.fit", false]], "fit() (sklearn.ensemble.randomtreesembedding method)": [[563, "sklearn.ensemble.RandomTreesEmbedding.fit", false]], "fit() (sklearn.ensemble.stackingclassifier method)": [[564, "sklearn.ensemble.StackingClassifier.fit", false]], "fit() (sklearn.ensemble.stackingregressor method)": [[565, "sklearn.ensemble.StackingRegressor.fit", false]], "fit() (sklearn.ensemble.votingclassifier method)": [[566, "sklearn.ensemble.VotingClassifier.fit", false]], "fit() (sklearn.ensemble.votingregressor method)": [[567, "sklearn.ensemble.VotingRegressor.fit", false]], "fit() (sklearn.feature_extraction.dictvectorizer method)": [[579, "sklearn.feature_extraction.DictVectorizer.fit", false]], "fit() (sklearn.feature_extraction.featurehasher method)": [[580, "sklearn.feature_extraction.FeatureHasher.fit", false]], "fit() (sklearn.feature_extraction.image.patchextractor method)": [[581, "sklearn.feature_extraction.image.PatchExtractor.fit", false]], "fit() (sklearn.feature_extraction.text.countvectorizer method)": [[586, "sklearn.feature_extraction.text.CountVectorizer.fit", false]], "fit() (sklearn.feature_extraction.text.hashingvectorizer method)": [[587, "sklearn.feature_extraction.text.HashingVectorizer.fit", false]], "fit() (sklearn.feature_extraction.text.tfidftransformer method)": [[588, "sklearn.feature_extraction.text.TfidfTransformer.fit", false]], "fit() (sklearn.feature_extraction.text.tfidfvectorizer method)": [[589, "sklearn.feature_extraction.text.TfidfVectorizer.fit", false]], "fit() (sklearn.feature_selection.genericunivariateselect method)": [[590, "sklearn.feature_selection.GenericUnivariateSelect.fit", false]], "fit() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.fit", false]], "fit() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.fit", false]], "fit() (sklearn.feature_selection.selectfdr method)": [[593, "sklearn.feature_selection.SelectFdr.fit", false]], "fit() (sklearn.feature_selection.selectfpr method)": [[594, "sklearn.feature_selection.SelectFpr.fit", false]], "fit() (sklearn.feature_selection.selectfrommodel method)": [[595, "sklearn.feature_selection.SelectFromModel.fit", false]], "fit() (sklearn.feature_selection.selectfwe method)": [[596, "sklearn.feature_selection.SelectFwe.fit", false]], "fit() (sklearn.feature_selection.selectkbest method)": [[597, "sklearn.feature_selection.SelectKBest.fit", false]], "fit() (sklearn.feature_selection.selectpercentile method)": [[598, "sklearn.feature_selection.SelectPercentile.fit", false]], "fit() (sklearn.feature_selection.sequentialfeatureselector method)": [[600, "sklearn.feature_selection.SequentialFeatureSelector.fit", false]], "fit() (sklearn.feature_selection.variancethreshold method)": [[601, "sklearn.feature_selection.VarianceThreshold.fit", false]], "fit() (sklearn.frozen.frozenestimator method)": [[608, "sklearn.frozen.FrozenEstimator.fit", false]], "fit() (sklearn.gaussian_process.gaussianprocessclassifier method)": [[609, "sklearn.gaussian_process.GaussianProcessClassifier.fit", false]], "fit() (sklearn.gaussian_process.gaussianprocessregressor method)": [[610, "sklearn.gaussian_process.GaussianProcessRegressor.fit", false]], "fit() (sklearn.impute.iterativeimputer method)": [[626, "sklearn.impute.IterativeImputer.fit", false]], "fit() (sklearn.impute.knnimputer method)": [[627, "sklearn.impute.KNNImputer.fit", false]], "fit() (sklearn.impute.missingindicator method)": [[628, "sklearn.impute.MissingIndicator.fit", false]], "fit() (sklearn.impute.simpleimputer method)": [[629, "sklearn.impute.SimpleImputer.fit", false]], "fit() (sklearn.isotonic.isotonicregression method)": [[634, "sklearn.isotonic.IsotonicRegression.fit", false]], "fit() (sklearn.kernel_approximation.additivechi2sampler method)": [[637, "sklearn.kernel_approximation.AdditiveChi2Sampler.fit", false]], "fit() (sklearn.kernel_approximation.nystroem method)": [[638, "sklearn.kernel_approximation.Nystroem.fit", false]], "fit() (sklearn.kernel_approximation.polynomialcountsketch method)": [[639, "sklearn.kernel_approximation.PolynomialCountSketch.fit", false]], "fit() (sklearn.kernel_approximation.rbfsampler method)": [[640, "sklearn.kernel_approximation.RBFSampler.fit", false]], "fit() (sklearn.kernel_approximation.skewedchi2sampler method)": [[641, "sklearn.kernel_approximation.SkewedChi2Sampler.fit", false]], "fit() (sklearn.kernel_ridge.kernelridge method)": [[642, "sklearn.kernel_ridge.KernelRidge.fit", false]], "fit() (sklearn.linear_model.ardregression method)": [[643, "sklearn.linear_model.ARDRegression.fit", false]], "fit() (sklearn.linear_model.bayesianridge method)": [[644, "sklearn.linear_model.BayesianRidge.fit", false]], "fit() (sklearn.linear_model.elasticnet method)": [[645, "sklearn.linear_model.ElasticNet.fit", false]], "fit() (sklearn.linear_model.elasticnetcv method)": [[646, "sklearn.linear_model.ElasticNetCV.fit", false]], "fit() (sklearn.linear_model.gammaregressor method)": [[647, "sklearn.linear_model.GammaRegressor.fit", false]], "fit() (sklearn.linear_model.huberregressor method)": [[648, "sklearn.linear_model.HuberRegressor.fit", false]], "fit() (sklearn.linear_model.lars method)": [[649, "sklearn.linear_model.Lars.fit", false]], "fit() (sklearn.linear_model.larscv method)": [[650, "sklearn.linear_model.LarsCV.fit", false]], "fit() (sklearn.linear_model.lasso method)": [[651, "sklearn.linear_model.Lasso.fit", false]], "fit() (sklearn.linear_model.lassocv method)": [[652, "sklearn.linear_model.LassoCV.fit", false]], "fit() (sklearn.linear_model.lassolars method)": [[653, "sklearn.linear_model.LassoLars.fit", false]], "fit() (sklearn.linear_model.lassolarscv method)": [[654, "sklearn.linear_model.LassoLarsCV.fit", false]], "fit() (sklearn.linear_model.lassolarsic method)": [[655, "sklearn.linear_model.LassoLarsIC.fit", false]], "fit() (sklearn.linear_model.linearregression method)": [[656, "sklearn.linear_model.LinearRegression.fit", false]], "fit() (sklearn.linear_model.logisticregression method)": [[657, "sklearn.linear_model.LogisticRegression.fit", false]], "fit() (sklearn.linear_model.logisticregressioncv method)": [[658, "sklearn.linear_model.LogisticRegressionCV.fit", false]], "fit() (sklearn.linear_model.multitaskelasticnet method)": [[659, "sklearn.linear_model.MultiTaskElasticNet.fit", false]], "fit() (sklearn.linear_model.multitaskelasticnetcv method)": [[660, "sklearn.linear_model.MultiTaskElasticNetCV.fit", false]], "fit() (sklearn.linear_model.multitasklasso method)": [[661, "sklearn.linear_model.MultiTaskLasso.fit", false]], "fit() (sklearn.linear_model.multitasklassocv method)": [[662, "sklearn.linear_model.MultiTaskLassoCV.fit", false]], "fit() (sklearn.linear_model.orthogonalmatchingpursuit method)": [[663, "sklearn.linear_model.OrthogonalMatchingPursuit.fit", false]], "fit() (sklearn.linear_model.orthogonalmatchingpursuitcv method)": [[664, "sklearn.linear_model.OrthogonalMatchingPursuitCV.fit", false]], "fit() (sklearn.linear_model.passiveaggressiveclassifier method)": [[665, "sklearn.linear_model.PassiveAggressiveClassifier.fit", false]], "fit() (sklearn.linear_model.passiveaggressiveregressor method)": [[666, "sklearn.linear_model.PassiveAggressiveRegressor.fit", false]], "fit() (sklearn.linear_model.perceptron method)": [[667, "sklearn.linear_model.Perceptron.fit", false]], "fit() (sklearn.linear_model.poissonregressor method)": [[668, "sklearn.linear_model.PoissonRegressor.fit", false]], "fit() (sklearn.linear_model.quantileregressor method)": [[669, "sklearn.linear_model.QuantileRegressor.fit", false]], "fit() (sklearn.linear_model.ransacregressor method)": [[670, "sklearn.linear_model.RANSACRegressor.fit", false]], "fit() (sklearn.linear_model.ridge method)": [[671, "sklearn.linear_model.Ridge.fit", false]], "fit() (sklearn.linear_model.ridgeclassifier method)": [[673, "sklearn.linear_model.RidgeClassifier.fit", false]], "fit() (sklearn.linear_model.ridgeclassifiercv method)": [[674, "sklearn.linear_model.RidgeClassifierCV.fit", false]], "fit() (sklearn.linear_model.ridgecv method)": [[672, "sklearn.linear_model.RidgeCV.fit", false]], "fit() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.fit", false]], "fit() (sklearn.linear_model.sgdoneclasssvm method)": [[676, "sklearn.linear_model.SGDOneClassSVM.fit", false]], "fit() (sklearn.linear_model.sgdregressor method)": [[677, "sklearn.linear_model.SGDRegressor.fit", false]], "fit() (sklearn.linear_model.theilsenregressor method)": [[678, "sklearn.linear_model.TheilSenRegressor.fit", false]], "fit() (sklearn.linear_model.tweedieregressor method)": [[679, "sklearn.linear_model.TweedieRegressor.fit", false]], "fit() (sklearn.manifold.classicalmds method)": [[687, "sklearn.manifold.ClassicalMDS.fit", false]], "fit() (sklearn.manifold.isomap method)": [[688, "sklearn.manifold.Isomap.fit", false]], "fit() (sklearn.manifold.locallylinearembedding method)": [[689, "sklearn.manifold.LocallyLinearEmbedding.fit", false]], "fit() (sklearn.manifold.mds method)": [[690, "sklearn.manifold.MDS.fit", false]], "fit() (sklearn.manifold.spectralembedding method)": [[691, "sklearn.manifold.SpectralEmbedding.fit", false]], "fit() (sklearn.manifold.tsne method)": [[692, "sklearn.manifold.TSNE.fit", false]], "fit() (sklearn.mixture.bayesiangaussianmixture method)": [[798, "sklearn.mixture.BayesianGaussianMixture.fit", false]], "fit() (sklearn.mixture.gaussianmixture method)": [[799, "sklearn.mixture.GaussianMixture.fit", false]], "fit() (sklearn.model_selection.fixedthresholdclassifier method)": [[800, "sklearn.model_selection.FixedThresholdClassifier.fit", false]], "fit() (sklearn.model_selection.gridsearchcv method)": [[801, "sklearn.model_selection.GridSearchCV.fit", false]], "fit() (sklearn.model_selection.halvinggridsearchcv method)": [[804, "sklearn.model_selection.HalvingGridSearchCV.fit", false]], "fit() (sklearn.model_selection.halvingrandomsearchcv method)": [[805, "sklearn.model_selection.HalvingRandomSearchCV.fit", false]], "fit() (sklearn.model_selection.randomizedsearchcv method)": [[815, "sklearn.model_selection.RandomizedSearchCV.fit", false]], "fit() (sklearn.model_selection.tunedthresholdclassifiercv method)": [[823, "sklearn.model_selection.TunedThresholdClassifierCV.fit", false]], "fit() (sklearn.multiclass.onevsoneclassifier method)": [[833, "sklearn.multiclass.OneVsOneClassifier.fit", false]], "fit() (sklearn.multiclass.onevsrestclassifier method)": [[834, "sklearn.multiclass.OneVsRestClassifier.fit", false]], "fit() (sklearn.multiclass.outputcodeclassifier method)": [[835, "sklearn.multiclass.OutputCodeClassifier.fit", false]], "fit() (sklearn.multioutput.classifierchain method)": [[836, "sklearn.multioutput.ClassifierChain.fit", false]], "fit() (sklearn.multioutput.multioutputclassifier method)": [[837, "sklearn.multioutput.MultiOutputClassifier.fit", false]], "fit() (sklearn.multioutput.multioutputregressor method)": [[838, "sklearn.multioutput.MultiOutputRegressor.fit", false]], "fit() (sklearn.multioutput.regressorchain method)": [[839, "sklearn.multioutput.RegressorChain.fit", false]], "fit() (sklearn.naive_bayes.bernoullinb method)": [[840, "sklearn.naive_bayes.BernoulliNB.fit", false]], "fit() (sklearn.naive_bayes.categoricalnb method)": [[841, "sklearn.naive_bayes.CategoricalNB.fit", false]], "fit() (sklearn.naive_bayes.complementnb method)": [[842, "sklearn.naive_bayes.ComplementNB.fit", false]], "fit() (sklearn.naive_bayes.gaussiannb method)": [[843, "sklearn.naive_bayes.GaussianNB.fit", false]], "fit() (sklearn.naive_bayes.multinomialnb method)": [[844, "sklearn.naive_bayes.MultinomialNB.fit", false]], "fit() (sklearn.neighbors.kerneldensity method)": [[850, "sklearn.neighbors.KernelDensity.fit", false]], "fit() (sklearn.neighbors.kneighborsclassifier method)": [[847, "sklearn.neighbors.KNeighborsClassifier.fit", false]], "fit() (sklearn.neighbors.kneighborsregressor method)": [[848, "sklearn.neighbors.KNeighborsRegressor.fit", false]], "fit() (sklearn.neighbors.kneighborstransformer method)": [[849, "sklearn.neighbors.KNeighborsTransformer.fit", false]], "fit() (sklearn.neighbors.localoutlierfactor method)": [[851, "sklearn.neighbors.LocalOutlierFactor.fit", false]], "fit() (sklearn.neighbors.nearestcentroid method)": [[852, "sklearn.neighbors.NearestCentroid.fit", false]], "fit() (sklearn.neighbors.nearestneighbors method)": [[853, "sklearn.neighbors.NearestNeighbors.fit", false]], "fit() (sklearn.neighbors.neighborhoodcomponentsanalysis method)": [[854, "sklearn.neighbors.NeighborhoodComponentsAnalysis.fit", false]], "fit() (sklearn.neighbors.radiusneighborsclassifier method)": [[855, "sklearn.neighbors.RadiusNeighborsClassifier.fit", false]], "fit() (sklearn.neighbors.radiusneighborsregressor method)": [[856, "sklearn.neighbors.RadiusNeighborsRegressor.fit", false]], "fit() (sklearn.neighbors.radiusneighborstransformer method)": [[857, "sklearn.neighbors.RadiusNeighborsTransformer.fit", false]], "fit() (sklearn.neural_network.bernoullirbm method)": [[861, "sklearn.neural_network.BernoulliRBM.fit", false]], "fit() (sklearn.neural_network.mlpclassifier method)": [[862, "sklearn.neural_network.MLPClassifier.fit", false]], "fit() (sklearn.neural_network.mlpregressor method)": [[863, "sklearn.neural_network.MLPRegressor.fit", false]], "fit() (sklearn.pipeline.featureunion method)": [[864, "sklearn.pipeline.FeatureUnion.fit", false]], "fit() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.fit", false]], "fit() (sklearn.preprocessing.binarizer method)": [[868, "sklearn.preprocessing.Binarizer.fit", false]], "fit() (sklearn.preprocessing.functiontransformer method)": [[869, "sklearn.preprocessing.FunctionTransformer.fit", false]], "fit() (sklearn.preprocessing.kbinsdiscretizer method)": [[870, "sklearn.preprocessing.KBinsDiscretizer.fit", false]], "fit() (sklearn.preprocessing.kernelcenterer method)": [[871, "sklearn.preprocessing.KernelCenterer.fit", false]], "fit() (sklearn.preprocessing.labelbinarizer method)": [[872, "sklearn.preprocessing.LabelBinarizer.fit", false]], "fit() (sklearn.preprocessing.labelencoder method)": [[873, "sklearn.preprocessing.LabelEncoder.fit", false]], "fit() (sklearn.preprocessing.maxabsscaler method)": [[874, "sklearn.preprocessing.MaxAbsScaler.fit", false]], "fit() (sklearn.preprocessing.minmaxscaler method)": [[875, "sklearn.preprocessing.MinMaxScaler.fit", false]], "fit() (sklearn.preprocessing.multilabelbinarizer method)": [[876, "sklearn.preprocessing.MultiLabelBinarizer.fit", false]], "fit() (sklearn.preprocessing.normalizer method)": [[877, "sklearn.preprocessing.Normalizer.fit", false]], "fit() (sklearn.preprocessing.onehotencoder method)": [[878, "sklearn.preprocessing.OneHotEncoder.fit", false]], "fit() (sklearn.preprocessing.ordinalencoder method)": [[879, "sklearn.preprocessing.OrdinalEncoder.fit", false]], "fit() (sklearn.preprocessing.polynomialfeatures method)": [[880, "sklearn.preprocessing.PolynomialFeatures.fit", false]], "fit() (sklearn.preprocessing.powertransformer method)": [[881, "sklearn.preprocessing.PowerTransformer.fit", false]], "fit() (sklearn.preprocessing.quantiletransformer method)": [[882, "sklearn.preprocessing.QuantileTransformer.fit", false]], "fit() (sklearn.preprocessing.robustscaler method)": [[883, "sklearn.preprocessing.RobustScaler.fit", false]], "fit() (sklearn.preprocessing.splinetransformer method)": [[884, "sklearn.preprocessing.SplineTransformer.fit", false]], "fit() (sklearn.preprocessing.standardscaler method)": [[885, "sklearn.preprocessing.StandardScaler.fit", false]], "fit() (sklearn.preprocessing.targetencoder method)": [[886, "sklearn.preprocessing.TargetEncoder.fit", false]], "fit() (sklearn.random_projection.gaussianrandomprojection method)": [[897, "sklearn.random_projection.GaussianRandomProjection.fit", false]], "fit() (sklearn.random_projection.sparserandomprojection method)": [[898, "sklearn.random_projection.SparseRandomProjection.fit", false]], "fit() (sklearn.semi_supervised.labelpropagation method)": [[900, "sklearn.semi_supervised.LabelPropagation.fit", false]], "fit() (sklearn.semi_supervised.labelspreading method)": [[901, "sklearn.semi_supervised.LabelSpreading.fit", false]], "fit() (sklearn.semi_supervised.selftrainingclassifier method)": [[902, "sklearn.semi_supervised.SelfTrainingClassifier.fit", false]], "fit() (sklearn.svm.linearsvc method)": [[905, "sklearn.svm.LinearSVC.fit", false]], "fit() (sklearn.svm.linearsvr method)": [[906, "sklearn.svm.LinearSVR.fit", false]], "fit() (sklearn.svm.nusvc method)": [[907, "sklearn.svm.NuSVC.fit", false]], "fit() (sklearn.svm.nusvr method)": [[908, "sklearn.svm.NuSVR.fit", false]], "fit() (sklearn.svm.oneclasssvm method)": [[909, "sklearn.svm.OneClassSVM.fit", false]], "fit() (sklearn.svm.svc method)": [[910, "sklearn.svm.SVC.fit", false]], "fit() (sklearn.svm.svr method)": [[911, "sklearn.svm.SVR.fit", false]], "fit() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.fit", false]], "fit() (sklearn.tree.decisiontreeregressor method)": [[914, "sklearn.tree.DecisionTreeRegressor.fit", false]], "fit() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.fit", false]], "fit() (sklearn.tree.extratreeregressor method)": [[916, "sklearn.tree.ExtraTreeRegressor.fit", false]], "fit_predict": [[385, "term-fit_predict", true]], "fit_predict (sklearn.cluster.featureagglomeration property)": [[441, "sklearn.cluster.FeatureAgglomeration.fit_predict", false]], "fit_predict() (sklearn.base.clustermixin method)": [[421, "sklearn.base.ClusterMixin.fit_predict", false]], "fit_predict() (sklearn.base.outliermixin method)": [[425, "sklearn.base.OutlierMixin.fit_predict", false]], "fit_predict() (sklearn.cluster.affinitypropagation method)": [[436, "sklearn.cluster.AffinityPropagation.fit_predict", false]], "fit_predict() (sklearn.cluster.agglomerativeclustering method)": [[437, "sklearn.cluster.AgglomerativeClustering.fit_predict", false]], "fit_predict() (sklearn.cluster.birch method)": [[438, "sklearn.cluster.Birch.fit_predict", false]], "fit_predict() (sklearn.cluster.bisectingkmeans method)": [[439, "sklearn.cluster.BisectingKMeans.fit_predict", false]], "fit_predict() (sklearn.cluster.dbscan method)": [[440, "sklearn.cluster.DBSCAN.fit_predict", false]], "fit_predict() (sklearn.cluster.hdbscan method)": [[442, "sklearn.cluster.HDBSCAN.fit_predict", false]], "fit_predict() (sklearn.cluster.kmeans method)": [[443, "sklearn.cluster.KMeans.fit_predict", false]], "fit_predict() (sklearn.cluster.meanshift method)": [[444, "sklearn.cluster.MeanShift.fit_predict", false]], "fit_predict() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.fit_predict", false]], "fit_predict() (sklearn.cluster.optics method)": [[446, "sklearn.cluster.OPTICS.fit_predict", false]], "fit_predict() (sklearn.cluster.spectralclustering method)": [[448, "sklearn.cluster.SpectralClustering.fit_predict", false]], "fit_predict() (sklearn.covariance.ellipticenvelope method)": [[465, "sklearn.covariance.EllipticEnvelope.fit_predict", false]], "fit_predict() (sklearn.ensemble.isolationforest method)": [[560, "sklearn.ensemble.IsolationForest.fit_predict", false]], "fit_predict() (sklearn.linear_model.sgdoneclasssvm method)": [[676, "sklearn.linear_model.SGDOneClassSVM.fit_predict", false]], "fit_predict() (sklearn.mixture.bayesiangaussianmixture method)": [[798, "sklearn.mixture.BayesianGaussianMixture.fit_predict", false]], "fit_predict() (sklearn.mixture.gaussianmixture method)": [[799, "sklearn.mixture.GaussianMixture.fit_predict", false]], "fit_predict() (sklearn.neighbors.localoutlierfactor method)": [[851, "sklearn.neighbors.LocalOutlierFactor.fit_predict", false]], "fit_predict() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.fit_predict", false]], "fit_predict() (sklearn.svm.oneclasssvm method)": [[909, "sklearn.svm.OneClassSVM.fit_predict", false]], "fit_transform": [[385, "term-fit_transform", true]], "fit_transform() (sklearn.base.transformermixin method)": [[427, "sklearn.base.TransformerMixin.fit_transform", false]], "fit_transform() (sklearn.cluster.birch method)": [[438, "sklearn.cluster.Birch.fit_transform", false]], "fit_transform() (sklearn.cluster.bisectingkmeans method)": [[439, "sklearn.cluster.BisectingKMeans.fit_transform", false]], "fit_transform() (sklearn.cluster.featureagglomeration method)": [[441, "sklearn.cluster.FeatureAgglomeration.fit_transform", false]], "fit_transform() (sklearn.cluster.kmeans method)": [[443, "sklearn.cluster.KMeans.fit_transform", false]], "fit_transform() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.fit_transform", false]], "fit_transform() (sklearn.compose.columntransformer method)": [[460, "sklearn.compose.ColumnTransformer.fit_transform", false]], "fit_transform() (sklearn.cross_decomposition.cca method)": [[478, "sklearn.cross_decomposition.CCA.fit_transform", false]], "fit_transform() (sklearn.cross_decomposition.plscanonical method)": [[479, "sklearn.cross_decomposition.PLSCanonical.fit_transform", false]], "fit_transform() (sklearn.cross_decomposition.plsregression method)": [[480, "sklearn.cross_decomposition.PLSRegression.fit_transform", false]], "fit_transform() (sklearn.cross_decomposition.plssvd method)": [[481, "sklearn.cross_decomposition.PLSSVD.fit_transform", false]], "fit_transform() (sklearn.decomposition.dictionarylearning method)": [[528, "sklearn.decomposition.DictionaryLearning.fit_transform", false]], "fit_transform() (sklearn.decomposition.factoranalysis method)": [[529, "sklearn.decomposition.FactorAnalysis.fit_transform", false]], "fit_transform() (sklearn.decomposition.fastica method)": [[530, "sklearn.decomposition.FastICA.fit_transform", false]], "fit_transform() (sklearn.decomposition.incrementalpca method)": [[531, "sklearn.decomposition.IncrementalPCA.fit_transform", false]], "fit_transform() (sklearn.decomposition.kernelpca method)": [[532, "sklearn.decomposition.KernelPCA.fit_transform", false]], "fit_transform() (sklearn.decomposition.latentdirichletallocation method)": [[533, "sklearn.decomposition.LatentDirichletAllocation.fit_transform", false]], "fit_transform() (sklearn.decomposition.minibatchdictionarylearning method)": [[534, "sklearn.decomposition.MiniBatchDictionaryLearning.fit_transform", false]], "fit_transform() (sklearn.decomposition.minibatchnmf method)": [[535, "sklearn.decomposition.MiniBatchNMF.fit_transform", false]], "fit_transform() (sklearn.decomposition.minibatchsparsepca method)": [[536, "sklearn.decomposition.MiniBatchSparsePCA.fit_transform", false]], "fit_transform() (sklearn.decomposition.nmf method)": [[537, "sklearn.decomposition.NMF.fit_transform", false]], "fit_transform() (sklearn.decomposition.pca method)": [[538, "sklearn.decomposition.PCA.fit_transform", false]], "fit_transform() (sklearn.decomposition.sparsecoder method)": [[539, "sklearn.decomposition.SparseCoder.fit_transform", false]], "fit_transform() (sklearn.decomposition.sparsepca method)": [[540, "sklearn.decomposition.SparsePCA.fit_transform", false]], "fit_transform() (sklearn.decomposition.truncatedsvd method)": [[541, "sklearn.decomposition.TruncatedSVD.fit_transform", false]], "fit_transform() (sklearn.discriminant_analysis.lineardiscriminantanalysis method)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis.fit_transform", false]], "fit_transform() (sklearn.ensemble.randomtreesembedding method)": [[563, "sklearn.ensemble.RandomTreesEmbedding.fit_transform", false]], "fit_transform() (sklearn.ensemble.stackingclassifier method)": [[564, "sklearn.ensemble.StackingClassifier.fit_transform", false]], "fit_transform() (sklearn.ensemble.stackingregressor method)": [[565, "sklearn.ensemble.StackingRegressor.fit_transform", false]], "fit_transform() (sklearn.ensemble.votingclassifier method)": [[566, "sklearn.ensemble.VotingClassifier.fit_transform", false]], "fit_transform() (sklearn.ensemble.votingregressor method)": [[567, "sklearn.ensemble.VotingRegressor.fit_transform", false]], "fit_transform() (sklearn.feature_extraction.dictvectorizer method)": [[579, "sklearn.feature_extraction.DictVectorizer.fit_transform", false]], "fit_transform() (sklearn.feature_extraction.featurehasher method)": [[580, "sklearn.feature_extraction.FeatureHasher.fit_transform", false]], "fit_transform() (sklearn.feature_extraction.image.patchextractor method)": [[581, "sklearn.feature_extraction.image.PatchExtractor.fit_transform", false]], "fit_transform() (sklearn.feature_extraction.text.countvectorizer method)": [[586, "sklearn.feature_extraction.text.CountVectorizer.fit_transform", false]], "fit_transform() (sklearn.feature_extraction.text.hashingvectorizer method)": [[587, "sklearn.feature_extraction.text.HashingVectorizer.fit_transform", false]], "fit_transform() (sklearn.feature_extraction.text.tfidftransformer method)": [[588, "sklearn.feature_extraction.text.TfidfTransformer.fit_transform", false]], "fit_transform() (sklearn.feature_extraction.text.tfidfvectorizer method)": [[589, "sklearn.feature_extraction.text.TfidfVectorizer.fit_transform", false]], "fit_transform() (sklearn.feature_selection.genericunivariateselect method)": [[590, "sklearn.feature_selection.GenericUnivariateSelect.fit_transform", false]], "fit_transform() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.fit_transform", false]], "fit_transform() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.fit_transform", false]], "fit_transform() (sklearn.feature_selection.selectfdr method)": [[593, "sklearn.feature_selection.SelectFdr.fit_transform", false]], "fit_transform() (sklearn.feature_selection.selectfpr method)": [[594, "sklearn.feature_selection.SelectFpr.fit_transform", false]], "fit_transform() (sklearn.feature_selection.selectfrommodel method)": [[595, "sklearn.feature_selection.SelectFromModel.fit_transform", false]], "fit_transform() (sklearn.feature_selection.selectfwe method)": [[596, "sklearn.feature_selection.SelectFwe.fit_transform", false]], "fit_transform() (sklearn.feature_selection.selectkbest method)": [[597, "sklearn.feature_selection.SelectKBest.fit_transform", false]], "fit_transform() (sklearn.feature_selection.selectormixin method)": [[599, "sklearn.feature_selection.SelectorMixin.fit_transform", false]], "fit_transform() (sklearn.feature_selection.selectpercentile method)": [[598, "sklearn.feature_selection.SelectPercentile.fit_transform", false]], "fit_transform() (sklearn.feature_selection.sequentialfeatureselector method)": [[600, "sklearn.feature_selection.SequentialFeatureSelector.fit_transform", false]], "fit_transform() (sklearn.feature_selection.variancethreshold method)": [[601, "sklearn.feature_selection.VarianceThreshold.fit_transform", false]], "fit_transform() (sklearn.impute.iterativeimputer method)": [[626, "sklearn.impute.IterativeImputer.fit_transform", false]], "fit_transform() (sklearn.impute.knnimputer method)": [[627, "sklearn.impute.KNNImputer.fit_transform", false]], "fit_transform() (sklearn.impute.missingindicator method)": [[628, "sklearn.impute.MissingIndicator.fit_transform", false]], "fit_transform() (sklearn.impute.simpleimputer method)": [[629, "sklearn.impute.SimpleImputer.fit_transform", false]], "fit_transform() (sklearn.isotonic.isotonicregression method)": [[634, "sklearn.isotonic.IsotonicRegression.fit_transform", false]], "fit_transform() (sklearn.kernel_approximation.additivechi2sampler method)": [[637, "sklearn.kernel_approximation.AdditiveChi2Sampler.fit_transform", false]], "fit_transform() (sklearn.kernel_approximation.nystroem method)": [[638, "sklearn.kernel_approximation.Nystroem.fit_transform", false]], "fit_transform() (sklearn.kernel_approximation.polynomialcountsketch method)": [[639, "sklearn.kernel_approximation.PolynomialCountSketch.fit_transform", false]], "fit_transform() (sklearn.kernel_approximation.rbfsampler method)": [[640, "sklearn.kernel_approximation.RBFSampler.fit_transform", false]], "fit_transform() (sklearn.kernel_approximation.skewedchi2sampler method)": [[641, "sklearn.kernel_approximation.SkewedChi2Sampler.fit_transform", false]], "fit_transform() (sklearn.manifold.classicalmds method)": [[687, "sklearn.manifold.ClassicalMDS.fit_transform", false]], "fit_transform() (sklearn.manifold.isomap method)": [[688, "sklearn.manifold.Isomap.fit_transform", false]], "fit_transform() (sklearn.manifold.locallylinearembedding method)": [[689, "sklearn.manifold.LocallyLinearEmbedding.fit_transform", false]], "fit_transform() (sklearn.manifold.mds method)": [[690, "sklearn.manifold.MDS.fit_transform", false]], "fit_transform() (sklearn.manifold.spectralembedding method)": [[691, "sklearn.manifold.SpectralEmbedding.fit_transform", false]], "fit_transform() (sklearn.manifold.tsne method)": [[692, "sklearn.manifold.TSNE.fit_transform", false]], "fit_transform() (sklearn.neighbors.kneighborstransformer method)": [[849, "sklearn.neighbors.KNeighborsTransformer.fit_transform", false]], "fit_transform() (sklearn.neighbors.neighborhoodcomponentsanalysis method)": [[854, "sklearn.neighbors.NeighborhoodComponentsAnalysis.fit_transform", false]], "fit_transform() (sklearn.neighbors.radiusneighborstransformer method)": [[857, "sklearn.neighbors.RadiusNeighborsTransformer.fit_transform", false]], "fit_transform() (sklearn.neural_network.bernoullirbm method)": [[861, "sklearn.neural_network.BernoulliRBM.fit_transform", false]], "fit_transform() (sklearn.pipeline.featureunion method)": [[864, "sklearn.pipeline.FeatureUnion.fit_transform", false]], "fit_transform() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.fit_transform", false]], "fit_transform() (sklearn.preprocessing.binarizer method)": [[868, "sklearn.preprocessing.Binarizer.fit_transform", false]], "fit_transform() (sklearn.preprocessing.functiontransformer method)": [[869, "sklearn.preprocessing.FunctionTransformer.fit_transform", false]], "fit_transform() (sklearn.preprocessing.kbinsdiscretizer method)": [[870, "sklearn.preprocessing.KBinsDiscretizer.fit_transform", false]], "fit_transform() (sklearn.preprocessing.kernelcenterer method)": [[871, "sklearn.preprocessing.KernelCenterer.fit_transform", false]], "fit_transform() (sklearn.preprocessing.labelbinarizer method)": [[872, "sklearn.preprocessing.LabelBinarizer.fit_transform", false]], "fit_transform() (sklearn.preprocessing.labelencoder method)": [[873, "sklearn.preprocessing.LabelEncoder.fit_transform", false]], "fit_transform() (sklearn.preprocessing.maxabsscaler method)": [[874, "sklearn.preprocessing.MaxAbsScaler.fit_transform", false]], "fit_transform() (sklearn.preprocessing.minmaxscaler method)": [[875, "sklearn.preprocessing.MinMaxScaler.fit_transform", false]], "fit_transform() (sklearn.preprocessing.multilabelbinarizer method)": [[876, "sklearn.preprocessing.MultiLabelBinarizer.fit_transform", false]], "fit_transform() (sklearn.preprocessing.normalizer method)": [[877, "sklearn.preprocessing.Normalizer.fit_transform", false]], "fit_transform() (sklearn.preprocessing.onehotencoder method)": [[878, "sklearn.preprocessing.OneHotEncoder.fit_transform", false]], "fit_transform() (sklearn.preprocessing.ordinalencoder method)": [[879, "sklearn.preprocessing.OrdinalEncoder.fit_transform", false]], "fit_transform() (sklearn.preprocessing.polynomialfeatures method)": [[880, "sklearn.preprocessing.PolynomialFeatures.fit_transform", false]], "fit_transform() (sklearn.preprocessing.powertransformer method)": [[881, "sklearn.preprocessing.PowerTransformer.fit_transform", false]], "fit_transform() (sklearn.preprocessing.quantiletransformer method)": [[882, "sklearn.preprocessing.QuantileTransformer.fit_transform", false]], "fit_transform() (sklearn.preprocessing.robustscaler method)": [[883, "sklearn.preprocessing.RobustScaler.fit_transform", false]], "fit_transform() (sklearn.preprocessing.splinetransformer method)": [[884, "sklearn.preprocessing.SplineTransformer.fit_transform", false]], "fit_transform() (sklearn.preprocessing.standardscaler method)": [[885, "sklearn.preprocessing.StandardScaler.fit_transform", false]], "fit_transform() (sklearn.preprocessing.targetencoder method)": [[886, "sklearn.preprocessing.TargetEncoder.fit_transform", false]], "fit_transform() (sklearn.random_projection.gaussianrandomprojection method)": [[897, "sklearn.random_projection.GaussianRandomProjection.fit_transform", false]], "fit_transform() (sklearn.random_projection.sparserandomprojection method)": [[898, "sklearn.random_projection.SparseRandomProjection.fit_transform", false]], "fitfailedwarning": [[573, "sklearn.exceptions.FitFailedWarning", false]], "fitted": [[385, "term-fitted", true]], "fitting": [[385, "term-fitting", true]], "fixed (sklearn.gaussian_process.kernels.hyperparameter attribute)": [[616, "sklearn.gaussian_process.kernels.Hyperparameter.fixed", false]], "fixedthresholdclassifier (class in sklearn.model_selection)": [[800, "sklearn.model_selection.FixedThresholdClassifier", false]], "format() (sklearn.utils.parallel.parallel method)": [[967, "sklearn.utils.parallel.Parallel.format", false]], "fowlkes_mallows_score() (in module sklearn.metrics)": [[732, "sklearn.metrics.fowlkes_mallows_score", false]], "from_cv_results() (sklearn.metrics.roccurvedisplay class method)": [[702, "sklearn.metrics.RocCurveDisplay.from_cv_results", false]], "from_estimator() (sklearn.calibration.calibrationdisplay class method)": [[434, "sklearn.calibration.CalibrationDisplay.from_estimator", false]], "from_estimator() (sklearn.inspection.decisionboundarydisplay class method)": [[630, "sklearn.inspection.DecisionBoundaryDisplay.from_estimator", false]], "from_estimator() (sklearn.inspection.partialdependencedisplay class method)": [[631, "sklearn.inspection.PartialDependenceDisplay.from_estimator", false]], "from_estimator() (sklearn.metrics.confusionmatrixdisplay class method)": [[697, "sklearn.metrics.ConfusionMatrixDisplay.from_estimator", false]], "from_estimator() (sklearn.metrics.detcurvedisplay class method)": [[698, "sklearn.metrics.DetCurveDisplay.from_estimator", false]], "from_estimator() (sklearn.metrics.precisionrecalldisplay class method)": [[700, "sklearn.metrics.PrecisionRecallDisplay.from_estimator", false]], "from_estimator() (sklearn.metrics.predictionerrordisplay class method)": [[701, "sklearn.metrics.PredictionErrorDisplay.from_estimator", false]], "from_estimator() (sklearn.metrics.roccurvedisplay class method)": [[702, "sklearn.metrics.RocCurveDisplay.from_estimator", false]], "from_estimator() (sklearn.model_selection.learningcurvedisplay class method)": [[807, "sklearn.model_selection.LearningCurveDisplay.from_estimator", false]], "from_estimator() (sklearn.model_selection.validationcurvedisplay class method)": [[824, "sklearn.model_selection.ValidationCurveDisplay.from_estimator", false]], "from_predictions() (sklearn.calibration.calibrationdisplay class method)": [[434, "sklearn.calibration.CalibrationDisplay.from_predictions", false]], "from_predictions() (sklearn.metrics.confusionmatrixdisplay class method)": [[697, "sklearn.metrics.ConfusionMatrixDisplay.from_predictions", false]], "from_predictions() (sklearn.metrics.detcurvedisplay class method)": [[698, "sklearn.metrics.DetCurveDisplay.from_predictions", false]], "from_predictions() (sklearn.metrics.precisionrecalldisplay class method)": [[700, "sklearn.metrics.PrecisionRecallDisplay.from_predictions", false]], "from_predictions() (sklearn.metrics.predictionerrordisplay class method)": [[701, "sklearn.metrics.PredictionErrorDisplay.from_predictions", false]], "from_predictions() (sklearn.metrics.roccurvedisplay class method)": [[702, "sklearn.metrics.RocCurveDisplay.from_predictions", false]], "fromkeys() (sklearn.utils.bunch method)": [[920, "sklearn.utils.Bunch.fromkeys", false]], "frozenestimator (class in sklearn.frozen)": [[608, "sklearn.frozen.FrozenEstimator", false]], "function": [[385, "term-function", true]], "functiontransformer (class in sklearn.preprocessing)": [[869, "sklearn.preprocessing.FunctionTransformer", false]], "gallery": [[385, "term-gallery", true]], "gammaregressor (class in sklearn.linear_model)": [[647, "sklearn.linear_model.GammaRegressor", false]], "gaussianmixture (class in sklearn.mixture)": [[799, "sklearn.mixture.GaussianMixture", false]], "gaussiannb (class in sklearn.naive_bayes)": [[843, "sklearn.naive_bayes.GaussianNB", false]], "gaussianprocessclassifier (class in sklearn.gaussian_process)": [[609, "sklearn.gaussian_process.GaussianProcessClassifier", false]], "gaussianprocessregressor (class in sklearn.gaussian_process)": [[610, "sklearn.gaussian_process.GaussianProcessRegressor", false]], "gaussianrandomprojection (class in sklearn.random_projection)": [[897, "sklearn.random_projection.GaussianRandomProjection", false]], "gen_batches() (in module sklearn.utils)": [[952, "sklearn.utils.gen_batches", false]], "gen_even_slices() (in module sklearn.utils)": [[953, "sklearn.utils.gen_even_slices", false]], "genericunivariateselect (class in sklearn.feature_selection)": [[590, "sklearn.feature_selection.GenericUnivariateSelect", false]], "get() (sklearn.utils.bunch method)": [[920, "sklearn.utils.Bunch.get", false]], "get_arrays() (sklearn.neighbors.balltree method)": [[845, "sklearn.neighbors.BallTree.get_arrays", false]], "get_arrays() (sklearn.neighbors.kdtree method)": [[846, "sklearn.neighbors.KDTree.get_arrays", false]], "get_config() (in module sklearn)": [[625, "sklearn.get_config", false]], "get_covariance() (sklearn.decomposition.factoranalysis method)": [[529, "sklearn.decomposition.FactorAnalysis.get_covariance", false]], "get_covariance() (sklearn.decomposition.incrementalpca method)": [[531, "sklearn.decomposition.IncrementalPCA.get_covariance", false]], "get_covariance() (sklearn.decomposition.pca method)": [[538, "sklearn.decomposition.PCA.get_covariance", false]], "get_data_home() (in module sklearn.datasets)": [[496, "sklearn.datasets.get_data_home", false]], "get_depth() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.get_depth", false]], "get_depth() (sklearn.tree.decisiontreeregressor method)": [[914, "sklearn.tree.DecisionTreeRegressor.get_depth", false]], "get_depth() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.get_depth", false]], "get_depth() (sklearn.tree.extratreeregressor method)": [[916, "sklearn.tree.ExtraTreeRegressor.get_depth", false]], "get_feature_names_out": [[385, "term-get_feature_names_out", true]], "get_feature_names_out() (sklearn.base.classnameprefixfeaturesoutmixin method)": [[419, "sklearn.base.ClassNamePrefixFeaturesOutMixin.get_feature_names_out", false]], "get_feature_names_out() (sklearn.base.onetoonefeaturemixin method)": [[424, "sklearn.base.OneToOneFeatureMixin.get_feature_names_out", false]], "get_feature_names_out() (sklearn.cluster.birch method)": [[438, "sklearn.cluster.Birch.get_feature_names_out", false]], "get_feature_names_out() (sklearn.cluster.bisectingkmeans method)": [[439, "sklearn.cluster.BisectingKMeans.get_feature_names_out", false]], "get_feature_names_out() (sklearn.cluster.featureagglomeration method)": [[441, "sklearn.cluster.FeatureAgglomeration.get_feature_names_out", false]], "get_feature_names_out() (sklearn.cluster.kmeans method)": [[443, "sklearn.cluster.KMeans.get_feature_names_out", false]], "get_feature_names_out() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.get_feature_names_out", false]], "get_feature_names_out() (sklearn.compose.columntransformer method)": [[460, "sklearn.compose.ColumnTransformer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.cross_decomposition.cca method)": [[478, "sklearn.cross_decomposition.CCA.get_feature_names_out", false]], "get_feature_names_out() (sklearn.cross_decomposition.plscanonical method)": [[479, "sklearn.cross_decomposition.PLSCanonical.get_feature_names_out", false]], "get_feature_names_out() (sklearn.cross_decomposition.plsregression method)": [[480, "sklearn.cross_decomposition.PLSRegression.get_feature_names_out", false]], "get_feature_names_out() (sklearn.cross_decomposition.plssvd method)": [[481, "sklearn.cross_decomposition.PLSSVD.get_feature_names_out", false]], "get_feature_names_out() (sklearn.decomposition.dictionarylearning method)": [[528, "sklearn.decomposition.DictionaryLearning.get_feature_names_out", false]], "get_feature_names_out() (sklearn.decomposition.factoranalysis method)": [[529, "sklearn.decomposition.FactorAnalysis.get_feature_names_out", false]], "get_feature_names_out() (sklearn.decomposition.fastica method)": [[530, "sklearn.decomposition.FastICA.get_feature_names_out", false]], "get_feature_names_out() (sklearn.decomposition.incrementalpca method)": [[531, "sklearn.decomposition.IncrementalPCA.get_feature_names_out", false]], "get_feature_names_out() (sklearn.decomposition.kernelpca method)": [[532, "sklearn.decomposition.KernelPCA.get_feature_names_out", false]], "get_feature_names_out() (sklearn.decomposition.latentdirichletallocation method)": [[533, "sklearn.decomposition.LatentDirichletAllocation.get_feature_names_out", false]], "get_feature_names_out() (sklearn.decomposition.minibatchdictionarylearning method)": [[534, "sklearn.decomposition.MiniBatchDictionaryLearning.get_feature_names_out", false]], "get_feature_names_out() (sklearn.decomposition.minibatchnmf method)": [[535, "sklearn.decomposition.MiniBatchNMF.get_feature_names_out", false]], "get_feature_names_out() (sklearn.decomposition.minibatchsparsepca method)": [[536, "sklearn.decomposition.MiniBatchSparsePCA.get_feature_names_out", false]], "get_feature_names_out() (sklearn.decomposition.nmf method)": [[537, "sklearn.decomposition.NMF.get_feature_names_out", false]], "get_feature_names_out() (sklearn.decomposition.pca method)": [[538, "sklearn.decomposition.PCA.get_feature_names_out", false]], "get_feature_names_out() (sklearn.decomposition.sparsecoder method)": [[539, "sklearn.decomposition.SparseCoder.get_feature_names_out", false]], "get_feature_names_out() (sklearn.decomposition.sparsepca method)": [[540, "sklearn.decomposition.SparsePCA.get_feature_names_out", false]], "get_feature_names_out() (sklearn.decomposition.truncatedsvd method)": [[541, "sklearn.decomposition.TruncatedSVD.get_feature_names_out", false]], "get_feature_names_out() (sklearn.discriminant_analysis.lineardiscriminantanalysis method)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis.get_feature_names_out", false]], "get_feature_names_out() (sklearn.ensemble.randomtreesembedding method)": [[563, "sklearn.ensemble.RandomTreesEmbedding.get_feature_names_out", false]], "get_feature_names_out() (sklearn.ensemble.stackingclassifier method)": [[564, "sklearn.ensemble.StackingClassifier.get_feature_names_out", false]], "get_feature_names_out() (sklearn.ensemble.stackingregressor method)": [[565, "sklearn.ensemble.StackingRegressor.get_feature_names_out", false]], "get_feature_names_out() (sklearn.ensemble.votingclassifier method)": [[566, "sklearn.ensemble.VotingClassifier.get_feature_names_out", false]], "get_feature_names_out() (sklearn.ensemble.votingregressor method)": [[567, "sklearn.ensemble.VotingRegressor.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_extraction.dictvectorizer method)": [[579, "sklearn.feature_extraction.DictVectorizer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_extraction.text.countvectorizer method)": [[586, "sklearn.feature_extraction.text.CountVectorizer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_extraction.text.tfidftransformer method)": [[588, "sklearn.feature_extraction.text.TfidfTransformer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_extraction.text.tfidfvectorizer method)": [[589, "sklearn.feature_extraction.text.TfidfVectorizer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_selection.genericunivariateselect method)": [[590, "sklearn.feature_selection.GenericUnivariateSelect.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_selection.selectfdr method)": [[593, "sklearn.feature_selection.SelectFdr.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_selection.selectfpr method)": [[594, "sklearn.feature_selection.SelectFpr.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_selection.selectfrommodel method)": [[595, "sklearn.feature_selection.SelectFromModel.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_selection.selectfwe method)": [[596, "sklearn.feature_selection.SelectFwe.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_selection.selectkbest method)": [[597, "sklearn.feature_selection.SelectKBest.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_selection.selectormixin method)": [[599, "sklearn.feature_selection.SelectorMixin.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_selection.selectpercentile method)": [[598, "sklearn.feature_selection.SelectPercentile.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_selection.sequentialfeatureselector method)": [[600, "sklearn.feature_selection.SequentialFeatureSelector.get_feature_names_out", false]], "get_feature_names_out() (sklearn.feature_selection.variancethreshold method)": [[601, "sklearn.feature_selection.VarianceThreshold.get_feature_names_out", false]], "get_feature_names_out() (sklearn.impute.iterativeimputer method)": [[626, "sklearn.impute.IterativeImputer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.impute.knnimputer method)": [[627, "sklearn.impute.KNNImputer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.impute.missingindicator method)": [[628, "sklearn.impute.MissingIndicator.get_feature_names_out", false]], "get_feature_names_out() (sklearn.impute.simpleimputer method)": [[629, "sklearn.impute.SimpleImputer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.isotonic.isotonicregression method)": [[634, "sklearn.isotonic.IsotonicRegression.get_feature_names_out", false]], "get_feature_names_out() (sklearn.kernel_approximation.additivechi2sampler method)": [[637, "sklearn.kernel_approximation.AdditiveChi2Sampler.get_feature_names_out", false]], "get_feature_names_out() (sklearn.kernel_approximation.nystroem method)": [[638, "sklearn.kernel_approximation.Nystroem.get_feature_names_out", false]], "get_feature_names_out() (sklearn.kernel_approximation.polynomialcountsketch method)": [[639, "sklearn.kernel_approximation.PolynomialCountSketch.get_feature_names_out", false]], "get_feature_names_out() (sklearn.kernel_approximation.rbfsampler method)": [[640, "sklearn.kernel_approximation.RBFSampler.get_feature_names_out", false]], "get_feature_names_out() (sklearn.kernel_approximation.skewedchi2sampler method)": [[641, "sklearn.kernel_approximation.SkewedChi2Sampler.get_feature_names_out", false]], "get_feature_names_out() (sklearn.manifold.isomap method)": [[688, "sklearn.manifold.Isomap.get_feature_names_out", false]], "get_feature_names_out() (sklearn.manifold.locallylinearembedding method)": [[689, "sklearn.manifold.LocallyLinearEmbedding.get_feature_names_out", false]], "get_feature_names_out() (sklearn.manifold.tsne method)": [[692, "sklearn.manifold.TSNE.get_feature_names_out", false]], "get_feature_names_out() (sklearn.neighbors.kneighborstransformer method)": [[849, "sklearn.neighbors.KNeighborsTransformer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.neighbors.neighborhoodcomponentsanalysis method)": [[854, "sklearn.neighbors.NeighborhoodComponentsAnalysis.get_feature_names_out", false]], "get_feature_names_out() (sklearn.neighbors.radiusneighborstransformer method)": [[857, "sklearn.neighbors.RadiusNeighborsTransformer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.neural_network.bernoullirbm method)": [[861, "sklearn.neural_network.BernoulliRBM.get_feature_names_out", false]], "get_feature_names_out() (sklearn.pipeline.featureunion method)": [[864, "sklearn.pipeline.FeatureUnion.get_feature_names_out", false]], "get_feature_names_out() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.binarizer method)": [[868, "sklearn.preprocessing.Binarizer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.functiontransformer method)": [[869, "sklearn.preprocessing.FunctionTransformer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.kbinsdiscretizer method)": [[870, "sklearn.preprocessing.KBinsDiscretizer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.kernelcenterer method)": [[871, "sklearn.preprocessing.KernelCenterer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.maxabsscaler method)": [[874, "sklearn.preprocessing.MaxAbsScaler.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.minmaxscaler method)": [[875, "sklearn.preprocessing.MinMaxScaler.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.normalizer method)": [[877, "sklearn.preprocessing.Normalizer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.onehotencoder method)": [[878, "sklearn.preprocessing.OneHotEncoder.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.ordinalencoder method)": [[879, "sklearn.preprocessing.OrdinalEncoder.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.polynomialfeatures method)": [[880, "sklearn.preprocessing.PolynomialFeatures.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.powertransformer method)": [[881, "sklearn.preprocessing.PowerTransformer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.quantiletransformer method)": [[882, "sklearn.preprocessing.QuantileTransformer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.robustscaler method)": [[883, "sklearn.preprocessing.RobustScaler.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.splinetransformer method)": [[884, "sklearn.preprocessing.SplineTransformer.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.standardscaler method)": [[885, "sklearn.preprocessing.StandardScaler.get_feature_names_out", false]], "get_feature_names_out() (sklearn.preprocessing.targetencoder method)": [[886, "sklearn.preprocessing.TargetEncoder.get_feature_names_out", false]], "get_feature_names_out() (sklearn.random_projection.gaussianrandomprojection method)": [[897, "sklearn.random_projection.GaussianRandomProjection.get_feature_names_out", false]], "get_feature_names_out() (sklearn.random_projection.sparserandomprojection method)": [[898, "sklearn.random_projection.SparseRandomProjection.get_feature_names_out", false]], "get_indices() (sklearn.base.biclustermixin method)": [[418, "sklearn.base.BiclusterMixin.get_indices", false]], "get_indices() (sklearn.cluster.spectralbiclustering method)": [[447, "sklearn.cluster.SpectralBiclustering.get_indices", false]], "get_indices() (sklearn.cluster.spectralcoclustering method)": [[449, "sklearn.cluster.SpectralCoclustering.get_indices", false]], "get_metadata_routing() (sklearn.base.baseestimator method)": [[417, "sklearn.base.BaseEstimator.get_metadata_routing", false]], "get_metadata_routing() (sklearn.calibration.calibratedclassifiercv method)": [[433, "sklearn.calibration.CalibratedClassifierCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cluster.affinitypropagation method)": [[436, "sklearn.cluster.AffinityPropagation.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cluster.agglomerativeclustering method)": [[437, "sklearn.cluster.AgglomerativeClustering.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cluster.birch method)": [[438, "sklearn.cluster.Birch.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cluster.bisectingkmeans method)": [[439, "sklearn.cluster.BisectingKMeans.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cluster.dbscan method)": [[440, "sklearn.cluster.DBSCAN.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cluster.featureagglomeration method)": [[441, "sklearn.cluster.FeatureAgglomeration.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cluster.hdbscan method)": [[442, "sklearn.cluster.HDBSCAN.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cluster.kmeans method)": [[443, "sklearn.cluster.KMeans.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cluster.meanshift method)": [[444, "sklearn.cluster.MeanShift.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cluster.optics method)": [[446, "sklearn.cluster.OPTICS.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cluster.spectralbiclustering method)": [[447, "sklearn.cluster.SpectralBiclustering.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cluster.spectralclustering method)": [[448, "sklearn.cluster.SpectralClustering.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cluster.spectralcoclustering method)": [[449, "sklearn.cluster.SpectralCoclustering.get_metadata_routing", false]], "get_metadata_routing() (sklearn.compose.columntransformer method)": [[460, "sklearn.compose.ColumnTransformer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.compose.transformedtargetregressor method)": [[461, "sklearn.compose.TransformedTargetRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.covariance.ellipticenvelope method)": [[465, "sklearn.covariance.EllipticEnvelope.get_metadata_routing", false]], "get_metadata_routing() (sklearn.covariance.empiricalcovariance method)": [[466, "sklearn.covariance.EmpiricalCovariance.get_metadata_routing", false]], "get_metadata_routing() (sklearn.covariance.graphicallasso method)": [[467, "sklearn.covariance.GraphicalLasso.get_metadata_routing", false]], "get_metadata_routing() (sklearn.covariance.graphicallassocv method)": [[468, "sklearn.covariance.GraphicalLassoCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.covariance.ledoitwolf method)": [[469, "sklearn.covariance.LedoitWolf.get_metadata_routing", false]], "get_metadata_routing() (sklearn.covariance.mincovdet method)": [[470, "sklearn.covariance.MinCovDet.get_metadata_routing", false]], "get_metadata_routing() (sklearn.covariance.oas method)": [[471, "sklearn.covariance.OAS.get_metadata_routing", false]], "get_metadata_routing() (sklearn.covariance.shrunkcovariance method)": [[472, "sklearn.covariance.ShrunkCovariance.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cross_decomposition.cca method)": [[478, "sklearn.cross_decomposition.CCA.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cross_decomposition.plscanonical method)": [[479, "sklearn.cross_decomposition.PLSCanonical.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cross_decomposition.plsregression method)": [[480, "sklearn.cross_decomposition.PLSRegression.get_metadata_routing", false]], "get_metadata_routing() (sklearn.cross_decomposition.plssvd method)": [[481, "sklearn.cross_decomposition.PLSSVD.get_metadata_routing", false]], "get_metadata_routing() (sklearn.decomposition.dictionarylearning method)": [[528, "sklearn.decomposition.DictionaryLearning.get_metadata_routing", false]], "get_metadata_routing() (sklearn.decomposition.factoranalysis method)": [[529, "sklearn.decomposition.FactorAnalysis.get_metadata_routing", false]], "get_metadata_routing() (sklearn.decomposition.fastica method)": [[530, "sklearn.decomposition.FastICA.get_metadata_routing", false]], "get_metadata_routing() (sklearn.decomposition.incrementalpca method)": [[531, "sklearn.decomposition.IncrementalPCA.get_metadata_routing", false]], "get_metadata_routing() (sklearn.decomposition.kernelpca method)": [[532, "sklearn.decomposition.KernelPCA.get_metadata_routing", false]], "get_metadata_routing() (sklearn.decomposition.latentdirichletallocation method)": [[533, "sklearn.decomposition.LatentDirichletAllocation.get_metadata_routing", false]], "get_metadata_routing() (sklearn.decomposition.minibatchdictionarylearning method)": [[534, "sklearn.decomposition.MiniBatchDictionaryLearning.get_metadata_routing", false]], "get_metadata_routing() (sklearn.decomposition.minibatchnmf method)": [[535, "sklearn.decomposition.MiniBatchNMF.get_metadata_routing", false]], "get_metadata_routing() (sklearn.decomposition.minibatchsparsepca method)": [[536, "sklearn.decomposition.MiniBatchSparsePCA.get_metadata_routing", false]], "get_metadata_routing() (sklearn.decomposition.nmf method)": [[537, "sklearn.decomposition.NMF.get_metadata_routing", false]], "get_metadata_routing() (sklearn.decomposition.pca method)": [[538, "sklearn.decomposition.PCA.get_metadata_routing", false]], "get_metadata_routing() (sklearn.decomposition.sparsecoder method)": [[539, "sklearn.decomposition.SparseCoder.get_metadata_routing", false]], "get_metadata_routing() (sklearn.decomposition.sparsepca method)": [[540, "sklearn.decomposition.SparsePCA.get_metadata_routing", false]], "get_metadata_routing() (sklearn.decomposition.truncatedsvd method)": [[541, "sklearn.decomposition.TruncatedSVD.get_metadata_routing", false]], "get_metadata_routing() (sklearn.discriminant_analysis.lineardiscriminantanalysis method)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis.get_metadata_routing", false]], "get_metadata_routing() (sklearn.discriminant_analysis.quadraticdiscriminantanalysis method)": [[547, "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.get_metadata_routing", false]], "get_metadata_routing() (sklearn.dummy.dummyclassifier method)": [[548, "sklearn.dummy.DummyClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.dummy.dummyregressor method)": [[549, "sklearn.dummy.DummyRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.adaboostregressor method)": [[551, "sklearn.ensemble.AdaBoostRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.baggingclassifier method)": [[552, "sklearn.ensemble.BaggingClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.baggingregressor method)": [[553, "sklearn.ensemble.BaggingRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.extratreesclassifier method)": [[554, "sklearn.ensemble.ExtraTreesClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.extratreesregressor method)": [[555, "sklearn.ensemble.ExtraTreesRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.gradientboostingregressor method)": [[557, "sklearn.ensemble.GradientBoostingRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.histgradientboostingclassifier method)": [[558, "sklearn.ensemble.HistGradientBoostingClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.histgradientboostingregressor method)": [[559, "sklearn.ensemble.HistGradientBoostingRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.isolationforest method)": [[560, "sklearn.ensemble.IsolationForest.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.randomforestclassifier method)": [[561, "sklearn.ensemble.RandomForestClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.randomforestregressor method)": [[562, "sklearn.ensemble.RandomForestRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.randomtreesembedding method)": [[563, "sklearn.ensemble.RandomTreesEmbedding.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.stackingclassifier method)": [[564, "sklearn.ensemble.StackingClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.stackingregressor method)": [[565, "sklearn.ensemble.StackingRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.votingclassifier method)": [[566, "sklearn.ensemble.VotingClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.ensemble.votingregressor method)": [[567, "sklearn.ensemble.VotingRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_extraction.dictvectorizer method)": [[579, "sklearn.feature_extraction.DictVectorizer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_extraction.featurehasher method)": [[580, "sklearn.feature_extraction.FeatureHasher.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_extraction.image.patchextractor method)": [[581, "sklearn.feature_extraction.image.PatchExtractor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_extraction.text.countvectorizer method)": [[586, "sklearn.feature_extraction.text.CountVectorizer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_extraction.text.hashingvectorizer method)": [[587, "sklearn.feature_extraction.text.HashingVectorizer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_extraction.text.tfidftransformer method)": [[588, "sklearn.feature_extraction.text.TfidfTransformer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_extraction.text.tfidfvectorizer method)": [[589, "sklearn.feature_extraction.text.TfidfVectorizer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_selection.genericunivariateselect method)": [[590, "sklearn.feature_selection.GenericUnivariateSelect.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_selection.selectfdr method)": [[593, "sklearn.feature_selection.SelectFdr.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_selection.selectfpr method)": [[594, "sklearn.feature_selection.SelectFpr.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_selection.selectfrommodel method)": [[595, "sklearn.feature_selection.SelectFromModel.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_selection.selectfwe method)": [[596, "sklearn.feature_selection.SelectFwe.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_selection.selectkbest method)": [[597, "sklearn.feature_selection.SelectKBest.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_selection.selectpercentile method)": [[598, "sklearn.feature_selection.SelectPercentile.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_selection.sequentialfeatureselector method)": [[600, "sklearn.feature_selection.SequentialFeatureSelector.get_metadata_routing", false]], "get_metadata_routing() (sklearn.feature_selection.variancethreshold method)": [[601, "sklearn.feature_selection.VarianceThreshold.get_metadata_routing", false]], "get_metadata_routing() (sklearn.frozen.frozenestimator method)": [[608, "sklearn.frozen.FrozenEstimator.get_metadata_routing", false]], "get_metadata_routing() (sklearn.gaussian_process.gaussianprocessclassifier method)": [[609, "sklearn.gaussian_process.GaussianProcessClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.gaussian_process.gaussianprocessregressor method)": [[610, "sklearn.gaussian_process.GaussianProcessRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.impute.iterativeimputer method)": [[626, "sklearn.impute.IterativeImputer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.impute.knnimputer method)": [[627, "sklearn.impute.KNNImputer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.impute.missingindicator method)": [[628, "sklearn.impute.MissingIndicator.get_metadata_routing", false]], "get_metadata_routing() (sklearn.impute.simpleimputer method)": [[629, "sklearn.impute.SimpleImputer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.isotonic.isotonicregression method)": [[634, "sklearn.isotonic.IsotonicRegression.get_metadata_routing", false]], "get_metadata_routing() (sklearn.kernel_approximation.additivechi2sampler method)": [[637, "sklearn.kernel_approximation.AdditiveChi2Sampler.get_metadata_routing", false]], "get_metadata_routing() (sklearn.kernel_approximation.nystroem method)": [[638, "sklearn.kernel_approximation.Nystroem.get_metadata_routing", false]], "get_metadata_routing() (sklearn.kernel_approximation.polynomialcountsketch method)": [[639, "sklearn.kernel_approximation.PolynomialCountSketch.get_metadata_routing", false]], "get_metadata_routing() (sklearn.kernel_approximation.rbfsampler method)": [[640, "sklearn.kernel_approximation.RBFSampler.get_metadata_routing", false]], "get_metadata_routing() (sklearn.kernel_approximation.skewedchi2sampler method)": [[641, "sklearn.kernel_approximation.SkewedChi2Sampler.get_metadata_routing", false]], "get_metadata_routing() (sklearn.kernel_ridge.kernelridge method)": [[642, "sklearn.kernel_ridge.KernelRidge.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.ardregression method)": [[643, "sklearn.linear_model.ARDRegression.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.bayesianridge method)": [[644, "sklearn.linear_model.BayesianRidge.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.elasticnet method)": [[645, "sklearn.linear_model.ElasticNet.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.elasticnetcv method)": [[646, "sklearn.linear_model.ElasticNetCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.gammaregressor method)": [[647, "sklearn.linear_model.GammaRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.huberregressor method)": [[648, "sklearn.linear_model.HuberRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.lars method)": [[649, "sklearn.linear_model.Lars.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.larscv method)": [[650, "sklearn.linear_model.LarsCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.lasso method)": [[651, "sklearn.linear_model.Lasso.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.lassocv method)": [[652, "sklearn.linear_model.LassoCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.lassolars method)": [[653, "sklearn.linear_model.LassoLars.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.lassolarscv method)": [[654, "sklearn.linear_model.LassoLarsCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.lassolarsic method)": [[655, "sklearn.linear_model.LassoLarsIC.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.linearregression method)": [[656, "sklearn.linear_model.LinearRegression.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.logisticregression method)": [[657, "sklearn.linear_model.LogisticRegression.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.logisticregressioncv method)": [[658, "sklearn.linear_model.LogisticRegressionCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.multitaskelasticnet method)": [[659, "sklearn.linear_model.MultiTaskElasticNet.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.multitaskelasticnetcv method)": [[660, "sklearn.linear_model.MultiTaskElasticNetCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.multitasklasso method)": [[661, "sklearn.linear_model.MultiTaskLasso.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.multitasklassocv method)": [[662, "sklearn.linear_model.MultiTaskLassoCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.orthogonalmatchingpursuit method)": [[663, "sklearn.linear_model.OrthogonalMatchingPursuit.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.orthogonalmatchingpursuitcv method)": [[664, "sklearn.linear_model.OrthogonalMatchingPursuitCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.passiveaggressiveclassifier method)": [[665, "sklearn.linear_model.PassiveAggressiveClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.passiveaggressiveregressor method)": [[666, "sklearn.linear_model.PassiveAggressiveRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.perceptron method)": [[667, "sklearn.linear_model.Perceptron.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.poissonregressor method)": [[668, "sklearn.linear_model.PoissonRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.quantileregressor method)": [[669, "sklearn.linear_model.QuantileRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.ransacregressor method)": [[670, "sklearn.linear_model.RANSACRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.ridge method)": [[671, "sklearn.linear_model.Ridge.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.ridgeclassifier method)": [[673, "sklearn.linear_model.RidgeClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.ridgeclassifiercv method)": [[674, "sklearn.linear_model.RidgeClassifierCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.ridgecv method)": [[672, "sklearn.linear_model.RidgeCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.sgdoneclasssvm method)": [[676, "sklearn.linear_model.SGDOneClassSVM.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.sgdregressor method)": [[677, "sklearn.linear_model.SGDRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.theilsenregressor method)": [[678, "sklearn.linear_model.TheilSenRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.linear_model.tweedieregressor method)": [[679, "sklearn.linear_model.TweedieRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.manifold.classicalmds method)": [[687, "sklearn.manifold.ClassicalMDS.get_metadata_routing", false]], "get_metadata_routing() (sklearn.manifold.isomap method)": [[688, "sklearn.manifold.Isomap.get_metadata_routing", false]], "get_metadata_routing() (sklearn.manifold.locallylinearembedding method)": [[689, "sklearn.manifold.LocallyLinearEmbedding.get_metadata_routing", false]], "get_metadata_routing() (sklearn.manifold.mds method)": [[690, "sklearn.manifold.MDS.get_metadata_routing", false]], "get_metadata_routing() (sklearn.manifold.spectralembedding method)": [[691, "sklearn.manifold.SpectralEmbedding.get_metadata_routing", false]], "get_metadata_routing() (sklearn.manifold.tsne method)": [[692, "sklearn.manifold.TSNE.get_metadata_routing", false]], "get_metadata_routing() (sklearn.mixture.bayesiangaussianmixture method)": [[798, "sklearn.mixture.BayesianGaussianMixture.get_metadata_routing", false]], "get_metadata_routing() (sklearn.mixture.gaussianmixture method)": [[799, "sklearn.mixture.GaussianMixture.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.fixedthresholdclassifier method)": [[800, "sklearn.model_selection.FixedThresholdClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.gridsearchcv method)": [[801, "sklearn.model_selection.GridSearchCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.groupkfold method)": [[802, "sklearn.model_selection.GroupKFold.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.groupshufflesplit method)": [[803, "sklearn.model_selection.GroupShuffleSplit.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.halvinggridsearchcv method)": [[804, "sklearn.model_selection.HalvingGridSearchCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.halvingrandomsearchcv method)": [[805, "sklearn.model_selection.HalvingRandomSearchCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.kfold method)": [[806, "sklearn.model_selection.KFold.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.leaveonegroupout method)": [[808, "sklearn.model_selection.LeaveOneGroupOut.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.leaveoneout method)": [[809, "sklearn.model_selection.LeaveOneOut.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.leavepgroupsout method)": [[810, "sklearn.model_selection.LeavePGroupsOut.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.leavepout method)": [[811, "sklearn.model_selection.LeavePOut.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.predefinedsplit method)": [[814, "sklearn.model_selection.PredefinedSplit.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.randomizedsearchcv method)": [[815, "sklearn.model_selection.RandomizedSearchCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.repeatedkfold method)": [[816, "sklearn.model_selection.RepeatedKFold.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.repeatedstratifiedkfold method)": [[817, "sklearn.model_selection.RepeatedStratifiedKFold.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.shufflesplit method)": [[818, "sklearn.model_selection.ShuffleSplit.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.stratifiedgroupkfold method)": [[819, "sklearn.model_selection.StratifiedGroupKFold.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.stratifiedkfold method)": [[820, "sklearn.model_selection.StratifiedKFold.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.stratifiedshufflesplit method)": [[821, "sklearn.model_selection.StratifiedShuffleSplit.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.timeseriessplit method)": [[822, "sklearn.model_selection.TimeSeriesSplit.get_metadata_routing", false]], "get_metadata_routing() (sklearn.model_selection.tunedthresholdclassifiercv method)": [[823, "sklearn.model_selection.TunedThresholdClassifierCV.get_metadata_routing", false]], "get_metadata_routing() (sklearn.multiclass.onevsoneclassifier method)": [[833, "sklearn.multiclass.OneVsOneClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.multiclass.onevsrestclassifier method)": [[834, "sklearn.multiclass.OneVsRestClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.multiclass.outputcodeclassifier method)": [[835, "sklearn.multiclass.OutputCodeClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.multioutput.classifierchain method)": [[836, "sklearn.multioutput.ClassifierChain.get_metadata_routing", false]], "get_metadata_routing() (sklearn.multioutput.multioutputclassifier method)": [[837, "sklearn.multioutput.MultiOutputClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.multioutput.multioutputregressor method)": [[838, "sklearn.multioutput.MultiOutputRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.multioutput.regressorchain method)": [[839, "sklearn.multioutput.RegressorChain.get_metadata_routing", false]], "get_metadata_routing() (sklearn.naive_bayes.bernoullinb method)": [[840, "sklearn.naive_bayes.BernoulliNB.get_metadata_routing", false]], "get_metadata_routing() (sklearn.naive_bayes.categoricalnb method)": [[841, "sklearn.naive_bayes.CategoricalNB.get_metadata_routing", false]], "get_metadata_routing() (sklearn.naive_bayes.complementnb method)": [[842, "sklearn.naive_bayes.ComplementNB.get_metadata_routing", false]], "get_metadata_routing() (sklearn.naive_bayes.gaussiannb method)": [[843, "sklearn.naive_bayes.GaussianNB.get_metadata_routing", false]], "get_metadata_routing() (sklearn.naive_bayes.multinomialnb method)": [[844, "sklearn.naive_bayes.MultinomialNB.get_metadata_routing", false]], "get_metadata_routing() (sklearn.neighbors.kerneldensity method)": [[850, "sklearn.neighbors.KernelDensity.get_metadata_routing", false]], "get_metadata_routing() (sklearn.neighbors.kneighborsclassifier method)": [[847, "sklearn.neighbors.KNeighborsClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.neighbors.kneighborsregressor method)": [[848, "sklearn.neighbors.KNeighborsRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.neighbors.kneighborstransformer method)": [[849, "sklearn.neighbors.KNeighborsTransformer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.neighbors.localoutlierfactor method)": [[851, "sklearn.neighbors.LocalOutlierFactor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.neighbors.nearestcentroid method)": [[852, "sklearn.neighbors.NearestCentroid.get_metadata_routing", false]], "get_metadata_routing() (sklearn.neighbors.nearestneighbors method)": [[853, "sklearn.neighbors.NearestNeighbors.get_metadata_routing", false]], "get_metadata_routing() (sklearn.neighbors.neighborhoodcomponentsanalysis method)": [[854, "sklearn.neighbors.NeighborhoodComponentsAnalysis.get_metadata_routing", false]], "get_metadata_routing() (sklearn.neighbors.radiusneighborsclassifier method)": [[855, "sklearn.neighbors.RadiusNeighborsClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.neighbors.radiusneighborsregressor method)": [[856, "sklearn.neighbors.RadiusNeighborsRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.neighbors.radiusneighborstransformer method)": [[857, "sklearn.neighbors.RadiusNeighborsTransformer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.neural_network.bernoullirbm method)": [[861, "sklearn.neural_network.BernoulliRBM.get_metadata_routing", false]], "get_metadata_routing() (sklearn.neural_network.mlpclassifier method)": [[862, "sklearn.neural_network.MLPClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.neural_network.mlpregressor method)": [[863, "sklearn.neural_network.MLPRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.pipeline.featureunion method)": [[864, "sklearn.pipeline.FeatureUnion.get_metadata_routing", false]], "get_metadata_routing() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.binarizer method)": [[868, "sklearn.preprocessing.Binarizer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.functiontransformer method)": [[869, "sklearn.preprocessing.FunctionTransformer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.kbinsdiscretizer method)": [[870, "sklearn.preprocessing.KBinsDiscretizer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.kernelcenterer method)": [[871, "sklearn.preprocessing.KernelCenterer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.labelbinarizer method)": [[872, "sklearn.preprocessing.LabelBinarizer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.labelencoder method)": [[873, "sklearn.preprocessing.LabelEncoder.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.maxabsscaler method)": [[874, "sklearn.preprocessing.MaxAbsScaler.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.minmaxscaler method)": [[875, "sklearn.preprocessing.MinMaxScaler.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.multilabelbinarizer method)": [[876, "sklearn.preprocessing.MultiLabelBinarizer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.normalizer method)": [[877, "sklearn.preprocessing.Normalizer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.onehotencoder method)": [[878, "sklearn.preprocessing.OneHotEncoder.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.ordinalencoder method)": [[879, "sklearn.preprocessing.OrdinalEncoder.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.polynomialfeatures method)": [[880, "sklearn.preprocessing.PolynomialFeatures.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.powertransformer method)": [[881, "sklearn.preprocessing.PowerTransformer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.quantiletransformer method)": [[882, "sklearn.preprocessing.QuantileTransformer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.robustscaler method)": [[883, "sklearn.preprocessing.RobustScaler.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.splinetransformer method)": [[884, "sklearn.preprocessing.SplineTransformer.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.standardscaler method)": [[885, "sklearn.preprocessing.StandardScaler.get_metadata_routing", false]], "get_metadata_routing() (sklearn.preprocessing.targetencoder method)": [[886, "sklearn.preprocessing.TargetEncoder.get_metadata_routing", false]], "get_metadata_routing() (sklearn.random_projection.gaussianrandomprojection method)": [[897, "sklearn.random_projection.GaussianRandomProjection.get_metadata_routing", false]], "get_metadata_routing() (sklearn.random_projection.sparserandomprojection method)": [[898, "sklearn.random_projection.SparseRandomProjection.get_metadata_routing", false]], "get_metadata_routing() (sklearn.semi_supervised.labelpropagation method)": [[900, "sklearn.semi_supervised.LabelPropagation.get_metadata_routing", false]], "get_metadata_routing() (sklearn.semi_supervised.labelspreading method)": [[901, "sklearn.semi_supervised.LabelSpreading.get_metadata_routing", false]], "get_metadata_routing() (sklearn.semi_supervised.selftrainingclassifier method)": [[902, "sklearn.semi_supervised.SelfTrainingClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.svm.linearsvc method)": [[905, "sklearn.svm.LinearSVC.get_metadata_routing", false]], "get_metadata_routing() (sklearn.svm.linearsvr method)": [[906, "sklearn.svm.LinearSVR.get_metadata_routing", false]], "get_metadata_routing() (sklearn.svm.nusvc method)": [[907, "sklearn.svm.NuSVC.get_metadata_routing", false]], "get_metadata_routing() (sklearn.svm.nusvr method)": [[908, "sklearn.svm.NuSVR.get_metadata_routing", false]], "get_metadata_routing() (sklearn.svm.oneclasssvm method)": [[909, "sklearn.svm.OneClassSVM.get_metadata_routing", false]], "get_metadata_routing() (sklearn.svm.svc method)": [[910, "sklearn.svm.SVC.get_metadata_routing", false]], "get_metadata_routing() (sklearn.svm.svr method)": [[911, "sklearn.svm.SVR.get_metadata_routing", false]], "get_metadata_routing() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.tree.decisiontreeregressor method)": [[914, "sklearn.tree.DecisionTreeRegressor.get_metadata_routing", false]], "get_metadata_routing() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.get_metadata_routing", false]], "get_metadata_routing() (sklearn.tree.extratreeregressor method)": [[916, "sklearn.tree.ExtraTreeRegressor.get_metadata_routing", false]], "get_metric() (sklearn.metrics.distancemetric class method)": [[699, "sklearn.metrics.DistanceMetric.get_metric", false]], "get_n_calls() (sklearn.neighbors.balltree method)": [[845, "sklearn.neighbors.BallTree.get_n_calls", false]], "get_n_calls() (sklearn.neighbors.kdtree method)": [[846, "sklearn.neighbors.KDTree.get_n_calls", false]], "get_n_leaves() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.get_n_leaves", false]], "get_n_leaves() (sklearn.tree.decisiontreeregressor method)": [[914, "sklearn.tree.DecisionTreeRegressor.get_n_leaves", false]], "get_n_leaves() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.get_n_leaves", false]], "get_n_leaves() (sklearn.tree.extratreeregressor method)": [[916, "sklearn.tree.ExtraTreeRegressor.get_n_leaves", false]], "get_n_splits": [[385, "term-get_n_splits", true]], "get_n_splits() (sklearn.model_selection.groupkfold method)": [[802, "sklearn.model_selection.GroupKFold.get_n_splits", false]], "get_n_splits() (sklearn.model_selection.groupshufflesplit method)": [[803, "sklearn.model_selection.GroupShuffleSplit.get_n_splits", false]], "get_n_splits() (sklearn.model_selection.kfold method)": [[806, "sklearn.model_selection.KFold.get_n_splits", false]], "get_n_splits() (sklearn.model_selection.leaveonegroupout method)": [[808, "sklearn.model_selection.LeaveOneGroupOut.get_n_splits", false]], "get_n_splits() (sklearn.model_selection.leaveoneout method)": [[809, "sklearn.model_selection.LeaveOneOut.get_n_splits", false]], "get_n_splits() (sklearn.model_selection.leavepgroupsout method)": [[810, "sklearn.model_selection.LeavePGroupsOut.get_n_splits", false]], "get_n_splits() (sklearn.model_selection.leavepout method)": [[811, "sklearn.model_selection.LeavePOut.get_n_splits", false]], "get_n_splits() (sklearn.model_selection.predefinedsplit method)": [[814, "sklearn.model_selection.PredefinedSplit.get_n_splits", false]], "get_n_splits() (sklearn.model_selection.repeatedkfold method)": [[816, "sklearn.model_selection.RepeatedKFold.get_n_splits", false]], "get_n_splits() (sklearn.model_selection.repeatedstratifiedkfold method)": [[817, "sklearn.model_selection.RepeatedStratifiedKFold.get_n_splits", false]], "get_n_splits() (sklearn.model_selection.shufflesplit method)": [[818, "sklearn.model_selection.ShuffleSplit.get_n_splits", false]], "get_n_splits() (sklearn.model_selection.stratifiedgroupkfold method)": [[819, "sklearn.model_selection.StratifiedGroupKFold.get_n_splits", false]], "get_n_splits() (sklearn.model_selection.stratifiedkfold method)": [[820, "sklearn.model_selection.StratifiedKFold.get_n_splits", false]], "get_n_splits() (sklearn.model_selection.stratifiedshufflesplit method)": [[821, "sklearn.model_selection.StratifiedShuffleSplit.get_n_splits", false]], "get_n_splits() (sklearn.model_selection.timeseriessplit method)": [[822, "sklearn.model_selection.TimeSeriesSplit.get_n_splits", false]], "get_params": [[385, "term-get_params", true]], "get_params() (sklearn.base.baseestimator method)": [[417, "sklearn.base.BaseEstimator.get_params", false]], "get_params() (sklearn.calibration.calibratedclassifiercv method)": [[433, "sklearn.calibration.CalibratedClassifierCV.get_params", false]], "get_params() (sklearn.cluster.affinitypropagation method)": [[436, "sklearn.cluster.AffinityPropagation.get_params", false]], "get_params() (sklearn.cluster.agglomerativeclustering method)": [[437, "sklearn.cluster.AgglomerativeClustering.get_params", false]], "get_params() (sklearn.cluster.birch method)": [[438, "sklearn.cluster.Birch.get_params", false]], "get_params() (sklearn.cluster.bisectingkmeans method)": [[439, "sklearn.cluster.BisectingKMeans.get_params", false]], "get_params() (sklearn.cluster.dbscan method)": [[440, "sklearn.cluster.DBSCAN.get_params", false]], "get_params() (sklearn.cluster.featureagglomeration method)": [[441, "sklearn.cluster.FeatureAgglomeration.get_params", false]], "get_params() (sklearn.cluster.hdbscan method)": [[442, "sklearn.cluster.HDBSCAN.get_params", false]], "get_params() (sklearn.cluster.kmeans method)": [[443, "sklearn.cluster.KMeans.get_params", false]], "get_params() (sklearn.cluster.meanshift method)": [[444, "sklearn.cluster.MeanShift.get_params", false]], "get_params() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.get_params", false]], "get_params() (sklearn.cluster.optics method)": [[446, "sklearn.cluster.OPTICS.get_params", false]], "get_params() (sklearn.cluster.spectralbiclustering method)": [[447, "sklearn.cluster.SpectralBiclustering.get_params", false]], "get_params() (sklearn.cluster.spectralclustering method)": [[448, "sklearn.cluster.SpectralClustering.get_params", false]], "get_params() (sklearn.cluster.spectralcoclustering method)": [[449, "sklearn.cluster.SpectralCoclustering.get_params", false]], "get_params() (sklearn.compose.columntransformer method)": [[460, "sklearn.compose.ColumnTransformer.get_params", false]], "get_params() (sklearn.compose.transformedtargetregressor method)": [[461, "sklearn.compose.TransformedTargetRegressor.get_params", false]], "get_params() (sklearn.covariance.ellipticenvelope method)": [[465, "sklearn.covariance.EllipticEnvelope.get_params", false]], "get_params() (sklearn.covariance.empiricalcovariance method)": [[466, "sklearn.covariance.EmpiricalCovariance.get_params", false]], "get_params() (sklearn.covariance.graphicallasso method)": [[467, "sklearn.covariance.GraphicalLasso.get_params", false]], "get_params() (sklearn.covariance.graphicallassocv method)": [[468, "sklearn.covariance.GraphicalLassoCV.get_params", false]], "get_params() (sklearn.covariance.ledoitwolf method)": [[469, "sklearn.covariance.LedoitWolf.get_params", false]], "get_params() (sklearn.covariance.mincovdet method)": [[470, "sklearn.covariance.MinCovDet.get_params", false]], "get_params() (sklearn.covariance.oas method)": [[471, "sklearn.covariance.OAS.get_params", false]], "get_params() (sklearn.covariance.shrunkcovariance method)": [[472, "sklearn.covariance.ShrunkCovariance.get_params", false]], "get_params() (sklearn.cross_decomposition.cca method)": [[478, "sklearn.cross_decomposition.CCA.get_params", false]], "get_params() (sklearn.cross_decomposition.plscanonical method)": [[479, "sklearn.cross_decomposition.PLSCanonical.get_params", false]], "get_params() (sklearn.cross_decomposition.plsregression method)": [[480, "sklearn.cross_decomposition.PLSRegression.get_params", false]], "get_params() (sklearn.cross_decomposition.plssvd method)": [[481, "sklearn.cross_decomposition.PLSSVD.get_params", false]], "get_params() (sklearn.decomposition.dictionarylearning method)": [[528, "sklearn.decomposition.DictionaryLearning.get_params", false]], "get_params() (sklearn.decomposition.factoranalysis method)": [[529, "sklearn.decomposition.FactorAnalysis.get_params", false]], "get_params() (sklearn.decomposition.fastica method)": [[530, "sklearn.decomposition.FastICA.get_params", false]], "get_params() (sklearn.decomposition.incrementalpca method)": [[531, "sklearn.decomposition.IncrementalPCA.get_params", false]], "get_params() (sklearn.decomposition.kernelpca method)": [[532, "sklearn.decomposition.KernelPCA.get_params", false]], "get_params() (sklearn.decomposition.latentdirichletallocation method)": [[533, "sklearn.decomposition.LatentDirichletAllocation.get_params", false]], "get_params() (sklearn.decomposition.minibatchdictionarylearning method)": [[534, "sklearn.decomposition.MiniBatchDictionaryLearning.get_params", false]], "get_params() (sklearn.decomposition.minibatchnmf method)": [[535, "sklearn.decomposition.MiniBatchNMF.get_params", false]], "get_params() (sklearn.decomposition.minibatchsparsepca method)": [[536, "sklearn.decomposition.MiniBatchSparsePCA.get_params", false]], "get_params() (sklearn.decomposition.nmf method)": [[537, "sklearn.decomposition.NMF.get_params", false]], "get_params() (sklearn.decomposition.pca method)": [[538, "sklearn.decomposition.PCA.get_params", false]], "get_params() (sklearn.decomposition.sparsecoder method)": [[539, "sklearn.decomposition.SparseCoder.get_params", false]], "get_params() (sklearn.decomposition.sparsepca method)": [[540, "sklearn.decomposition.SparsePCA.get_params", false]], "get_params() (sklearn.decomposition.truncatedsvd method)": [[541, "sklearn.decomposition.TruncatedSVD.get_params", false]], "get_params() (sklearn.discriminant_analysis.lineardiscriminantanalysis method)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis.get_params", false]], "get_params() (sklearn.discriminant_analysis.quadraticdiscriminantanalysis method)": [[547, "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.get_params", false]], "get_params() (sklearn.dummy.dummyclassifier method)": [[548, "sklearn.dummy.DummyClassifier.get_params", false]], "get_params() (sklearn.dummy.dummyregressor method)": [[549, "sklearn.dummy.DummyRegressor.get_params", false]], "get_params() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.get_params", false]], "get_params() (sklearn.ensemble.adaboostregressor method)": [[551, "sklearn.ensemble.AdaBoostRegressor.get_params", false]], "get_params() (sklearn.ensemble.baggingclassifier method)": [[552, "sklearn.ensemble.BaggingClassifier.get_params", false]], "get_params() (sklearn.ensemble.baggingregressor method)": [[553, "sklearn.ensemble.BaggingRegressor.get_params", false]], "get_params() (sklearn.ensemble.extratreesclassifier method)": [[554, "sklearn.ensemble.ExtraTreesClassifier.get_params", false]], "get_params() (sklearn.ensemble.extratreesregressor method)": [[555, "sklearn.ensemble.ExtraTreesRegressor.get_params", false]], "get_params() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.get_params", false]], "get_params() (sklearn.ensemble.gradientboostingregressor method)": [[557, "sklearn.ensemble.GradientBoostingRegressor.get_params", false]], "get_params() (sklearn.ensemble.histgradientboostingclassifier method)": [[558, "sklearn.ensemble.HistGradientBoostingClassifier.get_params", false]], "get_params() (sklearn.ensemble.histgradientboostingregressor method)": [[559, "sklearn.ensemble.HistGradientBoostingRegressor.get_params", false]], "get_params() (sklearn.ensemble.isolationforest method)": [[560, "sklearn.ensemble.IsolationForest.get_params", false]], "get_params() (sklearn.ensemble.randomforestclassifier method)": [[561, "sklearn.ensemble.RandomForestClassifier.get_params", false]], "get_params() (sklearn.ensemble.randomforestregressor method)": [[562, "sklearn.ensemble.RandomForestRegressor.get_params", false]], "get_params() (sklearn.ensemble.randomtreesembedding method)": [[563, "sklearn.ensemble.RandomTreesEmbedding.get_params", false]], "get_params() (sklearn.ensemble.stackingclassifier method)": [[564, "sklearn.ensemble.StackingClassifier.get_params", false]], "get_params() (sklearn.ensemble.stackingregressor method)": [[565, "sklearn.ensemble.StackingRegressor.get_params", false]], "get_params() (sklearn.ensemble.votingclassifier method)": [[566, "sklearn.ensemble.VotingClassifier.get_params", false]], "get_params() (sklearn.ensemble.votingregressor method)": [[567, "sklearn.ensemble.VotingRegressor.get_params", false]], "get_params() (sklearn.feature_extraction.dictvectorizer method)": [[579, "sklearn.feature_extraction.DictVectorizer.get_params", false]], "get_params() (sklearn.feature_extraction.featurehasher method)": [[580, "sklearn.feature_extraction.FeatureHasher.get_params", false]], "get_params() (sklearn.feature_extraction.image.patchextractor method)": [[581, "sklearn.feature_extraction.image.PatchExtractor.get_params", false]], "get_params() (sklearn.feature_extraction.text.countvectorizer method)": [[586, "sklearn.feature_extraction.text.CountVectorizer.get_params", false]], "get_params() (sklearn.feature_extraction.text.hashingvectorizer method)": [[587, "sklearn.feature_extraction.text.HashingVectorizer.get_params", false]], "get_params() (sklearn.feature_extraction.text.tfidftransformer method)": [[588, "sklearn.feature_extraction.text.TfidfTransformer.get_params", false]], "get_params() (sklearn.feature_extraction.text.tfidfvectorizer method)": [[589, "sklearn.feature_extraction.text.TfidfVectorizer.get_params", false]], "get_params() (sklearn.feature_selection.genericunivariateselect method)": [[590, "sklearn.feature_selection.GenericUnivariateSelect.get_params", false]], "get_params() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.get_params", false]], "get_params() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.get_params", false]], "get_params() (sklearn.feature_selection.selectfdr method)": [[593, "sklearn.feature_selection.SelectFdr.get_params", false]], "get_params() (sklearn.feature_selection.selectfpr method)": [[594, "sklearn.feature_selection.SelectFpr.get_params", false]], "get_params() (sklearn.feature_selection.selectfrommodel method)": [[595, "sklearn.feature_selection.SelectFromModel.get_params", false]], "get_params() (sklearn.feature_selection.selectfwe method)": [[596, "sklearn.feature_selection.SelectFwe.get_params", false]], "get_params() (sklearn.feature_selection.selectkbest method)": [[597, "sklearn.feature_selection.SelectKBest.get_params", false]], "get_params() (sklearn.feature_selection.selectpercentile method)": [[598, "sklearn.feature_selection.SelectPercentile.get_params", false]], "get_params() (sklearn.feature_selection.sequentialfeatureselector method)": [[600, "sklearn.feature_selection.SequentialFeatureSelector.get_params", false]], "get_params() (sklearn.feature_selection.variancethreshold method)": [[601, "sklearn.feature_selection.VarianceThreshold.get_params", false]], "get_params() (sklearn.frozen.frozenestimator method)": [[608, "sklearn.frozen.FrozenEstimator.get_params", false]], "get_params() (sklearn.gaussian_process.gaussianprocessclassifier method)": [[609, "sklearn.gaussian_process.GaussianProcessClassifier.get_params", false]], "get_params() (sklearn.gaussian_process.gaussianprocessregressor method)": [[610, "sklearn.gaussian_process.GaussianProcessRegressor.get_params", false]], "get_params() (sklearn.gaussian_process.kernels.compoundkernel method)": [[611, "sklearn.gaussian_process.kernels.CompoundKernel.get_params", false]], "get_params() (sklearn.gaussian_process.kernels.constantkernel method)": [[612, "sklearn.gaussian_process.kernels.ConstantKernel.get_params", false]], "get_params() (sklearn.gaussian_process.kernels.dotproduct method)": [[613, "sklearn.gaussian_process.kernels.DotProduct.get_params", false]], "get_params() (sklearn.gaussian_process.kernels.exponentiation method)": [[615, "sklearn.gaussian_process.kernels.Exponentiation.get_params", false]], "get_params() (sklearn.gaussian_process.kernels.expsinesquared method)": [[614, "sklearn.gaussian_process.kernels.ExpSineSquared.get_params", false]], "get_params() (sklearn.gaussian_process.kernels.kernel method)": [[617, "sklearn.gaussian_process.kernels.Kernel.get_params", false]], "get_params() (sklearn.gaussian_process.kernels.matern method)": [[618, "sklearn.gaussian_process.kernels.Matern.get_params", false]], "get_params() (sklearn.gaussian_process.kernels.pairwisekernel method)": [[619, "sklearn.gaussian_process.kernels.PairwiseKernel.get_params", false]], "get_params() (sklearn.gaussian_process.kernels.product method)": [[620, "sklearn.gaussian_process.kernels.Product.get_params", false]], "get_params() (sklearn.gaussian_process.kernels.rationalquadratic method)": [[622, "sklearn.gaussian_process.kernels.RationalQuadratic.get_params", false]], "get_params() (sklearn.gaussian_process.kernels.rbf method)": [[621, "sklearn.gaussian_process.kernels.RBF.get_params", false]], "get_params() (sklearn.gaussian_process.kernels.sum method)": [[623, "sklearn.gaussian_process.kernels.Sum.get_params", false]], "get_params() (sklearn.gaussian_process.kernels.whitekernel method)": [[624, "sklearn.gaussian_process.kernels.WhiteKernel.get_params", false]], "get_params() (sklearn.impute.iterativeimputer method)": [[626, "sklearn.impute.IterativeImputer.get_params", false]], "get_params() (sklearn.impute.knnimputer method)": [[627, "sklearn.impute.KNNImputer.get_params", false]], "get_params() (sklearn.impute.missingindicator method)": [[628, "sklearn.impute.MissingIndicator.get_params", false]], "get_params() (sklearn.impute.simpleimputer method)": [[629, "sklearn.impute.SimpleImputer.get_params", false]], "get_params() (sklearn.isotonic.isotonicregression method)": [[634, "sklearn.isotonic.IsotonicRegression.get_params", false]], "get_params() (sklearn.kernel_approximation.additivechi2sampler method)": [[637, "sklearn.kernel_approximation.AdditiveChi2Sampler.get_params", false]], "get_params() (sklearn.kernel_approximation.nystroem method)": [[638, "sklearn.kernel_approximation.Nystroem.get_params", false]], "get_params() (sklearn.kernel_approximation.polynomialcountsketch method)": [[639, "sklearn.kernel_approximation.PolynomialCountSketch.get_params", false]], "get_params() (sklearn.kernel_approximation.rbfsampler method)": [[640, "sklearn.kernel_approximation.RBFSampler.get_params", false]], "get_params() (sklearn.kernel_approximation.skewedchi2sampler method)": [[641, "sklearn.kernel_approximation.SkewedChi2Sampler.get_params", false]], "get_params() (sklearn.kernel_ridge.kernelridge method)": [[642, "sklearn.kernel_ridge.KernelRidge.get_params", false]], "get_params() (sklearn.linear_model.ardregression method)": [[643, "sklearn.linear_model.ARDRegression.get_params", false]], "get_params() (sklearn.linear_model.bayesianridge method)": [[644, "sklearn.linear_model.BayesianRidge.get_params", false]], "get_params() (sklearn.linear_model.elasticnet method)": [[645, "sklearn.linear_model.ElasticNet.get_params", false]], "get_params() (sklearn.linear_model.elasticnetcv method)": [[646, "sklearn.linear_model.ElasticNetCV.get_params", false]], "get_params() (sklearn.linear_model.gammaregressor method)": [[647, "sklearn.linear_model.GammaRegressor.get_params", false]], "get_params() (sklearn.linear_model.huberregressor method)": [[648, "sklearn.linear_model.HuberRegressor.get_params", false]], "get_params() (sklearn.linear_model.lars method)": [[649, "sklearn.linear_model.Lars.get_params", false]], "get_params() (sklearn.linear_model.larscv method)": [[650, "sklearn.linear_model.LarsCV.get_params", false]], "get_params() (sklearn.linear_model.lasso method)": [[651, "sklearn.linear_model.Lasso.get_params", false]], "get_params() (sklearn.linear_model.lassocv method)": [[652, "sklearn.linear_model.LassoCV.get_params", false]], "get_params() (sklearn.linear_model.lassolars method)": [[653, "sklearn.linear_model.LassoLars.get_params", false]], "get_params() (sklearn.linear_model.lassolarscv method)": [[654, "sklearn.linear_model.LassoLarsCV.get_params", false]], "get_params() (sklearn.linear_model.lassolarsic method)": [[655, "sklearn.linear_model.LassoLarsIC.get_params", false]], "get_params() (sklearn.linear_model.linearregression method)": [[656, "sklearn.linear_model.LinearRegression.get_params", false]], "get_params() (sklearn.linear_model.logisticregression method)": [[657, "sklearn.linear_model.LogisticRegression.get_params", false]], "get_params() (sklearn.linear_model.logisticregressioncv method)": [[658, "sklearn.linear_model.LogisticRegressionCV.get_params", false]], "get_params() (sklearn.linear_model.multitaskelasticnet method)": [[659, "sklearn.linear_model.MultiTaskElasticNet.get_params", false]], "get_params() (sklearn.linear_model.multitaskelasticnetcv method)": [[660, "sklearn.linear_model.MultiTaskElasticNetCV.get_params", false]], "get_params() (sklearn.linear_model.multitasklasso method)": [[661, "sklearn.linear_model.MultiTaskLasso.get_params", false]], "get_params() (sklearn.linear_model.multitasklassocv method)": [[662, "sklearn.linear_model.MultiTaskLassoCV.get_params", false]], "get_params() (sklearn.linear_model.orthogonalmatchingpursuit method)": [[663, "sklearn.linear_model.OrthogonalMatchingPursuit.get_params", false]], "get_params() (sklearn.linear_model.orthogonalmatchingpursuitcv method)": [[664, "sklearn.linear_model.OrthogonalMatchingPursuitCV.get_params", false]], "get_params() (sklearn.linear_model.passiveaggressiveclassifier method)": [[665, "sklearn.linear_model.PassiveAggressiveClassifier.get_params", false]], "get_params() (sklearn.linear_model.passiveaggressiveregressor method)": [[666, "sklearn.linear_model.PassiveAggressiveRegressor.get_params", false]], "get_params() (sklearn.linear_model.perceptron method)": [[667, "sklearn.linear_model.Perceptron.get_params", false]], "get_params() (sklearn.linear_model.poissonregressor method)": [[668, "sklearn.linear_model.PoissonRegressor.get_params", false]], "get_params() (sklearn.linear_model.quantileregressor method)": [[669, "sklearn.linear_model.QuantileRegressor.get_params", false]], "get_params() (sklearn.linear_model.ransacregressor method)": [[670, "sklearn.linear_model.RANSACRegressor.get_params", false]], "get_params() (sklearn.linear_model.ridge method)": [[671, "sklearn.linear_model.Ridge.get_params", false]], "get_params() (sklearn.linear_model.ridgeclassifier method)": [[673, "sklearn.linear_model.RidgeClassifier.get_params", false]], "get_params() (sklearn.linear_model.ridgeclassifiercv method)": [[674, "sklearn.linear_model.RidgeClassifierCV.get_params", false]], "get_params() (sklearn.linear_model.ridgecv method)": [[672, "sklearn.linear_model.RidgeCV.get_params", false]], "get_params() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.get_params", false]], "get_params() (sklearn.linear_model.sgdoneclasssvm method)": [[676, "sklearn.linear_model.SGDOneClassSVM.get_params", false]], "get_params() (sklearn.linear_model.sgdregressor method)": [[677, "sklearn.linear_model.SGDRegressor.get_params", false]], "get_params() (sklearn.linear_model.theilsenregressor method)": [[678, "sklearn.linear_model.TheilSenRegressor.get_params", false]], "get_params() (sklearn.linear_model.tweedieregressor method)": [[679, "sklearn.linear_model.TweedieRegressor.get_params", false]], "get_params() (sklearn.manifold.classicalmds method)": [[687, "sklearn.manifold.ClassicalMDS.get_params", false]], "get_params() (sklearn.manifold.isomap method)": [[688, "sklearn.manifold.Isomap.get_params", false]], "get_params() (sklearn.manifold.locallylinearembedding method)": [[689, "sklearn.manifold.LocallyLinearEmbedding.get_params", false]], "get_params() (sklearn.manifold.mds method)": [[690, "sklearn.manifold.MDS.get_params", false]], "get_params() (sklearn.manifold.spectralembedding method)": [[691, "sklearn.manifold.SpectralEmbedding.get_params", false]], "get_params() (sklearn.manifold.tsne method)": [[692, "sklearn.manifold.TSNE.get_params", false]], "get_params() (sklearn.mixture.bayesiangaussianmixture method)": [[798, "sklearn.mixture.BayesianGaussianMixture.get_params", false]], "get_params() (sklearn.mixture.gaussianmixture method)": [[799, "sklearn.mixture.GaussianMixture.get_params", false]], "get_params() (sklearn.model_selection.fixedthresholdclassifier method)": [[800, "sklearn.model_selection.FixedThresholdClassifier.get_params", false]], "get_params() (sklearn.model_selection.gridsearchcv method)": [[801, "sklearn.model_selection.GridSearchCV.get_params", false]], "get_params() (sklearn.model_selection.halvinggridsearchcv method)": [[804, "sklearn.model_selection.HalvingGridSearchCV.get_params", false]], "get_params() (sklearn.model_selection.halvingrandomsearchcv method)": [[805, "sklearn.model_selection.HalvingRandomSearchCV.get_params", false]], "get_params() (sklearn.model_selection.randomizedsearchcv method)": [[815, "sklearn.model_selection.RandomizedSearchCV.get_params", false]], "get_params() (sklearn.model_selection.tunedthresholdclassifiercv method)": [[823, "sklearn.model_selection.TunedThresholdClassifierCV.get_params", false]], "get_params() (sklearn.multiclass.onevsoneclassifier method)": [[833, "sklearn.multiclass.OneVsOneClassifier.get_params", false]], "get_params() (sklearn.multiclass.onevsrestclassifier method)": [[834, "sklearn.multiclass.OneVsRestClassifier.get_params", false]], "get_params() (sklearn.multiclass.outputcodeclassifier method)": [[835, "sklearn.multiclass.OutputCodeClassifier.get_params", false]], "get_params() (sklearn.multioutput.classifierchain method)": [[836, "sklearn.multioutput.ClassifierChain.get_params", false]], "get_params() (sklearn.multioutput.multioutputclassifier method)": [[837, "sklearn.multioutput.MultiOutputClassifier.get_params", false]], "get_params() (sklearn.multioutput.multioutputregressor method)": [[838, "sklearn.multioutput.MultiOutputRegressor.get_params", false]], "get_params() (sklearn.multioutput.regressorchain method)": [[839, "sklearn.multioutput.RegressorChain.get_params", false]], "get_params() (sklearn.naive_bayes.bernoullinb method)": [[840, "sklearn.naive_bayes.BernoulliNB.get_params", false]], "get_params() (sklearn.naive_bayes.categoricalnb method)": [[841, "sklearn.naive_bayes.CategoricalNB.get_params", false]], "get_params() (sklearn.naive_bayes.complementnb method)": [[842, "sklearn.naive_bayes.ComplementNB.get_params", false]], "get_params() (sklearn.naive_bayes.gaussiannb method)": [[843, "sklearn.naive_bayes.GaussianNB.get_params", false]], "get_params() (sklearn.naive_bayes.multinomialnb method)": [[844, "sklearn.naive_bayes.MultinomialNB.get_params", false]], "get_params() (sklearn.neighbors.kerneldensity method)": [[850, "sklearn.neighbors.KernelDensity.get_params", false]], "get_params() (sklearn.neighbors.kneighborsclassifier method)": [[847, "sklearn.neighbors.KNeighborsClassifier.get_params", false]], "get_params() (sklearn.neighbors.kneighborsregressor method)": [[848, "sklearn.neighbors.KNeighborsRegressor.get_params", false]], "get_params() (sklearn.neighbors.kneighborstransformer method)": [[849, "sklearn.neighbors.KNeighborsTransformer.get_params", false]], "get_params() (sklearn.neighbors.localoutlierfactor method)": [[851, "sklearn.neighbors.LocalOutlierFactor.get_params", false]], "get_params() (sklearn.neighbors.nearestcentroid method)": [[852, "sklearn.neighbors.NearestCentroid.get_params", false]], "get_params() (sklearn.neighbors.nearestneighbors method)": [[853, "sklearn.neighbors.NearestNeighbors.get_params", false]], "get_params() (sklearn.neighbors.neighborhoodcomponentsanalysis method)": [[854, "sklearn.neighbors.NeighborhoodComponentsAnalysis.get_params", false]], "get_params() (sklearn.neighbors.radiusneighborsclassifier method)": [[855, "sklearn.neighbors.RadiusNeighborsClassifier.get_params", false]], "get_params() (sklearn.neighbors.radiusneighborsregressor method)": [[856, "sklearn.neighbors.RadiusNeighborsRegressor.get_params", false]], "get_params() (sklearn.neighbors.radiusneighborstransformer method)": [[857, "sklearn.neighbors.RadiusNeighborsTransformer.get_params", false]], "get_params() (sklearn.neural_network.bernoullirbm method)": [[861, "sklearn.neural_network.BernoulliRBM.get_params", false]], "get_params() (sklearn.neural_network.mlpclassifier method)": [[862, "sklearn.neural_network.MLPClassifier.get_params", false]], "get_params() (sklearn.neural_network.mlpregressor method)": [[863, "sklearn.neural_network.MLPRegressor.get_params", false]], "get_params() (sklearn.pipeline.featureunion method)": [[864, "sklearn.pipeline.FeatureUnion.get_params", false]], "get_params() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.get_params", false]], "get_params() (sklearn.preprocessing.binarizer method)": [[868, "sklearn.preprocessing.Binarizer.get_params", false]], "get_params() (sklearn.preprocessing.functiontransformer method)": [[869, "sklearn.preprocessing.FunctionTransformer.get_params", false]], "get_params() (sklearn.preprocessing.kbinsdiscretizer method)": [[870, "sklearn.preprocessing.KBinsDiscretizer.get_params", false]], "get_params() (sklearn.preprocessing.kernelcenterer method)": [[871, "sklearn.preprocessing.KernelCenterer.get_params", false]], "get_params() (sklearn.preprocessing.labelbinarizer method)": [[872, "sklearn.preprocessing.LabelBinarizer.get_params", false]], "get_params() (sklearn.preprocessing.labelencoder method)": [[873, "sklearn.preprocessing.LabelEncoder.get_params", false]], "get_params() (sklearn.preprocessing.maxabsscaler method)": [[874, "sklearn.preprocessing.MaxAbsScaler.get_params", false]], "get_params() (sklearn.preprocessing.minmaxscaler method)": [[875, "sklearn.preprocessing.MinMaxScaler.get_params", false]], "get_params() (sklearn.preprocessing.multilabelbinarizer method)": [[876, "sklearn.preprocessing.MultiLabelBinarizer.get_params", false]], "get_params() (sklearn.preprocessing.normalizer method)": [[877, "sklearn.preprocessing.Normalizer.get_params", false]], "get_params() (sklearn.preprocessing.onehotencoder method)": [[878, "sklearn.preprocessing.OneHotEncoder.get_params", false]], "get_params() (sklearn.preprocessing.ordinalencoder method)": [[879, "sklearn.preprocessing.OrdinalEncoder.get_params", false]], "get_params() (sklearn.preprocessing.polynomialfeatures method)": [[880, "sklearn.preprocessing.PolynomialFeatures.get_params", false]], "get_params() (sklearn.preprocessing.powertransformer method)": [[881, "sklearn.preprocessing.PowerTransformer.get_params", false]], "get_params() (sklearn.preprocessing.quantiletransformer method)": [[882, "sklearn.preprocessing.QuantileTransformer.get_params", false]], "get_params() (sklearn.preprocessing.robustscaler method)": [[883, "sklearn.preprocessing.RobustScaler.get_params", false]], "get_params() (sklearn.preprocessing.splinetransformer method)": [[884, "sklearn.preprocessing.SplineTransformer.get_params", false]], "get_params() (sklearn.preprocessing.standardscaler method)": [[885, "sklearn.preprocessing.StandardScaler.get_params", false]], "get_params() (sklearn.preprocessing.targetencoder method)": [[886, "sklearn.preprocessing.TargetEncoder.get_params", false]], "get_params() (sklearn.random_projection.gaussianrandomprojection method)": [[897, "sklearn.random_projection.GaussianRandomProjection.get_params", false]], "get_params() (sklearn.random_projection.sparserandomprojection method)": [[898, "sklearn.random_projection.SparseRandomProjection.get_params", false]], "get_params() (sklearn.semi_supervised.labelpropagation method)": [[900, "sklearn.semi_supervised.LabelPropagation.get_params", false]], "get_params() (sklearn.semi_supervised.labelspreading method)": [[901, "sklearn.semi_supervised.LabelSpreading.get_params", false]], "get_params() (sklearn.semi_supervised.selftrainingclassifier method)": [[902, "sklearn.semi_supervised.SelfTrainingClassifier.get_params", false]], "get_params() (sklearn.svm.linearsvc method)": [[905, "sklearn.svm.LinearSVC.get_params", false]], "get_params() (sklearn.svm.linearsvr method)": [[906, "sklearn.svm.LinearSVR.get_params", false]], "get_params() (sklearn.svm.nusvc method)": [[907, "sklearn.svm.NuSVC.get_params", false]], "get_params() (sklearn.svm.nusvr method)": [[908, "sklearn.svm.NuSVR.get_params", false]], "get_params() (sklearn.svm.oneclasssvm method)": [[909, "sklearn.svm.OneClassSVM.get_params", false]], "get_params() (sklearn.svm.svc method)": [[910, "sklearn.svm.SVC.get_params", false]], "get_params() (sklearn.svm.svr method)": [[911, "sklearn.svm.SVR.get_params", false]], "get_params() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.get_params", false]], "get_params() (sklearn.tree.decisiontreeregressor method)": [[914, "sklearn.tree.DecisionTreeRegressor.get_params", false]], "get_params() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.get_params", false]], "get_params() (sklearn.tree.extratreeregressor method)": [[916, "sklearn.tree.ExtraTreeRegressor.get_params", false]], "get_precision() (sklearn.covariance.ellipticenvelope method)": [[465, "sklearn.covariance.EllipticEnvelope.get_precision", false]], "get_precision() (sklearn.covariance.empiricalcovariance method)": [[466, "sklearn.covariance.EmpiricalCovariance.get_precision", false]], "get_precision() (sklearn.covariance.graphicallasso method)": [[467, "sklearn.covariance.GraphicalLasso.get_precision", false]], "get_precision() (sklearn.covariance.graphicallassocv method)": [[468, "sklearn.covariance.GraphicalLassoCV.get_precision", false]], "get_precision() (sklearn.covariance.ledoitwolf method)": [[469, "sklearn.covariance.LedoitWolf.get_precision", false]], "get_precision() (sklearn.covariance.mincovdet method)": [[470, "sklearn.covariance.MinCovDet.get_precision", false]], "get_precision() (sklearn.covariance.oas method)": [[471, "sklearn.covariance.OAS.get_precision", false]], "get_precision() (sklearn.covariance.shrunkcovariance method)": [[472, "sklearn.covariance.ShrunkCovariance.get_precision", false]], "get_precision() (sklearn.decomposition.factoranalysis method)": [[529, "sklearn.decomposition.FactorAnalysis.get_precision", false]], "get_precision() (sklearn.decomposition.incrementalpca method)": [[531, "sklearn.decomposition.IncrementalPCA.get_precision", false]], "get_precision() (sklearn.decomposition.pca method)": [[538, "sklearn.decomposition.PCA.get_precision", false]], "get_routing_for_object() (in module sklearn.utils.metadata_routing)": [[960, "sklearn.utils.metadata_routing.get_routing_for_object", false]], "get_scorer() (in module sklearn.metrics)": [[733, "sklearn.metrics.get_scorer", false]], "get_scorer_names() (in module sklearn.metrics)": [[734, "sklearn.metrics.get_scorer_names", false]], "get_shape() (sklearn.base.biclustermixin method)": [[418, "sklearn.base.BiclusterMixin.get_shape", false]], "get_shape() (sklearn.cluster.spectralbiclustering method)": [[447, "sklearn.cluster.SpectralBiclustering.get_shape", false]], "get_shape() (sklearn.cluster.spectralcoclustering method)": [[449, "sklearn.cluster.SpectralCoclustering.get_shape", false]], "get_stop_words() (sklearn.feature_extraction.text.countvectorizer method)": [[586, "sklearn.feature_extraction.text.CountVectorizer.get_stop_words", false]], "get_stop_words() (sklearn.feature_extraction.text.hashingvectorizer method)": [[587, "sklearn.feature_extraction.text.HashingVectorizer.get_stop_words", false]], "get_stop_words() (sklearn.feature_extraction.text.tfidfvectorizer method)": [[589, "sklearn.feature_extraction.text.TfidfVectorizer.get_stop_words", false]], "get_submatrix() (sklearn.base.biclustermixin method)": [[418, "sklearn.base.BiclusterMixin.get_submatrix", false]], "get_submatrix() (sklearn.cluster.spectralbiclustering method)": [[447, "sklearn.cluster.SpectralBiclustering.get_submatrix", false]], "get_submatrix() (sklearn.cluster.spectralcoclustering method)": [[449, "sklearn.cluster.SpectralCoclustering.get_submatrix", false]], "get_support() (sklearn.feature_selection.genericunivariateselect method)": [[590, "sklearn.feature_selection.GenericUnivariateSelect.get_support", false]], "get_support() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.get_support", false]], "get_support() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.get_support", false]], "get_support() (sklearn.feature_selection.selectfdr method)": [[593, "sklearn.feature_selection.SelectFdr.get_support", false]], "get_support() (sklearn.feature_selection.selectfpr method)": [[594, "sklearn.feature_selection.SelectFpr.get_support", false]], "get_support() (sklearn.feature_selection.selectfrommodel method)": [[595, "sklearn.feature_selection.SelectFromModel.get_support", false]], "get_support() (sklearn.feature_selection.selectfwe method)": [[596, "sklearn.feature_selection.SelectFwe.get_support", false]], "get_support() (sklearn.feature_selection.selectkbest method)": [[597, "sklearn.feature_selection.SelectKBest.get_support", false]], "get_support() (sklearn.feature_selection.selectormixin method)": [[599, "sklearn.feature_selection.SelectorMixin.get_support", false]], "get_support() (sklearn.feature_selection.selectpercentile method)": [[598, "sklearn.feature_selection.SelectPercentile.get_support", false]], "get_support() (sklearn.feature_selection.sequentialfeatureselector method)": [[600, "sklearn.feature_selection.SequentialFeatureSelector.get_support", false]], "get_support() (sklearn.feature_selection.variancethreshold method)": [[601, "sklearn.feature_selection.VarianceThreshold.get_support", false]], "get_tags() (in module sklearn.utils)": [[954, "sklearn.utils.get_tags", false]], "get_tree_stats() (sklearn.neighbors.balltree method)": [[845, "sklearn.neighbors.BallTree.get_tree_stats", false]], "get_tree_stats() (sklearn.neighbors.kdtree method)": [[846, "sklearn.neighbors.KDTree.get_tree_stats", false]], "gibbs() (sklearn.neural_network.bernoullirbm method)": [[861, "sklearn.neural_network.BernoulliRBM.gibbs", false]], "gradientboostingclassifier (class in sklearn.ensemble)": [[556, "sklearn.ensemble.GradientBoostingClassifier", false]], "gradientboostingregressor (class in sklearn.ensemble)": [[557, "sklearn.ensemble.GradientBoostingRegressor", false]], "graphical_lasso() (in module sklearn.covariance)": [[474, "sklearn.covariance.graphical_lasso", false]], "graphicallasso (class in sklearn.covariance)": [[467, "sklearn.covariance.GraphicalLasso", false]], "graphicallassocv (class in sklearn.covariance)": [[468, "sklearn.covariance.GraphicalLassoCV", false]], "grid_to_graph() (in module sklearn.feature_extraction.image)": [[583, "sklearn.feature_extraction.image.grid_to_graph", false]], "gridsearchcv (class in sklearn.model_selection)": [[801, "sklearn.model_selection.GridSearchCV", false]], "groupkfold (class in sklearn.model_selection)": [[802, "sklearn.model_selection.GroupKFold", false]], "groups": [[385, "term-groups", true]], "groupshufflesplit (class in sklearn.model_selection)": [[803, "sklearn.model_selection.GroupShuffleSplit", false]], "halvinggridsearchcv (class in sklearn.model_selection)": [[804, "sklearn.model_selection.HalvingGridSearchCV", false]], "halvingrandomsearchcv (class in sklearn.model_selection)": [[805, "sklearn.model_selection.HalvingRandomSearchCV", false]], "hamming_loss() (in module sklearn.metrics)": [[735, "sklearn.metrics.hamming_loss", false]], "has_fit_parameter() (in module sklearn.utils.validation)": [[987, "sklearn.utils.validation.has_fit_parameter", false]], "hashingvectorizer (class in sklearn.feature_extraction.text)": [[587, "sklearn.feature_extraction.text.HashingVectorizer", false]], "haversine_distances() (in module sklearn.metrics.pairwise)": [[765, "sklearn.metrics.pairwise.haversine_distances", false]], "hdbscan (class in sklearn.cluster)": [[442, "sklearn.cluster.HDBSCAN", false]], "hinge_loss() (in module sklearn.metrics)": [[736, "sklearn.metrics.hinge_loss", false]], "histgradientboostingclassifier (class in sklearn.ensemble)": [[558, "sklearn.ensemble.HistGradientBoostingClassifier", false]], "histgradientboostingregressor (class in sklearn.ensemble)": [[559, "sklearn.ensemble.HistGradientBoostingRegressor", false]], "homogeneity_completeness_v_measure() (in module sklearn.metrics)": [[737, "sklearn.metrics.homogeneity_completeness_v_measure", false]], "homogeneity_score() (in module sklearn.metrics)": [[738, "sklearn.metrics.homogeneity_score", false]], "huberregressor (class in sklearn.linear_model)": [[648, "sklearn.linear_model.HuberRegressor", false]], "hyper-parameter": [[385, "term-hyper-parameter", true]], "hyperparameter": [[385, "term-hyperparameter", true]], "hyperparameter (class in sklearn.gaussian_process.kernels)": [[616, "sklearn.gaussian_process.kernels.Hyperparameter", false]], "hyperparameter_length_scale (sklearn.gaussian_process.kernels.expsinesquared property)": [[614, "sklearn.gaussian_process.kernels.ExpSineSquared.hyperparameter_length_scale", false]], "hyperparameters (sklearn.gaussian_process.kernels.compoundkernel property)": [[611, "sklearn.gaussian_process.kernels.CompoundKernel.hyperparameters", false]], "hyperparameters (sklearn.gaussian_process.kernels.constantkernel property)": [[612, "sklearn.gaussian_process.kernels.ConstantKernel.hyperparameters", false]], "hyperparameters (sklearn.gaussian_process.kernels.dotproduct property)": [[613, "sklearn.gaussian_process.kernels.DotProduct.hyperparameters", false]], "hyperparameters (sklearn.gaussian_process.kernels.exponentiation property)": [[615, "sklearn.gaussian_process.kernels.Exponentiation.hyperparameters", false]], "hyperparameters (sklearn.gaussian_process.kernels.expsinesquared property)": [[614, "sklearn.gaussian_process.kernels.ExpSineSquared.hyperparameters", false]], "hyperparameters (sklearn.gaussian_process.kernels.kernel property)": [[617, "sklearn.gaussian_process.kernels.Kernel.hyperparameters", false]], "hyperparameters (sklearn.gaussian_process.kernels.matern property)": [[618, "sklearn.gaussian_process.kernels.Matern.hyperparameters", false]], "hyperparameters (sklearn.gaussian_process.kernels.pairwisekernel property)": [[619, "sklearn.gaussian_process.kernels.PairwiseKernel.hyperparameters", false]], "hyperparameters (sklearn.gaussian_process.kernels.product property)": [[620, "sklearn.gaussian_process.kernels.Product.hyperparameters", false]], "hyperparameters (sklearn.gaussian_process.kernels.rationalquadratic property)": [[622, "sklearn.gaussian_process.kernels.RationalQuadratic.hyperparameters", false]], "hyperparameters (sklearn.gaussian_process.kernels.rbf property)": [[621, "sklearn.gaussian_process.kernels.RBF.hyperparameters", false]], "hyperparameters (sklearn.gaussian_process.kernels.sum property)": [[623, "sklearn.gaussian_process.kernels.Sum.hyperparameters", false]], "hyperparameters (sklearn.gaussian_process.kernels.whitekernel property)": [[624, "sklearn.gaussian_process.kernels.WhiteKernel.hyperparameters", false]], "img_to_graph() (in module sklearn.feature_extraction.image)": [[584, "sklearn.feature_extraction.image.img_to_graph", false]], "imputation": [[385, "term-imputation", true]], "impute": [[385, "term-impute", true]], "inconsistentversionwarning": [[574, "sklearn.exceptions.InconsistentVersionWarning", false]], "incr_mean_variance_axis() (in module sklearn.utils.sparsefuncs)": [[974, "sklearn.utils.sparsefuncs.incr_mean_variance_axis", false]], "incrementalpca (class in sklearn.decomposition)": [[531, "sklearn.decomposition.IncrementalPCA", false]], "index() (sklearn.gaussian_process.kernels.hyperparameter method)": [[616, "sklearn.gaussian_process.kernels.Hyperparameter.index", false]], "indexable": [[385, "term-indexable", true]], "indexable() (in module sklearn.utils)": [[956, "sklearn.utils.indexable", false]], "induction": [[385, "term-induction", true]], "inductive": [[385, "term-inductive", true]], "inplace_column_scale() (in module sklearn.utils.sparsefuncs)": [[975, "sklearn.utils.sparsefuncs.inplace_column_scale", false]], "inplace_csr_column_scale() (in module sklearn.utils.sparsefuncs)": [[976, "sklearn.utils.sparsefuncs.inplace_csr_column_scale", false]], "inplace_csr_row_normalize_l1() (in module sklearn.utils.sparsefuncs_fast)": [[981, "sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l1", false]], "inplace_csr_row_normalize_l2() (in module sklearn.utils.sparsefuncs_fast)": [[982, "sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l2", false]], "inplace_row_scale() (in module sklearn.utils.sparsefuncs)": [[977, "sklearn.utils.sparsefuncs.inplace_row_scale", false]], "inplace_swap_column() (in module sklearn.utils.sparsefuncs)": [[978, "sklearn.utils.sparsefuncs.inplace_swap_column", false]], "inplace_swap_row() (in module sklearn.utils.sparsefuncs)": [[979, "sklearn.utils.sparsefuncs.inplace_swap_row", false]], "inputtags (class in sklearn.utils)": [[922, "sklearn.utils.InputTags", false]], "inverse_transform() (sklearn.cluster.featureagglomeration method)": [[441, "sklearn.cluster.FeatureAgglomeration.inverse_transform", false]], "inverse_transform() (sklearn.cross_decomposition.cca method)": [[478, "sklearn.cross_decomposition.CCA.inverse_transform", false]], "inverse_transform() (sklearn.cross_decomposition.plscanonical method)": [[479, "sklearn.cross_decomposition.PLSCanonical.inverse_transform", false]], "inverse_transform() (sklearn.cross_decomposition.plsregression method)": [[480, "sklearn.cross_decomposition.PLSRegression.inverse_transform", false]], "inverse_transform() (sklearn.decomposition.dictionarylearning method)": [[528, "sklearn.decomposition.DictionaryLearning.inverse_transform", false]], "inverse_transform() (sklearn.decomposition.fastica method)": [[530, "sklearn.decomposition.FastICA.inverse_transform", false]], "inverse_transform() (sklearn.decomposition.incrementalpca method)": [[531, "sklearn.decomposition.IncrementalPCA.inverse_transform", false]], "inverse_transform() (sklearn.decomposition.kernelpca method)": [[532, "sklearn.decomposition.KernelPCA.inverse_transform", false]], "inverse_transform() (sklearn.decomposition.minibatchdictionarylearning method)": [[534, "sklearn.decomposition.MiniBatchDictionaryLearning.inverse_transform", false]], "inverse_transform() (sklearn.decomposition.minibatchnmf method)": [[535, "sklearn.decomposition.MiniBatchNMF.inverse_transform", false]], "inverse_transform() (sklearn.decomposition.minibatchsparsepca method)": [[536, "sklearn.decomposition.MiniBatchSparsePCA.inverse_transform", false]], "inverse_transform() (sklearn.decomposition.nmf method)": [[537, "sklearn.decomposition.NMF.inverse_transform", false]], "inverse_transform() (sklearn.decomposition.pca method)": [[538, "sklearn.decomposition.PCA.inverse_transform", false]], "inverse_transform() (sklearn.decomposition.sparsecoder method)": [[539, "sklearn.decomposition.SparseCoder.inverse_transform", false]], "inverse_transform() (sklearn.decomposition.sparsepca method)": [[540, "sklearn.decomposition.SparsePCA.inverse_transform", false]], "inverse_transform() (sklearn.decomposition.truncatedsvd method)": [[541, "sklearn.decomposition.TruncatedSVD.inverse_transform", false]], "inverse_transform() (sklearn.feature_extraction.dictvectorizer method)": [[579, "sklearn.feature_extraction.DictVectorizer.inverse_transform", false]], "inverse_transform() (sklearn.feature_extraction.text.countvectorizer method)": [[586, "sklearn.feature_extraction.text.CountVectorizer.inverse_transform", false]], "inverse_transform() (sklearn.feature_extraction.text.tfidfvectorizer method)": [[589, "sklearn.feature_extraction.text.TfidfVectorizer.inverse_transform", false]], "inverse_transform() (sklearn.feature_selection.genericunivariateselect method)": [[590, "sklearn.feature_selection.GenericUnivariateSelect.inverse_transform", false]], "inverse_transform() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.inverse_transform", false]], "inverse_transform() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.inverse_transform", false]], "inverse_transform() (sklearn.feature_selection.selectfdr method)": [[593, "sklearn.feature_selection.SelectFdr.inverse_transform", false]], "inverse_transform() (sklearn.feature_selection.selectfpr method)": [[594, "sklearn.feature_selection.SelectFpr.inverse_transform", false]], "inverse_transform() (sklearn.feature_selection.selectfrommodel method)": [[595, "sklearn.feature_selection.SelectFromModel.inverse_transform", false]], "inverse_transform() (sklearn.feature_selection.selectfwe method)": [[596, "sklearn.feature_selection.SelectFwe.inverse_transform", false]], "inverse_transform() (sklearn.feature_selection.selectkbest method)": [[597, "sklearn.feature_selection.SelectKBest.inverse_transform", false]], "inverse_transform() (sklearn.feature_selection.selectormixin method)": [[599, "sklearn.feature_selection.SelectorMixin.inverse_transform", false]], "inverse_transform() (sklearn.feature_selection.selectpercentile method)": [[598, "sklearn.feature_selection.SelectPercentile.inverse_transform", false]], "inverse_transform() (sklearn.feature_selection.sequentialfeatureselector method)": [[600, "sklearn.feature_selection.SequentialFeatureSelector.inverse_transform", false]], "inverse_transform() (sklearn.feature_selection.variancethreshold method)": [[601, "sklearn.feature_selection.VarianceThreshold.inverse_transform", false]], "inverse_transform() (sklearn.impute.simpleimputer method)": [[629, "sklearn.impute.SimpleImputer.inverse_transform", false]], "inverse_transform() (sklearn.model_selection.gridsearchcv method)": [[801, "sklearn.model_selection.GridSearchCV.inverse_transform", false]], "inverse_transform() (sklearn.model_selection.halvinggridsearchcv method)": [[804, "sklearn.model_selection.HalvingGridSearchCV.inverse_transform", false]], "inverse_transform() (sklearn.model_selection.halvingrandomsearchcv method)": [[805, "sklearn.model_selection.HalvingRandomSearchCV.inverse_transform", false]], "inverse_transform() (sklearn.model_selection.randomizedsearchcv method)": [[815, "sklearn.model_selection.RandomizedSearchCV.inverse_transform", false]], "inverse_transform() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.inverse_transform", false]], "inverse_transform() (sklearn.preprocessing.functiontransformer method)": [[869, "sklearn.preprocessing.FunctionTransformer.inverse_transform", false]], "inverse_transform() (sklearn.preprocessing.kbinsdiscretizer method)": [[870, "sklearn.preprocessing.KBinsDiscretizer.inverse_transform", false]], "inverse_transform() (sklearn.preprocessing.labelbinarizer method)": [[872, "sklearn.preprocessing.LabelBinarizer.inverse_transform", false]], "inverse_transform() (sklearn.preprocessing.labelencoder method)": [[873, "sklearn.preprocessing.LabelEncoder.inverse_transform", false]], "inverse_transform() (sklearn.preprocessing.maxabsscaler method)": [[874, "sklearn.preprocessing.MaxAbsScaler.inverse_transform", false]], "inverse_transform() (sklearn.preprocessing.minmaxscaler method)": [[875, "sklearn.preprocessing.MinMaxScaler.inverse_transform", false]], "inverse_transform() (sklearn.preprocessing.multilabelbinarizer method)": [[876, "sklearn.preprocessing.MultiLabelBinarizer.inverse_transform", false]], "inverse_transform() (sklearn.preprocessing.onehotencoder method)": [[878, "sklearn.preprocessing.OneHotEncoder.inverse_transform", false]], "inverse_transform() (sklearn.preprocessing.ordinalencoder method)": [[879, "sklearn.preprocessing.OrdinalEncoder.inverse_transform", false]], "inverse_transform() (sklearn.preprocessing.powertransformer method)": [[881, "sklearn.preprocessing.PowerTransformer.inverse_transform", false]], "inverse_transform() (sklearn.preprocessing.quantiletransformer method)": [[882, "sklearn.preprocessing.QuantileTransformer.inverse_transform", false]], "inverse_transform() (sklearn.preprocessing.robustscaler method)": [[883, "sklearn.preprocessing.RobustScaler.inverse_transform", false]], "inverse_transform() (sklearn.preprocessing.standardscaler method)": [[885, "sklearn.preprocessing.StandardScaler.inverse_transform", false]], "inverse_transform() (sklearn.random_projection.gaussianrandomprojection method)": [[897, "sklearn.random_projection.GaussianRandomProjection.inverse_transform", false]], "inverse_transform() (sklearn.random_projection.sparserandomprojection method)": [[898, "sklearn.random_projection.SparseRandomProjection.inverse_transform", false]], "is_classifier() (in module sklearn.base)": [[429, "sklearn.base.is_classifier", false]], "is_clusterer() (in module sklearn.base)": [[430, "sklearn.base.is_clusterer", false]], "is_multilabel() (in module sklearn.utils.multiclass)": [[963, "sklearn.utils.multiclass.is_multilabel", false]], "is_outlier_detector() (in module sklearn.base)": [[431, "sklearn.base.is_outlier_detector", false]], "is_regressor() (in module sklearn.base)": [[432, "sklearn.base.is_regressor", false]], "is_stationary() (sklearn.gaussian_process.kernels.compoundkernel method)": [[611, "sklearn.gaussian_process.kernels.CompoundKernel.is_stationary", false]], "is_stationary() (sklearn.gaussian_process.kernels.constantkernel method)": [[612, "sklearn.gaussian_process.kernels.ConstantKernel.is_stationary", false]], "is_stationary() (sklearn.gaussian_process.kernels.dotproduct method)": [[613, "sklearn.gaussian_process.kernels.DotProduct.is_stationary", false]], "is_stationary() (sklearn.gaussian_process.kernels.exponentiation method)": [[615, "sklearn.gaussian_process.kernels.Exponentiation.is_stationary", false]], "is_stationary() (sklearn.gaussian_process.kernels.expsinesquared method)": [[614, "sklearn.gaussian_process.kernels.ExpSineSquared.is_stationary", false]], "is_stationary() (sklearn.gaussian_process.kernels.kernel method)": [[617, "sklearn.gaussian_process.kernels.Kernel.is_stationary", false]], "is_stationary() (sklearn.gaussian_process.kernels.matern method)": [[618, "sklearn.gaussian_process.kernels.Matern.is_stationary", false]], "is_stationary() (sklearn.gaussian_process.kernels.pairwisekernel method)": [[619, "sklearn.gaussian_process.kernels.PairwiseKernel.is_stationary", false]], "is_stationary() (sklearn.gaussian_process.kernels.product method)": [[620, "sklearn.gaussian_process.kernels.Product.is_stationary", false]], "is_stationary() (sklearn.gaussian_process.kernels.rationalquadratic method)": [[622, "sklearn.gaussian_process.kernels.RationalQuadratic.is_stationary", false]], "is_stationary() (sklearn.gaussian_process.kernels.rbf method)": [[621, "sklearn.gaussian_process.kernels.RBF.is_stationary", false]], "is_stationary() (sklearn.gaussian_process.kernels.sum method)": [[623, "sklearn.gaussian_process.kernels.Sum.is_stationary", false]], "is_stationary() (sklearn.gaussian_process.kernels.whitekernel method)": [[624, "sklearn.gaussian_process.kernels.WhiteKernel.is_stationary", false]], "isolationforest (class in sklearn.ensemble)": [[560, "sklearn.ensemble.IsolationForest", false]], "isomap (class in sklearn.manifold)": [[688, "sklearn.manifold.Isomap", false]], "isotonic_regression() (in module sklearn.isotonic)": [[636, "sklearn.isotonic.isotonic_regression", false]], "isotonicregression (class in sklearn.isotonic)": [[634, "sklearn.isotonic.IsotonicRegression", false]], "items() (sklearn.utils.bunch method)": [[920, "sklearn.utils.Bunch.items", false]], "iterativeimputer (class in sklearn.impute)": [[626, "sklearn.impute.IterativeImputer", false]], "jaccard_score() (in module sklearn.metrics)": [[739, "sklearn.metrics.jaccard_score", false]], "joblib": [[385, "term-joblib", true]], "johnson_lindenstrauss_min_dim() (in module sklearn.random_projection)": [[899, "sklearn.random_projection.johnson_lindenstrauss_min_dim", false]], "k_means() (in module sklearn.cluster)": [[455, "sklearn.cluster.k_means", false]], "kbinsdiscretizer (class in sklearn.preprocessing)": [[870, "sklearn.preprocessing.KBinsDiscretizer", false]], "kdtree (class in sklearn.neighbors)": [[846, "sklearn.neighbors.KDTree", false]], "kernel": [[385, "term-kernel", true]], "kernel (class in sklearn.gaussian_process.kernels)": [[617, "sklearn.gaussian_process.kernels.Kernel", false]], "kernel_density() (sklearn.neighbors.balltree method)": [[845, "sklearn.neighbors.BallTree.kernel_density", false]], "kernel_density() (sklearn.neighbors.kdtree method)": [[846, "sklearn.neighbors.KDTree.kernel_density", false]], "kernel_metrics() (in module sklearn.metrics.pairwise)": [[766, "sklearn.metrics.pairwise.kernel_metrics", false]], "kernelcenterer (class in sklearn.preprocessing)": [[871, "sklearn.preprocessing.KernelCenterer", false]], "kerneldensity (class in sklearn.neighbors)": [[850, "sklearn.neighbors.KernelDensity", false]], "kernelpca (class in sklearn.decomposition)": [[532, "sklearn.decomposition.KernelPCA", false]], "kernelridge (class in sklearn.kernel_ridge)": [[642, "sklearn.kernel_ridge.KernelRidge", false]], "keys() (sklearn.utils.bunch method)": [[920, "sklearn.utils.Bunch.keys", false]], "kfold (class in sklearn.model_selection)": [[806, "sklearn.model_selection.KFold", false]], "kmeans (class in sklearn.cluster)": [[443, "sklearn.cluster.KMeans", false]], "kmeans_plusplus() (in module sklearn.cluster)": [[456, "sklearn.cluster.kmeans_plusplus", false]], "kneighbors() (sklearn.neighbors.kneighborsclassifier method)": [[847, "sklearn.neighbors.KNeighborsClassifier.kneighbors", false]], "kneighbors() (sklearn.neighbors.kneighborsregressor method)": [[848, "sklearn.neighbors.KNeighborsRegressor.kneighbors", false]], "kneighbors() (sklearn.neighbors.kneighborstransformer method)": [[849, "sklearn.neighbors.KNeighborsTransformer.kneighbors", false]], "kneighbors() (sklearn.neighbors.localoutlierfactor method)": [[851, "sklearn.neighbors.LocalOutlierFactor.kneighbors", false]], "kneighbors() (sklearn.neighbors.nearestneighbors method)": [[853, "sklearn.neighbors.NearestNeighbors.kneighbors", false]], "kneighbors_graph() (in module sklearn.neighbors)": [[858, "sklearn.neighbors.kneighbors_graph", false]], "kneighbors_graph() (sklearn.neighbors.kneighborsclassifier method)": [[847, "sklearn.neighbors.KNeighborsClassifier.kneighbors_graph", false]], "kneighbors_graph() (sklearn.neighbors.kneighborsregressor method)": [[848, "sklearn.neighbors.KNeighborsRegressor.kneighbors_graph", false]], "kneighbors_graph() (sklearn.neighbors.kneighborstransformer method)": [[849, "sklearn.neighbors.KNeighborsTransformer.kneighbors_graph", false]], "kneighbors_graph() (sklearn.neighbors.localoutlierfactor method)": [[851, "sklearn.neighbors.LocalOutlierFactor.kneighbors_graph", false]], "kneighbors_graph() (sklearn.neighbors.nearestneighbors method)": [[853, "sklearn.neighbors.NearestNeighbors.kneighbors_graph", false]], "kneighborsclassifier (class in sklearn.neighbors)": [[847, "sklearn.neighbors.KNeighborsClassifier", false]], "kneighborsregressor (class in sklearn.neighbors)": [[848, "sklearn.neighbors.KNeighborsRegressor", false]], "kneighborstransformer (class in sklearn.neighbors)": [[849, "sklearn.neighbors.KNeighborsTransformer", false]], "knnimputer (class in sklearn.impute)": [[627, "sklearn.impute.KNNImputer", false]], "l1_min_c() (in module sklearn.svm)": [[912, "sklearn.svm.l1_min_c", false]], "label indicator matrix": [[385, "term-label-indicator-matrix", true]], "label_binarize() (in module sklearn.preprocessing)": [[889, "sklearn.preprocessing.label_binarize", false]], "label_ranking_average_precision_score() (in module sklearn.metrics)": [[740, "sklearn.metrics.label_ranking_average_precision_score", false]], "label_ranking_loss() (in module sklearn.metrics)": [[741, "sklearn.metrics.label_ranking_loss", false]], "labelbinarizer (class in sklearn.preprocessing)": [[872, "sklearn.preprocessing.LabelBinarizer", false]], "labelencoder (class in sklearn.preprocessing)": [[873, "sklearn.preprocessing.LabelEncoder", false]], "labelpropagation (class in sklearn.semi_supervised)": [[900, "sklearn.semi_supervised.LabelPropagation", false]], "labels_": [[385, "term-labels_", true]], "labelspreading (class in sklearn.semi_supervised)": [[901, "sklearn.semi_supervised.LabelSpreading", false]], "laplacian_kernel() (in module sklearn.metrics.pairwise)": [[767, "sklearn.metrics.pairwise.laplacian_kernel", false]], "lars (class in sklearn.linear_model)": [[649, "sklearn.linear_model.Lars", false]], "lars_path() (in module sklearn.linear_model)": [[681, "sklearn.linear_model.lars_path", false]], "lars_path_gram() (in module sklearn.linear_model)": [[682, "sklearn.linear_model.lars_path_gram", false]], "larscv (class in sklearn.linear_model)": [[650, "sklearn.linear_model.LarsCV", false]], "lasso (class in sklearn.linear_model)": [[651, "sklearn.linear_model.Lasso", false]], "lasso_path() (in module sklearn.linear_model)": [[683, "sklearn.linear_model.lasso_path", false]], "lassocv (class in sklearn.linear_model)": [[652, "sklearn.linear_model.LassoCV", false]], "lassolars (class in sklearn.linear_model)": [[653, "sklearn.linear_model.LassoLars", false]], "lassolarscv (class in sklearn.linear_model)": [[654, "sklearn.linear_model.LassoLarsCV", false]], "lassolarsic (class in sklearn.linear_model)": [[655, "sklearn.linear_model.LassoLarsIC", false]], "latent_mean_and_variance() (sklearn.gaussian_process.gaussianprocessclassifier method)": [[609, "sklearn.gaussian_process.GaussianProcessClassifier.latent_mean_and_variance", false]], "latentdirichletallocation (class in sklearn.decomposition)": [[533, "sklearn.decomposition.LatentDirichletAllocation", false]], "leakage": [[385, "term-leakage", true]], "learning_curve() (in module sklearn.model_selection)": [[829, "sklearn.model_selection.learning_curve", false]], "learningcurvedisplay (class in sklearn.model_selection)": [[807, "sklearn.model_selection.LearningCurveDisplay", false]], "leaveonegroupout (class in sklearn.model_selection)": [[808, "sklearn.model_selection.LeaveOneGroupOut", false]], "leaveoneout (class in sklearn.model_selection)": [[809, "sklearn.model_selection.LeaveOneOut", false]], "leavepgroupsout (class in sklearn.model_selection)": [[810, "sklearn.model_selection.LeavePGroupsOut", false]], "leavepout (class in sklearn.model_selection)": [[811, "sklearn.model_selection.LeavePOut", false]], "ledoit_wolf() (in module sklearn.covariance)": [[475, "sklearn.covariance.ledoit_wolf", false]], "ledoit_wolf_shrinkage() (in module sklearn.covariance)": [[476, "sklearn.covariance.ledoit_wolf_shrinkage", false]], "ledoitwolf (class in sklearn.covariance)": [[469, "sklearn.covariance.LedoitWolf", false]], "linear_kernel() (in module sklearn.metrics.pairwise)": [[768, "sklearn.metrics.pairwise.linear_kernel", false]], "lineardiscriminantanalysis (class in sklearn.discriminant_analysis)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis", false]], "linearregression (class in sklearn.linear_model)": [[656, "sklearn.linear_model.LinearRegression", false]], "linearsvc (class in sklearn.svm)": [[905, "sklearn.svm.LinearSVC", false]], "linearsvr (class in sklearn.svm)": [[906, "sklearn.svm.LinearSVR", false]], "load_breast_cancer() (in module sklearn.datasets)": [[497, "sklearn.datasets.load_breast_cancer", false]], "load_diabetes() (in module sklearn.datasets)": [[498, "sklearn.datasets.load_diabetes", false]], "load_digits() (in module sklearn.datasets)": [[499, "sklearn.datasets.load_digits", false]], "load_files() (in module sklearn.datasets)": [[500, "sklearn.datasets.load_files", false]], "load_iris() (in module sklearn.datasets)": [[501, "sklearn.datasets.load_iris", false]], "load_linnerud() (in module sklearn.datasets)": [[502, "sklearn.datasets.load_linnerud", false]], "load_sample_image() (in module sklearn.datasets)": [[503, "sklearn.datasets.load_sample_image", false]], "load_sample_images() (in module sklearn.datasets)": [[504, "sklearn.datasets.load_sample_images", false]], "load_svmlight_file() (in module sklearn.datasets)": [[505, "sklearn.datasets.load_svmlight_file", false]], "load_svmlight_files() (in module sklearn.datasets)": [[506, "sklearn.datasets.load_svmlight_files", false]], "load_wine() (in module sklearn.datasets)": [[507, "sklearn.datasets.load_wine", false]], "locally_linear_embedding() (in module sklearn.manifold)": [[693, "sklearn.manifold.locally_linear_embedding", false]], "locallylinearembedding (class in sklearn.manifold)": [[689, "sklearn.manifold.LocallyLinearEmbedding", false]], "localoutlierfactor (class in sklearn.neighbors)": [[851, "sklearn.neighbors.LocalOutlierFactor", false]], "log_loss() (in module sklearn.metrics)": [[742, "sklearn.metrics.log_loss", false]], "log_marginal_likelihood() (sklearn.gaussian_process.gaussianprocessclassifier method)": [[609, "sklearn.gaussian_process.GaussianProcessClassifier.log_marginal_likelihood", false]], "log_marginal_likelihood() (sklearn.gaussian_process.gaussianprocessregressor method)": [[610, "sklearn.gaussian_process.GaussianProcessRegressor.log_marginal_likelihood", false]], "logisticregression (class in sklearn.linear_model)": [[657, "sklearn.linear_model.LogisticRegression", false]], "logisticregressioncv (class in sklearn.linear_model)": [[658, "sklearn.linear_model.LogisticRegressionCV", false]], "mahalanobis() (sklearn.covariance.ellipticenvelope method)": [[465, "sklearn.covariance.EllipticEnvelope.mahalanobis", false]], "mahalanobis() (sklearn.covariance.empiricalcovariance method)": [[466, "sklearn.covariance.EmpiricalCovariance.mahalanobis", false]], "mahalanobis() (sklearn.covariance.graphicallasso method)": [[467, "sklearn.covariance.GraphicalLasso.mahalanobis", false]], "mahalanobis() (sklearn.covariance.graphicallassocv method)": [[468, "sklearn.covariance.GraphicalLassoCV.mahalanobis", false]], "mahalanobis() (sklearn.covariance.ledoitwolf method)": [[469, "sklearn.covariance.LedoitWolf.mahalanobis", false]], "mahalanobis() (sklearn.covariance.mincovdet method)": [[470, "sklearn.covariance.MinCovDet.mahalanobis", false]], "mahalanobis() (sklearn.covariance.oas method)": [[471, "sklearn.covariance.OAS.mahalanobis", false]], "mahalanobis() (sklearn.covariance.shrunkcovariance method)": [[472, "sklearn.covariance.ShrunkCovariance.mahalanobis", false]], "make_biclusters() (in module sklearn.datasets)": [[508, "sklearn.datasets.make_biclusters", false]], "make_blobs() (in module sklearn.datasets)": [[509, "sklearn.datasets.make_blobs", false]], "make_checkerboard() (in module sklearn.datasets)": [[510, "sklearn.datasets.make_checkerboard", false]], "make_circles() (in module sklearn.datasets)": [[511, "sklearn.datasets.make_circles", false]], "make_classification() (in module sklearn.datasets)": [[512, "sklearn.datasets.make_classification", false]], "make_column_selector (class in sklearn.compose)": [[462, "sklearn.compose.make_column_selector", false]], "make_column_transformer() (in module sklearn.compose)": [[463, "sklearn.compose.make_column_transformer", false]], "make_friedman1() (in module sklearn.datasets)": [[513, "sklearn.datasets.make_friedman1", false]], "make_friedman2() (in module sklearn.datasets)": [[514, "sklearn.datasets.make_friedman2", false]], "make_friedman3() (in module sklearn.datasets)": [[515, "sklearn.datasets.make_friedman3", false]], "make_gaussian_quantiles() (in module sklearn.datasets)": [[516, "sklearn.datasets.make_gaussian_quantiles", false]], "make_hastie_10_2() (in module sklearn.datasets)": [[517, "sklearn.datasets.make_hastie_10_2", false]], "make_low_rank_matrix() (in module sklearn.datasets)": [[518, "sklearn.datasets.make_low_rank_matrix", false]], "make_moons() (in module sklearn.datasets)": [[519, "sklearn.datasets.make_moons", false]], "make_multilabel_classification() (in module sklearn.datasets)": [[520, "sklearn.datasets.make_multilabel_classification", false]], "make_pipeline() (in module sklearn.pipeline)": [[866, "sklearn.pipeline.make_pipeline", false]], "make_regression() (in module sklearn.datasets)": [[521, "sklearn.datasets.make_regression", false]], "make_s_curve() (in module sklearn.datasets)": [[522, "sklearn.datasets.make_s_curve", false]], "make_scorer() (in module sklearn.metrics)": [[743, "sklearn.metrics.make_scorer", false]], "make_sparse_coded_signal() (in module sklearn.datasets)": [[523, "sklearn.datasets.make_sparse_coded_signal", false]], "make_sparse_spd_matrix() (in module sklearn.datasets)": [[524, "sklearn.datasets.make_sparse_spd_matrix", false]], "make_sparse_uncorrelated() (in module sklearn.datasets)": [[525, "sklearn.datasets.make_sparse_uncorrelated", false]], "make_spd_matrix() (in module sklearn.datasets)": [[526, "sklearn.datasets.make_spd_matrix", false]], "make_swiss_roll() (in module sklearn.datasets)": [[527, "sklearn.datasets.make_swiss_roll", false]], "make_union() (in module sklearn.pipeline)": [[867, "sklearn.pipeline.make_union", false]], "manhattan_distances() (in module sklearn.metrics.pairwise)": [[769, "sklearn.metrics.pairwise.manhattan_distances", false]], "matern (class in sklearn.gaussian_process.kernels)": [[618, "sklearn.gaussian_process.kernels.Matern", false]], "matthews_corrcoef() (in module sklearn.metrics)": [[744, "sklearn.metrics.matthews_corrcoef", false]], "max_error() (in module sklearn.metrics)": [[745, "sklearn.metrics.max_error", false]], "max_iter": [[385, "term-max_iter", true]], "maxabs_scale() (in module sklearn.preprocessing)": [[890, "sklearn.preprocessing.maxabs_scale", false]], "maxabsscaler (class in sklearn.preprocessing)": [[874, "sklearn.preprocessing.MaxAbsScaler", false]], "mds (class in sklearn.manifold)": [[690, "sklearn.manifold.MDS", false]], "mean_absolute_error() (in module sklearn.metrics)": [[746, "sklearn.metrics.mean_absolute_error", false]], "mean_absolute_percentage_error() (in module sklearn.metrics)": [[747, "sklearn.metrics.mean_absolute_percentage_error", false]], "mean_gamma_deviance() (in module sklearn.metrics)": [[748, "sklearn.metrics.mean_gamma_deviance", false]], "mean_pinball_loss() (in module sklearn.metrics)": [[749, "sklearn.metrics.mean_pinball_loss", false]], "mean_poisson_deviance() (in module sklearn.metrics)": [[750, "sklearn.metrics.mean_poisson_deviance", false]], "mean_shift() (in module sklearn.cluster)": [[457, "sklearn.cluster.mean_shift", false]], "mean_squared_error() (in module sklearn.metrics)": [[751, "sklearn.metrics.mean_squared_error", false]], "mean_squared_log_error() (in module sklearn.metrics)": [[752, "sklearn.metrics.mean_squared_log_error", false]], "mean_tweedie_deviance() (in module sklearn.metrics)": [[753, "sklearn.metrics.mean_tweedie_deviance", false]], "mean_variance_axis() (in module sklearn.utils.sparsefuncs)": [[980, "sklearn.utils.sparsefuncs.mean_variance_axis", false]], "meanshift (class in sklearn.cluster)": [[444, "sklearn.cluster.MeanShift", false]], "median_absolute_error() (in module sklearn.metrics)": [[754, "sklearn.metrics.median_absolute_error", false]], "memmapping": [[385, "term-memmapping", true]], "memory": [[385, "term-memory", true]], "memory map": [[385, "term-memory-map", true]], "memory mapping": [[385, "term-memory-mapping", true]], "meta-estimator": [[385, "term-meta-estimator", true]], "meta-estimators": [[385, "term-meta-estimators", true]], "metadata": [[385, "term-metadata", true]], "metadatarequest (class in sklearn.utils.metadata_routing)": [[957, "sklearn.utils.metadata_routing.MetadataRequest", false]], "metadatarouter (class in sklearn.utils.metadata_routing)": [[958, "sklearn.utils.metadata_routing.MetadataRouter", false]], "metaestimator": [[385, "term-metaestimator", true]], "metaestimatormixin (class in sklearn.base)": [[423, "sklearn.base.MetaEstimatorMixin", false]], "metaestimators": [[385, "term-metaestimators", true]], "methodmapping (class in sklearn.utils.metadata_routing)": [[959, "sklearn.utils.metadata_routing.MethodMapping", false]], "metric": [[385, "term-metric", true]], "min_pos() (in module sklearn.utils.arrayfuncs)": [[928, "sklearn.utils.arrayfuncs.min_pos", false]], "mincovdet (class in sklearn.covariance)": [[470, "sklearn.covariance.MinCovDet", false]], "minibatchdictionarylearning (class in sklearn.decomposition)": [[534, "sklearn.decomposition.MiniBatchDictionaryLearning", false]], "minibatchkmeans (class in sklearn.cluster)": [[445, "sklearn.cluster.MiniBatchKMeans", false]], "minibatchnmf (class in sklearn.decomposition)": [[535, "sklearn.decomposition.MiniBatchNMF", false]], "minibatchsparsepca (class in sklearn.decomposition)": [[536, "sklearn.decomposition.MiniBatchSparsePCA", false]], "minmax_scale() (in module sklearn.preprocessing)": [[891, "sklearn.preprocessing.minmax_scale", false]], "minmaxscaler (class in sklearn.preprocessing)": [[875, "sklearn.preprocessing.MinMaxScaler", false]], "missing values": [[385, "term-missing-values", true]], "missingindicator (class in sklearn.impute)": [[628, "sklearn.impute.MissingIndicator", false]], "mlpclassifier (class in sklearn.neural_network)": [[862, "sklearn.neural_network.MLPClassifier", false]], "mlpregressor (class in sklearn.neural_network)": [[863, "sklearn.neural_network.MLPRegressor", false]], "module": [[3, "module-sklearn", false], [4, "module-sklearn.base", false], [5, "module-sklearn.calibration", false], [6, "module-sklearn.cluster", false], [7, "module-sklearn.compose", false], [8, "module-sklearn.covariance", false], [9, "module-sklearn.cross_decomposition", false], [10, "module-sklearn.datasets", false], [11, "module-sklearn.decomposition", false], [12, "module-sklearn.discriminant_analysis", false], [13, "module-sklearn.dummy", false], [14, "module-sklearn.ensemble", false], [15, "module-sklearn.exceptions", false], [16, "module-sklearn.experimental", false], [17, "module-sklearn.feature_extraction", false], [17, "module-sklearn.feature_extraction.image", false], [17, "module-sklearn.feature_extraction.text", false], [18, "module-sklearn.feature_selection", false], [19, "module-sklearn.frozen", false], [20, "module-sklearn.gaussian_process", false], [20, "module-sklearn.gaussian_process.kernels", false], [21, "module-sklearn.impute", false], [22, "module-sklearn.inspection", false], [23, "module-sklearn.isotonic", false], [24, "module-sklearn.kernel_approximation", false], [25, "module-sklearn.kernel_ridge", false], [26, "module-sklearn.linear_model", false], [27, "module-sklearn.manifold", false], [28, "module-sklearn.metrics", false], [28, "module-sklearn.metrics.cluster", false], [28, "module-sklearn.metrics.pairwise", false], [29, "module-sklearn.mixture", false], [30, "module-sklearn.model_selection", false], [31, "module-sklearn.multiclass", false], [32, "module-sklearn.multioutput", false], [33, "module-sklearn.naive_bayes", false], [34, "module-sklearn.neighbors", false], [35, "module-sklearn.neural_network", false], [36, "module-sklearn.pipeline", false], [37, "module-sklearn.preprocessing", false], [38, "module-sklearn.random_projection", false], [39, "module-sklearn.semi_supervised", false], [40, "module-sklearn.svm", false], [41, "module-sklearn.tree", false], [42, "module-sklearn.utils", false], [42, "module-sklearn.utils.arrayfuncs", false], [42, "module-sklearn.utils.class_weight", false], [42, "module-sklearn.utils.discovery", false], [42, "module-sklearn.utils.estimator_checks", false], [42, "module-sklearn.utils.extmath", false], [42, "module-sklearn.utils.graph", false], [42, "module-sklearn.utils.metadata_routing", false], [42, "module-sklearn.utils.metaestimators", false], [42, "module-sklearn.utils.multiclass", false], [42, "module-sklearn.utils.parallel", false], [42, "module-sklearn.utils.random", false], [42, "module-sklearn.utils.sparsefuncs", false], [42, "module-sklearn.utils.sparsefuncs_fast", false], [42, "module-sklearn.utils.validation", false], [577, "module-sklearn.experimental.enable_halving_search_cv", false], [578, "module-sklearn.experimental.enable_iterative_imputer", false]], "multi-class": [[385, "term-multi-class", true]], "multi-class multi-output": [[385, "term-multi-class-multi-output", true]], "multi-label": [[385, "term-multi-label", true]], "multi-output": [[385, "term-multi-output", true]], "multi-output continuous": [[385, "term-multi-output-continuous", true]], "multi-output multi-class": [[385, "term-multi-output-multi-class", true]], "multiclass": [[385, "term-multiclass", true]], "multiclass multioutput": [[385, "term-multiclass-multioutput", true]], "multilabel": [[385, "term-multilabel", true]], "multilabel indicator matrices": [[385, "term-multilabel-indicator-matrices", true]], "multilabel indicator matrix": [[385, "term-multilabel-indicator-matrix", true]], "multilabel_confusion_matrix() (in module sklearn.metrics)": [[755, "sklearn.metrics.multilabel_confusion_matrix", false]], "multilabelbinarizer (class in sklearn.preprocessing)": [[876, "sklearn.preprocessing.MultiLabelBinarizer", false]], "multinomialnb (class in sklearn.naive_bayes)": [[844, "sklearn.naive_bayes.MultinomialNB", false]], "multioutput": [[385, "term-multioutput", true]], "multioutput continuous": [[385, "term-multioutput-continuous", true]], "multioutput multiclass": [[385, "term-multioutput-multiclass", true]], "multioutputclassifier (class in sklearn.multioutput)": [[837, "sklearn.multioutput.MultiOutputClassifier", false]], "multioutputregressor (class in sklearn.multioutput)": [[838, "sklearn.multioutput.MultiOutputRegressor", false]], "multitaskelasticnet (class in sklearn.linear_model)": [[659, "sklearn.linear_model.MultiTaskElasticNet", false]], "multitaskelasticnetcv (class in sklearn.linear_model)": [[660, "sklearn.linear_model.MultiTaskElasticNetCV", false]], "multitasklasso (class in sklearn.linear_model)": [[661, "sklearn.linear_model.MultiTaskLasso", false]], "multitasklassocv (class in sklearn.linear_model)": [[662, "sklearn.linear_model.MultiTaskLassoCV", false]], "murmurhash3_32() (in module sklearn.utils)": [[966, "sklearn.utils.murmurhash3_32", false]], "mutual_info_classif() (in module sklearn.feature_selection)": [[605, "sklearn.feature_selection.mutual_info_classif", false]], "mutual_info_regression() (in module sklearn.feature_selection)": [[606, "sklearn.feature_selection.mutual_info_regression", false]], "mutual_info_score() (in module sklearn.metrics)": [[756, "sklearn.metrics.mutual_info_score", false]], "n_components": [[385, "term-n_components", true]], "n_dims (sklearn.gaussian_process.kernels.compoundkernel property)": [[611, "sklearn.gaussian_process.kernels.CompoundKernel.n_dims", false]], "n_dims (sklearn.gaussian_process.kernels.constantkernel property)": [[612, "sklearn.gaussian_process.kernels.ConstantKernel.n_dims", false]], "n_dims (sklearn.gaussian_process.kernels.dotproduct property)": [[613, "sklearn.gaussian_process.kernels.DotProduct.n_dims", false]], "n_dims (sklearn.gaussian_process.kernels.exponentiation property)": [[615, "sklearn.gaussian_process.kernels.Exponentiation.n_dims", false]], "n_dims (sklearn.gaussian_process.kernels.expsinesquared property)": [[614, "sklearn.gaussian_process.kernels.ExpSineSquared.n_dims", false]], "n_dims (sklearn.gaussian_process.kernels.kernel property)": [[617, "sklearn.gaussian_process.kernels.Kernel.n_dims", false]], "n_dims (sklearn.gaussian_process.kernels.matern property)": [[618, "sklearn.gaussian_process.kernels.Matern.n_dims", false]], "n_dims (sklearn.gaussian_process.kernels.pairwisekernel property)": [[619, "sklearn.gaussian_process.kernels.PairwiseKernel.n_dims", false]], "n_dims (sklearn.gaussian_process.kernels.product property)": [[620, "sklearn.gaussian_process.kernels.Product.n_dims", false]], "n_dims (sklearn.gaussian_process.kernels.rationalquadratic property)": [[622, "sklearn.gaussian_process.kernels.RationalQuadratic.n_dims", false]], "n_dims (sklearn.gaussian_process.kernels.rbf property)": [[621, "sklearn.gaussian_process.kernels.RBF.n_dims", false]], "n_dims (sklearn.gaussian_process.kernels.sum property)": [[623, "sklearn.gaussian_process.kernels.Sum.n_dims", false]], "n_dims (sklearn.gaussian_process.kernels.whitekernel property)": [[624, "sklearn.gaussian_process.kernels.WhiteKernel.n_dims", false]], "n_elements (sklearn.gaussian_process.kernels.hyperparameter attribute)": [[616, "sklearn.gaussian_process.kernels.Hyperparameter.n_elements", false]], "n_features": [[385, "term-n_features", true]], "n_iter_": [[385, "term-n_iter_", true]], "n_iter_no_change": [[385, "term-n_iter_no_change", true]], "n_jobs": [[385, "term-n_jobs", true]], "n_outputs": [[385, "term-n_outputs", true]], "n_samples": [[385, "term-n_samples", true]], "n_targets": [[385, "term-n_targets", true]], "name (sklearn.gaussian_process.kernels.hyperparameter attribute)": [[616, "sklearn.gaussian_process.kernels.Hyperparameter.name", false]], "named_estimators (sklearn.ensemble.stackingclassifier property)": [[564, "sklearn.ensemble.StackingClassifier.named_estimators", false]], "named_estimators (sklearn.ensemble.stackingregressor property)": [[565, "sklearn.ensemble.StackingRegressor.named_estimators", false]], "named_estimators (sklearn.ensemble.votingclassifier property)": [[566, "sklearn.ensemble.VotingClassifier.named_estimators", false]], "named_estimators (sklearn.ensemble.votingregressor property)": [[567, "sklearn.ensemble.VotingRegressor.named_estimators", false]], "named_steps (sklearn.pipeline.pipeline property)": [[865, "sklearn.pipeline.Pipeline.named_steps", false]], "nan_euclidean_distances() (in module sklearn.metrics.pairwise)": [[770, "sklearn.metrics.pairwise.nan_euclidean_distances", false]], "narrative docs": [[385, "term-narrative-docs", true]], "narrative documentation": [[385, "term-narrative-documentation", true]], "ndcg_score() (in module sklearn.metrics)": [[757, "sklearn.metrics.ndcg_score", false]], "nearestcentroid (class in sklearn.neighbors)": [[852, "sklearn.neighbors.NearestCentroid", false]], "nearestneighbors (class in sklearn.neighbors)": [[853, "sklearn.neighbors.NearestNeighbors", false]], "neighborhoodcomponentsanalysis (class in sklearn.neighbors)": [[854, "sklearn.neighbors.NeighborhoodComponentsAnalysis", false]], "nmf (class in sklearn.decomposition)": [[537, "sklearn.decomposition.NMF", false]], "non_negative_factorization() (in module sklearn.decomposition)": [[544, "sklearn.decomposition.non_negative_factorization", false]], "normalize() (in module sklearn.preprocessing)": [[892, "sklearn.preprocessing.normalize", false]], "normalized_mutual_info_score() (in module sklearn.metrics)": [[758, "sklearn.metrics.normalized_mutual_info_score", false]], "normalizer (class in sklearn.preprocessing)": [[877, "sklearn.preprocessing.Normalizer", false]], "notfittederror": [[575, "sklearn.exceptions.NotFittedError", false]], "np": [[385, "term-np", true]], "nusvc (class in sklearn.svm)": [[907, "sklearn.svm.NuSVC", false]], "nusvr (class in sklearn.svm)": [[908, "sklearn.svm.NuSVR", false]], "nystroem (class in sklearn.kernel_approximation)": [[638, "sklearn.kernel_approximation.Nystroem", false]], "oas (class in sklearn.covariance)": [[471, "sklearn.covariance.OAS", false]], "oas() (in module sklearn.covariance)": [[416, "sklearn.covariance.oas", false]], "oneclasssvm (class in sklearn.svm)": [[909, "sklearn.svm.OneClassSVM", false]], "onehotencoder (class in sklearn.preprocessing)": [[878, "sklearn.preprocessing.OneHotEncoder", false]], "onetoonefeaturemixin (class in sklearn.base)": [[424, "sklearn.base.OneToOneFeatureMixin", false]], "onevsoneclassifier (class in sklearn.multiclass)": [[833, "sklearn.multiclass.OneVsOneClassifier", false]], "onevsrestclassifier (class in sklearn.multiclass)": [[834, "sklearn.multiclass.OneVsRestClassifier", false]], "online learning": [[385, "term-online-learning", true]], "optics (class in sklearn.cluster)": [[446, "sklearn.cluster.OPTICS", false]], "ordinalencoder (class in sklearn.preprocessing)": [[879, "sklearn.preprocessing.OrdinalEncoder", false]], "orthogonal_mp() (in module sklearn.linear_model)": [[684, "sklearn.linear_model.orthogonal_mp", false]], "orthogonal_mp_gram() (in module sklearn.linear_model)": [[685, "sklearn.linear_model.orthogonal_mp_gram", false]], "orthogonalmatchingpursuit (class in sklearn.linear_model)": [[663, "sklearn.linear_model.OrthogonalMatchingPursuit", false]], "orthogonalmatchingpursuitcv (class in sklearn.linear_model)": [[664, "sklearn.linear_model.OrthogonalMatchingPursuitCV", false]], "out-of-core": [[385, "term-out-of-core", true]], "outlier detector": [[385, "term-outlier-detector", true]], "outlier detectors": [[385, "term-outlier-detectors", true]], "outliermixin (class in sklearn.base)": [[425, "sklearn.base.OutlierMixin", false]], "outputcodeclassifier (class in sklearn.multiclass)": [[835, "sklearn.multiclass.OutputCodeClassifier", false]], "outputs": [[385, "term-outputs", true]], "pair": [[385, "term-pair", true]], "pair_confusion_matrix() (in module sklearn.metrics.cluster)": [[715, "sklearn.metrics.cluster.pair_confusion_matrix", false]], "paired_cosine_distances() (in module sklearn.metrics.pairwise)": [[771, "sklearn.metrics.pairwise.paired_cosine_distances", false]], "paired_distances() (in module sklearn.metrics.pairwise)": [[772, "sklearn.metrics.pairwise.paired_distances", false]], "paired_euclidean_distances() (in module sklearn.metrics.pairwise)": [[773, "sklearn.metrics.pairwise.paired_euclidean_distances", false]], "paired_manhattan_distances() (in module sklearn.metrics.pairwise)": [[774, "sklearn.metrics.pairwise.paired_manhattan_distances", false]], "pairwise metric": [[385, "term-pairwise-metric", true]], "pairwise metrics": [[385, "term-pairwise-metrics", true]], "pairwise_distances() (in module sklearn.metrics)": [[779, "sklearn.metrics.pairwise_distances", false]], "pairwise_distances_argmin() (in module sklearn.metrics)": [[780, "sklearn.metrics.pairwise_distances_argmin", false]], "pairwise_distances_argmin_min() (in module sklearn.metrics)": [[781, "sklearn.metrics.pairwise_distances_argmin_min", false]], "pairwise_distances_chunked() (in module sklearn.metrics)": [[782, "sklearn.metrics.pairwise_distances_chunked", false]], "pairwise_kernels() (in module sklearn.metrics.pairwise)": [[775, "sklearn.metrics.pairwise.pairwise_kernels", false]], "pairwisekernel (class in sklearn.gaussian_process.kernels)": [[619, "sklearn.gaussian_process.kernels.PairwiseKernel", false]], "parallel (class in sklearn.utils.parallel)": [[967, "sklearn.utils.parallel.Parallel", false]], "param": [[385, "term-param", true]], "parameter": [[385, "term-parameter", true]], "parametergrid (class in sklearn.model_selection)": [[812, "sklearn.model_selection.ParameterGrid", false]], "parameters": [[385, "term-parameters", true]], "parametersampler (class in sklearn.model_selection)": [[813, "sklearn.model_selection.ParameterSampler", false]], "parametrize_with_checks() (in module sklearn.utils.estimator_checks)": [[944, "sklearn.utils.estimator_checks.parametrize_with_checks", false]], "params": [[385, "term-params", true]], "partial_dependence() (in module sklearn.inspection)": [[632, "sklearn.inspection.partial_dependence", false]], "partial_fit": [[385, "term-partial_fit", true]], "partial_fit() (sklearn.cluster.birch method)": [[438, "sklearn.cluster.Birch.partial_fit", false]], "partial_fit() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.partial_fit", false]], "partial_fit() (sklearn.decomposition.incrementalpca method)": [[531, "sklearn.decomposition.IncrementalPCA.partial_fit", false]], "partial_fit() (sklearn.decomposition.latentdirichletallocation method)": [[533, "sklearn.decomposition.LatentDirichletAllocation.partial_fit", false]], "partial_fit() (sklearn.decomposition.minibatchdictionarylearning method)": [[534, "sklearn.decomposition.MiniBatchDictionaryLearning.partial_fit", false]], "partial_fit() (sklearn.decomposition.minibatchnmf method)": [[535, "sklearn.decomposition.MiniBatchNMF.partial_fit", false]], "partial_fit() (sklearn.feature_extraction.text.hashingvectorizer method)": [[587, "sklearn.feature_extraction.text.HashingVectorizer.partial_fit", false]], "partial_fit() (sklearn.feature_selection.selectfrommodel method)": [[595, "sklearn.feature_selection.SelectFromModel.partial_fit", false]], "partial_fit() (sklearn.linear_model.passiveaggressiveclassifier method)": [[665, "sklearn.linear_model.PassiveAggressiveClassifier.partial_fit", false]], "partial_fit() (sklearn.linear_model.passiveaggressiveregressor method)": [[666, "sklearn.linear_model.PassiveAggressiveRegressor.partial_fit", false]], "partial_fit() (sklearn.linear_model.perceptron method)": [[667, "sklearn.linear_model.Perceptron.partial_fit", false]], "partial_fit() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.partial_fit", false]], "partial_fit() (sklearn.linear_model.sgdoneclasssvm method)": [[676, "sklearn.linear_model.SGDOneClassSVM.partial_fit", false]], "partial_fit() (sklearn.linear_model.sgdregressor method)": [[677, "sklearn.linear_model.SGDRegressor.partial_fit", false]], "partial_fit() (sklearn.multiclass.onevsoneclassifier method)": [[833, "sklearn.multiclass.OneVsOneClassifier.partial_fit", false]], "partial_fit() (sklearn.multiclass.onevsrestclassifier method)": [[834, "sklearn.multiclass.OneVsRestClassifier.partial_fit", false]], "partial_fit() (sklearn.multioutput.multioutputclassifier method)": [[837, "sklearn.multioutput.MultiOutputClassifier.partial_fit", false]], "partial_fit() (sklearn.multioutput.multioutputregressor method)": [[838, "sklearn.multioutput.MultiOutputRegressor.partial_fit", false]], "partial_fit() (sklearn.naive_bayes.bernoullinb method)": [[840, "sklearn.naive_bayes.BernoulliNB.partial_fit", false]], "partial_fit() (sklearn.naive_bayes.categoricalnb method)": [[841, "sklearn.naive_bayes.CategoricalNB.partial_fit", false]], "partial_fit() (sklearn.naive_bayes.complementnb method)": [[842, "sklearn.naive_bayes.ComplementNB.partial_fit", false]], "partial_fit() (sklearn.naive_bayes.gaussiannb method)": [[843, "sklearn.naive_bayes.GaussianNB.partial_fit", false]], "partial_fit() (sklearn.naive_bayes.multinomialnb method)": [[844, "sklearn.naive_bayes.MultinomialNB.partial_fit", false]], "partial_fit() (sklearn.neural_network.bernoullirbm method)": [[861, "sklearn.neural_network.BernoulliRBM.partial_fit", false]], "partial_fit() (sklearn.neural_network.mlpclassifier method)": [[862, "sklearn.neural_network.MLPClassifier.partial_fit", false]], "partial_fit() (sklearn.neural_network.mlpregressor method)": [[863, "sklearn.neural_network.MLPRegressor.partial_fit", false]], "partial_fit() (sklearn.preprocessing.maxabsscaler method)": [[874, "sklearn.preprocessing.MaxAbsScaler.partial_fit", false]], "partial_fit() (sklearn.preprocessing.minmaxscaler method)": [[875, "sklearn.preprocessing.MinMaxScaler.partial_fit", false]], "partial_fit() (sklearn.preprocessing.standardscaler method)": [[885, "sklearn.preprocessing.StandardScaler.partial_fit", false]], "partialdependencedisplay (class in sklearn.inspection)": [[631, "sklearn.inspection.PartialDependenceDisplay", false]], "passiveaggressiveclassifier (class in sklearn.linear_model)": [[665, "sklearn.linear_model.PassiveAggressiveClassifier", false]], "passiveaggressiveregressor (class in sklearn.linear_model)": [[666, "sklearn.linear_model.PassiveAggressiveRegressor", false]], "patchextractor (class in sklearn.feature_extraction.image)": [[581, "sklearn.feature_extraction.image.PatchExtractor", false]], "path() (sklearn.linear_model.elasticnet static method)": [[645, "sklearn.linear_model.ElasticNet.path", false]], "path() (sklearn.linear_model.elasticnetcv static method)": [[646, "sklearn.linear_model.ElasticNetCV.path", false]], "path() (sklearn.linear_model.lasso static method)": [[651, "sklearn.linear_model.Lasso.path", false]], "path() (sklearn.linear_model.lassocv static method)": [[652, "sklearn.linear_model.LassoCV.path", false]], "path() (sklearn.linear_model.multitaskelasticnet static method)": [[659, "sklearn.linear_model.MultiTaskElasticNet.path", false]], "path() (sklearn.linear_model.multitaskelasticnetcv static method)": [[660, "sklearn.linear_model.MultiTaskElasticNetCV.path", false]], "path() (sklearn.linear_model.multitasklasso static method)": [[661, "sklearn.linear_model.MultiTaskLasso.path", false]], "path() (sklearn.linear_model.multitasklassocv static method)": [[662, "sklearn.linear_model.MultiTaskLassoCV.path", false]], "pca (class in sklearn.decomposition)": [[538, "sklearn.decomposition.PCA", false]], "pd": [[385, "term-pd", true]], "perceptron (class in sklearn.linear_model)": [[667, "sklearn.linear_model.Perceptron", false]], "permutation_importance() (in module sklearn.inspection)": [[633, "sklearn.inspection.permutation_importance", false]], "permutation_test_score() (in module sklearn.model_selection)": [[830, "sklearn.model_selection.permutation_test_score", false]], "perplexity() (sklearn.decomposition.latentdirichletallocation method)": [[533, "sklearn.decomposition.LatentDirichletAllocation.perplexity", false]], "pipeline (class in sklearn.pipeline)": [[865, "sklearn.pipeline.Pipeline", false]], "plot() (sklearn.calibration.calibrationdisplay method)": [[434, "sklearn.calibration.CalibrationDisplay.plot", false]], "plot() (sklearn.inspection.decisionboundarydisplay method)": [[630, "sklearn.inspection.DecisionBoundaryDisplay.plot", false]], "plot() (sklearn.inspection.partialdependencedisplay method)": [[631, "sklearn.inspection.PartialDependenceDisplay.plot", false]], "plot() (sklearn.metrics.confusionmatrixdisplay method)": [[697, "sklearn.metrics.ConfusionMatrixDisplay.plot", false]], "plot() (sklearn.metrics.detcurvedisplay method)": [[698, "sklearn.metrics.DetCurveDisplay.plot", false]], "plot() (sklearn.metrics.precisionrecalldisplay method)": [[700, "sklearn.metrics.PrecisionRecallDisplay.plot", false]], "plot() (sklearn.metrics.predictionerrordisplay method)": [[701, "sklearn.metrics.PredictionErrorDisplay.plot", false]], "plot() (sklearn.metrics.roccurvedisplay method)": [[702, "sklearn.metrics.RocCurveDisplay.plot", false]], "plot() (sklearn.model_selection.learningcurvedisplay method)": [[807, "sklearn.model_selection.LearningCurveDisplay.plot", false]], "plot() (sklearn.model_selection.validationcurvedisplay method)": [[824, "sklearn.model_selection.ValidationCurveDisplay.plot", false]], "plot_tree() (in module sklearn.tree)": [[919, "sklearn.tree.plot_tree", false]], "plscanonical (class in sklearn.cross_decomposition)": [[479, "sklearn.cross_decomposition.PLSCanonical", false]], "plsregression (class in sklearn.cross_decomposition)": [[480, "sklearn.cross_decomposition.PLSRegression", false]], "plssvd (class in sklearn.cross_decomposition)": [[481, "sklearn.cross_decomposition.PLSSVD", false]], "poissonregressor (class in sklearn.linear_model)": [[668, "sklearn.linear_model.PoissonRegressor", false]], "polynomial_kernel() (in module sklearn.metrics.pairwise)": [[776, "sklearn.metrics.pairwise.polynomial_kernel", false]], "polynomialcountsketch (class in sklearn.kernel_approximation)": [[639, "sklearn.kernel_approximation.PolynomialCountSketch", false]], "polynomialfeatures (class in sklearn.preprocessing)": [[880, "sklearn.preprocessing.PolynomialFeatures", false]], "pop() (sklearn.utils.bunch method)": [[920, "sklearn.utils.Bunch.pop", false]], "popitem() (sklearn.utils.bunch method)": [[920, "sklearn.utils.Bunch.popitem", false]], "pos_label": [[385, "term-pos_label", true]], "power_transform() (in module sklearn.preprocessing)": [[893, "sklearn.preprocessing.power_transform", false]], "powertransformer (class in sklearn.preprocessing)": [[881, "sklearn.preprocessing.PowerTransformer", false]], "precision_recall_curve() (in module sklearn.metrics)": [[783, "sklearn.metrics.precision_recall_curve", false]], "precision_recall_fscore_support() (in module sklearn.metrics)": [[784, "sklearn.metrics.precision_recall_fscore_support", false]], "precision_score() (in module sklearn.metrics)": [[785, "sklearn.metrics.precision_score", false]], "precisionrecalldisplay (class in sklearn.metrics)": [[700, "sklearn.metrics.PrecisionRecallDisplay", false]], "precomputed": [[385, "term-precomputed", true]], "predefinedsplit (class in sklearn.model_selection)": [[814, "sklearn.model_selection.PredefinedSplit", false]], "predict": [[385, "term-predict", true]], "predict() (sklearn.calibration.calibratedclassifiercv method)": [[433, "sklearn.calibration.CalibratedClassifierCV.predict", false]], "predict() (sklearn.cluster.affinitypropagation method)": [[436, "sklearn.cluster.AffinityPropagation.predict", false]], "predict() (sklearn.cluster.birch method)": [[438, "sklearn.cluster.Birch.predict", false]], "predict() (sklearn.cluster.bisectingkmeans method)": [[439, "sklearn.cluster.BisectingKMeans.predict", false]], "predict() (sklearn.cluster.kmeans method)": [[443, "sklearn.cluster.KMeans.predict", false]], "predict() (sklearn.cluster.meanshift method)": [[444, "sklearn.cluster.MeanShift.predict", false]], "predict() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.predict", false]], "predict() (sklearn.compose.transformedtargetregressor method)": [[461, "sklearn.compose.TransformedTargetRegressor.predict", false]], "predict() (sklearn.covariance.ellipticenvelope method)": [[465, "sklearn.covariance.EllipticEnvelope.predict", false]], "predict() (sklearn.cross_decomposition.cca method)": [[478, "sklearn.cross_decomposition.CCA.predict", false]], "predict() (sklearn.cross_decomposition.plscanonical method)": [[479, "sklearn.cross_decomposition.PLSCanonical.predict", false]], "predict() (sklearn.cross_decomposition.plsregression method)": [[480, "sklearn.cross_decomposition.PLSRegression.predict", false]], "predict() (sklearn.discriminant_analysis.lineardiscriminantanalysis method)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis.predict", false]], "predict() (sklearn.discriminant_analysis.quadraticdiscriminantanalysis method)": [[547, "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.predict", false]], "predict() (sklearn.dummy.dummyclassifier method)": [[548, "sklearn.dummy.DummyClassifier.predict", false]], "predict() (sklearn.dummy.dummyregressor method)": [[549, "sklearn.dummy.DummyRegressor.predict", false]], "predict() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.predict", false]], "predict() (sklearn.ensemble.adaboostregressor method)": [[551, "sklearn.ensemble.AdaBoostRegressor.predict", false]], "predict() (sklearn.ensemble.baggingclassifier method)": [[552, "sklearn.ensemble.BaggingClassifier.predict", false]], "predict() (sklearn.ensemble.baggingregressor method)": [[553, "sklearn.ensemble.BaggingRegressor.predict", false]], "predict() (sklearn.ensemble.extratreesclassifier method)": [[554, "sklearn.ensemble.ExtraTreesClassifier.predict", false]], "predict() (sklearn.ensemble.extratreesregressor method)": [[555, "sklearn.ensemble.ExtraTreesRegressor.predict", false]], "predict() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.predict", false]], "predict() (sklearn.ensemble.gradientboostingregressor method)": [[557, "sklearn.ensemble.GradientBoostingRegressor.predict", false]], "predict() (sklearn.ensemble.histgradientboostingclassifier method)": [[558, "sklearn.ensemble.HistGradientBoostingClassifier.predict", false]], "predict() (sklearn.ensemble.histgradientboostingregressor method)": [[559, "sklearn.ensemble.HistGradientBoostingRegressor.predict", false]], "predict() (sklearn.ensemble.isolationforest method)": [[560, "sklearn.ensemble.IsolationForest.predict", false]], "predict() (sklearn.ensemble.randomforestclassifier method)": [[561, "sklearn.ensemble.RandomForestClassifier.predict", false]], "predict() (sklearn.ensemble.randomforestregressor method)": [[562, "sklearn.ensemble.RandomForestRegressor.predict", false]], "predict() (sklearn.ensemble.stackingclassifier method)": [[564, "sklearn.ensemble.StackingClassifier.predict", false]], "predict() (sklearn.ensemble.stackingregressor method)": [[565, "sklearn.ensemble.StackingRegressor.predict", false]], "predict() (sklearn.ensemble.votingclassifier method)": [[566, "sklearn.ensemble.VotingClassifier.predict", false]], "predict() (sklearn.ensemble.votingregressor method)": [[567, "sklearn.ensemble.VotingRegressor.predict", false]], "predict() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.predict", false]], "predict() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.predict", false]], "predict() (sklearn.gaussian_process.gaussianprocessclassifier method)": [[609, "sklearn.gaussian_process.GaussianProcessClassifier.predict", false]], "predict() (sklearn.gaussian_process.gaussianprocessregressor method)": [[610, "sklearn.gaussian_process.GaussianProcessRegressor.predict", false]], "predict() (sklearn.isotonic.isotonicregression method)": [[634, "sklearn.isotonic.IsotonicRegression.predict", false]], "predict() (sklearn.kernel_ridge.kernelridge method)": [[642, "sklearn.kernel_ridge.KernelRidge.predict", false]], "predict() (sklearn.linear_model.ardregression method)": [[643, "sklearn.linear_model.ARDRegression.predict", false]], "predict() (sklearn.linear_model.bayesianridge method)": [[644, "sklearn.linear_model.BayesianRidge.predict", false]], "predict() (sklearn.linear_model.elasticnet method)": [[645, "sklearn.linear_model.ElasticNet.predict", false]], "predict() (sklearn.linear_model.elasticnetcv method)": [[646, "sklearn.linear_model.ElasticNetCV.predict", false]], "predict() (sklearn.linear_model.gammaregressor method)": [[647, "sklearn.linear_model.GammaRegressor.predict", false]], "predict() (sklearn.linear_model.huberregressor method)": [[648, "sklearn.linear_model.HuberRegressor.predict", false]], "predict() (sklearn.linear_model.lars method)": [[649, "sklearn.linear_model.Lars.predict", false]], "predict() (sklearn.linear_model.larscv method)": [[650, "sklearn.linear_model.LarsCV.predict", false]], "predict() (sklearn.linear_model.lasso method)": [[651, "sklearn.linear_model.Lasso.predict", false]], "predict() (sklearn.linear_model.lassocv method)": [[652, "sklearn.linear_model.LassoCV.predict", false]], "predict() (sklearn.linear_model.lassolars method)": [[653, "sklearn.linear_model.LassoLars.predict", false]], "predict() (sklearn.linear_model.lassolarscv method)": [[654, "sklearn.linear_model.LassoLarsCV.predict", false]], "predict() (sklearn.linear_model.lassolarsic method)": [[655, "sklearn.linear_model.LassoLarsIC.predict", false]], "predict() (sklearn.linear_model.linearregression method)": [[656, "sklearn.linear_model.LinearRegression.predict", false]], "predict() (sklearn.linear_model.logisticregression method)": [[657, "sklearn.linear_model.LogisticRegression.predict", false]], "predict() (sklearn.linear_model.logisticregressioncv method)": [[658, "sklearn.linear_model.LogisticRegressionCV.predict", false]], "predict() (sklearn.linear_model.multitaskelasticnet method)": [[659, "sklearn.linear_model.MultiTaskElasticNet.predict", false]], "predict() (sklearn.linear_model.multitaskelasticnetcv method)": [[660, "sklearn.linear_model.MultiTaskElasticNetCV.predict", false]], "predict() (sklearn.linear_model.multitasklasso method)": [[661, "sklearn.linear_model.MultiTaskLasso.predict", false]], "predict() (sklearn.linear_model.multitasklassocv method)": [[662, "sklearn.linear_model.MultiTaskLassoCV.predict", false]], "predict() (sklearn.linear_model.orthogonalmatchingpursuit method)": [[663, "sklearn.linear_model.OrthogonalMatchingPursuit.predict", false]], "predict() (sklearn.linear_model.orthogonalmatchingpursuitcv method)": [[664, "sklearn.linear_model.OrthogonalMatchingPursuitCV.predict", false]], "predict() (sklearn.linear_model.passiveaggressiveclassifier method)": [[665, "sklearn.linear_model.PassiveAggressiveClassifier.predict", false]], "predict() (sklearn.linear_model.passiveaggressiveregressor method)": [[666, "sklearn.linear_model.PassiveAggressiveRegressor.predict", false]], "predict() (sklearn.linear_model.perceptron method)": [[667, "sklearn.linear_model.Perceptron.predict", false]], "predict() (sklearn.linear_model.poissonregressor method)": [[668, "sklearn.linear_model.PoissonRegressor.predict", false]], "predict() (sklearn.linear_model.quantileregressor method)": [[669, "sklearn.linear_model.QuantileRegressor.predict", false]], "predict() (sklearn.linear_model.ransacregressor method)": [[670, "sklearn.linear_model.RANSACRegressor.predict", false]], "predict() (sklearn.linear_model.ridge method)": [[671, "sklearn.linear_model.Ridge.predict", false]], "predict() (sklearn.linear_model.ridgeclassifier method)": [[673, "sklearn.linear_model.RidgeClassifier.predict", false]], "predict() (sklearn.linear_model.ridgeclassifiercv method)": [[674, "sklearn.linear_model.RidgeClassifierCV.predict", false]], "predict() (sklearn.linear_model.ridgecv method)": [[672, "sklearn.linear_model.RidgeCV.predict", false]], "predict() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.predict", false]], "predict() (sklearn.linear_model.sgdoneclasssvm method)": [[676, "sklearn.linear_model.SGDOneClassSVM.predict", false]], "predict() (sklearn.linear_model.sgdregressor method)": [[677, "sklearn.linear_model.SGDRegressor.predict", false]], "predict() (sklearn.linear_model.theilsenregressor method)": [[678, "sklearn.linear_model.TheilSenRegressor.predict", false]], "predict() (sklearn.linear_model.tweedieregressor method)": [[679, "sklearn.linear_model.TweedieRegressor.predict", false]], "predict() (sklearn.mixture.bayesiangaussianmixture method)": [[798, "sklearn.mixture.BayesianGaussianMixture.predict", false]], "predict() (sklearn.mixture.gaussianmixture method)": [[799, "sklearn.mixture.GaussianMixture.predict", false]], "predict() (sklearn.model_selection.fixedthresholdclassifier method)": [[800, "sklearn.model_selection.FixedThresholdClassifier.predict", false]], "predict() (sklearn.model_selection.gridsearchcv method)": [[801, "sklearn.model_selection.GridSearchCV.predict", false]], "predict() (sklearn.model_selection.halvinggridsearchcv method)": [[804, "sklearn.model_selection.HalvingGridSearchCV.predict", false]], "predict() (sklearn.model_selection.halvingrandomsearchcv method)": [[805, "sklearn.model_selection.HalvingRandomSearchCV.predict", false]], "predict() (sklearn.model_selection.randomizedsearchcv method)": [[815, "sklearn.model_selection.RandomizedSearchCV.predict", false]], "predict() (sklearn.model_selection.tunedthresholdclassifiercv method)": [[823, "sklearn.model_selection.TunedThresholdClassifierCV.predict", false]], "predict() (sklearn.multiclass.onevsoneclassifier method)": [[833, "sklearn.multiclass.OneVsOneClassifier.predict", false]], "predict() (sklearn.multiclass.onevsrestclassifier method)": [[834, "sklearn.multiclass.OneVsRestClassifier.predict", false]], "predict() (sklearn.multiclass.outputcodeclassifier method)": [[835, "sklearn.multiclass.OutputCodeClassifier.predict", false]], "predict() (sklearn.multioutput.classifierchain method)": [[836, "sklearn.multioutput.ClassifierChain.predict", false]], "predict() (sklearn.multioutput.multioutputclassifier method)": [[837, "sklearn.multioutput.MultiOutputClassifier.predict", false]], "predict() (sklearn.multioutput.multioutputregressor method)": [[838, "sklearn.multioutput.MultiOutputRegressor.predict", false]], "predict() (sklearn.multioutput.regressorchain method)": [[839, "sklearn.multioutput.RegressorChain.predict", false]], "predict() (sklearn.naive_bayes.bernoullinb method)": [[840, "sklearn.naive_bayes.BernoulliNB.predict", false]], "predict() (sklearn.naive_bayes.categoricalnb method)": [[841, "sklearn.naive_bayes.CategoricalNB.predict", false]], "predict() (sklearn.naive_bayes.complementnb method)": [[842, "sklearn.naive_bayes.ComplementNB.predict", false]], "predict() (sklearn.naive_bayes.gaussiannb method)": [[843, "sklearn.naive_bayes.GaussianNB.predict", false]], "predict() (sklearn.naive_bayes.multinomialnb method)": [[844, "sklearn.naive_bayes.MultinomialNB.predict", false]], "predict() (sklearn.neighbors.kneighborsclassifier method)": [[847, "sklearn.neighbors.KNeighborsClassifier.predict", false]], "predict() (sklearn.neighbors.kneighborsregressor method)": [[848, "sklearn.neighbors.KNeighborsRegressor.predict", false]], "predict() (sklearn.neighbors.localoutlierfactor method)": [[851, "sklearn.neighbors.LocalOutlierFactor.predict", false]], "predict() (sklearn.neighbors.nearestcentroid method)": [[852, "sklearn.neighbors.NearestCentroid.predict", false]], "predict() (sklearn.neighbors.radiusneighborsclassifier method)": [[855, "sklearn.neighbors.RadiusNeighborsClassifier.predict", false]], "predict() (sklearn.neighbors.radiusneighborsregressor method)": [[856, "sklearn.neighbors.RadiusNeighborsRegressor.predict", false]], "predict() (sklearn.neural_network.mlpclassifier method)": [[862, "sklearn.neural_network.MLPClassifier.predict", false]], "predict() (sklearn.neural_network.mlpregressor method)": [[863, "sklearn.neural_network.MLPRegressor.predict", false]], "predict() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.predict", false]], "predict() (sklearn.semi_supervised.labelpropagation method)": [[900, "sklearn.semi_supervised.LabelPropagation.predict", false]], "predict() (sklearn.semi_supervised.labelspreading method)": [[901, "sklearn.semi_supervised.LabelSpreading.predict", false]], "predict() (sklearn.semi_supervised.selftrainingclassifier method)": [[902, "sklearn.semi_supervised.SelfTrainingClassifier.predict", false]], "predict() (sklearn.svm.linearsvc method)": [[905, "sklearn.svm.LinearSVC.predict", false]], "predict() (sklearn.svm.linearsvr method)": [[906, "sklearn.svm.LinearSVR.predict", false]], "predict() (sklearn.svm.nusvc method)": [[907, "sklearn.svm.NuSVC.predict", false]], "predict() (sklearn.svm.nusvr method)": [[908, "sklearn.svm.NuSVR.predict", false]], "predict() (sklearn.svm.oneclasssvm method)": [[909, "sklearn.svm.OneClassSVM.predict", false]], "predict() (sklearn.svm.svc method)": [[910, "sklearn.svm.SVC.predict", false]], "predict() (sklearn.svm.svr method)": [[911, "sklearn.svm.SVR.predict", false]], "predict() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.predict", false]], "predict() (sklearn.tree.decisiontreeregressor method)": [[914, "sklearn.tree.DecisionTreeRegressor.predict", false]], "predict() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.predict", false]], "predict() (sklearn.tree.extratreeregressor method)": [[916, "sklearn.tree.ExtraTreeRegressor.predict", false]], "predict_joint_log_proba() (sklearn.naive_bayes.bernoullinb method)": [[840, "sklearn.naive_bayes.BernoulliNB.predict_joint_log_proba", false]], "predict_joint_log_proba() (sklearn.naive_bayes.categoricalnb method)": [[841, "sklearn.naive_bayes.CategoricalNB.predict_joint_log_proba", false]], "predict_joint_log_proba() (sklearn.naive_bayes.complementnb method)": [[842, "sklearn.naive_bayes.ComplementNB.predict_joint_log_proba", false]], "predict_joint_log_proba() (sklearn.naive_bayes.gaussiannb method)": [[843, "sklearn.naive_bayes.GaussianNB.predict_joint_log_proba", false]], "predict_joint_log_proba() (sklearn.naive_bayes.multinomialnb method)": [[844, "sklearn.naive_bayes.MultinomialNB.predict_joint_log_proba", false]], "predict_log_proba": [[385, "term-predict_log_proba", true]], "predict_log_proba() (sklearn.discriminant_analysis.lineardiscriminantanalysis method)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis.predict_log_proba", false]], "predict_log_proba() (sklearn.discriminant_analysis.quadraticdiscriminantanalysis method)": [[547, "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.predict_log_proba", false]], "predict_log_proba() (sklearn.dummy.dummyclassifier method)": [[548, "sklearn.dummy.DummyClassifier.predict_log_proba", false]], "predict_log_proba() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.predict_log_proba", false]], "predict_log_proba() (sklearn.ensemble.baggingclassifier method)": [[552, "sklearn.ensemble.BaggingClassifier.predict_log_proba", false]], "predict_log_proba() (sklearn.ensemble.extratreesclassifier method)": [[554, "sklearn.ensemble.ExtraTreesClassifier.predict_log_proba", false]], "predict_log_proba() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.predict_log_proba", false]], "predict_log_proba() (sklearn.ensemble.randomforestclassifier method)": [[561, "sklearn.ensemble.RandomForestClassifier.predict_log_proba", false]], "predict_log_proba() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.predict_log_proba", false]], "predict_log_proba() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.predict_log_proba", false]], "predict_log_proba() (sklearn.linear_model.logisticregression method)": [[657, "sklearn.linear_model.LogisticRegression.predict_log_proba", false]], "predict_log_proba() (sklearn.linear_model.logisticregressioncv method)": [[658, "sklearn.linear_model.LogisticRegressionCV.predict_log_proba", false]], "predict_log_proba() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.predict_log_proba", false]], "predict_log_proba() (sklearn.model_selection.fixedthresholdclassifier method)": [[800, "sklearn.model_selection.FixedThresholdClassifier.predict_log_proba", false]], "predict_log_proba() (sklearn.model_selection.gridsearchcv method)": [[801, "sklearn.model_selection.GridSearchCV.predict_log_proba", false]], "predict_log_proba() (sklearn.model_selection.halvinggridsearchcv method)": [[804, "sklearn.model_selection.HalvingGridSearchCV.predict_log_proba", false]], "predict_log_proba() (sklearn.model_selection.halvingrandomsearchcv method)": [[805, "sklearn.model_selection.HalvingRandomSearchCV.predict_log_proba", false]], "predict_log_proba() (sklearn.model_selection.randomizedsearchcv method)": [[815, "sklearn.model_selection.RandomizedSearchCV.predict_log_proba", false]], "predict_log_proba() (sklearn.model_selection.tunedthresholdclassifiercv method)": [[823, "sklearn.model_selection.TunedThresholdClassifierCV.predict_log_proba", false]], "predict_log_proba() (sklearn.multioutput.classifierchain method)": [[836, "sklearn.multioutput.ClassifierChain.predict_log_proba", false]], "predict_log_proba() (sklearn.naive_bayes.bernoullinb method)": [[840, "sklearn.naive_bayes.BernoulliNB.predict_log_proba", false]], "predict_log_proba() (sklearn.naive_bayes.categoricalnb method)": [[841, "sklearn.naive_bayes.CategoricalNB.predict_log_proba", false]], "predict_log_proba() (sklearn.naive_bayes.complementnb method)": [[842, "sklearn.naive_bayes.ComplementNB.predict_log_proba", false]], "predict_log_proba() (sklearn.naive_bayes.gaussiannb method)": [[843, "sklearn.naive_bayes.GaussianNB.predict_log_proba", false]], "predict_log_proba() (sklearn.naive_bayes.multinomialnb method)": [[844, "sklearn.naive_bayes.MultinomialNB.predict_log_proba", false]], "predict_log_proba() (sklearn.neighbors.nearestcentroid method)": [[852, "sklearn.neighbors.NearestCentroid.predict_log_proba", false]], "predict_log_proba() (sklearn.neural_network.mlpclassifier method)": [[862, "sklearn.neural_network.MLPClassifier.predict_log_proba", false]], "predict_log_proba() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.predict_log_proba", false]], "predict_log_proba() (sklearn.semi_supervised.selftrainingclassifier method)": [[902, "sklearn.semi_supervised.SelfTrainingClassifier.predict_log_proba", false]], "predict_log_proba() (sklearn.svm.nusvc method)": [[907, "sklearn.svm.NuSVC.predict_log_proba", false]], "predict_log_proba() (sklearn.svm.svc method)": [[910, "sklearn.svm.SVC.predict_log_proba", false]], "predict_log_proba() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.predict_log_proba", false]], "predict_log_proba() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.predict_log_proba", false]], "predict_proba": [[385, "term-predict_proba", true]], "predict_proba() (sklearn.calibration.calibratedclassifiercv method)": [[433, "sklearn.calibration.CalibratedClassifierCV.predict_proba", false]], "predict_proba() (sklearn.discriminant_analysis.lineardiscriminantanalysis method)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis.predict_proba", false]], "predict_proba() (sklearn.discriminant_analysis.quadraticdiscriminantanalysis method)": [[547, "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.predict_proba", false]], "predict_proba() (sklearn.dummy.dummyclassifier method)": [[548, "sklearn.dummy.DummyClassifier.predict_proba", false]], "predict_proba() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.predict_proba", false]], "predict_proba() (sklearn.ensemble.baggingclassifier method)": [[552, "sklearn.ensemble.BaggingClassifier.predict_proba", false]], "predict_proba() (sklearn.ensemble.extratreesclassifier method)": [[554, "sklearn.ensemble.ExtraTreesClassifier.predict_proba", false]], "predict_proba() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.predict_proba", false]], "predict_proba() (sklearn.ensemble.histgradientboostingclassifier method)": [[558, "sklearn.ensemble.HistGradientBoostingClassifier.predict_proba", false]], "predict_proba() (sklearn.ensemble.randomforestclassifier method)": [[561, "sklearn.ensemble.RandomForestClassifier.predict_proba", false]], "predict_proba() (sklearn.ensemble.stackingclassifier method)": [[564, "sklearn.ensemble.StackingClassifier.predict_proba", false]], "predict_proba() (sklearn.ensemble.votingclassifier method)": [[566, "sklearn.ensemble.VotingClassifier.predict_proba", false]], "predict_proba() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.predict_proba", false]], "predict_proba() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.predict_proba", false]], "predict_proba() (sklearn.gaussian_process.gaussianprocessclassifier method)": [[609, "sklearn.gaussian_process.GaussianProcessClassifier.predict_proba", false]], "predict_proba() (sklearn.linear_model.logisticregression method)": [[657, "sklearn.linear_model.LogisticRegression.predict_proba", false]], "predict_proba() (sklearn.linear_model.logisticregressioncv method)": [[658, "sklearn.linear_model.LogisticRegressionCV.predict_proba", false]], "predict_proba() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.predict_proba", false]], "predict_proba() (sklearn.mixture.bayesiangaussianmixture method)": [[798, "sklearn.mixture.BayesianGaussianMixture.predict_proba", false]], "predict_proba() (sklearn.mixture.gaussianmixture method)": [[799, "sklearn.mixture.GaussianMixture.predict_proba", false]], "predict_proba() (sklearn.model_selection.fixedthresholdclassifier method)": [[800, "sklearn.model_selection.FixedThresholdClassifier.predict_proba", false]], "predict_proba() (sklearn.model_selection.gridsearchcv method)": [[801, "sklearn.model_selection.GridSearchCV.predict_proba", false]], "predict_proba() (sklearn.model_selection.halvinggridsearchcv method)": [[804, "sklearn.model_selection.HalvingGridSearchCV.predict_proba", false]], "predict_proba() (sklearn.model_selection.halvingrandomsearchcv method)": [[805, "sklearn.model_selection.HalvingRandomSearchCV.predict_proba", false]], "predict_proba() (sklearn.model_selection.randomizedsearchcv method)": [[815, "sklearn.model_selection.RandomizedSearchCV.predict_proba", false]], "predict_proba() (sklearn.model_selection.tunedthresholdclassifiercv method)": [[823, "sklearn.model_selection.TunedThresholdClassifierCV.predict_proba", false]], "predict_proba() (sklearn.multiclass.onevsrestclassifier method)": [[834, "sklearn.multiclass.OneVsRestClassifier.predict_proba", false]], "predict_proba() (sklearn.multioutput.classifierchain method)": [[836, "sklearn.multioutput.ClassifierChain.predict_proba", false]], "predict_proba() (sklearn.multioutput.multioutputclassifier method)": [[837, "sklearn.multioutput.MultiOutputClassifier.predict_proba", false]], "predict_proba() (sklearn.naive_bayes.bernoullinb method)": [[840, "sklearn.naive_bayes.BernoulliNB.predict_proba", false]], "predict_proba() (sklearn.naive_bayes.categoricalnb method)": [[841, "sklearn.naive_bayes.CategoricalNB.predict_proba", false]], "predict_proba() (sklearn.naive_bayes.complementnb method)": [[842, "sklearn.naive_bayes.ComplementNB.predict_proba", false]], "predict_proba() (sklearn.naive_bayes.gaussiannb method)": [[843, "sklearn.naive_bayes.GaussianNB.predict_proba", false]], "predict_proba() (sklearn.naive_bayes.multinomialnb method)": [[844, "sklearn.naive_bayes.MultinomialNB.predict_proba", false]], "predict_proba() (sklearn.neighbors.kneighborsclassifier method)": [[847, "sklearn.neighbors.KNeighborsClassifier.predict_proba", false]], "predict_proba() (sklearn.neighbors.nearestcentroid method)": [[852, "sklearn.neighbors.NearestCentroid.predict_proba", false]], "predict_proba() (sklearn.neighbors.radiusneighborsclassifier method)": [[855, "sklearn.neighbors.RadiusNeighborsClassifier.predict_proba", false]], "predict_proba() (sklearn.neural_network.mlpclassifier method)": [[862, "sklearn.neural_network.MLPClassifier.predict_proba", false]], "predict_proba() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.predict_proba", false]], "predict_proba() (sklearn.semi_supervised.labelpropagation method)": [[900, "sklearn.semi_supervised.LabelPropagation.predict_proba", false]], "predict_proba() (sklearn.semi_supervised.labelspreading method)": [[901, "sklearn.semi_supervised.LabelSpreading.predict_proba", false]], "predict_proba() (sklearn.semi_supervised.selftrainingclassifier method)": [[902, "sklearn.semi_supervised.SelfTrainingClassifier.predict_proba", false]], "predict_proba() (sklearn.svm.nusvc method)": [[907, "sklearn.svm.NuSVC.predict_proba", false]], "predict_proba() (sklearn.svm.svc method)": [[910, "sklearn.svm.SVC.predict_proba", false]], "predict_proba() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.predict_proba", false]], "predict_proba() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.predict_proba", false]], "predictionerrordisplay (class in sklearn.metrics)": [[701, "sklearn.metrics.PredictionErrorDisplay", false]], "predictor": [[385, "term-predictor", true]], "predictors": [[385, "term-predictors", true]], "print_progress() (sklearn.utils.parallel.parallel method)": [[967, "sklearn.utils.parallel.Parallel.print_progress", false]], "process_routing() (in module sklearn.utils.metadata_routing)": [[961, "sklearn.utils.metadata_routing.process_routing", false]], "product (class in sklearn.gaussian_process.kernels)": [[620, "sklearn.gaussian_process.kernels.Product", false]], "quadraticdiscriminantanalysis (class in sklearn.discriminant_analysis)": [[547, "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis", false]], "quantile_transform() (in module sklearn.preprocessing)": [[894, "sklearn.preprocessing.quantile_transform", false]], "quantileregressor (class in sklearn.linear_model)": [[669, "sklearn.linear_model.QuantileRegressor", false]], "quantiletransformer (class in sklearn.preprocessing)": [[882, "sklearn.preprocessing.QuantileTransformer", false]], "query() (sklearn.neighbors.balltree method)": [[845, "sklearn.neighbors.BallTree.query", false]], "query() (sklearn.neighbors.kdtree method)": [[846, "sklearn.neighbors.KDTree.query", false]], "query_radius() (sklearn.neighbors.balltree method)": [[845, "sklearn.neighbors.BallTree.query_radius", false]], "query_radius() (sklearn.neighbors.kdtree method)": [[846, "sklearn.neighbors.KDTree.query_radius", false]], "r2_score() (in module sklearn.metrics)": [[786, "sklearn.metrics.r2_score", false]], "r_regression() (in module sklearn.feature_selection)": [[607, "sklearn.feature_selection.r_regression", false]], "radius_neighbors() (sklearn.neighbors.nearestneighbors method)": [[853, "sklearn.neighbors.NearestNeighbors.radius_neighbors", false]], "radius_neighbors() (sklearn.neighbors.radiusneighborsclassifier method)": [[855, "sklearn.neighbors.RadiusNeighborsClassifier.radius_neighbors", false]], "radius_neighbors() (sklearn.neighbors.radiusneighborsregressor method)": [[856, "sklearn.neighbors.RadiusNeighborsRegressor.radius_neighbors", false]], "radius_neighbors() (sklearn.neighbors.radiusneighborstransformer method)": [[857, "sklearn.neighbors.RadiusNeighborsTransformer.radius_neighbors", false]], "radius_neighbors_graph() (in module sklearn.neighbors)": [[859, "sklearn.neighbors.radius_neighbors_graph", false]], "radius_neighbors_graph() (sklearn.neighbors.nearestneighbors method)": [[853, "sklearn.neighbors.NearestNeighbors.radius_neighbors_graph", false]], "radius_neighbors_graph() (sklearn.neighbors.radiusneighborsclassifier method)": [[855, "sklearn.neighbors.RadiusNeighborsClassifier.radius_neighbors_graph", false]], "radius_neighbors_graph() (sklearn.neighbors.radiusneighborsregressor method)": [[856, "sklearn.neighbors.RadiusNeighborsRegressor.radius_neighbors_graph", false]], "radius_neighbors_graph() (sklearn.neighbors.radiusneighborstransformer method)": [[857, "sklearn.neighbors.RadiusNeighborsTransformer.radius_neighbors_graph", false]], "radiusneighborsclassifier (class in sklearn.neighbors)": [[855, "sklearn.neighbors.RadiusNeighborsClassifier", false]], "radiusneighborsregressor (class in sklearn.neighbors)": [[856, "sklearn.neighbors.RadiusNeighborsRegressor", false]], "radiusneighborstransformer (class in sklearn.neighbors)": [[857, "sklearn.neighbors.RadiusNeighborsTransformer", false]], "rand_score() (in module sklearn.metrics)": [[787, "sklearn.metrics.rand_score", false]], "random_state": [[385, "term-random_state", true]], "randomforestclassifier (class in sklearn.ensemble)": [[561, "sklearn.ensemble.RandomForestClassifier", false]], "randomforestregressor (class in sklearn.ensemble)": [[562, "sklearn.ensemble.RandomForestRegressor", false]], "randomized_range_finder() (in module sklearn.utils.extmath)": [[948, "sklearn.utils.extmath.randomized_range_finder", false]], "randomized_svd() (in module sklearn.utils.extmath)": [[949, "sklearn.utils.extmath.randomized_svd", false]], "randomizedsearchcv (class in sklearn.model_selection)": [[815, "sklearn.model_selection.RandomizedSearchCV", false]], "randomtreesembedding (class in sklearn.ensemble)": [[563, "sklearn.ensemble.RandomTreesEmbedding", false]], "ransacregressor (class in sklearn.linear_model)": [[670, "sklearn.linear_model.RANSACRegressor", false]], "rationalquadratic (class in sklearn.gaussian_process.kernels)": [[622, "sklearn.gaussian_process.kernels.RationalQuadratic", false]], "rbf (class in sklearn.gaussian_process.kernels)": [[621, "sklearn.gaussian_process.kernels.RBF", false]], "rbf_kernel() (in module sklearn.metrics.pairwise)": [[777, "sklearn.metrics.pairwise.rbf_kernel", false]], "rbfsampler (class in sklearn.kernel_approximation)": [[640, "sklearn.kernel_approximation.RBFSampler", false]], "recall_score() (in module sklearn.metrics)": [[788, "sklearn.metrics.recall_score", false]], "reconstruct_from_patches_2d() (in module sklearn.feature_extraction.image)": [[585, "sklearn.feature_extraction.image.reconstruct_from_patches_2d", false]], "reconstruction_error() (sklearn.manifold.isomap method)": [[688, "sklearn.manifold.Isomap.reconstruction_error", false]], "rectangular": [[385, "term-rectangular", true]], "regressor": [[385, "term-regressor", true]], "regressorchain (class in sklearn.multioutput)": [[839, "sklearn.multioutput.RegressorChain", false]], "regressormixin (class in sklearn.base)": [[426, "sklearn.base.RegressorMixin", false]], "regressors": [[385, "term-regressors", true]], "regressortags (class in sklearn.utils)": [[923, "sklearn.utils.RegressorTags", false]], "repeatedkfold (class in sklearn.model_selection)": [[816, "sklearn.model_selection.RepeatedKFold", false]], "repeatedstratifiedkfold (class in sklearn.model_selection)": [[817, "sklearn.model_selection.RepeatedStratifiedKFold", false]], "requires_vector_input (sklearn.gaussian_process.kernels.compoundkernel property)": [[611, "sklearn.gaussian_process.kernels.CompoundKernel.requires_vector_input", false]], "requires_vector_input (sklearn.gaussian_process.kernels.constantkernel property)": [[612, "sklearn.gaussian_process.kernels.ConstantKernel.requires_vector_input", false]], "requires_vector_input (sklearn.gaussian_process.kernels.dotproduct property)": [[613, "sklearn.gaussian_process.kernels.DotProduct.requires_vector_input", false]], "requires_vector_input (sklearn.gaussian_process.kernels.exponentiation property)": [[615, "sklearn.gaussian_process.kernels.Exponentiation.requires_vector_input", false]], "requires_vector_input (sklearn.gaussian_process.kernels.expsinesquared property)": [[614, "sklearn.gaussian_process.kernels.ExpSineSquared.requires_vector_input", false]], "requires_vector_input (sklearn.gaussian_process.kernels.kernel property)": [[617, "sklearn.gaussian_process.kernels.Kernel.requires_vector_input", false]], "requires_vector_input (sklearn.gaussian_process.kernels.matern property)": [[618, "sklearn.gaussian_process.kernels.Matern.requires_vector_input", false]], "requires_vector_input (sklearn.gaussian_process.kernels.pairwisekernel property)": [[619, "sklearn.gaussian_process.kernels.PairwiseKernel.requires_vector_input", false]], "requires_vector_input (sklearn.gaussian_process.kernels.product property)": [[620, "sklearn.gaussian_process.kernels.Product.requires_vector_input", false]], "requires_vector_input (sklearn.gaussian_process.kernels.rationalquadratic property)": [[622, "sklearn.gaussian_process.kernels.RationalQuadratic.requires_vector_input", false]], "requires_vector_input (sklearn.gaussian_process.kernels.rbf property)": [[621, "sklearn.gaussian_process.kernels.RBF.requires_vector_input", false]], "requires_vector_input (sklearn.gaussian_process.kernels.sum property)": [[623, "sklearn.gaussian_process.kernels.Sum.requires_vector_input", false]], "requires_vector_input (sklearn.gaussian_process.kernels.whitekernel property)": [[624, "sklearn.gaussian_process.kernels.WhiteKernel.requires_vector_input", false]], "resample() (in module sklearn.utils)": [[970, "sklearn.utils.resample", false]], "reset_n_calls() (sklearn.neighbors.balltree method)": [[845, "sklearn.neighbors.BallTree.reset_n_calls", false]], "reset_n_calls() (sklearn.neighbors.kdtree method)": [[846, "sklearn.neighbors.KDTree.reset_n_calls", false]], "restrict() (sklearn.feature_extraction.dictvectorizer method)": [[579, "sklearn.feature_extraction.DictVectorizer.restrict", false]], "reweight_covariance() (sklearn.covariance.ellipticenvelope method)": [[465, "sklearn.covariance.EllipticEnvelope.reweight_covariance", false]], "reweight_covariance() (sklearn.covariance.mincovdet method)": [[470, "sklearn.covariance.MinCovDet.reweight_covariance", false]], "rfe (class in sklearn.feature_selection)": [[591, "sklearn.feature_selection.RFE", false]], "rfecv (class in sklearn.feature_selection)": [[592, "sklearn.feature_selection.RFECV", false]], "ridge (class in sklearn.linear_model)": [[671, "sklearn.linear_model.Ridge", false]], "ridge_regression() (in module sklearn.linear_model)": [[686, "sklearn.linear_model.ridge_regression", false]], "ridgeclassifier (class in sklearn.linear_model)": [[673, "sklearn.linear_model.RidgeClassifier", false]], "ridgeclassifiercv (class in sklearn.linear_model)": [[674, "sklearn.linear_model.RidgeClassifierCV", false]], "ridgecv (class in sklearn.linear_model)": [[672, "sklearn.linear_model.RidgeCV", false]], "robust_scale() (in module sklearn.preprocessing)": [[895, "sklearn.preprocessing.robust_scale", false]], "robustscaler (class in sklearn.preprocessing)": [[883, "sklearn.preprocessing.RobustScaler", false]], "roc_auc_score() (in module sklearn.metrics)": [[789, "sklearn.metrics.roc_auc_score", false]], "roc_curve() (in module sklearn.metrics)": [[790, "sklearn.metrics.roc_curve", false]], "roccurvedisplay (class in sklearn.metrics)": [[702, "sklearn.metrics.RocCurveDisplay", false]], "root_mean_squared_error() (in module sklearn.metrics)": [[791, "sklearn.metrics.root_mean_squared_error", false]], "root_mean_squared_log_error() (in module sklearn.metrics)": [[792, "sklearn.metrics.root_mean_squared_log_error", false]], "route_params() (sklearn.utils.metadata_routing.metadatarouter method)": [[958, "sklearn.utils.metadata_routing.MetadataRouter.route_params", false]], "router": [[385, "term-router", true]], "safe_mask() (in module sklearn.utils)": [[971, "sklearn.utils.safe_mask", false]], "safe_sparse_dot() (in module sklearn.utils.extmath)": [[950, "sklearn.utils.extmath.safe_sparse_dot", false]], "safe_sqr() (in module sklearn.utils)": [[972, "sklearn.utils.safe_sqr", false]], "sample": [[385, "term-sample", true]], "sample properties": [[385, "term-sample-properties", true]], "sample property": [[385, "term-sample-property", true]], "sample() (sklearn.mixture.bayesiangaussianmixture method)": [[798, "sklearn.mixture.BayesianGaussianMixture.sample", false]], "sample() (sklearn.mixture.gaussianmixture method)": [[799, "sklearn.mixture.GaussianMixture.sample", false]], "sample() (sklearn.neighbors.kerneldensity method)": [[850, "sklearn.neighbors.KernelDensity.sample", false]], "sample_weight": [[385, "term-sample_weight", true]], "sample_without_replacement() (in module sklearn.utils.random)": [[969, "sklearn.utils.random.sample_without_replacement", false]], "sample_y() (sklearn.gaussian_process.gaussianprocessregressor method)": [[610, "sklearn.gaussian_process.GaussianProcessRegressor.sample_y", false]], "samples": [[385, "term-samples", true]], "scale() (in module sklearn.preprocessing)": [[896, "sklearn.preprocessing.scale", false]], "scikit-learn enhancement proposals": [[385, "term-scikit-learn-enhancement-proposals", true]], "scikit-learn-contrib": [[385, "term-scikit-learn-contrib", true]], "score": [[385, "term-score", true]], "score() (sklearn.base.classifiermixin method)": [[420, "sklearn.base.ClassifierMixin.score", false]], "score() (sklearn.base.densitymixin method)": [[422, "sklearn.base.DensityMixin.score", false]], "score() (sklearn.base.regressormixin method)": [[426, "sklearn.base.RegressorMixin.score", false]], "score() (sklearn.calibration.calibratedclassifiercv method)": [[433, "sklearn.calibration.CalibratedClassifierCV.score", false]], "score() (sklearn.cluster.bisectingkmeans method)": [[439, "sklearn.cluster.BisectingKMeans.score", false]], "score() (sklearn.cluster.kmeans method)": [[443, "sklearn.cluster.KMeans.score", false]], "score() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.score", false]], "score() (sklearn.compose.transformedtargetregressor method)": [[461, "sklearn.compose.TransformedTargetRegressor.score", false]], "score() (sklearn.covariance.ellipticenvelope method)": [[465, "sklearn.covariance.EllipticEnvelope.score", false]], "score() (sklearn.covariance.empiricalcovariance method)": [[466, "sklearn.covariance.EmpiricalCovariance.score", false]], "score() (sklearn.covariance.graphicallasso method)": [[467, "sklearn.covariance.GraphicalLasso.score", false]], "score() (sklearn.covariance.graphicallassocv method)": [[468, "sklearn.covariance.GraphicalLassoCV.score", false]], "score() (sklearn.covariance.ledoitwolf method)": [[469, "sklearn.covariance.LedoitWolf.score", false]], "score() (sklearn.covariance.mincovdet method)": [[470, "sklearn.covariance.MinCovDet.score", false]], "score() (sklearn.covariance.oas method)": [[471, "sklearn.covariance.OAS.score", false]], "score() (sklearn.covariance.shrunkcovariance method)": [[472, "sklearn.covariance.ShrunkCovariance.score", false]], "score() (sklearn.cross_decomposition.cca method)": [[478, "sklearn.cross_decomposition.CCA.score", false]], "score() (sklearn.cross_decomposition.plscanonical method)": [[479, "sklearn.cross_decomposition.PLSCanonical.score", false]], "score() (sklearn.cross_decomposition.plsregression method)": [[480, "sklearn.cross_decomposition.PLSRegression.score", false]], "score() (sklearn.decomposition.factoranalysis method)": [[529, "sklearn.decomposition.FactorAnalysis.score", false]], "score() (sklearn.decomposition.latentdirichletallocation method)": [[533, "sklearn.decomposition.LatentDirichletAllocation.score", false]], "score() (sklearn.decomposition.pca method)": [[538, "sklearn.decomposition.PCA.score", false]], "score() (sklearn.discriminant_analysis.lineardiscriminantanalysis method)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis.score", false]], "score() (sklearn.discriminant_analysis.quadraticdiscriminantanalysis method)": [[547, "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.score", false]], "score() (sklearn.dummy.dummyclassifier method)": [[548, "sklearn.dummy.DummyClassifier.score", false]], "score() (sklearn.dummy.dummyregressor method)": [[549, "sklearn.dummy.DummyRegressor.score", false]], "score() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.score", false]], "score() (sklearn.ensemble.adaboostregressor method)": [[551, "sklearn.ensemble.AdaBoostRegressor.score", false]], "score() (sklearn.ensemble.baggingclassifier method)": [[552, "sklearn.ensemble.BaggingClassifier.score", false]], "score() (sklearn.ensemble.baggingregressor method)": [[553, "sklearn.ensemble.BaggingRegressor.score", false]], "score() (sklearn.ensemble.extratreesclassifier method)": [[554, "sklearn.ensemble.ExtraTreesClassifier.score", false]], "score() (sklearn.ensemble.extratreesregressor method)": [[555, "sklearn.ensemble.ExtraTreesRegressor.score", false]], "score() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.score", false]], "score() (sklearn.ensemble.gradientboostingregressor method)": [[557, "sklearn.ensemble.GradientBoostingRegressor.score", false]], "score() (sklearn.ensemble.histgradientboostingclassifier method)": [[558, "sklearn.ensemble.HistGradientBoostingClassifier.score", false]], "score() (sklearn.ensemble.histgradientboostingregressor method)": [[559, "sklearn.ensemble.HistGradientBoostingRegressor.score", false]], "score() (sklearn.ensemble.randomforestclassifier method)": [[561, "sklearn.ensemble.RandomForestClassifier.score", false]], "score() (sklearn.ensemble.randomforestregressor method)": [[562, "sklearn.ensemble.RandomForestRegressor.score", false]], "score() (sklearn.ensemble.stackingclassifier method)": [[564, "sklearn.ensemble.StackingClassifier.score", false]], "score() (sklearn.ensemble.stackingregressor method)": [[565, "sklearn.ensemble.StackingRegressor.score", false]], "score() (sklearn.ensemble.votingclassifier method)": [[566, "sklearn.ensemble.VotingClassifier.score", false]], "score() (sklearn.ensemble.votingregressor method)": [[567, "sklearn.ensemble.VotingRegressor.score", false]], "score() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.score", false]], "score() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.score", false]], "score() (sklearn.gaussian_process.gaussianprocessclassifier method)": [[609, "sklearn.gaussian_process.GaussianProcessClassifier.score", false]], "score() (sklearn.gaussian_process.gaussianprocessregressor method)": [[610, "sklearn.gaussian_process.GaussianProcessRegressor.score", false]], "score() (sklearn.isotonic.isotonicregression method)": [[634, "sklearn.isotonic.IsotonicRegression.score", false]], "score() (sklearn.kernel_ridge.kernelridge method)": [[642, "sklearn.kernel_ridge.KernelRidge.score", false]], "score() (sklearn.linear_model.ardregression method)": [[643, "sklearn.linear_model.ARDRegression.score", false]], "score() (sklearn.linear_model.bayesianridge method)": [[644, "sklearn.linear_model.BayesianRidge.score", false]], "score() (sklearn.linear_model.elasticnet method)": [[645, "sklearn.linear_model.ElasticNet.score", false]], "score() (sklearn.linear_model.elasticnetcv method)": [[646, "sklearn.linear_model.ElasticNetCV.score", false]], "score() (sklearn.linear_model.gammaregressor method)": [[647, "sklearn.linear_model.GammaRegressor.score", false]], "score() (sklearn.linear_model.huberregressor method)": [[648, "sklearn.linear_model.HuberRegressor.score", false]], "score() (sklearn.linear_model.lars method)": [[649, "sklearn.linear_model.Lars.score", false]], "score() (sklearn.linear_model.larscv method)": [[650, "sklearn.linear_model.LarsCV.score", false]], "score() (sklearn.linear_model.lasso method)": [[651, "sklearn.linear_model.Lasso.score", false]], "score() (sklearn.linear_model.lassocv method)": [[652, "sklearn.linear_model.LassoCV.score", false]], "score() (sklearn.linear_model.lassolars method)": [[653, "sklearn.linear_model.LassoLars.score", false]], "score() (sklearn.linear_model.lassolarscv method)": [[654, "sklearn.linear_model.LassoLarsCV.score", false]], "score() (sklearn.linear_model.lassolarsic method)": [[655, "sklearn.linear_model.LassoLarsIC.score", false]], "score() (sklearn.linear_model.linearregression method)": [[656, "sklearn.linear_model.LinearRegression.score", false]], "score() (sklearn.linear_model.logisticregression method)": [[657, "sklearn.linear_model.LogisticRegression.score", false]], "score() (sklearn.linear_model.logisticregressioncv method)": [[658, "sklearn.linear_model.LogisticRegressionCV.score", false]], "score() (sklearn.linear_model.multitaskelasticnet method)": [[659, "sklearn.linear_model.MultiTaskElasticNet.score", false]], "score() (sklearn.linear_model.multitaskelasticnetcv method)": [[660, "sklearn.linear_model.MultiTaskElasticNetCV.score", false]], "score() (sklearn.linear_model.multitasklasso method)": [[661, "sklearn.linear_model.MultiTaskLasso.score", false]], "score() (sklearn.linear_model.multitasklassocv method)": [[662, "sklearn.linear_model.MultiTaskLassoCV.score", false]], "score() (sklearn.linear_model.orthogonalmatchingpursuit method)": [[663, "sklearn.linear_model.OrthogonalMatchingPursuit.score", false]], "score() (sklearn.linear_model.orthogonalmatchingpursuitcv method)": [[664, "sklearn.linear_model.OrthogonalMatchingPursuitCV.score", false]], "score() (sklearn.linear_model.passiveaggressiveclassifier method)": [[665, "sklearn.linear_model.PassiveAggressiveClassifier.score", false]], "score() (sklearn.linear_model.passiveaggressiveregressor method)": [[666, "sklearn.linear_model.PassiveAggressiveRegressor.score", false]], "score() (sklearn.linear_model.perceptron method)": [[667, "sklearn.linear_model.Perceptron.score", false]], "score() (sklearn.linear_model.poissonregressor method)": [[668, "sklearn.linear_model.PoissonRegressor.score", false]], "score() (sklearn.linear_model.quantileregressor method)": [[669, "sklearn.linear_model.QuantileRegressor.score", false]], "score() (sklearn.linear_model.ransacregressor method)": [[670, "sklearn.linear_model.RANSACRegressor.score", false]], "score() (sklearn.linear_model.ridge method)": [[671, "sklearn.linear_model.Ridge.score", false]], "score() (sklearn.linear_model.ridgeclassifier method)": [[673, "sklearn.linear_model.RidgeClassifier.score", false]], "score() (sklearn.linear_model.ridgeclassifiercv method)": [[674, "sklearn.linear_model.RidgeClassifierCV.score", false]], "score() (sklearn.linear_model.ridgecv method)": [[672, "sklearn.linear_model.RidgeCV.score", false]], "score() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.score", false]], "score() (sklearn.linear_model.sgdregressor method)": [[677, "sklearn.linear_model.SGDRegressor.score", false]], "score() (sklearn.linear_model.theilsenregressor method)": [[678, "sklearn.linear_model.TheilSenRegressor.score", false]], "score() (sklearn.linear_model.tweedieregressor method)": [[679, "sklearn.linear_model.TweedieRegressor.score", false]], "score() (sklearn.mixture.bayesiangaussianmixture method)": [[798, "sklearn.mixture.BayesianGaussianMixture.score", false]], "score() (sklearn.mixture.gaussianmixture method)": [[799, "sklearn.mixture.GaussianMixture.score", false]], "score() (sklearn.model_selection.fixedthresholdclassifier method)": [[800, "sklearn.model_selection.FixedThresholdClassifier.score", false]], "score() (sklearn.model_selection.gridsearchcv method)": [[801, "sklearn.model_selection.GridSearchCV.score", false]], "score() (sklearn.model_selection.halvinggridsearchcv method)": [[804, "sklearn.model_selection.HalvingGridSearchCV.score", false]], "score() (sklearn.model_selection.halvingrandomsearchcv method)": [[805, "sklearn.model_selection.HalvingRandomSearchCV.score", false]], "score() (sklearn.model_selection.randomizedsearchcv method)": [[815, "sklearn.model_selection.RandomizedSearchCV.score", false]], "score() (sklearn.model_selection.tunedthresholdclassifiercv method)": [[823, "sklearn.model_selection.TunedThresholdClassifierCV.score", false]], "score() (sklearn.multiclass.onevsoneclassifier method)": [[833, "sklearn.multiclass.OneVsOneClassifier.score", false]], "score() (sklearn.multiclass.onevsrestclassifier method)": [[834, "sklearn.multiclass.OneVsRestClassifier.score", false]], "score() (sklearn.multiclass.outputcodeclassifier method)": [[835, "sklearn.multiclass.OutputCodeClassifier.score", false]], "score() (sklearn.multioutput.classifierchain method)": [[836, "sklearn.multioutput.ClassifierChain.score", false]], "score() (sklearn.multioutput.multioutputclassifier method)": [[837, "sklearn.multioutput.MultiOutputClassifier.score", false]], "score() (sklearn.multioutput.multioutputregressor method)": [[838, "sklearn.multioutput.MultiOutputRegressor.score", false]], "score() (sklearn.multioutput.regressorchain method)": [[839, "sklearn.multioutput.RegressorChain.score", false]], "score() (sklearn.naive_bayes.bernoullinb method)": [[840, "sklearn.naive_bayes.BernoulliNB.score", false]], "score() (sklearn.naive_bayes.categoricalnb method)": [[841, "sklearn.naive_bayes.CategoricalNB.score", false]], "score() (sklearn.naive_bayes.complementnb method)": [[842, "sklearn.naive_bayes.ComplementNB.score", false]], "score() (sklearn.naive_bayes.gaussiannb method)": [[843, "sklearn.naive_bayes.GaussianNB.score", false]], "score() (sklearn.naive_bayes.multinomialnb method)": [[844, "sklearn.naive_bayes.MultinomialNB.score", false]], "score() (sklearn.neighbors.kerneldensity method)": [[850, "sklearn.neighbors.KernelDensity.score", false]], "score() (sklearn.neighbors.kneighborsclassifier method)": [[847, "sklearn.neighbors.KNeighborsClassifier.score", false]], "score() (sklearn.neighbors.kneighborsregressor method)": [[848, "sklearn.neighbors.KNeighborsRegressor.score", false]], "score() (sklearn.neighbors.nearestcentroid method)": [[852, "sklearn.neighbors.NearestCentroid.score", false]], "score() (sklearn.neighbors.radiusneighborsclassifier method)": [[855, "sklearn.neighbors.RadiusNeighborsClassifier.score", false]], "score() (sklearn.neighbors.radiusneighborsregressor method)": [[856, "sklearn.neighbors.RadiusNeighborsRegressor.score", false]], "score() (sklearn.neural_network.mlpclassifier method)": [[862, "sklearn.neural_network.MLPClassifier.score", false]], "score() (sklearn.neural_network.mlpregressor method)": [[863, "sklearn.neural_network.MLPRegressor.score", false]], "score() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.score", false]], "score() (sklearn.semi_supervised.labelpropagation method)": [[900, "sklearn.semi_supervised.LabelPropagation.score", false]], "score() (sklearn.semi_supervised.labelspreading method)": [[901, "sklearn.semi_supervised.LabelSpreading.score", false]], "score() (sklearn.semi_supervised.selftrainingclassifier method)": [[902, "sklearn.semi_supervised.SelfTrainingClassifier.score", false]], "score() (sklearn.svm.linearsvc method)": [[905, "sklearn.svm.LinearSVC.score", false]], "score() (sklearn.svm.linearsvr method)": [[906, "sklearn.svm.LinearSVR.score", false]], "score() (sklearn.svm.nusvc method)": [[907, "sklearn.svm.NuSVC.score", false]], "score() (sklearn.svm.nusvr method)": [[908, "sklearn.svm.NuSVR.score", false]], "score() (sklearn.svm.svc method)": [[910, "sklearn.svm.SVC.score", false]], "score() (sklearn.svm.svr method)": [[911, "sklearn.svm.SVR.score", false]], "score() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.score", false]], "score() (sklearn.tree.decisiontreeregressor method)": [[914, "sklearn.tree.DecisionTreeRegressor.score", false]], "score() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.score", false]], "score() (sklearn.tree.extratreeregressor method)": [[916, "sklearn.tree.ExtraTreeRegressor.score", false]], "score_samples": [[385, "term-score_samples", true]], "score_samples() (sklearn.covariance.ellipticenvelope method)": [[465, "sklearn.covariance.EllipticEnvelope.score_samples", false]], "score_samples() (sklearn.decomposition.factoranalysis method)": [[529, "sklearn.decomposition.FactorAnalysis.score_samples", false]], "score_samples() (sklearn.decomposition.pca method)": [[538, "sklearn.decomposition.PCA.score_samples", false]], "score_samples() (sklearn.ensemble.isolationforest method)": [[560, "sklearn.ensemble.IsolationForest.score_samples", false]], "score_samples() (sklearn.linear_model.sgdoneclasssvm method)": [[676, "sklearn.linear_model.SGDOneClassSVM.score_samples", false]], "score_samples() (sklearn.mixture.bayesiangaussianmixture method)": [[798, "sklearn.mixture.BayesianGaussianMixture.score_samples", false]], "score_samples() (sklearn.mixture.gaussianmixture method)": [[799, "sklearn.mixture.GaussianMixture.score_samples", false]], "score_samples() (sklearn.model_selection.gridsearchcv method)": [[801, "sklearn.model_selection.GridSearchCV.score_samples", false]], "score_samples() (sklearn.model_selection.halvinggridsearchcv method)": [[804, "sklearn.model_selection.HalvingGridSearchCV.score_samples", false]], "score_samples() (sklearn.model_selection.halvingrandomsearchcv method)": [[805, "sklearn.model_selection.HalvingRandomSearchCV.score_samples", false]], "score_samples() (sklearn.model_selection.randomizedsearchcv method)": [[815, "sklearn.model_selection.RandomizedSearchCV.score_samples", false]], "score_samples() (sklearn.neighbors.kerneldensity method)": [[850, "sklearn.neighbors.KernelDensity.score_samples", false]], "score_samples() (sklearn.neighbors.localoutlierfactor method)": [[851, "sklearn.neighbors.LocalOutlierFactor.score_samples", false]], "score_samples() (sklearn.neural_network.bernoullirbm method)": [[861, "sklearn.neural_network.BernoulliRBM.score_samples", false]], "score_samples() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.score_samples", false]], "score_samples() (sklearn.svm.oneclasssvm method)": [[909, "sklearn.svm.OneClassSVM.score_samples", false]], "scorer": [[385, "term-scorer", true]], "scoring": [[385, "term-scoring", true]], "selectfdr (class in sklearn.feature_selection)": [[593, "sklearn.feature_selection.SelectFdr", false]], "selectfpr (class in sklearn.feature_selection)": [[594, "sklearn.feature_selection.SelectFpr", false]], "selectfrommodel (class in sklearn.feature_selection)": [[595, "sklearn.feature_selection.SelectFromModel", false]], "selectfwe (class in sklearn.feature_selection)": [[596, "sklearn.feature_selection.SelectFwe", false]], "selectkbest (class in sklearn.feature_selection)": [[597, "sklearn.feature_selection.SelectKBest", false]], "selectormixin (class in sklearn.feature_selection)": [[599, "sklearn.feature_selection.SelectorMixin", false]], "selectpercentile (class in sklearn.feature_selection)": [[598, "sklearn.feature_selection.SelectPercentile", false]], "selftrainingclassifier (class in sklearn.semi_supervised)": [[902, "sklearn.semi_supervised.SelfTrainingClassifier", false]], "semi-supervised": [[385, "term-semi-supervised", true]], "semi-supervised learning": [[385, "term-semi-supervised-learning", true]], "semisupervised": [[385, "term-semisupervised", true]], "sequentialfeatureselector (class in sklearn.feature_selection)": [[600, "sklearn.feature_selection.SequentialFeatureSelector", false]], "set_config() (in module sklearn)": [[903, "sklearn.set_config", false]], "set_fit_request() (sklearn.calibration.calibratedclassifiercv method)": [[433, "sklearn.calibration.CalibratedClassifierCV.set_fit_request", false]], "set_fit_request() (sklearn.cluster.bisectingkmeans method)": [[439, "sklearn.cluster.BisectingKMeans.set_fit_request", false]], "set_fit_request() (sklearn.cluster.dbscan method)": [[440, "sklearn.cluster.DBSCAN.set_fit_request", false]], "set_fit_request() (sklearn.cluster.kmeans method)": [[443, "sklearn.cluster.KMeans.set_fit_request", false]], "set_fit_request() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.set_fit_request", false]], "set_fit_request() (sklearn.dummy.dummyclassifier method)": [[548, "sklearn.dummy.DummyClassifier.set_fit_request", false]], "set_fit_request() (sklearn.dummy.dummyregressor method)": [[549, "sklearn.dummy.DummyRegressor.set_fit_request", false]], "set_fit_request() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.set_fit_request", false]], "set_fit_request() (sklearn.ensemble.adaboostregressor method)": [[551, "sklearn.ensemble.AdaBoostRegressor.set_fit_request", false]], "set_fit_request() (sklearn.ensemble.baggingclassifier method)": [[552, "sklearn.ensemble.BaggingClassifier.set_fit_request", false]], "set_fit_request() (sklearn.ensemble.baggingregressor method)": [[553, "sklearn.ensemble.BaggingRegressor.set_fit_request", false]], "set_fit_request() (sklearn.ensemble.extratreesclassifier method)": [[554, "sklearn.ensemble.ExtraTreesClassifier.set_fit_request", false]], "set_fit_request() (sklearn.ensemble.extratreesregressor method)": [[555, "sklearn.ensemble.ExtraTreesRegressor.set_fit_request", false]], "set_fit_request() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.set_fit_request", false]], "set_fit_request() (sklearn.ensemble.gradientboostingregressor method)": [[557, "sklearn.ensemble.GradientBoostingRegressor.set_fit_request", false]], "set_fit_request() (sklearn.ensemble.histgradientboostingclassifier method)": [[558, "sklearn.ensemble.HistGradientBoostingClassifier.set_fit_request", false]], "set_fit_request() (sklearn.ensemble.histgradientboostingregressor method)": [[559, "sklearn.ensemble.HistGradientBoostingRegressor.set_fit_request", false]], "set_fit_request() (sklearn.ensemble.isolationforest method)": [[560, "sklearn.ensemble.IsolationForest.set_fit_request", false]], "set_fit_request() (sklearn.ensemble.randomforestclassifier method)": [[561, "sklearn.ensemble.RandomForestClassifier.set_fit_request", false]], "set_fit_request() (sklearn.ensemble.randomforestregressor method)": [[562, "sklearn.ensemble.RandomForestRegressor.set_fit_request", false]], "set_fit_request() (sklearn.ensemble.randomtreesembedding method)": [[563, "sklearn.ensemble.RandomTreesEmbedding.set_fit_request", false]], "set_fit_request() (sklearn.isotonic.isotonicregression method)": [[634, "sklearn.isotonic.IsotonicRegression.set_fit_request", false]], "set_fit_request() (sklearn.kernel_ridge.kernelridge method)": [[642, "sklearn.kernel_ridge.KernelRidge.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.bayesianridge method)": [[644, "sklearn.linear_model.BayesianRidge.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.elasticnet method)": [[645, "sklearn.linear_model.ElasticNet.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.elasticnetcv method)": [[646, "sklearn.linear_model.ElasticNetCV.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.gammaregressor method)": [[647, "sklearn.linear_model.GammaRegressor.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.huberregressor method)": [[648, "sklearn.linear_model.HuberRegressor.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.lars method)": [[649, "sklearn.linear_model.Lars.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.larscv method)": [[650, "sklearn.linear_model.LarsCV.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.lasso method)": [[651, "sklearn.linear_model.Lasso.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.lassocv method)": [[652, "sklearn.linear_model.LassoCV.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.lassolars method)": [[653, "sklearn.linear_model.LassoLars.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.lassolarscv method)": [[654, "sklearn.linear_model.LassoLarsCV.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.lassolarsic method)": [[655, "sklearn.linear_model.LassoLarsIC.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.linearregression method)": [[656, "sklearn.linear_model.LinearRegression.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.logisticregression method)": [[657, "sklearn.linear_model.LogisticRegression.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.logisticregressioncv method)": [[658, "sklearn.linear_model.LogisticRegressionCV.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.multitaskelasticnet method)": [[659, "sklearn.linear_model.MultiTaskElasticNet.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.multitaskelasticnetcv method)": [[660, "sklearn.linear_model.MultiTaskElasticNetCV.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.multitasklasso method)": [[661, "sklearn.linear_model.MultiTaskLasso.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.multitasklassocv method)": [[662, "sklearn.linear_model.MultiTaskLassoCV.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.passiveaggressiveclassifier method)": [[665, "sklearn.linear_model.PassiveAggressiveClassifier.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.passiveaggressiveregressor method)": [[666, "sklearn.linear_model.PassiveAggressiveRegressor.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.perceptron method)": [[667, "sklearn.linear_model.Perceptron.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.poissonregressor method)": [[668, "sklearn.linear_model.PoissonRegressor.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.quantileregressor method)": [[669, "sklearn.linear_model.QuantileRegressor.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.ransacregressor method)": [[670, "sklearn.linear_model.RANSACRegressor.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.ridge method)": [[671, "sklearn.linear_model.Ridge.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.ridgeclassifier method)": [[673, "sklearn.linear_model.RidgeClassifier.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.ridgeclassifiercv method)": [[674, "sklearn.linear_model.RidgeClassifierCV.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.ridgecv method)": [[672, "sklearn.linear_model.RidgeCV.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.sgdoneclasssvm method)": [[676, "sklearn.linear_model.SGDOneClassSVM.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.sgdregressor method)": [[677, "sklearn.linear_model.SGDRegressor.set_fit_request", false]], "set_fit_request() (sklearn.linear_model.tweedieregressor method)": [[679, "sklearn.linear_model.TweedieRegressor.set_fit_request", false]], "set_fit_request() (sklearn.manifold.mds method)": [[690, "sklearn.manifold.MDS.set_fit_request", false]], "set_fit_request() (sklearn.multioutput.multioutputclassifier method)": [[837, "sklearn.multioutput.MultiOutputClassifier.set_fit_request", false]], "set_fit_request() (sklearn.multioutput.multioutputregressor method)": [[838, "sklearn.multioutput.MultiOutputRegressor.set_fit_request", false]], "set_fit_request() (sklearn.naive_bayes.bernoullinb method)": [[840, "sklearn.naive_bayes.BernoulliNB.set_fit_request", false]], "set_fit_request() (sklearn.naive_bayes.categoricalnb method)": [[841, "sklearn.naive_bayes.CategoricalNB.set_fit_request", false]], "set_fit_request() (sklearn.naive_bayes.complementnb method)": [[842, "sklearn.naive_bayes.ComplementNB.set_fit_request", false]], "set_fit_request() (sklearn.naive_bayes.gaussiannb method)": [[843, "sklearn.naive_bayes.GaussianNB.set_fit_request", false]], "set_fit_request() (sklearn.naive_bayes.multinomialnb method)": [[844, "sklearn.naive_bayes.MultinomialNB.set_fit_request", false]], "set_fit_request() (sklearn.neighbors.kerneldensity method)": [[850, "sklearn.neighbors.KernelDensity.set_fit_request", false]], "set_fit_request() (sklearn.neural_network.mlpclassifier method)": [[862, "sklearn.neural_network.MLPClassifier.set_fit_request", false]], "set_fit_request() (sklearn.neural_network.mlpregressor method)": [[863, "sklearn.neural_network.MLPRegressor.set_fit_request", false]], "set_fit_request() (sklearn.preprocessing.kbinsdiscretizer method)": [[870, "sklearn.preprocessing.KBinsDiscretizer.set_fit_request", false]], "set_fit_request() (sklearn.preprocessing.splinetransformer method)": [[884, "sklearn.preprocessing.SplineTransformer.set_fit_request", false]], "set_fit_request() (sklearn.preprocessing.standardscaler method)": [[885, "sklearn.preprocessing.StandardScaler.set_fit_request", false]], "set_fit_request() (sklearn.svm.linearsvc method)": [[905, "sklearn.svm.LinearSVC.set_fit_request", false]], "set_fit_request() (sklearn.svm.linearsvr method)": [[906, "sklearn.svm.LinearSVR.set_fit_request", false]], "set_fit_request() (sklearn.svm.nusvc method)": [[907, "sklearn.svm.NuSVC.set_fit_request", false]], "set_fit_request() (sklearn.svm.nusvr method)": [[908, "sklearn.svm.NuSVR.set_fit_request", false]], "set_fit_request() (sklearn.svm.oneclasssvm method)": [[909, "sklearn.svm.OneClassSVM.set_fit_request", false]], "set_fit_request() (sklearn.svm.svc method)": [[910, "sklearn.svm.SVC.set_fit_request", false]], "set_fit_request() (sklearn.svm.svr method)": [[911, "sklearn.svm.SVR.set_fit_request", false]], "set_fit_request() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.set_fit_request", false]], "set_fit_request() (sklearn.tree.decisiontreeregressor method)": [[914, "sklearn.tree.DecisionTreeRegressor.set_fit_request", false]], "set_fit_request() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.set_fit_request", false]], "set_fit_request() (sklearn.tree.extratreeregressor method)": [[916, "sklearn.tree.ExtraTreeRegressor.set_fit_request", false]], "set_inverse_transform_request() (sklearn.decomposition.fastica method)": [[530, "sklearn.decomposition.FastICA.set_inverse_transform_request", false]], "set_inverse_transform_request() (sklearn.preprocessing.labelbinarizer method)": [[872, "sklearn.preprocessing.LabelBinarizer.set_inverse_transform_request", false]], "set_inverse_transform_request() (sklearn.preprocessing.standardscaler method)": [[885, "sklearn.preprocessing.StandardScaler.set_inverse_transform_request", false]], "set_output() (sklearn.base.transformermixin method)": [[427, "sklearn.base.TransformerMixin.set_output", false]], "set_output() (sklearn.cluster.birch method)": [[438, "sklearn.cluster.Birch.set_output", false]], "set_output() (sklearn.cluster.bisectingkmeans method)": [[439, "sklearn.cluster.BisectingKMeans.set_output", false]], "set_output() (sklearn.cluster.featureagglomeration method)": [[441, "sklearn.cluster.FeatureAgglomeration.set_output", false]], "set_output() (sklearn.cluster.kmeans method)": [[443, "sklearn.cluster.KMeans.set_output", false]], "set_output() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.set_output", false]], "set_output() (sklearn.compose.columntransformer method)": [[460, "sklearn.compose.ColumnTransformer.set_output", false]], "set_output() (sklearn.cross_decomposition.cca method)": [[478, "sklearn.cross_decomposition.CCA.set_output", false]], "set_output() (sklearn.cross_decomposition.plscanonical method)": [[479, "sklearn.cross_decomposition.PLSCanonical.set_output", false]], "set_output() (sklearn.cross_decomposition.plsregression method)": [[480, "sklearn.cross_decomposition.PLSRegression.set_output", false]], "set_output() (sklearn.cross_decomposition.plssvd method)": [[481, "sklearn.cross_decomposition.PLSSVD.set_output", false]], "set_output() (sklearn.decomposition.dictionarylearning method)": [[528, "sklearn.decomposition.DictionaryLearning.set_output", false]], "set_output() (sklearn.decomposition.factoranalysis method)": [[529, "sklearn.decomposition.FactorAnalysis.set_output", false]], "set_output() (sklearn.decomposition.fastica method)": [[530, "sklearn.decomposition.FastICA.set_output", false]], "set_output() (sklearn.decomposition.incrementalpca method)": [[531, "sklearn.decomposition.IncrementalPCA.set_output", false]], "set_output() (sklearn.decomposition.kernelpca method)": [[532, "sklearn.decomposition.KernelPCA.set_output", false]], "set_output() (sklearn.decomposition.latentdirichletallocation method)": [[533, "sklearn.decomposition.LatentDirichletAllocation.set_output", false]], "set_output() (sklearn.decomposition.minibatchdictionarylearning method)": [[534, "sklearn.decomposition.MiniBatchDictionaryLearning.set_output", false]], "set_output() (sklearn.decomposition.minibatchnmf method)": [[535, "sklearn.decomposition.MiniBatchNMF.set_output", false]], "set_output() (sklearn.decomposition.minibatchsparsepca method)": [[536, "sklearn.decomposition.MiniBatchSparsePCA.set_output", false]], "set_output() (sklearn.decomposition.nmf method)": [[537, "sklearn.decomposition.NMF.set_output", false]], "set_output() (sklearn.decomposition.pca method)": [[538, "sklearn.decomposition.PCA.set_output", false]], "set_output() (sklearn.decomposition.sparsecoder method)": [[539, "sklearn.decomposition.SparseCoder.set_output", false]], "set_output() (sklearn.decomposition.sparsepca method)": [[540, "sklearn.decomposition.SparsePCA.set_output", false]], "set_output() (sklearn.decomposition.truncatedsvd method)": [[541, "sklearn.decomposition.TruncatedSVD.set_output", false]], "set_output() (sklearn.discriminant_analysis.lineardiscriminantanalysis method)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis.set_output", false]], "set_output() (sklearn.ensemble.randomtreesembedding method)": [[563, "sklearn.ensemble.RandomTreesEmbedding.set_output", false]], "set_output() (sklearn.ensemble.stackingclassifier method)": [[564, "sklearn.ensemble.StackingClassifier.set_output", false]], "set_output() (sklearn.ensemble.stackingregressor method)": [[565, "sklearn.ensemble.StackingRegressor.set_output", false]], "set_output() (sklearn.ensemble.votingclassifier method)": [[566, "sklearn.ensemble.VotingClassifier.set_output", false]], "set_output() (sklearn.ensemble.votingregressor method)": [[567, "sklearn.ensemble.VotingRegressor.set_output", false]], "set_output() (sklearn.feature_extraction.dictvectorizer method)": [[579, "sklearn.feature_extraction.DictVectorizer.set_output", false]], "set_output() (sklearn.feature_extraction.featurehasher method)": [[580, "sklearn.feature_extraction.FeatureHasher.set_output", false]], "set_output() (sklearn.feature_extraction.image.patchextractor method)": [[581, "sklearn.feature_extraction.image.PatchExtractor.set_output", false]], "set_output() (sklearn.feature_extraction.text.hashingvectorizer method)": [[587, "sklearn.feature_extraction.text.HashingVectorizer.set_output", false]], "set_output() (sklearn.feature_extraction.text.tfidftransformer method)": [[588, "sklearn.feature_extraction.text.TfidfTransformer.set_output", false]], "set_output() (sklearn.feature_selection.genericunivariateselect method)": [[590, "sklearn.feature_selection.GenericUnivariateSelect.set_output", false]], "set_output() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.set_output", false]], "set_output() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.set_output", false]], "set_output() (sklearn.feature_selection.selectfdr method)": [[593, "sklearn.feature_selection.SelectFdr.set_output", false]], "set_output() (sklearn.feature_selection.selectfpr method)": [[594, "sklearn.feature_selection.SelectFpr.set_output", false]], "set_output() (sklearn.feature_selection.selectfrommodel method)": [[595, "sklearn.feature_selection.SelectFromModel.set_output", false]], "set_output() (sklearn.feature_selection.selectfwe method)": [[596, "sklearn.feature_selection.SelectFwe.set_output", false]], "set_output() (sklearn.feature_selection.selectkbest method)": [[597, "sklearn.feature_selection.SelectKBest.set_output", false]], "set_output() (sklearn.feature_selection.selectormixin method)": [[599, "sklearn.feature_selection.SelectorMixin.set_output", false]], "set_output() (sklearn.feature_selection.selectpercentile method)": [[598, "sklearn.feature_selection.SelectPercentile.set_output", false]], "set_output() (sklearn.feature_selection.sequentialfeatureselector method)": [[600, "sklearn.feature_selection.SequentialFeatureSelector.set_output", false]], "set_output() (sklearn.feature_selection.variancethreshold method)": [[601, "sklearn.feature_selection.VarianceThreshold.set_output", false]], "set_output() (sklearn.impute.iterativeimputer method)": [[626, "sklearn.impute.IterativeImputer.set_output", false]], "set_output() (sklearn.impute.knnimputer method)": [[627, "sklearn.impute.KNNImputer.set_output", false]], "set_output() (sklearn.impute.missingindicator method)": [[628, "sklearn.impute.MissingIndicator.set_output", false]], "set_output() (sklearn.impute.simpleimputer method)": [[629, "sklearn.impute.SimpleImputer.set_output", false]], "set_output() (sklearn.isotonic.isotonicregression method)": [[634, "sklearn.isotonic.IsotonicRegression.set_output", false]], "set_output() (sklearn.kernel_approximation.additivechi2sampler method)": [[637, "sklearn.kernel_approximation.AdditiveChi2Sampler.set_output", false]], "set_output() (sklearn.kernel_approximation.nystroem method)": [[638, "sklearn.kernel_approximation.Nystroem.set_output", false]], "set_output() (sklearn.kernel_approximation.polynomialcountsketch method)": [[639, "sklearn.kernel_approximation.PolynomialCountSketch.set_output", false]], "set_output() (sklearn.kernel_approximation.rbfsampler method)": [[640, "sklearn.kernel_approximation.RBFSampler.set_output", false]], "set_output() (sklearn.kernel_approximation.skewedchi2sampler method)": [[641, "sklearn.kernel_approximation.SkewedChi2Sampler.set_output", false]], "set_output() (sklearn.manifold.isomap method)": [[688, "sklearn.manifold.Isomap.set_output", false]], "set_output() (sklearn.manifold.locallylinearembedding method)": [[689, "sklearn.manifold.LocallyLinearEmbedding.set_output", false]], "set_output() (sklearn.manifold.tsne method)": [[692, "sklearn.manifold.TSNE.set_output", false]], "set_output() (sklearn.neighbors.kneighborstransformer method)": [[849, "sklearn.neighbors.KNeighborsTransformer.set_output", false]], "set_output() (sklearn.neighbors.neighborhoodcomponentsanalysis method)": [[854, "sklearn.neighbors.NeighborhoodComponentsAnalysis.set_output", false]], "set_output() (sklearn.neighbors.radiusneighborstransformer method)": [[857, "sklearn.neighbors.RadiusNeighborsTransformer.set_output", false]], "set_output() (sklearn.neural_network.bernoullirbm method)": [[861, "sklearn.neural_network.BernoulliRBM.set_output", false]], "set_output() (sklearn.pipeline.featureunion method)": [[864, "sklearn.pipeline.FeatureUnion.set_output", false]], "set_output() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.set_output", false]], "set_output() (sklearn.preprocessing.binarizer method)": [[868, "sklearn.preprocessing.Binarizer.set_output", false]], "set_output() (sklearn.preprocessing.functiontransformer method)": [[869, "sklearn.preprocessing.FunctionTransformer.set_output", false]], "set_output() (sklearn.preprocessing.kbinsdiscretizer method)": [[870, "sklearn.preprocessing.KBinsDiscretizer.set_output", false]], "set_output() (sklearn.preprocessing.kernelcenterer method)": [[871, "sklearn.preprocessing.KernelCenterer.set_output", false]], "set_output() (sklearn.preprocessing.labelbinarizer method)": [[872, "sklearn.preprocessing.LabelBinarizer.set_output", false]], "set_output() (sklearn.preprocessing.labelencoder method)": [[873, "sklearn.preprocessing.LabelEncoder.set_output", false]], "set_output() (sklearn.preprocessing.maxabsscaler method)": [[874, "sklearn.preprocessing.MaxAbsScaler.set_output", false]], "set_output() (sklearn.preprocessing.minmaxscaler method)": [[875, "sklearn.preprocessing.MinMaxScaler.set_output", false]], "set_output() (sklearn.preprocessing.multilabelbinarizer method)": [[876, "sklearn.preprocessing.MultiLabelBinarizer.set_output", false]], "set_output() (sklearn.preprocessing.normalizer method)": [[877, "sklearn.preprocessing.Normalizer.set_output", false]], "set_output() (sklearn.preprocessing.onehotencoder method)": [[878, "sklearn.preprocessing.OneHotEncoder.set_output", false]], "set_output() (sklearn.preprocessing.ordinalencoder method)": [[879, "sklearn.preprocessing.OrdinalEncoder.set_output", false]], "set_output() (sklearn.preprocessing.polynomialfeatures method)": [[880, "sklearn.preprocessing.PolynomialFeatures.set_output", false]], "set_output() (sklearn.preprocessing.powertransformer method)": [[881, "sklearn.preprocessing.PowerTransformer.set_output", false]], "set_output() (sklearn.preprocessing.quantiletransformer method)": [[882, "sklearn.preprocessing.QuantileTransformer.set_output", false]], "set_output() (sklearn.preprocessing.robustscaler method)": [[883, "sklearn.preprocessing.RobustScaler.set_output", false]], "set_output() (sklearn.preprocessing.splinetransformer method)": [[884, "sklearn.preprocessing.SplineTransformer.set_output", false]], "set_output() (sklearn.preprocessing.standardscaler method)": [[885, "sklearn.preprocessing.StandardScaler.set_output", false]], "set_output() (sklearn.preprocessing.targetencoder method)": [[886, "sklearn.preprocessing.TargetEncoder.set_output", false]], "set_output() (sklearn.random_projection.gaussianrandomprojection method)": [[897, "sklearn.random_projection.GaussianRandomProjection.set_output", false]], "set_output() (sklearn.random_projection.sparserandomprojection method)": [[898, "sklearn.random_projection.SparseRandomProjection.set_output", false]], "set_params": [[385, "term-set_params", true]], "set_params() (sklearn.base.baseestimator method)": [[417, "sklearn.base.BaseEstimator.set_params", false]], "set_params() (sklearn.calibration.calibratedclassifiercv method)": [[433, "sklearn.calibration.CalibratedClassifierCV.set_params", false]], "set_params() (sklearn.cluster.affinitypropagation method)": [[436, "sklearn.cluster.AffinityPropagation.set_params", false]], "set_params() (sklearn.cluster.agglomerativeclustering method)": [[437, "sklearn.cluster.AgglomerativeClustering.set_params", false]], "set_params() (sklearn.cluster.birch method)": [[438, "sklearn.cluster.Birch.set_params", false]], "set_params() (sklearn.cluster.bisectingkmeans method)": [[439, "sklearn.cluster.BisectingKMeans.set_params", false]], "set_params() (sklearn.cluster.dbscan method)": [[440, "sklearn.cluster.DBSCAN.set_params", false]], "set_params() (sklearn.cluster.featureagglomeration method)": [[441, "sklearn.cluster.FeatureAgglomeration.set_params", false]], "set_params() (sklearn.cluster.hdbscan method)": [[442, "sklearn.cluster.HDBSCAN.set_params", false]], "set_params() (sklearn.cluster.kmeans method)": [[443, "sklearn.cluster.KMeans.set_params", false]], "set_params() (sklearn.cluster.meanshift method)": [[444, "sklearn.cluster.MeanShift.set_params", false]], "set_params() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.set_params", false]], "set_params() (sklearn.cluster.optics method)": [[446, "sklearn.cluster.OPTICS.set_params", false]], "set_params() (sklearn.cluster.spectralbiclustering method)": [[447, "sklearn.cluster.SpectralBiclustering.set_params", false]], "set_params() (sklearn.cluster.spectralclustering method)": [[448, "sklearn.cluster.SpectralClustering.set_params", false]], "set_params() (sklearn.cluster.spectralcoclustering method)": [[449, "sklearn.cluster.SpectralCoclustering.set_params", false]], "set_params() (sklearn.compose.columntransformer method)": [[460, "sklearn.compose.ColumnTransformer.set_params", false]], "set_params() (sklearn.compose.transformedtargetregressor method)": [[461, "sklearn.compose.TransformedTargetRegressor.set_params", false]], "set_params() (sklearn.covariance.ellipticenvelope method)": [[465, "sklearn.covariance.EllipticEnvelope.set_params", false]], "set_params() (sklearn.covariance.empiricalcovariance method)": [[466, "sklearn.covariance.EmpiricalCovariance.set_params", false]], "set_params() (sklearn.covariance.graphicallasso method)": [[467, "sklearn.covariance.GraphicalLasso.set_params", false]], "set_params() (sklearn.covariance.graphicallassocv method)": [[468, "sklearn.covariance.GraphicalLassoCV.set_params", false]], "set_params() (sklearn.covariance.ledoitwolf method)": [[469, "sklearn.covariance.LedoitWolf.set_params", false]], "set_params() (sklearn.covariance.mincovdet method)": [[470, "sklearn.covariance.MinCovDet.set_params", false]], "set_params() (sklearn.covariance.oas method)": [[471, "sklearn.covariance.OAS.set_params", false]], "set_params() (sklearn.covariance.shrunkcovariance method)": [[472, "sklearn.covariance.ShrunkCovariance.set_params", false]], "set_params() (sklearn.cross_decomposition.cca method)": [[478, "sklearn.cross_decomposition.CCA.set_params", false]], "set_params() (sklearn.cross_decomposition.plscanonical method)": [[479, "sklearn.cross_decomposition.PLSCanonical.set_params", false]], "set_params() (sklearn.cross_decomposition.plsregression method)": [[480, "sklearn.cross_decomposition.PLSRegression.set_params", false]], "set_params() (sklearn.cross_decomposition.plssvd method)": [[481, "sklearn.cross_decomposition.PLSSVD.set_params", false]], "set_params() (sklearn.decomposition.dictionarylearning method)": [[528, "sklearn.decomposition.DictionaryLearning.set_params", false]], "set_params() (sklearn.decomposition.factoranalysis method)": [[529, "sklearn.decomposition.FactorAnalysis.set_params", false]], "set_params() (sklearn.decomposition.fastica method)": [[530, "sklearn.decomposition.FastICA.set_params", false]], "set_params() (sklearn.decomposition.incrementalpca method)": [[531, "sklearn.decomposition.IncrementalPCA.set_params", false]], "set_params() (sklearn.decomposition.kernelpca method)": [[532, "sklearn.decomposition.KernelPCA.set_params", false]], "set_params() (sklearn.decomposition.latentdirichletallocation method)": [[533, "sklearn.decomposition.LatentDirichletAllocation.set_params", false]], "set_params() (sklearn.decomposition.minibatchdictionarylearning method)": [[534, "sklearn.decomposition.MiniBatchDictionaryLearning.set_params", false]], "set_params() (sklearn.decomposition.minibatchnmf method)": [[535, "sklearn.decomposition.MiniBatchNMF.set_params", false]], "set_params() (sklearn.decomposition.minibatchsparsepca method)": [[536, "sklearn.decomposition.MiniBatchSparsePCA.set_params", false]], "set_params() (sklearn.decomposition.nmf method)": [[537, "sklearn.decomposition.NMF.set_params", false]], "set_params() (sklearn.decomposition.pca method)": [[538, "sklearn.decomposition.PCA.set_params", false]], "set_params() (sklearn.decomposition.sparsecoder method)": [[539, "sklearn.decomposition.SparseCoder.set_params", false]], "set_params() (sklearn.decomposition.sparsepca method)": [[540, "sklearn.decomposition.SparsePCA.set_params", false]], "set_params() (sklearn.decomposition.truncatedsvd method)": [[541, "sklearn.decomposition.TruncatedSVD.set_params", false]], "set_params() (sklearn.discriminant_analysis.lineardiscriminantanalysis method)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis.set_params", false]], "set_params() (sklearn.discriminant_analysis.quadraticdiscriminantanalysis method)": [[547, "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.set_params", false]], "set_params() (sklearn.dummy.dummyclassifier method)": [[548, "sklearn.dummy.DummyClassifier.set_params", false]], "set_params() (sklearn.dummy.dummyregressor method)": [[549, "sklearn.dummy.DummyRegressor.set_params", false]], "set_params() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.set_params", false]], "set_params() (sklearn.ensemble.adaboostregressor method)": [[551, "sklearn.ensemble.AdaBoostRegressor.set_params", false]], "set_params() (sklearn.ensemble.baggingclassifier method)": [[552, "sklearn.ensemble.BaggingClassifier.set_params", false]], "set_params() (sklearn.ensemble.baggingregressor method)": [[553, "sklearn.ensemble.BaggingRegressor.set_params", false]], "set_params() (sklearn.ensemble.extratreesclassifier method)": [[554, "sklearn.ensemble.ExtraTreesClassifier.set_params", false]], "set_params() (sklearn.ensemble.extratreesregressor method)": [[555, "sklearn.ensemble.ExtraTreesRegressor.set_params", false]], "set_params() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.set_params", false]], "set_params() (sklearn.ensemble.gradientboostingregressor method)": [[557, "sklearn.ensemble.GradientBoostingRegressor.set_params", false]], "set_params() (sklearn.ensemble.histgradientboostingclassifier method)": [[558, "sklearn.ensemble.HistGradientBoostingClassifier.set_params", false]], "set_params() (sklearn.ensemble.histgradientboostingregressor method)": [[559, "sklearn.ensemble.HistGradientBoostingRegressor.set_params", false]], "set_params() (sklearn.ensemble.isolationforest method)": [[560, "sklearn.ensemble.IsolationForest.set_params", false]], "set_params() (sklearn.ensemble.randomforestclassifier method)": [[561, "sklearn.ensemble.RandomForestClassifier.set_params", false]], "set_params() (sklearn.ensemble.randomforestregressor method)": [[562, "sklearn.ensemble.RandomForestRegressor.set_params", false]], "set_params() (sklearn.ensemble.randomtreesembedding method)": [[563, "sklearn.ensemble.RandomTreesEmbedding.set_params", false]], "set_params() (sklearn.ensemble.stackingclassifier method)": [[564, "sklearn.ensemble.StackingClassifier.set_params", false]], "set_params() (sklearn.ensemble.stackingregressor method)": [[565, "sklearn.ensemble.StackingRegressor.set_params", false]], "set_params() (sklearn.ensemble.votingclassifier method)": [[566, "sklearn.ensemble.VotingClassifier.set_params", false]], "set_params() (sklearn.ensemble.votingregressor method)": [[567, "sklearn.ensemble.VotingRegressor.set_params", false]], "set_params() (sklearn.feature_extraction.dictvectorizer method)": [[579, "sklearn.feature_extraction.DictVectorizer.set_params", false]], "set_params() (sklearn.feature_extraction.featurehasher method)": [[580, "sklearn.feature_extraction.FeatureHasher.set_params", false]], "set_params() (sklearn.feature_extraction.image.patchextractor method)": [[581, "sklearn.feature_extraction.image.PatchExtractor.set_params", false]], "set_params() (sklearn.feature_extraction.text.countvectorizer method)": [[586, "sklearn.feature_extraction.text.CountVectorizer.set_params", false]], "set_params() (sklearn.feature_extraction.text.hashingvectorizer method)": [[587, "sklearn.feature_extraction.text.HashingVectorizer.set_params", false]], "set_params() (sklearn.feature_extraction.text.tfidftransformer method)": [[588, "sklearn.feature_extraction.text.TfidfTransformer.set_params", false]], "set_params() (sklearn.feature_extraction.text.tfidfvectorizer method)": [[589, "sklearn.feature_extraction.text.TfidfVectorizer.set_params", false]], "set_params() (sklearn.feature_selection.genericunivariateselect method)": [[590, "sklearn.feature_selection.GenericUnivariateSelect.set_params", false]], "set_params() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.set_params", false]], "set_params() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.set_params", false]], "set_params() (sklearn.feature_selection.selectfdr method)": [[593, "sklearn.feature_selection.SelectFdr.set_params", false]], "set_params() (sklearn.feature_selection.selectfpr method)": [[594, "sklearn.feature_selection.SelectFpr.set_params", false]], "set_params() (sklearn.feature_selection.selectfrommodel method)": [[595, "sklearn.feature_selection.SelectFromModel.set_params", false]], "set_params() (sklearn.feature_selection.selectfwe method)": [[596, "sklearn.feature_selection.SelectFwe.set_params", false]], "set_params() (sklearn.feature_selection.selectkbest method)": [[597, "sklearn.feature_selection.SelectKBest.set_params", false]], "set_params() (sklearn.feature_selection.selectpercentile method)": [[598, "sklearn.feature_selection.SelectPercentile.set_params", false]], "set_params() (sklearn.feature_selection.sequentialfeatureselector method)": [[600, "sklearn.feature_selection.SequentialFeatureSelector.set_params", false]], "set_params() (sklearn.feature_selection.variancethreshold method)": [[601, "sklearn.feature_selection.VarianceThreshold.set_params", false]], "set_params() (sklearn.frozen.frozenestimator method)": [[608, "sklearn.frozen.FrozenEstimator.set_params", false]], "set_params() (sklearn.gaussian_process.gaussianprocessclassifier method)": [[609, "sklearn.gaussian_process.GaussianProcessClassifier.set_params", false]], "set_params() (sklearn.gaussian_process.gaussianprocessregressor method)": [[610, "sklearn.gaussian_process.GaussianProcessRegressor.set_params", false]], "set_params() (sklearn.gaussian_process.kernels.compoundkernel method)": [[611, "sklearn.gaussian_process.kernels.CompoundKernel.set_params", false]], "set_params() (sklearn.gaussian_process.kernels.constantkernel method)": [[612, "sklearn.gaussian_process.kernels.ConstantKernel.set_params", false]], "set_params() (sklearn.gaussian_process.kernels.dotproduct method)": [[613, "sklearn.gaussian_process.kernels.DotProduct.set_params", false]], "set_params() (sklearn.gaussian_process.kernels.exponentiation method)": [[615, "sklearn.gaussian_process.kernels.Exponentiation.set_params", false]], "set_params() (sklearn.gaussian_process.kernels.expsinesquared method)": [[614, "sklearn.gaussian_process.kernels.ExpSineSquared.set_params", false]], "set_params() (sklearn.gaussian_process.kernels.kernel method)": [[617, "sklearn.gaussian_process.kernels.Kernel.set_params", false]], "set_params() (sklearn.gaussian_process.kernels.matern method)": [[618, "sklearn.gaussian_process.kernels.Matern.set_params", false]], "set_params() (sklearn.gaussian_process.kernels.pairwisekernel method)": [[619, "sklearn.gaussian_process.kernels.PairwiseKernel.set_params", false]], "set_params() (sklearn.gaussian_process.kernels.product method)": [[620, "sklearn.gaussian_process.kernels.Product.set_params", false]], "set_params() (sklearn.gaussian_process.kernels.rationalquadratic method)": [[622, "sklearn.gaussian_process.kernels.RationalQuadratic.set_params", false]], "set_params() (sklearn.gaussian_process.kernels.rbf method)": [[621, "sklearn.gaussian_process.kernels.RBF.set_params", false]], "set_params() (sklearn.gaussian_process.kernels.sum method)": [[623, "sklearn.gaussian_process.kernels.Sum.set_params", false]], "set_params() (sklearn.gaussian_process.kernels.whitekernel method)": [[624, "sklearn.gaussian_process.kernels.WhiteKernel.set_params", false]], "set_params() (sklearn.impute.iterativeimputer method)": [[626, "sklearn.impute.IterativeImputer.set_params", false]], "set_params() (sklearn.impute.knnimputer method)": [[627, "sklearn.impute.KNNImputer.set_params", false]], "set_params() (sklearn.impute.missingindicator method)": [[628, "sklearn.impute.MissingIndicator.set_params", false]], "set_params() (sklearn.impute.simpleimputer method)": [[629, "sklearn.impute.SimpleImputer.set_params", false]], "set_params() (sklearn.isotonic.isotonicregression method)": [[634, "sklearn.isotonic.IsotonicRegression.set_params", false]], "set_params() (sklearn.kernel_approximation.additivechi2sampler method)": [[637, "sklearn.kernel_approximation.AdditiveChi2Sampler.set_params", false]], "set_params() (sklearn.kernel_approximation.nystroem method)": [[638, "sklearn.kernel_approximation.Nystroem.set_params", false]], "set_params() (sklearn.kernel_approximation.polynomialcountsketch method)": [[639, "sklearn.kernel_approximation.PolynomialCountSketch.set_params", false]], "set_params() (sklearn.kernel_approximation.rbfsampler method)": [[640, "sklearn.kernel_approximation.RBFSampler.set_params", false]], "set_params() (sklearn.kernel_approximation.skewedchi2sampler method)": [[641, "sklearn.kernel_approximation.SkewedChi2Sampler.set_params", false]], "set_params() (sklearn.kernel_ridge.kernelridge method)": [[642, "sklearn.kernel_ridge.KernelRidge.set_params", false]], "set_params() (sklearn.linear_model.ardregression method)": [[643, "sklearn.linear_model.ARDRegression.set_params", false]], "set_params() (sklearn.linear_model.bayesianridge method)": [[644, "sklearn.linear_model.BayesianRidge.set_params", false]], "set_params() (sklearn.linear_model.elasticnet method)": [[645, "sklearn.linear_model.ElasticNet.set_params", false]], "set_params() (sklearn.linear_model.elasticnetcv method)": [[646, "sklearn.linear_model.ElasticNetCV.set_params", false]], "set_params() (sklearn.linear_model.gammaregressor method)": [[647, "sklearn.linear_model.GammaRegressor.set_params", false]], "set_params() (sklearn.linear_model.huberregressor method)": [[648, "sklearn.linear_model.HuberRegressor.set_params", false]], "set_params() (sklearn.linear_model.lars method)": [[649, "sklearn.linear_model.Lars.set_params", false]], "set_params() (sklearn.linear_model.larscv method)": [[650, "sklearn.linear_model.LarsCV.set_params", false]], "set_params() (sklearn.linear_model.lasso method)": [[651, "sklearn.linear_model.Lasso.set_params", false]], "set_params() (sklearn.linear_model.lassocv method)": [[652, "sklearn.linear_model.LassoCV.set_params", false]], "set_params() (sklearn.linear_model.lassolars method)": [[653, "sklearn.linear_model.LassoLars.set_params", false]], "set_params() (sklearn.linear_model.lassolarscv method)": [[654, "sklearn.linear_model.LassoLarsCV.set_params", false]], "set_params() (sklearn.linear_model.lassolarsic method)": [[655, "sklearn.linear_model.LassoLarsIC.set_params", false]], "set_params() (sklearn.linear_model.linearregression method)": [[656, "sklearn.linear_model.LinearRegression.set_params", false]], "set_params() (sklearn.linear_model.logisticregression method)": [[657, "sklearn.linear_model.LogisticRegression.set_params", false]], "set_params() (sklearn.linear_model.logisticregressioncv method)": [[658, "sklearn.linear_model.LogisticRegressionCV.set_params", false]], "set_params() (sklearn.linear_model.multitaskelasticnet method)": [[659, "sklearn.linear_model.MultiTaskElasticNet.set_params", false]], "set_params() (sklearn.linear_model.multitaskelasticnetcv method)": [[660, "sklearn.linear_model.MultiTaskElasticNetCV.set_params", false]], "set_params() (sklearn.linear_model.multitasklasso method)": [[661, "sklearn.linear_model.MultiTaskLasso.set_params", false]], "set_params() (sklearn.linear_model.multitasklassocv method)": [[662, "sklearn.linear_model.MultiTaskLassoCV.set_params", false]], "set_params() (sklearn.linear_model.orthogonalmatchingpursuit method)": [[663, "sklearn.linear_model.OrthogonalMatchingPursuit.set_params", false]], "set_params() (sklearn.linear_model.orthogonalmatchingpursuitcv method)": [[664, "sklearn.linear_model.OrthogonalMatchingPursuitCV.set_params", false]], "set_params() (sklearn.linear_model.passiveaggressiveclassifier method)": [[665, "sklearn.linear_model.PassiveAggressiveClassifier.set_params", false]], "set_params() (sklearn.linear_model.passiveaggressiveregressor method)": [[666, "sklearn.linear_model.PassiveAggressiveRegressor.set_params", false]], "set_params() (sklearn.linear_model.perceptron method)": [[667, "sklearn.linear_model.Perceptron.set_params", false]], "set_params() (sklearn.linear_model.poissonregressor method)": [[668, "sklearn.linear_model.PoissonRegressor.set_params", false]], "set_params() (sklearn.linear_model.quantileregressor method)": [[669, "sklearn.linear_model.QuantileRegressor.set_params", false]], "set_params() (sklearn.linear_model.ransacregressor method)": [[670, "sklearn.linear_model.RANSACRegressor.set_params", false]], "set_params() (sklearn.linear_model.ridge method)": [[671, "sklearn.linear_model.Ridge.set_params", false]], "set_params() (sklearn.linear_model.ridgeclassifier method)": [[673, "sklearn.linear_model.RidgeClassifier.set_params", false]], "set_params() (sklearn.linear_model.ridgeclassifiercv method)": [[674, "sklearn.linear_model.RidgeClassifierCV.set_params", false]], "set_params() (sklearn.linear_model.ridgecv method)": [[672, "sklearn.linear_model.RidgeCV.set_params", false]], "set_params() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.set_params", false]], "set_params() (sklearn.linear_model.sgdoneclasssvm method)": [[676, "sklearn.linear_model.SGDOneClassSVM.set_params", false]], "set_params() (sklearn.linear_model.sgdregressor method)": [[677, "sklearn.linear_model.SGDRegressor.set_params", false]], "set_params() (sklearn.linear_model.theilsenregressor method)": [[678, "sklearn.linear_model.TheilSenRegressor.set_params", false]], "set_params() (sklearn.linear_model.tweedieregressor method)": [[679, "sklearn.linear_model.TweedieRegressor.set_params", false]], "set_params() (sklearn.manifold.classicalmds method)": [[687, "sklearn.manifold.ClassicalMDS.set_params", false]], "set_params() (sklearn.manifold.isomap method)": [[688, "sklearn.manifold.Isomap.set_params", false]], "set_params() (sklearn.manifold.locallylinearembedding method)": [[689, "sklearn.manifold.LocallyLinearEmbedding.set_params", false]], "set_params() (sklearn.manifold.mds method)": [[690, "sklearn.manifold.MDS.set_params", false]], "set_params() (sklearn.manifold.spectralembedding method)": [[691, "sklearn.manifold.SpectralEmbedding.set_params", false]], "set_params() (sklearn.manifold.tsne method)": [[692, "sklearn.manifold.TSNE.set_params", false]], "set_params() (sklearn.mixture.bayesiangaussianmixture method)": [[798, "sklearn.mixture.BayesianGaussianMixture.set_params", false]], "set_params() (sklearn.mixture.gaussianmixture method)": [[799, "sklearn.mixture.GaussianMixture.set_params", false]], "set_params() (sklearn.model_selection.fixedthresholdclassifier method)": [[800, "sklearn.model_selection.FixedThresholdClassifier.set_params", false]], "set_params() (sklearn.model_selection.gridsearchcv method)": [[801, "sklearn.model_selection.GridSearchCV.set_params", false]], "set_params() (sklearn.model_selection.halvinggridsearchcv method)": [[804, "sklearn.model_selection.HalvingGridSearchCV.set_params", false]], "set_params() (sklearn.model_selection.halvingrandomsearchcv method)": [[805, "sklearn.model_selection.HalvingRandomSearchCV.set_params", false]], "set_params() (sklearn.model_selection.randomizedsearchcv method)": [[815, "sklearn.model_selection.RandomizedSearchCV.set_params", false]], "set_params() (sklearn.model_selection.tunedthresholdclassifiercv method)": [[823, "sklearn.model_selection.TunedThresholdClassifierCV.set_params", false]], "set_params() (sklearn.multiclass.onevsoneclassifier method)": [[833, "sklearn.multiclass.OneVsOneClassifier.set_params", false]], "set_params() (sklearn.multiclass.onevsrestclassifier method)": [[834, "sklearn.multiclass.OneVsRestClassifier.set_params", false]], "set_params() (sklearn.multiclass.outputcodeclassifier method)": [[835, "sklearn.multiclass.OutputCodeClassifier.set_params", false]], "set_params() (sklearn.multioutput.classifierchain method)": [[836, "sklearn.multioutput.ClassifierChain.set_params", false]], "set_params() (sklearn.multioutput.multioutputclassifier method)": [[837, "sklearn.multioutput.MultiOutputClassifier.set_params", false]], "set_params() (sklearn.multioutput.multioutputregressor method)": [[838, "sklearn.multioutput.MultiOutputRegressor.set_params", false]], "set_params() (sklearn.multioutput.regressorchain method)": [[839, "sklearn.multioutput.RegressorChain.set_params", false]], "set_params() (sklearn.naive_bayes.bernoullinb method)": [[840, "sklearn.naive_bayes.BernoulliNB.set_params", false]], "set_params() (sklearn.naive_bayes.categoricalnb method)": [[841, "sklearn.naive_bayes.CategoricalNB.set_params", false]], "set_params() (sklearn.naive_bayes.complementnb method)": [[842, "sklearn.naive_bayes.ComplementNB.set_params", false]], "set_params() (sklearn.naive_bayes.gaussiannb method)": [[843, "sklearn.naive_bayes.GaussianNB.set_params", false]], "set_params() (sklearn.naive_bayes.multinomialnb method)": [[844, "sklearn.naive_bayes.MultinomialNB.set_params", false]], "set_params() (sklearn.neighbors.kerneldensity method)": [[850, "sklearn.neighbors.KernelDensity.set_params", false]], "set_params() (sklearn.neighbors.kneighborsclassifier method)": [[847, "sklearn.neighbors.KNeighborsClassifier.set_params", false]], "set_params() (sklearn.neighbors.kneighborsregressor method)": [[848, "sklearn.neighbors.KNeighborsRegressor.set_params", false]], "set_params() (sklearn.neighbors.kneighborstransformer method)": [[849, "sklearn.neighbors.KNeighborsTransformer.set_params", false]], "set_params() (sklearn.neighbors.localoutlierfactor method)": [[851, "sklearn.neighbors.LocalOutlierFactor.set_params", false]], "set_params() (sklearn.neighbors.nearestcentroid method)": [[852, "sklearn.neighbors.NearestCentroid.set_params", false]], "set_params() (sklearn.neighbors.nearestneighbors method)": [[853, "sklearn.neighbors.NearestNeighbors.set_params", false]], "set_params() (sklearn.neighbors.neighborhoodcomponentsanalysis method)": [[854, "sklearn.neighbors.NeighborhoodComponentsAnalysis.set_params", false]], "set_params() (sklearn.neighbors.radiusneighborsclassifier method)": [[855, "sklearn.neighbors.RadiusNeighborsClassifier.set_params", false]], "set_params() (sklearn.neighbors.radiusneighborsregressor method)": [[856, "sklearn.neighbors.RadiusNeighborsRegressor.set_params", false]], "set_params() (sklearn.neighbors.radiusneighborstransformer method)": [[857, "sklearn.neighbors.RadiusNeighborsTransformer.set_params", false]], "set_params() (sklearn.neural_network.bernoullirbm method)": [[861, "sklearn.neural_network.BernoulliRBM.set_params", false]], "set_params() (sklearn.neural_network.mlpclassifier method)": [[862, "sklearn.neural_network.MLPClassifier.set_params", false]], "set_params() (sklearn.neural_network.mlpregressor method)": [[863, "sklearn.neural_network.MLPRegressor.set_params", false]], "set_params() (sklearn.pipeline.featureunion method)": [[864, "sklearn.pipeline.FeatureUnion.set_params", false]], "set_params() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.set_params", false]], "set_params() (sklearn.preprocessing.binarizer method)": [[868, "sklearn.preprocessing.Binarizer.set_params", false]], "set_params() (sklearn.preprocessing.functiontransformer method)": [[869, "sklearn.preprocessing.FunctionTransformer.set_params", false]], "set_params() (sklearn.preprocessing.kbinsdiscretizer method)": [[870, "sklearn.preprocessing.KBinsDiscretizer.set_params", false]], "set_params() (sklearn.preprocessing.kernelcenterer method)": [[871, "sklearn.preprocessing.KernelCenterer.set_params", false]], "set_params() (sklearn.preprocessing.labelbinarizer method)": [[872, "sklearn.preprocessing.LabelBinarizer.set_params", false]], "set_params() (sklearn.preprocessing.labelencoder method)": [[873, "sklearn.preprocessing.LabelEncoder.set_params", false]], "set_params() (sklearn.preprocessing.maxabsscaler method)": [[874, "sklearn.preprocessing.MaxAbsScaler.set_params", false]], "set_params() (sklearn.preprocessing.minmaxscaler method)": [[875, "sklearn.preprocessing.MinMaxScaler.set_params", false]], "set_params() (sklearn.preprocessing.multilabelbinarizer method)": [[876, "sklearn.preprocessing.MultiLabelBinarizer.set_params", false]], "set_params() (sklearn.preprocessing.normalizer method)": [[877, "sklearn.preprocessing.Normalizer.set_params", false]], "set_params() (sklearn.preprocessing.onehotencoder method)": [[878, "sklearn.preprocessing.OneHotEncoder.set_params", false]], "set_params() (sklearn.preprocessing.ordinalencoder method)": [[879, "sklearn.preprocessing.OrdinalEncoder.set_params", false]], "set_params() (sklearn.preprocessing.polynomialfeatures method)": [[880, "sklearn.preprocessing.PolynomialFeatures.set_params", false]], "set_params() (sklearn.preprocessing.powertransformer method)": [[881, "sklearn.preprocessing.PowerTransformer.set_params", false]], "set_params() (sklearn.preprocessing.quantiletransformer method)": [[882, "sklearn.preprocessing.QuantileTransformer.set_params", false]], "set_params() (sklearn.preprocessing.robustscaler method)": [[883, "sklearn.preprocessing.RobustScaler.set_params", false]], "set_params() (sklearn.preprocessing.splinetransformer method)": [[884, "sklearn.preprocessing.SplineTransformer.set_params", false]], "set_params() (sklearn.preprocessing.standardscaler method)": [[885, "sklearn.preprocessing.StandardScaler.set_params", false]], "set_params() (sklearn.preprocessing.targetencoder method)": [[886, "sklearn.preprocessing.TargetEncoder.set_params", false]], "set_params() (sklearn.random_projection.gaussianrandomprojection method)": [[897, "sklearn.random_projection.GaussianRandomProjection.set_params", false]], "set_params() (sklearn.random_projection.sparserandomprojection method)": [[898, "sklearn.random_projection.SparseRandomProjection.set_params", false]], "set_params() (sklearn.semi_supervised.labelpropagation method)": [[900, "sklearn.semi_supervised.LabelPropagation.set_params", false]], "set_params() (sklearn.semi_supervised.labelspreading method)": [[901, "sklearn.semi_supervised.LabelSpreading.set_params", false]], "set_params() (sklearn.semi_supervised.selftrainingclassifier method)": [[902, "sklearn.semi_supervised.SelfTrainingClassifier.set_params", false]], "set_params() (sklearn.svm.linearsvc method)": [[905, "sklearn.svm.LinearSVC.set_params", false]], "set_params() (sklearn.svm.linearsvr method)": [[906, "sklearn.svm.LinearSVR.set_params", false]], "set_params() (sklearn.svm.nusvc method)": [[907, "sklearn.svm.NuSVC.set_params", false]], "set_params() (sklearn.svm.nusvr method)": [[908, "sklearn.svm.NuSVR.set_params", false]], "set_params() (sklearn.svm.oneclasssvm method)": [[909, "sklearn.svm.OneClassSVM.set_params", false]], "set_params() (sklearn.svm.svc method)": [[910, "sklearn.svm.SVC.set_params", false]], "set_params() (sklearn.svm.svr method)": [[911, "sklearn.svm.SVR.set_params", false]], "set_params() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.set_params", false]], "set_params() (sklearn.tree.decisiontreeregressor method)": [[914, "sklearn.tree.DecisionTreeRegressor.set_params", false]], "set_params() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.set_params", false]], "set_params() (sklearn.tree.extratreeregressor method)": [[916, "sklearn.tree.ExtraTreeRegressor.set_params", false]], "set_partial_fit_request() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.decomposition.minibatchnmf method)": [[535, "sklearn.decomposition.MiniBatchNMF.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.linear_model.passiveaggressiveclassifier method)": [[665, "sklearn.linear_model.PassiveAggressiveClassifier.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.linear_model.passiveaggressiveregressor method)": [[666, "sklearn.linear_model.PassiveAggressiveRegressor.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.linear_model.perceptron method)": [[667, "sklearn.linear_model.Perceptron.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.linear_model.sgdoneclasssvm method)": [[676, "sklearn.linear_model.SGDOneClassSVM.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.linear_model.sgdregressor method)": [[677, "sklearn.linear_model.SGDRegressor.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.multiclass.onevsoneclassifier method)": [[833, "sklearn.multiclass.OneVsOneClassifier.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.multiclass.onevsrestclassifier method)": [[834, "sklearn.multiclass.OneVsRestClassifier.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.multioutput.multioutputclassifier method)": [[837, "sklearn.multioutput.MultiOutputClassifier.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.multioutput.multioutputregressor method)": [[838, "sklearn.multioutput.MultiOutputRegressor.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.naive_bayes.bernoullinb method)": [[840, "sklearn.naive_bayes.BernoulliNB.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.naive_bayes.categoricalnb method)": [[841, "sklearn.naive_bayes.CategoricalNB.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.naive_bayes.complementnb method)": [[842, "sklearn.naive_bayes.ComplementNB.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.naive_bayes.gaussiannb method)": [[843, "sklearn.naive_bayes.GaussianNB.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.naive_bayes.multinomialnb method)": [[844, "sklearn.naive_bayes.MultinomialNB.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.neural_network.mlpclassifier method)": [[862, "sklearn.neural_network.MLPClassifier.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.neural_network.mlpregressor method)": [[863, "sklearn.neural_network.MLPRegressor.set_partial_fit_request", false]], "set_partial_fit_request() (sklearn.preprocessing.standardscaler method)": [[885, "sklearn.preprocessing.StandardScaler.set_partial_fit_request", false]], "set_predict_request() (sklearn.cross_decomposition.cca method)": [[478, "sklearn.cross_decomposition.CCA.set_predict_request", false]], "set_predict_request() (sklearn.cross_decomposition.plscanonical method)": [[479, "sklearn.cross_decomposition.PLSCanonical.set_predict_request", false]], "set_predict_request() (sklearn.cross_decomposition.plsregression method)": [[480, "sklearn.cross_decomposition.PLSRegression.set_predict_request", false]], "set_predict_request() (sklearn.dummy.dummyregressor method)": [[549, "sklearn.dummy.DummyRegressor.set_predict_request", false]], "set_predict_request() (sklearn.gaussian_process.gaussianprocessregressor method)": [[610, "sklearn.gaussian_process.GaussianProcessRegressor.set_predict_request", false]], "set_predict_request() (sklearn.linear_model.ardregression method)": [[643, "sklearn.linear_model.ARDRegression.set_predict_request", false]], "set_predict_request() (sklearn.linear_model.bayesianridge method)": [[644, "sklearn.linear_model.BayesianRidge.set_predict_request", false]], "set_score_request() (sklearn.calibration.calibratedclassifiercv method)": [[433, "sklearn.calibration.CalibratedClassifierCV.set_score_request", false]], "set_score_request() (sklearn.cluster.bisectingkmeans method)": [[439, "sklearn.cluster.BisectingKMeans.set_score_request", false]], "set_score_request() (sklearn.cluster.kmeans method)": [[443, "sklearn.cluster.KMeans.set_score_request", false]], "set_score_request() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.set_score_request", false]], "set_score_request() (sklearn.compose.transformedtargetregressor method)": [[461, "sklearn.compose.TransformedTargetRegressor.set_score_request", false]], "set_score_request() (sklearn.cross_decomposition.cca method)": [[478, "sklearn.cross_decomposition.CCA.set_score_request", false]], "set_score_request() (sklearn.cross_decomposition.plscanonical method)": [[479, "sklearn.cross_decomposition.PLSCanonical.set_score_request", false]], "set_score_request() (sklearn.cross_decomposition.plsregression method)": [[480, "sklearn.cross_decomposition.PLSRegression.set_score_request", false]], "set_score_request() (sklearn.discriminant_analysis.lineardiscriminantanalysis method)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis.set_score_request", false]], "set_score_request() (sklearn.discriminant_analysis.quadraticdiscriminantanalysis method)": [[547, "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.set_score_request", false]], "set_score_request() (sklearn.dummy.dummyclassifier method)": [[548, "sklearn.dummy.DummyClassifier.set_score_request", false]], "set_score_request() (sklearn.dummy.dummyregressor method)": [[549, "sklearn.dummy.DummyRegressor.set_score_request", false]], "set_score_request() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.set_score_request", false]], "set_score_request() (sklearn.ensemble.adaboostregressor method)": [[551, "sklearn.ensemble.AdaBoostRegressor.set_score_request", false]], "set_score_request() (sklearn.ensemble.baggingclassifier method)": [[552, "sklearn.ensemble.BaggingClassifier.set_score_request", false]], "set_score_request() (sklearn.ensemble.baggingregressor method)": [[553, "sklearn.ensemble.BaggingRegressor.set_score_request", false]], "set_score_request() (sklearn.ensemble.extratreesclassifier method)": [[554, "sklearn.ensemble.ExtraTreesClassifier.set_score_request", false]], "set_score_request() (sklearn.ensemble.extratreesregressor method)": [[555, "sklearn.ensemble.ExtraTreesRegressor.set_score_request", false]], "set_score_request() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.set_score_request", false]], "set_score_request() (sklearn.ensemble.gradientboostingregressor method)": [[557, "sklearn.ensemble.GradientBoostingRegressor.set_score_request", false]], "set_score_request() (sklearn.ensemble.histgradientboostingclassifier method)": [[558, "sklearn.ensemble.HistGradientBoostingClassifier.set_score_request", false]], "set_score_request() (sklearn.ensemble.histgradientboostingregressor method)": [[559, "sklearn.ensemble.HistGradientBoostingRegressor.set_score_request", false]], "set_score_request() (sklearn.ensemble.randomforestclassifier method)": [[561, "sklearn.ensemble.RandomForestClassifier.set_score_request", false]], "set_score_request() (sklearn.ensemble.randomforestregressor method)": [[562, "sklearn.ensemble.RandomForestRegressor.set_score_request", false]], "set_score_request() (sklearn.ensemble.stackingclassifier method)": [[564, "sklearn.ensemble.StackingClassifier.set_score_request", false]], "set_score_request() (sklearn.ensemble.stackingregressor method)": [[565, "sklearn.ensemble.StackingRegressor.set_score_request", false]], "set_score_request() (sklearn.ensemble.votingclassifier method)": [[566, "sklearn.ensemble.VotingClassifier.set_score_request", false]], "set_score_request() (sklearn.ensemble.votingregressor method)": [[567, "sklearn.ensemble.VotingRegressor.set_score_request", false]], "set_score_request() (sklearn.gaussian_process.gaussianprocessclassifier method)": [[609, "sklearn.gaussian_process.GaussianProcessClassifier.set_score_request", false]], "set_score_request() (sklearn.gaussian_process.gaussianprocessregressor method)": [[610, "sklearn.gaussian_process.GaussianProcessRegressor.set_score_request", false]], "set_score_request() (sklearn.isotonic.isotonicregression method)": [[634, "sklearn.isotonic.IsotonicRegression.set_score_request", false]], "set_score_request() (sklearn.kernel_ridge.kernelridge method)": [[642, "sklearn.kernel_ridge.KernelRidge.set_score_request", false]], "set_score_request() (sklearn.linear_model.ardregression method)": [[643, "sklearn.linear_model.ARDRegression.set_score_request", false]], "set_score_request() (sklearn.linear_model.bayesianridge method)": [[644, "sklearn.linear_model.BayesianRidge.set_score_request", false]], "set_score_request() (sklearn.linear_model.elasticnet method)": [[645, "sklearn.linear_model.ElasticNet.set_score_request", false]], "set_score_request() (sklearn.linear_model.elasticnetcv method)": [[646, "sklearn.linear_model.ElasticNetCV.set_score_request", false]], "set_score_request() (sklearn.linear_model.gammaregressor method)": [[647, "sklearn.linear_model.GammaRegressor.set_score_request", false]], "set_score_request() (sklearn.linear_model.huberregressor method)": [[648, "sklearn.linear_model.HuberRegressor.set_score_request", false]], "set_score_request() (sklearn.linear_model.lars method)": [[649, "sklearn.linear_model.Lars.set_score_request", false]], "set_score_request() (sklearn.linear_model.larscv method)": [[650, "sklearn.linear_model.LarsCV.set_score_request", false]], "set_score_request() (sklearn.linear_model.lasso method)": [[651, "sklearn.linear_model.Lasso.set_score_request", false]], "set_score_request() (sklearn.linear_model.lassocv method)": [[652, "sklearn.linear_model.LassoCV.set_score_request", false]], "set_score_request() (sklearn.linear_model.lassolars method)": [[653, "sklearn.linear_model.LassoLars.set_score_request", false]], "set_score_request() (sklearn.linear_model.lassolarscv method)": [[654, "sklearn.linear_model.LassoLarsCV.set_score_request", false]], "set_score_request() (sklearn.linear_model.lassolarsic method)": [[655, "sklearn.linear_model.LassoLarsIC.set_score_request", false]], "set_score_request() (sklearn.linear_model.linearregression method)": [[656, "sklearn.linear_model.LinearRegression.set_score_request", false]], "set_score_request() (sklearn.linear_model.logisticregression method)": [[657, "sklearn.linear_model.LogisticRegression.set_score_request", false]], "set_score_request() (sklearn.linear_model.logisticregressioncv method)": [[658, "sklearn.linear_model.LogisticRegressionCV.set_score_request", false]], "set_score_request() (sklearn.linear_model.multitaskelasticnet method)": [[659, "sklearn.linear_model.MultiTaskElasticNet.set_score_request", false]], "set_score_request() (sklearn.linear_model.multitaskelasticnetcv method)": [[660, "sklearn.linear_model.MultiTaskElasticNetCV.set_score_request", false]], "set_score_request() (sklearn.linear_model.multitasklasso method)": [[661, "sklearn.linear_model.MultiTaskLasso.set_score_request", false]], "set_score_request() (sklearn.linear_model.multitasklassocv method)": [[662, "sklearn.linear_model.MultiTaskLassoCV.set_score_request", false]], "set_score_request() (sklearn.linear_model.orthogonalmatchingpursuit method)": [[663, "sklearn.linear_model.OrthogonalMatchingPursuit.set_score_request", false]], "set_score_request() (sklearn.linear_model.orthogonalmatchingpursuitcv method)": [[664, "sklearn.linear_model.OrthogonalMatchingPursuitCV.set_score_request", false]], "set_score_request() (sklearn.linear_model.passiveaggressiveclassifier method)": [[665, "sklearn.linear_model.PassiveAggressiveClassifier.set_score_request", false]], "set_score_request() (sklearn.linear_model.passiveaggressiveregressor method)": [[666, "sklearn.linear_model.PassiveAggressiveRegressor.set_score_request", false]], "set_score_request() (sklearn.linear_model.perceptron method)": [[667, "sklearn.linear_model.Perceptron.set_score_request", false]], "set_score_request() (sklearn.linear_model.poissonregressor method)": [[668, "sklearn.linear_model.PoissonRegressor.set_score_request", false]], "set_score_request() (sklearn.linear_model.quantileregressor method)": [[669, "sklearn.linear_model.QuantileRegressor.set_score_request", false]], "set_score_request() (sklearn.linear_model.ridge method)": [[671, "sklearn.linear_model.Ridge.set_score_request", false]], "set_score_request() (sklearn.linear_model.ridgeclassifier method)": [[673, "sklearn.linear_model.RidgeClassifier.set_score_request", false]], "set_score_request() (sklearn.linear_model.ridgeclassifiercv method)": [[674, "sklearn.linear_model.RidgeClassifierCV.set_score_request", false]], "set_score_request() (sklearn.linear_model.ridgecv method)": [[672, "sklearn.linear_model.RidgeCV.set_score_request", false]], "set_score_request() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.set_score_request", false]], "set_score_request() (sklearn.linear_model.sgdregressor method)": [[677, "sklearn.linear_model.SGDRegressor.set_score_request", false]], "set_score_request() (sklearn.linear_model.theilsenregressor method)": [[678, "sklearn.linear_model.TheilSenRegressor.set_score_request", false]], "set_score_request() (sklearn.linear_model.tweedieregressor method)": [[679, "sklearn.linear_model.TweedieRegressor.set_score_request", false]], "set_score_request() (sklearn.model_selection.fixedthresholdclassifier method)": [[800, "sklearn.model_selection.FixedThresholdClassifier.set_score_request", false]], "set_score_request() (sklearn.model_selection.tunedthresholdclassifiercv method)": [[823, "sklearn.model_selection.TunedThresholdClassifierCV.set_score_request", false]], "set_score_request() (sklearn.multiclass.onevsoneclassifier method)": [[833, "sklearn.multiclass.OneVsOneClassifier.set_score_request", false]], "set_score_request() (sklearn.multiclass.onevsrestclassifier method)": [[834, "sklearn.multiclass.OneVsRestClassifier.set_score_request", false]], "set_score_request() (sklearn.multiclass.outputcodeclassifier method)": [[835, "sklearn.multiclass.OutputCodeClassifier.set_score_request", false]], "set_score_request() (sklearn.multioutput.classifierchain method)": [[836, "sklearn.multioutput.ClassifierChain.set_score_request", false]], "set_score_request() (sklearn.multioutput.multioutputregressor method)": [[838, "sklearn.multioutput.MultiOutputRegressor.set_score_request", false]], "set_score_request() (sklearn.multioutput.regressorchain method)": [[839, "sklearn.multioutput.RegressorChain.set_score_request", false]], "set_score_request() (sklearn.naive_bayes.bernoullinb method)": [[840, "sklearn.naive_bayes.BernoulliNB.set_score_request", false]], "set_score_request() (sklearn.naive_bayes.categoricalnb method)": [[841, "sklearn.naive_bayes.CategoricalNB.set_score_request", false]], "set_score_request() (sklearn.naive_bayes.complementnb method)": [[842, "sklearn.naive_bayes.ComplementNB.set_score_request", false]], "set_score_request() (sklearn.naive_bayes.gaussiannb method)": [[843, "sklearn.naive_bayes.GaussianNB.set_score_request", false]], "set_score_request() (sklearn.naive_bayes.multinomialnb method)": [[844, "sklearn.naive_bayes.MultinomialNB.set_score_request", false]], "set_score_request() (sklearn.neighbors.kneighborsclassifier method)": [[847, "sklearn.neighbors.KNeighborsClassifier.set_score_request", false]], "set_score_request() (sklearn.neighbors.kneighborsregressor method)": [[848, "sklearn.neighbors.KNeighborsRegressor.set_score_request", false]], "set_score_request() (sklearn.neighbors.nearestcentroid method)": [[852, "sklearn.neighbors.NearestCentroid.set_score_request", false]], "set_score_request() (sklearn.neighbors.radiusneighborsclassifier method)": [[855, "sklearn.neighbors.RadiusNeighborsClassifier.set_score_request", false]], "set_score_request() (sklearn.neighbors.radiusneighborsregressor method)": [[856, "sklearn.neighbors.RadiusNeighborsRegressor.set_score_request", false]], "set_score_request() (sklearn.neural_network.mlpclassifier method)": [[862, "sklearn.neural_network.MLPClassifier.set_score_request", false]], "set_score_request() (sklearn.neural_network.mlpregressor method)": [[863, "sklearn.neural_network.MLPRegressor.set_score_request", false]], "set_score_request() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.set_score_request", false]], "set_score_request() (sklearn.semi_supervised.labelpropagation method)": [[900, "sklearn.semi_supervised.LabelPropagation.set_score_request", false]], "set_score_request() (sklearn.semi_supervised.labelspreading method)": [[901, "sklearn.semi_supervised.LabelSpreading.set_score_request", false]], "set_score_request() (sklearn.svm.linearsvc method)": [[905, "sklearn.svm.LinearSVC.set_score_request", false]], "set_score_request() (sklearn.svm.linearsvr method)": [[906, "sklearn.svm.LinearSVR.set_score_request", false]], "set_score_request() (sklearn.svm.nusvc method)": [[907, "sklearn.svm.NuSVC.set_score_request", false]], "set_score_request() (sklearn.svm.nusvr method)": [[908, "sklearn.svm.NuSVR.set_score_request", false]], "set_score_request() (sklearn.svm.svc method)": [[910, "sklearn.svm.SVC.set_score_request", false]], "set_score_request() (sklearn.svm.svr method)": [[911, "sklearn.svm.SVR.set_score_request", false]], "set_score_request() (sklearn.tree.decisiontreeclassifier method)": [[913, "sklearn.tree.DecisionTreeClassifier.set_score_request", false]], "set_score_request() (sklearn.tree.decisiontreeregressor method)": [[914, "sklearn.tree.DecisionTreeRegressor.set_score_request", false]], "set_score_request() (sklearn.tree.extratreeclassifier method)": [[915, "sklearn.tree.ExtraTreeClassifier.set_score_request", false]], "set_score_request() (sklearn.tree.extratreeregressor method)": [[916, "sklearn.tree.ExtraTreeRegressor.set_score_request", false]], "set_split_request() (sklearn.model_selection.groupkfold method)": [[802, "sklearn.model_selection.GroupKFold.set_split_request", false]], "set_split_request() (sklearn.model_selection.groupshufflesplit method)": [[803, "sklearn.model_selection.GroupShuffleSplit.set_split_request", false]], "set_split_request() (sklearn.model_selection.leaveonegroupout method)": [[808, "sklearn.model_selection.LeaveOneGroupOut.set_split_request", false]], "set_split_request() (sklearn.model_selection.leavepgroupsout method)": [[810, "sklearn.model_selection.LeavePGroupsOut.set_split_request", false]], "set_split_request() (sklearn.model_selection.stratifiedgroupkfold method)": [[819, "sklearn.model_selection.StratifiedGroupKFold.set_split_request", false]], "set_transform_request() (sklearn.cross_decomposition.cca method)": [[478, "sklearn.cross_decomposition.CCA.set_transform_request", false]], "set_transform_request() (sklearn.cross_decomposition.plscanonical method)": [[479, "sklearn.cross_decomposition.PLSCanonical.set_transform_request", false]], "set_transform_request() (sklearn.cross_decomposition.plsregression method)": [[480, "sklearn.cross_decomposition.PLSRegression.set_transform_request", false]], "set_transform_request() (sklearn.decomposition.fastica method)": [[530, "sklearn.decomposition.FastICA.set_transform_request", false]], "set_transform_request() (sklearn.decomposition.latentdirichletallocation method)": [[533, "sklearn.decomposition.LatentDirichletAllocation.set_transform_request", false]], "set_transform_request() (sklearn.feature_extraction.text.tfidftransformer method)": [[588, "sklearn.feature_extraction.text.TfidfTransformer.set_transform_request", false]], "set_transform_request() (sklearn.preprocessing.binarizer method)": [[868, "sklearn.preprocessing.Binarizer.set_transform_request", false]], "set_transform_request() (sklearn.preprocessing.kernelcenterer method)": [[871, "sklearn.preprocessing.KernelCenterer.set_transform_request", false]], "set_transform_request() (sklearn.preprocessing.normalizer method)": [[877, "sklearn.preprocessing.Normalizer.set_transform_request", false]], "set_transform_request() (sklearn.preprocessing.standardscaler method)": [[885, "sklearn.preprocessing.StandardScaler.set_transform_request", false]], "setdefault() (sklearn.utils.bunch method)": [[920, "sklearn.utils.Bunch.setdefault", false]], "sgdclassifier (class in sklearn.linear_model)": [[675, "sklearn.linear_model.SGDClassifier", false]], "sgdoneclasssvm (class in sklearn.linear_model)": [[676, "sklearn.linear_model.SGDOneClassSVM", false]], "sgdregressor (class in sklearn.linear_model)": [[677, "sklearn.linear_model.SGDRegressor", false]], "show_versions() (in module sklearn)": [[904, "sklearn.show_versions", false]], "shrunk_covariance() (in module sklearn.covariance)": [[477, "sklearn.covariance.shrunk_covariance", false]], "shrunkcovariance (class in sklearn.covariance)": [[472, "sklearn.covariance.ShrunkCovariance", false]], "shuffle() (in module sklearn.utils)": [[973, "sklearn.utils.shuffle", false]], "shufflesplit (class in sklearn.model_selection)": [[818, "sklearn.model_selection.ShuffleSplit", false]], "sigmoid_kernel() (in module sklearn.metrics.pairwise)": [[778, "sklearn.metrics.pairwise.sigmoid_kernel", false]], "silhouette_samples() (in module sklearn.metrics)": [[793, "sklearn.metrics.silhouette_samples", false]], "silhouette_score() (in module sklearn.metrics)": [[794, "sklearn.metrics.silhouette_score", false]], "simpleimputer (class in sklearn.impute)": [[629, "sklearn.impute.SimpleImputer", false]], "single_source_shortest_path_length() (in module sklearn.utils.graph)": [[955, "sklearn.utils.graph.single_source_shortest_path_length", false]], "skewedchi2sampler (class in sklearn.kernel_approximation)": [[641, "sklearn.kernel_approximation.SkewedChi2Sampler", false]], "sklearn": [[3, "module-sklearn", false]], "sklearn.base": [[4, "module-sklearn.base", false]], "sklearn.calibration": [[5, "module-sklearn.calibration", false]], "sklearn.cluster": [[6, "module-sklearn.cluster", false]], "sklearn.compose": [[7, "module-sklearn.compose", false]], "sklearn.covariance": [[8, "module-sklearn.covariance", false]], "sklearn.cross_decomposition": [[9, "module-sklearn.cross_decomposition", false]], "sklearn.datasets": [[10, "module-sklearn.datasets", false]], "sklearn.decomposition": [[11, "module-sklearn.decomposition", false]], "sklearn.discriminant_analysis": [[12, "module-sklearn.discriminant_analysis", false]], "sklearn.dummy": [[13, "module-sklearn.dummy", false]], "sklearn.ensemble": [[14, "module-sklearn.ensemble", false]], "sklearn.exceptions": [[15, "module-sklearn.exceptions", false]], "sklearn.experimental": [[16, "module-sklearn.experimental", false]], "sklearn.experimental.enable_halving_search_cv": [[577, "module-sklearn.experimental.enable_halving_search_cv", false]], "sklearn.experimental.enable_iterative_imputer": [[578, "module-sklearn.experimental.enable_iterative_imputer", false]], "sklearn.feature_extraction": [[17, "module-sklearn.feature_extraction", false]], "sklearn.feature_extraction.image": [[17, "module-sklearn.feature_extraction.image", false]], "sklearn.feature_extraction.text": [[17, "module-sklearn.feature_extraction.text", false]], "sklearn.feature_selection": [[18, "module-sklearn.feature_selection", false]], "sklearn.frozen": [[19, "module-sklearn.frozen", false]], "sklearn.gaussian_process": [[20, "module-sklearn.gaussian_process", false]], "sklearn.gaussian_process.kernels": [[20, "module-sklearn.gaussian_process.kernels", false]], "sklearn.impute": [[21, "module-sklearn.impute", false]], "sklearn.inspection": [[22, "module-sklearn.inspection", false]], "sklearn.isotonic": [[23, "module-sklearn.isotonic", false]], "sklearn.kernel_approximation": [[24, "module-sklearn.kernel_approximation", false]], "sklearn.kernel_ridge": [[25, "module-sklearn.kernel_ridge", false]], "sklearn.linear_model": [[26, "module-sklearn.linear_model", false]], "sklearn.manifold": [[27, "module-sklearn.manifold", false]], "sklearn.metrics": [[28, "module-sklearn.metrics", false]], "sklearn.metrics.cluster": [[28, "module-sklearn.metrics.cluster", false]], "sklearn.metrics.pairwise": [[28, "module-sklearn.metrics.pairwise", false]], "sklearn.mixture": [[29, "module-sklearn.mixture", false]], "sklearn.model_selection": [[30, "module-sklearn.model_selection", false]], "sklearn.multiclass": [[31, "module-sklearn.multiclass", false]], "sklearn.multioutput": [[32, "module-sklearn.multioutput", false]], "sklearn.naive_bayes": [[33, "module-sklearn.naive_bayes", false]], "sklearn.neighbors": [[34, "module-sklearn.neighbors", false]], "sklearn.neural_network": [[35, "module-sklearn.neural_network", false]], "sklearn.pipeline": [[36, "module-sklearn.pipeline", false]], "sklearn.preprocessing": [[37, "module-sklearn.preprocessing", false]], "sklearn.random_projection": [[38, "module-sklearn.random_projection", false]], "sklearn.semi_supervised": [[39, "module-sklearn.semi_supervised", false]], "sklearn.svm": [[40, "module-sklearn.svm", false]], "sklearn.tree": [[41, "module-sklearn.tree", false]], "sklearn.utils": [[42, "module-sklearn.utils", false]], "sklearn.utils.arrayfuncs": [[42, "module-sklearn.utils.arrayfuncs", false]], "sklearn.utils.class_weight": [[42, "module-sklearn.utils.class_weight", false]], "sklearn.utils.discovery": [[42, "module-sklearn.utils.discovery", false]], "sklearn.utils.estimator_checks": [[42, "module-sklearn.utils.estimator_checks", false]], "sklearn.utils.extmath": [[42, "module-sklearn.utils.extmath", false]], "sklearn.utils.graph": [[42, "module-sklearn.utils.graph", false]], "sklearn.utils.metadata_routing": [[42, "module-sklearn.utils.metadata_routing", false]], "sklearn.utils.metaestimators": [[42, "module-sklearn.utils.metaestimators", false]], "sklearn.utils.multiclass": [[42, "module-sklearn.utils.multiclass", false]], "sklearn.utils.parallel": [[42, "module-sklearn.utils.parallel", false]], "sklearn.utils.random": [[42, "module-sklearn.utils.random", false]], "sklearn.utils.sparsefuncs": [[42, "module-sklearn.utils.sparsefuncs", false]], "sklearn.utils.sparsefuncs_fast": [[42, "module-sklearn.utils.sparsefuncs_fast", false]], "sklearn.utils.validation": [[42, "module-sklearn.utils.validation", false]], "slep": [[385, "term-SLEP", true]], "sleps": [[385, "term-SLEPs", true]], "smacof() (in module sklearn.manifold)": [[694, "sklearn.manifold.smacof", false]], "sort_graph_by_row_values() (in module sklearn.neighbors)": [[860, "sklearn.neighbors.sort_graph_by_row_values", false]], "sparse graph": [[385, "term-sparse-graph", true]], "sparse matrix": [[385, "term-sparse-matrix", true]], "sparse_encode() (in module sklearn.decomposition)": [[545, "sklearn.decomposition.sparse_encode", false]], "sparsecoder (class in sklearn.decomposition)": [[539, "sklearn.decomposition.SparseCoder", false]], "sparsepca (class in sklearn.decomposition)": [[540, "sklearn.decomposition.SparsePCA", false]], "sparserandomprojection (class in sklearn.random_projection)": [[898, "sklearn.random_projection.SparseRandomProjection", false]], "sparsify() (sklearn.linear_model.logisticregression method)": [[657, "sklearn.linear_model.LogisticRegression.sparsify", false]], "sparsify() (sklearn.linear_model.logisticregressioncv method)": [[658, "sklearn.linear_model.LogisticRegressionCV.sparsify", false]], "sparsify() (sklearn.linear_model.passiveaggressiveclassifier method)": [[665, "sklearn.linear_model.PassiveAggressiveClassifier.sparsify", false]], "sparsify() (sklearn.linear_model.passiveaggressiveregressor method)": [[666, "sklearn.linear_model.PassiveAggressiveRegressor.sparsify", false]], "sparsify() (sklearn.linear_model.perceptron method)": [[667, "sklearn.linear_model.Perceptron.sparsify", false]], "sparsify() (sklearn.linear_model.sgdclassifier method)": [[675, "sklearn.linear_model.SGDClassifier.sparsify", false]], "sparsify() (sklearn.linear_model.sgdoneclasssvm method)": [[676, "sklearn.linear_model.SGDOneClassSVM.sparsify", false]], "sparsify() (sklearn.linear_model.sgdregressor method)": [[677, "sklearn.linear_model.SGDRegressor.sparsify", false]], "sparsify() (sklearn.svm.linearsvc method)": [[905, "sklearn.svm.LinearSVC.sparsify", false]], "spectral_clustering() (in module sklearn.cluster)": [[458, "sklearn.cluster.spectral_clustering", false]], "spectral_embedding() (in module sklearn.manifold)": [[695, "sklearn.manifold.spectral_embedding", false]], "spectralbiclustering (class in sklearn.cluster)": [[447, "sklearn.cluster.SpectralBiclustering", false]], "spectralclustering (class in sklearn.cluster)": [[448, "sklearn.cluster.SpectralClustering", false]], "spectralcoclustering (class in sklearn.cluster)": [[449, "sklearn.cluster.SpectralCoclustering", false]], "spectralembedding (class in sklearn.manifold)": [[691, "sklearn.manifold.SpectralEmbedding", false]], "splinetransformer (class in sklearn.preprocessing)": [[884, "sklearn.preprocessing.SplineTransformer", false]], "split": [[385, "term-split", true]], "split() (sklearn.model_selection.groupkfold method)": [[802, "sklearn.model_selection.GroupKFold.split", false]], "split() (sklearn.model_selection.groupshufflesplit method)": [[803, "sklearn.model_selection.GroupShuffleSplit.split", false]], "split() (sklearn.model_selection.kfold method)": [[806, "sklearn.model_selection.KFold.split", false]], "split() (sklearn.model_selection.leaveonegroupout method)": [[808, "sklearn.model_selection.LeaveOneGroupOut.split", false]], "split() (sklearn.model_selection.leaveoneout method)": [[809, "sklearn.model_selection.LeaveOneOut.split", false]], "split() (sklearn.model_selection.leavepgroupsout method)": [[810, "sklearn.model_selection.LeavePGroupsOut.split", false]], "split() (sklearn.model_selection.leavepout method)": [[811, "sklearn.model_selection.LeavePOut.split", false]], "split() (sklearn.model_selection.predefinedsplit method)": [[814, "sklearn.model_selection.PredefinedSplit.split", false]], "split() (sklearn.model_selection.repeatedkfold method)": [[816, "sklearn.model_selection.RepeatedKFold.split", false]], "split() (sklearn.model_selection.repeatedstratifiedkfold method)": [[817, "sklearn.model_selection.RepeatedStratifiedKFold.split", false]], "split() (sklearn.model_selection.shufflesplit method)": [[818, "sklearn.model_selection.ShuffleSplit.split", false]], "split() (sklearn.model_selection.stratifiedgroupkfold method)": [[819, "sklearn.model_selection.StratifiedGroupKFold.split", false]], "split() (sklearn.model_selection.stratifiedkfold method)": [[820, "sklearn.model_selection.StratifiedKFold.split", false]], "split() (sklearn.model_selection.stratifiedshufflesplit method)": [[821, "sklearn.model_selection.StratifiedShuffleSplit.split", false]], "split() (sklearn.model_selection.timeseriessplit method)": [[822, "sklearn.model_selection.TimeSeriesSplit.split", false]], "stackingclassifier (class in sklearn.ensemble)": [[564, "sklearn.ensemble.StackingClassifier", false]], "stackingregressor (class in sklearn.ensemble)": [[565, "sklearn.ensemble.StackingRegressor", false]], "staged_decision_function() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.staged_decision_function", false]], "staged_decision_function() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.staged_decision_function", false]], "staged_decision_function() (sklearn.ensemble.histgradientboostingclassifier method)": [[558, "sklearn.ensemble.HistGradientBoostingClassifier.staged_decision_function", false]], "staged_predict() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.staged_predict", false]], "staged_predict() (sklearn.ensemble.adaboostregressor method)": [[551, "sklearn.ensemble.AdaBoostRegressor.staged_predict", false]], "staged_predict() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.staged_predict", false]], "staged_predict() (sklearn.ensemble.gradientboostingregressor method)": [[557, "sklearn.ensemble.GradientBoostingRegressor.staged_predict", false]], "staged_predict() (sklearn.ensemble.histgradientboostingclassifier method)": [[558, "sklearn.ensemble.HistGradientBoostingClassifier.staged_predict", false]], "staged_predict() (sklearn.ensemble.histgradientboostingregressor method)": [[559, "sklearn.ensemble.HistGradientBoostingRegressor.staged_predict", false]], "staged_predict_proba() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.staged_predict_proba", false]], "staged_predict_proba() (sklearn.ensemble.gradientboostingclassifier method)": [[556, "sklearn.ensemble.GradientBoostingClassifier.staged_predict_proba", false]], "staged_predict_proba() (sklearn.ensemble.histgradientboostingclassifier method)": [[558, "sklearn.ensemble.HistGradientBoostingClassifier.staged_predict_proba", false]], "staged_score() (sklearn.ensemble.adaboostclassifier method)": [[550, "sklearn.ensemble.AdaBoostClassifier.staged_score", false]], "staged_score() (sklearn.ensemble.adaboostregressor method)": [[551, "sklearn.ensemble.AdaBoostRegressor.staged_score", false]], "standardscaler (class in sklearn.preprocessing)": [[885, "sklearn.preprocessing.StandardScaler", false]], "stateless": [[385, "term-stateless", true]], "stratifiedgroupkfold (class in sklearn.model_selection)": [[819, "sklearn.model_selection.StratifiedGroupKFold", false]], "stratifiedkfold (class in sklearn.model_selection)": [[820, "sklearn.model_selection.StratifiedKFold", false]], "stratifiedshufflesplit (class in sklearn.model_selection)": [[821, "sklearn.model_selection.StratifiedShuffleSplit", false]], "sum (class in sklearn.gaussian_process.kernels)": [[623, "sklearn.gaussian_process.kernels.Sum", false]], "supervised": [[385, "term-supervised", true]], "supervised learning": [[385, "term-supervised-learning", true]], "svc (class in sklearn.svm)": [[910, "sklearn.svm.SVC", false]], "svr (class in sklearn.svm)": [[911, "sklearn.svm.SVR", false]], "tags (class in sklearn.utils)": [[924, "sklearn.utils.Tags", false]], "target": [[385, "term-target", true]], "targetencoder (class in sklearn.preprocessing)": [[886, "sklearn.preprocessing.TargetEncoder", false]], "targets": [[385, "term-targets", true]], "targettags (class in sklearn.utils)": [[925, "sklearn.utils.TargetTags", false]], "tfidftransformer (class in sklearn.feature_extraction.text)": [[588, "sklearn.feature_extraction.text.TfidfTransformer", false]], "tfidfvectorizer (class in sklearn.feature_extraction.text)": [[589, "sklearn.feature_extraction.text.TfidfVectorizer", false]], "theilsenregressor (class in sklearn.linear_model)": [[678, "sklearn.linear_model.TheilSenRegressor", false]], "theta (sklearn.gaussian_process.kernels.compoundkernel property)": [[611, "sklearn.gaussian_process.kernels.CompoundKernel.theta", false]], "theta (sklearn.gaussian_process.kernels.constantkernel property)": [[612, "sklearn.gaussian_process.kernels.ConstantKernel.theta", false]], "theta (sklearn.gaussian_process.kernels.dotproduct property)": [[613, "sklearn.gaussian_process.kernels.DotProduct.theta", false]], "theta (sklearn.gaussian_process.kernels.exponentiation property)": [[615, "sklearn.gaussian_process.kernels.Exponentiation.theta", false]], "theta (sklearn.gaussian_process.kernels.expsinesquared property)": [[614, "sklearn.gaussian_process.kernels.ExpSineSquared.theta", false]], "theta (sklearn.gaussian_process.kernels.kernel property)": [[617, "sklearn.gaussian_process.kernels.Kernel.theta", false]], "theta (sklearn.gaussian_process.kernels.matern property)": [[618, "sklearn.gaussian_process.kernels.Matern.theta", false]], "theta (sklearn.gaussian_process.kernels.pairwisekernel property)": [[619, "sklearn.gaussian_process.kernels.PairwiseKernel.theta", false]], "theta (sklearn.gaussian_process.kernels.product property)": [[620, "sklearn.gaussian_process.kernels.Product.theta", false]], "theta (sklearn.gaussian_process.kernels.rationalquadratic property)": [[622, "sklearn.gaussian_process.kernels.RationalQuadratic.theta", false]], "theta (sklearn.gaussian_process.kernels.rbf property)": [[621, "sklearn.gaussian_process.kernels.RBF.theta", false]], "theta (sklearn.gaussian_process.kernels.sum property)": [[623, "sklearn.gaussian_process.kernels.Sum.theta", false]], "theta (sklearn.gaussian_process.kernels.whitekernel property)": [[624, "sklearn.gaussian_process.kernels.WhiteKernel.theta", false]], "timeseriessplit (class in sklearn.model_selection)": [[822, "sklearn.model_selection.TimeSeriesSplit", false]], "top_k_accuracy_score() (in module sklearn.metrics)": [[795, "sklearn.metrics.top_k_accuracy_score", false]], "train_test_split() (in module sklearn.model_selection)": [[831, "sklearn.model_selection.train_test_split", false]], "transduction": [[385, "term-transduction", true]], "transductive": [[385, "term-transductive", true]], "transform": [[385, "term-transform", true]], "transform() (sklearn.cluster.birch method)": [[438, "sklearn.cluster.Birch.transform", false]], "transform() (sklearn.cluster.bisectingkmeans method)": [[439, "sklearn.cluster.BisectingKMeans.transform", false]], "transform() (sklearn.cluster.featureagglomeration method)": [[441, "sklearn.cluster.FeatureAgglomeration.transform", false]], "transform() (sklearn.cluster.kmeans method)": [[443, "sklearn.cluster.KMeans.transform", false]], "transform() (sklearn.cluster.minibatchkmeans method)": [[445, "sklearn.cluster.MiniBatchKMeans.transform", false]], "transform() (sklearn.compose.columntransformer method)": [[460, "sklearn.compose.ColumnTransformer.transform", false]], "transform() (sklearn.cross_decomposition.cca method)": [[478, "sklearn.cross_decomposition.CCA.transform", false]], "transform() (sklearn.cross_decomposition.plscanonical method)": [[479, "sklearn.cross_decomposition.PLSCanonical.transform", false]], "transform() (sklearn.cross_decomposition.plsregression method)": [[480, "sklearn.cross_decomposition.PLSRegression.transform", false]], "transform() (sklearn.cross_decomposition.plssvd method)": [[481, "sklearn.cross_decomposition.PLSSVD.transform", false]], "transform() (sklearn.decomposition.dictionarylearning method)": [[528, "sklearn.decomposition.DictionaryLearning.transform", false]], "transform() (sklearn.decomposition.factoranalysis method)": [[529, "sklearn.decomposition.FactorAnalysis.transform", false]], "transform() (sklearn.decomposition.fastica method)": [[530, "sklearn.decomposition.FastICA.transform", false]], "transform() (sklearn.decomposition.incrementalpca method)": [[531, "sklearn.decomposition.IncrementalPCA.transform", false]], "transform() (sklearn.decomposition.kernelpca method)": [[532, "sklearn.decomposition.KernelPCA.transform", false]], "transform() (sklearn.decomposition.latentdirichletallocation method)": [[533, "sklearn.decomposition.LatentDirichletAllocation.transform", false]], "transform() (sklearn.decomposition.minibatchdictionarylearning method)": [[534, "sklearn.decomposition.MiniBatchDictionaryLearning.transform", false]], "transform() (sklearn.decomposition.minibatchnmf method)": [[535, "sklearn.decomposition.MiniBatchNMF.transform", false]], "transform() (sklearn.decomposition.minibatchsparsepca method)": [[536, "sklearn.decomposition.MiniBatchSparsePCA.transform", false]], "transform() (sklearn.decomposition.nmf method)": [[537, "sklearn.decomposition.NMF.transform", false]], "transform() (sklearn.decomposition.pca method)": [[538, "sklearn.decomposition.PCA.transform", false]], "transform() (sklearn.decomposition.sparsecoder method)": [[539, "sklearn.decomposition.SparseCoder.transform", false]], "transform() (sklearn.decomposition.sparsepca method)": [[540, "sklearn.decomposition.SparsePCA.transform", false]], "transform() (sklearn.decomposition.truncatedsvd method)": [[541, "sklearn.decomposition.TruncatedSVD.transform", false]], "transform() (sklearn.discriminant_analysis.lineardiscriminantanalysis method)": [[546, "sklearn.discriminant_analysis.LinearDiscriminantAnalysis.transform", false]], "transform() (sklearn.ensemble.randomtreesembedding method)": [[563, "sklearn.ensemble.RandomTreesEmbedding.transform", false]], "transform() (sklearn.ensemble.stackingclassifier method)": [[564, "sklearn.ensemble.StackingClassifier.transform", false]], "transform() (sklearn.ensemble.stackingregressor method)": [[565, "sklearn.ensemble.StackingRegressor.transform", false]], "transform() (sklearn.ensemble.votingclassifier method)": [[566, "sklearn.ensemble.VotingClassifier.transform", false]], "transform() (sklearn.ensemble.votingregressor method)": [[567, "sklearn.ensemble.VotingRegressor.transform", false]], "transform() (sklearn.feature_extraction.dictvectorizer method)": [[579, "sklearn.feature_extraction.DictVectorizer.transform", false]], "transform() (sklearn.feature_extraction.featurehasher method)": [[580, "sklearn.feature_extraction.FeatureHasher.transform", false]], "transform() (sklearn.feature_extraction.image.patchextractor method)": [[581, "sklearn.feature_extraction.image.PatchExtractor.transform", false]], "transform() (sklearn.feature_extraction.text.countvectorizer method)": [[586, "sklearn.feature_extraction.text.CountVectorizer.transform", false]], "transform() (sklearn.feature_extraction.text.hashingvectorizer method)": [[587, "sklearn.feature_extraction.text.HashingVectorizer.transform", false]], "transform() (sklearn.feature_extraction.text.tfidftransformer method)": [[588, "sklearn.feature_extraction.text.TfidfTransformer.transform", false]], "transform() (sklearn.feature_extraction.text.tfidfvectorizer method)": [[589, "sklearn.feature_extraction.text.TfidfVectorizer.transform", false]], "transform() (sklearn.feature_selection.genericunivariateselect method)": [[590, "sklearn.feature_selection.GenericUnivariateSelect.transform", false]], "transform() (sklearn.feature_selection.rfe method)": [[591, "sklearn.feature_selection.RFE.transform", false]], "transform() (sklearn.feature_selection.rfecv method)": [[592, "sklearn.feature_selection.RFECV.transform", false]], "transform() (sklearn.feature_selection.selectfdr method)": [[593, "sklearn.feature_selection.SelectFdr.transform", false]], "transform() (sklearn.feature_selection.selectfpr method)": [[594, "sklearn.feature_selection.SelectFpr.transform", false]], "transform() (sklearn.feature_selection.selectfrommodel method)": [[595, "sklearn.feature_selection.SelectFromModel.transform", false]], "transform() (sklearn.feature_selection.selectfwe method)": [[596, "sklearn.feature_selection.SelectFwe.transform", false]], "transform() (sklearn.feature_selection.selectkbest method)": [[597, "sklearn.feature_selection.SelectKBest.transform", false]], "transform() (sklearn.feature_selection.selectormixin method)": [[599, "sklearn.feature_selection.SelectorMixin.transform", false]], "transform() (sklearn.feature_selection.selectpercentile method)": [[598, "sklearn.feature_selection.SelectPercentile.transform", false]], "transform() (sklearn.feature_selection.sequentialfeatureselector method)": [[600, "sklearn.feature_selection.SequentialFeatureSelector.transform", false]], "transform() (sklearn.feature_selection.variancethreshold method)": [[601, "sklearn.feature_selection.VarianceThreshold.transform", false]], "transform() (sklearn.impute.iterativeimputer method)": [[626, "sklearn.impute.IterativeImputer.transform", false]], "transform() (sklearn.impute.knnimputer method)": [[627, "sklearn.impute.KNNImputer.transform", false]], "transform() (sklearn.impute.missingindicator method)": [[628, "sklearn.impute.MissingIndicator.transform", false]], "transform() (sklearn.impute.simpleimputer method)": [[629, "sklearn.impute.SimpleImputer.transform", false]], "transform() (sklearn.isotonic.isotonicregression method)": [[634, "sklearn.isotonic.IsotonicRegression.transform", false]], "transform() (sklearn.kernel_approximation.additivechi2sampler method)": [[637, "sklearn.kernel_approximation.AdditiveChi2Sampler.transform", false]], "transform() (sklearn.kernel_approximation.nystroem method)": [[638, "sklearn.kernel_approximation.Nystroem.transform", false]], "transform() (sklearn.kernel_approximation.polynomialcountsketch method)": [[639, "sklearn.kernel_approximation.PolynomialCountSketch.transform", false]], "transform() (sklearn.kernel_approximation.rbfsampler method)": [[640, "sklearn.kernel_approximation.RBFSampler.transform", false]], "transform() (sklearn.kernel_approximation.skewedchi2sampler method)": [[641, "sklearn.kernel_approximation.SkewedChi2Sampler.transform", false]], "transform() (sklearn.manifold.isomap method)": [[688, "sklearn.manifold.Isomap.transform", false]], "transform() (sklearn.manifold.locallylinearembedding method)": [[689, "sklearn.manifold.LocallyLinearEmbedding.transform", false]], "transform() (sklearn.model_selection.gridsearchcv method)": [[801, "sklearn.model_selection.GridSearchCV.transform", false]], "transform() (sklearn.model_selection.halvinggridsearchcv method)": [[804, "sklearn.model_selection.HalvingGridSearchCV.transform", false]], "transform() (sklearn.model_selection.halvingrandomsearchcv method)": [[805, "sklearn.model_selection.HalvingRandomSearchCV.transform", false]], "transform() (sklearn.model_selection.randomizedsearchcv method)": [[815, "sklearn.model_selection.RandomizedSearchCV.transform", false]], "transform() (sklearn.neighbors.kneighborstransformer method)": [[849, "sklearn.neighbors.KNeighborsTransformer.transform", false]], "transform() (sklearn.neighbors.neighborhoodcomponentsanalysis method)": [[854, "sklearn.neighbors.NeighborhoodComponentsAnalysis.transform", false]], "transform() (sklearn.neighbors.radiusneighborstransformer method)": [[857, "sklearn.neighbors.RadiusNeighborsTransformer.transform", false]], "transform() (sklearn.neural_network.bernoullirbm method)": [[861, "sklearn.neural_network.BernoulliRBM.transform", false]], "transform() (sklearn.pipeline.featureunion method)": [[864, "sklearn.pipeline.FeatureUnion.transform", false]], "transform() (sklearn.pipeline.pipeline method)": [[865, "sklearn.pipeline.Pipeline.transform", false]], "transform() (sklearn.preprocessing.binarizer method)": [[868, "sklearn.preprocessing.Binarizer.transform", false]], "transform() (sklearn.preprocessing.functiontransformer method)": [[869, "sklearn.preprocessing.FunctionTransformer.transform", false]], "transform() (sklearn.preprocessing.kbinsdiscretizer method)": [[870, "sklearn.preprocessing.KBinsDiscretizer.transform", false]], "transform() (sklearn.preprocessing.kernelcenterer method)": [[871, "sklearn.preprocessing.KernelCenterer.transform", false]], "transform() (sklearn.preprocessing.labelbinarizer method)": [[872, "sklearn.preprocessing.LabelBinarizer.transform", false]], "transform() (sklearn.preprocessing.labelencoder method)": [[873, "sklearn.preprocessing.LabelEncoder.transform", false]], "transform() (sklearn.preprocessing.maxabsscaler method)": [[874, "sklearn.preprocessing.MaxAbsScaler.transform", false]], "transform() (sklearn.preprocessing.minmaxscaler method)": [[875, "sklearn.preprocessing.MinMaxScaler.transform", false]], "transform() (sklearn.preprocessing.multilabelbinarizer method)": [[876, "sklearn.preprocessing.MultiLabelBinarizer.transform", false]], "transform() (sklearn.preprocessing.normalizer method)": [[877, "sklearn.preprocessing.Normalizer.transform", false]], "transform() (sklearn.preprocessing.onehotencoder method)": [[878, "sklearn.preprocessing.OneHotEncoder.transform", false]], "transform() (sklearn.preprocessing.ordinalencoder method)": [[879, "sklearn.preprocessing.OrdinalEncoder.transform", false]], "transform() (sklearn.preprocessing.polynomialfeatures method)": [[880, "sklearn.preprocessing.PolynomialFeatures.transform", false]], "transform() (sklearn.preprocessing.powertransformer method)": [[881, "sklearn.preprocessing.PowerTransformer.transform", false]], "transform() (sklearn.preprocessing.quantiletransformer method)": [[882, "sklearn.preprocessing.QuantileTransformer.transform", false]], "transform() (sklearn.preprocessing.robustscaler method)": [[883, "sklearn.preprocessing.RobustScaler.transform", false]], "transform() (sklearn.preprocessing.splinetransformer method)": [[884, "sklearn.preprocessing.SplineTransformer.transform", false]], "transform() (sklearn.preprocessing.standardscaler method)": [[885, "sklearn.preprocessing.StandardScaler.transform", false]], "transform() (sklearn.preprocessing.targetencoder method)": [[886, "sklearn.preprocessing.TargetEncoder.transform", false]], "transform() (sklearn.random_projection.gaussianrandomprojection method)": [[897, "sklearn.random_projection.GaussianRandomProjection.transform", false]], "transform() (sklearn.random_projection.sparserandomprojection method)": [[898, "sklearn.random_projection.SparseRandomProjection.transform", false]], "transformedtargetregressor (class in sklearn.compose)": [[461, "sklearn.compose.TransformedTargetRegressor", false]], "transformer": [[385, "term-transformer", true]], "transformermixin (class in sklearn.base)": [[427, "sklearn.base.TransformerMixin", false]], "transformers": [[385, "term-transformers", true]], "transformertags (class in sklearn.utils)": [[926, "sklearn.utils.TransformerTags", false]], "truncatedsvd (class in sklearn.decomposition)": [[541, "sklearn.decomposition.TruncatedSVD", false]], "trustworthiness() (in module sklearn.manifold)": [[696, "sklearn.manifold.trustworthiness", false]], "tsne (class in sklearn.manifold)": [[692, "sklearn.manifold.TSNE", false]], "tunedthresholdclassifiercv (class in sklearn.model_selection)": [[823, "sklearn.model_selection.TunedThresholdClassifierCV", false]], "tweedieregressor (class in sklearn.linear_model)": [[679, "sklearn.linear_model.TweedieRegressor", false]], "two_point_correlation() (sklearn.neighbors.balltree method)": [[845, "sklearn.neighbors.BallTree.two_point_correlation", false]], "two_point_correlation() (sklearn.neighbors.kdtree method)": [[846, "sklearn.neighbors.KDTree.two_point_correlation", false]], "type_of_target() (in module sklearn.utils.multiclass)": [[964, "sklearn.utils.multiclass.type_of_target", false]], "undefinedmetricwarning": [[576, "sklearn.exceptions.UndefinedMetricWarning", false]], "unique_labels() (in module sklearn.utils.multiclass)": [[965, "sklearn.utils.multiclass.unique_labels", false]], "unlabeled": [[385, "term-unlabeled", true]], "unlabeled data": [[385, "term-unlabeled-data", true]], "unsupervised": [[385, "term-unsupervised", true]], "unsupervised learning": [[385, "term-unsupervised-learning", true]], "update() (sklearn.utils.bunch method)": [[920, "sklearn.utils.Bunch.update", false]], "v_measure_score() (in module sklearn.metrics)": [[796, "sklearn.metrics.v_measure_score", false]], "validate_data() (in module sklearn.utils.validation)": [[988, "sklearn.utils.validation.validate_data", false]], "validate_metadata() (sklearn.utils.metadata_routing.metadatarouter method)": [[958, "sklearn.utils.metadata_routing.MetadataRouter.validate_metadata", false]], "validation_curve() (in module sklearn.model_selection)": [[832, "sklearn.model_selection.validation_curve", false]], "validationcurvedisplay (class in sklearn.model_selection)": [[824, "sklearn.model_selection.ValidationCurveDisplay", false]], "value_type (sklearn.gaussian_process.kernels.hyperparameter attribute)": [[616, "sklearn.gaussian_process.kernels.Hyperparameter.value_type", false]], "values() (sklearn.utils.bunch method)": [[920, "sklearn.utils.Bunch.values", false]], "variancethreshold (class in sklearn.feature_selection)": [[601, "sklearn.feature_selection.VarianceThreshold", false]], "vectorizer": [[385, "term-vectorizer", true]], "vectorizers": [[385, "term-vectorizers", true]], "verbose": [[385, "term-verbose", true]], "votingclassifier (class in sklearn.ensemble)": [[566, "sklearn.ensemble.VotingClassifier", false]], "votingregressor (class in sklearn.ensemble)": [[567, "sklearn.ensemble.VotingRegressor", false]], "ward_tree() (in module sklearn.cluster)": [[459, "sklearn.cluster.ward_tree", false]], "warm_start": [[385, "term-warm_start", true]], "weighted_mode() (in module sklearn.utils.extmath)": [[951, "sklearn.utils.extmath.weighted_mode", false]], "whitekernel (class in sklearn.gaussian_process.kernels)": [[624, "sklearn.gaussian_process.kernels.WhiteKernel", false]], "x": [[385, "term-X", true]], "xt": [[385, "term-Xt", true]], "y": [[385, "term-Y", true], [385, "term-y", true]], "zero_one_loss() (in module sklearn.metrics)": [[797, "sklearn.metrics.zero_one_loss", false]]}, "objects": {"": [[3, 0, 0, "-", "sklearn"]], "sklearn": [[4, 0, 0, "-", "base"], [5, 0, 0, "-", "calibration"], [6, 0, 0, "-", "cluster"], [7, 0, 0, "-", "compose"], [464, 3, 1, "", "config_context"], [8, 0, 0, "-", "covariance"], [9, 0, 0, "-", "cross_decomposition"], [10, 0, 0, "-", "datasets"], [11, 0, 0, "-", "decomposition"], [12, 0, 0, "-", "discriminant_analysis"], [13, 0, 0, "-", "dummy"], [14, 0, 0, "-", "ensemble"], [15, 0, 0, "-", "exceptions"], [16, 0, 0, "-", "experimental"], [17, 0, 0, "-", "feature_extraction"], [18, 0, 0, "-", "feature_selection"], [19, 0, 0, "-", "frozen"], [20, 0, 0, "-", "gaussian_process"], [625, 3, 1, "", "get_config"], [21, 0, 0, "-", "impute"], [22, 0, 0, "-", "inspection"], [23, 0, 0, "-", "isotonic"], [24, 0, 0, "-", "kernel_approximation"], [25, 0, 0, "-", "kernel_ridge"], [26, 0, 0, "-", "linear_model"], [27, 0, 0, "-", "manifold"], [28, 0, 0, "-", "metrics"], [29, 0, 0, "-", "mixture"], [30, 0, 0, "-", "model_selection"], [31, 0, 0, "-", "multiclass"], [32, 0, 0, "-", "multioutput"], [33, 0, 0, "-", "naive_bayes"], [34, 0, 0, "-", "neighbors"], [35, 0, 0, "-", "neural_network"], [36, 0, 0, "-", "pipeline"], [37, 0, 0, "-", "preprocessing"], [38, 0, 0, "-", "random_projection"], [39, 0, 0, "-", "semi_supervised"], [903, 3, 1, "", "set_config"], [904, 3, 1, "", "show_versions"], [40, 0, 0, "-", "svm"], [41, 0, 0, "-", "tree"], [42, 0, 0, "-", "utils"]], "sklearn.base": [[417, 1, 1, "", "BaseEstimator"], [418, 1, 1, "", "BiclusterMixin"], [419, 1, 1, "", "ClassNamePrefixFeaturesOutMixin"], [420, 1, 1, "", "ClassifierMixin"], [421, 1, 1, "", "ClusterMixin"], [422, 1, 1, "", "DensityMixin"], [423, 1, 1, "", "MetaEstimatorMixin"], [424, 1, 1, "", "OneToOneFeatureMixin"], [425, 1, 1, "", "OutlierMixin"], [426, 1, 1, "", "RegressorMixin"], [427, 1, 1, "", "TransformerMixin"], [428, 3, 1, "", "clone"], [429, 3, 1, "", "is_classifier"], [430, 3, 1, "", "is_clusterer"], [431, 3, 1, "", "is_outlier_detector"], [432, 3, 1, "", "is_regressor"]], "sklearn.base.BaseEstimator": [[417, 2, 1, "", "get_metadata_routing"], [417, 2, 1, "", "get_params"], [417, 2, 1, "", "set_params"]], "sklearn.base.BiclusterMixin": [[418, 2, 1, "", "get_indices"], [418, 2, 1, "", "get_shape"], [418, 2, 1, "", "get_submatrix"]], "sklearn.base.ClassNamePrefixFeaturesOutMixin": [[419, 2, 1, "", "get_feature_names_out"]], "sklearn.base.ClassifierMixin": [[420, 2, 1, "", "score"]], "sklearn.base.ClusterMixin": [[421, 2, 1, "", "fit_predict"]], "sklearn.base.DensityMixin": [[422, 2, 1, "", "score"]], "sklearn.base.OneToOneFeatureMixin": [[424, 2, 1, "", "get_feature_names_out"]], "sklearn.base.OutlierMixin": [[425, 2, 1, "", "fit_predict"]], "sklearn.base.RegressorMixin": [[426, 2, 1, "", "score"]], "sklearn.base.TransformerMixin": [[427, 2, 1, "", "fit_transform"], [427, 2, 1, "", "set_output"]], "sklearn.calibration": [[433, 1, 1, "", "CalibratedClassifierCV"], [434, 1, 1, "", "CalibrationDisplay"], [435, 3, 1, "", "calibration_curve"]], "sklearn.calibration.CalibratedClassifierCV": [[433, 2, 1, "", "fit"], [433, 2, 1, "", "get_metadata_routing"], [433, 2, 1, "", "get_params"], [433, 2, 1, "", "predict"], [433, 2, 1, "", "predict_proba"], [433, 2, 1, "", "score"], [433, 2, 1, "", "set_fit_request"], [433, 2, 1, "", "set_params"], [433, 2, 1, "", "set_score_request"]], "sklearn.calibration.CalibrationDisplay": [[434, 2, 1, "", "from_estimator"], [434, 2, 1, "", "from_predictions"], [434, 2, 1, "", "plot"]], "sklearn.cluster": [[436, 1, 1, "", "AffinityPropagation"], [437, 1, 1, "", "AgglomerativeClustering"], [438, 1, 1, "", "Birch"], [439, 1, 1, "", "BisectingKMeans"], [440, 1, 1, "", "DBSCAN"], [441, 1, 1, "", "FeatureAgglomeration"], [442, 1, 1, "", "HDBSCAN"], [443, 1, 1, "", "KMeans"], [444, 1, 1, "", "MeanShift"], [445, 1, 1, "", "MiniBatchKMeans"], [446, 1, 1, "", "OPTICS"], [447, 1, 1, "", "SpectralBiclustering"], [448, 1, 1, "", "SpectralClustering"], [449, 1, 1, "", "SpectralCoclustering"], [450, 3, 1, "", "affinity_propagation"], [451, 3, 1, "", "cluster_optics_dbscan"], [452, 3, 1, "", "cluster_optics_xi"], [453, 3, 1, "", "compute_optics_graph"], [414, 3, 1, "", "dbscan"], [454, 3, 1, "", "estimate_bandwidth"], [455, 3, 1, "", "k_means"], [456, 3, 1, "", "kmeans_plusplus"], [457, 3, 1, "", "mean_shift"], [458, 3, 1, "", "spectral_clustering"], [459, 3, 1, "", "ward_tree"]], "sklearn.cluster.AffinityPropagation": [[436, 2, 1, "", "fit"], [436, 2, 1, "", "fit_predict"], [436, 2, 1, "", "get_metadata_routing"], [436, 2, 1, "", "get_params"], [436, 2, 1, "", "predict"], [436, 2, 1, "", "set_params"]], "sklearn.cluster.AgglomerativeClustering": [[437, 2, 1, "", "fit"], [437, 2, 1, "", "fit_predict"], [437, 2, 1, "", "get_metadata_routing"], [437, 2, 1, "", "get_params"], [437, 2, 1, "", "set_params"]], "sklearn.cluster.Birch": [[438, 2, 1, "", "fit"], [438, 2, 1, "", "fit_predict"], [438, 2, 1, "", "fit_transform"], [438, 2, 1, "", "get_feature_names_out"], [438, 2, 1, "", "get_metadata_routing"], [438, 2, 1, "", "get_params"], [438, 2, 1, "", "partial_fit"], [438, 2, 1, "", "predict"], [438, 2, 1, "", "set_output"], [438, 2, 1, "", "set_params"], [438, 2, 1, "", "transform"]], "sklearn.cluster.BisectingKMeans": [[439, 2, 1, "", "fit"], [439, 2, 1, "", "fit_predict"], [439, 2, 1, "", "fit_transform"], [439, 2, 1, "", "get_feature_names_out"], [439, 2, 1, "", "get_metadata_routing"], [439, 2, 1, "", "get_params"], [439, 2, 1, "", "predict"], [439, 2, 1, "", "score"], [439, 2, 1, "", "set_fit_request"], [439, 2, 1, "", "set_output"], [439, 2, 1, "", "set_params"], [439, 2, 1, "", "set_score_request"], [439, 2, 1, "", "transform"]], "sklearn.cluster.DBSCAN": [[440, 2, 1, "", "fit"], [440, 2, 1, "", "fit_predict"], [440, 2, 1, "", "get_metadata_routing"], [440, 2, 1, "", "get_params"], [440, 2, 1, "", "set_fit_request"], [440, 2, 1, "", "set_params"]], "sklearn.cluster.FeatureAgglomeration": [[441, 2, 1, "", "fit"], [441, 4, 1, "", "fit_predict"], [441, 2, 1, "", "fit_transform"], [441, 2, 1, "", "get_feature_names_out"], [441, 2, 1, "", "get_metadata_routing"], [441, 2, 1, "", "get_params"], [441, 2, 1, "", "inverse_transform"], [441, 2, 1, "", "set_output"], [441, 2, 1, "", "set_params"], [441, 2, 1, "", "transform"]], "sklearn.cluster.HDBSCAN": [[442, 2, 1, "", "dbscan_clustering"], [442, 2, 1, "", "fit"], [442, 2, 1, "", "fit_predict"], [442, 2, 1, "", "get_metadata_routing"], [442, 2, 1, "", "get_params"], [442, 2, 1, "", "set_params"]], "sklearn.cluster.KMeans": [[443, 2, 1, "", "fit"], [443, 2, 1, "", "fit_predict"], [443, 2, 1, "", "fit_transform"], [443, 2, 1, "", "get_feature_names_out"], [443, 2, 1, "", "get_metadata_routing"], [443, 2, 1, "", "get_params"], [443, 2, 1, "", "predict"], [443, 2, 1, "", "score"], [443, 2, 1, "", "set_fit_request"], [443, 2, 1, "", "set_output"], [443, 2, 1, "", "set_params"], [443, 2, 1, "", "set_score_request"], [443, 2, 1, "", "transform"]], "sklearn.cluster.MeanShift": [[444, 2, 1, "", "fit"], [444, 2, 1, "", "fit_predict"], [444, 2, 1, "", "get_metadata_routing"], [444, 2, 1, "", "get_params"], [444, 2, 1, "", "predict"], [444, 2, 1, "", "set_params"]], "sklearn.cluster.MiniBatchKMeans": [[445, 2, 1, "", "fit"], [445, 2, 1, "", "fit_predict"], [445, 2, 1, "", "fit_transform"], [445, 2, 1, "", "get_feature_names_out"], [445, 2, 1, "", "get_metadata_routing"], [445, 2, 1, "", "get_params"], [445, 2, 1, "", "partial_fit"], [445, 2, 1, "", "predict"], [445, 2, 1, "", "score"], [445, 2, 1, "", "set_fit_request"], [445, 2, 1, "", "set_output"], [445, 2, 1, "", "set_params"], [445, 2, 1, "", "set_partial_fit_request"], [445, 2, 1, "", "set_score_request"], [445, 2, 1, "", "transform"]], "sklearn.cluster.OPTICS": [[446, 2, 1, "", "fit"], [446, 2, 1, "", "fit_predict"], [446, 2, 1, "", "get_metadata_routing"], [446, 2, 1, "", "get_params"], [446, 2, 1, "", "set_params"]], "sklearn.cluster.SpectralBiclustering": [[447, 2, 1, "", "fit"], [447, 2, 1, "", "get_indices"], [447, 2, 1, "", "get_metadata_routing"], [447, 2, 1, "", "get_params"], [447, 2, 1, "", "get_shape"], [447, 2, 1, "", "get_submatrix"], [447, 2, 1, "", "set_params"]], "sklearn.cluster.SpectralClustering": [[448, 2, 1, "", "fit"], [448, 2, 1, "", "fit_predict"], [448, 2, 1, "", "get_metadata_routing"], [448, 2, 1, "", "get_params"], [448, 2, 1, "", "set_params"]], "sklearn.cluster.SpectralCoclustering": [[449, 2, 1, "", "fit"], [449, 2, 1, "", "get_indices"], [449, 2, 1, "", "get_metadata_routing"], [449, 2, 1, "", "get_params"], [449, 2, 1, "", "get_shape"], [449, 2, 1, "", "get_submatrix"], [449, 2, 1, "", "set_params"]], "sklearn.compose": [[460, 1, 1, "", "ColumnTransformer"], [461, 1, 1, "", "TransformedTargetRegressor"], [462, 1, 1, "", "make_column_selector"], [463, 3, 1, "", "make_column_transformer"]], "sklearn.compose.ColumnTransformer": [[460, 2, 1, "", "fit"], [460, 2, 1, "", "fit_transform"], [460, 2, 1, "", "get_feature_names_out"], [460, 2, 1, "", "get_metadata_routing"], [460, 2, 1, "", "get_params"], [460, 2, 1, "", "set_output"], [460, 2, 1, "", "set_params"], [460, 2, 1, "", "transform"]], "sklearn.compose.TransformedTargetRegressor": [[461, 2, 1, "", "fit"], [461, 2, 1, "", "get_metadata_routing"], [461, 2, 1, "", "get_params"], [461, 2, 1, "", "predict"], [461, 2, 1, "", "score"], [461, 2, 1, "", "set_params"], [461, 2, 1, "", "set_score_request"]], "sklearn.compose.make_column_selector": [[462, 2, 1, "", "__call__"]], "sklearn.covariance": [[465, 1, 1, "", "EllipticEnvelope"], [466, 1, 1, "", "EmpiricalCovariance"], [467, 1, 1, "", "GraphicalLasso"], [468, 1, 1, "", "GraphicalLassoCV"], [469, 1, 1, "", "LedoitWolf"], [470, 1, 1, "", "MinCovDet"], [471, 1, 1, "", "OAS"], [472, 1, 1, "", "ShrunkCovariance"], [473, 3, 1, "", "empirical_covariance"], [474, 3, 1, "", "graphical_lasso"], [475, 3, 1, "", "ledoit_wolf"], [476, 3, 1, "", "ledoit_wolf_shrinkage"], [416, 3, 1, "", "oas"], [477, 3, 1, "", "shrunk_covariance"]], "sklearn.covariance.EllipticEnvelope": [[465, 2, 1, "", "correct_covariance"], [465, 2, 1, "", "decision_function"], [465, 2, 1, "", "error_norm"], [465, 2, 1, "", "fit"], [465, 2, 1, "", "fit_predict"], [465, 2, 1, "", "get_metadata_routing"], [465, 2, 1, "", "get_params"], [465, 2, 1, "", "get_precision"], [465, 2, 1, "", "mahalanobis"], [465, 2, 1, "", "predict"], [465, 2, 1, "", "reweight_covariance"], [465, 2, 1, "", "score"], [465, 2, 1, "", "score_samples"], [465, 2, 1, "", "set_params"]], "sklearn.covariance.EmpiricalCovariance": [[466, 2, 1, "", "error_norm"], [466, 2, 1, "", "fit"], [466, 2, 1, "", "get_metadata_routing"], [466, 2, 1, "", "get_params"], [466, 2, 1, "", "get_precision"], [466, 2, 1, "", "mahalanobis"], [466, 2, 1, "", "score"], [466, 2, 1, "", "set_params"]], "sklearn.covariance.GraphicalLasso": [[467, 2, 1, "", "error_norm"], [467, 2, 1, "", "fit"], [467, 2, 1, "", "get_metadata_routing"], [467, 2, 1, "", "get_params"], [467, 2, 1, "", "get_precision"], [467, 2, 1, "", "mahalanobis"], [467, 2, 1, "", "score"], [467, 2, 1, "", "set_params"]], "sklearn.covariance.GraphicalLassoCV": [[468, 2, 1, "", "error_norm"], [468, 2, 1, "", "fit"], [468, 2, 1, "", "get_metadata_routing"], [468, 2, 1, "", "get_params"], [468, 2, 1, "", "get_precision"], [468, 2, 1, "", "mahalanobis"], [468, 2, 1, "", "score"], [468, 2, 1, "", "set_params"]], "sklearn.covariance.LedoitWolf": [[469, 2, 1, "", "error_norm"], [469, 2, 1, "", "fit"], [469, 2, 1, "", "get_metadata_routing"], [469, 2, 1, "", "get_params"], [469, 2, 1, "", "get_precision"], [469, 2, 1, "", "mahalanobis"], [469, 2, 1, "", "score"], [469, 2, 1, "", "set_params"]], "sklearn.covariance.MinCovDet": [[470, 2, 1, "", "correct_covariance"], [470, 2, 1, "", "error_norm"], [470, 2, 1, "", "fit"], [470, 2, 1, "", "get_metadata_routing"], [470, 2, 1, "", "get_params"], [470, 2, 1, "", "get_precision"], [470, 2, 1, "", "mahalanobis"], [470, 2, 1, "", "reweight_covariance"], [470, 2, 1, "", "score"], [470, 2, 1, "", "set_params"]], "sklearn.covariance.OAS": [[471, 2, 1, "", "error_norm"], [471, 2, 1, "", "fit"], [471, 2, 1, "", "get_metadata_routing"], [471, 2, 1, "", "get_params"], [471, 2, 1, "", "get_precision"], [471, 2, 1, "", "mahalanobis"], [471, 2, 1, "", "score"], [471, 2, 1, "", "set_params"]], "sklearn.covariance.ShrunkCovariance": [[472, 2, 1, "", "error_norm"], [472, 2, 1, "", "fit"], [472, 2, 1, "", "get_metadata_routing"], [472, 2, 1, "", "get_params"], [472, 2, 1, "", "get_precision"], [472, 2, 1, "", "mahalanobis"], [472, 2, 1, "", "score"], [472, 2, 1, "", "set_params"]], "sklearn.cross_decomposition": [[478, 1, 1, "", "CCA"], [479, 1, 1, "", "PLSCanonical"], [480, 1, 1, "", "PLSRegression"], [481, 1, 1, "", "PLSSVD"]], "sklearn.cross_decomposition.CCA": [[478, 2, 1, "", "fit"], [478, 2, 1, "", "fit_transform"], [478, 2, 1, "", "get_feature_names_out"], [478, 2, 1, "", "get_metadata_routing"], [478, 2, 1, "", "get_params"], [478, 2, 1, "", "inverse_transform"], [478, 2, 1, "", "predict"], [478, 2, 1, "", "score"], [478, 2, 1, "", "set_output"], [478, 2, 1, "", "set_params"], [478, 2, 1, "", "set_predict_request"], [478, 2, 1, "", "set_score_request"], [478, 2, 1, "", "set_transform_request"], [478, 2, 1, "", "transform"]], "sklearn.cross_decomposition.PLSCanonical": [[479, 2, 1, "", "fit"], [479, 2, 1, "", "fit_transform"], [479, 2, 1, "", "get_feature_names_out"], [479, 2, 1, "", "get_metadata_routing"], [479, 2, 1, "", "get_params"], [479, 2, 1, "", "inverse_transform"], [479, 2, 1, "", "predict"], [479, 2, 1, "", "score"], [479, 2, 1, "", "set_output"], [479, 2, 1, "", "set_params"], [479, 2, 1, "", "set_predict_request"], [479, 2, 1, "", "set_score_request"], [479, 2, 1, "", "set_transform_request"], [479, 2, 1, "", "transform"]], "sklearn.cross_decomposition.PLSRegression": [[480, 2, 1, "", "fit"], [480, 2, 1, "", "fit_transform"], [480, 2, 1, "", "get_feature_names_out"], [480, 2, 1, "", "get_metadata_routing"], [480, 2, 1, "", "get_params"], [480, 2, 1, "", "inverse_transform"], [480, 2, 1, "", "predict"], [480, 2, 1, "", "score"], [480, 2, 1, "", "set_output"], [480, 2, 1, "", "set_params"], [480, 2, 1, "", "set_predict_request"], [480, 2, 1, "", "set_score_request"], [480, 2, 1, "", "set_transform_request"], [480, 2, 1, "", "transform"]], "sklearn.cross_decomposition.PLSSVD": [[481, 2, 1, "", "fit"], [481, 2, 1, "", "fit_transform"], [481, 2, 1, "", "get_feature_names_out"], [481, 2, 1, "", "get_metadata_routing"], [481, 2, 1, "", "get_params"], [481, 2, 1, "", "set_output"], [481, 2, 1, "", "set_params"], [481, 2, 1, "", "transform"]], "sklearn.datasets": [[482, 3, 1, "", "clear_data_home"], [483, 3, 1, "", "dump_svmlight_file"], [484, 3, 1, "", "fetch_20newsgroups"], [485, 3, 1, "", "fetch_20newsgroups_vectorized"], [486, 3, 1, "", "fetch_california_housing"], [487, 3, 1, "", "fetch_covtype"], [488, 3, 1, "", "fetch_file"], [489, 3, 1, "", "fetch_kddcup99"], [490, 3, 1, "", "fetch_lfw_pairs"], [491, 3, 1, "", "fetch_lfw_people"], [492, 3, 1, "", "fetch_olivetti_faces"], [493, 3, 1, "", "fetch_openml"], [494, 3, 1, "", "fetch_rcv1"], [495, 3, 1, "", "fetch_species_distributions"], [496, 3, 1, "", "get_data_home"], [497, 3, 1, "", "load_breast_cancer"], [498, 3, 1, "", "load_diabetes"], [499, 3, 1, "", "load_digits"], [500, 3, 1, "", "load_files"], [501, 3, 1, "", "load_iris"], [502, 3, 1, "", "load_linnerud"], [503, 3, 1, "", "load_sample_image"], [504, 3, 1, "", "load_sample_images"], [505, 3, 1, "", "load_svmlight_file"], [506, 3, 1, "", "load_svmlight_files"], [507, 3, 1, "", "load_wine"], [508, 3, 1, "", "make_biclusters"], [509, 3, 1, "", "make_blobs"], [510, 3, 1, "", "make_checkerboard"], [511, 3, 1, "", "make_circles"], [512, 3, 1, "", "make_classification"], [513, 3, 1, "", "make_friedman1"], [514, 3, 1, "", "make_friedman2"], [515, 3, 1, "", "make_friedman3"], [516, 3, 1, "", "make_gaussian_quantiles"], [517, 3, 1, "", "make_hastie_10_2"], [518, 3, 1, "", "make_low_rank_matrix"], [519, 3, 1, "", "make_moons"], [520, 3, 1, "", "make_multilabel_classification"], [521, 3, 1, "", "make_regression"], [522, 3, 1, "", "make_s_curve"], [523, 3, 1, "", "make_sparse_coded_signal"], [524, 3, 1, "", "make_sparse_spd_matrix"], [525, 3, 1, "", "make_sparse_uncorrelated"], [526, 3, 1, "", "make_spd_matrix"], [527, 3, 1, "", "make_swiss_roll"]], "sklearn.decomposition": [[528, 1, 1, "", "DictionaryLearning"], [529, 1, 1, "", "FactorAnalysis"], [530, 1, 1, "", "FastICA"], [531, 1, 1, "", "IncrementalPCA"], [532, 1, 1, "", "KernelPCA"], [533, 1, 1, "", "LatentDirichletAllocation"], [534, 1, 1, "", "MiniBatchDictionaryLearning"], [535, 1, 1, "", "MiniBatchNMF"], [536, 1, 1, "", "MiniBatchSparsePCA"], [537, 1, 1, "", "NMF"], [538, 1, 1, "", "PCA"], [539, 1, 1, "", "SparseCoder"], [540, 1, 1, "", "SparsePCA"], [541, 1, 1, "", "TruncatedSVD"], [542, 3, 1, "", "dict_learning"], [543, 3, 1, "", "dict_learning_online"], [415, 3, 1, "", "fastica"], [544, 3, 1, "", "non_negative_factorization"], [545, 3, 1, "", "sparse_encode"]], "sklearn.decomposition.DictionaryLearning": [[528, 2, 1, "", "fit"], [528, 2, 1, "", "fit_transform"], [528, 2, 1, "", "get_feature_names_out"], [528, 2, 1, "", "get_metadata_routing"], [528, 2, 1, "", "get_params"], [528, 2, 1, "", "inverse_transform"], [528, 2, 1, "", "set_output"], [528, 2, 1, "", "set_params"], [528, 2, 1, "", "transform"]], "sklearn.decomposition.FactorAnalysis": [[529, 2, 1, "", "fit"], [529, 2, 1, "", "fit_transform"], [529, 2, 1, "", "get_covariance"], [529, 2, 1, "", "get_feature_names_out"], [529, 2, 1, "", "get_metadata_routing"], [529, 2, 1, "", "get_params"], [529, 2, 1, "", "get_precision"], [529, 2, 1, "", "score"], [529, 2, 1, "", "score_samples"], [529, 2, 1, "", "set_output"], [529, 2, 1, "", "set_params"], [529, 2, 1, "", "transform"]], "sklearn.decomposition.FastICA": [[530, 2, 1, "", "fit"], [530, 2, 1, "", "fit_transform"], [530, 2, 1, "", "get_feature_names_out"], [530, 2, 1, "", "get_metadata_routing"], [530, 2, 1, "", "get_params"], [530, 2, 1, "", "inverse_transform"], [530, 2, 1, "", "set_inverse_transform_request"], [530, 2, 1, "", "set_output"], [530, 2, 1, "", "set_params"], [530, 2, 1, "", "set_transform_request"], [530, 2, 1, "", "transform"]], "sklearn.decomposition.IncrementalPCA": [[531, 2, 1, "", "fit"], [531, 2, 1, "", "fit_transform"], [531, 2, 1, "", "get_covariance"], [531, 2, 1, "", "get_feature_names_out"], [531, 2, 1, "", "get_metadata_routing"], [531, 2, 1, "", "get_params"], [531, 2, 1, "", "get_precision"], [531, 2, 1, "", "inverse_transform"], [531, 2, 1, "", "partial_fit"], [531, 2, 1, "", "set_output"], [531, 2, 1, "", "set_params"], [531, 2, 1, "", "transform"]], "sklearn.decomposition.KernelPCA": [[532, 2, 1, "", "fit"], [532, 2, 1, "", "fit_transform"], [532, 2, 1, "", "get_feature_names_out"], [532, 2, 1, "", "get_metadata_routing"], [532, 2, 1, "", "get_params"], [532, 2, 1, "", "inverse_transform"], [532, 2, 1, "", "set_output"], [532, 2, 1, "", "set_params"], [532, 2, 1, "", "transform"]], "sklearn.decomposition.LatentDirichletAllocation": [[533, 2, 1, "", "fit"], [533, 2, 1, "", "fit_transform"], [533, 2, 1, "", "get_feature_names_out"], [533, 2, 1, "", "get_metadata_routing"], [533, 2, 1, "", "get_params"], [533, 2, 1, "", "partial_fit"], [533, 2, 1, "", "perplexity"], [533, 2, 1, "", "score"], [533, 2, 1, "", "set_output"], [533, 2, 1, "", "set_params"], [533, 2, 1, "", "set_transform_request"], [533, 2, 1, "", "transform"]], "sklearn.decomposition.MiniBatchDictionaryLearning": [[534, 2, 1, "", "fit"], [534, 2, 1, "", "fit_transform"], [534, 2, 1, "", "get_feature_names_out"], [534, 2, 1, "", "get_metadata_routing"], [534, 2, 1, "", "get_params"], [534, 2, 1, "", "inverse_transform"], [534, 2, 1, "", "partial_fit"], [534, 2, 1, "", "set_output"], [534, 2, 1, "", "set_params"], [534, 2, 1, "", "transform"]], "sklearn.decomposition.MiniBatchNMF": [[535, 2, 1, "", "fit"], [535, 2, 1, "", "fit_transform"], [535, 2, 1, "", "get_feature_names_out"], [535, 2, 1, "", "get_metadata_routing"], [535, 2, 1, "", "get_params"], [535, 2, 1, "", "inverse_transform"], [535, 2, 1, "", "partial_fit"], [535, 2, 1, "", "set_output"], [535, 2, 1, "", "set_params"], [535, 2, 1, "", "set_partial_fit_request"], [535, 2, 1, "", "transform"]], "sklearn.decomposition.MiniBatchSparsePCA": [[536, 2, 1, "", "fit"], [536, 2, 1, "", "fit_transform"], [536, 2, 1, "", "get_feature_names_out"], [536, 2, 1, "", "get_metadata_routing"], [536, 2, 1, "", "get_params"], [536, 2, 1, "", "inverse_transform"], [536, 2, 1, "", "set_output"], [536, 2, 1, "", "set_params"], [536, 2, 1, "", "transform"]], "sklearn.decomposition.NMF": [[537, 2, 1, "", "fit"], [537, 2, 1, "", "fit_transform"], [537, 2, 1, "", "get_feature_names_out"], [537, 2, 1, "", "get_metadata_routing"], [537, 2, 1, "", "get_params"], [537, 2, 1, "", "inverse_transform"], [537, 2, 1, "", "set_output"], [537, 2, 1, "", "set_params"], [537, 2, 1, "", "transform"]], "sklearn.decomposition.PCA": [[538, 2, 1, "", "fit"], [538, 2, 1, "", "fit_transform"], [538, 2, 1, "", "get_covariance"], [538, 2, 1, "", "get_feature_names_out"], [538, 2, 1, "", "get_metadata_routing"], [538, 2, 1, "", "get_params"], [538, 2, 1, "", "get_precision"], [538, 2, 1, "", "inverse_transform"], [538, 2, 1, "", "score"], [538, 2, 1, "", "score_samples"], [538, 2, 1, "", "set_output"], [538, 2, 1, "", "set_params"], [538, 2, 1, "", "transform"]], "sklearn.decomposition.SparseCoder": [[539, 2, 1, "", "fit"], [539, 2, 1, "", "fit_transform"], [539, 2, 1, "", "get_feature_names_out"], [539, 2, 1, "", "get_metadata_routing"], [539, 2, 1, "", "get_params"], [539, 2, 1, "", "inverse_transform"], [539, 2, 1, "", "set_output"], [539, 2, 1, "", "set_params"], [539, 2, 1, "", "transform"]], "sklearn.decomposition.SparsePCA": [[540, 2, 1, "", "fit"], [540, 2, 1, "", "fit_transform"], [540, 2, 1, "", "get_feature_names_out"], [540, 2, 1, "", "get_metadata_routing"], [540, 2, 1, "", "get_params"], [540, 2, 1, "", "inverse_transform"], [540, 2, 1, "", "set_output"], [540, 2, 1, "", "set_params"], [540, 2, 1, "", "transform"]], "sklearn.decomposition.TruncatedSVD": [[541, 2, 1, "", "fit"], [541, 2, 1, "", "fit_transform"], [541, 2, 1, "", "get_feature_names_out"], [541, 2, 1, "", "get_metadata_routing"], [541, 2, 1, "", "get_params"], [541, 2, 1, "", "inverse_transform"], [541, 2, 1, "", "set_output"], [541, 2, 1, "", "set_params"], [541, 2, 1, "", "transform"]], "sklearn.discriminant_analysis": [[546, 1, 1, "", "LinearDiscriminantAnalysis"], [547, 1, 1, "", "QuadraticDiscriminantAnalysis"]], "sklearn.discriminant_analysis.LinearDiscriminantAnalysis": [[546, 2, 1, "", "decision_function"], [546, 2, 1, "", "fit"], [546, 2, 1, "", "fit_transform"], [546, 2, 1, "", "get_feature_names_out"], [546, 2, 1, "", "get_metadata_routing"], [546, 2, 1, "", "get_params"], [546, 2, 1, "", "predict"], [546, 2, 1, "", "predict_log_proba"], [546, 2, 1, "", "predict_proba"], [546, 2, 1, "", "score"], [546, 2, 1, "", "set_output"], [546, 2, 1, "", "set_params"], [546, 2, 1, "", "set_score_request"], [546, 2, 1, "", "transform"]], "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis": [[547, 2, 1, "", "decision_function"], [547, 2, 1, "", "fit"], [547, 2, 1, "", "get_metadata_routing"], [547, 2, 1, "", "get_params"], [547, 2, 1, "", "predict"], [547, 2, 1, "", "predict_log_proba"], [547, 2, 1, "", "predict_proba"], [547, 2, 1, "", "score"], [547, 2, 1, "", "set_params"], [547, 2, 1, "", "set_score_request"]], "sklearn.dummy": [[548, 1, 1, "", "DummyClassifier"], [549, 1, 1, "", "DummyRegressor"]], "sklearn.dummy.DummyClassifier": [[548, 2, 1, "", "fit"], [548, 2, 1, "", "get_metadata_routing"], [548, 2, 1, "", "get_params"], [548, 2, 1, "", "predict"], [548, 2, 1, "", "predict_log_proba"], [548, 2, 1, "", "predict_proba"], [548, 2, 1, "", "score"], [548, 2, 1, "", "set_fit_request"], [548, 2, 1, "", "set_params"], [548, 2, 1, "", "set_score_request"]], "sklearn.dummy.DummyRegressor": [[549, 2, 1, "", "fit"], [549, 2, 1, "", "get_metadata_routing"], [549, 2, 1, "", "get_params"], [549, 2, 1, "", "predict"], [549, 2, 1, "", "score"], [549, 2, 1, "", "set_fit_request"], [549, 2, 1, "", "set_params"], [549, 2, 1, "", "set_predict_request"], [549, 2, 1, "", "set_score_request"]], "sklearn.ensemble": [[550, 1, 1, "", "AdaBoostClassifier"], [551, 1, 1, "", "AdaBoostRegressor"], [552, 1, 1, "", "BaggingClassifier"], [553, 1, 1, "", "BaggingRegressor"], [554, 1, 1, "", "ExtraTreesClassifier"], [555, 1, 1, "", "ExtraTreesRegressor"], [556, 1, 1, "", "GradientBoostingClassifier"], [557, 1, 1, "", "GradientBoostingRegressor"], [558, 1, 1, "", "HistGradientBoostingClassifier"], [559, 1, 1, "", "HistGradientBoostingRegressor"], [560, 1, 1, "", "IsolationForest"], [561, 1, 1, "", "RandomForestClassifier"], [562, 1, 1, "", "RandomForestRegressor"], [563, 1, 1, "", "RandomTreesEmbedding"], [564, 1, 1, "", "StackingClassifier"], [565, 1, 1, "", "StackingRegressor"], [566, 1, 1, "", "VotingClassifier"], [567, 1, 1, "", "VotingRegressor"]], "sklearn.ensemble.AdaBoostClassifier": [[550, 2, 1, "", "decision_function"], [550, 2, 1, "", "fit"], [550, 2, 1, "", "get_metadata_routing"], [550, 2, 1, "", "get_params"], [550, 2, 1, "", "predict"], [550, 2, 1, "", "predict_log_proba"], [550, 2, 1, "", "predict_proba"], [550, 2, 1, "", "score"], [550, 2, 1, "", "set_fit_request"], [550, 2, 1, "", "set_params"], [550, 2, 1, "", "set_score_request"], [550, 2, 1, "", "staged_decision_function"], [550, 2, 1, "", "staged_predict"], [550, 2, 1, "", "staged_predict_proba"], [550, 2, 1, "", "staged_score"]], "sklearn.ensemble.AdaBoostRegressor": [[551, 2, 1, "", "fit"], [551, 2, 1, "", "get_metadata_routing"], [551, 2, 1, "", "get_params"], [551, 2, 1, "", "predict"], [551, 2, 1, "", "score"], [551, 2, 1, "", "set_fit_request"], [551, 2, 1, "", "set_params"], [551, 2, 1, "", "set_score_request"], [551, 2, 1, "", "staged_predict"], [551, 2, 1, "", "staged_score"]], "sklearn.ensemble.BaggingClassifier": [[552, 2, 1, "", "decision_function"], [552, 2, 1, "", "fit"], [552, 2, 1, "", "get_metadata_routing"], [552, 2, 1, "", "get_params"], [552, 2, 1, "", "predict"], [552, 2, 1, "", "predict_log_proba"], [552, 2, 1, "", "predict_proba"], [552, 2, 1, "", "score"], [552, 2, 1, "", "set_fit_request"], [552, 2, 1, "", "set_params"], [552, 2, 1, "", "set_score_request"]], "sklearn.ensemble.BaggingRegressor": [[553, 2, 1, "", "fit"], [553, 2, 1, "", "get_metadata_routing"], [553, 2, 1, "", "get_params"], [553, 2, 1, "", "predict"], [553, 2, 1, "", "score"], [553, 2, 1, "", "set_fit_request"], [553, 2, 1, "", "set_params"], [553, 2, 1, "", "set_score_request"]], "sklearn.ensemble.ExtraTreesClassifier": [[554, 2, 1, "", "apply"], [554, 2, 1, "", "decision_path"], [554, 2, 1, "", "fit"], [554, 2, 1, "", "get_metadata_routing"], [554, 2, 1, "", "get_params"], [554, 2, 1, "", "predict"], [554, 2, 1, "", "predict_log_proba"], [554, 2, 1, "", "predict_proba"], [554, 2, 1, "", "score"], [554, 2, 1, "", "set_fit_request"], [554, 2, 1, "", "set_params"], [554, 2, 1, "", "set_score_request"]], "sklearn.ensemble.ExtraTreesRegressor": [[555, 2, 1, "", "apply"], [555, 2, 1, "", "decision_path"], [555, 2, 1, "", "fit"], [555, 2, 1, "", "get_metadata_routing"], [555, 2, 1, "", "get_params"], [555, 2, 1, "", "predict"], [555, 2, 1, "", "score"], [555, 2, 1, "", "set_fit_request"], [555, 2, 1, "", "set_params"], [555, 2, 1, "", "set_score_request"]], "sklearn.ensemble.GradientBoostingClassifier": [[556, 2, 1, "", "apply"], [556, 2, 1, "", "decision_function"], [556, 2, 1, "", "fit"], [556, 2, 1, "", "get_metadata_routing"], [556, 2, 1, "", "get_params"], [556, 2, 1, "", "predict"], [556, 2, 1, "", "predict_log_proba"], [556, 2, 1, "", "predict_proba"], [556, 2, 1, "", "score"], [556, 2, 1, "", "set_fit_request"], [556, 2, 1, "", "set_params"], [556, 2, 1, "", "set_score_request"], [556, 2, 1, "", "staged_decision_function"], [556, 2, 1, "", "staged_predict"], [556, 2, 1, "", "staged_predict_proba"]], "sklearn.ensemble.GradientBoostingRegressor": [[557, 2, 1, "", "apply"], [557, 2, 1, "", "fit"], [557, 2, 1, "", "get_metadata_routing"], [557, 2, 1, "", "get_params"], [557, 2, 1, "", "predict"], [557, 2, 1, "", "score"], [557, 2, 1, "", "set_fit_request"], [557, 2, 1, "", "set_params"], [557, 2, 1, "", "set_score_request"], [557, 2, 1, "", "staged_predict"]], "sklearn.ensemble.HistGradientBoostingClassifier": [[558, 2, 1, "", "decision_function"], [558, 2, 1, "", "fit"], [558, 2, 1, "", "get_metadata_routing"], [558, 2, 1, "", "get_params"], [558, 2, 1, "", "predict"], [558, 2, 1, "", "predict_proba"], [558, 2, 1, "", "score"], [558, 2, 1, "", "set_fit_request"], [558, 2, 1, "", "set_params"], [558, 2, 1, "", "set_score_request"], [558, 2, 1, "", "staged_decision_function"], [558, 2, 1, "", "staged_predict"], [558, 2, 1, "", "staged_predict_proba"]], "sklearn.ensemble.HistGradientBoostingRegressor": [[559, 2, 1, "", "fit"], [559, 2, 1, "", "get_metadata_routing"], [559, 2, 1, "", "get_params"], [559, 2, 1, "", "predict"], [559, 2, 1, "", "score"], [559, 2, 1, "", "set_fit_request"], [559, 2, 1, "", "set_params"], [559, 2, 1, "", "set_score_request"], [559, 2, 1, "", "staged_predict"]], "sklearn.ensemble.IsolationForest": [[560, 2, 1, "", "decision_function"], [560, 2, 1, "", "fit"], [560, 2, 1, "", "fit_predict"], [560, 2, 1, "", "get_metadata_routing"], [560, 2, 1, "", "get_params"], [560, 2, 1, "", "predict"], [560, 2, 1, "", "score_samples"], [560, 2, 1, "", "set_fit_request"], [560, 2, 1, "", "set_params"]], "sklearn.ensemble.RandomForestClassifier": [[561, 2, 1, "", "apply"], [561, 2, 1, "", "decision_path"], [561, 2, 1, "", "fit"], [561, 2, 1, "", "get_metadata_routing"], [561, 2, 1, "", "get_params"], [561, 2, 1, "", "predict"], [561, 2, 1, "", "predict_log_proba"], [561, 2, 1, "", "predict_proba"], [561, 2, 1, "", "score"], [561, 2, 1, "", "set_fit_request"], [561, 2, 1, "", "set_params"], [561, 2, 1, "", "set_score_request"]], "sklearn.ensemble.RandomForestRegressor": [[562, 2, 1, "", "apply"], [562, 2, 1, "", "decision_path"], [562, 2, 1, "", "fit"], [562, 2, 1, "", "get_metadata_routing"], [562, 2, 1, "", "get_params"], [562, 2, 1, "", "predict"], [562, 2, 1, "", "score"], [562, 2, 1, "", "set_fit_request"], [562, 2, 1, "", "set_params"], [562, 2, 1, "", "set_score_request"]], "sklearn.ensemble.RandomTreesEmbedding": [[563, 2, 1, "", "apply"], [563, 2, 1, "", "decision_path"], [563, 2, 1, "", "fit"], [563, 2, 1, "", "fit_transform"], [563, 2, 1, "", "get_feature_names_out"], [563, 2, 1, "", "get_metadata_routing"], [563, 2, 1, "", "get_params"], [563, 2, 1, "", "set_fit_request"], [563, 2, 1, "", "set_output"], [563, 2, 1, "", "set_params"], [563, 2, 1, "", "transform"]], "sklearn.ensemble.StackingClassifier": [[564, 2, 1, "", "decision_function"], [564, 2, 1, "", "fit"], [564, 2, 1, "", "fit_transform"], [564, 2, 1, "", "get_feature_names_out"], [564, 2, 1, "", "get_metadata_routing"], [564, 2, 1, "", "get_params"], [564, 4, 1, "", "named_estimators"], [564, 2, 1, "", "predict"], [564, 2, 1, "", "predict_proba"], [564, 2, 1, "", "score"], [564, 2, 1, "", "set_output"], [564, 2, 1, "", "set_params"], [564, 2, 1, "", "set_score_request"], [564, 2, 1, "", "transform"]], "sklearn.ensemble.StackingRegressor": [[565, 2, 1, "", "fit"], [565, 2, 1, "", "fit_transform"], [565, 2, 1, "", "get_feature_names_out"], [565, 2, 1, "", "get_metadata_routing"], [565, 2, 1, "", "get_params"], [565, 4, 1, "", "named_estimators"], [565, 2, 1, "", "predict"], [565, 2, 1, "", "score"], [565, 2, 1, "", "set_output"], [565, 2, 1, "", "set_params"], [565, 2, 1, "", "set_score_request"], [565, 2, 1, "", "transform"]], "sklearn.ensemble.VotingClassifier": [[566, 2, 1, "", "fit"], [566, 2, 1, "", "fit_transform"], [566, 2, 1, "", "get_feature_names_out"], [566, 2, 1, "", "get_metadata_routing"], [566, 2, 1, "", "get_params"], [566, 4, 1, "", "named_estimators"], [566, 2, 1, "", "predict"], [566, 2, 1, "", "predict_proba"], [566, 2, 1, "", "score"], [566, 2, 1, "", "set_output"], [566, 2, 1, "", "set_params"], [566, 2, 1, "", "set_score_request"], [566, 2, 1, "", "transform"]], "sklearn.ensemble.VotingRegressor": [[567, 2, 1, "", "fit"], [567, 2, 1, "", "fit_transform"], [567, 2, 1, "", "get_feature_names_out"], [567, 2, 1, "", "get_metadata_routing"], [567, 2, 1, "", "get_params"], [567, 4, 1, "", "named_estimators"], [567, 2, 1, "", "predict"], [567, 2, 1, "", "score"], [567, 2, 1, "", "set_output"], [567, 2, 1, "", "set_params"], [567, 2, 1, "", "set_score_request"], [567, 2, 1, "", "transform"]], "sklearn.exceptions": [[568, 5, 1, "", "ConvergenceWarning"], [569, 5, 1, "", "DataConversionWarning"], [570, 5, 1, "", "DataDimensionalityWarning"], [571, 5, 1, "", "EfficiencyWarning"], [572, 5, 1, "", "EstimatorCheckFailedWarning"], [573, 5, 1, "", "FitFailedWarning"], [574, 5, 1, "", "InconsistentVersionWarning"], [575, 5, 1, "", "NotFittedError"], [576, 5, 1, "", "UndefinedMetricWarning"]], "sklearn.experimental": [[577, 0, 0, "-", "enable_halving_search_cv"], [578, 0, 0, "-", "enable_iterative_imputer"]], "sklearn.feature_extraction": [[579, 1, 1, "", "DictVectorizer"], [580, 1, 1, "", "FeatureHasher"], [17, 0, 0, "-", "image"], [17, 0, 0, "-", "text"]], "sklearn.feature_extraction.DictVectorizer": [[579, 2, 1, "", "fit"], [579, 2, 1, "", "fit_transform"], [579, 2, 1, "", "get_feature_names_out"], [579, 2, 1, "", "get_metadata_routing"], [579, 2, 1, "", "get_params"], [579, 2, 1, "", "inverse_transform"], [579, 2, 1, "", "restrict"], [579, 2, 1, "", "set_output"], [579, 2, 1, "", "set_params"], [579, 2, 1, "", "transform"]], "sklearn.feature_extraction.FeatureHasher": [[580, 2, 1, "", "fit"], [580, 2, 1, "", "fit_transform"], [580, 2, 1, "", "get_metadata_routing"], [580, 2, 1, "", "get_params"], [580, 2, 1, "", "set_output"], [580, 2, 1, "", "set_params"], [580, 2, 1, "", "transform"]], "sklearn.feature_extraction.image": [[581, 1, 1, "", "PatchExtractor"], [582, 3, 1, "", "extract_patches_2d"], [583, 3, 1, "", "grid_to_graph"], [584, 3, 1, "", "img_to_graph"], [585, 3, 1, "", "reconstruct_from_patches_2d"]], "sklearn.feature_extraction.image.PatchExtractor": [[581, 2, 1, "", "fit"], [581, 2, 1, "", "fit_transform"], [581, 2, 1, "", "get_metadata_routing"], [581, 2, 1, "", "get_params"], [581, 2, 1, "", "set_output"], [581, 2, 1, "", "set_params"], [581, 2, 1, "", "transform"]], "sklearn.feature_extraction.text": [[586, 1, 1, "", "CountVectorizer"], [587, 1, 1, "", "HashingVectorizer"], [588, 1, 1, "", "TfidfTransformer"], [589, 1, 1, "", "TfidfVectorizer"]], "sklearn.feature_extraction.text.CountVectorizer": [[586, 2, 1, "", "build_analyzer"], [586, 2, 1, "", "build_preprocessor"], [586, 2, 1, "", "build_tokenizer"], [586, 2, 1, "", "decode"], [586, 2, 1, "", "fit"], [586, 2, 1, "", "fit_transform"], [586, 2, 1, "", "get_feature_names_out"], [586, 2, 1, "", "get_metadata_routing"], [586, 2, 1, "", "get_params"], [586, 2, 1, "", "get_stop_words"], [586, 2, 1, "", "inverse_transform"], [586, 2, 1, "", "set_params"], [586, 2, 1, "", "transform"]], "sklearn.feature_extraction.text.HashingVectorizer": [[587, 2, 1, "", "build_analyzer"], [587, 2, 1, "", "build_preprocessor"], [587, 2, 1, "", "build_tokenizer"], [587, 2, 1, "", "decode"], [587, 2, 1, "", "fit"], [587, 2, 1, "", "fit_transform"], [587, 2, 1, "", "get_metadata_routing"], [587, 2, 1, "", "get_params"], [587, 2, 1, "", "get_stop_words"], [587, 2, 1, "", "partial_fit"], [587, 2, 1, "", "set_output"], [587, 2, 1, "", "set_params"], [587, 2, 1, "", "transform"]], "sklearn.feature_extraction.text.TfidfTransformer": [[588, 2, 1, "", "fit"], [588, 2, 1, "", "fit_transform"], [588, 2, 1, "", "get_feature_names_out"], [588, 2, 1, "", "get_metadata_routing"], [588, 2, 1, "", "get_params"], [588, 2, 1, "", "set_output"], [588, 2, 1, "", "set_params"], [588, 2, 1, "", "set_transform_request"], [588, 2, 1, "", "transform"]], "sklearn.feature_extraction.text.TfidfVectorizer": [[589, 2, 1, "", "build_analyzer"], [589, 2, 1, "", "build_preprocessor"], [589, 2, 1, "", "build_tokenizer"], [589, 2, 1, "", "decode"], [589, 2, 1, "", "fit"], [589, 2, 1, "", "fit_transform"], [589, 2, 1, "", "get_feature_names_out"], [589, 2, 1, "", "get_metadata_routing"], [589, 2, 1, "", "get_params"], [589, 2, 1, "", "get_stop_words"], [589, 2, 1, "", "inverse_transform"], [589, 2, 1, "", "set_params"], [589, 2, 1, "", "transform"]], "sklearn.feature_selection": [[590, 1, 1, "", "GenericUnivariateSelect"], [591, 1, 1, "", "RFE"], [592, 1, 1, "", "RFECV"], [593, 1, 1, "", "SelectFdr"], [594, 1, 1, "", "SelectFpr"], [595, 1, 1, "", "SelectFromModel"], [596, 1, 1, "", "SelectFwe"], [597, 1, 1, "", "SelectKBest"], [598, 1, 1, "", "SelectPercentile"], [599, 1, 1, "", "SelectorMixin"], [600, 1, 1, "", "SequentialFeatureSelector"], [601, 1, 1, "", "VarianceThreshold"], [602, 3, 1, "", "chi2"], [603, 3, 1, "", "f_classif"], [604, 3, 1, "", "f_regression"], [605, 3, 1, "", "mutual_info_classif"], [606, 3, 1, "", "mutual_info_regression"], [607, 3, 1, "", "r_regression"]], "sklearn.feature_selection.GenericUnivariateSelect": [[590, 2, 1, "", "fit"], [590, 2, 1, "", "fit_transform"], [590, 2, 1, "", "get_feature_names_out"], [590, 2, 1, "", "get_metadata_routing"], [590, 2, 1, "", "get_params"], [590, 2, 1, "", "get_support"], [590, 2, 1, "", "inverse_transform"], [590, 2, 1, "", "set_output"], [590, 2, 1, "", "set_params"], [590, 2, 1, "", "transform"]], "sklearn.feature_selection.RFE": [[591, 2, 1, "", "decision_function"], [591, 2, 1, "", "fit"], [591, 2, 1, "", "fit_transform"], [591, 2, 1, "", "get_feature_names_out"], [591, 2, 1, "", "get_metadata_routing"], [591, 2, 1, "", "get_params"], [591, 2, 1, "", "get_support"], [591, 2, 1, "", "inverse_transform"], [591, 2, 1, "", "predict"], [591, 2, 1, "", "predict_log_proba"], [591, 2, 1, "", "predict_proba"], [591, 2, 1, "", "score"], [591, 2, 1, "", "set_output"], [591, 2, 1, "", "set_params"], [591, 2, 1, "", "transform"]], "sklearn.feature_selection.RFECV": [[592, 2, 1, "", "decision_function"], [592, 2, 1, "", "fit"], [592, 2, 1, "", "fit_transform"], [592, 2, 1, "", "get_feature_names_out"], [592, 2, 1, "", "get_metadata_routing"], [592, 2, 1, "", "get_params"], [592, 2, 1, "", "get_support"], [592, 2, 1, "", "inverse_transform"], [592, 2, 1, "", "predict"], [592, 2, 1, "", "predict_log_proba"], [592, 2, 1, "", "predict_proba"], [592, 2, 1, "", "score"], [592, 2, 1, "", "set_output"], [592, 2, 1, "", "set_params"], [592, 2, 1, "", "transform"]], "sklearn.feature_selection.SelectFdr": [[593, 2, 1, "", "fit"], [593, 2, 1, "", "fit_transform"], [593, 2, 1, "", "get_feature_names_out"], [593, 2, 1, "", "get_metadata_routing"], [593, 2, 1, "", "get_params"], [593, 2, 1, "", "get_support"], [593, 2, 1, "", "inverse_transform"], [593, 2, 1, "", "set_output"], [593, 2, 1, "", "set_params"], [593, 2, 1, "", "transform"]], "sklearn.feature_selection.SelectFpr": [[594, 2, 1, "", "fit"], [594, 2, 1, "", "fit_transform"], [594, 2, 1, "", "get_feature_names_out"], [594, 2, 1, "", "get_metadata_routing"], [594, 2, 1, "", "get_params"], [594, 2, 1, "", "get_support"], [594, 2, 1, "", "inverse_transform"], [594, 2, 1, "", "set_output"], [594, 2, 1, "", "set_params"], [594, 2, 1, "", "transform"]], "sklearn.feature_selection.SelectFromModel": [[595, 2, 1, "", "fit"], [595, 2, 1, "", "fit_transform"], [595, 2, 1, "", "get_feature_names_out"], [595, 2, 1, "", "get_metadata_routing"], [595, 2, 1, "", "get_params"], [595, 2, 1, "", "get_support"], [595, 2, 1, "", "inverse_transform"], [595, 2, 1, "", "partial_fit"], [595, 2, 1, "", "set_output"], [595, 2, 1, "", "set_params"], [595, 2, 1, "", "transform"]], "sklearn.feature_selection.SelectFwe": [[596, 2, 1, "", "fit"], [596, 2, 1, "", "fit_transform"], [596, 2, 1, "", "get_feature_names_out"], [596, 2, 1, "", "get_metadata_routing"], [596, 2, 1, "", "get_params"], [596, 2, 1, "", "get_support"], [596, 2, 1, "", "inverse_transform"], [596, 2, 1, "", "set_output"], [596, 2, 1, "", "set_params"], [596, 2, 1, "", "transform"]], "sklearn.feature_selection.SelectKBest": [[597, 2, 1, "", "fit"], [597, 2, 1, "", "fit_transform"], [597, 2, 1, "", "get_feature_names_out"], [597, 2, 1, "", "get_metadata_routing"], [597, 2, 1, "", "get_params"], [597, 2, 1, "", "get_support"], [597, 2, 1, "", "inverse_transform"], [597, 2, 1, "", "set_output"], [597, 2, 1, "", "set_params"], [597, 2, 1, "", "transform"]], "sklearn.feature_selection.SelectPercentile": [[598, 2, 1, "", "fit"], [598, 2, 1, "", "fit_transform"], [598, 2, 1, "", "get_feature_names_out"], [598, 2, 1, "", "get_metadata_routing"], [598, 2, 1, "", "get_params"], [598, 2, 1, "", "get_support"], [598, 2, 1, "", "inverse_transform"], [598, 2, 1, "", "set_output"], [598, 2, 1, "", "set_params"], [598, 2, 1, "", "transform"]], "sklearn.feature_selection.SelectorMixin": [[599, 2, 1, "", "fit_transform"], [599, 2, 1, "", "get_feature_names_out"], [599, 2, 1, "", "get_support"], [599, 2, 1, "", "inverse_transform"], [599, 2, 1, "", "set_output"], [599, 2, 1, "", "transform"]], "sklearn.feature_selection.SequentialFeatureSelector": [[600, 2, 1, "", "fit"], [600, 2, 1, "", "fit_transform"], [600, 2, 1, "", "get_feature_names_out"], [600, 2, 1, "", "get_metadata_routing"], [600, 2, 1, "", "get_params"], [600, 2, 1, "", "get_support"], [600, 2, 1, "", "inverse_transform"], [600, 2, 1, "", "set_output"], [600, 2, 1, "", "set_params"], [600, 2, 1, "", "transform"]], "sklearn.feature_selection.VarianceThreshold": [[601, 2, 1, "", "fit"], [601, 2, 1, "", "fit_transform"], [601, 2, 1, "", "get_feature_names_out"], [601, 2, 1, "", "get_metadata_routing"], [601, 2, 1, "", "get_params"], [601, 2, 1, "", "get_support"], [601, 2, 1, "", "inverse_transform"], [601, 2, 1, "", "set_output"], [601, 2, 1, "", "set_params"], [601, 2, 1, "", "transform"]], "sklearn.frozen": [[608, 1, 1, "", "FrozenEstimator"]], "sklearn.frozen.FrozenEstimator": [[608, 2, 1, "", "fit"], [608, 2, 1, "", "get_metadata_routing"], [608, 2, 1, "", "get_params"], [608, 2, 1, "", "set_params"]], "sklearn.gaussian_process": [[609, 1, 1, "", "GaussianProcessClassifier"], [610, 1, 1, "", "GaussianProcessRegressor"], [20, 0, 0, "-", "kernels"]], "sklearn.gaussian_process.GaussianProcessClassifier": [[609, 2, 1, "", "fit"], [609, 2, 1, "", "get_metadata_routing"], [609, 2, 1, "", "get_params"], [609, 2, 1, "", "latent_mean_and_variance"], [609, 2, 1, "", "log_marginal_likelihood"], [609, 2, 1, "", "predict"], [609, 2, 1, "", "predict_proba"], [609, 2, 1, "", "score"], [609, 2, 1, "", "set_params"], [609, 2, 1, "", "set_score_request"]], "sklearn.gaussian_process.GaussianProcessRegressor": [[610, 2, 1, "", "fit"], [610, 2, 1, "", "get_metadata_routing"], [610, 2, 1, "", "get_params"], [610, 2, 1, "", "log_marginal_likelihood"], [610, 2, 1, "", "predict"], [610, 2, 1, "", "sample_y"], [610, 2, 1, "", "score"], [610, 2, 1, "", "set_params"], [610, 2, 1, "", "set_predict_request"], [610, 2, 1, "", "set_score_request"]], "sklearn.gaussian_process.kernels": [[611, 1, 1, "", "CompoundKernel"], [612, 1, 1, "", "ConstantKernel"], [613, 1, 1, "", "DotProduct"], [614, 1, 1, "", "ExpSineSquared"], [615, 1, 1, "", "Exponentiation"], [616, 1, 1, "", "Hyperparameter"], [617, 1, 1, "", "Kernel"], [618, 1, 1, "", "Matern"], [619, 1, 1, "", "PairwiseKernel"], [620, 1, 1, "", "Product"], [621, 1, 1, "", "RBF"], [622, 1, 1, "", "RationalQuadratic"], [623, 1, 1, "", "Sum"], [624, 1, 1, "", "WhiteKernel"]], "sklearn.gaussian_process.kernels.CompoundKernel": [[611, 2, 1, "", "__call__"], [611, 4, 1, "", "bounds"], [611, 2, 1, "", "clone_with_theta"], [611, 2, 1, "", "diag"], [611, 2, 1, "", "get_params"], [611, 4, 1, "", "hyperparameters"], [611, 2, 1, "", "is_stationary"], [611, 4, 1, "", "n_dims"], [611, 4, 1, "", "requires_vector_input"], [611, 2, 1, "", "set_params"], [611, 4, 1, "", "theta"]], "sklearn.gaussian_process.kernels.ConstantKernel": [[612, 2, 1, "", "__call__"], [612, 4, 1, "", "bounds"], [612, 2, 1, "", "clone_with_theta"], [612, 2, 1, "", "diag"], [612, 2, 1, "", "get_params"], [612, 4, 1, "", "hyperparameters"], [612, 2, 1, "", "is_stationary"], [612, 4, 1, "", "n_dims"], [612, 4, 1, "", "requires_vector_input"], [612, 2, 1, "", "set_params"], [612, 4, 1, "", "theta"]], "sklearn.gaussian_process.kernels.DotProduct": [[613, 2, 1, "", "__call__"], [613, 4, 1, "", "bounds"], [613, 2, 1, "", "clone_with_theta"], [613, 2, 1, "", "diag"], [613, 2, 1, "", "get_params"], [613, 4, 1, "", "hyperparameters"], [613, 2, 1, "", "is_stationary"], [613, 4, 1, "", "n_dims"], [613, 4, 1, "", "requires_vector_input"], [613, 2, 1, "", "set_params"], [613, 4, 1, "", "theta"]], "sklearn.gaussian_process.kernels.ExpSineSquared": [[614, 2, 1, "", "__call__"], [614, 4, 1, "", "bounds"], [614, 2, 1, "", "clone_with_theta"], [614, 2, 1, "", "diag"], [614, 2, 1, "", "get_params"], [614, 4, 1, "", "hyperparameter_length_scale"], [614, 4, 1, "", "hyperparameters"], [614, 2, 1, "", "is_stationary"], [614, 4, 1, "", "n_dims"], [614, 4, 1, "", "requires_vector_input"], [614, 2, 1, "", "set_params"], [614, 4, 1, "", "theta"]], "sklearn.gaussian_process.kernels.Exponentiation": [[615, 2, 1, "", "__call__"], [615, 4, 1, "", "bounds"], [615, 2, 1, "", "clone_with_theta"], [615, 2, 1, "", "diag"], [615, 2, 1, "", "get_params"], [615, 4, 1, "", "hyperparameters"], [615, 2, 1, "", "is_stationary"], [615, 4, 1, "", "n_dims"], [615, 4, 1, "", "requires_vector_input"], [615, 2, 1, "", "set_params"], [615, 4, 1, "", "theta"]], "sklearn.gaussian_process.kernels.Hyperparameter": [[616, 6, 1, "", "bounds"], [616, 2, 1, "", "count"], [616, 6, 1, "", "fixed"], [616, 2, 1, "", "index"], [616, 6, 1, "", "n_elements"], [616, 6, 1, "", "name"], [616, 6, 1, "", "value_type"]], "sklearn.gaussian_process.kernels.Kernel": [[617, 2, 1, "", "__call__"], [617, 4, 1, "", "bounds"], [617, 2, 1, "", "clone_with_theta"], [617, 2, 1, "", "diag"], [617, 2, 1, "", "get_params"], [617, 4, 1, "", "hyperparameters"], [617, 2, 1, "", "is_stationary"], [617, 4, 1, "", "n_dims"], [617, 4, 1, "", "requires_vector_input"], [617, 2, 1, "", "set_params"], [617, 4, 1, "", "theta"]], "sklearn.gaussian_process.kernels.Matern": [[618, 2, 1, "", "__call__"], [618, 4, 1, "", "bounds"], [618, 2, 1, "", "clone_with_theta"], [618, 2, 1, "", "diag"], [618, 2, 1, "", "get_params"], [618, 4, 1, "", "hyperparameters"], [618, 2, 1, "", "is_stationary"], [618, 4, 1, "", "n_dims"], [618, 4, 1, "", "requires_vector_input"], [618, 2, 1, "", "set_params"], [618, 4, 1, "", "theta"]], "sklearn.gaussian_process.kernels.PairwiseKernel": [[619, 2, 1, "", "__call__"], [619, 4, 1, "", "bounds"], [619, 2, 1, "", "clone_with_theta"], [619, 2, 1, "", "diag"], [619, 2, 1, "", "get_params"], [619, 4, 1, "", "hyperparameters"], [619, 2, 1, "", "is_stationary"], [619, 4, 1, "", "n_dims"], [619, 4, 1, "", "requires_vector_input"], [619, 2, 1, "", "set_params"], [619, 4, 1, "", "theta"]], "sklearn.gaussian_process.kernels.Product": [[620, 2, 1, "", "__call__"], [620, 4, 1, "", "bounds"], [620, 2, 1, "", "clone_with_theta"], [620, 2, 1, "", "diag"], [620, 2, 1, "", "get_params"], [620, 4, 1, "", "hyperparameters"], [620, 2, 1, "", "is_stationary"], [620, 4, 1, "", "n_dims"], [620, 4, 1, "", "requires_vector_input"], [620, 2, 1, "", "set_params"], [620, 4, 1, "", "theta"]], "sklearn.gaussian_process.kernels.RBF": [[621, 2, 1, "", "__call__"], [621, 4, 1, "", "bounds"], [621, 2, 1, "", "clone_with_theta"], [621, 2, 1, "", "diag"], [621, 2, 1, "", "get_params"], [621, 4, 1, "", "hyperparameters"], [621, 2, 1, "", "is_stationary"], [621, 4, 1, "", "n_dims"], [621, 4, 1, "", "requires_vector_input"], [621, 2, 1, "", "set_params"], [621, 4, 1, "", "theta"]], "sklearn.gaussian_process.kernels.RationalQuadratic": [[622, 2, 1, "", "__call__"], [622, 4, 1, "", "bounds"], [622, 2, 1, "", "clone_with_theta"], [622, 2, 1, "", "diag"], [622, 2, 1, "", "get_params"], [622, 4, 1, "", "hyperparameters"], [622, 2, 1, "", "is_stationary"], [622, 4, 1, "", "n_dims"], [622, 4, 1, "", "requires_vector_input"], [622, 2, 1, "", "set_params"], [622, 4, 1, "", "theta"]], "sklearn.gaussian_process.kernels.Sum": [[623, 2, 1, "", "__call__"], [623, 4, 1, "", "bounds"], [623, 2, 1, "", "clone_with_theta"], [623, 2, 1, "", "diag"], [623, 2, 1, "", "get_params"], [623, 4, 1, "", "hyperparameters"], [623, 2, 1, "", "is_stationary"], [623, 4, 1, "", "n_dims"], [623, 4, 1, "", "requires_vector_input"], [623, 2, 1, "", "set_params"], [623, 4, 1, "", "theta"]], "sklearn.gaussian_process.kernels.WhiteKernel": [[624, 2, 1, "", "__call__"], [624, 4, 1, "", "bounds"], [624, 2, 1, "", "clone_with_theta"], [624, 2, 1, "", "diag"], [624, 2, 1, "", "get_params"], [624, 4, 1, "", "hyperparameters"], [624, 2, 1, "", "is_stationary"], [624, 4, 1, "", "n_dims"], [624, 4, 1, "", "requires_vector_input"], [624, 2, 1, "", "set_params"], [624, 4, 1, "", "theta"]], "sklearn.impute": [[626, 1, 1, "", "IterativeImputer"], [627, 1, 1, "", "KNNImputer"], [628, 1, 1, "", "MissingIndicator"], [629, 1, 1, "", "SimpleImputer"]], "sklearn.impute.IterativeImputer": [[626, 2, 1, "", "fit"], [626, 2, 1, "", "fit_transform"], [626, 2, 1, "", "get_feature_names_out"], [626, 2, 1, "", "get_metadata_routing"], [626, 2, 1, "", "get_params"], [626, 2, 1, "", "set_output"], [626, 2, 1, "", "set_params"], [626, 2, 1, "", "transform"]], "sklearn.impute.KNNImputer": [[627, 2, 1, "", "fit"], [627, 2, 1, "", "fit_transform"], [627, 2, 1, "", "get_feature_names_out"], [627, 2, 1, "", "get_metadata_routing"], [627, 2, 1, "", "get_params"], [627, 2, 1, "", "set_output"], [627, 2, 1, "", "set_params"], [627, 2, 1, "", "transform"]], "sklearn.impute.MissingIndicator": [[628, 2, 1, "", "fit"], [628, 2, 1, "", "fit_transform"], [628, 2, 1, "", "get_feature_names_out"], [628, 2, 1, "", "get_metadata_routing"], [628, 2, 1, "", "get_params"], [628, 2, 1, "", "set_output"], [628, 2, 1, "", "set_params"], [628, 2, 1, "", "transform"]], "sklearn.impute.SimpleImputer": [[629, 2, 1, "", "fit"], [629, 2, 1, "", "fit_transform"], [629, 2, 1, "", "get_feature_names_out"], [629, 2, 1, "", "get_metadata_routing"], [629, 2, 1, "", "get_params"], [629, 2, 1, "", "inverse_transform"], [629, 2, 1, "", "set_output"], [629, 2, 1, "", "set_params"], [629, 2, 1, "", "transform"]], "sklearn.inspection": [[630, 1, 1, "", "DecisionBoundaryDisplay"], [631, 1, 1, "", "PartialDependenceDisplay"], [632, 3, 1, "", "partial_dependence"], [633, 3, 1, "", "permutation_importance"]], "sklearn.inspection.DecisionBoundaryDisplay": [[630, 2, 1, "", "from_estimator"], [630, 2, 1, "", "plot"]], "sklearn.inspection.PartialDependenceDisplay": [[631, 2, 1, "", "from_estimator"], [631, 2, 1, "", "plot"]], "sklearn.isotonic": [[634, 1, 1, "", "IsotonicRegression"], [635, 3, 1, "", "check_increasing"], [636, 3, 1, "", "isotonic_regression"]], "sklearn.isotonic.IsotonicRegression": [[634, 2, 1, "", "fit"], [634, 2, 1, "", "fit_transform"], [634, 2, 1, "", "get_feature_names_out"], [634, 2, 1, "", "get_metadata_routing"], [634, 2, 1, "", "get_params"], [634, 2, 1, "", "predict"], [634, 2, 1, "", "score"], [634, 2, 1, "", "set_fit_request"], [634, 2, 1, "", "set_output"], [634, 2, 1, "", "set_params"], [634, 2, 1, "", "set_score_request"], [634, 2, 1, "", "transform"]], "sklearn.kernel_approximation": [[637, 1, 1, "", "AdditiveChi2Sampler"], [638, 1, 1, "", "Nystroem"], [639, 1, 1, "", "PolynomialCountSketch"], [640, 1, 1, "", "RBFSampler"], [641, 1, 1, "", "SkewedChi2Sampler"]], "sklearn.kernel_approximation.AdditiveChi2Sampler": [[637, 2, 1, "", "fit"], [637, 2, 1, "", "fit_transform"], [637, 2, 1, "", "get_feature_names_out"], [637, 2, 1, "", "get_metadata_routing"], [637, 2, 1, "", "get_params"], [637, 2, 1, "", "set_output"], [637, 2, 1, "", "set_params"], [637, 2, 1, "", "transform"]], "sklearn.kernel_approximation.Nystroem": [[638, 2, 1, "", "fit"], [638, 2, 1, "", "fit_transform"], [638, 2, 1, "", "get_feature_names_out"], [638, 2, 1, "", "get_metadata_routing"], [638, 2, 1, "", "get_params"], [638, 2, 1, "", "set_output"], [638, 2, 1, "", "set_params"], [638, 2, 1, "", "transform"]], "sklearn.kernel_approximation.PolynomialCountSketch": [[639, 2, 1, "", "fit"], [639, 2, 1, "", "fit_transform"], [639, 2, 1, "", "get_feature_names_out"], [639, 2, 1, "", "get_metadata_routing"], [639, 2, 1, "", "get_params"], [639, 2, 1, "", "set_output"], [639, 2, 1, "", "set_params"], [639, 2, 1, "", "transform"]], "sklearn.kernel_approximation.RBFSampler": [[640, 2, 1, "", "fit"], [640, 2, 1, "", "fit_transform"], [640, 2, 1, "", "get_feature_names_out"], [640, 2, 1, "", "get_metadata_routing"], [640, 2, 1, "", "get_params"], [640, 2, 1, "", "set_output"], [640, 2, 1, "", "set_params"], [640, 2, 1, "", "transform"]], "sklearn.kernel_approximation.SkewedChi2Sampler": [[641, 2, 1, "", "fit"], [641, 2, 1, "", "fit_transform"], [641, 2, 1, "", "get_feature_names_out"], [641, 2, 1, "", "get_metadata_routing"], [641, 2, 1, "", "get_params"], [641, 2, 1, "", "set_output"], [641, 2, 1, "", "set_params"], [641, 2, 1, "", "transform"]], "sklearn.kernel_ridge": [[642, 1, 1, "", "KernelRidge"]], "sklearn.kernel_ridge.KernelRidge": [[642, 2, 1, "", "fit"], [642, 2, 1, "", "get_metadata_routing"], [642, 2, 1, "", "get_params"], [642, 2, 1, "", "predict"], [642, 2, 1, "", "score"], [642, 2, 1, "", "set_fit_request"], [642, 2, 1, "", "set_params"], [642, 2, 1, "", "set_score_request"]], "sklearn.linear_model": [[643, 1, 1, "", "ARDRegression"], [644, 1, 1, "", "BayesianRidge"], [645, 1, 1, "", "ElasticNet"], [646, 1, 1, "", "ElasticNetCV"], [647, 1, 1, "", "GammaRegressor"], [648, 1, 1, "", "HuberRegressor"], [649, 1, 1, "", "Lars"], [650, 1, 1, "", "LarsCV"], [651, 1, 1, "", "Lasso"], [652, 1, 1, "", "LassoCV"], [653, 1, 1, "", "LassoLars"], [654, 1, 1, "", "LassoLarsCV"], [655, 1, 1, "", "LassoLarsIC"], [656, 1, 1, "", "LinearRegression"], [657, 1, 1, "", "LogisticRegression"], [658, 1, 1, "", "LogisticRegressionCV"], [659, 1, 1, "", "MultiTaskElasticNet"], [660, 1, 1, "", "MultiTaskElasticNetCV"], [661, 1, 1, "", "MultiTaskLasso"], [662, 1, 1, "", "MultiTaskLassoCV"], [663, 1, 1, "", "OrthogonalMatchingPursuit"], [664, 1, 1, "", "OrthogonalMatchingPursuitCV"], [665, 1, 1, "", "PassiveAggressiveClassifier"], [666, 1, 1, "", "PassiveAggressiveRegressor"], [667, 1, 1, "", "Perceptron"], [668, 1, 1, "", "PoissonRegressor"], [669, 1, 1, "", "QuantileRegressor"], [670, 1, 1, "", "RANSACRegressor"], [671, 1, 1, "", "Ridge"], [672, 1, 1, "", "RidgeCV"], [673, 1, 1, "", "RidgeClassifier"], [674, 1, 1, "", "RidgeClassifierCV"], [675, 1, 1, "", "SGDClassifier"], [676, 1, 1, "", "SGDOneClassSVM"], [677, 1, 1, "", "SGDRegressor"], [678, 1, 1, "", "TheilSenRegressor"], [679, 1, 1, "", "TweedieRegressor"], [680, 3, 1, "", "enet_path"], [681, 3, 1, "", "lars_path"], [682, 3, 1, "", "lars_path_gram"], [683, 3, 1, "", "lasso_path"], [684, 3, 1, "", "orthogonal_mp"], [685, 3, 1, "", "orthogonal_mp_gram"], [686, 3, 1, "", "ridge_regression"]], "sklearn.linear_model.ARDRegression": [[643, 2, 1, "", "fit"], [643, 2, 1, "", "get_metadata_routing"], [643, 2, 1, "", "get_params"], [643, 2, 1, "", "predict"], [643, 2, 1, "", "score"], [643, 2, 1, "", "set_params"], [643, 2, 1, "", "set_predict_request"], [643, 2, 1, "", "set_score_request"]], "sklearn.linear_model.BayesianRidge": [[644, 2, 1, "", "fit"], [644, 2, 1, "", "get_metadata_routing"], [644, 2, 1, "", "get_params"], [644, 2, 1, "", "predict"], [644, 2, 1, "", "score"], [644, 2, 1, "", "set_fit_request"], [644, 2, 1, "", "set_params"], [644, 2, 1, "", "set_predict_request"], [644, 2, 1, "", "set_score_request"]], "sklearn.linear_model.ElasticNet": [[645, 2, 1, "", "fit"], [645, 2, 1, "", "get_metadata_routing"], [645, 2, 1, "", "get_params"], [645, 2, 1, "", "path"], [645, 2, 1, "", "predict"], [645, 2, 1, "", "score"], [645, 2, 1, "", "set_fit_request"], [645, 2, 1, "", "set_params"], [645, 2, 1, "", "set_score_request"]], "sklearn.linear_model.ElasticNetCV": [[646, 2, 1, "", "fit"], [646, 2, 1, "", "get_metadata_routing"], [646, 2, 1, "", "get_params"], [646, 2, 1, "", "path"], [646, 2, 1, "", "predict"], [646, 2, 1, "", "score"], [646, 2, 1, "", "set_fit_request"], [646, 2, 1, "", "set_params"], [646, 2, 1, "", "set_score_request"]], "sklearn.linear_model.GammaRegressor": [[647, 2, 1, "", "fit"], [647, 2, 1, "", "get_metadata_routing"], [647, 2, 1, "", "get_params"], [647, 2, 1, "", "predict"], [647, 2, 1, "", "score"], [647, 2, 1, "", "set_fit_request"], [647, 2, 1, "", "set_params"], [647, 2, 1, "", "set_score_request"]], "sklearn.linear_model.HuberRegressor": [[648, 2, 1, "", "fit"], [648, 2, 1, "", "get_metadata_routing"], [648, 2, 1, "", "get_params"], [648, 2, 1, "", "predict"], [648, 2, 1, "", "score"], [648, 2, 1, "", "set_fit_request"], [648, 2, 1, "", "set_params"], [648, 2, 1, "", "set_score_request"]], "sklearn.linear_model.Lars": [[649, 2, 1, "", "fit"], [649, 2, 1, "", "get_metadata_routing"], [649, 2, 1, "", "get_params"], [649, 2, 1, "", "predict"], [649, 2, 1, "", "score"], [649, 2, 1, "", "set_fit_request"], [649, 2, 1, "", "set_params"], [649, 2, 1, "", "set_score_request"]], "sklearn.linear_model.LarsCV": [[650, 2, 1, "", "fit"], [650, 2, 1, "", "get_metadata_routing"], [650, 2, 1, "", "get_params"], [650, 2, 1, "", "predict"], [650, 2, 1, "", "score"], [650, 2, 1, "", "set_fit_request"], [650, 2, 1, "", "set_params"], [650, 2, 1, "", "set_score_request"]], "sklearn.linear_model.Lasso": [[651, 2, 1, "", "fit"], [651, 2, 1, "", "get_metadata_routing"], [651, 2, 1, "", "get_params"], [651, 2, 1, "", "path"], [651, 2, 1, "", "predict"], [651, 2, 1, "", "score"], [651, 2, 1, "", "set_fit_request"], [651, 2, 1, "", "set_params"], [651, 2, 1, "", "set_score_request"]], "sklearn.linear_model.LassoCV": [[652, 2, 1, "", "fit"], [652, 2, 1, "", "get_metadata_routing"], [652, 2, 1, "", "get_params"], [652, 2, 1, "", "path"], [652, 2, 1, "", "predict"], [652, 2, 1, "", "score"], [652, 2, 1, "", "set_fit_request"], [652, 2, 1, "", "set_params"], [652, 2, 1, "", "set_score_request"]], "sklearn.linear_model.LassoLars": [[653, 2, 1, "", "fit"], [653, 2, 1, "", "get_metadata_routing"], [653, 2, 1, "", "get_params"], [653, 2, 1, "", "predict"], [653, 2, 1, "", "score"], [653, 2, 1, "", "set_fit_request"], [653, 2, 1, "", "set_params"], [653, 2, 1, "", "set_score_request"]], "sklearn.linear_model.LassoLarsCV": [[654, 2, 1, "", "fit"], [654, 2, 1, "", "get_metadata_routing"], [654, 2, 1, "", "get_params"], [654, 2, 1, "", "predict"], [654, 2, 1, "", "score"], [654, 2, 1, "", "set_fit_request"], [654, 2, 1, "", "set_params"], [654, 2, 1, "", "set_score_request"]], "sklearn.linear_model.LassoLarsIC": [[655, 2, 1, "", "fit"], [655, 2, 1, "", "get_metadata_routing"], [655, 2, 1, "", "get_params"], [655, 2, 1, "", "predict"], [655, 2, 1, "", "score"], [655, 2, 1, "", "set_fit_request"], [655, 2, 1, "", "set_params"], [655, 2, 1, "", "set_score_request"]], "sklearn.linear_model.LinearRegression": [[656, 2, 1, "", "fit"], [656, 2, 1, "", "get_metadata_routing"], [656, 2, 1, "", "get_params"], [656, 2, 1, "", "predict"], [656, 2, 1, "", "score"], [656, 2, 1, "", "set_fit_request"], [656, 2, 1, "", "set_params"], [656, 2, 1, "", "set_score_request"]], "sklearn.linear_model.LogisticRegression": [[657, 2, 1, "", "decision_function"], [657, 2, 1, "", "densify"], [657, 2, 1, "", "fit"], [657, 2, 1, "", "get_metadata_routing"], [657, 2, 1, "", "get_params"], [657, 2, 1, "", "predict"], [657, 2, 1, "", "predict_log_proba"], [657, 2, 1, "", "predict_proba"], [657, 2, 1, "", "score"], [657, 2, 1, "", "set_fit_request"], [657, 2, 1, "", "set_params"], [657, 2, 1, "", "set_score_request"], [657, 2, 1, "", "sparsify"]], "sklearn.linear_model.LogisticRegressionCV": [[658, 2, 1, "", "decision_function"], [658, 2, 1, "", "densify"], [658, 2, 1, "", "fit"], [658, 2, 1, "", "get_metadata_routing"], [658, 2, 1, "", "get_params"], [658, 2, 1, "", "predict"], [658, 2, 1, "", "predict_log_proba"], [658, 2, 1, "", "predict_proba"], [658, 2, 1, "", "score"], [658, 2, 1, "", "set_fit_request"], [658, 2, 1, "", "set_params"], [658, 2, 1, "", "set_score_request"], [658, 2, 1, "", "sparsify"]], "sklearn.linear_model.MultiTaskElasticNet": [[659, 2, 1, "", "fit"], [659, 2, 1, "", "get_metadata_routing"], [659, 2, 1, "", "get_params"], [659, 2, 1, "", "path"], [659, 2, 1, "", "predict"], [659, 2, 1, "", "score"], [659, 2, 1, "", "set_fit_request"], [659, 2, 1, "", "set_params"], [659, 2, 1, "", "set_score_request"]], "sklearn.linear_model.MultiTaskElasticNetCV": [[660, 2, 1, "", "fit"], [660, 2, 1, "", "get_metadata_routing"], [660, 2, 1, "", "get_params"], [660, 2, 1, "", "path"], [660, 2, 1, "", "predict"], [660, 2, 1, "", "score"], [660, 2, 1, "", "set_fit_request"], [660, 2, 1, "", "set_params"], [660, 2, 1, "", "set_score_request"]], "sklearn.linear_model.MultiTaskLasso": [[661, 2, 1, "", "fit"], [661, 2, 1, "", "get_metadata_routing"], [661, 2, 1, "", "get_params"], [661, 2, 1, "", "path"], [661, 2, 1, "", "predict"], [661, 2, 1, "", "score"], [661, 2, 1, "", "set_fit_request"], [661, 2, 1, "", "set_params"], [661, 2, 1, "", "set_score_request"]], "sklearn.linear_model.MultiTaskLassoCV": [[662, 2, 1, "", "fit"], [662, 2, 1, "", "get_metadata_routing"], [662, 2, 1, "", "get_params"], [662, 2, 1, "", "path"], [662, 2, 1, "", "predict"], [662, 2, 1, "", "score"], [662, 2, 1, "", "set_fit_request"], [662, 2, 1, "", "set_params"], [662, 2, 1, "", "set_score_request"]], "sklearn.linear_model.OrthogonalMatchingPursuit": [[663, 2, 1, "", "fit"], [663, 2, 1, "", "get_metadata_routing"], [663, 2, 1, "", "get_params"], [663, 2, 1, "", "predict"], [663, 2, 1, "", "score"], [663, 2, 1, "", "set_params"], [663, 2, 1, "", "set_score_request"]], "sklearn.linear_model.OrthogonalMatchingPursuitCV": [[664, 2, 1, "", "fit"], [664, 2, 1, "", "get_metadata_routing"], [664, 2, 1, "", "get_params"], [664, 2, 1, "", "predict"], [664, 2, 1, "", "score"], [664, 2, 1, "", "set_params"], [664, 2, 1, "", "set_score_request"]], "sklearn.linear_model.PassiveAggressiveClassifier": [[665, 2, 1, "", "decision_function"], [665, 2, 1, "", "densify"], [665, 2, 1, "", "fit"], [665, 2, 1, "", "get_metadata_routing"], [665, 2, 1, "", "get_params"], [665, 2, 1, "", "partial_fit"], [665, 2, 1, "", "predict"], [665, 2, 1, "", "score"], [665, 2, 1, "", "set_fit_request"], [665, 2, 1, "", "set_params"], [665, 2, 1, "", "set_partial_fit_request"], [665, 2, 1, "", "set_score_request"], [665, 2, 1, "", "sparsify"]], "sklearn.linear_model.PassiveAggressiveRegressor": [[666, 2, 1, "", "densify"], [666, 2, 1, "", "fit"], [666, 2, 1, "", "get_metadata_routing"], [666, 2, 1, "", "get_params"], [666, 2, 1, "", "partial_fit"], [666, 2, 1, "", "predict"], [666, 2, 1, "", "score"], [666, 2, 1, "", "set_fit_request"], [666, 2, 1, "", "set_params"], [666, 2, 1, "", "set_partial_fit_request"], [666, 2, 1, "", "set_score_request"], [666, 2, 1, "", "sparsify"]], "sklearn.linear_model.Perceptron": [[667, 2, 1, "", "decision_function"], [667, 2, 1, "", "densify"], [667, 2, 1, "", "fit"], [667, 2, 1, "", "get_metadata_routing"], [667, 2, 1, "", "get_params"], [667, 2, 1, "", "partial_fit"], [667, 2, 1, "", "predict"], [667, 2, 1, "", "score"], [667, 2, 1, "", "set_fit_request"], [667, 2, 1, "", "set_params"], [667, 2, 1, "", "set_partial_fit_request"], [667, 2, 1, "", "set_score_request"], [667, 2, 1, "", "sparsify"]], "sklearn.linear_model.PoissonRegressor": [[668, 2, 1, "", "fit"], [668, 2, 1, "", "get_metadata_routing"], [668, 2, 1, "", "get_params"], [668, 2, 1, "", "predict"], [668, 2, 1, "", "score"], [668, 2, 1, "", "set_fit_request"], [668, 2, 1, "", "set_params"], [668, 2, 1, "", "set_score_request"]], "sklearn.linear_model.QuantileRegressor": [[669, 2, 1, "", "fit"], [669, 2, 1, "", "get_metadata_routing"], [669, 2, 1, "", "get_params"], [669, 2, 1, "", "predict"], [669, 2, 1, "", "score"], [669, 2, 1, "", "set_fit_request"], [669, 2, 1, "", "set_params"], [669, 2, 1, "", "set_score_request"]], "sklearn.linear_model.RANSACRegressor": [[670, 2, 1, "", "fit"], [670, 2, 1, "", "get_metadata_routing"], [670, 2, 1, "", "get_params"], [670, 2, 1, "", "predict"], [670, 2, 1, "", "score"], [670, 2, 1, "", "set_fit_request"], [670, 2, 1, "", "set_params"]], "sklearn.linear_model.Ridge": [[671, 2, 1, "", "fit"], [671, 2, 1, "", "get_metadata_routing"], [671, 2, 1, "", "get_params"], [671, 2, 1, "", "predict"], [671, 2, 1, "", "score"], [671, 2, 1, "", "set_fit_request"], [671, 2, 1, "", "set_params"], [671, 2, 1, "", "set_score_request"]], "sklearn.linear_model.RidgeCV": [[672, 2, 1, "", "fit"], [672, 2, 1, "", "get_metadata_routing"], [672, 2, 1, "", "get_params"], [672, 2, 1, "", "predict"], [672, 2, 1, "", "score"], [672, 2, 1, "", "set_fit_request"], [672, 2, 1, "", "set_params"], [672, 2, 1, "", "set_score_request"]], "sklearn.linear_model.RidgeClassifier": [[673, 2, 1, "", "decision_function"], [673, 2, 1, "", "fit"], [673, 2, 1, "", "get_metadata_routing"], [673, 2, 1, "", "get_params"], [673, 2, 1, "", "predict"], [673, 2, 1, "", "score"], [673, 2, 1, "", "set_fit_request"], [673, 2, 1, "", "set_params"], [673, 2, 1, "", "set_score_request"]], "sklearn.linear_model.RidgeClassifierCV": [[674, 2, 1, "", "decision_function"], [674, 2, 1, "", "fit"], [674, 2, 1, "", "get_metadata_routing"], [674, 2, 1, "", "get_params"], [674, 2, 1, "", "predict"], [674, 2, 1, "", "score"], [674, 2, 1, "", "set_fit_request"], [674, 2, 1, "", "set_params"], [674, 2, 1, "", "set_score_request"]], "sklearn.linear_model.SGDClassifier": [[675, 2, 1, "", "decision_function"], [675, 2, 1, "", "densify"], [675, 2, 1, "", "fit"], [675, 2, 1, "", "get_metadata_routing"], [675, 2, 1, "", "get_params"], [675, 2, 1, "", "partial_fit"], [675, 2, 1, "", "predict"], [675, 2, 1, "", "predict_log_proba"], [675, 2, 1, "", "predict_proba"], [675, 2, 1, "", "score"], [675, 2, 1, "", "set_fit_request"], [675, 2, 1, "", "set_params"], [675, 2, 1, "", "set_partial_fit_request"], [675, 2, 1, "", "set_score_request"], [675, 2, 1, "", "sparsify"]], "sklearn.linear_model.SGDOneClassSVM": [[676, 2, 1, "", "decision_function"], [676, 2, 1, "", "densify"], [676, 2, 1, "", "fit"], [676, 2, 1, "", "fit_predict"], [676, 2, 1, "", "get_metadata_routing"], [676, 2, 1, "", "get_params"], [676, 2, 1, "", "partial_fit"], [676, 2, 1, "", "predict"], [676, 2, 1, "", "score_samples"], [676, 2, 1, "", "set_fit_request"], [676, 2, 1, "", "set_params"], [676, 2, 1, "", "set_partial_fit_request"], [676, 2, 1, "", "sparsify"]], "sklearn.linear_model.SGDRegressor": [[677, 2, 1, "", "densify"], [677, 2, 1, "", "fit"], [677, 2, 1, "", "get_metadata_routing"], [677, 2, 1, "", "get_params"], [677, 2, 1, "", "partial_fit"], [677, 2, 1, "", "predict"], [677, 2, 1, "", "score"], [677, 2, 1, "", "set_fit_request"], [677, 2, 1, "", "set_params"], [677, 2, 1, "", "set_partial_fit_request"], [677, 2, 1, "", "set_score_request"], [677, 2, 1, "", "sparsify"]], "sklearn.linear_model.TheilSenRegressor": [[678, 2, 1, "", "fit"], [678, 2, 1, "", "get_metadata_routing"], [678, 2, 1, "", "get_params"], [678, 2, 1, "", "predict"], [678, 2, 1, "", "score"], [678, 2, 1, "", "set_params"], [678, 2, 1, "", "set_score_request"]], "sklearn.linear_model.TweedieRegressor": [[679, 2, 1, "", "fit"], [679, 2, 1, "", "get_metadata_routing"], [679, 2, 1, "", "get_params"], [679, 2, 1, "", "predict"], [679, 2, 1, "", "score"], [679, 2, 1, "", "set_fit_request"], [679, 2, 1, "", "set_params"], [679, 2, 1, "", "set_score_request"]], "sklearn.manifold": [[687, 1, 1, "", "ClassicalMDS"], [688, 1, 1, "", "Isomap"], [689, 1, 1, "", "LocallyLinearEmbedding"], [690, 1, 1, "", "MDS"], [691, 1, 1, "", "SpectralEmbedding"], [692, 1, 1, "", "TSNE"], [693, 3, 1, "", "locally_linear_embedding"], [694, 3, 1, "", "smacof"], [695, 3, 1, "", "spectral_embedding"], [696, 3, 1, "", "trustworthiness"]], "sklearn.manifold.ClassicalMDS": [[687, 2, 1, "", "fit"], [687, 2, 1, "", "fit_transform"], [687, 2, 1, "", "get_metadata_routing"], [687, 2, 1, "", "get_params"], [687, 2, 1, "", "set_params"]], "sklearn.manifold.Isomap": [[688, 2, 1, "", "fit"], [688, 2, 1, "", "fit_transform"], [688, 2, 1, "", "get_feature_names_out"], [688, 2, 1, "", "get_metadata_routing"], [688, 2, 1, "", "get_params"], [688, 2, 1, "", "reconstruction_error"], [688, 2, 1, "", "set_output"], [688, 2, 1, "", "set_params"], [688, 2, 1, "", "transform"]], "sklearn.manifold.LocallyLinearEmbedding": [[689, 2, 1, "", "fit"], [689, 2, 1, "", "fit_transform"], [689, 2, 1, "", "get_feature_names_out"], [689, 2, 1, "", "get_metadata_routing"], [689, 2, 1, "", "get_params"], [689, 2, 1, "", "set_output"], [689, 2, 1, "", "set_params"], [689, 2, 1, "", "transform"]], "sklearn.manifold.MDS": [[690, 2, 1, "", "fit"], [690, 2, 1, "", "fit_transform"], [690, 2, 1, "", "get_metadata_routing"], [690, 2, 1, "", "get_params"], [690, 2, 1, "", "set_fit_request"], [690, 2, 1, "", "set_params"]], "sklearn.manifold.SpectralEmbedding": [[691, 2, 1, "", "fit"], [691, 2, 1, "", "fit_transform"], [691, 2, 1, "", "get_metadata_routing"], [691, 2, 1, "", "get_params"], [691, 2, 1, "", "set_params"]], "sklearn.manifold.TSNE": [[692, 2, 1, "", "fit"], [692, 2, 1, "", "fit_transform"], [692, 2, 1, "", "get_feature_names_out"], [692, 2, 1, "", "get_metadata_routing"], [692, 2, 1, "", "get_params"], [692, 2, 1, "", "set_output"], [692, 2, 1, "", "set_params"]], "sklearn.metrics": [[697, 1, 1, "", "ConfusionMatrixDisplay"], [698, 1, 1, "", "DetCurveDisplay"], [699, 1, 1, "", "DistanceMetric"], [700, 1, 1, "", "PrecisionRecallDisplay"], [701, 1, 1, "", "PredictionErrorDisplay"], [702, 1, 1, "", "RocCurveDisplay"], [703, 3, 1, "", "accuracy_score"], [704, 3, 1, "", "adjusted_mutual_info_score"], [705, 3, 1, "", "adjusted_rand_score"], [706, 3, 1, "", "auc"], [707, 3, 1, "", "average_precision_score"], [708, 3, 1, "", "balanced_accuracy_score"], [709, 3, 1, "", "brier_score_loss"], [710, 3, 1, "", "calinski_harabasz_score"], [711, 3, 1, "", "check_scoring"], [712, 3, 1, "", "class_likelihood_ratios"], [713, 3, 1, "", "classification_report"], [28, 0, 0, "-", "cluster"], [716, 3, 1, "", "cohen_kappa_score"], [717, 3, 1, "", "completeness_score"], [718, 3, 1, "", "confusion_matrix"], [719, 3, 1, "", "consensus_score"], [720, 3, 1, "", "coverage_error"], [721, 3, 1, "", "d2_absolute_error_score"], [722, 3, 1, "", "d2_brier_score"], [723, 3, 1, "", "d2_log_loss_score"], [724, 3, 1, "", "d2_pinball_score"], [725, 3, 1, "", "d2_tweedie_score"], [726, 3, 1, "", "davies_bouldin_score"], [727, 3, 1, "", "dcg_score"], [728, 3, 1, "", "det_curve"], [729, 3, 1, "", "explained_variance_score"], [730, 3, 1, "", "f1_score"], [731, 3, 1, "", "fbeta_score"], [732, 3, 1, "", "fowlkes_mallows_score"], [733, 3, 1, "", "get_scorer"], [734, 3, 1, "", "get_scorer_names"], [735, 3, 1, "", "hamming_loss"], [736, 3, 1, "", "hinge_loss"], [737, 3, 1, "", "homogeneity_completeness_v_measure"], [738, 3, 1, "", "homogeneity_score"], [739, 3, 1, "", "jaccard_score"], [740, 3, 1, "", "label_ranking_average_precision_score"], [741, 3, 1, "", "label_ranking_loss"], [742, 3, 1, "", "log_loss"], [743, 3, 1, "", "make_scorer"], [744, 3, 1, "", "matthews_corrcoef"], [745, 3, 1, "", "max_error"], [746, 3, 1, "", "mean_absolute_error"], [747, 3, 1, "", "mean_absolute_percentage_error"], [748, 3, 1, "", "mean_gamma_deviance"], [749, 3, 1, "", "mean_pinball_loss"], [750, 3, 1, "", "mean_poisson_deviance"], [751, 3, 1, "", "mean_squared_error"], [752, 3, 1, "", "mean_squared_log_error"], [753, 3, 1, "", "mean_tweedie_deviance"], [754, 3, 1, "", "median_absolute_error"], [755, 3, 1, "", "multilabel_confusion_matrix"], [756, 3, 1, "", "mutual_info_score"], [757, 3, 1, "", "ndcg_score"], [758, 3, 1, "", "normalized_mutual_info_score"], [28, 0, 0, "-", "pairwise"], [779, 3, 1, "", "pairwise_distances"], [780, 3, 1, "", "pairwise_distances_argmin"], [781, 3, 1, "", "pairwise_distances_argmin_min"], [782, 3, 1, "", "pairwise_distances_chunked"], [783, 3, 1, "", "precision_recall_curve"], [784, 3, 1, "", "precision_recall_fscore_support"], [785, 3, 1, "", "precision_score"], [786, 3, 1, "", "r2_score"], [787, 3, 1, "", "rand_score"], [788, 3, 1, "", "recall_score"], [789, 3, 1, "", "roc_auc_score"], [790, 3, 1, "", "roc_curve"], [791, 3, 1, "", "root_mean_squared_error"], [792, 3, 1, "", "root_mean_squared_log_error"], [793, 3, 1, "", "silhouette_samples"], [794, 3, 1, "", "silhouette_score"], [795, 3, 1, "", "top_k_accuracy_score"], [796, 3, 1, "", "v_measure_score"], [797, 3, 1, "", "zero_one_loss"]], "sklearn.metrics.ConfusionMatrixDisplay": [[697, 2, 1, "", "from_estimator"], [697, 2, 1, "", "from_predictions"], [697, 2, 1, "", "plot"]], "sklearn.metrics.DetCurveDisplay": [[698, 2, 1, "", "from_estimator"], [698, 2, 1, "", "from_predictions"], [698, 2, 1, "", "plot"]], "sklearn.metrics.DistanceMetric": [[699, 2, 1, "", "get_metric"]], "sklearn.metrics.PrecisionRecallDisplay": [[700, 2, 1, "", "from_estimator"], [700, 2, 1, "", "from_predictions"], [700, 2, 1, "", "plot"]], "sklearn.metrics.PredictionErrorDisplay": [[701, 2, 1, "", "from_estimator"], [701, 2, 1, "", "from_predictions"], [701, 2, 1, "", "plot"]], "sklearn.metrics.RocCurveDisplay": [[702, 2, 1, "", "from_cv_results"], [702, 2, 1, "", "from_estimator"], [702, 2, 1, "", "from_predictions"], [702, 2, 1, "", "plot"]], "sklearn.metrics.cluster": [[714, 3, 1, "", "contingency_matrix"], [715, 3, 1, "", "pair_confusion_matrix"]], "sklearn.metrics.pairwise": [[759, 3, 1, "", "additive_chi2_kernel"], [760, 3, 1, "", "chi2_kernel"], [761, 3, 1, "", "cosine_distances"], [762, 3, 1, "", "cosine_similarity"], [763, 3, 1, "", "distance_metrics"], [764, 3, 1, "", "euclidean_distances"], [765, 3, 1, "", "haversine_distances"], [766, 3, 1, "", "kernel_metrics"], [767, 3, 1, "", "laplacian_kernel"], [768, 3, 1, "", "linear_kernel"], [769, 3, 1, "", "manhattan_distances"], [770, 3, 1, "", "nan_euclidean_distances"], [771, 3, 1, "", "paired_cosine_distances"], [772, 3, 1, "", "paired_distances"], [773, 3, 1, "", "paired_euclidean_distances"], [774, 3, 1, "", "paired_manhattan_distances"], [775, 3, 1, "", "pairwise_kernels"], [776, 3, 1, "", "polynomial_kernel"], [777, 3, 1, "", "rbf_kernel"], [778, 3, 1, "", "sigmoid_kernel"]], "sklearn.mixture": [[798, 1, 1, "", "BayesianGaussianMixture"], [799, 1, 1, "", "GaussianMixture"]], "sklearn.mixture.BayesianGaussianMixture": [[798, 2, 1, "", "fit"], [798, 2, 1, "", "fit_predict"], [798, 2, 1, "", "get_metadata_routing"], [798, 2, 1, "", "get_params"], [798, 2, 1, "", "predict"], [798, 2, 1, "", "predict_proba"], [798, 2, 1, "", "sample"], [798, 2, 1, "", "score"], [798, 2, 1, "", "score_samples"], [798, 2, 1, "", "set_params"]], "sklearn.mixture.GaussianMixture": [[799, 2, 1, "", "aic"], [799, 2, 1, "", "bic"], [799, 2, 1, "", "fit"], [799, 2, 1, "", "fit_predict"], [799, 2, 1, "", "get_metadata_routing"], [799, 2, 1, "", "get_params"], [799, 2, 1, "", "predict"], [799, 2, 1, "", "predict_proba"], [799, 2, 1, "", "sample"], [799, 2, 1, "", "score"], [799, 2, 1, "", "score_samples"], [799, 2, 1, "", "set_params"]], "sklearn.model_selection": [[800, 1, 1, "", "FixedThresholdClassifier"], [801, 1, 1, "", "GridSearchCV"], [802, 1, 1, "", "GroupKFold"], [803, 1, 1, "", "GroupShuffleSplit"], [804, 1, 1, "", "HalvingGridSearchCV"], [805, 1, 1, "", "HalvingRandomSearchCV"], [806, 1, 1, "", "KFold"], [807, 1, 1, "", "LearningCurveDisplay"], [808, 1, 1, "", "LeaveOneGroupOut"], [809, 1, 1, "", "LeaveOneOut"], [810, 1, 1, "", "LeavePGroupsOut"], [811, 1, 1, "", "LeavePOut"], [812, 1, 1, "", "ParameterGrid"], [813, 1, 1, "", "ParameterSampler"], [814, 1, 1, "", "PredefinedSplit"], [815, 1, 1, "", "RandomizedSearchCV"], [816, 1, 1, "", "RepeatedKFold"], [817, 1, 1, "", "RepeatedStratifiedKFold"], [818, 1, 1, "", "ShuffleSplit"], [819, 1, 1, "", "StratifiedGroupKFold"], [820, 1, 1, "", "StratifiedKFold"], [821, 1, 1, "", "StratifiedShuffleSplit"], [822, 1, 1, "", "TimeSeriesSplit"], [823, 1, 1, "", "TunedThresholdClassifierCV"], [824, 1, 1, "", "ValidationCurveDisplay"], [825, 3, 1, "", "check_cv"], [826, 3, 1, "", "cross_val_predict"], [827, 3, 1, "", "cross_val_score"], [828, 3, 1, "", "cross_validate"], [829, 3, 1, "", "learning_curve"], [830, 3, 1, "", "permutation_test_score"], [831, 3, 1, "", "train_test_split"], [832, 3, 1, "", "validation_curve"]], "sklearn.model_selection.FixedThresholdClassifier": [[800, 2, 1, "", "decision_function"], [800, 2, 1, "", "fit"], [800, 2, 1, "", "get_metadata_routing"], [800, 2, 1, "", "get_params"], [800, 2, 1, "", "predict"], [800, 2, 1, "", "predict_log_proba"], [800, 2, 1, "", "predict_proba"], [800, 2, 1, "", "score"], [800, 2, 1, "", "set_params"], [800, 2, 1, "", "set_score_request"]], "sklearn.model_selection.GridSearchCV": [[801, 2, 1, "", "decision_function"], [801, 2, 1, "", "fit"], [801, 2, 1, "", "get_metadata_routing"], [801, 2, 1, "", "get_params"], [801, 2, 1, "", "inverse_transform"], [801, 2, 1, "", "predict"], [801, 2, 1, "", "predict_log_proba"], [801, 2, 1, "", "predict_proba"], [801, 2, 1, "", "score"], [801, 2, 1, "", "score_samples"], [801, 2, 1, "", "set_params"], [801, 2, 1, "", "transform"]], "sklearn.model_selection.GroupKFold": [[802, 2, 1, "", "get_metadata_routing"], [802, 2, 1, "", "get_n_splits"], [802, 2, 1, "", "set_split_request"], [802, 2, 1, "", "split"]], "sklearn.model_selection.GroupShuffleSplit": [[803, 2, 1, "", "get_metadata_routing"], [803, 2, 1, "", "get_n_splits"], [803, 2, 1, "", "set_split_request"], [803, 2, 1, "", "split"]], "sklearn.model_selection.HalvingGridSearchCV": [[804, 2, 1, "", "decision_function"], [804, 2, 1, "", "fit"], [804, 2, 1, "", "get_metadata_routing"], [804, 2, 1, "", "get_params"], [804, 2, 1, "", "inverse_transform"], [804, 2, 1, "", "predict"], [804, 2, 1, "", "predict_log_proba"], [804, 2, 1, "", "predict_proba"], [804, 2, 1, "", "score"], [804, 2, 1, "", "score_samples"], [804, 2, 1, "", "set_params"], [804, 2, 1, "", "transform"]], "sklearn.model_selection.HalvingRandomSearchCV": [[805, 2, 1, "", "decision_function"], [805, 2, 1, "", "fit"], [805, 2, 1, "", "get_metadata_routing"], [805, 2, 1, "", "get_params"], [805, 2, 1, "", "inverse_transform"], [805, 2, 1, "", "predict"], [805, 2, 1, "", "predict_log_proba"], [805, 2, 1, "", "predict_proba"], [805, 2, 1, "", "score"], [805, 2, 1, "", "score_samples"], [805, 2, 1, "", "set_params"], [805, 2, 1, "", "transform"]], "sklearn.model_selection.KFold": [[806, 2, 1, "", "get_metadata_routing"], [806, 2, 1, "", "get_n_splits"], [806, 2, 1, "", "split"]], "sklearn.model_selection.LearningCurveDisplay": [[807, 2, 1, "", "from_estimator"], [807, 2, 1, "", "plot"]], "sklearn.model_selection.LeaveOneGroupOut": [[808, 2, 1, "", "get_metadata_routing"], [808, 2, 1, "", "get_n_splits"], [808, 2, 1, "", "set_split_request"], [808, 2, 1, "", "split"]], "sklearn.model_selection.LeaveOneOut": [[809, 2, 1, "", "get_metadata_routing"], [809, 2, 1, "", "get_n_splits"], [809, 2, 1, "", "split"]], "sklearn.model_selection.LeavePGroupsOut": [[810, 2, 1, "", "get_metadata_routing"], [810, 2, 1, "", "get_n_splits"], [810, 2, 1, "", "set_split_request"], [810, 2, 1, "", "split"]], "sklearn.model_selection.LeavePOut": [[811, 2, 1, "", "get_metadata_routing"], [811, 2, 1, "", "get_n_splits"], [811, 2, 1, "", "split"]], "sklearn.model_selection.PredefinedSplit": [[814, 2, 1, "", "get_metadata_routing"], [814, 2, 1, "", "get_n_splits"], [814, 2, 1, "", "split"]], "sklearn.model_selection.RandomizedSearchCV": [[815, 2, 1, "", "decision_function"], [815, 2, 1, "", "fit"], [815, 2, 1, "", "get_metadata_routing"], [815, 2, 1, "", "get_params"], [815, 2, 1, "", "inverse_transform"], [815, 2, 1, "", "predict"], [815, 2, 1, "", "predict_log_proba"], [815, 2, 1, "", "predict_proba"], [815, 2, 1, "", "score"], [815, 2, 1, "", "score_samples"], [815, 2, 1, "", "set_params"], [815, 2, 1, "", "transform"]], "sklearn.model_selection.RepeatedKFold": [[816, 2, 1, "", "get_metadata_routing"], [816, 2, 1, "", "get_n_splits"], [816, 2, 1, "", "split"]], "sklearn.model_selection.RepeatedStratifiedKFold": [[817, 2, 1, "", "get_metadata_routing"], [817, 2, 1, "", "get_n_splits"], [817, 2, 1, "", "split"]], "sklearn.model_selection.ShuffleSplit": [[818, 2, 1, "", "get_metadata_routing"], [818, 2, 1, "", "get_n_splits"], [818, 2, 1, "", "split"]], "sklearn.model_selection.StratifiedGroupKFold": [[819, 2, 1, "", "get_metadata_routing"], [819, 2, 1, "", "get_n_splits"], [819, 2, 1, "", "set_split_request"], [819, 2, 1, "", "split"]], "sklearn.model_selection.StratifiedKFold": [[820, 2, 1, "", "get_metadata_routing"], [820, 2, 1, "", "get_n_splits"], [820, 2, 1, "", "split"]], "sklearn.model_selection.StratifiedShuffleSplit": [[821, 2, 1, "", "get_metadata_routing"], [821, 2, 1, "", "get_n_splits"], [821, 2, 1, "", "split"]], "sklearn.model_selection.TimeSeriesSplit": [[822, 2, 1, "", "get_metadata_routing"], [822, 2, 1, "", "get_n_splits"], [822, 2, 1, "", "split"]], "sklearn.model_selection.TunedThresholdClassifierCV": [[823, 2, 1, "", "decision_function"], [823, 2, 1, "", "fit"], [823, 2, 1, "", "get_metadata_routing"], [823, 2, 1, "", "get_params"], [823, 2, 1, "", "predict"], [823, 2, 1, "", "predict_log_proba"], [823, 2, 1, "", "predict_proba"], [823, 2, 1, "", "score"], [823, 2, 1, "", "set_params"], [823, 2, 1, "", "set_score_request"]], "sklearn.model_selection.ValidationCurveDisplay": [[824, 2, 1, "", "from_estimator"], [824, 2, 1, "", "plot"]], "sklearn.multiclass": [[833, 1, 1, "", "OneVsOneClassifier"], [834, 1, 1, "", "OneVsRestClassifier"], [835, 1, 1, "", "OutputCodeClassifier"]], "sklearn.multiclass.OneVsOneClassifier": [[833, 2, 1, "", "decision_function"], [833, 2, 1, "", "fit"], [833, 2, 1, "", "get_metadata_routing"], [833, 2, 1, "", "get_params"], [833, 2, 1, "", "partial_fit"], [833, 2, 1, "", "predict"], [833, 2, 1, "", "score"], [833, 2, 1, "", "set_params"], [833, 2, 1, "", "set_partial_fit_request"], [833, 2, 1, "", "set_score_request"]], "sklearn.multiclass.OneVsRestClassifier": [[834, 2, 1, "", "decision_function"], [834, 2, 1, "", "fit"], [834, 2, 1, "", "get_metadata_routing"], [834, 2, 1, "", "get_params"], [834, 2, 1, "", "partial_fit"], [834, 2, 1, "", "predict"], [834, 2, 1, "", "predict_proba"], [834, 2, 1, "", "score"], [834, 2, 1, "", "set_params"], [834, 2, 1, "", "set_partial_fit_request"], [834, 2, 1, "", "set_score_request"]], "sklearn.multiclass.OutputCodeClassifier": [[835, 2, 1, "", "fit"], [835, 2, 1, "", "get_metadata_routing"], [835, 2, 1, "", "get_params"], [835, 2, 1, "", "predict"], [835, 2, 1, "", "score"], [835, 2, 1, "", "set_params"], [835, 2, 1, "", "set_score_request"]], "sklearn.multioutput": [[836, 1, 1, "", "ClassifierChain"], [837, 1, 1, "", "MultiOutputClassifier"], [838, 1, 1, "", "MultiOutputRegressor"], [839, 1, 1, "", "RegressorChain"]], "sklearn.multioutput.ClassifierChain": [[836, 2, 1, "", "decision_function"], [836, 2, 1, "", "fit"], [836, 2, 1, "", "get_metadata_routing"], [836, 2, 1, "", "get_params"], [836, 2, 1, "", "predict"], [836, 2, 1, "", "predict_log_proba"], [836, 2, 1, "", "predict_proba"], [836, 2, 1, "", "score"], [836, 2, 1, "", "set_params"], [836, 2, 1, "", "set_score_request"]], "sklearn.multioutput.MultiOutputClassifier": [[837, 2, 1, "", "fit"], [837, 2, 1, "", "get_metadata_routing"], [837, 2, 1, "", "get_params"], [837, 2, 1, "", "partial_fit"], [837, 2, 1, "", "predict"], [837, 2, 1, "", "predict_proba"], [837, 2, 1, "", "score"], [837, 2, 1, "", "set_fit_request"], [837, 2, 1, "", "set_params"], [837, 2, 1, "", "set_partial_fit_request"]], "sklearn.multioutput.MultiOutputRegressor": [[838, 2, 1, "", "fit"], [838, 2, 1, "", "get_metadata_routing"], [838, 2, 1, "", "get_params"], [838, 2, 1, "", "partial_fit"], [838, 2, 1, "", "predict"], [838, 2, 1, "", "score"], [838, 2, 1, "", "set_fit_request"], [838, 2, 1, "", "set_params"], [838, 2, 1, "", "set_partial_fit_request"], [838, 2, 1, "", "set_score_request"]], "sklearn.multioutput.RegressorChain": [[839, 2, 1, "", "fit"], [839, 2, 1, "", "get_metadata_routing"], [839, 2, 1, "", "get_params"], [839, 2, 1, "", "predict"], [839, 2, 1, "", "score"], [839, 2, 1, "", "set_params"], [839, 2, 1, "", "set_score_request"]], "sklearn.naive_bayes": [[840, 1, 1, "", "BernoulliNB"], [841, 1, 1, "", "CategoricalNB"], [842, 1, 1, "", "ComplementNB"], [843, 1, 1, "", "GaussianNB"], [844, 1, 1, "", "MultinomialNB"]], "sklearn.naive_bayes.BernoulliNB": [[840, 2, 1, "", "fit"], [840, 2, 1, "", "get_metadata_routing"], [840, 2, 1, "", "get_params"], [840, 2, 1, "", "partial_fit"], [840, 2, 1, "", "predict"], [840, 2, 1, "", "predict_joint_log_proba"], [840, 2, 1, "", "predict_log_proba"], [840, 2, 1, "", "predict_proba"], [840, 2, 1, "", "score"], [840, 2, 1, "", "set_fit_request"], [840, 2, 1, "", "set_params"], [840, 2, 1, "", "set_partial_fit_request"], [840, 2, 1, "", "set_score_request"]], "sklearn.naive_bayes.CategoricalNB": [[841, 2, 1, "", "fit"], [841, 2, 1, "", "get_metadata_routing"], [841, 2, 1, "", "get_params"], [841, 2, 1, "", "partial_fit"], [841, 2, 1, "", "predict"], [841, 2, 1, "", "predict_joint_log_proba"], [841, 2, 1, "", "predict_log_proba"], [841, 2, 1, "", "predict_proba"], [841, 2, 1, "", "score"], [841, 2, 1, "", "set_fit_request"], [841, 2, 1, "", "set_params"], [841, 2, 1, "", "set_partial_fit_request"], [841, 2, 1, "", "set_score_request"]], "sklearn.naive_bayes.ComplementNB": [[842, 2, 1, "", "fit"], [842, 2, 1, "", "get_metadata_routing"], [842, 2, 1, "", "get_params"], [842, 2, 1, "", "partial_fit"], [842, 2, 1, "", "predict"], [842, 2, 1, "", "predict_joint_log_proba"], [842, 2, 1, "", "predict_log_proba"], [842, 2, 1, "", "predict_proba"], [842, 2, 1, "", "score"], [842, 2, 1, "", "set_fit_request"], [842, 2, 1, "", "set_params"], [842, 2, 1, "", "set_partial_fit_request"], [842, 2, 1, "", "set_score_request"]], "sklearn.naive_bayes.GaussianNB": [[843, 2, 1, "", "fit"], [843, 2, 1, "", "get_metadata_routing"], [843, 2, 1, "", "get_params"], [843, 2, 1, "", "partial_fit"], [843, 2, 1, "", "predict"], [843, 2, 1, "", "predict_joint_log_proba"], [843, 2, 1, "", "predict_log_proba"], [843, 2, 1, "", "predict_proba"], [843, 2, 1, "", "score"], [843, 2, 1, "", "set_fit_request"], [843, 2, 1, "", "set_params"], [843, 2, 1, "", "set_partial_fit_request"], [843, 2, 1, "", "set_score_request"]], "sklearn.naive_bayes.MultinomialNB": [[844, 2, 1, "", "fit"], [844, 2, 1, "", "get_metadata_routing"], [844, 2, 1, "", "get_params"], [844, 2, 1, "", "partial_fit"], [844, 2, 1, "", "predict"], [844, 2, 1, "", "predict_joint_log_proba"], [844, 2, 1, "", "predict_log_proba"], [844, 2, 1, "", "predict_proba"], [844, 2, 1, "", "score"], [844, 2, 1, "", "set_fit_request"], [844, 2, 1, "", "set_params"], [844, 2, 1, "", "set_partial_fit_request"], [844, 2, 1, "", "set_score_request"]], "sklearn.neighbors": [[845, 1, 1, "", "BallTree"], [846, 1, 1, "", "KDTree"], [847, 1, 1, "", "KNeighborsClassifier"], [848, 1, 1, "", "KNeighborsRegressor"], [849, 1, 1, "", "KNeighborsTransformer"], [850, 1, 1, "", "KernelDensity"], [851, 1, 1, "", "LocalOutlierFactor"], [852, 1, 1, "", "NearestCentroid"], [853, 1, 1, "", "NearestNeighbors"], [854, 1, 1, "", "NeighborhoodComponentsAnalysis"], [855, 1, 1, "", "RadiusNeighborsClassifier"], [856, 1, 1, "", "RadiusNeighborsRegressor"], [857, 1, 1, "", "RadiusNeighborsTransformer"], [858, 3, 1, "", "kneighbors_graph"], [859, 3, 1, "", "radius_neighbors_graph"], [860, 3, 1, "", "sort_graph_by_row_values"]], "sklearn.neighbors.BallTree": [[845, 2, 1, "", "get_arrays"], [845, 2, 1, "", "get_n_calls"], [845, 2, 1, "", "get_tree_stats"], [845, 2, 1, "", "kernel_density"], [845, 2, 1, "", "query"], [845, 2, 1, "", "query_radius"], [845, 2, 1, "", "reset_n_calls"], [845, 2, 1, "", "two_point_correlation"]], "sklearn.neighbors.KDTree": [[846, 2, 1, "", "get_arrays"], [846, 2, 1, "", "get_n_calls"], [846, 2, 1, "", "get_tree_stats"], [846, 2, 1, "", "kernel_density"], [846, 2, 1, "", "query"], [846, 2, 1, "", "query_radius"], [846, 2, 1, "", "reset_n_calls"], [846, 2, 1, "", "two_point_correlation"]], "sklearn.neighbors.KNeighborsClassifier": [[847, 2, 1, "", "fit"], [847, 2, 1, "", "get_metadata_routing"], [847, 2, 1, "", "get_params"], [847, 2, 1, "", "kneighbors"], [847, 2, 1, "", "kneighbors_graph"], [847, 2, 1, "", "predict"], [847, 2, 1, "", "predict_proba"], [847, 2, 1, "", "score"], [847, 2, 1, "", "set_params"], [847, 2, 1, "", "set_score_request"]], "sklearn.neighbors.KNeighborsRegressor": [[848, 2, 1, "", "fit"], [848, 2, 1, "", "get_metadata_routing"], [848, 2, 1, "", "get_params"], [848, 2, 1, "", "kneighbors"], [848, 2, 1, "", "kneighbors_graph"], [848, 2, 1, "", "predict"], [848, 2, 1, "", "score"], [848, 2, 1, "", "set_params"], [848, 2, 1, "", "set_score_request"]], "sklearn.neighbors.KNeighborsTransformer": [[849, 2, 1, "", "fit"], [849, 2, 1, "", "fit_transform"], [849, 2, 1, "", "get_feature_names_out"], [849, 2, 1, "", "get_metadata_routing"], [849, 2, 1, "", "get_params"], [849, 2, 1, "", "kneighbors"], [849, 2, 1, "", "kneighbors_graph"], [849, 2, 1, "", "set_output"], [849, 2, 1, "", "set_params"], [849, 2, 1, "", "transform"]], "sklearn.neighbors.KernelDensity": [[850, 2, 1, "", "fit"], [850, 2, 1, "", "get_metadata_routing"], [850, 2, 1, "", "get_params"], [850, 2, 1, "", "sample"], [850, 2, 1, "", "score"], [850, 2, 1, "", "score_samples"], [850, 2, 1, "", "set_fit_request"], [850, 2, 1, "", "set_params"]], "sklearn.neighbors.LocalOutlierFactor": [[851, 2, 1, "", "decision_function"], [851, 2, 1, "", "fit"], [851, 2, 1, "", "fit_predict"], [851, 2, 1, "", "get_metadata_routing"], [851, 2, 1, "", "get_params"], [851, 2, 1, "", "kneighbors"], [851, 2, 1, "", "kneighbors_graph"], [851, 2, 1, "", "predict"], [851, 2, 1, "", "score_samples"], [851, 2, 1, "", "set_params"]], "sklearn.neighbors.NearestCentroid": [[852, 2, 1, "", "decision_function"], [852, 2, 1, "", "fit"], [852, 2, 1, "", "get_metadata_routing"], [852, 2, 1, "", "get_params"], [852, 2, 1, "", "predict"], [852, 2, 1, "", "predict_log_proba"], [852, 2, 1, "", "predict_proba"], [852, 2, 1, "", "score"], [852, 2, 1, "", "set_params"], [852, 2, 1, "", "set_score_request"]], "sklearn.neighbors.NearestNeighbors": [[853, 2, 1, "", "fit"], [853, 2, 1, "", "get_metadata_routing"], [853, 2, 1, "", "get_params"], [853, 2, 1, "", "kneighbors"], [853, 2, 1, "", "kneighbors_graph"], [853, 2, 1, "", "radius_neighbors"], [853, 2, 1, "", "radius_neighbors_graph"], [853, 2, 1, "", "set_params"]], "sklearn.neighbors.NeighborhoodComponentsAnalysis": [[854, 2, 1, "", "fit"], [854, 2, 1, "", "fit_transform"], [854, 2, 1, "", "get_feature_names_out"], [854, 2, 1, "", "get_metadata_routing"], [854, 2, 1, "", "get_params"], [854, 2, 1, "", "set_output"], [854, 2, 1, "", "set_params"], [854, 2, 1, "", "transform"]], "sklearn.neighbors.RadiusNeighborsClassifier": [[855, 2, 1, "", "fit"], [855, 2, 1, "", "get_metadata_routing"], [855, 2, 1, "", "get_params"], [855, 2, 1, "", "predict"], [855, 2, 1, "", "predict_proba"], [855, 2, 1, "", "radius_neighbors"], [855, 2, 1, "", "radius_neighbors_graph"], [855, 2, 1, "", "score"], [855, 2, 1, "", "set_params"], [855, 2, 1, "", "set_score_request"]], "sklearn.neighbors.RadiusNeighborsRegressor": [[856, 2, 1, "", "fit"], [856, 2, 1, "", "get_metadata_routing"], [856, 2, 1, "", "get_params"], [856, 2, 1, "", "predict"], [856, 2, 1, "", "radius_neighbors"], [856, 2, 1, "", "radius_neighbors_graph"], [856, 2, 1, "", "score"], [856, 2, 1, "", "set_params"], [856, 2, 1, "", "set_score_request"]], "sklearn.neighbors.RadiusNeighborsTransformer": [[857, 2, 1, "", "fit"], [857, 2, 1, "", "fit_transform"], [857, 2, 1, "", "get_feature_names_out"], [857, 2, 1, "", "get_metadata_routing"], [857, 2, 1, "", "get_params"], [857, 2, 1, "", "radius_neighbors"], [857, 2, 1, "", "radius_neighbors_graph"], [857, 2, 1, "", "set_output"], [857, 2, 1, "", "set_params"], [857, 2, 1, "", "transform"]], "sklearn.neural_network": [[861, 1, 1, "", "BernoulliRBM"], [862, 1, 1, "", "MLPClassifier"], [863, 1, 1, "", "MLPRegressor"]], "sklearn.neural_network.BernoulliRBM": [[861, 2, 1, "", "fit"], [861, 2, 1, "", "fit_transform"], [861, 2, 1, "", "get_feature_names_out"], [861, 2, 1, "", "get_metadata_routing"], [861, 2, 1, "", "get_params"], [861, 2, 1, "", "gibbs"], [861, 2, 1, "", "partial_fit"], [861, 2, 1, "", "score_samples"], [861, 2, 1, "", "set_output"], [861, 2, 1, "", "set_params"], [861, 2, 1, "", "transform"]], "sklearn.neural_network.MLPClassifier": [[862, 2, 1, "", "fit"], [862, 2, 1, "", "get_metadata_routing"], [862, 2, 1, "", "get_params"], [862, 2, 1, "", "partial_fit"], [862, 2, 1, "", "predict"], [862, 2, 1, "", "predict_log_proba"], [862, 2, 1, "", "predict_proba"], [862, 2, 1, "", "score"], [862, 2, 1, "", "set_fit_request"], [862, 2, 1, "", "set_params"], [862, 2, 1, "", "set_partial_fit_request"], [862, 2, 1, "", "set_score_request"]], "sklearn.neural_network.MLPRegressor": [[863, 2, 1, "", "fit"], [863, 2, 1, "", "get_metadata_routing"], [863, 2, 1, "", "get_params"], [863, 2, 1, "", "partial_fit"], [863, 2, 1, "", "predict"], [863, 2, 1, "", "score"], [863, 2, 1, "", "set_fit_request"], [863, 2, 1, "", "set_params"], [863, 2, 1, "", "set_partial_fit_request"], [863, 2, 1, "", "set_score_request"]], "sklearn.pipeline": [[864, 1, 1, "", "FeatureUnion"], [865, 1, 1, "", "Pipeline"], [866, 3, 1, "", "make_pipeline"], [867, 3, 1, "", "make_union"]], "sklearn.pipeline.FeatureUnion": [[864, 2, 1, "", "fit"], [864, 2, 1, "", "fit_transform"], [864, 2, 1, "", "get_feature_names_out"], [864, 2, 1, "", "get_metadata_routing"], [864, 2, 1, "", "get_params"], [864, 2, 1, "", "set_output"], [864, 2, 1, "", "set_params"], [864, 2, 1, "", "transform"]], "sklearn.pipeline.Pipeline": [[865, 2, 1, "", "decision_function"], [865, 2, 1, "", "fit"], [865, 2, 1, "", "fit_predict"], [865, 2, 1, "", "fit_transform"], [865, 2, 1, "", "get_feature_names_out"], [865, 2, 1, "", "get_metadata_routing"], [865, 2, 1, "", "get_params"], [865, 2, 1, "", "inverse_transform"], [865, 4, 1, "", "named_steps"], [865, 2, 1, "", "predict"], [865, 2, 1, "", "predict_log_proba"], [865, 2, 1, "", "predict_proba"], [865, 2, 1, "", "score"], [865, 2, 1, "", "score_samples"], [865, 2, 1, "", "set_output"], [865, 2, 1, "", "set_params"], [865, 2, 1, "", "set_score_request"], [865, 2, 1, "", "transform"]], "sklearn.preprocessing": [[868, 1, 1, "", "Binarizer"], [869, 1, 1, "", "FunctionTransformer"], [870, 1, 1, "", "KBinsDiscretizer"], [871, 1, 1, "", "KernelCenterer"], [872, 1, 1, "", "LabelBinarizer"], [873, 1, 1, "", "LabelEncoder"], [874, 1, 1, "", "MaxAbsScaler"], [875, 1, 1, "", "MinMaxScaler"], [876, 1, 1, "", "MultiLabelBinarizer"], [877, 1, 1, "", "Normalizer"], [878, 1, 1, "", "OneHotEncoder"], [879, 1, 1, "", "OrdinalEncoder"], [880, 1, 1, "", "PolynomialFeatures"], [881, 1, 1, "", "PowerTransformer"], [882, 1, 1, "", "QuantileTransformer"], [883, 1, 1, "", "RobustScaler"], [884, 1, 1, "", "SplineTransformer"], [885, 1, 1, "", "StandardScaler"], [886, 1, 1, "", "TargetEncoder"], [887, 3, 1, "", "add_dummy_feature"], [888, 3, 1, "", "binarize"], [889, 3, 1, "", "label_binarize"], [890, 3, 1, "", "maxabs_scale"], [891, 3, 1, "", "minmax_scale"], [892, 3, 1, "", "normalize"], [893, 3, 1, "", "power_transform"], [894, 3, 1, "", "quantile_transform"], [895, 3, 1, "", "robust_scale"], [896, 3, 1, "", "scale"]], "sklearn.preprocessing.Binarizer": [[868, 2, 1, "", "fit"], [868, 2, 1, "", "fit_transform"], [868, 2, 1, "", "get_feature_names_out"], [868, 2, 1, "", "get_metadata_routing"], [868, 2, 1, "", "get_params"], [868, 2, 1, "", "set_output"], [868, 2, 1, "", "set_params"], [868, 2, 1, "", "set_transform_request"], [868, 2, 1, "", "transform"]], "sklearn.preprocessing.FunctionTransformer": [[869, 2, 1, "", "fit"], [869, 2, 1, "", "fit_transform"], [869, 2, 1, "", "get_feature_names_out"], [869, 2, 1, "", "get_metadata_routing"], [869, 2, 1, "", "get_params"], [869, 2, 1, "", "inverse_transform"], [869, 2, 1, "", "set_output"], [869, 2, 1, "", "set_params"], [869, 2, 1, "", "transform"]], "sklearn.preprocessing.KBinsDiscretizer": [[870, 2, 1, "", "fit"], [870, 2, 1, "", "fit_transform"], [870, 2, 1, "", "get_feature_names_out"], [870, 2, 1, "", "get_metadata_routing"], [870, 2, 1, "", "get_params"], [870, 2, 1, "", "inverse_transform"], [870, 2, 1, "", "set_fit_request"], [870, 2, 1, "", "set_output"], [870, 2, 1, "", "set_params"], [870, 2, 1, "", "transform"]], "sklearn.preprocessing.KernelCenterer": [[871, 2, 1, "", "fit"], [871, 2, 1, "", "fit_transform"], [871, 2, 1, "", "get_feature_names_out"], [871, 2, 1, "", "get_metadata_routing"], [871, 2, 1, "", "get_params"], [871, 2, 1, "", "set_output"], [871, 2, 1, "", "set_params"], [871, 2, 1, "", "set_transform_request"], [871, 2, 1, "", "transform"]], "sklearn.preprocessing.LabelBinarizer": [[872, 2, 1, "", "fit"], [872, 2, 1, "", "fit_transform"], [872, 2, 1, "", "get_metadata_routing"], [872, 2, 1, "", "get_params"], [872, 2, 1, "", "inverse_transform"], [872, 2, 1, "", "set_inverse_transform_request"], [872, 2, 1, "", "set_output"], [872, 2, 1, "", "set_params"], [872, 2, 1, "", "transform"]], "sklearn.preprocessing.LabelEncoder": [[873, 2, 1, "", "fit"], [873, 2, 1, "", "fit_transform"], [873, 2, 1, "", "get_metadata_routing"], [873, 2, 1, "", "get_params"], [873, 2, 1, "", "inverse_transform"], [873, 2, 1, "", "set_output"], [873, 2, 1, "", "set_params"], [873, 2, 1, "", "transform"]], "sklearn.preprocessing.MaxAbsScaler": [[874, 2, 1, "", "fit"], [874, 2, 1, "", "fit_transform"], [874, 2, 1, "", "get_feature_names_out"], [874, 2, 1, "", "get_metadata_routing"], [874, 2, 1, "", "get_params"], [874, 2, 1, "", "inverse_transform"], [874, 2, 1, "", "partial_fit"], [874, 2, 1, "", "set_output"], [874, 2, 1, "", "set_params"], [874, 2, 1, "", "transform"]], "sklearn.preprocessing.MinMaxScaler": [[875, 2, 1, "", "fit"], [875, 2, 1, "", "fit_transform"], [875, 2, 1, "", "get_feature_names_out"], [875, 2, 1, "", "get_metadata_routing"], [875, 2, 1, "", "get_params"], [875, 2, 1, "", "inverse_transform"], [875, 2, 1, "", "partial_fit"], [875, 2, 1, "", "set_output"], [875, 2, 1, "", "set_params"], [875, 2, 1, "", "transform"]], "sklearn.preprocessing.MultiLabelBinarizer": [[876, 2, 1, "", "fit"], [876, 2, 1, "", "fit_transform"], [876, 2, 1, "", "get_metadata_routing"], [876, 2, 1, "", "get_params"], [876, 2, 1, "", "inverse_transform"], [876, 2, 1, "", "set_output"], [876, 2, 1, "", "set_params"], [876, 2, 1, "", "transform"]], "sklearn.preprocessing.Normalizer": [[877, 2, 1, "", "fit"], [877, 2, 1, "", "fit_transform"], [877, 2, 1, "", "get_feature_names_out"], [877, 2, 1, "", "get_metadata_routing"], [877, 2, 1, "", "get_params"], [877, 2, 1, "", "set_output"], [877, 2, 1, "", "set_params"], [877, 2, 1, "", "set_transform_request"], [877, 2, 1, "", "transform"]], "sklearn.preprocessing.OneHotEncoder": [[878, 2, 1, "", "fit"], [878, 2, 1, "", "fit_transform"], [878, 2, 1, "", "get_feature_names_out"], [878, 2, 1, "", "get_metadata_routing"], [878, 2, 1, "", "get_params"], [878, 2, 1, "", "inverse_transform"], [878, 2, 1, "", "set_output"], [878, 2, 1, "", "set_params"], [878, 2, 1, "", "transform"]], "sklearn.preprocessing.OrdinalEncoder": [[879, 2, 1, "", "fit"], [879, 2, 1, "", "fit_transform"], [879, 2, 1, "", "get_feature_names_out"], [879, 2, 1, "", "get_metadata_routing"], [879, 2, 1, "", "get_params"], [879, 2, 1, "", "inverse_transform"], [879, 2, 1, "", "set_output"], [879, 2, 1, "", "set_params"], [879, 2, 1, "", "transform"]], "sklearn.preprocessing.PolynomialFeatures": [[880, 2, 1, "", "fit"], [880, 2, 1, "", "fit_transform"], [880, 2, 1, "", "get_feature_names_out"], [880, 2, 1, "", "get_metadata_routing"], [880, 2, 1, "", "get_params"], [880, 2, 1, "", "set_output"], [880, 2, 1, "", "set_params"], [880, 2, 1, "", "transform"]], "sklearn.preprocessing.PowerTransformer": [[881, 2, 1, "", "fit"], [881, 2, 1, "", "fit_transform"], [881, 2, 1, "", "get_feature_names_out"], [881, 2, 1, "", "get_metadata_routing"], [881, 2, 1, "", "get_params"], [881, 2, 1, "", "inverse_transform"], [881, 2, 1, "", "set_output"], [881, 2, 1, "", "set_params"], [881, 2, 1, "", "transform"]], "sklearn.preprocessing.QuantileTransformer": [[882, 2, 1, "", "fit"], [882, 2, 1, "", "fit_transform"], [882, 2, 1, "", "get_feature_names_out"], [882, 2, 1, "", "get_metadata_routing"], [882, 2, 1, "", "get_params"], [882, 2, 1, "", "inverse_transform"], [882, 2, 1, "", "set_output"], [882, 2, 1, "", "set_params"], [882, 2, 1, "", "transform"]], "sklearn.preprocessing.RobustScaler": [[883, 2, 1, "", "fit"], [883, 2, 1, "", "fit_transform"], [883, 2, 1, "", "get_feature_names_out"], [883, 2, 1, "", "get_metadata_routing"], [883, 2, 1, "", "get_params"], [883, 2, 1, "", "inverse_transform"], [883, 2, 1, "", "set_output"], [883, 2, 1, "", "set_params"], [883, 2, 1, "", "transform"]], "sklearn.preprocessing.SplineTransformer": [[884, 2, 1, "", "fit"], [884, 2, 1, "", "fit_transform"], [884, 2, 1, "", "get_feature_names_out"], [884, 2, 1, "", "get_metadata_routing"], [884, 2, 1, "", "get_params"], [884, 2, 1, "", "set_fit_request"], [884, 2, 1, "", "set_output"], [884, 2, 1, "", "set_params"], [884, 2, 1, "", "transform"]], "sklearn.preprocessing.StandardScaler": [[885, 2, 1, "", "fit"], [885, 2, 1, "", "fit_transform"], [885, 2, 1, "", "get_feature_names_out"], [885, 2, 1, "", "get_metadata_routing"], [885, 2, 1, "", "get_params"], [885, 2, 1, "", "inverse_transform"], [885, 2, 1, "", "partial_fit"], [885, 2, 1, "", "set_fit_request"], [885, 2, 1, "", "set_inverse_transform_request"], [885, 2, 1, "", "set_output"], [885, 2, 1, "", "set_params"], [885, 2, 1, "", "set_partial_fit_request"], [885, 2, 1, "", "set_transform_request"], [885, 2, 1, "", "transform"]], "sklearn.preprocessing.TargetEncoder": [[886, 2, 1, "", "fit"], [886, 2, 1, "", "fit_transform"], [886, 2, 1, "", "get_feature_names_out"], [886, 2, 1, "", "get_metadata_routing"], [886, 2, 1, "", "get_params"], [886, 2, 1, "", "set_output"], [886, 2, 1, "", "set_params"], [886, 2, 1, "", "transform"]], "sklearn.random_projection": [[897, 1, 1, "", "GaussianRandomProjection"], [898, 1, 1, "", "SparseRandomProjection"], [899, 3, 1, "", "johnson_lindenstrauss_min_dim"]], "sklearn.random_projection.GaussianRandomProjection": [[897, 2, 1, "", "fit"], [897, 2, 1, "", "fit_transform"], [897, 2, 1, "", "get_feature_names_out"], [897, 2, 1, "", "get_metadata_routing"], [897, 2, 1, "", "get_params"], [897, 2, 1, "", "inverse_transform"], [897, 2, 1, "", "set_output"], [897, 2, 1, "", "set_params"], [897, 2, 1, "", "transform"]], "sklearn.random_projection.SparseRandomProjection": [[898, 2, 1, "", "fit"], [898, 2, 1, "", "fit_transform"], [898, 2, 1, "", "get_feature_names_out"], [898, 2, 1, "", "get_metadata_routing"], [898, 2, 1, "", "get_params"], [898, 2, 1, "", "inverse_transform"], [898, 2, 1, "", "set_output"], [898, 2, 1, "", "set_params"], [898, 2, 1, "", "transform"]], "sklearn.semi_supervised": [[900, 1, 1, "", "LabelPropagation"], [901, 1, 1, "", "LabelSpreading"], [902, 1, 1, "", "SelfTrainingClassifier"]], "sklearn.semi_supervised.LabelPropagation": [[900, 2, 1, "", "fit"], [900, 2, 1, "", "get_metadata_routing"], [900, 2, 1, "", "get_params"], [900, 2, 1, "", "predict"], [900, 2, 1, "", "predict_proba"], [900, 2, 1, "", "score"], [900, 2, 1, "", "set_params"], [900, 2, 1, "", "set_score_request"]], "sklearn.semi_supervised.LabelSpreading": [[901, 2, 1, "", "fit"], [901, 2, 1, "", "get_metadata_routing"], [901, 2, 1, "", "get_params"], [901, 2, 1, "", "predict"], [901, 2, 1, "", "predict_proba"], [901, 2, 1, "", "score"], [901, 2, 1, "", "set_params"], [901, 2, 1, "", "set_score_request"]], "sklearn.semi_supervised.SelfTrainingClassifier": [[902, 2, 1, "", "decision_function"], [902, 2, 1, "", "fit"], [902, 2, 1, "", "get_metadata_routing"], [902, 2, 1, "", "get_params"], [902, 2, 1, "", "predict"], [902, 2, 1, "", "predict_log_proba"], [902, 2, 1, "", "predict_proba"], [902, 2, 1, "", "score"], [902, 2, 1, "", "set_params"]], "sklearn.svm": [[905, 1, 1, "", "LinearSVC"], [906, 1, 1, "", "LinearSVR"], [907, 1, 1, "", "NuSVC"], [908, 1, 1, "", "NuSVR"], [909, 1, 1, "", "OneClassSVM"], [910, 1, 1, "", "SVC"], [911, 1, 1, "", "SVR"], [912, 3, 1, "", "l1_min_c"]], "sklearn.svm.LinearSVC": [[905, 2, 1, "", "decision_function"], [905, 2, 1, "", "densify"], [905, 2, 1, "", "fit"], [905, 2, 1, "", "get_metadata_routing"], [905, 2, 1, "", "get_params"], [905, 2, 1, "", "predict"], [905, 2, 1, "", "score"], [905, 2, 1, "", "set_fit_request"], [905, 2, 1, "", "set_params"], [905, 2, 1, "", "set_score_request"], [905, 2, 1, "", "sparsify"]], "sklearn.svm.LinearSVR": [[906, 2, 1, "", "fit"], [906, 2, 1, "", "get_metadata_routing"], [906, 2, 1, "", "get_params"], [906, 2, 1, "", "predict"], [906, 2, 1, "", "score"], [906, 2, 1, "", "set_fit_request"], [906, 2, 1, "", "set_params"], [906, 2, 1, "", "set_score_request"]], "sklearn.svm.NuSVC": [[907, 2, 1, "", "decision_function"], [907, 2, 1, "", "fit"], [907, 2, 1, "", "get_metadata_routing"], [907, 2, 1, "", "get_params"], [907, 2, 1, "", "predict"], [907, 2, 1, "", "predict_log_proba"], [907, 2, 1, "", "predict_proba"], [907, 2, 1, "", "score"], [907, 2, 1, "", "set_fit_request"], [907, 2, 1, "", "set_params"], [907, 2, 1, "", "set_score_request"]], "sklearn.svm.NuSVR": [[908, 2, 1, "", "fit"], [908, 2, 1, "", "get_metadata_routing"], [908, 2, 1, "", "get_params"], [908, 2, 1, "", "predict"], [908, 2, 1, "", "score"], [908, 2, 1, "", "set_fit_request"], [908, 2, 1, "", "set_params"], [908, 2, 1, "", "set_score_request"]], "sklearn.svm.OneClassSVM": [[909, 2, 1, "", "decision_function"], [909, 2, 1, "", "fit"], [909, 2, 1, "", "fit_predict"], [909, 2, 1, "", "get_metadata_routing"], [909, 2, 1, "", "get_params"], [909, 2, 1, "", "predict"], [909, 2, 1, "", "score_samples"], [909, 2, 1, "", "set_fit_request"], [909, 2, 1, "", "set_params"]], "sklearn.svm.SVC": [[910, 2, 1, "", "decision_function"], [910, 2, 1, "", "fit"], [910, 2, 1, "", "get_metadata_routing"], [910, 2, 1, "", "get_params"], [910, 2, 1, "", "predict"], [910, 2, 1, "", "predict_log_proba"], [910, 2, 1, "", "predict_proba"], [910, 2, 1, "", "score"], [910, 2, 1, "", "set_fit_request"], [910, 2, 1, "", "set_params"], [910, 2, 1, "", "set_score_request"]], "sklearn.svm.SVR": [[911, 2, 1, "", "fit"], [911, 2, 1, "", "get_metadata_routing"], [911, 2, 1, "", "get_params"], [911, 2, 1, "", "predict"], [911, 2, 1, "", "score"], [911, 2, 1, "", "set_fit_request"], [911, 2, 1, "", "set_params"], [911, 2, 1, "", "set_score_request"]], "sklearn.tree": [[913, 1, 1, "", "DecisionTreeClassifier"], [914, 1, 1, "", "DecisionTreeRegressor"], [915, 1, 1, "", "ExtraTreeClassifier"], [916, 1, 1, "", "ExtraTreeRegressor"], [917, 3, 1, "", "export_graphviz"], [918, 3, 1, "", "export_text"], [919, 3, 1, "", "plot_tree"]], "sklearn.tree.DecisionTreeClassifier": [[913, 2, 1, "", "apply"], [913, 2, 1, "", "cost_complexity_pruning_path"], [913, 2, 1, "", "decision_path"], [913, 2, 1, "", "fit"], [913, 2, 1, "", "get_depth"], [913, 2, 1, "", "get_metadata_routing"], [913, 2, 1, "", "get_n_leaves"], [913, 2, 1, "", "get_params"], [913, 2, 1, "", "predict"], [913, 2, 1, "", "predict_log_proba"], [913, 2, 1, "", "predict_proba"], [913, 2, 1, "", "score"], [913, 2, 1, "", "set_fit_request"], [913, 2, 1, "", "set_params"], [913, 2, 1, "", "set_score_request"]], "sklearn.tree.DecisionTreeRegressor": [[914, 2, 1, "", "apply"], [914, 2, 1, "", "cost_complexity_pruning_path"], [914, 2, 1, "", "decision_path"], [914, 2, 1, "", "fit"], [914, 2, 1, "", "get_depth"], [914, 2, 1, "", "get_metadata_routing"], [914, 2, 1, "", "get_n_leaves"], [914, 2, 1, "", "get_params"], [914, 2, 1, "", "predict"], [914, 2, 1, "", "score"], [914, 2, 1, "", "set_fit_request"], [914, 2, 1, "", "set_params"], [914, 2, 1, "", "set_score_request"]], "sklearn.tree.ExtraTreeClassifier": [[915, 2, 1, "", "apply"], [915, 2, 1, "", "cost_complexity_pruning_path"], [915, 2, 1, "", "decision_path"], [915, 2, 1, "", "fit"], [915, 2, 1, "", "get_depth"], [915, 2, 1, "", "get_metadata_routing"], [915, 2, 1, "", "get_n_leaves"], [915, 2, 1, "", "get_params"], [915, 2, 1, "", "predict"], [915, 2, 1, "", "predict_log_proba"], [915, 2, 1, "", "predict_proba"], [915, 2, 1, "", "score"], [915, 2, 1, "", "set_fit_request"], [915, 2, 1, "", "set_params"], [915, 2, 1, "", "set_score_request"]], "sklearn.tree.ExtraTreeRegressor": [[916, 2, 1, "", "apply"], [916, 2, 1, "", "cost_complexity_pruning_path"], [916, 2, 1, "", "decision_path"], [916, 2, 1, "", "fit"], [916, 2, 1, "", "get_depth"], [916, 2, 1, "", "get_metadata_routing"], [916, 2, 1, "", "get_n_leaves"], [916, 2, 1, "", "get_params"], [916, 2, 1, "", "predict"], [916, 2, 1, "", "score"], [916, 2, 1, "", "set_fit_request"], [916, 2, 1, "", "set_params"], [916, 2, 1, "", "set_score_request"]], "sklearn.utils": [[920, 1, 1, "", "Bunch"], [921, 1, 1, "", "ClassifierTags"], [922, 1, 1, "", "InputTags"], [923, 1, 1, "", "RegressorTags"], [924, 1, 1, "", "Tags"], [925, 1, 1, "", "TargetTags"], [926, 1, 1, "", "TransformerTags"], [927, 3, 1, "", "_safe_indexing"], [42, 0, 0, "-", "arrayfuncs"], [929, 3, 1, "", "as_float_array"], [930, 3, 1, "", "assert_all_finite"], [931, 3, 1, "", "check_X_y"], [932, 3, 1, "", "check_array"], [933, 3, 1, "", "check_consistent_length"], [934, 3, 1, "", "check_random_state"], [935, 3, 1, "", "check_scalar"], [42, 0, 0, "-", "class_weight"], [938, 1, 1, "", "deprecated"], [42, 0, 0, "-", "discovery"], [42, 0, 0, "-", "estimator_checks"], [945, 3, 1, "", "estimator_html_repr"], [42, 0, 0, "-", "extmath"], [952, 3, 1, "", "gen_batches"], [953, 3, 1, "", "gen_even_slices"], [954, 3, 1, "", "get_tags"], [42, 0, 0, "-", "graph"], [956, 3, 1, "", "indexable"], [42, 0, 0, "-", "metadata_routing"], [42, 0, 0, "-", "metaestimators"], [42, 0, 0, "-", "multiclass"], [966, 3, 1, "", "murmurhash3_32"], [42, 0, 0, "-", "parallel"], [42, 0, 0, "-", "random"], [970, 3, 1, "", "resample"], [971, 3, 1, "", "safe_mask"], [972, 3, 1, "", "safe_sqr"], [973, 3, 1, "", "shuffle"], [42, 0, 0, "-", "sparsefuncs"], [42, 0, 0, "-", "sparsefuncs_fast"], [42, 0, 0, "-", "validation"]], "sklearn.utils.Bunch": [[920, 2, 1, "", "clear"], [920, 2, 1, "", "copy"], [920, 2, 1, "", "fromkeys"], [920, 2, 1, "", "get"], [920, 2, 1, "", "items"], [920, 2, 1, "", "keys"], [920, 2, 1, "", "pop"], [920, 2, 1, "", "popitem"], [920, 2, 1, "", "setdefault"], [920, 2, 1, "", "update"], [920, 2, 1, "", "values"]], "sklearn.utils.arrayfuncs": [[928, 3, 1, "", "min_pos"]], "sklearn.utils.class_weight": [[936, 3, 1, "", "compute_class_weight"], [937, 3, 1, "", "compute_sample_weight"]], "sklearn.utils.deprecated": [[938, 2, 1, "", "__call__"]], "sklearn.utils.discovery": [[939, 3, 1, "", "all_displays"], [940, 3, 1, "", "all_estimators"], [941, 3, 1, "", "all_functions"]], "sklearn.utils.estimator_checks": [[942, 3, 1, "", "check_estimator"], [943, 3, 1, "", "estimator_checks_generator"], [944, 3, 1, "", "parametrize_with_checks"]], "sklearn.utils.extmath": [[946, 3, 1, "", "density"], [947, 3, 1, "", "fast_logdet"], [948, 3, 1, "", "randomized_range_finder"], [949, 3, 1, "", "randomized_svd"], [950, 3, 1, "", "safe_sparse_dot"], [951, 3, 1, "", "weighted_mode"]], "sklearn.utils.graph": [[955, 3, 1, "", "single_source_shortest_path_length"]], "sklearn.utils.metadata_routing": [[957, 1, 1, "", "MetadataRequest"], [958, 1, 1, "", "MetadataRouter"], [959, 1, 1, "", "MethodMapping"], [960, 3, 1, "", "get_routing_for_object"], [961, 3, 1, "", "process_routing"]], "sklearn.utils.metadata_routing.MetadataRequest": [[957, 2, 1, "", "consumes"]], "sklearn.utils.metadata_routing.MetadataRouter": [[958, 2, 1, "", "add"], [958, 2, 1, "", "add_self_request"], [958, 2, 1, "", "consumes"], [958, 2, 1, "", "route_params"], [958, 2, 1, "", "validate_metadata"]], "sklearn.utils.metadata_routing.MethodMapping": [[959, 2, 1, "", "add"]], "sklearn.utils.metaestimators": [[962, 3, 1, "", "available_if"]], "sklearn.utils.multiclass": [[963, 3, 1, "", "is_multilabel"], [964, 3, 1, "", "type_of_target"], [965, 3, 1, "", "unique_labels"]], "sklearn.utils.parallel": [[967, 1, 1, "", "Parallel"], [968, 3, 1, "", "delayed"]], "sklearn.utils.parallel.Parallel": [[967, 2, 1, "", "__call__"], [967, 2, 1, "", "dispatch_next"], [967, 2, 1, "", "dispatch_one_batch"], [967, 2, 1, "", "format"], [967, 2, 1, "", "print_progress"]], "sklearn.utils.random": [[969, 3, 1, "", "sample_without_replacement"]], "sklearn.utils.sparsefuncs": [[974, 3, 1, "", "incr_mean_variance_axis"], [975, 3, 1, "", "inplace_column_scale"], [976, 3, 1, "", "inplace_csr_column_scale"], [977, 3, 1, "", "inplace_row_scale"], [978, 3, 1, "", "inplace_swap_column"], [979, 3, 1, "", "inplace_swap_row"], [980, 3, 1, "", "mean_variance_axis"]], "sklearn.utils.sparsefuncs_fast": [[981, 3, 1, "", "inplace_csr_row_normalize_l1"], [982, 3, 1, "", "inplace_csr_row_normalize_l2"]], "sklearn.utils.validation": [[983, 3, 1, "", "check_is_fitted"], [984, 3, 1, "", "check_memory"], [985, 3, 1, "", "check_symmetric"], [986, 3, 1, "", "column_or_1d"], [987, 3, 1, "", "has_fit_parameter"], [988, 3, 1, "", "validate_data"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:property", "5": "py:exception", "6": "py:attribute"}, "terms": {"": [0, 2, 44, 45, 46, 47, 48, 50, 51, 52, 53, 56, 58, 62, 64, 65, 67, 71, 74, 75, 77, 78, 79, 80, 81, 85, 86, 88, 90, 91, 92, 93, 94, 95, 97, 98, 100, 102, 103, 104, 109, 110, 113, 115, 118, 120, 121, 122, 125, 126, 128, 129, 130, 132, 134, 136, 140, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 158, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 179, 180, 183, 184, 186, 188, 191, 192, 193, 194, 195, 196, 198, 199, 200, 204, 206, 208, 210, 212, 214, 217, 218, 219, 220, 221, 222, 225, 226, 227, 228, 229, 230, 232, 233, 234, 236, 238, 239, 240, 242, 243, 244, 248, 250, 251, 253, 257, 258, 261, 262, 263, 264, 265, 266, 267, 269, 270, 274, 275, 276, 278, 283, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 301, 302, 303, 306, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 325, 326, 332, 333, 334, 335, 336, 339, 340, 341, 344, 346, 347, 348, 351, 352, 353, 354, 358, 359, 360, 364, 365, 366, 368, 369, 370, 371, 372, 373, 375, 377, 378, 379, 380, 385, 386, 388, 389, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 411, 413, 415, 417, 424, 428, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 453, 455, 456, 459, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 485, 487, 493, 495, 497, 501, 507, 508, 516, 522, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 569, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 604, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 684, 686, 687, 688, 689, 690, 691, 692, 693, 700, 701, 702, 708, 711, 716, 720, 723, 736, 742, 759, 760, 780, 781, 798, 799, 800, 801, 803, 804, 805, 807, 810, 815, 819, 820, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 920, 929, 931, 932, 935, 942, 949, 951, 958, 959, 961, 983, 987, 988, 989, 991, 992, 994, 996, 997, 998, 1001, 1002, 1003, 1004, 1005, 1007, 1008, 1010, 1012, 1013, 1014, 1015, 1016, 1019, 1021, 1024, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "0": [1, 2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 365, 366, 367, 368, 369, 371, 372, 373, 375, 376, 377, 378, 379, 380, 383, 384, 385, 389, 394, 395, 396, 397, 399, 400, 401, 402, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 420, 426, 428, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 573, 575, 576, 579, 580, 581, 582, 583, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 921, 923, 927, 928, 929, 931, 932, 936, 937, 939, 940, 941, 942, 944, 946, 948, 949, 951, 952, 953, 955, 962, 963, 964, 966, 967, 969, 970, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 985, 989, 990, 992, 993, 994, 995, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1019, 1020, 1021, 1022, 1023, 1026, 1027, 1028, 1029, 1052], "00": [53, 69, 111, 123, 183, 184, 199, 223, 257, 261, 264, 301, 319, 324, 325, 347, 365, 368, 377, 403, 410, 411, 603, 713, 715, 789, 801, 815, 829, 914, 996, 1000, 1010, 1012, 1014, 1021], "000": [44, 45, 60, 63, 65, 77, 106, 168, 185, 188, 200, 236, 257, 261, 263, 265, 308, 315, 346, 347, 354, 366, 377, 410, 411, 486, 558, 559, 643, 676, 993, 1014, 1021, 1042], "0000": [44, 317], "000000": [79, 183, 198, 223, 263, 307, 738], "00000000": 170, "000000e": 223, "000024": 358, "000043": 183, "00005": 55, "0000ff": [68, 291, 298], "0001": [50, 52, 103, 104, 139, 154, 155, 156, 160, 163, 183, 192, 213, 233, 234, 243, 244, 246, 257, 261, 262, 270, 277, 313, 316, 322, 373, 415, 439, 443, 455, 467, 468, 474, 530, 535, 537, 544, 546, 547, 556, 557, 645, 646, 647, 648, 651, 652, 657, 658, 659, 660, 661, 662, 667, 668, 671, 673, 675, 677, 679, 686, 689, 693, 862, 863, 905, 906, 989], "000178": 47, "000179": 183, "000189": 47, "0001strength": 243, "000201": 47, "000236": 47, "000260": 47, "000280": 47, "0003": 137, "000315": 47, "0004": [53, 137, 308], "000408": 47, "000456": 602, "000620": 47, "000623": 346, "000667": 346, "000755": 346, "000836": 47, "000977": 263, "00099547": 170, "000e": 411, "001": [47, 54, 69, 79, 95, 144, 154, 163, 167, 183, 194, 214, 232, 242, 243, 244, 245, 248, 253, 261, 262, 263, 265, 314, 326, 327, 347, 368, 377, 407, 533, 534, 536, 543, 626, 643, 644, 645, 646, 651, 652, 659, 660, 661, 662, 665, 666, 667, 675, 676, 677, 678, 680, 683, 689, 693, 798, 799, 862, 863, 900, 901, 907, 908, 909, 910, 911, 989], "00105": 346, "00111": 346, "0012": [44, 686], "0013": [44, 262], "0014": [44, 262], "0015": 44, "001540": 53, "00162": 346, "00171412": [759, 760, 998], "001727": 257, "001882": [196, 198], "0019": 262, "001929": 660, "001the": 243, "002": [44, 52, 163, 167, 347, 368], "00202": 346, "0022": 262, "0023": 262, "00233": 346, "002592": [196, 198], "00273427": 155, "00274": 206, "0028": [44, 262], "002861": [196, 198], "003": [44, 347], "0032": 44, "0034189458230957995": 46, "003533": 198, "003586": 533, "00360392": 533, "0036211": 533, "00362644": 533, "00364": 316, "00393284e": 192, "003935": [196, 198], "003e": 411, "004": 44, "0044": 912, "004577621581604241": 310, "00462428": 752, "0047": 262, "0049896314219657345": 310, "005": [44, 248, 263, 267, 288, 303, 377, 1021], "005027": 266, "005383": [196, 198], "005422": 263, "005670": [196, 198], "005840": 266, "005861": 266, "006": [44, 46, 377], "006360": 266, "006612": 261, "007": [248, 271, 283, 347], "0072b2": 248, "0075": [469, 538], "00755": 538, "007581": 268, "00768662e": 192, "007822": 277, "007833": 268, "008": [163, 368, 377], "008142": [196, 198], "0083899664": 765, "008449": [196, 198], "00860051": 657, "008915": 266, "009": [44, 347, 377], "009117": 183, "00911944e": 192, "0092": 137, "0093": 262, "009362": [196, 198], "009747": 277, "009778": 266, "009788": 277, "0098": 137, "00ff00": 291, "01": [46, 48, 50, 53, 54, 67, 75, 79, 84, 95, 115, 120, 122, 123, 137, 145, 147, 149, 151, 152, 163, 172, 176, 183, 184, 192, 194, 199, 217, 218, 223, 225, 226, 232, 236, 237, 238, 242, 243, 250, 254, 256, 257, 262, 263, 264, 268, 270, 271, 272, 288, 299, 301, 303, 313, 319, 337, 347, 352, 366, 368, 375, 376, 403, 412, 445, 467, 512, 518, 529, 536, 540, 593, 594, 596, 603, 641, 645, 653, 657, 677, 696, 715, 801, 815, 899, 969, 996, 1000, 1004, 1010, 1012, 1014, 1021, 1028], "010": [271, 347, 377, 830, 1008], "010000000000000002": 172, "0106": 648, "011": [44, 271, 283, 377], "0115": 262, "011595": [196, 198], "0116": 602, "011e": 411, "012": [53, 186, 188], "012191": [196, 198], "012521": 198, "0126": 262, "012831": 198, "0129126": 365, "013": [44, 53], "01327": 366, "013561": 183, "014": [44, 347, 377], "0144": [262, 614], "0148": 262, "015": [67, 350, 1008], "0152": 137, "015342e": 223, "015412e": 223, "015579": 277, "015596": [196, 198], "015600e": 223, "0157": 541, "015718e": 223, "016": 141, "0162": 262, "01621459": 403, "016445": 263, "017": [271, 347, 377, 467, 468], "017379": 53, "017646": [196, 198], "018": [53, 91, 263, 468], "0182": 898, "018727": 183, "0188ff": 307, "018900": 198, "019": [163, 368, 377, 467], "019023": 263, "019069": 198, "01915283": 130, "019163": [196, 198], "0192": 542, "0193": [262, 466, 472], "0195": [416, 471], "0196": 137, "0198e1": 118, "019907": [196, 198], "02": [44, 52, 53, 67, 79, 83, 85, 91, 95, 97, 113, 120, 123, 136, 142, 163, 169, 174, 182, 183, 192, 223, 232, 240, 242, 257, 258, 262, 264, 270, 288, 298, 301, 303, 305, 328, 329, 331, 347, 351, 365, 368, 376, 402, 404, 407, 437, 441, 595, 603, 657, 675, 801, 815, 884, 900, 914, 996, 1021], "020": [44, 53, 160, 315, 1008, 1021], "020541": 47, "021491": 47, "021849": 317, "021872": [196, 198], "022": 1008, "022552": 183, "0226": 648, "022688": [196, 198], "023": [53, 906, 1008], "02306214": 666, "024": [165, 1021], "0241": 262, "02449161": 130, "02456369": 194, "024991": [196, 198], "025": [68, 208, 242, 260, 347, 690, 694], "025103": 183, "025248263377773576": 271, "025422": 263, "0255": 137, "0256": 170, "025794": 47, "025930": [196, 198], "026": [116, 353], "026328": [196, 198], "026711": 87, "027": [53, 163, 368], "027400": 358, "028": [261, 347], "0287": 606, "02891072": 1001, "029": 1008, "029901117687249134": 271, "02d": 198, "02e": [603, 657], "03": [52, 53, 85, 111, 115, 120, 149, 163, 172, 183, 192, 223, 236, 248, 254, 257, 264, 325, 368, 411, 749, 801, 996, 1021], "030": [91, 149, 347], "030462": 103, "030498": 103, "030585": 277, "030676e": 223, "030867": 183, "031": [52, 163, 368], "031006": 183, "031020": 103, "031274": 183, "031555": 198, "03162278": 52, "031988": [196, 198], "032": 165, "0321": 836, "032179": 198, "03228": 621, "03228706": 609, "032356": [196, 198], "03237920e": 192, "032405": 183, "03260883": 1001, "033": [165, 346, 1000, 1008], "033764e": 223, "0338": 346, "033823": 183, "034": [149, 234, 467, 1021], "034077": 198, "034194": [196, 198], "034278": 266, "034309": [196, 198], "03433306457": 46, "034821": [196, 198], "03498585": 1001, "035": 167, "035005": 183, "03531816": [827, 828], "035445": 277, "0358": 47, "035914": 277, "036": [91, 377, 468], "036038": [196, 198], "036064": 47, "036385": [196, 198], "036445": 263, "036592": 277, "036656": [196, 198], "0367": 172, "0368": 618, "037": 227, "0370": 851, "037490e": 223, "0375": 709, "038": [467, 468], "038076": [196, 198], "03812219": 1001, "038159": 813, "03823144": 170, "0383": 862, "038689": 253, "0387": 602, "039": [261, 299, 752, 782, 1021], "039493": [196, 198], "039497": 246, "0397": 1000, "03f": 261, "04": [48, 67, 75, 77, 87, 100, 122, 129, 143, 163, 172, 183, 192, 205, 223, 227, 240, 248, 254, 257, 263, 264, 296, 320, 341, 368, 410, 412, 467, 468, 789, 801, 815, 864, 996, 1000, 1004, 1014, 1021], "040": [195, 329, 1021], "040490e": 223, "041": [53, 184], "041297": 299, "0416": 402, "042": 377, "0427": [223, 465, 470], "042898": 299, "043": 377, "0432": 346, "043401": [196, 198], "0437": 346, "044": [44, 261, 752, 1000], "044223": [196, 198], "044451": [196, 198], "044642": [196, 198], "0448": 223, "045": 724, "0453": 541, "045311": 299, "045599": [196, 198], "045690e": 223, "045934": 299, "046": [645, 646, 651, 659, 660, 661, 680], "046050e": 223, "046638": 183, "046641": [196, 198], "047": 377, "0479": 541, "048": 1008, "049": 467, "049250313e": 52, "049530": 299, "049540": 299, "0499": 541, "04e": 603, "05": [47, 48, 53, 55, 62, 64, 73, 79, 93, 95, 97, 98, 100, 107, 115, 125, 137, 140, 146, 149, 152, 159, 163, 172, 175, 176, 183, 191, 192, 205, 208, 219, 229, 230, 232, 242, 248, 250, 251, 254, 257, 263, 264, 272, 274, 288, 289, 291, 296, 303, 305, 312, 316, 325, 327, 340, 354, 368, 412, 446, 452, 474, 522, 527, 590, 593, 594, 596, 612, 613, 614, 618, 619, 621, 622, 624, 631, 632, 648, 690, 694, 757, 801, 854, 905, 906, 996, 1004, 1021], "050": [53, 80, 1008, 1021], "050680": [196, 198], "051": [468, 1010], "0512": 541, "051474": [196, 198], "0517578125e": 47, "052": 534, "052506": 317, "053": [44, 163, 368, 377, 543], "05306648": 128, "05317": 172, "054045": 266, "054699": 183, "0547": 909, "055": [163, 227, 368, 1000], "05518": 622, "05532": 619, "05534985": 300, "0556": 909, "056": [53, 88, 528, 1008, 1021], "0561": 909, "0566": [622, 756], "05663": 619, "0568": 748, "057": [282, 347, 377, 830, 1021], "057122": 198, "05752333": 130, "057711": 198, "058": [163, 261, 347, 368], "05840206": 130, "0595": 469, "05994843": 52, "06": [48, 51, 53, 67, 85, 118, 156, 176, 183, 199, 205, 206, 220, 235, 242, 253, 257, 263, 264, 301, 305, 341, 377, 402, 478, 479, 480, 643, 644, 656, 689, 690, 693, 694, 798, 799, 801, 815, 914, 996, 1010, 1012, 1021], "060": [44, 53, 752], "0602": 47, "061": [261, 347], "0614": 622, "06165": 619, "061696": [196, 198], "062": 262, "0622": [466, 472], "0625": 86, "0626": 836, "063": [261, 263, 433], "0631": 53, "064": [262, 377, 1008], "065": [261, 262, 327, 377, 1021], "06506307": 300, "0652": 621, "06525643": 609, "066": [261, 262], "06686804": 220, "06694199": 130, "06695631e": 111, "067": [46, 176, 239, 262, 647, 1021], "067109": 198, "067528": 198, "068": [44, 53, 262, 263], "068332": [196, 198], "06896552": 445, "069": 261, "069196": 261, "0693": 618, "07": [53, 100, 115, 129, 143, 151, 154, 183, 204, 223, 257, 272, 301, 309, 317, 322, 347, 366, 558, 559, 692, 1000, 1014, 1021], "070": [92, 1021], "0707": 622, "07073": 619, "071": [163, 232, 262, 320, 368, 1021], "0716": 346, "071962": 183, "072": [55, 403, 433], "073": [218, 261, 347, 467, 468, 647, 1021], "074": [203, 261, 340, 1021], "074412": [196, 198], "075": [123, 709], "07582983e": 192, "075887": 198, "076": [44, 893], "077": 283, "077846": 263, "0779": 47, "078": [44, 194, 217, 1021], "07846529": 300, "079": [55, 163, 347, 368], "079297": 263, "07963978e": 192, "07993421": 220, "08": [44, 53, 79, 83, 85, 115, 123, 183, 184, 194, 243, 301, 368, 528, 540, 542, 560, 640, 657, 801, 862, 863, 884, 1006, 1021], "080": [336, 1021], "08022103": [827, 828], "080295": 198, "081": [347, 1008], "0813": [465, 470], "0817": 474, "082": [44, 46], "0825": 308, "083": [261, 353], "08377444": 752, "084": 62, "085299": [196, 198], "08533159": 209, "085711": 87, "086944": 246, "08699432": 210, "0872422": 659, "088": [266, 347, 668, 1008, 1021], "089063": [196, 198], "08d": 56, "08e": 195, "08t16": 365, "09": [122, 123, 129, 143, 183, 236, 240, 403, 736, 843, 1000, 1010, 1014, 1021], "090": [290, 1021], "09000": 206, "090526": 183, "0906": 410, "090808": 183, "091055": 183, "0916": 410, "091621": 87, "092": [215, 353, 1021], "092204": [196, 198], "093": [467, 526], "094": [262, 468], "09443967": 300, "0947": 410, "095": [206, 1021], "09541846": 533, "0958": 410, "0968": 605, "09684337": 220, "096950": 299, "097": [44, 163, 368], "0972": 410, "098332": 63, "0986": [411, 869], "09861229": [611, 1010], "0987": 410, "098758": 63, "098776": 263, "098932": 63, "099": [44, 76, 1021], "099820": 63, "0a": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "0addit": 264, "0complex": [64, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "0constant": [183, 192], "0control": [64, 139, 141, 150, 154, 156, 185, 244, 275, 319], "0d": 1032, "0e": [274, 546, 547], "0enabl": [104, 156, 160, 253, 270], "0f": [58, 91], "0for": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "0independ": [244, 245, 261, 263, 314], "0invers": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "0min": 87, "0proport": [143, 151, 154, 257, 309, 317, 322], "0rc1": 375, "0rcn": 375, "0regular": [104, 160, 244, 245, 261, 263, 270, 314], "0the": [64, 139, 141, 143, 150, 151, 154, 156, 172, 185, 244, 257, 275, 309, 314, 317, 319, 322, 352, 353], "0toler": [104, 244, 262], "0verbos": 154, "0when": [104, 160, 264, 270], "0x": 934, "0x7f6642ae0ca0": 206, "0x7f6643349060": 103, "0x7f66433499c0": 103, "0x7f6643629240": 261, "0x7f664e020ca0": 253, "0x7f664e101b40": 275, "0x7f664ebbd5a0": 139, "0x7f664ebbdfc0": 139, "0x7f664ec24ee0": 262, "0x7f664f4998d0": 275, "0x7f664f49a5f0": 275, "0x7f666cc90640": 143, "0x7f666cc91b40": 143, "0x7f666cc92560": 143, "0x7f666cc936a0": 143, "0x7f666dc42c40": [270, 275], "0x7f666ddb7f70": 324, "0x7f6674c23fa0": 154, "0x7f66754ca110": 154, "0x7f66754d2500": 243, "0x7f6676064b80": 104, "0x7f6676066710": 103, "1": [1, 2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 360, 365, 366, 367, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 384, 385, 386, 389, 394, 395, 396, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 423, 424, 425, 426, 427, 428, 430, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 501, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 575, 579, 580, 581, 582, 583, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 923, 924, 927, 928, 929, 930, 931, 932, 933, 935, 936, 937, 942, 943, 944, 946, 947, 948, 949, 950, 951, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 985, 986, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1019, 1020, 1021, 1023, 1024, 1027, 1028, 1029, 1033], "10": [2, 44, 45, 46, 47, 48, 50, 52, 53, 55, 56, 59, 63, 64, 65, 67, 68, 69, 73, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 103, 104, 106, 109, 110, 111, 112, 113, 115, 116, 118, 122, 123, 124, 125, 129, 130, 134, 136, 137, 139, 140, 141, 142, 143, 144, 145, 146, 147, 149, 151, 152, 154, 155, 156, 160, 163, 168, 169, 171, 172, 173, 174, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 194, 199, 201, 202, 204, 206, 207, 208, 209, 210, 211, 212, 216, 217, 218, 221, 222, 223, 226, 227, 232, 235, 236, 237, 238, 239, 241, 242, 243, 244, 245, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 271, 274, 275, 276, 277, 278, 280, 282, 288, 298, 299, 300, 301, 303, 304, 306, 307, 308, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 322, 324, 325, 326, 328, 333, 334, 335, 337, 338, 340, 341, 342, 346, 347, 348, 354, 358, 365, 366, 367, 368, 369, 371, 373, 376, 377, 383, 384, 385, 389, 394, 395, 396, 400, 403, 404, 405, 406, 407, 408, 410, 411, 412, 413, 416, 434, 439, 442, 443, 445, 447, 448, 449, 455, 456, 458, 471, 484, 489, 490, 493, 497, 498, 499, 501, 507, 508, 509, 510, 513, 517, 518, 521, 523, 525, 528, 532, 533, 534, 535, 536, 538, 539, 541, 542, 543, 545, 549, 552, 553, 554, 555, 558, 559, 561, 562, 563, 564, 565, 567, 580, 581, 585, 591, 592, 597, 598, 603, 605, 610, 616, 618, 626, 629, 630, 631, 633, 634, 635, 636, 639, 641, 642, 643, 645, 646, 648, 651, 658, 659, 660, 661, 663, 664, 665, 666, 668, 669, 671, 672, 674, 675, 676, 677, 680, 684, 685, 691, 692, 695, 696, 698, 699, 700, 705, 715, 727, 731, 743, 757, 770, 798, 799, 801, 802, 803, 804, 805, 812, 815, 816, 817, 818, 819, 821, 822, 824, 829, 831, 832, 833, 834, 840, 841, 842, 844, 845, 846, 852, 861, 862, 863, 865, 871, 875, 878, 879, 882, 894, 902, 908, 911, 913, 914, 918, 923, 935, 946, 949, 953, 965, 966, 969, 975, 976, 985, 989, 990, 995, 996, 997, 998, 1000, 1001, 1003, 1004, 1006, 1007, 1010, 1014, 1015, 1021, 1028, 1029, 1032, 1033, 1034, 1039, 1041, 1042, 1043, 1045, 1046, 1051, 1052], "100": [0, 44, 45, 47, 50, 52, 53, 56, 58, 63, 64, 65, 67, 73, 77, 83, 86, 87, 90, 94, 99, 103, 104, 107, 110, 111, 120, 122, 123, 129, 135, 139, 140, 141, 143, 149, 150, 151, 153, 154, 155, 156, 168, 172, 175, 176, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 199, 202, 205, 206, 207, 208, 210, 214, 215, 216, 218, 220, 221, 223, 228, 230, 233, 234, 235, 236, 237, 238, 239, 243, 244, 246, 248, 250, 253, 254, 257, 258, 259, 261, 263, 266, 268, 273, 274, 275, 277, 278, 288, 289, 290, 301, 304, 305, 307, 309, 310, 313, 314, 315, 316, 317, 319, 320, 322, 328, 329, 333, 334, 336, 337, 338, 341, 342, 344, 346, 347, 350, 352, 353, 358, 360, 366, 368, 371, 373, 376, 377, 394, 400, 403, 404, 407, 408, 409, 410, 411, 433, 437, 441, 445, 467, 468, 474, 486, 508, 509, 510, 511, 512, 513, 514, 515, 516, 518, 519, 520, 521, 522, 523, 525, 527, 531, 533, 541, 542, 543, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 603, 605, 609, 630, 631, 632, 638, 639, 640, 641, 645, 646, 647, 648, 651, 652, 657, 658, 659, 660, 661, 662, 664, 666, 668, 670, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 693, 695, 696, 747, 798, 799, 803, 823, 829, 830, 835, 840, 841, 842, 844, 845, 846, 850, 862, 863, 881, 883, 886, 895, 912, 989, 990, 993, 997, 1000, 1001, 1007, 1010, 1012, 1021, 1039, 1040, 1041, 1044, 1045], "1000": [0, 44, 47, 48, 55, 64, 68, 73, 83, 104, 107, 115, 129, 137, 139, 141, 144, 145, 146, 151, 154, 158, 160, 165, 173, 183, 184, 188, 192, 195, 209, 227, 235, 236, 238, 244, 248, 252, 257, 261, 262, 263, 269, 270, 272, 274, 288, 290, 304, 307, 313, 314, 316, 318, 319, 321, 336, 337, 343, 346, 347, 376, 377, 384, 401, 411, 433, 469, 475, 476, 528, 529, 534, 536, 538, 539, 540, 542, 543, 545, 550, 560, 561, 631, 645, 646, 650, 651, 652, 654, 659, 660, 661, 662, 665, 666, 667, 671, 675, 676, 677, 686, 692, 698, 701, 765, 882, 894, 900, 905, 906, 989, 993, 1015, 1038, 1040, 1049], "10000": [44, 51, 53, 78, 96, 104, 105, 147, 184, 195, 206, 213, 221, 236, 238, 314, 332, 334, 354, 360, 410, 411, 558, 559, 643, 678, 882, 911, 1012], "100000": [171, 238, 248, 371, 612, 613, 614, 618, 619, 621, 622, 624, 894], "1000000": [56, 533], "10005": 1039, "1000the": [104, 154, 160, 192, 270], "1000x": 1037, "1001": 216, "10027": 1044, "10045": 1039, "1005": 1015, "10058": 1040, "10059": 1039, "10065": 242, "1007": 705, "10070308464041304": 206, "10071": 1039, "10093": 1039, "10095": 1039, "10096": 1044, "100_000": [63, 65, 183], "100k": [236, 391], "100ksampl": 391, "100maximum": [52, 103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "100number": [139, 154, 155], "100the": [64, 141, 143, 150, 151, 154, 156, 185, 244, 253, 257, 275, 309, 317, 319, 322], "100x": [1031, 1034, 1048], "101": [65, 163, 280, 368, 851, 1010, 1032], "10101": 1039, "10112": 1039, "1013": 1008, "10142": 1039, "10153": 1039, "10168": 1046, "10181": 1039, "10192": 1039, "10195": 1039, "101alexmartin": [1048, 1049], "102": [377, 1000, 1033], "10210": 1039, "10229": 1039, "1024": [86, 129, 445, 464, 535, 903, 1044], "10280": 1039, "10297": 1039, "103": [149, 238, 269, 282, 283, 366, 410, 494, 552, 553, 1021, 1031], "10306": 1039, "10325": 1039, "10336": 1039, "10346": 1039, "10377": 1039, "1038": 403, "10397": 1039, "104": [44, 62, 67, 331, 1021], "10403": 223, "10412": 1039, "10428": 1039, "10437": 1039, "10440": 1040, "10441": 1039, "1045": 103, "10452": 1039, "10458": 1039, "1046": [103, 253], "10468": 1046, "10469096": 170, "1047": 103, "10471": 1039, "10474": 1039, "10478008": 403, "10482": 1041, "1048576": [411, 580, 587], "10493": 1043, "105": [95, 307, 410, 831, 1021], "10500": 1039, "10521": 1039, "10526": 403, "10536": 1039, "1054": 246, "10580": 1040, "10581": 1039, "10584743": 170, "10587": 1039, "10591": 1043, "10593": 1039, "106": [163, 246, 368, 881, 994, 1000, 1032], "10606655": 220, "10610": 1039, "10655": 1039, "10663": 1039, "10677": 1039, "10687": 1039, "107": [149, 317, 403, 410, 605, 900, 1001, 1033], "10708": 1043, "10711": 1043, "10723": [1038, 1039], "10727": 1040, "1073": [366, 484], "10740": 1039, "10774": 1039, "10795": 1039, "108": [0, 48, 86, 1032], "1080": [365, 403], "10805": 1045, "10811": 1039, "10815": 1041, "10827": 1039, "10829": 1039, "10834": 223, "10836": 1039, "1084": 253, "10845": 1039, "10869": 1039, "10881": 1039, "108843": 266, "10887": 1039, "108880": 63, "10898": 1039, "10899": 1039, "109": [62, 86, 196, 1001, 1021, 1033], "10908": 1039, "10913": 1039, "10914094": 220, "10928": 1039, "10933": 1039, "10982": 1039, "10992": 1039, "10998": 1039, "10999": 1039, "10_000": [47, 63, 107, 139, 146, 182, 188, 236, 266, 276, 283, 320, 556, 557, 561, 562, 882], "10_000maximum": 184, "10_fold": [366, 490], "10e": [190, 194], "10k": [313, 391, 443], "10ksampl": 391, "10maximum": [243, 314], "10number": [103, 160, 253, 316], "10percent": [103, 246], "10the": 314, "10thi": [104, 244, 262], "10use": [143, 151, 154, 257, 309, 317, 322], "10valu": 172, "10x": 1031, "10x10": 211, "10\u2079": 1039, "11": [44, 53, 55, 58, 106, 112, 122, 146, 163, 170, 183, 184, 194, 206, 207, 208, 211, 227, 242, 246, 257, 260, 267, 268, 269, 275, 286, 287, 289, 303, 307, 314, 317, 318, 334, 338, 342, 365, 368, 369, 371, 377, 384, 389, 395, 396, 403, 406, 407, 446, 453, 478, 479, 480, 481, 493, 498, 514, 515, 604, 611, 649, 655, 669, 715, 721, 724, 725, 779, 780, 781, 802, 805, 819, 822, 830, 857, 914, 950, 965, 992, 996, 998, 1010, 1014, 1015, 1021, 1029, 1033, 1037, 1039, 1040, 1042, 1045, 1046, 1051], "110": [126, 190, 209, 235, 309, 319, 433, 994, 995, 1021], "1100": 83, "11000": 1040, "11005": 1039, "11006": 1039, "11010": 1039, "11011": 1039, "11021": 149, "11042": 1039, "11047": 1041, "11064": 1043, "11082": 1039, "110923": 198, "11099": 765, "111": [44, 47, 48, 100, 126, 138, 214, 220, 229, 263, 283, 857, 1021, 1034], "1111": [649, 655], "1111111111111111": 271, "11124": 1039, "1112658": [899, 1012], "11135": 1039, "11136": 1039, "1114": 253, "11144": [1039, 1040], "11144673": 220, "11160": 1039, "11166": 1039, "1117": 618, "11176": 1039, "11179": 1040, "1118": 103, "112": [87, 163, 195, 262, 366, 368, 1033], "11206": 1039, "11211": 1039, "112141": 377, "11232": 1041, "11235": 1039, "112589990684262": 747, "11272": 1039, "11272662": 155, "11293": 1039, "11295": 1039, "11296": 1042, "113": [193, 280, 377, 410, 1021, 1034], "11306": 1039, "11308": 1039, "11310": 1039, "11314": 366, "11315": 1039, "11327": 1039, "113516": 266, "11353": 1039, "11354": 1040, "11364": 1040, "11364637": 52, "113781": 317, "11378556": 300, "114": [195, 317, 710, 1021, 1031], "1140": 366, "11413": 44, "11420": 1039, "1145": [188, 403, 675], "11452112": 220, "11458": 1040, "11464": 1039, "11466": 1039, "11467": 1039, "1148": 253, "115": [184, 1008], "11505": 1039, "11514": 1042, "11520": 1039, "11526": 1040, "11528972": 220, "11542": 1039, "11553": 1039, "11556": 1039, "11557": 1039, "11558": 1039, "11576": 1039, "11585": 1039, "11596": 1039, "116": [102, 321, 1021, 1031], "1162": 403, "11635": 1041, "11646": 1040, "11650": 1040, "11679": 1039, "11680": 48, "11682": 1043, "11682692": 220, "11699": 1040, "117": [346, 606, 1021, 1032], "11705": 1040, "117154": 183, "11724": 1039, "11727": 1040, "11741": 1039, "11754": 1040, "11756": [1039, 1040], "117608": 63, "11774": 1039, "1179": 253, "118": [588, 831], "11841": [899, 1012], "1185": 377, "11860": 1046, "1189": 410, "119": [994, 1034], "11901": 1039, "11905": 1039, "11912": 1039, "11915045": 354, "11921232": 115, "11924": 1039, "11931": 206, "11932": 206, "11933": 206, "11935": 206, "11950": 1042, "11951": 1039, "11958": 172, "11973": 1040, "12": [0, 44, 46, 48, 53, 59, 71, 75, 77, 78, 86, 88, 89, 90, 100, 105, 106, 115, 142, 144, 147, 149, 163, 170, 171, 172, 179, 183, 184, 186, 191, 194, 200, 206, 213, 223, 225, 227, 228, 229, 232, 233, 235, 236, 243, 246, 250, 251, 257, 262, 263, 265, 266, 269, 275, 276, 277, 286, 307, 308, 309, 317, 320, 342, 348, 367, 368, 369, 375, 376, 384, 386, 389, 395, 396, 397, 403, 407, 411, 439, 443, 445, 453, 478, 479, 480, 481, 493, 529, 531, 538, 567, 663, 668, 670, 684, 685, 689, 692, 693, 726, 798, 799, 802, 819, 822, 836, 857, 873, 980, 989, 990, 992, 996, 998, 1000, 1001, 1010, 1014, 1015, 1021, 1029, 1032, 1034, 1038, 1039, 1041, 1042, 1047, 1048, 1051], "120": [150, 226, 319, 412, 588, 645, 646, 651, 659, 660, 661, 680, 1031], "1200": [83, 145, 303, 410], "12000": 517, "12068": 1041, "12069": 1044, "1207": 1015, "121": [136, 169, 179, 237, 617, 668, 1010, 1021], "12105": 1039, "12116": 1040, "1212": 495, "12122": 1039, "121351": 198, "12143": 1040, "12145": 1041, "12159": 1039, "12165": 1039, "12165031": 1001, "1217": 206, "12171": 1039, "12174": 1040, "12177": 1040, "12196": 206, "12197": 1040, "122": [0, 136, 172, 179, 184, 225, 237, 377, 831, 1001, 1021], "1220": 618, "12211": 1039, "12222": 1040, "12232": 1040, "12234": 1039, "12246": 1039, "12251": 1040, "12258": 1041, "12274212": 1001, "12279": 1040, "12285": 1046, "1229": 514, "123": [138, 354, 410, 513, 514, 515, 552, 553, 838, 1001, 1008], "12300": 1040, "12303": 1041, "12304": 1039, "12317": [172, 1039], "1232": 410, "12326": 44, "12327": 44, "12328": [44, 1040], "12329": 44, "12330": [44, 1039], "12334": 1040, "12338": 1039, "12339": 1039, "1234": [191, 251, 266, 371], "12344": 1040, "12345": 1039, "12350": 1039, "1236": 309, "12360": 1039, "12365": 1039, "12379": 44, "12380": 44, "12381": 44, "12382": 44, "123828": 266, "12383": 44, "12388": 1039, "12393": 1039, "124": [47, 184, 410, 1033], "124225": 198, "12436": 1040, "12441": 1039, "1245": 1015, "12451": 1039, "12462": 1039, "12467": 1039, "12471": 1039, "12481": 1039, "125": [44, 111, 123, 315, 531, 989, 1000, 1010], "12513": 1040, "12514": 1039, "125140": 266, "12517": 1039, "12518": 1039, "12522": 1039, "125247168": 53, "12543": 1040, "12557": 1041, "12568": 1040, "12569": 1041, "12582": 1040, "12583": 1040, "1259": 58, "12599": 1040, "126": 410, "12612": 1039, "12613": 1040, "12625": 1039, "1263": 377, "12638": 1043, "12650": 1041, "126502": 198, "12669": 1040, "1268187": 220, "12685": 1039, "12699": 1039, "127": [145, 292, 1021, 1031], "12701": 1039, "12704": 1039, "127128": 146, "12715": 1040, "12732": 1040, "1276": 48, "12789": 1041, "128": [54, 55, 206, 358, 533, 645, 646, 651, 659, 660, 661, 680, 731, 996], "12807": 1040, "12821": 1040, "12834": 1040, "12852": 1041, "12855": 1040, "12860": [223, 1040], "12861": 1040, "1288": [46, 366], "12881": 1039, "12883823": 407, "12887": 1041, "129": [208, 645, 646, 651, 659, 660, 661, 680, 1031], "12908": 1040, "12914884": 1001, "12916": 1040, "12927": 1041, "12946": 1039, "12949": 1039, "12955": 1040, "12972": 1040, "12983": 1040, "12988": 1040, "1299": [871, 1010], "12th": 1012, "13": [44, 46, 48, 50, 51, 53, 79, 106, 125, 129, 142, 145, 147, 178, 179, 183, 188, 195, 214, 227, 256, 257, 264, 267, 269, 301, 303, 307, 320, 335, 366, 368, 371, 377, 384, 389, 407, 415, 493, 507, 510, 529, 530, 548, 549, 580, 634, 638, 735, 819, 849, 864, 871, 897, 898, 996, 1000, 1001, 1006, 1007, 1010, 1015, 1021, 1029, 1031, 1033, 1034, 1037, 1038, 1039, 1040, 1043], "130": 377, "1300": 83, "13003": 1043, "13005": 1039, "13007": 1040, "130107": [220, 236, 485], "13013": 1041, "13042": 1046, "13046": 1039, "13077794": 354, "13086": 1040, "131": [44, 54, 89, 377, 1000, 1032], "13124": [1039, 1040], "13134": 1039, "13142": 1040, "13146": 1041, "13151": 1040, "13157": 1040, "13164": 1040, "13165": 1039, "13174": 1040, "1319": [871, 1010], "131900": 102, "13193": 1040, "132": [44, 48, 54, 89, 410], "13204": 1043, "1321": 433, "13213": 1041, "1322": 621, "13221": 1039, "13222543": 609, "1323": 206, "13231": 1041, "13233": [366, 490, 491], "13240": 1040, "13241": 1040, "13250": 1040, "13251": 1040, "13253": 1040, "13260": 1040, "13266": 1040, "13276": 1039, "13279": 1040, "13283": 1040, "13286": 990, "13290": 1041, "133": [54, 89], "1330": 433, "13312": 1039, "13317": 1040, "13328": 1040, "13333": 1040, "13336": 1040, "13350": 1040, "13363": 1040, "13366": 1040, "13374": 44, "13375": 44, "13376": 44, "13377": 44, "13378": 44, "1338": 258, "13382": 1040, "13389": 1040, "13392": 1041, "13393": 1041, "13397": 1040, "134": [86, 145, 257, 263, 1034], "13422": 1040, "13427": 1040, "13439": 1040, "13447": 1040, "13459": 1040, "13467": 1041, "13485": 1040, "13486": 1040, "13496": 1040, "135": [163, 252, 317, 368, 760, 1021], "13511": 1042, "13524": 1040, "1353": 346, "13531": 1040, "13545": 1040, "13549": 1040, "13554": 1040, "13562": 1040, "13575": 1041, "13601": 1040, "13607": 1040, "13609": 1041, "13618": 1041, "13620": 1040, "13628": 1040, "13636": [996, 1040], "13641": 1040, "13649": 1048, "13651": 1040, "137": [242, 377, 1032], "13704": 1041, "13707": 1041, "1371": 531, "13726": 1041, "1373": 997, "1374": 531, "13741": 1040, "13769": 1041, "13772": [1039, 1040], "13773": 1041, "13779": 1040, "1378": 223, "13780": 1040, "1379": 223, "138": [377, 410, 1000], "13806": 1041, "1382": 521, "13835": 1040, "1385": 470, "13864": 1040, "13875": 1041, "13877": 1040, "13894": 1040, "13896": 1041, "139": [223, 283, 377, 410, 448, 458, 691, 695, 974, 1001], "13900": 1043, "13902": 1041, "13903": [1039, 1040], "13910": 1040, "13911": 1041, "13925": 1041, "13933": 1041, "13938": 1041, "13947": 1040, "1396": 997, "13960": 1041, "1397": 377, "13974": 1040, "13983521": 300, "13987": 1041, "13988486": 220, "13995": 1041, "13th": 65, "14": [44, 48, 51, 53, 74, 80, 82, 93, 95, 96, 99, 106, 112, 125, 143, 158, 184, 194, 195, 198, 199, 223, 227, 230, 232, 237, 257, 262, 268, 269, 278, 282, 283, 306, 307, 317, 341, 344, 359, 366, 368, 369, 384, 389, 395, 396, 403, 407, 493, 495, 507, 550, 551, 634, 642, 692, 815, 819, 871, 993, 996, 1010, 1015, 1029, 1031, 1032, 1034, 1035, 1039, 1044], "140": [86, 319, 410, 507, 513, 514, 515, 552, 553, 1001], "1400": [83, 470], "14012": 1041, "14024": 1040, "14028": 1041, "14035": 1041, "14048": 1042, "14053": 1040, "14067": 1040, "14075": 1042, "14087": 1040, "14092": 1040, "141": [195, 280, 498, 531, 905, 1001], "14108": 1041, "14114": 1041, "14156": 223, "14170": 1041, "14180": 1042, "1419": 44, "14194": 1041, "14197": 1040, "142": [44, 84, 244, 410, 1021], "1422": 44, "14228": 359, "14237": [1039, 1040], "14259": 1041, "14264": 1042, "142857": 223, "14286": 1041, "14287": 1041, "14294": 1041, "14296": 1041, "143": [163, 368, 467, 468, 1012, 1031, 1032], "14300": 1042, "14302": 242, "14305": 1041, "14309": 1040, "14336": 1041, "14338": 990, "14356": 1041, "14357": 1041, "14378": 1041, "14381": 1041, "14393": 1040, "144": [263, 377, 1000, 1031], "1440": 44, "14406": 1041, "1441": 621, "14410151": 609, "14417": 1041, "144204": 146, "1443": 1006, "14430": 1041, "14446": 1043, "14458": 1041, "14464": 1041, "14475": 1041, "144943": 63, "14496": [377, 1040], "145": [53, 170, 300, 403, 1021], "14510": 1041, "14516": 1042, "14520": 1041, "14538": 1041, "14544": 1041, "14549": 1041, "1456": 223, "14591": 1041, "14593": 1041, "14595": 1041, "145957": 146, "146": [46, 410, 709, 1000], "1460": [143, 154], "14602": 1041, "14603365": 220, "14623": 1041, "14625": 48, "14629": 1041, "1464": 233, "14646": 1041, "14647": 1041, "14680": 1041, "14682": 1041, "14696": 1042, "147": 1001, "14702": 1041, "147022": 198, "14704": 1041, "14706": 1041, "1471": 1006, "14710": 1041, "14732": 1041, "14736": 1046, "1474": 377, "14740": 1041, "14764": 1041, "148": [212, 1021, 1034], "14800": 1043, "14810": 309, "14848": 1042, "14849": 1041, "14862": 1046, "14864": 1041, "14865": 1041, "14869": 1041, "14872": 1041, "14884": 1041, "14890": 1041, "14894": 1041, "14898": 1041, "149": [1001, 1031], "14900": 1041, "14902": 1041, "14907": 1041, "14908": 1041, "14933": 1041, "14936": 1041, "14971": 1041, "14975": 1045, "14982": 1043, "1499": 48, "14e": 603, "15": [44, 46, 47, 52, 53, 54, 55, 67, 68, 71, 75, 79, 86, 87, 94, 95, 99, 105, 106, 111, 113, 118, 129, 138, 140, 142, 143, 146, 149, 158, 160, 162, 167, 171, 182, 183, 184, 198, 208, 219, 223, 227, 230, 232, 242, 250, 251, 257, 258, 262, 266, 268, 271, 274, 275, 278, 287, 291, 298, 299, 303, 305, 307, 318, 325, 328, 333, 335, 338, 341, 344, 351, 365, 366, 369, 371, 384, 389, 395, 396, 407, 410, 411, 436, 450, 486, 493, 494, 495, 528, 534, 542, 543, 552, 553, 596, 602, 643, 651, 660, 662, 667, 675, 677, 692, 819, 834, 857, 886, 989, 995, 996, 997, 1000, 1003, 1004, 1010, 1015, 1027, 1029, 1033, 1043, 1045, 1046], "150": [44, 46, 118, 126, 138, 146, 149, 226, 230, 232, 276, 319, 322, 339, 342, 368, 407, 412, 501, 599, 600, 826, 827, 828, 1000, 1021], "1500": [83, 90, 95, 100, 118, 225, 229, 248], "15000": [183, 243, 671, 686, 862, 863], "15000onli": 243, "15005": [1042, 1044], "15007": 1043, "15010": 1041, "15028": 1041, "15038": 1041, "1504": 48, "150407": 377, "15044": 1041, "15049": 1041, "150527": 299, "15053": 1041, "15057": 1041, "1506": 379, "15080": 1041, "15082": 1041, "15083": 1041, "15084": 1041, "15086": 1041, "15094": 1041, "15096": 1041, "15099": 1041, "151": [238, 317, 377, 410, 498, 1000, 1012], "15100": 1041, "15119": 1041, "1512": 48, "15120": 1041, "15126": 1043, "15138": 1041, "15160": 1041, "15179": 1042, "152": 377, "15235533": 319, "15257": 1041, "1527": 861, "15274": 1041, "15297572": 533, "153": 662, "15304": 1041, "153244303321897735": 403, "1535": 48, "15361": 1043, "15375": 1041, "15380": 1042, "15382": 1041, "15393": 1041, "154": [78, 301, 650, 1001, 1021], "1542": 377, "15427": 1043, "15429": 1041, "1543": 48, "15436": 1042, "154453": 299, "15463": 1041, "15488": 1041, "15490": 1041, "155": [65, 1021], "15503": 1042, "15504": 1052, "15524": 1041, "1553374": 403, "1553511": 403, "1554": 861, "15557": 1041, "15558": 1042, "15582": 1042, "156": [163, 183, 368, 1010], "15622": 1042, "15625": 1041, "156252": 198, "15636": 1043, "15652": 1042, "15655": 1042, "15661": 1041, "15669": 1042, "15699552": 1001, "157": [377, 607], "15707": 1042, "15709": 1042, "15730": 1042, "157334": 299, "15751": 1041, "15760": 1041, "15762": 1042, "15763": 1043, "15773": 1042, "15782": 1042, "15785": 1042, "15797": 1041, "158": [77, 91, 410, 668], "15806": 1042, "15810": 1041, "15834": 1042, "15863": 1041, "15864": 1042, "15868": 1041, "15879": 1041, "15888": 1041, "15898": 1041, "159": [86, 275, 366, 1021, 1031], "15918": 1042, "1592": 495, "15926": 1042, "15930": 1041, "15933": 1041, "15936": 1041, "15937": 1041, "159419": 246, "15946": 1042, "15947": 1041, "15948": 1045, "15950": 1042, "15953": 1042, "15959": 1042, "15963": 1042, "1597": 257, "15980": 1042, "15984": 1045, "15996": 1041, "15e": 120, "16": [44, 45, 52, 53, 58, 65, 67, 78, 83, 84, 87, 88, 99, 106, 111, 120, 123, 158, 184, 201, 205, 206, 207, 223, 225, 226, 236, 237, 241, 257, 265, 266, 267, 287, 301, 303, 307, 312, 339, 347, 352, 366, 368, 377, 384, 407, 408, 411, 438, 453, 455, 467, 468, 474, 475, 494, 495, 499, 513, 531, 532, 567, 587, 593, 594, 605, 606, 638, 649, 650, 653, 654, 655, 656, 681, 682, 814, 819, 831, 880, 906, 914, 975, 976, 977, 989, 996, 1000, 1010, 1015, 1021, 1027, 1029, 1031, 1032, 1036, 1037, 1039, 1040], "160": [240, 989], "1600": [83, 87], "160030": 198, "16006": 1042, "16018": 1045, "16021": 1042, "16052385": 130, "16061": 1045, "16066": 1043, "16069": 1042, "16075": 1042, "16076": 1041, "16084": 1042, "16090": 1042, "16103": 1042, "16111": 1042, "16112": 1042, "16117": 1042, "161245": 87, "16132": 1042, "16144": 377, "16147": 368, "16149": 1042, "16159": [377, 1042], "1616": 469, "16182": 1042, "16183": 1042, "162": [91, 307, 368, 1021], "16224": 1042, "1623": 58, "1624": 495, "16245": 1042, "16257": 1042, "16261": 1042, "16266": 1042, "16280": 1042, "16289": 1043, "163": [163, 280, 368, 1008], "163224": 198, "16323": 1042, "16326": [44, 1043], "16327": 44, "16328": 44, "16329": 44, "16330": 44, "16331": 1042, "16335": 1043, "16352": 1043, "16358078": 115, "16362": 1042, "16379": 44, "16380": 44, "16381": 44, "16382": 44, "16383": 44, "16392": 1043, "16397": [1041, 1042], "164": [303, 410, 1021], "164009": 266, "16401": 1042, "16403": 1042, "16431": 1042, "16437": 1042, "16442": 1042, "16443186": 1001, "16449": 1044, "16451": 1042, "16466": 1042, "16484": 1042, "16493": 1043, "165": [94, 1001, 1021], "16500": 1041, "16505": 1041, "16508": 1042, "16530": 1043, "16531": 149, "16539": 1042, "16585": 1042, "166": [44, 301, 377, 1000, 1031], "16605": 1045, "16619": 1043, "16622": 1042, "16625": 1043, "16632": 1042, "16655": 1042, "16663": 1042, "166667315173": 53, "16692": 1042, "16695": 1046, "167": [377, 974, 1031], "16718": 1042, "16726": 1042, "16728": 1042, "16747": 1046, "16748": 1045, "168": 1031, "1680": 368, "16801": 1042, "1683": 328, "16837": 1042, "16841": 1042, "16849": 1042, "1689": 347, "169": [91, 301], "16906": 1043, "1691": 996, "169106": 263, "1693": 905, "16935": 1043, "16948": 1045, "16950": 1042, "169504": 223, "16971865375713985": 271, "16979946": 1001, "1698": 648, "16981": 1042, "16985": 1043, "16993": 1042, "16e": 176, "17": [53, 58, 77, 80, 85, 100, 103, 106, 111, 123, 139, 149, 155, 168, 183, 205, 233, 234, 244, 245, 246, 257, 261, 262, 263, 277, 298, 301, 307, 313, 314, 316, 322, 366, 369, 376, 389, 395, 396, 403, 407, 440, 457, 483, 494, 495, 497, 520, 528, 533, 537, 544, 546, 547, 552, 556, 557, 566, 567, 595, 627, 648, 656, 657, 658, 665, 668, 671, 673, 686, 692, 730, 731, 741, 762, 767, 784, 785, 788, 790, 819, 843, 854, 869, 874, 875, 883, 885, 891, 907, 910, 913, 914, 915, 916, 950, 974, 989, 990, 1001, 1003, 1021, 1027, 1029, 1031, 1032, 1033, 1034, 1037, 1040, 1045], "170": [79, 90, 95, 235, 377, 1021], "1700": 83, "170087": 299, "17021": 1042, "17032": 1042, "17036": 1044, "17038": 1043, "170388": 1001, "17061": 1042, "17090": 1043, "17095": 1043, "171": [86, 163, 368, 377, 789, 1000], "17107": 1043, "17132867": 86, "1714": 996, "17148": 1043, "17159": 1043, "17169": 1044, "17187": 1043, "17192": 1043, "17193": 1043, "172": [377, 490, 491, 648, 996], "17204": 1042, "17205": 1042, "17210": [53, 1042], "17225": 1043, "1723": 47, "17233": 1043, "17235": 1042, "17236387": 209, "17266": 1045, "17289014": 170, "1729": 184, "173": [91, 93, 377, 582, 1021], "17309": 1042, "17317": 1043, "17357": 1042, "17360": [48, 1042], "17367": 1043, "17370318": 220, "17374": 44, "17375": 44, "17376": 44, "17377": 44, "17378": 44, "17379": [44, 53, 1043], "1738": 1000, "17386": 1043, "17388": 1047, "17396": 1043, "174": [145, 301, 377, 582], "17406": 1043, "17412": 1043, "17414": 1043, "17427": 1043, "17433": 1042, "17443": 1044, "17448": 1043, "1747": 184, "17474": 223, "17478": 1043, "17491": 1043, "17499": 1043, "175": [293, 377, 1010, 1021], "17526": 1043, "175298": 266, "17546": 1043, "17569": 1043, "17575": 1050, "17578": 1043, "17598": 1043, "176": [377, 838, 1001, 1008], "17603": 1043, "17604": 1043, "17606": 1043, "17608": 1043, "17609": 1043, "17610": 1043, "17612": 1043, "17614": 1043, "17616": 1043, "17622": 1044, "17633": 1043, "17644": 1043, "17651": 1043, "17661": 1043, "17662": 1043, "17679": 1043, "17694": 1042, "177": [245, 377, 1021], "17702": 1043, "1771": 347, "17742": 1042, "17743": 1044, "17746": 1044, "17750": 1044, "17759": 1043, "17769": 1044, "17772": 1044, "17777": 1043, "17785": 1044, "178": [47, 368, 377, 507, 849], "178000": 305, "17804": 1043, "17812": 1042, "17819": 1045, "17826": 1043, "17833": 1043, "17848": 1042, "17849114410404587": 271, "1785": 347, "17856": 1043, "17864": 1043, "17876": 1043, "17878": 1043, "179": [368, 377, 410, 1010, 1031], "17914": 1042, "17928620": 365, "17932": 1043, "17935": 1043, "17937": 1043, "17959": 1042, "1796": 301, "1797": [91, 261, 301, 324, 368, 415, 441, 499, 529, 530, 531, 532, 597, 598, 687, 688, 689, 690, 691, 693, 1003], "17984": 1043, "17985": 1042, "17985197": 220, "17987": 1043, "17992": 1043, "17995": 1042, "17997": 1043, "17_760": 149, "17t14": 365, "18": [44, 47, 48, 58, 64, 75, 79, 82, 86, 93, 95, 103, 104, 106, 127, 139, 141, 146, 154, 155, 156, 160, 165, 176, 183, 185, 216, 230, 232, 233, 234, 237, 244, 246, 257, 262, 263, 269, 275, 277, 301, 307, 309, 313, 314, 316, 319, 322, 325, 346, 347, 348, 352, 353, 371, 377, 407, 408, 411, 443, 455, 489, 497, 498, 499, 501, 502, 507, 532, 533, 535, 537, 538, 554, 555, 556, 557, 560, 561, 562, 563, 566, 568, 569, 570, 571, 573, 575, 576, 587, 592, 597, 598, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 645, 648, 657, 658, 670, 714, 718, 732, 735, 736, 742, 744, 798, 799, 822, 831, 838, 852, 861, 862, 863, 869, 875, 883, 884, 895, 905, 906, 913, 914, 915, 916, 917, 948, 949, 989, 996, 998, 1000, 1010, 1021, 1027, 1029, 1031, 1032, 1035, 1036, 1038, 1039, 1041, 1042], "180": [71, 248, 249, 250, 253, 254, 292, 296, 377, 499], "1800": 83, "18000": [348, 366], "18010": 1044, "18016": 1042, "18020": 1046, "1804243": 365, "18052": 1043, "18094": 1046, "181": [280, 301, 377], "18109001500": 176, "18114": 1043, "18121": 1043, "18124": 1043, "18149": 1043, "18167": 1043, "18170": 1045, "18176": 1043, "18197458": 354, "182": [167, 301, 377, 410], "18222": 1043, "18256": 1043, "18266": 1043, "18269": 1043, "18278": 1043, "18280": 1043, "18293": 1043, "18298": 1046, "183": [325, 326, 377, 761, 1001, 1021, 1031], "18302": 1043, "18310": 1045, "18326": 1043, "18328": 1044, "18334": 1043, "18341": 1043, "18343": 1043, "18368": 1044, "18370": 1043, "18393": 1044, "18394": 1043, "184": [44, 86, 206, 301, 377, 771, 800], "18405": 1043, "18406": 1043, "18410": 1043, "18429": 1043, "18433": 1044, "18444": 1044, "18447": 1043, "18459": 1044, "1847": 47, "18482": 1045, "18488": 1047, "185": [163, 176, 368, 377, 862, 863], "1850": [46, 366], "18508": 1043, "18510": 1043, "18525": 1043, "18527": 1043, "18528": 1043, "18543": 1044, "18545": 1043, "18555": 1049, "185654": 266, "185659": 198, "18595": 1043, "186": [206, 301, 377, 789, 1000], "18607": 1043, "18612": 1043, "18622": 1043, "18639": 1043, "18649": 1044, "1865": 48, "18682": 1043, "18689": 1048, "18691": 1043, "187": [263, 377, 582, 1001, 1033], "1871": 1015, "18723": 1047, "18736": 1044, "1874": 1015, "18746": 1043, "1875": [86, 980], "18768": 1043, "188": [163, 172, 341, 368, 377, 582, 1021], "1880": 377, "18805": 1046, "18818427": 666, "18832": 1045, "18842": 1044, "18843": 1049, "18846": [366, 484, 485], "1887": 347, "18898": 1044, "189": [206, 377, 902, 1000, 1013], "18925": 1044, "189267": 266, "18959": 1044, "189631": 198, "18964": 1044, "18975": 1045, "189830": 317, "18987": 1043, "19": [44, 50, 53, 64, 103, 104, 139, 141, 154, 155, 156, 172, 183, 185, 210, 229, 230, 233, 234, 244, 245, 246, 253, 257, 261, 262, 263, 275, 277, 301, 307, 308, 313, 314, 316, 319, 322, 325, 352, 353, 368, 369, 385, 389, 395, 396, 403, 411, 414, 440, 489, 513, 514, 515, 533, 537, 538, 544, 546, 547, 554, 555, 556, 557, 561, 562, 563, 580, 587, 647, 657, 658, 665, 666, 667, 670, 671, 673, 675, 677, 686, 707, 786, 800, 801, 815, 828, 833, 834, 836, 837, 851, 852, 871, 882, 903, 907, 910, 913, 914, 915, 916, 989, 1000, 1010, 1021, 1027, 1029, 1031, 1032, 1033, 1034, 1036, 1039, 1048], "190": [51, 97, 145, 223, 272, 277, 296, 366, 377, 495, 1021], "1900": 83, "19002": 1044, "19004": 1044, "19011": 1044, "19024": 1044, "19035": 1044, "1903908407869": 209, "19041": 1044, "19046": 1044, "19047631514961908949361222113": 53, "1905": [163, 368], "19052": 1044, "19055": 1044, "19069": 1044, "19075": 1046, "19085": 1045, "191": [377, 1001], "19112072e": 192, "19126": 1043, "19145": 348, "19158": 1045, "19159": 1044, "19162": 1044, "19172": 1044, "19174891": 300, "19179": 1043, "19182": 1043, "19198": 1044, "192": [145, 176, 256, 377, 1021, 1031], "19210": 1044, "19211": 1043, "19234": 1043, "19244": 1044, "19263": 1044, "19271": 1043, "19278": 1044, "192913": 266, "192938": 53, "19296": 1044, "19297": 1044, "193": [156, 294, 377, 410, 715, 787, 1013, 1021], "19308": 1043, "1931": 111, "19310": 1044, "19317": 172, "19336": 1044, "193548": 223, "19356": 1044, "1936": 368, "19365": 1044, "19390": 1044, "19391": 1044, "193949": 266, "194": [55, 301], "1940": 223, "19401": 1044, "19407": 1043, "19411": 1044, "19415": 1044, "19417": 1043, "194239": 377, "19426": 1044, "19428": 1044, "19438": 1045, "19459": 1044, "19472": 1044, "19473": 1044, "1948": 58, "19483": 1044, "19490": 1045, "19491": 1044, "19499": 1044, "195": [490, 491, 815], "1950": [368, 1000], "1951": 223, "195133": 377, "19520": 1044, "19522393": 220, "19527": 1044, "19564": 1044, "19568": 1044, "19571": 1044, "19579": 1043, "1958": [172, 408, 410, 529], "19580": 1043, "196": [605, 902, 1013], "1960": [626, 716], "19616": 1044, "19631": 1044, "1964": [690, 694, 881, 893, 997], "19641": 1044, "19643": 1044, "19646": 1043, "19659": 1043, "19662693": [845, 846], "19664": 1047, "19669": 1044, "196795181": 53, "19680": 1045, "196861": 198, "19689": 1045, "197": [128, 782, 1021], "19703": 1043, "1972": 368, "19721": 1043, "19727": 1043, "1973": [368, 401], "19731": 1050, "19732": 1043, "19733": 1044, "19734": 1044, "1974": [403, 411, 710], "19746": 1050, "19747": 1045, "1975": 1003, "19752": 1044, "19766": 1044, "197666": 266, "1977": 634, "1978": [223, 996], "19784": 1044, "19788": 1044, "1979": [403, 726, 770], "19790": 1044, "19794": 1045, "19799": 1044, "198": [334, 1021, 1031], "1980": 368, "1981": [223, 996], "19829832": 220, "1983": [403, 732, 885], "19836": 1044, "1984": [111, 112, 405, 470, 913, 914, 1016], "19847": 1043, "1985": [183, 403, 705, 715, 787], "1986": [990, 1016], "19869": 1044, "1987": [403, 605, 606, 793, 794], "198766": 266, "19879": 1044, "1988": 368, "19883": 1044, "19888": 1043, "1989": [272, 634, 789, 862, 863, 996, 1003], "199": [646, 792, 1015], "1990": 366, "19906": 1044, "19908": 1044, "1990a": 401, "1991": [513, 514, 515], "19916": 1045, "1992": [163, 366, 368, 407, 410, 564, 565, 644, 996], "19922": 1043, "19924": 1043, "1993": [163, 368, 470, 663, 684, 685, 996, 1016], "19934": 1044, "19939": 1043, "1993apr6": 102, "1994": [163, 366, 368, 643], "19948": 1044, "1995": [163, 263, 368, 401, 410, 550, 551, 835, 902, 1001], "1996": [65, 149, 403, 410, 414, 440, 513, 514, 515, 552, 553, 996, 1010], "1997": [135, 366, 408, 410, 532, 551, 687, 690, 694, 996, 997, 1000], "1998": [149, 263, 366, 368, 408, 410, 552, 553, 835, 840, 871, 1001, 1002, 1004, 1010, 1014], "19982": 1043, "1999": [175, 366, 401, 403, 405, 408, 410, 433, 446, 453, 465, 470, 531, 538, 552, 553, 556, 557, 724, 899, 907, 908, 910, 911, 1006, 1012], "19th": 403, "1_": 1010, "1_000": [45, 65, 71, 104, 125, 149, 167, 172, 174, 184, 200, 236, 260, 321, 342, 344, 402, 534, 536, 701, 800, 823, 824, 832], "1d": [2, 103, 135, 137, 143, 154, 180, 183, 184, 185, 207, 234, 236, 244, 284, 287, 296, 309, 313, 316, 320, 341, 371, 378, 380, 384, 385, 404, 409, 460, 463, 616, 629, 632, 652, 656, 659, 662, 683, 687, 703, 712, 713, 719, 730, 731, 735, 739, 784, 785, 788, 797, 847, 848, 849, 850, 851, 853, 855, 856, 857, 870, 922, 925, 927, 931, 932, 964, 986, 1001, 1021, 1031, 1036, 1037, 1038, 1040, 1044, 1045, 1049, 1050, 1051, 1052], "1e": [45, 46, 47, 50, 52, 56, 64, 80, 103, 104, 120, 139, 143, 151, 154, 155, 156, 160, 163, 167, 170, 172, 173, 174, 175, 176, 178, 183, 191, 192, 201, 206, 207, 219, 223, 226, 228, 232, 233, 234, 235, 238, 243, 244, 245, 246, 248, 251, 253, 254, 257, 261, 262, 263, 264, 270, 271, 274, 277, 300, 301, 309, 310, 313, 314, 315, 316, 317, 318, 322, 326, 328, 333, 335, 342, 346, 377, 415, 439, 443, 448, 455, 458, 467, 468, 474, 478, 479, 480, 528, 529, 530, 533, 534, 535, 536, 537, 539, 540, 542, 543, 544, 545, 556, 557, 558, 559, 590, 595, 604, 606, 607, 610, 612, 613, 614, 618, 619, 621, 622, 624, 626, 637, 639, 640, 641, 643, 644, 645, 646, 647, 648, 651, 652, 656, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 683, 686, 689, 690, 691, 692, 693, 694, 695, 729, 786, 798, 799, 815, 840, 841, 842, 843, 844, 845, 846, 854, 862, 863, 870, 900, 901, 905, 906, 907, 908, 909, 910, 911, 985, 989, 1000, 1004, 1008, 1010, 1014, 1039, 1044, 1045, 1046, 1051], "1e0": [167, 238, 254, 271, 989], "1e1": [167, 173, 206, 238, 335], "1e15": 176, "1e2": [50, 167, 174, 238, 254, 335], "1e3": [46, 47, 50, 167, 173, 238, 274, 318, 989], "1e4": [178, 274, 658, 678, 899, 1012], "1e5": [46, 172, 192, 274, 612, 613, 614, 618, 619, 621, 622, 624, 894, 899, 1012], "1e6": [48, 50, 201, 236, 320, 346, 348, 358, 533, 899, 1000, 1012], "1e7": 377, "1er": 411, "1f": [53, 59, 83, 86, 123, 191, 206, 236, 248, 250, 270, 312, 319, 347, 348], "1gb": 358, "1hard": [244, 245, 261, 263, 314], "1kastner": 1038, "1learn": 156, "1m": 967, "1mb": [359, 1036], "1mo": 172, "1nn": 368, "1or": 411, "1proport": [143, 151, 154, 257, 309, 317, 322], "1px": 301, "1qlettinn8oi": 346, "1st": [0, 44, 93, 126, 155, 175, 207, 308, 883, 884], "1the": [64, 139, 141, 143, 151, 154, 156, 185, 243, 244, 253, 257, 275, 309, 314, 317, 319, 322, 352, 353], "1unless": 150, "1use": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "1when": 264, "1z": 411, "2": [2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 75, 77, 78, 79, 80, 81, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 159, 160, 162, 163, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 315, 316, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 360, 365, 366, 367, 368, 369, 371, 373, 375, 376, 377, 378, 380, 383, 384, 385, 389, 394, 395, 396, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 424, 425, 426, 427, 433, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 464, 465, 467, 468, 469, 470, 471, 474, 475, 476, 478, 479, 480, 481, 490, 493, 497, 498, 501, 504, 505, 506, 507, 508, 509, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 525, 526, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 575, 579, 580, 582, 583, 586, 587, 588, 589, 591, 592, 593, 594, 595, 596, 599, 601, 602, 603, 604, 605, 606, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 699, 701, 703, 704, 705, 706, 707, 708, 709, 711, 713, 714, 715, 716, 717, 718, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 757, 758, 759, 760, 764, 765, 768, 769, 770, 772, 774, 775, 776, 777, 779, 782, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 883, 884, 885, 886, 888, 889, 890, 891, 892, 893, 895, 896, 898, 899, 901, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 918, 920, 927, 928, 929, 931, 932, 933, 937, 940, 947, 948, 949, 950, 951, 952, 953, 955, 956, 962, 963, 964, 965, 966, 967, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 985, 986, 989, 990, 991, 992, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1021, 1023, 1027, 1028, 1029, 1031, 1032, 1033, 1035, 1036, 1050, 1052], "20": [2, 44, 47, 48, 52, 53, 55, 58, 63, 64, 65, 70, 71, 75, 78, 80, 81, 83, 87, 88, 94, 100, 103, 104, 109, 113, 118, 120, 127, 129, 136, 139, 140, 142, 143, 146, 150, 151, 154, 156, 158, 159, 160, 163, 173, 182, 183, 184, 185, 188, 193, 198, 204, 205, 206, 207, 208, 210, 214, 217, 218, 219, 220, 222, 228, 234, 236, 242, 243, 244, 250, 252, 253, 257, 261, 262, 263, 264, 266, 267, 269, 274, 275, 278, 280, 283, 287, 288, 289, 290, 291, 294, 301, 307, 308, 309, 313, 314, 315, 316, 317, 318, 322, 324, 325, 326, 328, 332, 334, 338, 340, 347, 348, 352, 364, 368, 369, 371, 376, 377, 389, 395, 396, 403, 410, 411, 437, 442, 443, 445, 460, 461, 465, 467, 468, 474, 484, 485, 486, 487, 489, 491, 493, 494, 497, 499, 501, 502, 508, 509, 512, 513, 520, 528, 533, 534, 539, 542, 543, 545, 549, 552, 553, 556, 557, 558, 559, 560, 566, 567, 580, 587, 588, 590, 592, 595, 597, 628, 629, 644, 648, 657, 665, 666, 667, 675, 677, 696, 704, 708, 713, 716, 726, 727, 740, 757, 758, 768, 793, 794, 798, 799, 800, 801, 815, 827, 828, 829, 832, 834, 837, 838, 839, 842, 843, 850, 851, 862, 863, 864, 865, 867, 869, 870, 878, 879, 880, 881, 886, 900, 901, 903, 904, 909, 912, 917, 923, 929, 931, 932, 935, 977, 989, 996, 1000, 1003, 1006, 1007, 1010, 1013, 1021, 1023, 1024, 1026, 1027, 1029, 1031, 1037, 1040, 1043, 1045, 1046, 1051], "200": [70, 71, 79, 83, 87, 93, 107, 123, 136, 146, 153, 171, 195, 203, 207, 210, 211, 212, 217, 222, 226, 243, 244, 245, 248, 261, 263, 264, 270, 272, 273, 303, 306, 314, 326, 334, 335, 352, 354, 366, 383, 408, 410, 415, 436, 450, 464, 467, 468, 519, 530, 531, 532, 535, 536, 537, 540, 544, 582, 648, 650, 670, 678, 692, 747, 815, 862, 863, 903, 907, 908, 909, 910, 911, 923, 1000, 1015], "2000": [55, 64, 75, 83, 107, 121, 127, 188, 251, 254, 263, 280, 298, 316, 347, 366, 368, 403, 404, 410, 415, 448, 458, 530, 531, 556, 689, 691, 693, 744, 789, 798, 851, 863, 881, 893, 997, 1000, 1006, 1012, 1015, 1050], "20000": [58, 122], "200000": [223, 870], "20002": 1044, "2001": [2, 65, 172, 185, 257, 262, 400, 403, 410, 433, 447, 448, 449, 458, 508, 556, 557, 561, 562, 627, 633, 638, 644, 691, 696, 736, 789, 886, 898, 936, 990, 992, 996, 1000, 1006, 1008, 1010, 1012, 1015], "2002": [96, 401, 403, 410, 433, 444, 591, 592, 727, 757, 852, 900, 992, 1000], "20023": 1044, "2003": [2, 52, 172, 400, 403, 408, 411, 447, 448, 458, 510, 512, 689, 693, 840, 842, 996, 997, 1002, 1012, 1039], "20030": 1044, "20031": 1045, "2004": [45, 163, 263, 280, 366, 368, 403, 405, 408, 469, 532, 605, 606, 689, 693, 705, 744, 784, 901, 994, 996, 997, 1002, 1015], "2005": [63, 65, 112, 368, 401, 433, 435, 854, 996, 1003, 1013], "20056": 1044, "2006": [2, 51, 296, 366, 410, 413, 458, 495, 554, 555, 562, 563, 609, 610, 613, 618, 621, 648, 665, 666, 675, 677, 742, 789, 790, 798, 840, 898, 915, 916, 996, 1000, 1002, 1005, 1012, 1013], "2007": [0, 74, 196, 366, 403, 412, 436, 448, 450, 456, 458, 563, 655, 691, 717, 735, 738, 759, 760, 796, 992, 996, 998, 1000], "20072": 1044, "2008": [52, 405, 407, 408, 474, 531, 560, 588, 644, 663, 684, 685, 692, 716, 727, 757, 835, 840, 844, 861, 994, 997, 998, 1000, 1001, 1002, 1005, 1006, 1015], "20087": 1044, "2009": [2, 134, 137, 138, 148, 194, 403, 407, 408, 410, 411, 516, 517, 525, 528, 534, 535, 537, 538, 541, 544, 550, 556, 557, 634, 670, 678, 696, 836, 852, 913, 914, 948, 949, 996, 1000, 1001, 1007, 1016], "200_000": [870, 1047], "200m": 366, "200maximum": 243, "200specifi": [244, 245, 261, 263, 314], "200x": 1031, "201": [145, 163, 322, 368, 582, 1021], "2010": [0, 110, 184, 268, 269, 400, 403, 405, 407, 408, 416, 471, 533, 704, 708, 719, 720, 741, 830, 862, 863, 992, 996, 1000, 1004, 1014, 1031], "2011": [0, 184, 377, 408, 411, 532, 535, 537, 538, 544, 588, 626, 637, 657, 731, 990, 1004, 1014, 1031], "20117": 1044, "2012": [0, 112, 401, 410, 552, 553, 560, 638, 744, 989, 993, 1000, 1031], "2013": [0, 188, 368, 403, 407, 408, 533, 727, 757, 992, 1000, 1032, 1033], "2014": [0, 365, 397, 408, 410, 413, 527, 605, 606, 621, 622, 657, 692, 862, 863, 948, 949, 997, 1000, 1004, 1024, 1034], "20145": 1045, "2015": [0, 184, 365, 708, 721, 724, 725, 862, 863, 996, 1000, 1007, 1024, 1035, 1036], "201520": 198, "20155": 1044, "20159": 1044, "2016": [0, 230, 365, 403, 989, 1036, 1037], "20161": 1044, "20165": 1044, "2017": [0, 263, 365, 401, 403, 414, 433, 440, 996, 1000, 1037, 1038], "2018": [0, 206, 223, 411, 446, 989, 1000, 1024, 1038, 1039], "2019": [0, 184, 403, 448, 458, 692, 997, 1000, 1007, 1010, 1039, 1040, 1041], "202": 86, "2020": [0, 366, 1023, 1041, 1042, 1043, 1044], "20200": 1044, "20207": 1044, "20209": 1044, "2021": [0, 371, 670, 1000, 1043, 1044], "2022": [0, 359, 403, 410, 705, 997, 1010, 1045, 1046], "2023": [0, 383, 397, 399, 401, 1046, 1047], "20231": 1044, "2024": [1048, 1049, 1050], "20240": 1044, "2025": [375, 1050, 1051, 1052], "20250": 1044, "20272": 1044, "20297": 1044, "203": 347, "20312": 1044, "203174": 198, "20326": 1044, "20331": 1046, "2034": [346, 366], "20380": 1044, "20385": 1044, "2039": 266, "204": [1008, 1013], "20408": 1045, "20415": 1046, "20416": 1044, "20431": 1044, "20477": 1044, "205": [240, 1021], "20512": 1044, "20515": 1044, "20521": 1044, "20524": 1047, "20526": 1044, "20528": 1044, "20531": 1044, "20534": 1044, "20552": 1044, "20554": 1044, "20560": 1044, "20567": 1045, "20583": 1044, "2059141": 319, "20597": 1044, "2061": 147, "20617": 1046, "20619": 1044, "20638": 1044, "20640": [140, 179, 366, 384, 404, 486], "20652": 1044, "20653": 1045, "20657": 1044, "20673": 1044, "20683": 1044, "207": [301, 1031], "2071716": [845, 846], "20727": 1044, "20729": 1044, "20752": 1044, "2075215": 220, "20753": 1045, "20761": 1044, "207667": 266, "2079": 268, "208": [163, 283, 368], "20802": 1046, "20803": 1045, "20811": 1045, "20842": 1044, "20843": 1044, "20860": 1045, "20880": 1044, "208864": 198, "20899": 1044, "209": [86, 474, 742, 881, 1021], "20904": 1044, "20959": 1044, "20960": 1044, "20961": 1044, "20_000": 283, "20new": 366, "20newgroup": [180, 189, 200, 221, 299, 301, 485, 657, 831, 834, 996, 1021], "20news_hom": 366, "20newsgroup": [220, 364, 1031], "20paramet": 326, "20th": 708, "20the": [143, 151, 154, 257, 309, 317, 322], "21": [44, 53, 103, 104, 105, 139, 143, 149, 150, 154, 155, 156, 163, 183, 184, 198, 206, 207, 223, 234, 244, 253, 257, 261, 262, 263, 264, 283, 301, 305, 307, 313, 316, 318, 346, 368, 373, 375, 389, 400, 410, 411, 413, 437, 441, 470, 529, 558, 559, 560, 566, 567, 586, 587, 589, 604, 626, 668, 686, 755, 801, 815, 828, 871, 878, 880, 886, 903, 919, 992, 996, 1000, 1001, 1021, 1027, 1029, 1031, 1032, 1034, 1038, 1039, 1041], "2100": [83, 315], "2102": 541, "21020": 1046, "21026": 1045, "21032": 1045, "21038": 1045, "2107": 268, "21078": 1045, "21079": 1045, "21080": 1044, "21086": 1045, "21093": 1044, "211": [81, 268, 317, 327, 881, 893], "21109": 1045, "21114": 1045, "211217613": 1039, "21130": 1044, "21145": 1044, "21148": 1045, "2117": 328, "21177": 1045, "21179": 1044, "21194": [80, 1044], "21195": 1044, "21199": 1044, "212": [145, 163, 268, 327, 337, 368, 465, 474, 497, 1006, 1021], "21219": 1045, "212197e": 223, "21243": 80, "21251": 1044, "2126": 242, "21271": 1044, "21278": 1045, "21295": 1044, "21298": 1045, "213": [55, 179, 1021], "21301203": 170, "213087e": 223, "21310": 1045, "21316": 1045, "21330": 1045, "21334": 1045, "21336": 1044, "21340": 1044, "21341": 1045, "21351": 1044, "21389": 1044, "2139": [206, 223], "214": [168, 582, 948], "21408": 1045, "21425": 1045, "21430": 1045, "21432": 1045, "21434": 1045, "21436": 1045, "21443888": 220, "21445": 1045, "21448": 1045, "21469": 1046, "21481": [1044, 1045], "21482": 1045, "21493": 1044, "215": 582, "21517": 1044, "21534": 1045, "21542": 1045, "21544347": 52, "21552": 1044, "21565": 1045, "2156660": 319, "21567": 1045, "21569": 1045, "21573": 1045, "21576": 1045, "21578": [48, 1044], "2159048": [652, 662, 683], "216": 1013, "21606": 1045, "21616": 742, "21617": 1045, "21632": 1045, "21694": 1044, "217": [90, 532, 538, 800, 1010, 1021], "21701": 1045, "21705": 1045, "2171": 47, "21713": 1045, "21724": 1045, "2173": [196, 655, 996], "21735": 1045, "21741": 1044, "21762": 1045, "21767": 1045, "2179": 48, "218": [266, 368, 467, 526, 715, 787], "2180": 58, "21800": 1045, "21805": 1045, "21807": 1048, "21808": 1045, "21809": 1047, "21814": 1045, "21832": 1045, "21833": 1044, "21837": 1045, "21845": 1044, "21871": 1044, "21873": 1045, "21880": 1045, "21881": 1045, "21888": 1045, "218997": 198, "219": [246, 262, 1021], "21901": 1045, "21915": 1044, "21917": 1044, "2192": [196, 655, 996], "21938": 1046, "21954": 1045, "21987": 1045, "21988": 1045, "21991": 1044, "21998": 1045, "21e": 603, "22": [44, 53, 64, 77, 103, 104, 138, 139, 141, 150, 154, 155, 156, 178, 179, 180, 183, 184, 185, 186, 222, 233, 234, 243, 244, 245, 246, 253, 257, 261, 262, 263, 275, 277, 285, 301, 303, 307, 311, 313, 314, 316, 317, 319, 321, 322, 325, 348, 352, 353, 371, 376, 389, 400, 433, 444, 468, 484, 485, 492, 493, 501, 512, 521, 528, 534, 539, 542, 543, 554, 555, 556, 557, 558, 560, 561, 562, 563, 564, 565, 566, 567, 592, 626, 627, 631, 633, 644, 646, 650, 652, 654, 657, 658, 660, 662, 664, 668, 688, 692, 702, 704, 713, 758, 770, 779, 784, 785, 789, 801, 802, 806, 815, 820, 822, 825, 826, 827, 828, 829, 830, 831, 832, 849, 851, 853, 855, 856, 857, 862, 863, 864, 866, 869, 885, 896, 905, 907, 908, 909, 910, 911, 913, 914, 915, 916, 942, 944, 992, 996, 1000, 1010, 1021, 1027, 1029, 1031, 1034, 1039, 1042, 1044], "220": [79, 115, 257, 1021, 1031], "2200": [83, 366, 490], "22002": 1045, "22014": 1046, "22015": 1045, "22016": 1045, "22027": 1045, "220446049250313e": [467, 468, 474, 649, 650, 653, 654, 655, 681, 682], "22046": 1051, "22050": 1044, "22054": 1046, "22058": 1045, "22059": 1045, "22062": 1045, "22063": 1045, "22064": 1045, "22065": 1045, "2208": 48, "221": [115, 152, 257, 343, 474, 1021, 1034], "22106": 1045, "22108": 1045, "2211": 633, "22111": 1045, "22114": 1045, "22118": 1045, "22119": 1045, "22120": 1045, "2213": 48, "22137": 1045, "22148": 1045, "22149": 1045, "22150": 1045, "22154": 1045, "22159": 1045, "22181": 1045, "22188": 1045, "22191": 1045, "22199": 1045, "222": [115, 152, 201, 333, 784, 1015, 1021], "22203": 1045, "22206": 1045, "22212": 1045, "22215": 1045, "22217": 1045, "22218": 1045, "2222": 655, "2222222222222222": 271, "22223": 1045, "22227": 1051, "22235": 1045, "22237": 1045, "2224": 1033, "22240": 1045, "22248": 1045, "22249": 1045, "22254": 1045, "22255": 1045, "2226": 48, "22268": 1046, "22269": 1046, "22284": 1045, "22288": 1045, "223": [86, 115, 152, 163, 368], "2230": 48, "22300": 1045, "22314355": 588, "22318": 1045, "22320": 1045, "22356": 1045, "22361": 368, "22370": 1045, "223745": 206, "22385188": 86, "224": [115, 152, 403, 726, 823], "22409": 1047, "22410": 1045, "22412": 1045, "22438": 383, "2246": 223, "22476": 1045, "22486": 1045, "22493": 1045, "22498": 1045, "225": [82, 410, 1021], "22504": 403, "22506": 1047, "22508": 1045, "22518": 1046, "22525": 1045, "22526": 1045, "22527": 1046, "22537": 1045, "22548": 1045, "22553": 1045, "22554": 1046, "22562": 1046, "22566": 1045, "22578": 1045, "225806": 223, "22595": 1045, "226": [347, 403, 414, 440, 1021], "22604": 1045, "22629": 1046, "22635": 1045, "22665": 1046, "22685": 1045, "22687": 1045, "22692": 123, "22694": 1045, "22695": 1045, "22696": 1045, "22697": 1045, "227": [47, 51, 54, 250, 263, 403, 726, 1021], "22710": 1046, "2273": 48, "22735": 1045, "22747343e": 111, "2275": 48, "22775": 1045, "22784907": 828, "2279": 48, "22806": 1045, "22808": 1045, "2281": 48, "22830": 1045, "2284": 184, "22856": 1045, "2286": 366, "22866": 1045, "22868": 1045, "2287": [48, 366], "2288": [48, 366], "22891": 1045, "22898": 1046, "22899": 1045, "229": [607, 1000], "22908": 1045, "22913": 1045, "2292": 48, "2293": 48, "22950": 1045, "22953": 1045, "22965": 1046, "22968": 1046, "22982": 1045, "22993": 1046, "22nd": 435, "23": [44, 58, 64, 71, 83, 103, 123, 139, 143, 151, 154, 155, 156, 163, 172, 180, 183, 184, 206, 213, 234, 244, 246, 253, 257, 301, 307, 309, 311, 314, 315, 316, 317, 319, 322, 325, 368, 369, 377, 389, 410, 416, 426, 436, 443, 448, 450, 458, 461, 463, 464, 471, 475, 476, 478, 479, 480, 486, 489, 497, 498, 499, 501, 502, 507, 509, 511, 519, 521, 535, 536, 537, 540, 544, 551, 553, 555, 557, 558, 559, 562, 565, 566, 567, 605, 606, 610, 626, 629, 631, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 666, 668, 669, 671, 672, 674, 677, 678, 679, 680, 717, 779, 831, 837, 838, 839, 848, 856, 863, 866, 878, 885, 893, 894, 903, 906, 908, 911, 914, 916, 929, 931, 932, 944, 949, 1000, 1021, 1023, 1027, 1029, 1031, 1032, 1038, 1039, 1040, 1043], "230": 582, "2300": [83, 198], "23023": 1045, "23033": 1045, "23034": 1045, "23036": 1045, "23038": 1046, "23040": 1045, "23046": 1045, "23047": 1045, "23077": 1045, "23079": 1045, "23095": 1045, "23097": 1045, "23098": 1045, "23099": 1047, "231": [51, 205, 260, 296, 366, 403, 414, 440, 495, 582, 1021], "23101": 1046, "2311": 48, "23113": 1045, "23115": 1045, "2312": 48, "23127": 1046, "23139": 1046, "23149": [366, 494, 1045], "2315": 48, "2316": 48, "23194": 1045, "23197": 1046, "23198": 1045, "232": [53, 257, 474, 1000, 1021], "23210": 1046, "23214": 1045, "2323": [689, 693, 997], "23252": 1046, "23256": 1045, "23264": 1045, "23271": 1045, "23273": 1045, "23275": 1046, "23299": 1045, "233": 86, "2331": 44, "23317": 1048, "2332": 44, "2333": 44, "2334": 44, "2335": 44, "23358": 1045, "2336": 377, "23370": 1045, "23395": 1045, "234": [304, 840, 844, 862, 863, 1002, 1021], "2341": 521, "23410": 1045, "234137": 198, "23442": 1046, "23446": 1046, "23461": 1046, "23470": 1046, "23471": 1045, "23480": 1046, "235": 309, "2353": 48, "235430": 266, "23548": 1045, "2356": 48, "2357juan": [1045, 1046, 1047], "23585": 1046, "23595": 1047, "23604": 1046, "23608": 1045, "23619": 1046, "23636": 1045, "23637": 1046, "2364": 48, "23668876": [652, 662, 683], "2367": 48, "236720": 198, "23683": 1046, "23689075": [652, 662, 683], "237": [332, 1021], "23726": 1046, "23731": 1047, "23734": 1046, "237703": 198, "23773583": 111, "23798": 1046, "238": [238, 246, 731, 1000], "23819": [1046, 1047], "23833": 1045, "23834": 1046, "23865": 1046, "23874": 1046, "238744": 198, "23877": 1046, "238955": 266, "239": 1031, "23905": 1046, "23935": 1046, "23977": 1046, "23990": 1045, "23993": 1046, "24": [44, 45, 53, 64, 99, 104, 143, 149, 151, 154, 155, 156, 163, 180, 183, 184, 185, 188, 194, 196, 230, 235, 242, 243, 257, 275, 283, 309, 311, 312, 313, 315, 317, 322, 324, 325, 347, 352, 369, 375, 389, 395, 396, 403, 410, 411, 413, 433, 436, 437, 438, 440, 441, 443, 444, 445, 446, 447, 448, 449, 456, 458, 460, 465, 466, 467, 468, 469, 470, 471, 472, 485, 486, 487, 489, 493, 501, 512, 513, 514, 515, 528, 529, 530, 531, 532, 533, 534, 536, 537, 538, 539, 540, 541, 546, 547, 548, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 566, 567, 579, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 609, 610, 626, 627, 628, 629, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 688, 689, 690, 691, 692, 698, 699, 700, 702, 708, 714, 728, 739, 747, 754, 798, 799, 801, 804, 805, 815, 822, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 866, 868, 869, 870, 871, 874, 875, 877, 879, 880, 881, 882, 883, 885, 895, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 944, 974, 980, 989, 1007, 1010, 1021, 1027, 1029, 1031, 1039, 1040, 1041, 1042, 1044], "240": [44, 53, 79, 1008, 1031], "2400": 83, "24000": 517, "2401": 48, "24015": 1045, "24017": 1045, "24027": 1047, "2403": 48, "24051": 1046, "24058": 1046, "24075": 1046, "24076": 1047, "24083": 1047, "24084": 1046, "24087": 1045, "241": [236, 410, 564, 565], "2410": 541, "2412": 48, "24132424": 115, "2414": 48, "24140": 1047, "24141": 1046, "24145": 1047, "24146": 1046, "24160": 317, "242": [124, 202, 885, 1021, 1031], "24218": 1046, "24230": 1047, "24245": 1046, "24258": 1046, "24264": 1046, "24283": 1046, "243": 582, "2431": 471, "24317": 1046, "24338": 1046, "24350": 1046, "24354": 1046, "24365": 1046, "243802": 299, "244": [257, 280, 582], "24404831511191221642141021252626109": 53, "24405": 1046, "2441": 223, "24412": 1046, "24421": 1046, "24433": 1046, "24446": 1045, "244466": 246, "24465": 1046, "2449": 377, "245": [1012, 1033], "24512": 1046, "24523": 1046, "24528": 1046, "24538": 1046, "24539": 1046, "24543": 1046, "24556": 1046, "24568": 1047, "245961": 146, "245mb": 348, "246": [194, 249, 1008, 1021, 1031], "24617": 1046, "2463": 996, "24630": 1046, "24631": 1045, "24637": 1046, "24640578": 111, "24645": 1046, "24667": 1046, "24668": 1047, "24677": 1047, "24683": 1046, "24688": 1046, "24699": 1046, "247": 885, "24714": 1046, "24747": 1046, "24750": 1046, "24755": 1046, "24767": 1046, "24769": 1047, "24788": 1051, "248": [55, 175, 612, 1021], "24838": 1048, "24849": 1046, "24855": 1046, "24856": 1046, "24871": 1047, "24873": 1046, "2487575": 188, "2487591": 188, "24882": 1047, "24889": 1046, "24894": 1046, "24895456": 319, "249": [257, 948], "24935": 1047, "24951": 1046, "25": [44, 45, 46, 47, 49, 50, 51, 53, 58, 62, 64, 67, 77, 87, 88, 111, 115, 127, 129, 138, 146, 159, 160, 163, 168, 172, 183, 191, 210, 230, 232, 250, 257, 262, 263, 296, 298, 301, 303, 305, 317, 324, 325, 346, 352, 354, 358, 377, 407, 410, 411, 414, 440, 473, 498, 501, 518, 567, 595, 617, 677, 735, 797, 818, 831, 857, 875, 880, 882, 883, 886, 894, 895, 897, 898, 946, 950, 980, 996, 1000, 1001, 1003, 1010, 1021, 1031, 1033, 1039, 1042], "250": [50, 98, 146, 188, 225, 490, 692, 823, 989, 1012, 1038], "2500": [172, 1000], "25000": 77, "2501": [163, 368], "25044": 1047, "250639": 198, "25067": 1046, "25077": 1046, "25080": 1046, "25089": 1046, "25093": 1047, "25094": 1046, "251": [163, 368], "25102": 1047, "25120": 1047, "25129": 1046, "25147": 1046, "25163598": 379, "25172": 1046, "25174": 1046, "25177": 1047, "25186": 1047, "25188": 1046, "25190": 1047, "25193977": 1001, "25196": 1047, "252": [141, 163, 295, 368, 531, 881, 893, 1021], "25209": 1047, "25214": 1047, "25220": 1047, "25232": 1047, "25250": 1046, "25251": 1047, "25257": 1047, "25274": 1046, "25275": 1048, "25291": 1047, "25291366": 354, "25294": 1047, "25295": 1046, "25296": 1046, "25297": 1047, "25299": 1047, "253": [145, 531], "25308": 1047, "25312": 1046, "25330": 1050, "25334": 1047, "25341": 1046, "253445": 146, "25349312e": 192, "2535": [465, 470], "25354": 1046, "2536": 472, "25363": 1046, "25367": 1047, "25370": 1046, "25387": 1047, "254": [216, 316, 477, 1021], "25402": 1047, "25417": 1047, "25432": 1047, "25438": 1047, "25443": 1047, "25477": 1046, "2548": 204, "25490": 1047, "25499205": 533, "255": [55, 123, 143, 151, 154, 257, 283, 300, 309, 315, 317, 322, 366, 410, 490, 491, 558, 559], "25500": 1046, "25506": 1047, "25511": 1046, "25531": 1047, "25563": 1046, "25570": 1046, "25587": 1047, "25589": 1046, "255the": [143, 151, 154, 257, 309, 317, 322], "256": [77, 86, 145, 150, 309, 359, 366, 403, 410, 445, 464, 534, 543, 560, 861, 893, 903, 1045], "25601": 1047, "25619": 1046, "25629": 1047, "25638": 1046, "25659": 1047, "25664": 1046, "25672": 1047, "25677": 1047, "2568": 1040, "25694": 1046, "25697": 1047, "257": [261, 273, 1021], "25704": 1046, "25713": 1047, "25719016": 1001, "25732": 1047, "25733": 1047, "25744": 1046, "25747": 1046, "25752": 1047, "25774": 1046, "25784": 1047, "2579": 692, "25805": 1047, "25813": 1047, "25814": 1047, "25815": 1047, "259": [51, 259, 296, 366, 410, 495, 564, 565, 1021], "259031": 198, "259297": 198, "25931": 1047, "25956": 1047, "25973": 1047, "25987": 1047, "25991": 1049, "25e": 603, "25th": [44, 242, 883], "26": [44, 80, 87, 111, 122, 172, 183, 184, 230, 241, 257, 280, 325, 377, 567, 647, 823, 881, 893, 949, 1021, 1031, 1034, 1035, 1043, 1049], "260": [262, 1044], "26019": 1047, "26021": 1047, "26033": 1047, "2605": 692, "26082": 1047, "26093": 1047, "26106": 1047, "26108": 1047, "26113448": 160, "26120": 1049, "26121": 1047, "26163": 1048, "26194": 1047, "262": 1031, "26202": 1051, "26207": 1047, "26242": 1047, "26243": 1048, "26253567e": 111, "26264": 1047, "26267": 1048, "26278": 1048, "26286": 1047, "26286057": 220, "26289": 1047, "26299": 1048, "263": [75, 1021], "26315": 1048, "26316": 172, "26318": 1047, "26323": 1047, "26325": 1047, "26333": 1047, "26335": 1051, "26337": 1047, "26362917": 220, "26366": 1048, "26367": 1050, "263758": [581, 585], "26376": 1047, "26385": 1047, "26386": 1047, "26386883": 170, "26391": 1048, "264": 236, "2640": 836, "26400": 1047, "26410": 1048, "26411": 1048, "26416": 1047, "26424": 1047, "26433": 1047, "26454": 1047, "26459": 1048, "26464": 1048, "26466": 1047, "265": [736, 840, 844, 1002], "26503": 1047, "26506": 1048, "26521": 1047, "2652124": 816, "26525": 1048, "26551": 1047, "26566": 1047, "26579": 1047, "26593496": 220, "266": [73, 1021], "26600": 1047, "26602": 1047, "26616": 1048, "26634": 1048, "26642044": 665, "26644": 1047, "26648": 1048, "26653": 1047, "26657": 1047, "2666": 1000, "2667": 495, "26674": 1048, "26683": 1048, "26689": 1050, "267": [730, 784, 996, 1000, 1010, 1031], "2671": 1010, "26721": 1048, "26734": 1048, "26736": 1048, "26744": 1048, "26748": 1047, "2675": 47, "26754": 1047, "26760": 1047, "26765": 1048, "267703": 87, "26772": 1047, "26786": 1048, "26789": 1048, "268": 277, "26814": 1047, "268147": 266, "26828": 1048, "26830": 1048, "26831": 1048, "26837": 1049, "26840": 1048, "26855": 1048, "26862": 1048, "26893": 1047, "26896": 1048, "269": 508, "26903": 1047, "26909": 1048, "26913": 1047, "2692": 1010, "26931": 1047, "26934744": 130, "26940": 1047, "26944": 1048, "26957": 1048, "26th": [403, 727, 757, 1000], "27": [44, 46, 53, 58, 68, 81, 87, 163, 257, 324, 325, 343, 368, 403, 411, 514, 521, 603, 713, 789, 790, 886, 906, 1000, 1010, 1031, 1033], "270": [194, 325], "27000": 223, "27002": 1047, "27005": 1048, "27006": 1048, "27017": 1048, "27018": 1048, "27044": 1047, "27054655": 220, "27058": 1048, "27096": 1050, "27098": 1048, "271": [159, 167, 1021], "27100": 1048, "27104": 1048, "27110": 1048, "27113": 1052, "27124": 1051, "27137": 1048, "27139": 1048, "2714": 242, "271411": 246, "27161": 1048, "27161955": 160, "27166": 1048, "27167": 1047, "27179": 1048, "27185": 1048, "27204": 1048, "27219": 1048, "272214": 582, "27239": 1048, "27240": 1048, "27243": 1047, "27250": 1048, "27252": 1048, "2727": 555, "27274": 1048, "27277": 1048, "27291": 1048, "27292": 1047, "27301": 1048, "27308": 1048, "27309": 1048, "27311": 1047, "27314": 1048, "27315": 1048, "27328": 1048, "27336": 1048, "2734": 377, "27344": 1049, "27369": 1050, "27372": 1048, "27381": 1050, "27389": 1048, "274": 508, "27412": 1050, "27417": 1048, "27431": 1048, "27438": 1048, "27456": 1049, "27468": 1047, "27478": 1048, "27490": 1048, "27491": 1049, "27499706": 52, "275": [44, 325, 1034], "27500": 1048, "27526": 1049, "27538": 1048, "27544": 1048, "27556": 1048, "27558": 1048, "27560": 1049, "27566": 1049, "275706": 87, "27573": 1047, "27576": 1049, "27577": 1048, "27580": 1047, "27583": 1047, "27584": 1049, "275851": 246, "2759": [897, 898], "276": [263, 604], "27601": 1048, "27614": 1048, "27624": 1048, "2763": [416, 471], "27636": 1049, "27639": 1048, "27645": 1048, "27650": 1048, "27651": 1048, "27657": 1049, "27668": 1048, "27670": 1048, "27675": 1048, "27678": 1048, "277": [89, 1008, 1021, 1033], "27700": 1049, "27702": 1048, "27710": 1048, "27718": 1048, "27720": 1048, "27721": 1048, "27734": 1048, "27736": 1050, "27757": 1048, "27760": 1048, "27772182": 53, "278": [368, 845, 846], "2780": 377, "27800": 1049, "27801": 1048, "27817": 1048, "27821": 1048, "27828": 1048, "27834": 1048, "27835": 1048, "27841": 1048, "27844": 1049, "27865": 1048, "27875": 1050, "27898": 1048, "27899": 1048, "279": [176, 347, 996], "27904": 1049, "2793354": 115, "27937": 1049, "27966": 1050, "27979": 1048, "27990": 1049, "27e": 686, "28": [44, 99, 146, 163, 183, 221, 230, 257, 272, 300, 324, 325, 346, 368, 377, 403, 407, 446, 453, 863, 1010, 1021, 1031, 1034, 1037], "280": 325, "28009951": 828, "2802": 58, "28040": 1049, "28043": 1052, "28048": 1048, "28051": 1049, "28053": 1049, "28064": 1050, "28074": 1048, "28085": 1049, "28090": 1048, "28092": 1049, "28095": 1048, "28096": 1050, "28102": 1049, "28106": 1050, "28111": 1048, "28121": 1048, "28136": 1049, "28160": 1049, "28165": 1048, "28167": 1048, "28179": 1050, "2818": 466, "28184": 1048, "28187": 1049, "28188": 1048, "28191": 1048, "28195": 1048, "28198": 1048, "282": 1031, "28205": 1049, "28207552": 220, "28210": 1049, "28222": 1048, "28233": 1048, "28235": 1048, "28240": 1048, "28241": 1048, "28247": 1048, "2825": 0, "28256": 1048, "28261": 1049, "28262": 1048, "28263": 1048, "28268": 1050, "28295": 1048, "283": 604, "2830": 0, "28306": 1049, "28327": 1048, "2833": 377, "28351": 1049, "28352": 1049, "28360": 1049, "28365": 1048, "28377": 1048, "28385": 1048, "28399": 1049, "284": [137, 648, 1021], "28407": 1049, "28425": 1049, "284315": 257, "28432": 1049, "28435": 1049, "28471": 1049, "284806": 257, "284807": 257, "28483": 1049, "28491": 1049, "28494": 1050, "28498": 1049, "285": [325, 725], "28519": 1050, "28521": 1049, "28552": 1049, "28557": 1049, "28557509": 319, "28559": 1051, "28574812": 115, "28582": 1049, "286": 410, "28604": 1049, "28612": 1049, "28622": 1050, "28637": 1050, "28651": 1049, "28664": 1049, "28670": 1049, "28692": 1049, "287": [161, 184, 228, 1012, 1021], "28701": 1050, "28703": 1049, "28712": 1049, "28718": 1049, "28722": 1049, "28756": 1049, "28763": 1049, "28768": 1049, "28773": 1050, "2879": 1038, "288": [532, 538, 996], "28808734": 210, "28822": 1049, "28823": 1049, "28840": 1050, "28843": 1049, "28847": 1049, "289": 183, "28901": 1050, "28915": 1049, "28925": 1049, "28934": 1050, "28936": 1050, "28951": 1049, "28971": 1052, "28975": [1044, 1050], "28981": 1051, "28988": 1049, "28992": 1050, "28x28": 300, "29": [58, 80, 112, 165, 168, 172, 199, 206, 210, 222, 230, 257, 317, 325, 368, 410, 556, 557, 690, 694, 798, 857, 996, 997, 1014], "290": [325, 688, 689, 693, 997], "290075": 198, "29014": 1050, "29018": 1049, "290584": 299, "29078": 1049, "29097": 1052, "291": [163, 347, 366, 368, 863], "29105": 1050, "29112": 1050, "29119": 1049, "29124": 1050, "29128": 1050, "29135": 1050, "29136": 1050, "2914": 491, "29141": 1050, "29142": 1050, "29144": 1050, "29151": 1051, "29158": 1050, "29179": 1049, "292": [389, 410, 736], "29207": 1050, "29212": 1050, "29227": 1050, "29235": 1049, "29239": 1050, "29260": 1050, "29265": 1050, "29266": 1050, "29267": 1050, "29269": 1049, "2928359": 220, "29288": 1051, "293": 249, "29300": 1050, "29307": 1052, "29310": 1052, "29312": 1050, "29314": 1049, "29316": 172, "29327": 1049, "29329": 1050, "29330": 1049, "29336": 1049, "29354": 1050, "29389": 1050, "2939931": 319, "29400": 1050, "29401": 1049, "29402": 1050, "29404": 1050, "29419": 1050, "29433": 1050, "29437": 1020, "29442": 1050, "29451": 1050, "29462": 1050, "29473397": [845, 846], "29475": 1050, "295": [158, 782, 1021], "295040e": 223, "29519": 1051, "29540": 1050, "29545": 1049, "295518e": 223, "296": 1012, "2961": 650, "29612": 1049, "29634": 1050, "29639": 1050, "296575": 198, "29677": 1050, "29694": 1049, "29696": 1050, "297": [312, 366, 1021], "29705": 1050, "29709": 1050, "29710": 1050, "29727": 1051, "29738": 1050, "29751": 1050, "29773": 1050, "29779": 1050, "29780": 1049, "29793": 1050, "29797": 1051, "298": [111, 1008, 1021], "29818": 1050, "29822": 1052, "29835": 1050, "29842": 1050, "29865": 1051, "29868": 1050, "298688": 263, "29869": 1050, "29874": 1050, "29880": 1050, "29884": 1050, "29898468": 220, "299": [135, 679], "29907": 1051, "29920": 1050, "29950": 1050, "299546e": 223, "29978": 1051, "29997": 1050, "29e": 603, "2_": [992, 997], "2_000": 134, "2_2": [645, 646, 651, 652, 653, 654, 655, 659, 660, 661, 662, 671, 680, 681, 682, 683], "2_f": 651, "2_fro": [652, 661, 662, 683], "2_poli": 263, "2_y": 1002, "2c": [154, 183, 642, 651, 671, 672, 673, 674, 686, 992], "2clamp": 326, "2d": [2, 44, 70, 72, 79, 81, 82, 86, 89, 94, 95, 103, 119, 121, 124, 126, 130, 143, 152, 154, 180, 183, 185, 200, 202, 207, 212, 225, 226, 227, 228, 230, 232, 234, 235, 236, 244, 292, 309, 313, 316, 324, 325, 332, 335, 353, 365, 367, 371, 380, 385, 403, 404, 408, 411, 413, 437, 448, 458, 460, 463, 477, 484, 486, 487, 489, 490, 491, 497, 498, 499, 501, 507, 511, 530, 538, 546, 582, 584, 634, 642, 656, 671, 691, 739, 780, 826, 830, 834, 872, 922, 925, 927, 931, 932, 964, 985, 986, 994, 996, 997, 1000, 1007, 1011, 1016, 1021, 1031, 1035, 1038, 1039, 1040, 1043, 1045, 1049, 1051], "2e": [195, 276, 278, 694], "2e6": 1000, "2ec5ac": 307, "2f": [45, 48, 51, 53, 58, 68, 77, 79, 80, 83, 85, 95, 97, 100, 115, 118, 123, 129, 146, 149, 153, 154, 158, 183, 184, 188, 191, 198, 199, 204, 206, 220, 221, 222, 223, 232, 236, 242, 257, 266, 267, 269, 271, 272, 273, 277, 291, 292, 298, 305, 308, 316, 320, 321, 328, 335, 346, 347, 354, 404, 407, 410, 696, 829, 832], "2fbf01908075": 705, "2fx": 251, "2g": [227, 230, 697, 1042], "2h": 409, "2if": [155, 244], "2k": 178, "2l": [413, 621], "2n": [696, 992, 1004], "2n_": 996, "2nd": [93, 126, 175, 308, 403, 414, 440, 527, 852, 1010, 1046], "2or": 264, "2the": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "2x": 1031, "2x2": [332, 403, 755], "2x_iy_i": 992, "3": [0, 2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 319, 320, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 359, 360, 365, 366, 367, 368, 369, 371, 372, 373, 375, 376, 377, 383, 384, 385, 389, 394, 395, 396, 397, 400, 401, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 424, 425, 426, 427, 428, 433, 435, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 474, 477, 478, 479, 480, 481, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 498, 499, 501, 502, 503, 504, 507, 509, 512, 513, 514, 515, 516, 518, 520, 522, 525, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 575, 579, 581, 582, 585, 588, 591, 592, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 616, 617, 626, 627, 628, 629, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 686, 688, 689, 690, 692, 693, 694, 696, 699, 700, 702, 703, 704, 705, 707, 709, 710, 713, 716, 717, 721, 724, 725, 726, 727, 729, 730, 731, 732, 734, 735, 736, 737, 738, 742, 744, 745, 746, 747, 749, 751, 752, 753, 754, 755, 757, 758, 769, 770, 776, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 876, 877, 878, 879, 880, 881, 883, 884, 885, 886, 893, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 920, 927, 928, 931, 932, 933, 937, 947, 948, 949, 950, 951, 952, 953, 955, 956, 957, 958, 959, 960, 961, 964, 965, 967, 968, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 985, 989, 990, 993, 994, 995, 996, 997, 998, 1000, 1001, 1002, 1003, 1006, 1007, 1010, 1011, 1013, 1015, 1016, 1019, 1021, 1027, 1029, 1031, 1032, 1033, 1034, 1036, 1037, 1038, 1041, 1043, 1044, 1046, 1048, 1049, 1051], "30": [44, 48, 50, 55, 58, 71, 75, 79, 87, 93, 100, 103, 105, 109, 127, 134, 142, 146, 149, 153, 163, 167, 168, 171, 184, 188, 190, 202, 204, 206, 223, 225, 226, 230, 237, 241, 242, 252, 257, 262, 263, 268, 278, 280, 283, 292, 293, 307, 308, 309, 317, 318, 324, 325, 326, 329, 333, 336, 338, 339, 353, 358, 366, 368, 369, 376, 377, 389, 395, 396, 407, 411, 414, 440, 446, 451, 452, 453, 497, 528, 532, 534, 535, 536, 538, 540, 542, 543, 567, 590, 593, 594, 596, 647, 692, 736, 784, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 886, 901, 914, 977, 989, 994, 1000, 1001, 1003, 1008, 1021, 1031, 1032, 1038, 1039, 1040], "300": [44, 59, 60, 71, 74, 83, 91, 123, 134, 135, 136, 140, 179, 230, 232, 236, 252, 257, 266, 276, 293, 306, 314, 324, 339, 342, 439, 443, 444, 455, 457, 510, 638, 643, 644, 678, 690, 692, 694, 862, 921, 996, 1041], "3000": [53, 97, 228, 897, 898], "30000": 366, "30001": 1050, "30013": 1050, "30022": 1050, "30023": 1050, "300343": 198, "30040": 1050, "30041": 1052, "30047": 1050, "30057": 1051, "30061": 538, "30097": 1050, "301": [404, 1014], "3010": 147, "30100": 1050, "30122": 1050, "30137": 1050, "30149": 1050, "3015": 58, "30151134": 462, "30152": 1051, "30155": 1051, "30171": 1050, "30172": 1050, "30179": 1051, "30187": 1050, "30196": 1051, "302": [129, 263, 626, 1021], "30203": 1050, "30224": 1050, "30227": 1050, "30258509": 413, "303": [223, 634], "30318": 1050, "30340": 1051, "30360": 1050, "30380": 1051, "30395": 1051, "30399": 1051, "304": [163, 307, 353, 368], "30406": 1051, "30409": 1051, "30414": 1051, "30415": 1051, "30443": 1051, "30451": 1050, "30454": 1050, "30483": 1051, "305": 377, "30506066": 194, "30514": 1051, "30516": 1050, "30521": 1051, "3053": [465, 470], "305438": 146, "30557": 1050, "30562": 1052, "30573": 1050, "306": 626, "306012": 198, "30616": 1051, "30644": 1051, "30649": 1051, "30712": 1051, "30730": 1051, "30743": 1051, "30750": 403, "30763": 1051, "30775": 1051, "30777": 1052, "30787": 1052, "308": [64, 347, 634], "30819": 1051, "30833": 1051, "30838": 1051, "30858": 1051, "30873": 1051, "30878": 1052, "30886": 1051, "30897646": 220, "30903": 1051, "30m": 366, "30maximum": 326, "31": [44, 102, 110, 123, 143, 151, 154, 223, 257, 288, 309, 315, 317, 322, 324, 325, 400, 411, 497, 558, 559, 595, 648, 670, 678, 966, 1001, 1021, 1031], "310": 64, "31040": 1051, "31065": 1051, "31068": 1052, "31079": 1051, "3109306": 170, "31094": 1051, "311": 347, "31107": 1051, "31117": 1051, "31146": 1051, "31167": 1051, "31190": 1051, "312": [149, 347, 1034], "31204": 1051, "3121": 708, "31227": 1051, "31228": 1051, "31241": 1051, "3125": 86, "31294": 1052, "31316": 1051, "31322": 1052, "313280e": 223, "31387": 1051, "31406": 1052, "31414": 1052, "31419421": 115, "31431": 1052, "31474": 1052, "315": [283, 368], "31528": 1051, "31553": 1051, "31556": 1051, "31559": 1051, "31563": 1051, "31564": 1052, "31580": 1052, "31584": 1051, "316": [172, 176, 610, 613, 624, 881], "3164764": [206, 223], "31665": 1052, "31685": 1051, "317": [172, 347], "31701": 1052, "31760": 996, "31764": 1052, "31790": 1052, "318": 446, "31820": 1051, "318387": 299, "31848": 1052, "31851": 1051, "3185838": 155, "31866": 1051, "31873": 1052, "31880": 1052, "31882": 1052, "31891": 1052, "31898": 1052, "319": 168, "31906": 1052, "31928": 1052, "31932": 1052, "31946": 1052, "31951": 1052, "31952": 1052, "31956": 1052, "31958": 172, "31973": 1052, "31973683": 220, "31986": 1052, "31991": 1052, "31bit": 1042, "31e": 603, "31st": [155, 207, 884], "31the": [143, 151, 154, 257, 309, 317, 322], "32": [44, 45, 53, 84, 182, 185, 241, 242, 277, 316, 325, 365, 376, 385, 400, 410, 411, 441, 561, 562, 580, 587, 633, 675, 884, 886, 931, 932, 966, 1008, 1010, 1031, 1034, 1037, 1039, 1040, 1043, 1044, 1045, 1048], "320": [366, 989, 1014, 1031], "32014": 1052, "3204": 1037, "32047": 1052, "32077": 1052, "321": [278, 1021], "32103": 1052, "321301": 63, "322": [46, 467, 468], "3221": [692, 997], "323200": 63, "324": [347, 366], "324084": 198, "3245": [692, 997], "3252": 595, "325666e": 223, "326": 236, "32634568": 210, "3264": 47, "327": [64, 346, 731], "3272984419327777": 350, "3273": 747, "327407": 246, "327605": 246, "32767": 1042, "32782448": 170, "3279": 47, "328": 731, "3288": 541, "329": [83, 191, 446, 1021], "329616": 198, "32987858": 562, "32bit": [2, 358, 966, 1049], "32x32": 368, "33": [44, 111, 206, 221, 317, 325, 353, 366, 368, 376, 377, 403, 411, 457, 529, 636, 647, 712, 713, 730, 731, 739, 744, 784, 785, 788, 807, 829, 831, 833, 892, 916, 974, 981, 996, 1000, 1010, 1031, 1039], "330": 325, "331": [335, 1021], "331263": 198, "3315057": [827, 828], "3317": 206, "332": [168, 263, 347, 893, 1021], "333": [784, 847, 996], "3333": 495, "333333": 223, "33333333": [855, 1010], "334": [170, 221, 347], "33478066": 86, "334795": 266, "335": [44, 120, 1021], "335919": 299, "336": [149, 377, 1010], "336188": 299, "3367": 1038, "337": [310, 377, 1021], "3375": 317, "338": 242, "3383": 47, "3384": 347, "3387": 347, "3397": [663, 684, 685], "33rd": [902, 1013], "34": [44, 83, 123, 146, 163, 167, 288, 324, 325, 353, 368, 407, 517, 567, 595, 648, 666, 716, 765, 1031], "340": [238, 324], "341": 347, "34118": 366, "34125758": 220, "3415": [663, 684, 685], "341523": 299, "3419": 266, "341949": 198, "342": [74, 823, 996, 1021], "34279478": 220, "3433": 47, "3445": 47, "345": [163, 368], "34545455": 996, "3456": 47, "34586917": 220, "346": [347, 410, 498, 526, 552, 553], "3467": 614, "347": 55, "347717": 146, "34867495": 1001, "34895309508721917": 271, "349": [134, 347, 377, 550], "34th": 433, "35": [44, 46, 47, 49, 51, 88, 103, 136, 183, 184, 190, 196, 232, 262, 280, 308, 324, 325, 541, 647, 648, 655, 702, 706, 707, 728, 742, 757, 783, 790, 838, 989, 996, 1000, 1006, 1007, 1010, 1031, 1033], "350": 183, "351": 227, "351390": 263, "352": [227, 263, 377], "352124": 198, "35278655": 220, "3534": 58, "3539": 102, "354394": 146, "355": [211, 1021], "3551": 47, "355440": 263, "355445": 146, "356": [347, 1008], "356497": 146, "3565178": 966, "357": [163, 227, 368, 497, 906], "3573": 828, "35776189065725805": 313, "358": [227, 233, 1021], "3582": 47, "358295": 198, "358990": 198, "359": [227, 271, 1000, 1021], "3591": 1040, "36": [44, 46, 47, 53, 54, 67, 122, 163, 173, 183, 223, 242, 265, 301, 338, 353, 368, 377, 410, 411, 552, 553, 567, 736, 1000, 1021, 1031], "360": [134, 550], "360000": 299, "36047253": 220, "361": [366, 410, 552, 553], "362176": 317, "36284491": 115, "363": [53, 60, 1021], "3630784": 155, "3635": 828, "364": [324, 467, 468, 1021, 1032], "365": [405, 469], "3659": 1036, "366": 353, "367": [410, 1031], "36787944": 998, "368": [347, 760], "3680": [610, 613, 624], "3684": 836, "36851234": 817, "368896": 63, "369": 176, "3690483151908911912247722318110": 53, "3696": 612, "3697": 851, "3697178": 53, "37": [44, 194, 266, 277, 324, 353, 366, 410, 521, 716, 885, 896, 996, 1010, 1031], "370": 1000, "370000e": 223, "370039": 198, "37028151": 246, "370282": 246, "370738": 63, "372": 347, "373333": 266, "375": [445, 751, 1000], "376": [77, 1008, 1021], "37647423": 53, "376999": 63, "37741762": 130, "377eb8": [75, 79, 95, 96, 232], "378": [183, 264, 410, 1000, 1021, 1031], "37815029": 220, "37845099": 354, "37967282": 1001, "379710": 183, "379763": 146, "37e": 603, "38": [48, 184, 199, 205, 210, 256, 272, 288, 318, 410, 631, 886, 1000, 1031, 1032, 1033], "3800": 198, "3803": 348, "381": [352, 1021], "381327": 366, "382005": 146, "382040e": 223, "38353048": 220, "383973": 266, "384": [696, 906], "3840": 1039, "384338": 198, "384616559": 380, "384970e": 223, "3854": [663, 664], "3855": 1020, "386": 881, "3862": 869, "38629436": 1010, "38690531511642143152471231333333107": 53, "387": [184, 1031], "387599": 53, "387610e": 223, "388": [348, 948, 1010], "388020e": 223, "3889": 471, "3889873516666431": 53, "389": [184, 591, 592], "3894": 614, "39": [44, 48, 53, 163, 246, 257, 366, 368, 375, 403, 411, 492, 896, 914, 950], "3908844": 828, "391": 696, "3910350737": 380, "3911": 48, "392": [62, 1021], "3928": 466, "394": [102, 176], "3947": 1012, "395": [44, 188, 1021], "39568399": 533, "396": [102, 163, 368], "3964": [416, 471], "397": 366, "3972": 654, "398": [347, 646], "3986": 223, "3996": 650, "3_": 992, "3_poli": 263, "3bae43c9b14e387f76a61b6d82bf98a4fb5d3ef99ef7e7075ff2ccbcf59f9d30": 48, "3c479a6885bfa0438971388283a1ce32": 365, "3converg": 326, "3d": [100, 126, 225, 227, 229, 353, 411, 503, 584, 922, 964, 1038, 1039, 1041], "3degre": [244, 245, 261, 263, 314], "3f": [44, 46, 48, 51, 53, 55, 56, 60, 62, 64, 74, 75, 81, 82, 91, 103, 105, 107, 116, 134, 141, 149, 159, 163, 165, 167, 168, 169, 171, 176, 182, 184, 185, 191, 194, 195, 200, 206, 208, 212, 220, 221, 223, 226, 236, 238, 261, 263, 264, 266, 269, 271, 274, 276, 283, 298, 320, 328, 346, 347, 348, 823, 830, 1008], "3if": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "3k": 696, "3l": 413, "3length": 154, "3llobo": 1046, "3m": 52, "3maximum": 156, "3rd": [126, 175, 840, 883, 1002, 1010], "3ssnporch": 143, "3the": [155, 253, 275], "3toler": [244, 245, 261, 263, 314], "4": [44, 45, 46, 47, 48, 49, 50, 52, 53, 56, 58, 59, 63, 64, 65, 67, 68, 69, 70, 71, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 91, 92, 93, 95, 97, 98, 99, 100, 103, 104, 105, 106, 112, 113, 115, 116, 118, 121, 122, 123, 124, 125, 126, 128, 129, 134, 135, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 159, 162, 163, 170, 172, 173, 175, 176, 179, 180, 183, 184, 185, 188, 190, 191, 192, 193, 194, 196, 197, 198, 199, 200, 201, 204, 205, 206, 207, 210, 212, 213, 215, 218, 219, 223, 227, 232, 236, 237, 238, 239, 240, 241, 242, 244, 246, 248, 249, 250, 251, 253, 254, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 270, 271, 272, 274, 275, 277, 278, 282, 283, 285, 287, 288, 289, 290, 293, 298, 300, 301, 303, 304, 305, 306, 307, 309, 311, 312, 313, 314, 315, 317, 318, 320, 321, 322, 324, 325, 326, 327, 328, 332, 334, 338, 339, 340, 342, 343, 346, 347, 348, 352, 353, 354, 359, 365, 366, 367, 368, 369, 371, 375, 376, 377, 380, 383, 384, 385, 389, 394, 395, 396, 401, 402, 403, 404, 405, 407, 408, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 424, 425, 426, 427, 433, 435, 436, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 487, 493, 501, 509, 510, 513, 514, 515, 521, 523, 524, 525, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 547, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 575, 579, 580, 581, 583, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 609, 613, 616, 617, 618, 621, 626, 627, 628, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 650, 651, 652, 654, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 668, 669, 670, 671, 673, 676, 678, 679, 683, 684, 685, 686, 688, 689, 690, 692, 693, 694, 698, 699, 702, 706, 707, 715, 716, 726, 727, 728, 733, 735, 743, 744, 745, 747, 748, 749, 750, 752, 753, 757, 769, 770, 782, 783, 789, 790, 791, 792, 795, 797, 798, 799, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 826, 827, 828, 829, 831, 833, 834, 835, 836, 839, 840, 841, 842, 844, 849, 852, 853, 854, 857, 861, 862, 863, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 889, 892, 893, 897, 898, 899, 903, 905, 906, 909, 913, 914, 915, 916, 927, 928, 930, 931, 932, 933, 937, 948, 949, 950, 951, 953, 955, 956, 957, 958, 965, 970, 971, 972, 974, 975, 976, 977, 980, 981, 982, 989, 990, 993, 994, 995, 996, 998, 1000, 1001, 1002, 1003, 1010, 1011, 1014, 1015, 1021, 1027, 1029, 1032, 1033, 1034, 1036, 1037, 1038, 1040, 1044, 1045, 1046, 1049], "40": [44, 53, 55, 67, 87, 99, 109, 120, 126, 150, 167, 178, 184, 194, 199, 200, 202, 222, 227, 229, 240, 242, 252, 264, 289, 295, 300, 305, 324, 325, 333, 334, 336, 338, 340, 341, 353, 359, 366, 407, 442, 492, 514, 515, 800, 845, 846, 850, 862, 863, 989, 1001, 1031, 1032], "400": [45, 64, 83, 120, 148, 152, 153, 167, 212, 230, 275, 299, 347, 366, 408, 492, 1021], "4000": [92, 148, 251], "400000": 266, "400000e": 223, "4017": 521, "4018260": 319, "402": 267, "402344": 377, "4025": 1036, "403": [221, 267, 1021], "404": 223, "405857": 246, "40585735": 246, "40597": 282, "406": [689, 693, 997], "4066": 47, "407": [163, 347, 368], "408": 1010, "40842387": 52, "40887718": 90, "40945": 103, "4096": [120, 366, 408, 492], "40966": 365, "409717": 266, "41": [53, 163, 206, 220, 242, 353, 366, 368, 453, 465, 489, 620, 623, 634, 645, 646, 651, 657, 659, 660, 661, 663, 680, 684, 685, 699, 840, 1002, 1006], "41075698": 409, "41076071": 409, "41082": 45, "411": [183, 405, 415, 469, 477, 530], "4110": 472, "41187": 172, "412": [81, 493, 996, 1021], "412021": 146, "41214": [206, 223], "41215": 223, "412304": 198, "413": [121, 1021], "414": [91, 223, 404, 515, 727, 757, 881, 893, 1000, 1021], "41421356": [764, 770, 1003], "4143": 383, "414810": 246, "414912": 149, "41533818": 319, "416": [740, 1000], "416010": 317, "41666667": 751, "41691605": 130, "417": [79, 282, 782, 1021], "41726413": 130, "418": 347, "41888636": 661, "419": [615, 782], "4194": 368, "41e": 603, "42": [44, 45, 46, 53, 59, 62, 63, 64, 65, 67, 68, 79, 80, 89, 109, 122, 127, 134, 141, 143, 144, 146, 147, 149, 150, 154, 159, 160, 179, 183, 185, 186, 188, 190, 198, 202, 203, 208, 212, 213, 219, 220, 222, 225, 226, 227, 228, 232, 237, 238, 239, 242, 245, 257, 262, 264, 267, 271, 276, 277, 283, 289, 290, 291, 298, 303, 304, 305, 306, 308, 310, 312, 314, 316, 327, 328, 333, 335, 346, 347, 354, 359, 376, 377, 385, 394, 403, 407, 410, 411, 414, 433, 440, 474, 484, 489, 508, 510, 511, 512, 513, 514, 515, 516, 517, 519, 520, 521, 524, 526, 528, 534, 541, 542, 543, 554, 555, 562, 563, 564, 565, 567, 603, 604, 605, 606, 607, 676, 694, 695, 696, 793, 794, 798, 800, 803, 823, 829, 831, 845, 846, 850, 854, 857, 897, 898, 900, 901, 902, 912, 915, 916, 923, 934, 948, 966, 969, 1003, 1010, 1021, 1027, 1028, 1031], "42074": 309, "421": [347, 727, 757, 1000], "421087": 266, "42165": 143, "422": [591, 592, 727, 757, 761, 1000], "4226193151": 53, "423": [171, 1021], "4232": [44, 53], "423641": 198, "424": [184, 223], "4242": [44, 53], "42425183539869415": 313, "425": [154, 226, 614, 1021], "4254": [163, 368], "426": [142, 1021], "4260": [750, 753], "427": [163, 230, 368, 503, 504, 581, 582, 585, 1021], "427329": 246, "428": [199, 1021], "4285714285714286": 1000, "429": 280, "4294": 1037, "43": [163, 174, 236, 263, 264, 283, 354, 368, 376, 801, 815, 886, 1021], "430": [347, 415, 530], "431": 368, "4310090": 770, "432": [263, 344, 405, 1021], "4321": 662, "4325": 58, "433": [257, 368], "43348936": 220, "4337": 996, "433725": 0, "434": 328, "43475": 879, "436": [236, 338, 1021], "4362": 1036, "437": [173, 1021], "437362": 198, "4375": 86, "438": [183, 1008], "43847489": 130, "43873": 348, "4387766": 53, "4394": 1039, "44": [44, 118, 172, 183, 184, 194, 280, 287, 342, 475, 886, 906, 909, 982, 1000, 1007, 1021, 1031], "440": [175, 183], "440409": 198, "4406": 469, "44063": 53, "4409": [44, 53], "441": 347, "44139186": 300, "4415": 58, "442": [163, 179, 368, 498], "4425765": [652, 662, 683], "443": [99, 1021], "44300751539296973": 53, "44300752": 53, "443238": 266, "44373091": 1001, "44381023": 210, "44412786": 533, "445": [257, 1008], "445978": 198, "446": [347, 727, 757, 1000], "447268": 87, "4472869": 130, "4474": 377, "4478": 1036, "448": [283, 346], "4486": 541, "449": [45, 408, 532, 782], "4496": [44, 53], "44e": 657, "45": [75, 97, 105, 115, 149, 159, 172, 185, 198, 206, 223, 262, 270, 274, 275, 277, 325, 335, 407, 410, 411, 561, 562, 626, 633, 645, 646, 651, 659, 660, 661, 680, 681, 682, 789, 798, 909, 990, 1000, 1008, 1021, 1027, 1031, 1034], "450": [171, 173], "4500": 220, "45070924": 665, "451": 645, "451933": 87, "453": [55, 257, 353, 1021], "4544": 44, "455": [309, 348, 1021], "4550": 365, "456": [45, 408, 532], "45612256": 659, "45663524": 659, "457": 614, "4576": 836, "458333315172": 53, "459": [403, 438], "459074": 246, "46": [44, 53, 86, 118, 206, 242, 377, 513, 591, 592, 681, 682, 716, 823, 909, 914, 1010, 1021, 1027], "46033": 493, "46043": 493, "46081961": 1001, "461": [130, 377, 1021], "462234": 246, "463": [223, 280, 864], "463088": 53, "464": [242, 1021], "46428631511221642143151251232633109": 53, "465660": 63, "465730": 198, "466": 1007, "4666": 633, "46779927": 52, "468": 91, "4685851328722167": 318, "46874778": [652, 662, 683], "469": [55, 91], "46915237": [652, 662, 683], "4694": 521, "469474": 198, "4697": 81, "47": [44, 115, 118, 204, 366, 490, 491, 532, 538, 974], "470": [296, 1021], "471": 368, "47140": 403, "472": 46, "47236": [366, 494], "47330339": 411, "4738": 1036, "475": 134, "4755331": 652, "476": [49, 1021], "47668": 348, "477": [135, 1021], "478": [207, 1021], "4783967": 246, "478397": 246, "478522": 198, "47885": 348, "4792": 223, "47928": 348, "4794": 198, "4795": 198, "4796": 198, "479658": 660, "4798": 198, "47985": 493, "47987268e": 192, "4799": 198, "48": [44, 53, 67, 115, 118, 149, 172, 246, 309, 368, 377, 403, 507, 595, 699, 747, 829, 840, 989, 1002, 1010, 1027], "480": [194, 347], "4801": 198, "4802": 198, "4803": 198, "4804": 198, "4805": 198, "4806": 198, "4807": 198, "4809": [198, 266], "481": [287, 347, 1021], "4810": 198, "4812": 47, "4815": 198, "48204257": 1001, "4828": 198, "483": 647, "4830": 198, "4831": [198, 654], "4832": 198, "4836": 198, "484": 176, "4841": 198, "484109": 198, "4846": 198, "485": [184, 185, 696, 1021], "4852": 198, "4855": 198, "4857596147013469": 93, "486": [109, 208, 1021], "4860": 198, "4866": 198, "4867": 198, "4869": 198, "487": [53, 261, 725, 1021], "4872": 198, "48736655": 666, "4874": 198, "4876": 198, "4880": 198, "4881": [198, 1036], "48841": 493, "48842": 493, "4885": 198, "48858": 377, "4888": 198, "489": [69, 347, 1021], "4891": 198, "48938813e": 192, "4894": 198, "48979592": 445, "4898431": [366, 489], "49": [44, 48, 163, 210, 242, 365, 366, 368, 376, 403, 446, 453, 713, 727, 757, 765, 794, 798, 801, 886, 1000, 1010, 1034], "490": 257, "491": [122, 696, 1021], "492": [257, 642, 993], "4923": 648, "4928": 198, "493": [64, 642, 905, 993, 1021], "4936": 198, "4939": 1038, "494": [350, 1021], "494021": 489, "4948": 47, "495": [144, 229, 1021], "495761": 377, "49665188": 210, "4967": 521, "4976": 595, "498": [44, 1021], "499": [163, 368, 377], "4995": 1037, "49999993": 996, "4daf4a": [79, 95], "4dbd33": 118, "4e": 226, "4e9a06": [92, 97], "4eacc5": [92, 97], "4f": [47, 48, 58, 137, 145, 147, 220, 221, 223, 262, 308, 912], "4hm3d": 1051, "4i": 83, "4if": 52, "4th": [163, 175, 368], "4the": [52, 154, 183, 192], "4toler": [103, 104, 139, 155, 156, 160, 233, 234, 243, 244, 246, 257, 262, 270, 277, 301, 313, 316, 322], "4x": [377, 1046, 1050], "4x11": 287, "4x4": [368, 408, 411], "5": [44, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 60, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 127, 129, 132, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 160, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 188, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 206, 207, 208, 209, 212, 213, 216, 217, 218, 219, 220, 221, 223, 225, 226, 227, 228, 230, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 248, 249, 250, 251, 252, 253, 254, 257, 258, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 292, 293, 295, 296, 298, 299, 300, 301, 303, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 321, 322, 324, 325, 327, 328, 329, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 346, 347, 348, 350, 351, 352, 353, 354, 366, 367, 368, 369, 371, 375, 376, 377, 379, 383, 384, 385, 389, 395, 396, 397, 401, 402, 403, 404, 407, 408, 410, 411, 412, 413, 414, 415, 418, 433, 434, 435, 436, 438, 440, 442, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 465, 468, 478, 479, 480, 481, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 501, 510, 511, 512, 513, 514, 516, 517, 518, 520, 521, 525, 528, 530, 531, 533, 534, 535, 536, 537, 538, 540, 541, 542, 543, 544, 549, 552, 553, 554, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 580, 590, 591, 592, 595, 600, 602, 603, 605, 606, 609, 612, 613, 614, 615, 618, 619, 621, 622, 624, 626, 627, 628, 629, 630, 631, 633, 635, 636, 637, 640, 642, 645, 646, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 688, 689, 691, 692, 693, 695, 696, 697, 699, 703, 705, 707, 709, 712, 713, 718, 720, 721, 723, 724, 725, 727, 728, 729, 731, 733, 736, 739, 740, 741, 743, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 757, 770, 771, 779, 782, 783, 785, 786, 788, 789, 790, 791, 792, 795, 797, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 811, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 834, 835, 836, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 862, 863, 864, 865, 870, 871, 872, 874, 875, 877, 878, 879, 880, 881, 882, 884, 885, 886, 888, 890, 891, 892, 893, 894, 895, 899, 905, 906, 907, 908, 909, 910, 911, 913, 915, 923, 927, 928, 931, 932, 936, 937, 947, 948, 949, 950, 951, 953, 955, 956, 964, 965, 969, 970, 971, 974, 975, 976, 977, 978, 979, 980, 989, 990, 992, 995, 996, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1010, 1012, 1014, 1015, 1021, 1022, 1026, 1027, 1029, 1032, 1033, 1034, 1036, 1038, 1039, 1041, 1045, 1046, 1047, 1050], "50": [0, 44, 47, 48, 50, 53, 55, 62, 67, 69, 70, 73, 74, 83, 85, 92, 93, 98, 99, 102, 103, 115, 118, 120, 123, 129, 134, 137, 140, 146, 149, 152, 153, 163, 168, 170, 171, 172, 173, 182, 183, 184, 191, 194, 203, 206, 209, 213, 217, 219, 221, 223, 225, 229, 230, 235, 236, 238, 242, 246, 257, 258, 263, 265, 266, 276, 283, 301, 303, 307, 314, 316, 325, 327, 329, 333, 341, 347, 366, 368, 371, 376, 391, 407, 410, 411, 412, 415, 438, 469, 475, 476, 497, 501, 518, 520, 523, 530, 536, 541, 550, 551, 566, 591, 592, 604, 606, 607, 614, 616, 657, 658, 665, 666, 667, 669, 675, 676, 677, 692, 713, 793, 801, 815, 834, 854, 905, 914, 995, 996, 1000, 1001, 1003, 1006, 1010, 1021, 1023, 1031, 1048, 1051], "500": [50, 79, 83, 90, 93, 94, 96, 115, 116, 127, 129, 138, 140, 147, 155, 162, 167, 188, 218, 219, 226, 243, 244, 248, 249, 253, 257, 263, 266, 276, 277, 283, 289, 295, 307, 313, 318, 319, 339, 358, 410, 416, 465, 466, 470, 471, 472, 477, 478, 479, 480, 610, 612, 613, 615, 620, 623, 624, 649, 650, 653, 654, 655, 679, 681, 682, 989, 1015], "5000": [89, 195, 220, 221, 223, 314, 886], "50000": 62, "500000": 299, "5000000": 56, "50000000": 170, "50000013": 996, "500526": 149, "500x500": [104, 244, 262, 538], "501": 0, "5012": 1037, "5016": [405, 416, 471], "5029": [405, 416, 471], "503452": 299, "5036": 1038, "504185": 299, "50447799": 1001, "505": [174, 830, 1021], "506": [113, 1021], "507": [254, 404, 1021], "50755672": 462, "507943": 266, "5082": 1020, "509": [219, 1021], "50941682": 1001, "50_000": [310, 347], "50sampl": 391, "51": [48, 62, 172, 223, 280, 283, 767, 777, 996, 1027], "51082562": 588, "512": [205, 782], "512281": 253, "512595": 299, "51292546": 611, "513": [204, 854, 1003, 1021], "513034": 299, "5131": [47, 1036], "51341712": 998, "5141": 1037, "51462041": 850, "5149": 47, "515": 44, "515390": 377, "516": 403, "5166": 672, "5166646": 765, "517": [48, 448, 458], "517272": 253, "518": [150, 1021], "5182": 1036, "51841231": 660, "5186": 1036, "519": [227, 1021], "5193": 47, "51958": 172, "51963999": 111, "51e": 603, "52": [44, 118, 172, 206, 403, 632, 798, 1031], "520": [627, 854, 990, 1003], "52003279": 1001, "5208": 198, "521": 948, "52106591": 130, "5211": 1038, "5212": 198, "522": 906, "5224167": 53, "5229": 1038, "523": 521, "524": 53, "5243": 411, "52433293": 411, "5244": 198, "525": [435, 627, 990], "5251": 1037, "526": [52, 905, 1021], "526599": 198, "527": [194, 528, 1021], "5279": 1038, "5282": 1036, "5289": 47, "529": [59, 1021], "5291": 1037, "5295": 1038, "52955942": 850, "5299": 1037, "53": [44, 86, 118, 242, 403, 410, 532, 538, 543, 793, 794], "530": [309, 1021], "5315170": 53, "5316": 346, "532489": 266, "533": 183, "5337": 1036, "534": [68, 183, 1021], "5355": 1036, "5359": 1038, "536": [172, 283], "5360": 1036, "53777511": 53, "538": [71, 1021], "53844117956": 765, "5395559": 220, "53959628e": 192, "54": [67, 118, 163, 188, 194, 206, 209, 242, 366, 368, 487, 515, 1032, 1033], "54035582": 765, "541": [448, 458], "5415": 997, "5417": 223, "542": [163, 368], "5420": 541, "542052": 198, "5425": 521, "543": 194, "5431": 1036, "543841": 198, "544": [96, 1021], "54434690031882": 105, "54488318": 380, "546": [270, 1021], "5460": 1037, "54675220": 53, "5469": 368, "547": [353, 403], "5488135": 380, "549": 64, "5495": 1036, "54980": 538, "54e": [195, 603, 604], "55": [123, 183, 188, 203, 206, 223, 227, 262, 325, 376, 403, 407, 487, 595, 801, 807, 815, 829, 1000, 1031], "5500": [317, 688, 997], "550213": 198, "55102041": 445, "5515": 747, "552": [318, 1000, 1021], "55212743": 354, "55249": 595, "55390036": 130, "554": [213, 221, 222, 300, 1021], "5540": 1037, "55422893": 411, "555": 716, "5558": 47, "558": 176, "55800226": 220, "559": [184, 615], "5591": [689, 693, 997], "55968825": 645, "56": [44, 53, 140, 223, 236, 242, 377, 713, 736, 1000, 1010, 1021, 1027, 1031], "560": [206, 514, 515], "561": [264, 403], "561464362648773": 93, "5625": 86, "564": 206, "56479934": 354, "56485654": 130, "565": 263, "566": [206, 645, 646, 651, 659, 660, 661, 680], "568": [163, 645, 646, 651, 659, 660, 661, 680], "569": [163, 327, 368, 497, 590, 593, 594, 596], "5697": 1038, "56b4e9": 248, "57": [104, 167, 183, 272, 301, 368, 369, 389, 395, 396, 705, 838, 1021, 1031], "570": [163, 368], "570655": 198, "57142857": 721, "572": 782, "573": 411, "5732": 1038, "57320793": 411, "573491": 198, "574": [91, 280, 531, 538, 1021], "5748": 491, "5749": [366, 490, 491], "575": [102, 206], "576": [782, 1010], "5762": 1037, "576989": 246, "577": [163, 368, 762], "579": [521, 1000], "58": [77, 99, 110, 368, 405, 416, 471, 765, 996], "580": [183, 347, 845, 846, 1021], "5804131": 130, "5805": 1037, "5807": 1003, "581": 188, "581012": [366, 487], "5814": 1038, "58149261": 411, "58195950e": 192, "582": 906, "5828": [366, 490, 491], "583": 403, "5833": [739, 1000], "583333315172": 53, "58364548": 998, "585": 348, "5857": 1036, "5863": 377, "58667835e": 192, "586798": 198, "587": [48, 1021], "5871": 678, "5874": 1037, "588": [87, 1021], "5882004012129721": 93, "589": [605, 1010], "589715": 198, "59": [44, 188, 194, 223, 368, 377, 403, 507, 823, 1000, 1027, 1031], "590": [63, 1021], "59122734": 666, "592": [238, 610, 613, 624, 1007], "592373": 317, "5925110": 53, "5929": 1037, "593": 138, "594": [176, 206], "594754": 198, "59489497": 220, "595": 206, "5956": 1039, "596": 716, "5960": 220, "5963": 1041, "59678424": 86, "597": [182, 206, 1021], "598": [91, 127, 168, 274, 538, 1021], "5981": 541, "598533": 198, "599": 679, "5991": 1038, "5_000": 188, "5a": 885, "5d": 48, "5determin": [143, 275, 309], "5e": [45, 67, 120, 197, 593, 594, 596], "5e5": 206, "5f": 316, "5m": 56, "5n_": 112, "5number": 155, "5th": [53, 146, 149, 175, 403], "5the": [139, 192, 243], "5x": 1048, "6": [0, 44, 46, 48, 49, 50, 51, 52, 53, 58, 64, 65, 67, 68, 69, 75, 79, 80, 82, 83, 85, 89, 90, 93, 94, 95, 96, 97, 98, 100, 103, 105, 106, 107, 109, 110, 111, 113, 115, 120, 122, 126, 129, 132, 135, 139, 143, 146, 147, 149, 151, 153, 154, 155, 158, 160, 163, 167, 170, 172, 173, 174, 175, 178, 179, 180, 183, 184, 185, 186, 188, 190, 191, 192, 194, 198, 200, 201, 204, 206, 207, 208, 210, 219, 221, 223, 225, 226, 229, 232, 233, 234, 235, 236, 240, 243, 244, 246, 248, 249, 250, 251, 253, 254, 256, 257, 258, 261, 262, 263, 264, 265, 266, 270, 272, 273, 274, 275, 276, 277, 282, 285, 288, 296, 298, 300, 301, 303, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 322, 324, 325, 328, 329, 335, 336, 338, 340, 341, 342, 344, 347, 348, 352, 353, 354, 365, 366, 368, 369, 371, 373, 375, 376, 377, 384, 389, 395, 396, 401, 403, 404, 407, 408, 410, 411, 412, 418, 423, 430, 433, 438, 442, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 457, 458, 459, 460, 461, 478, 479, 480, 481, 486, 488, 493, 502, 512, 514, 521, 527, 535, 537, 538, 544, 550, 554, 558, 559, 560, 564, 565, 566, 567, 591, 592, 600, 602, 608, 609, 610, 613, 614, 624, 626, 627, 629, 630, 635, 636, 643, 644, 656, 657, 658, 675, 678, 689, 690, 693, 694, 699, 700, 702, 709, 711, 721, 729, 739, 743, 746, 747, 751, 752, 754, 770, 779, 786, 789, 791, 798, 799, 800, 802, 803, 808, 810, 811, 813, 818, 819, 822, 829, 830, 831, 832, 840, 841, 842, 844, 845, 846, 852, 853, 855, 856, 857, 863, 865, 866, 872, 873, 875, 878, 880, 883, 884, 888, 889, 902, 920, 924, 927, 929, 931, 932, 942, 943, 944, 948, 949, 950, 952, 954, 955, 956, 964, 974, 977, 985, 986, 988, 989, 990, 994, 996, 997, 1000, 1010, 1011, 1014, 1015, 1016, 1021, 1027, 1029, 1032, 1033, 1034, 1037, 1039, 1044, 1048, 1049, 1051], "60": [44, 46, 58, 73, 77, 92, 105, 113, 123, 206, 217, 223, 225, 226, 246, 251, 271, 276, 325, 338, 346, 365, 403, 407, 446, 453, 713, 801, 1000, 1010, 1031, 1034], "600": [64, 83, 91, 144, 153, 154, 366, 679], "6000": [301, 626], "601052": 299, "601707": 198, "602": [151, 1021], "60244657": 850, "60276338": 380, "603": [96, 444], "604": [127, 176, 538, 1021], "606": [285, 612, 835, 1001, 1021], "6072758064261095": 167, "607752": 146, "608": [140, 301, 1021], "608013148566445": 313, "60809415": 661, "60834549": 90, "60836363e": 192, "609": [176, 377], "61": [73, 112, 184, 223, 365, 368, 377, 454, 538, 557, 713, 823, 950], "6100451": 115, "6101": 1038, "611": [261, 263, 538], "6114": 828, "6114326": 206, "6114327": 206, "6114328": 206, "6114329": 206, "6114330": 206, "611676": 198, "612": 791, "6121": 1037, "6126": 1038, "613": [288, 1021], "6147": 1036, "615373": 183, "616": [842, 1002, 1010], "61611719": 170, "616900e": 223, "617": [91, 266, 325, 403, 770, 1021], "6173": 1037, "617715": 146, "6178": 1037, "618": [91, 261], "6181": 1038, "6182": 1037, "618263": 198, "619": [96, 125, 444, 1021], "619052": 366, "61958": 172, "6196": [266, 1036], "6198": 747, "62": [48, 53, 184, 188, 223, 256, 317, 321, 325, 354, 366, 490, 491, 542, 845, 846, 1027, 1034], "620": [110, 495, 645, 646, 651, 659, 660, 661, 680, 1021], "621": [91, 770], "621645": 198, "622": [91, 258, 538, 1021], "62241605": 194, "622811": 146, "623": [163, 842, 1002], "6231": 1020, "6237": 223, "624": [339, 1007, 1021], "625": [206, 617, 708], "6250": 1038, "6258": 1036, "626": [82, 195], "6261": 1040, "626286": 198, "62717609": 220, "62722912": 53, "62745778": 1001, "628": 347, "6282": 1037, "6284": 1020, "6288": 1038, "6291456": 86, "63": [46, 48, 257, 368, 410, 554, 555, 562, 563, 699, 727, 801, 815, 823, 915, 916, 1000], "630": 725, "630084": 115, "63035731": 411, "630382": 317, "631": [123, 1021], "6312": 53, "631883": 246, "63188318": 246, "632": 309, "633": 220, "6331": 44, "6332": 44, "63327171": 194, "6333": 44, "6334": 44, "6335": 44, "6338211367099804": 310, "63394388": 194, "634": [213, 1021], "635": [44, 615], "636": [194, 377], "63667341": 90, "6369216": 155, "637": [116, 645, 646, 651, 659, 660, 661, 680, 1021], "6371000": 765, "6374": 1039, "6375861597263857": 947, "638": [347, 377], "638768": 87, "638843": 299, "639": [100, 313, 1021], "63bit": 1042, "64": [44, 48, 53, 69, 86, 91, 120, 172, 183, 226, 236, 237, 241, 261, 272, 287, 292, 358, 359, 368, 377, 385, 389, 404, 408, 415, 492, 495, 499, 597, 598, 645, 657, 687, 688, 689, 690, 691, 693, 906, 1003, 1027, 1031, 1033, 1039, 1040, 1043, 1044, 1045, 1048], "640": [401, 486, 503, 504, 581, 582, 585, 989], "640000e": 223, "640460e": 223, "641": [328, 1021], "64185414": 665, "641980e": 223, "642": [286, 1021], "64236448": 533, "643": [107, 261, 1021], "6440": 220, "645": [91, 606], "6452": 1039, "646": 175, "6463": 1040, "647": 91, "6472": 1037, "6476": 521, "647689": 198, "648026": 146, "648fff": 201, "649": 328, "6497": 1037, "64_conda": 379, "64bit": 1031, "64x64": [120, 366, 408], "65": [44, 70, 184, 206, 272, 309, 403, 435, 499, 514, 595, 699, 742, 793, 794, 823, 1007, 1031, 1032, 1033], "650": 401, "6505186632729437": 93, "6507": 1038, "651": 377, "652": 347, "652739": 198, "653": [377, 610, 613, 624, 852], "6545": 1043, "656": 366, "6567": 852, "657": [153, 263, 1021], "6572": 852, "6573": 1038, "65799352e": 192, "658": 116, "6586": 1037, "66": [44, 229, 309, 368, 403, 420, 457, 529, 604, 631, 712, 784, 785, 831, 884, 981, 1000, 1012], "660": 184, "660797": 246, "661086": 266, "6624": 1043, "662409": 198, "663": [147, 899, 1008, 1012, 1021], "664": [85, 163, 368, 1021], "665": 44, "6650": 53, "6651": 1037, "666": [170, 403, 847, 990], "6660": 1037, "6666": [739, 1000, 1037], "66666667": [730, 783, 855, 1010], "666667315174": 53, "6667": 1037, "66670169e": 192, "667": [163, 720, 741, 1000], "667219": 146, "668": [178, 1021], "6689": 1039, "6691": 1037, "6697": 1037, "66e": 603, "67": [99, 183, 223, 368, 403, 404, 495, 513, 514, 515, 626, 666, 713, 796, 815, 892, 990, 1000, 1014, 1027, 1031], "670": [175, 176, 208, 257], "670090e": 223, "67074117": 115, "671": 1012, "67251877": 665, "673": [116, 347, 377], "67443065": 130, "67451144e": 192, "675": [167, 347], "675318": 87, "676": 668, "6764": 1037, "678008": 206, "678009": 206, "678010": 206, "678011": 206, "678012": 206, "678013": [206, 223], "678359": 198, "67876527": 86, "67877978": 86, "679": [208, 905], "67e13": 604, "68": [44, 199, 301, 324, 403, 532, 538, 588, 684, 685, 1031], "681": [91, 377], "6814162": 155, "6817": 1037, "682": 377, "6821": 48, "682720e": 223, "683920e": 223, "684": [103, 111], "6846": 1037, "6848": 1040, "685": [200, 720, 741, 1000, 1021], "6852": 263, "6860": 145, "687": [474, 1012], "6875": [86, 716], "688": 111, "689015": 299, "689143": 299, "689751": 299, "69": [46, 53, 199, 257, 308, 325, 403, 467, 468, 605, 606, 757, 1000, 1010], "690": [145, 208, 1021], "6902": 1037, "691": 721, "6913": 1037, "692": 134, "692470": 299, "692730e": 223, "6929": 1020, "692901": 146, "693": 1000, "6931": 869, "69314718": [413, 611, 1010], "695": 261, "69513": 91, "6954": 1037, "69545": 91, "695810e": 223, "69735": 91, "698": [91, 257], "6984743": 170, "69892343": 210, "699691": 366, "69e": 686, "6d": 48, "6f": [56, 124, 268, 738, 796], "6non": 253, "6ppm": 172, "6th": 175, "6the": [156, 235], "7": [44, 46, 48, 52, 53, 54, 55, 64, 67, 69, 71, 77, 79, 80, 86, 87, 88, 89, 93, 97, 98, 100, 103, 104, 106, 111, 113, 115, 123, 134, 137, 139, 142, 143, 146, 149, 150, 154, 155, 156, 163, 176, 178, 180, 182, 183, 184, 185, 186, 188, 192, 193, 195, 205, 206, 207, 208, 223, 225, 232, 234, 235, 237, 238, 243, 244, 246, 248, 249, 252, 253, 257, 258, 262, 263, 264, 267, 269, 270, 274, 280, 282, 283, 285, 288, 289, 291, 300, 301, 303, 307, 309, 311, 312, 313, 315, 316, 317, 319, 321, 324, 325, 326, 327, 332, 339, 342, 343, 346, 347, 348, 354, 366, 368, 369, 375, 376, 377, 389, 395, 396, 401, 407, 408, 411, 412, 414, 415, 418, 435, 440, 442, 444, 446, 447, 448, 449, 451, 452, 453, 454, 457, 458, 459, 460, 463, 467, 468, 487, 493, 495, 512, 529, 530, 531, 532, 533, 535, 541, 552, 553, 558, 559, 586, 589, 592, 598, 603, 609, 626, 627, 629, 630, 631, 632, 636, 645, 646, 648, 651, 652, 656, 657, 659, 660, 661, 662, 675, 677, 680, 681, 682, 690, 692, 694, 698, 699, 702, 707, 709, 712, 721, 724, 725, 727, 728, 729, 732, 745, 746, 747, 751, 752, 754, 786, 791, 792, 795, 798, 800, 802, 803, 808, 811, 818, 819, 822, 828, 831, 835, 836, 839, 845, 846, 854, 862, 863, 865, 866, 870, 877, 878, 885, 900, 901, 903, 948, 949, 952, 953, 956, 965, 969, 970, 989, 990, 995, 996, 998, 1000, 1001, 1003, 1004, 1006, 1010, 1014, 1015, 1021, 1027, 1029, 1032, 1033, 1034, 1037, 1038, 1039, 1040, 1044, 1049, 1052], "70": [44, 46, 51, 99, 103, 105, 134, 184, 242, 248, 263, 325, 366, 368, 407, 433, 490, 491, 681, 682, 713, 727, 757, 801, 815, 989], "700": [83, 257, 314], "7000": 223, "701": 91, "702266": 198, "703": [210, 401, 510, 1021], "70359377": 194, "7049": 1037, "7049787496083262": 93, "706026": 198, "707": [143, 881, 893, 1010, 1021], "7071": 1039, "708": [186, 535, 537, 544, 751, 1021], "70814003": 354, "7083": 1000, "708333315174": 53, "7089": 1038, "709": 264, "70e": 603, "70x": 1048, "71": [44, 67, 163, 165, 210, 223, 368, 507, 731, 737, 767, 777, 892, 1000, 1027, 1033], "710": 401, "7101": 1037, "711": 348, "7139": 314, "714": [46, 220, 1000, 1021], "714699": 246, "71469931": 246, "71518937": 380, "7152": 1037, "7154": 1037, "715413": 146, "7159": 1037, "716": 510, "718": [289, 1021], "7187": 1037, "718747": 198, "719": [243, 1021], "7194": 1037, "71e": 603, "72": [44, 46, 47, 53, 140, 170, 376, 823, 829, 864], "7200": 648, "721": [126, 535, 537, 544, 1021], "722124e": 223, "723": [91, 238], "723665": 277, "72384803": 86, "7239": 1037, "724702": 266, "7248": 1037, "725": [328, 348], "7256": 634, "726": 1008, "7260": 1037, "7261": 1037, "726573": 183, "72667194": 1001, "72850319": 1001, "7295": 1037, "7298221281347037": 44, "72e": [603, 657], "73": [67, 267, 325, 801, 815, 831, 851, 914, 1010, 1031, 1033], "7301": 1037, "730129e": 223, "7313": 47, "73153": 377, "731633e": 223, "732": 208, "7321432711315247203224138160467097": 53, "7323": 1037, "7325": 1037, "73286964": 115, "732913": 277, "7329816": 115, "733": 283, "7331": 1038, "7332": 909, "735": [251, 1021], "7350": 1037, "7353": 1037, "7356": 1038, "736": [238, 1021], "7365": 1038, "73654189": 53, "7367": 314, "737": [238, 521], "7376": 1038, "7382": 1020, "7387": 472, "7388": 1038, "739": 477, "739950": 277, "74": [44, 321, 324, 325, 368, 588, 737, 801, 815, 884, 1027], "740176e": 223, "7411": [465, 470, 1037], "74165267": 115, "7419": 1037, "743": 261, "74310541": 170, "7436926291700352": 203, "744": [261, 283], "744029": 277, "744055e": 223, "7441": 1038, "744497e": 223, "74495357": 194, "7459": 1038, "746": [195, 368, 1000], "7464": 1038, "746492": 263, "748": [346, 377], "749": [272, 1021], "7490": [1037, 1038], "75": [44, 46, 47, 48, 50, 53, 70, 79, 88, 113, 137, 160, 174, 175, 179, 183, 188, 190, 193, 199, 223, 246, 250, 251, 257, 263, 272, 288, 303, 314, 315, 344, 346, 354, 445, 498, 548, 636, 657, 706, 712, 735, 740, 741, 746, 754, 757, 795, 801, 883, 891, 895, 902, 918, 936, 937, 980, 1000, 1002, 1010, 1016, 1033], "750": [82, 88, 263], "75000": 206, "7501": 1038, "750348": 146, "750389": 198, "7506": 1038, "751": [184, 319, 1021], "752": 346, "752470": 277, "752867": 198, "753": 74, "7532": 485, "7533": [416, 471, 1038], "754": [306, 348, 1021], "75474165": 1001, "7548": 1038, "7548291": 319, "75499244": 115, "7553": 1037, "7565": 1038, "756687e": 223, "7567": 1038, "756752e": 223, "7569": 466, "757": [163, 261, 283, 368], "7573": 1038, "75747153": 210, "7578": [266, 1038], "75788833": 160, "757915": 277, "759": 283, "7593": 1037, "7594": 1037, "75949622": 210, "75th": [242, 883], "75the": 314, "76": [44, 48, 188, 206, 325, 346, 354, 368, 377, 778, 831, 865], "760": [44, 149], "7608": 1020, "76195467e": 192, "762": [106, 1000, 1021], "762537": 198, "763": [223, 1021], "7632": 1037, "7638": 996, "764": [105, 346, 721, 782, 1000, 1021], "764779": 198, "765012": 317, "7655": 1038, "765671": 198, "766": [134, 1021], "7660": 1037, "7661": 1038, "7668": 1039, "767": 347, "7674": [521, 1038], "767498": 146, "7676": 1037, "768": 86, "7680": 1037, "76823": 46, "7685": 1038, "769": [136, 283, 1021], "76995": 366, "77": [44, 46, 48, 67, 79, 86, 163, 188, 227, 272, 325, 365, 368, 531, 707, 776, 823], "77000": 206, "7702": 1038, "770926": 277, "771": [163, 737], "772": [346, 724], "7721": 1038, "7723": 1038, "7724": 1037, "773": [155, 263, 647, 843, 1021], "77310": 366, "7732": 1037, "7738": 1039, "7739": 1038, "77426368": 52, "775": 58, "7750": 1037, "775047": 675, "775151": 675, "7756": 1037, "77630514": 411, "7768366": 998, "777": 377, "7771": 1038, "77764": 399, "7786": 1037, "779": 346, "7794": 1038, "779751": 277, "7798": 909, "7799": 1037, "78": [44, 188, 223, 272, 325, 490, 491, 654, 663, 664, 684, 685, 801, 807, 823, 829, 831, 1000, 1020], "780": [236, 261, 1021], "780mb": 346, "7811798": 246, "781180": 246, "7812": 1038, "781265": [366, 494], "7814": 1038, "7816": 53, "7819": [403, 1038], "782": [291, 1021], "7823": [1038, 1039], "7825": 1038, "7825594": 52, "7826": 368, "782755": 63, "7831": 346, "783149": 103, "7833": 471, "783392": 263, "7838": 1038, "784": 300, "7840": 87, "7849": 1038, "785": [190, 1021], "785063": 103, "78571427112143152472031331383346104": 53, "785ef0": 201, "786": [86, 103], "786015": 103, "7863": 1038, "786432": 86, "787": [645, 646, 651, 659, 660, 661, 680], "7872": 1038, "7880": 1038, "7887550": 53, "788808": 317, "789": [159, 410], "7894": [899, 1012], "79": [44, 46, 53, 67, 69, 111, 112, 123, 163, 188, 301, 325, 368, 376, 405, 470, 521, 595, 652, 823, 843, 1031, 1033], "790": [44, 102, 226, 1021], "7906": [621, 648], "79064206": 609, "79084103": 354, "791": 176, "7914": 1038, "791667315161908911936472223112": 53, "79269019073225": 287, "792784560169093": 310, "7929": [347, 1038], "7943": 1041, "7944": 1038, "7946": 1037, "795": 647, "7954": 1038, "7957317073170732": 246, "796": [146, 253, 1021], "7970": 1038, "7971": 662, "7972": 551, "798": [103, 410], "7983": 1038, "798301": 246, "7986": 1038, "7986499491396734": 167, "798982054": 1000, "799": [176, 347], "7990": 1038, "7998": 1038, "7_qbz5n2kfra8p0": 389, "7f6676064b80": 104, "7paramet": 326, "7the": [143, 151, 154, 257, 309, 317, 322], "7x": 319, "8": [1, 2, 44, 45, 46, 47, 48, 49, 52, 53, 54, 58, 63, 64, 65, 67, 68, 69, 71, 73, 78, 79, 83, 86, 88, 93, 95, 97, 98, 100, 102, 103, 104, 106, 107, 112, 115, 118, 120, 121, 124, 125, 126, 128, 130, 134, 137, 139, 140, 145, 146, 148, 152, 154, 155, 162, 163, 168, 170, 172, 173, 175, 176, 179, 182, 183, 184, 185, 186, 188, 190, 191, 197, 199, 200, 202, 206, 207, 210, 213, 215, 221, 223, 225, 226, 227, 229, 230, 233, 234, 236, 237, 238, 240, 244, 245, 246, 248, 249, 250, 252, 253, 254, 257, 258, 259, 261, 262, 263, 264, 266, 267, 268, 270, 273, 274, 277, 280, 282, 285, 287, 291, 295, 298, 300, 301, 303, 305, 306, 307, 308, 309, 312, 313, 314, 316, 317, 322, 324, 325, 326, 328, 329, 332, 335, 339, 340, 341, 342, 343, 346, 347, 348, 352, 354, 359, 365, 366, 367, 368, 369, 371, 375, 376, 377, 384, 389, 395, 396, 397, 401, 403, 404, 407, 408, 410, 411, 412, 414, 416, 433, 435, 438, 439, 440, 443, 445, 446, 448, 451, 452, 453, 458, 459, 465, 466, 467, 468, 469, 470, 471, 472, 475, 476, 477, 479, 480, 481, 483, 486, 493, 495, 499, 500, 511, 513, 528, 531, 535, 537, 540, 542, 544, 546, 547, 550, 552, 553, 562, 567, 580, 586, 587, 588, 589, 602, 603, 627, 628, 629, 635, 636, 647, 657, 658, 665, 666, 669, 675, 676, 677, 678, 689, 692, 693, 694, 695, 698, 699, 700, 702, 706, 707, 709, 710, 715, 721, 728, 729, 730, 742, 743, 746, 747, 751, 752, 754, 779, 783, 784, 786, 789, 790, 791, 792, 796, 798, 800, 802, 803, 808, 811, 818, 819, 822, 823, 824, 829, 831, 832, 834, 843, 845, 846, 852, 862, 863, 870, 877, 884, 886, 902, 907, 910, 929, 931, 932, 942, 943, 944, 947, 948, 949, 953, 966, 969, 974, 975, 976, 977, 978, 979, 980, 986, 989, 990, 996, 997, 998, 1000, 1003, 1008, 1010, 1014, 1023, 1024, 1027, 1028, 1029, 1032, 1033, 1034, 1038, 1039, 1044, 1045, 1047, 1049, 1050, 1051], "80": [44, 46, 51, 65, 67, 100, 104, 112, 154, 160, 173, 184, 190, 221, 240, 242, 244, 262, 309, 324, 328, 338, 340, 346, 352, 354, 366, 368, 371, 401, 407, 412, 414, 440, 475, 507, 538, 713, 801, 815, 823, 886, 899, 918, 989, 995, 996, 1000, 1007, 1013, 1016], "800": [83, 315, 366, 582, 692], "8000": [223, 267], "800000011920929": 353, "80001846774603": 310, "8002": 1038, "8003": 1039, "8005": 1038, "8006": 1038, "801": [70, 265, 1021], "8010": 1038, "801775e": 223, "802": [47, 163, 368], "8022": [47, 469, 1040], "802601": 198, "8028": 1038, "803483": 146, "803882e": 223, "8040": 1037, "804414": [366, 494], "805": 208, "8053": 1038, "8059798": 194, "806": 648, "8061": 1038, "8065": 1038, "8066": 1039, "8068": 1038, "807": [261, 263], "8075": 1039, "8086": [618, 1038], "8087": 1038, "8093": 1038, "8094": 1038, "80956739": 1001, "80_000": 139, "81": [44, 67, 83, 246, 324, 325, 403, 699, 801, 815, 832, 1001, 1003, 1010], "810": [45, 185, 830, 1021], "8100": 1020, "8102": 1039, "810596": 366, "811": [241, 1021], "8117": 1038, "812": 1010, "8120": 1038, "8125": [86, 721], "812526": 198, "8129": 1039, "8133333333333334": 294, "81355169": 411, "8137": 1038, "8139": 1038, "814": 185, "815476315189119122164721021826110": 53, "8157": 1020, "8159": 1038, "81595461": 246, "815955": 246, "816": [264, 467, 468, 762], "8160": 1038, "8174": 1038, "817724": 198, "8181": 1038, "819": 411, "8190": 1039, "81940995": 411, "8198": 1038, "82": [44, 86, 91, 142, 160, 165, 209, 294, 305, 324, 789, 801, 815, 1000, 1003, 1031], "820": [44, 53, 845, 846], "820705": 198, "8212": 221, "8216": 1040, "822": 791, "822097": 183, "8224": 1038, "8225220806196525": 203, "823": [283, 328], "824": 1021, "8243": 1020, "825": 751, "8251": 1038, "8259": 1038, "826": 948, "827917": 146, "828": [283, 789, 1000], "8282": 1038, "829429": 253, "8295": 1038, "82e": 657, "83": [46, 67, 71, 100, 324, 368, 707, 787, 921, 995, 1000, 1034], "830000": 299, "8306": 1038, "831": [103, 1021], "8316": 1038, "832": [185, 305, 410, 552, 553, 1021], "83236428": 411, "8327921": 115, "83281226": [845, 846], "8333": 495, "83333": 765, "833333": 183, "8335": 1038, "834310": 198, "8344": 1038, "8345": 595, "8353": 47, "8354": [621, 1038], "83548752": 609, "8355": 1037, "8357649721080234": 271, "836": [141, 162, 1021], "8361": 1039, "836224": 63, "8363": 1038, "8377": 1038, "83816048": 645, "83822343": 998, "83833": 377, "8387": 836, "839": [236, 679], "84": [44, 46, 102, 160, 199, 223, 242, 305, 324, 354, 368, 384, 410, 411, 815, 1010], "840": 377, "84000": 206, "840000": 299, "8407": 102, "84077985": 194, "841": 103, "84127814": 665, "84253": 1001, "843": [58, 1021], "844": [410, 552, 553], "8446": 1038, "8449": 1038, "846": [237, 1021], "847": [267, 789, 1021], "847222222222214": 203, "8473": 411, "8478": 1040, "8480": 1020, "8481": 1038, "8484": 1039, "848743": 63, "849": 1010, "849835": 87, "85": [46, 56, 69, 83, 88, 102, 123, 160, 220, 223, 262, 274, 301, 325, 346, 354, 410, 435, 495, 497, 552, 553, 595, 651, 657, 746, 754, 801, 829, 1000, 1001, 1031], "850000": 299, "850031": 198, "8508": 1040, "851": [263, 1000], "8512": 1038, "8513": 618, "851348": 63, "8515": [411, 1038], "85151335": 411, "851792": 63, "852": [197, 789, 1021], "85253229": 90, "852774": 146, "853174": 63, "854": 261, "85418642": 354, "8549": 1038, "855": 48, "8554": 1039, "855465": 299, "857": [264, 347], "857400": 63, "858486250088675": 310, "85857475": 130, "8586": 1038, "859007": 63, "8591": 1038, "86": [53, 69, 102, 160, 199, 305, 324, 325, 402, 913], "860000": 299, "861": [163, 368, 789, 790, 1000], "861053": 63, "861106": 63, "861533": 63, "8617": 1039, "861868": 63, "862": [146, 1021], "86209893": 115, "8626621": 319, "8628": 634, "8631": 262, "8640": 184, "865400": 63, "866": 1008, "866161": 63, "866571": 63, "867": [98, 106, 1021], "8672": 1038, "8676": [619, 1038], "8678": 622, "868": [146, 159], "868443": 51, "869": 789, "8697": 262, "8698": 1038, "87": [46, 69, 102, 176, 257, 261, 325, 513, 595, 666, 778, 801, 823, 881, 893, 1000], "870": [163, 368], "871": [74, 111, 112, 405, 470], "871277": 63, "871965": 63, "872": [74, 789, 864, 1008], "8720": [553, 1039], "872186": 63, "873": [163, 368], "873724": 63, "87382323": 661, "874": [105, 789, 790, 1000], "87421f": 118, "874771": 146, "875": [168, 668], "875315171": 53, "875315173": 53, "875941": 63, "876": 348, "87600388": 170, "8768": 1038, "8769": 1040, "877": [48, 261], "877206": 261, "8773": 1040, "877981": 63, "878": [48, 112, 1021], "878051": 198, "878964": 813, "87e": 603, "87mb": 346, "88": [44, 46, 48, 69, 199, 210, 262, 301, 320, 324, 325, 350, 366, 368, 371, 402, 405, 469, 645, 646, 651, 659, 660, 661, 680, 865, 974, 1031], "880": 44, "880191": 198, "880298": 198, "88089948": 411, "88096009": 130, "882": 263, "88213": 366, "882561": 263, "883": [82, 148, 1021], "883065": 63, "8833": 495, "8835": 1038, "884": [276, 283], "8845": 1038, "885": [48, 163, 328, 368], "8854": 1038, "887": [348, 948], "88727338": 155, "8874": 1038, "8878": 836, "8880": 619, "8881": 622, "889": [261, 433], "88978285": 1001, "89": [44, 48, 69, 172, 199, 324, 325, 982, 995, 1000, 1010, 1031, 1034, 1042], "890": 261, "891": 48, "891mb": 346, "8922": 1038, "893055": 198, "8931": 1038, "8936": 1038, "894264": 246, "8947": 915, "8948018": 53, "89483932": 998, "8948621": 1001, "896": 647, "8963": 266, "8965": 410, "897": [268, 1021], "8973": 1038, "89856": 813, "899": [69, 261], "8992": 1038, "8995": 1038, "8pt": 1010, "8valu": 243, "8x": 870, "8x8": [69, 199, 236, 292, 301, 368, 499], "9": [44, 47, 49, 52, 53, 62, 64, 65, 68, 69, 70, 71, 77, 79, 83, 88, 91, 95, 97, 103, 106, 113, 142, 143, 145, 146, 147, 148, 152, 154, 156, 163, 165, 170, 174, 179, 182, 183, 184, 185, 186, 192, 193, 199, 206, 218, 219, 222, 223, 225, 227, 228, 234, 236, 237, 243, 244, 246, 248, 249, 250, 251, 256, 257, 262, 264, 266, 270, 272, 274, 275, 276, 282, 285, 287, 288, 291, 292, 293, 298, 299, 301, 303, 305, 306, 307, 309, 310, 312, 313, 316, 317, 318, 320, 321, 324, 325, 327, 329, 335, 339, 344, 354, 368, 369, 377, 384, 389, 395, 396, 401, 402, 404, 405, 407, 411, 435, 439, 446, 453, 459, 460, 463, 478, 479, 480, 481, 486, 493, 495, 513, 517, 524, 531, 535, 536, 537, 544, 557, 564, 567, 581, 589, 602, 603, 605, 606, 626, 629, 633, 636, 638, 645, 646, 651, 652, 657, 659, 660, 661, 662, 680, 681, 682, 686, 690, 692, 694, 699, 702, 709, 712, 724, 727, 732, 742, 749, 770, 779, 780, 781, 798, 800, 802, 804, 805, 819, 822, 823, 829, 831, 834, 836, 839, 842, 843, 847, 848, 853, 856, 862, 863, 871, 877, 880, 948, 949, 953, 972, 989, 995, 996, 1000, 1004, 1010, 1014, 1015, 1027, 1029, 1032, 1033, 1034, 1036, 1045, 1047, 1051], "90": [46, 48, 50, 53, 55, 69, 106, 129, 130, 145, 146, 147, 149, 160, 172, 186, 191, 199, 205, 208, 223, 248, 272, 274, 305, 309, 318, 324, 325, 354, 358, 371, 377, 407, 560, 801, 829, 834, 886, 995, 1000, 1027, 1046, 1047], "900": [48, 83, 106, 107, 320, 1021], "9000": 223, "900000e": 223, "9010": 1037, "9012": 1039, "9015": [662, 1039], "9019": 1038, "9022": 1038, "9024": 1038, "9026666666666666": 146, "903": [48, 782], "9039": 262, "904": [184, 261, 404], "9041": 1039, "9043": 1039, "9044": [263, 1038], "90453403": 462, "904556e": 223, "904558e": 223, "904747e": 223, "904751e": 223, "905": 261, "905206": 87, "906": [192, 308, 1021], "9067": 1038, "9069": 1040, "90766181": 246, "907662": 246, "9078": 1038, "908": 1000, "90809432": 130, "9085": 1039, "9087": 1045, "909": 48, "909293": 299, "90934343": 86, "909909": 146, "90e": 603, "90th": 358, "91": [46, 69, 84, 123, 172, 301, 324, 325, 410, 995, 1027], "910": 44, "9100": 1038, "9101": 1039, "9105": 1038, "9108": 1038, "912": 74, "912632": 299, "913": [410, 556], "914370e": 223, "914388e": 223, "9144057": 53, "9145": 1038, "914537e": 223, "914574e": 223, "9147": [262, 1039], "9149": 1037, "915": 48, "9151": 1039, "9157": 1039, "916": 82, "91629073": 588, "916579e": 223, "9167": 317, "917": [82, 246, 353], "917281": 146, "917618e": 223, "919": 257, "92": [53, 67, 69, 83, 123, 160, 188, 261, 271, 301, 324, 325, 335, 366, 368, 535, 537, 544, 559, 595, 696, 801, 815, 823, 995, 1027], "9206": 1038, "9219": 1038, "9221": 648, "9222": 1039, "923": 184, "923223": 813, "92329566": 130, "9234": 1039, "9239": 1038, "924": 48, "92461872": 128, "925": [139, 1000, 1021], "9250": 1041, "92529176": 1001, "9257": 1039, "9259": 1038, "9266666666666666": 142, "927": 433, "9274": 1041, "9277": 1038, "9278": 1038, "928": [112, 433], "9283826090033377": 319, "9284": 1038, "928571": 223, "9288": 1041, "9289": 1038, "93": [46, 67, 69, 163, 206, 246, 261, 325, 346, 368, 778, 789, 801, 823, 829, 913, 995, 1000], "9300": 263, "930000": 299, "9302": 1038, "9304": 1039, "932": 48, "93271427": 170, "933": [48, 106, 262, 407, 1021], "933197": 246, "933253": 146, "9333": 407, "933333": 854, "9341": 262, "935": 1038, "9354": 1039, "93551852": 246, "935519": 246, "936": [48, 433, 1000], "936480": 63, "9372": 1039, "937443": 63, "9375": 86, "937532": 63, "937597": 63, "9378": 1039, "938": [48, 786, 1000], "938613": 63, "939": [645, 646, 651, 659, 660, 661, 667, 680], "9399": 1039, "93fletcher": 996, "93goldfarb": 996, "93lindenstrauss_lemma": 899, "93shanno_algorithm": 996, "94": [44, 69, 71, 87, 122, 142, 205, 240, 246, 305, 324, 325, 402, 410, 662, 789, 823, 995, 1000, 1001, 1010, 1027, 1031], "940": 44, "9400": 263, "940000": 299, "940184": 146, "940201": 63, "940373": 63, "941": [48, 198, 1021], "94114649": [845, 846], "9416": 53, "9417": 670, "9431": 836, "944": [48, 342, 789, 1021], "9456": 1039, "94592424": 661, "946": 112, "94731329": 666, "9473684210526315": 312, "947958": 989, "948": [786, 1000], "9484": 1039, "949": 48, "9490": 368, "9492": 1039, "9493": 262, "9497": 1039, "9499": 637, "95": [46, 53, 55, 69, 79, 85, 90, 100, 142, 146, 149, 174, 183, 190, 206, 208, 223, 250, 251, 254, 262, 263, 264, 288, 296, 305, 309, 316, 325, 335, 354, 410, 524, 631, 632, 635, 646, 660, 749, 789, 823, 902, 996, 1000, 1001, 1013, 1034], "950": 48, "950000047683716": 353, "9502547": 194, "9507": 1038, "9515": 1039, "951958": 989, "952": [48, 82], "9521": 1039, "95224448": 115, "952289": 198, "9524": 1039, "952914e": 223, "953": [48, 82], "953061": 300, "95373": 366, "954": [881, 893], "955": [283, 407, 653], "9556947": 115, "9558": 1038, "955989": 989, "956": [48, 515], "956038": 299, "9563": 262, "9565": 368, "9569": 1039, "957": [48, 276, 308, 729, 1000, 1021], "9579": 1039, "958": 48, "9583": 402, "9584": [626, 1038], "959": [881, 893], "9593": 1038, "9595": 673, "9597": 1041, "9599": 1039, "95th": [53, 146, 149, 749], "96": [44, 53, 69, 95, 174, 232, 242, 261, 301, 305, 308, 309, 324, 325, 368, 407, 550, 681, 682, 711, 823, 831, 989, 995, 1000, 1010, 1031], "9600": 1038, "9604": 1038, "961": 862, "961009": 989, "9612": 1039, "961904": 854, "96190476": 1003, "962": 48, "96228895": 130, "9623": [262, 1038], "9630": 674, "9641": 1038, "9643": 262, "9647": 1039, "965": [48, 1000], "9655": 1039, "9656": 1039, "966": 46, "9662": 262, "9666": 540, "966981": 198, "967": [106, 1000], "9677": 1038, "967e": 1004, "968": [172, 182, 208, 261, 1021], "9681": 1039, "9685": 262, "9686": 1039, "969": 365, "9693": 1038, "9694898472080092": 318, "9697": 1038, "96e": 603, "97": [69, 129, 163, 186, 240, 254, 325, 335, 368, 377, 384, 407, 645, 646, 651, 657, 659, 660, 661, 680, 681, 682, 686, 995, 1001, 1010, 1031], "9701": 1039, "9707": 1039, "971": [172, 1021], "9711": [262, 1038], "9717": [262, 1038], "9723": 1039, "9726": 1039, "973": [50, 347, 407, 1021], "9731": 1039, "9733": [619, 622], "973554": 317, "973770": 198, "974": [236, 317, 353, 1021], "974e": 411, "975": [163, 182, 1015], "9750": 1038, "9759": [48, 262], "976158": 366, "977": [44, 351, 407, 1021], "9771": 551, "9772": 1039, "9775": 1039, "977890": 253, "9781605585161": 403, "978444": 299, "9786": 1039, "9788": 1038, "98": [69, 77, 79, 87, 95, 97, 113, 123, 163, 192, 227, 232, 261, 298, 305, 325, 368, 407, 410, 658, 840, 863, 896, 995, 1000, 1002], "980": [127, 1021], "980000": 299, "9802": 1038, "981": [163, 271, 368, 1000], "9815": 1038, "9816": 1039, "9821": 851, "983": [104, 729, 1021], "9830": 1038, "9832": 1039, "9833": 495, "98350372e": 192, "9836": 262, "983667": 989, "9837": 1039, "9843": 1044, "9847": 1038, "984ea3": [79, 95], "985": 271, "9850": 206, "9851": 1039, "9858": 1039, "986": [163, 1021], "98633022": 130, "986429": 300, "9865": 1038, "9866": [609, 618, 621], "9866666666666667": 142, "9868": [899, 1012], "986989": 266, "987": 347, "9875": 1039, "98809919e": 192, "9884": 678, "9885": 670, "9886": 1039, "989": 271, "989341": 198, "98mb": 346, "99": [46, 53, 63, 69, 79, 84, 95, 120, 223, 232, 236, 242, 248, 250, 261, 264, 303, 325, 359, 364, 368, 407, 411, 489, 646, 660, 670, 681, 682, 789, 823, 852, 969, 995, 1000, 1010, 1014, 1026, 1033], "990": [668, 1000], "9900": 223, "9903": 262, "9907": 1040, "9908": 1039, "991": [271, 1000], "991584977345022": 167, "991653": 299, "9922": 1038, "9924": 538, "99244": 538, "9926": 262, "992766": 299, "993": [262, 271], "9933333333333333": 142, "9935": 836, "993879": 299, "9939": 1039, "993919": 51, "994": [167, 283, 1021], "9944": 262, "9945": 1038, "9946452785996055": 312, "9951": 1041, "9969977": 53, "997": [47, 75, 163], "99726573": 155, "9978": 1044, "9979": 44, "9979281": 53, "998": [163, 298, 1021], "9980": [44, 1039], "9981": 44, "998142": 53, "998273": 257, "9987": 638, "99891212e": 192, "998e": 1004, "999": [223, 243, 257, 263, 410, 717, 862, 863], "9990": 223, "9991": [663, 664, 1000, 1039], "99918858": 130, "9993": [44, 652, 654, 1039], "9994": 662, "9995": 44, "9996": 650, "999791942438998": 313, "9998": [51, 296], "9999": [51, 223, 296, 327, 495, 626, 1039], "99999": 327, "999999": [79, 95], "999exponenti": 243, "9b59b6": 262, "9exponenti": 243, "9momentum": 243, "9the": 156, "A": [0, 2, 20, 26, 42, 54, 56, 57, 58, 63, 64, 65, 68, 72, 74, 75, 76, 79, 80, 82, 86, 87, 89, 90, 92, 93, 94, 95, 97, 100, 103, 104, 107, 109, 112, 116, 118, 121, 122, 123, 135, 136, 139, 141, 143, 153, 154, 155, 156, 160, 162, 167, 170, 172, 174, 175, 176, 180, 183, 184, 185, 194, 196, 204, 207, 210, 215, 219, 220, 223, 226, 234, 239, 242, 244, 251, 253, 257, 260, 261, 262, 263, 264, 266, 270, 275, 278, 280, 298, 303, 305, 308, 309, 312, 313, 314, 316, 317, 319, 322, 325, 326, 327, 329, 335, 339, 340, 346, 347, 348, 352, 353, 354, 358, 360, 365, 366, 368, 371, 373, 374, 375, 376, 379, 383, 384, 385, 386, 388, 394, 398, 400, 401, 403, 404, 405, 406, 408, 409, 410, 411, 412, 414, 415, 416, 417, 426, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 454, 457, 458, 459, 460, 461, 462, 463, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 484, 486, 487, 489, 491, 494, 497, 498, 499, 500, 501, 505, 507, 508, 509, 510, 511, 512, 517, 519, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 605, 606, 608, 609, 610, 616, 619, 626, 627, 628, 629, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 704, 705, 710, 711, 712, 716, 717, 719, 721, 723, 724, 725, 726, 727, 732, 737, 738, 741, 743, 744, 745, 748, 750, 751, 752, 753, 755, 756, 757, 758, 759, 760, 765, 767, 768, 775, 776, 777, 778, 779, 782, 789, 791, 792, 794, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 826, 827, 828, 829, 830, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 889, 890, 891, 893, 894, 895, 896, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 942, 944, 947, 948, 949, 957, 958, 960, 961, 984, 988, 989, 990, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1013, 1014, 1015, 1016, 1018, 1019, 1020, 1021, 1026, 1031, 1033, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051, 1052], "AND": [371, 736], "AS": 415, "AT": [2, 366, 492], "And": [53, 180, 224, 225, 228, 230, 239, 263, 346, 373, 379, 397, 403, 407, 411, 527, 586, 587, 589, 692, 693, 996, 997, 1000, 1021, 1038], "As": [0, 31, 44, 47, 59, 63, 75, 78, 86, 88, 90, 91, 99, 113, 116, 125, 134, 135, 141, 143, 144, 145, 147, 149, 153, 155, 158, 161, 167, 172, 173, 179, 183, 185, 186, 188, 190, 193, 194, 198, 199, 206, 210, 213, 223, 230, 239, 251, 257, 258, 260, 261, 263, 264, 266, 282, 288, 304, 315, 320, 321, 327, 335, 339, 347, 348, 350, 352, 354, 358, 359, 366, 370, 371, 373, 376, 383, 384, 385, 397, 401, 403, 404, 405, 406, 407, 408, 410, 411, 412, 413, 442, 551, 559, 563, 608, 618, 631, 654, 655, 658, 665, 666, 671, 673, 675, 677, 686, 736, 759, 765, 847, 848, 849, 851, 853, 884, 989, 994, 996, 997, 999, 1000, 1001, 1003, 1007, 1010, 1014, 1015, 1016, 1019, 1020, 1024, 1031, 1037, 1042, 1047, 1049, 1051, 1052], "At": [53, 64, 107, 134, 143, 211, 239, 257, 264, 275, 280, 282, 324, 327, 358, 359, 375, 386, 394, 399, 406, 410, 433, 436, 461, 586, 587, 589, 600, 833, 835, 872, 965, 989, 996, 999, 1001, 1005, 1014, 1024], "Be": [103, 139, 155, 160, 176, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322, 346, 371, 405, 564, 565, 647, 653, 654, 655, 657, 658, 668, 679, 704, 819, 820, 880, 1010, 1032], "Being": [371, 385, 386, 996, 1003], "But": [44, 49, 86, 182, 207, 208, 263, 283, 303, 314, 352, 353, 383, 403, 406, 409, 410, 458, 747, 913, 914, 989, 1000, 1015, 1020], "By": [58, 64, 103, 120, 139, 141, 143, 149, 150, 151, 154, 155, 156, 160, 183, 184, 185, 190, 204, 210, 233, 234, 239, 243, 244, 246, 257, 264, 270, 272, 275, 277, 280, 303, 309, 312, 313, 314, 316, 318, 319, 322, 339, 346, 352, 353, 359, 371, 373, 377, 378, 385, 394, 402, 403, 404, 406, 407, 408, 409, 410, 412, 434, 437, 441, 442, 446, 460, 463, 464, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 521, 546, 547, 554, 555, 556, 557, 561, 562, 583, 584, 586, 587, 589, 604, 607, 631, 632, 670, 672, 674, 676, 690, 692, 694, 697, 698, 699, 700, 702, 703, 718, 730, 731, 735, 739, 784, 785, 788, 795, 797, 804, 805, 851, 852, 865, 866, 878, 879, 881, 883, 893, 895, 903, 908, 909, 913, 914, 915, 916, 931, 932, 989, 990, 992, 996, 1000, 1007, 1008, 1010, 1012, 1016, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1041, 1043, 1045, 1048, 1049, 1050, 1051, 1052], "FOR": 371, "For": [2, 31, 44, 48, 49, 52, 53, 54, 58, 64, 65, 67, 69, 73, 75, 79, 80, 82, 86, 88, 90, 91, 93, 100, 103, 104, 105, 111, 116, 121, 137, 139, 141, 143, 146, 147, 149, 150, 151, 152, 154, 155, 156, 159, 160, 163, 167, 169, 172, 174, 178, 179, 183, 184, 185, 192, 194, 196, 198, 200, 204, 206, 207, 210, 211, 213, 222, 223, 225, 227, 230, 232, 233, 234, 235, 236, 237, 239, 243, 244, 245, 246, 253, 257, 260, 261, 262, 263, 264, 269, 270, 275, 277, 282, 283, 293, 298, 300, 301, 305, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 327, 328, 329, 335, 337, 339, 342, 346, 347, 348, 350, 351, 352, 353, 354, 358, 360, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 383, 384, 385, 386, 394, 399, 400, 401, 402, 403, 404, 407, 408, 410, 411, 412, 413, 414, 419, 426, 433, 434, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 456, 457, 458, 460, 461, 462, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 485, 491, 493, 495, 500, 511, 512, 520, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 547, 548, 550, 551, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 567, 569, 570, 579, 580, 581, 582, 586, 587, 589, 590, 591, 592, 595, 600, 605, 606, 607, 609, 610, 613, 618, 621, 622, 626, 627, 628, 629, 630, 631, 632, 634, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 683, 686, 688, 689, 690, 692, 693, 695, 697, 698, 700, 701, 702, 704, 706, 707, 709, 712, 720, 728, 730, 731, 739, 740, 741, 742, 764, 770, 779, 783, 784, 785, 788, 789, 790, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 815, 818, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 834, 836, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 870, 871, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 890, 891, 892, 893, 894, 895, 896, 897, 898, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 931, 937, 954, 958, 964, 983, 989, 990, 992, 993, 994, 995, 996, 997, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1014, 1015, 1016, 1018, 1023, 1024, 1028, 1031, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "If": [0, 44, 51, 52, 53, 64, 65, 69, 77, 82, 88, 103, 104, 113, 123, 132, 139, 141, 143, 146, 149, 150, 151, 154, 155, 156, 160, 172, 176, 179, 183, 184, 185, 192, 206, 220, 222, 223, 233, 234, 235, 239, 242, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 288, 296, 301, 303, 308, 309, 313, 314, 316, 317, 319, 321, 322, 335, 339, 342, 343, 346, 347, 348, 352, 353, 354, 358, 359, 365, 366, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 383, 385, 386, 389, 394, 397, 400, 401, 402, 403, 404, 405, 406, 407, 408, 410, 411, 412, 413, 414, 415, 416, 417, 424, 427, 428, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 505, 506, 507, 509, 511, 512, 516, 519, 520, 521, 524, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 582, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 605, 606, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 707, 709, 711, 712, 713, 714, 716, 717, 718, 722, 723, 727, 728, 729, 730, 731, 732, 733, 737, 739, 742, 746, 747, 749, 754, 755, 756, 757, 758, 759, 760, 762, 764, 765, 767, 768, 769, 770, 772, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 788, 789, 790, 793, 794, 795, 796, 797, 798, 799, 800, 801, 803, 804, 805, 807, 813, 815, 818, 821, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 920, 926, 927, 929, 930, 931, 932, 934, 935, 936, 937, 940, 942, 943, 944, 947, 949, 951, 953, 960, 964, 967, 969, 970, 973, 974, 980, 983, 984, 985, 986, 988, 989, 990, 992, 994, 995, 996, 997, 998, 1000, 1003, 1004, 1006, 1007, 1010, 1012, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1023, 1028, 1031, 1034, 1035, 1036, 1037, 1040, 1041, 1043, 1044, 1045, 1047, 1049], "In": [0, 7, 38, 44, 45, 47, 49, 51, 52, 53, 54, 55, 63, 64, 65, 67, 71, 73, 82, 86, 88, 90, 91, 93, 99, 100, 103, 104, 106, 107, 109, 111, 112, 113, 116, 120, 122, 125, 126, 127, 128, 132, 134, 137, 139, 140, 141, 142, 143, 144, 146, 148, 149, 150, 151, 152, 154, 155, 156, 159, 160, 162, 163, 167, 171, 172, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 194, 196, 197, 198, 199, 200, 203, 204, 206, 207, 208, 209, 210, 211, 213, 222, 223, 232, 233, 234, 235, 237, 238, 239, 240, 242, 243, 244, 245, 246, 251, 253, 256, 257, 260, 261, 262, 263, 264, 265, 266, 268, 269, 272, 273, 275, 276, 277, 278, 280, 283, 286, 289, 290, 292, 301, 303, 304, 305, 308, 309, 310, 312, 313, 314, 316, 317, 319, 320, 321, 322, 326, 335, 339, 342, 346, 347, 348, 350, 352, 353, 354, 358, 359, 360, 364, 365, 366, 367, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 383, 384, 385, 386, 388, 389, 390, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 420, 433, 436, 437, 438, 439, 440, 443, 444, 445, 448, 458, 459, 460, 465, 468, 471, 490, 493, 500, 505, 506, 508, 520, 531, 533, 535, 537, 538, 539, 541, 544, 545, 546, 547, 548, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 586, 589, 600, 604, 607, 609, 610, 629, 631, 632, 633, 635, 642, 643, 644, 646, 647, 648, 650, 652, 654, 657, 658, 660, 662, 664, 665, 667, 668, 673, 674, 675, 678, 679, 683, 684, 685, 696, 699, 703, 709, 718, 720, 727, 729, 730, 731, 735, 736, 739, 741, 743, 755, 757, 758, 782, 784, 786, 789, 795, 797, 798, 799, 800, 801, 804, 805, 807, 815, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 839, 840, 841, 842, 843, 844, 847, 848, 849, 851, 852, 853, 855, 856, 857, 862, 870, 872, 878, 879, 883, 884, 886, 890, 891, 893, 894, 895, 896, 897, 898, 900, 901, 902, 905, 906, 907, 910, 913, 915, 920, 930, 932, 943, 949, 988, 989, 990, 992, 993, 994, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1024, 1028, 1031, 1032, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050, 1051, 1052], "Ines": 1048, "It": [0, 31, 44, 47, 48, 49, 53, 59, 63, 71, 73, 75, 86, 88, 91, 100, 103, 104, 109, 111, 113, 120, 123, 124, 126, 129, 134, 137, 139, 140, 142, 143, 144, 146, 154, 155, 156, 163, 172, 173, 174, 178, 179, 183, 184, 185, 191, 194, 196, 198, 206, 210, 219, 222, 223, 225, 226, 232, 234, 237, 239, 242, 243, 244, 245, 257, 258, 259, 261, 262, 263, 264, 266, 269, 270, 272, 275, 277, 280, 283, 289, 290, 291, 293, 294, 296, 303, 307, 308, 309, 310, 312, 313, 314, 316, 318, 320, 321, 322, 331, 335, 339, 342, 346, 347, 348, 354, 358, 359, 360, 364, 366, 367, 368, 369, 371, 373, 375, 376, 377, 379, 380, 383, 384, 385, 386, 389, 394, 397, 401, 402, 403, 404, 405, 407, 408, 409, 410, 411, 412, 413, 414, 415, 428, 434, 437, 438, 439, 440, 441, 443, 444, 445, 448, 455, 458, 460, 463, 464, 465, 470, 474, 481, 483, 493, 505, 512, 521, 530, 532, 533, 535, 537, 538, 546, 547, 556, 557, 564, 587, 594, 600, 604, 605, 606, 610, 613, 614, 618, 619, 621, 622, 626, 629, 630, 631, 632, 640, 641, 642, 645, 646, 649, 651, 652, 653, 654, 657, 659, 660, 661, 662, 665, 666, 667, 669, 670, 671, 673, 675, 676, 677, 678, 680, 681, 682, 683, 686, 687, 689, 691, 692, 693, 695, 696, 697, 698, 699, 700, 702, 704, 708, 709, 710, 716, 724, 732, 735, 743, 744, 748, 759, 760, 763, 766, 782, 784, 789, 800, 801, 804, 805, 807, 813, 814, 815, 823, 824, 826, 829, 832, 841, 842, 847, 848, 849, 851, 854, 855, 856, 857, 861, 862, 863, 867, 868, 869, 873, 874, 875, 879, 882, 884, 894, 897, 898, 902, 903, 905, 907, 908, 909, 910, 911, 912, 918, 922, 926, 935, 949, 957, 958, 970, 973, 975, 976, 977, 978, 979, 980, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1010, 1011, 1013, 1014, 1015, 1016, 1018, 1019, 1024, 1031, 1032, 1033, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050, 1051], "Its": [109, 261, 265, 367, 385, 408, 413, 535, 922, 995, 996, 1000, 1005, 1008, 1014, 1019, 1024, 1034, 1048], "NOT": [239, 289, 368, 374, 560, 811, 845, 846], "Nearness": 626, "No": [62, 148, 165, 194, 212, 213, 239, 257, 264, 266, 325, 342, 368, 379, 389, 397, 403, 470, 556, 557, 588, 589, 608, 634, 644, 663, 675, 677, 684, 685, 798, 942, 996, 1048], "Not": [52, 88, 104, 184, 244, 262, 264, 358, 383, 397, 403, 421, 422, 425, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 465, 466, 467, 468, 469, 470, 471, 472, 528, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 560, 563, 566, 567, 579, 580, 581, 586, 587, 589, 626, 627, 628, 629, 676, 687, 688, 689, 690, 691, 693, 795, 798, 799, 801, 804, 805, 815, 842, 845, 846, 849, 850, 851, 853, 857, 869, 877, 880, 881, 883, 886, 897, 898, 909, 1000, 1006, 1019, 1040], "OF": 368, "ON": 317, "ONE": [365, 605, 606], "OR": [303, 403, 414, 440, 1042], "Of": [49, 63, 65, 178, 277, 358, 373, 403, 411, 990], "On": [44, 52, 53, 56, 64, 103, 104, 115, 116, 125, 134, 137, 139, 141, 143, 146, 150, 151, 154, 155, 156, 158, 160, 171, 172, 183, 184, 185, 192, 196, 198, 208, 210, 233, 234, 235, 236, 238, 239, 242, 243, 244, 245, 246, 248, 250, 253, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 270, 275, 277, 301, 303, 305, 307, 308, 309, 313, 314, 316, 317, 319, 322, 326, 335, 342, 352, 353, 358, 369, 371, 372, 373, 375, 383, 385, 399, 401, 403, 407, 408, 410, 412, 413, 433, 642, 655, 691, 736, 762, 870, 886, 989, 993, 996, 999, 1000, 1002, 1006, 1008, 1013, 1015], "One": [2, 44, 49, 52, 62, 64, 67, 82, 88, 125, 127, 143, 146, 149, 150, 154, 180, 183, 186, 189, 210, 220, 232, 243, 253, 257, 263, 270, 273, 280, 289, 292, 301, 304, 319, 330, 332, 347, 353, 358, 368, 371, 384, 385, 397, 401, 402, 403, 406, 408, 409, 410, 411, 412, 414, 433, 440, 445, 468, 470, 474, 509, 563, 630, 638, 657, 665, 667, 672, 674, 675, 676, 789, 808, 809, 833, 834, 835, 866, 867, 878, 909, 964, 990, 992, 996, 997, 998, 999, 1000, 1001, 1003, 1004, 1007, 1008, 1010, 1015, 1021, 1022, 1026, 1035, 1037, 1044, 1046], "Or": [346, 353, 407, 408, 878, 1000, 1006, 1014], "Such": [54, 143, 150, 167, 172, 182, 190, 194, 198, 207, 257, 266, 346, 385, 386, 397, 407, 408, 410, 552, 553, 655, 990, 1000, 1003, 1010, 1016, 1041, 1046, 1048], "THE": 368, "THEIR": 371, "That": [53, 65, 120, 134, 149, 163, 183, 198, 232, 263, 267, 314, 347, 348, 352, 353, 359, 365, 373, 379, 385, 402, 407, 412, 413, 439, 442, 443, 554, 561, 591, 819, 913, 914, 989, 997, 998, 1006, 1016, 1040, 1041], "The": [2, 16, 26, 28, 31, 32, 34, 38, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 274, 275, 276, 278, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 363, 364, 365, 367, 368, 369, 370, 371, 372, 373, 374, 376, 377, 378, 380, 383, 384, 385, 386, 388, 389, 391, 394, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408, 409, 410, 412, 413, 414, 415, 416, 417, 418, 419, 423, 425, 426, 428, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 711, 712, 713, 715, 716, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 735, 736, 739, 740, 741, 742, 743, 744, 745, 746, 747, 749, 753, 754, 755, 756, 757, 758, 759, 760, 763, 765, 766, 767, 768, 771, 772, 775, 776, 777, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 921, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 934, 935, 936, 937, 938, 942, 944, 945, 946, 947, 948, 949, 951, 952, 954, 957, 958, 961, 964, 966, 967, 968, 969, 970, 973, 981, 982, 983, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1013, 1014, 1015, 1016, 1017, 1019, 1020, 1021, 1023, 1024, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "Their": [183, 366, 368, 386, 403, 643, 1031], "Then": [103, 104, 135, 139, 149, 154, 155, 156, 160, 183, 188, 194, 196, 204, 206, 210, 229, 233, 239, 245, 257, 265, 266, 270, 280, 346, 353, 365, 375, 377, 379, 389, 390, 400, 403, 406, 408, 411, 412, 554, 555, 567, 591, 719, 757, 801, 815, 905, 906, 990, 999, 1000, 1006, 1015, 1016, 1040], "There": [0, 80, 100, 140, 156, 167, 200, 223, 229, 239, 254, 258, 263, 264, 282, 346, 364, 366, 368, 371, 372, 373, 376, 383, 385, 386, 389, 400, 403, 408, 410, 411, 412, 442, 448, 458, 531, 550, 551, 556, 557, 586, 587, 589, 604, 644, 990, 996, 997, 998, 999, 1000, 1003, 1007, 1010, 1014, 1015, 1016, 1018, 1023, 1031, 1039, 1050, 1052], "These": [11, 18, 26, 33, 39, 44, 45, 47, 65, 84, 103, 104, 120, 122, 139, 142, 154, 180, 184, 198, 200, 206, 207, 208, 233, 244, 253, 257, 261, 262, 263, 275, 280, 283, 287, 301, 303, 310, 311, 316, 322, 325, 327, 354, 358, 359, 364, 367, 368, 371, 373, 375, 378, 380, 383, 385, 389, 394, 397, 400, 401, 402, 403, 406, 408, 410, 411, 412, 413, 438, 442, 444, 495, 505, 506, 512, 535, 564, 565, 600, 601, 667, 675, 676, 699, 706, 734, 779, 795, 801, 804, 805, 807, 815, 824, 826, 827, 828, 829, 830, 832, 850, 851, 870, 903, 944, 989, 991, 994, 996, 997, 1000, 1001, 1011, 1013, 1015, 1019, 1028, 1031, 1037, 1039, 1040, 1041, 1044, 1048, 1050], "To": [1, 44, 48, 64, 65, 67, 69, 80, 88, 90, 103, 104, 109, 111, 113, 116, 125, 134, 139, 143, 146, 147, 154, 155, 160, 163, 172, 173, 176, 178, 179, 182, 183, 184, 185, 188, 192, 194, 196, 206, 207, 208, 210, 213, 223, 228, 233, 234, 236, 237, 239, 242, 243, 244, 246, 253, 257, 258, 260, 261, 262, 263, 264, 265, 266, 268, 270, 276, 277, 280, 282, 300, 301, 303, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 344, 347, 350, 352, 353, 354, 358, 359, 364, 365, 369, 371, 372, 373, 375, 376, 377, 379, 383, 385, 386, 389, 397, 399, 400, 403, 404, 405, 406, 407, 408, 410, 411, 442, 444, 445, 446, 457, 460, 463, 489, 493, 499, 500, 504, 505, 506, 528, 534, 535, 536, 538, 540, 541, 542, 543, 554, 555, 556, 557, 561, 562, 566, 595, 610, 626, 631, 645, 646, 651, 652, 655, 657, 658, 659, 660, 661, 662, 683, 700, 702, 712, 729, 764, 786, 794, 804, 805, 822, 827, 834, 865, 876, 881, 895, 896, 905, 906, 910, 913, 914, 915, 916, 938, 949, 986, 989, 990, 992, 995, 996, 997, 998, 1000, 1001, 1002, 1003, 1006, 1007, 1010, 1014, 1016, 1024, 1031, 1034, 1036, 1037, 1038, 1040, 1042], "Will": [371, 494, 531, 626, 643, 644, 645, 651, 655, 656, 659, 660, 661, 662, 663, 664, 672, 674, 707, 714, 789, 870, 874, 884, 885, 1034, 1035, 1037, 1039, 1049], "Willing": [1037, 1038], "With": [62, 71, 79, 100, 107, 125, 126, 149, 151, 159, 165, 180, 184, 206, 208, 231, 233, 238, 240, 246, 263, 287, 358, 366, 369, 371, 373, 385, 394, 403, 404, 407, 410, 412, 433, 435, 498, 538, 580, 631, 632, 657, 863, 866, 868, 879, 885, 886, 912, 914, 993, 996, 1000, 1001, 1003, 1004, 1007, 1014, 1016, 1021, 1028, 1034, 1038, 1039, 1041, 1043, 1045], "_": [44, 45, 47, 48, 49, 51, 52, 53, 55, 63, 64, 65, 67, 69, 70, 75, 78, 83, 86, 88, 91, 96, 100, 102, 103, 113, 118, 120, 125, 126, 127, 129, 137, 138, 139, 143, 149, 154, 155, 158, 167, 172, 173, 174, 182, 183, 184, 186, 188, 190, 194, 196, 197, 198, 200, 204, 206, 208, 210, 218, 219, 222, 226, 229, 233, 234, 238, 242, 244, 246, 257, 258, 263, 265, 266, 267, 269, 270, 272, 273, 276, 277, 280, 286, 291, 294, 301, 305, 308, 309, 310, 313, 316, 317, 318, 320, 322, 325, 326, 334, 339, 342, 346, 348, 351, 373, 377, 385, 408, 410, 411, 415, 442, 474, 529, 530, 531, 532, 533, 535, 536, 537, 540, 542, 543, 544, 563, 595, 645, 646, 651, 652, 659, 660, 661, 662, 680, 681, 682, 683, 687, 688, 689, 690, 691, 693, 695, 696, 698, 700, 709, 710, 765, 801, 807, 815, 824, 849, 857, 878, 879, 886, 990, 996, 997, 1000, 1002, 1003, 1004, 1007, 1008, 1010, 1015, 1016, 1038], "_0": [205, 684, 996, 1000, 1015], "_1": [315, 339, 405, 408, 411, 528, 534, 535, 537, 542, 543, 544, 645, 646, 651, 652, 653, 654, 655, 659, 660, 661, 662, 680, 681, 682, 683, 767, 996, 998, 1000, 1015], "_11": 651, "_2": [112, 172, 339, 408, 411, 528, 534, 542, 543, 645, 651, 996, 1004, 1014, 1015], "_21": [645, 646, 651, 652, 659, 660, 661, 662, 680, 683], "__": [103, 105, 143, 154, 183, 184, 185, 234, 244, 264, 309, 313, 316, 385, 404, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 800, 801, 804, 805, 815, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 989, 1039, 1040], "______________________________________________________________________": 325, "________________________________________________________________________________": [51, 87, 346], "__________________________________________________________________________________": 91, "________________________________________________________ward_tre": 87, "_____________________________________________________f_regress": 87, "__add__": [413, 623], "__array__": [1034, 1041], "__array_function__": [1020, 1041], "__c": 373, "__call__": [175, 335, 385, 411, 413, 462, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 938, 967, 1038], "__class__": [206, 208, 239, 242, 265, 305, 346, 347, 348, 378], "__class_weight": 373, "__dataframe__": [143, 151, 154, 257, 309, 317, 322, 558, 559], "__doc__": [78, 107, 172, 251, 385], "__file__": [48, 50, 1044], "__getitem__": 1049, "__getstate__": [1038, 1046], "__init__": [48, 89, 132, 175, 239, 283, 335, 371, 373, 375, 376, 377, 378, 385, 411, 417, 420, 423, 426, 427, 617, 962, 1032, 1037, 1039, 1044, 1045, 1046, 1047], "__init_subclass__": 373, "__len__": 1040, "__main__": 383, "__metadata_request__fit": 239, "__mul__": 620, "__mul___": 413, "__name__": [47, 63, 94, 206, 208, 239, 242, 246, 258, 265, 305, 346, 347, 348, 378, 383, 878], "__pow__": [413, 615], "__repr__": 1040, "__sklearn_clone__": [373, 428, 1047], "__sklearn_is_fitted__": [89, 131, 180, 373, 417, 420, 983, 1021, 1044, 1045], "__sklearn_tags__": [321, 373, 954, 1050, 1051], "__version__": [147, 186, 312, 375], "_agglom": 87, "_array_api": 399, "_averaged_weighted_percentil": 1052, "_bag": 940, "_base": 249, "_basehmm": 1031, "_bay": 940, "_birch": 1041, "_breast_cancer_dataset": 163, "_build": 371, "_c_step": 1038, "_cfnode": 438, "_check_bounds_param": 1043, "_check_i": 988, "_check_param_grid": 1037, "_check_sample_weight": [1044, 1052], "_check_stop_list": [264, 589], "_check_target": 1038, "_check_x": 1041, "_class": 1000, "_class_cov": 1039, "_class_mean": 1039, "_classif": 301, "_classifier_ha": 89, "_column_transform": [103, 143, 154], "_compon": [236, 533], "_coo": [583, 584], "_count_nonzero_coeffici": 47, "_criterion": 1039, "_csr": 878, "_cython_bla": 372, "_devianc": 1000, "_diabetes_dataset": 163, "_distn_infrastructur": 275, "_doc_link_modul": 373, "_doc_link_templ": 373, "_doc_link_url_param_gener": 373, "_dotbla": 377, "_encod": 1039, "_error": 1000, "_estim": 988, "_estimator_typ": [1036, 1050], "_estimator_with_converted_arrai": 399, "_f": [175, 996], "_featur": [408, 535, 537, 544], "_fit_and_scor": 1039, "_fit_stag": [556, 557], "_forest": 371, "_fro": [528, 534, 542, 543, 645, 646, 651, 659, 660, 661, 680], "_g": 175, "_gb": 1041, "_generate_center_coordin": 54, "_get_support_mask": 599, "_get_tag": [1042, 1050], "_get_warnings_filters_info_list": 359, "_gpr": [175, 176], "_h": [535, 537, 544], "_hist_gradient_boost": 375, "_i": [401, 410, 991, 996, 1000, 1004, 1015], "_idx": 385, "_init": 191, "_init_t": 1014, "_initialize_nmf": 377, "_intermediate_coef": 373, "_is_fit": 132, "_iter": 375, "_j": [401, 991], "_k": [405, 994, 996], "_l": 1000, "_learntselectormixin": 1036, "_level": [413, 624], "_logist": 371, "_loss": [385, 1000, 1049], "_m": 1016, "_mean": 309, "_mean_frequency_by_risk_group": 206, "_method": 961, "_more_tag": [321, 1050], "_my": 371, "_n": [411, 1000], "_n_cluster": 371, "_n_compon": 544, "_n_features_out": 419, "_name_estim": 1041, "_neg": 377, "_newton_cg": 1042, "_nls_subproblem": 377, "_nmf": 377, "_not_in_sphinx": [48, 50], "_num_thread": 359, "_obj": 961, "_openmp_help": 372, "_pairwis": [1041, 1043], "_param_valid": 266, "_plain_sgd": 1046, "_plot": 324, "_po": 377, "_posterior_mod": 609, "_preprocess_data": 686, "_pvalu": 1031, "_rand": 354, "_rank": 592, "_ratio": [535, 537, 544], "_repr_html": 945, "_request": [239, 394, 1049, 1050], "_required_paramet": 423, "_reset": 48, "_run_search": 1039, "_safe_index": [2, 1044, 1048, 1049, 1051], "_safe_split": 922, "_safe_tag": [1042, 1050], "_sag": 1040, "_sampl": [236, 408, 535, 537, 544], "_samples_gener": 251, "_score": [385, 801, 815, 828, 1000, 1031, 1044], "_search": 1037, "_serial": 239, "_sgd_fast": 1046, "_skip_test": 924, "_spars": 377, "_sparse_fit": 1041, "_std": 309, "_supervis": 73, "_support": [162, 592], "_t": 1014, "_tag": 924, "_test": [213, 305, 359, 373, 1044], "_test_scor": [262, 263, 468, 592, 1044], "_train_scor": 262, "_transform_select": 1037, "_tree": [913, 914, 915, 916, 1032, 1034], "_typedef": 372, "_univariate_select": 87, "_validate_data": [321, 1050], "_valu": [413, 612], "_w": [535, 537, 544], "_weight": [54, 223], "_weight_boost": 940, "_weighted_percentil": [1044, 1052], "_which_": 184, "_x_is_even": 962, "_xfail_check": [321, 1050], "a16": [1041, 1042], "a65628": [79, 95], "a674e682c281": 376, "a_": [121, 400, 403, 535, 537, 544, 996], "a_column": 719, "a_i": 403, "a_mask": 272, "a_n": 400, "a_row": 719, "a_tru": 272, "aaa": 175, "aaaaff": [288, 291], "aaai": [403, 414, 440, 840, 1002], "aact": 175, "aaffaa": 291, "aagaard": 1035, "aakanksha": 1039, "aapl": 52, "aarch64": 379, "aaron": [491, 996, 1034, 1035, 1036, 1041, 1050, 1051], "aarshai": [1038, 1039], "aashil": 1038, "ab": [52, 56, 75, 107, 124, 130, 136, 154, 159, 163, 186, 199, 216, 218, 221, 223, 228, 263, 303, 320, 333, 344, 403, 535, 537, 544, 626, 845, 846, 880, 1000], "ab_mask": 272, "abadi": [1037, 1038], "abandon": 371, "abati": [1046, 1048, 1049, 1050, 1052], "abbi": [1041, 1042], "abbrevi": 699, "abdela": 1040, "abdulaziz": [1049, 1050], "abdulelah": 1044, "abdur": 1041, "abenbihi": 1041, "abhi": 1050, "abhijeet": 1033, "abhijeetsingh": 1051, "abhinav": [1041, 1044], "abhishek": [1034, 1035, 1041, 1045, 1047, 1048], "abhyudai": 1038, "abid": 371, "abil": [49, 53, 94, 111, 121, 146, 166, 168, 172, 174, 176, 178, 180, 182, 183, 185, 206, 210, 223, 232, 346, 360, 389, 410, 411, 413, 610, 621, 624, 783, 784, 785, 788, 789, 997, 1000, 1003, 1006, 1016, 1021, 1031, 1033, 1038, 1040, 1044, 1045, 1050], "abirami": 403, "abl": [0, 44, 45, 49, 62, 81, 88, 94, 104, 113, 116, 124, 125, 149, 151, 173, 183, 186, 194, 198, 206, 221, 223, 229, 269, 274, 276, 319, 320, 335, 354, 358, 359, 360, 365, 369, 371, 373, 375, 376, 379, 383, 397, 399, 403, 405, 407, 411, 481, 500, 531, 830, 874, 875, 877, 989, 990, 996, 999, 1000, 1001, 1006, 1010, 1013, 1016, 1017, 1020, 1037, 1038, 1042, 1049], "ablin": 1046, "abnorm": [175, 176, 219, 232, 289, 334, 366, 489, 560, 851, 1006, 1039], "abo7atm": 1043, "abort": [692, 942], "about": [3, 47, 51, 66, 79, 86, 90, 95, 102, 103, 104, 116, 142, 143, 151, 154, 160, 165, 176, 180, 182, 185, 186, 210, 222, 232, 239, 244, 253, 257, 260, 261, 262, 263, 265, 270, 282, 288, 308, 309, 312, 314, 315, 316, 317, 318, 321, 322, 325, 346, 348, 353, 354, 358, 359, 364, 366, 370, 371, 373, 375, 376, 377, 379, 384, 385, 386, 397, 402, 407, 408, 411, 413, 434, 489, 491, 492, 493, 494, 497, 498, 499, 501, 502, 507, 512, 558, 559, 591, 592, 605, 606, 613, 639, 675, 677, 744, 801, 807, 815, 824, 834, 884, 932, 990, 996, 997, 999, 1001, 1003, 1006, 1007, 1010, 1011, 1013, 1015, 1016, 1019, 1023, 1024, 1036, 1037, 1047, 1049, 1050, 1051], "abov": [44, 63, 64, 65, 73, 79, 99, 102, 103, 136, 139, 140, 143, 146, 149, 154, 155, 156, 162, 163, 165, 183, 184, 185, 195, 206, 208, 212, 216, 234, 236, 239, 240, 244, 257, 260, 263, 269, 275, 280, 288, 305, 308, 309, 313, 314, 315, 316, 319, 321, 339, 347, 348, 353, 354, 358, 359, 360, 365, 366, 368, 369, 370, 371, 373, 375, 377, 383, 385, 386, 399, 401, 403, 404, 405, 407, 408, 409, 410, 411, 413, 437, 441, 460, 463, 485, 492, 493, 494, 520, 588, 630, 633, 704, 756, 801, 805, 813, 815, 826, 868, 869, 882, 888, 894, 902, 964, 989, 990, 992, 994, 996, 997, 1000, 1003, 1005, 1007, 1010, 1014, 1015, 1016, 1020, 1037, 1049, 1052], "abraham": [1031, 1032, 1037, 1041, 1051], "abrahamowicz": 1010, "absenc": [232, 266, 385, 712, 868, 999, 1000], "absent": [385, 401, 411, 730, 755, 826], "absgrad": 1042, "absher": 1033, "absolut": [2, 44, 53, 107, 124, 143, 151, 154, 156, 163, 183, 206, 208, 212, 223, 257, 264, 309, 314, 317, 320, 322, 352, 353, 373, 397, 403, 405, 407, 408, 410, 411, 412, 413, 414, 440, 446, 452, 453, 528, 534, 539, 542, 543, 545, 546, 547, 555, 557, 558, 559, 562, 586, 588, 589, 591, 595, 600, 618, 626, 631, 645, 648, 649, 651, 653, 655, 670, 671, 673, 675, 677, 681, 682, 704, 717, 721, 737, 738, 746, 747, 749, 754, 756, 758, 796, 803, 807, 818, 821, 829, 831, 843, 845, 846, 850, 869, 874, 877, 890, 914, 916, 985, 996, 997, 1010, 1014, 1016, 1032, 1037, 1042, 1043, 1044, 1045, 1048, 1051], "absolute_error": [53, 143, 151, 154, 156, 309, 314, 317, 352, 410, 555, 557, 559, 562, 670, 914, 916, 1044], "absolute_loss": 1044, "absolutelynowarranti": 1039, "absp": 861, "abstain": 531, "abstract": [385, 408, 413, 617, 770, 1031], "abstractmethod": 1041, "absurd": 1007, "abund": [328, 366], "ac": [527, 663, 684, 685, 996, 1013], "acad": [689, 693, 997], "academ": [407, 1024], "academi": [111, 852], "acal": 139, "acategorypredict": 391, "acc": 145, "acc_clf1": 70, "acc_clf2": 70, "acc_clf3": 70, "acc_histori": 48, "acc_knn": 292, "acceler": [237, 317, 358, 383, 399, 403, 464, 692, 903, 997, 1019, 1024, 1040, 1044, 1046, 1048], "accent": [264, 343, 586, 587, 589, 1041], "accept": [103, 139, 143, 151, 154, 155, 156, 163, 167, 183, 184, 185, 234, 239, 244, 253, 257, 260, 262, 275, 309, 312, 313, 316, 317, 320, 321, 322, 335, 346, 348, 354, 358, 359, 365, 371, 373, 380, 383, 384, 385, 386, 394, 399, 403, 411, 427, 433, 437, 438, 440, 441, 444, 457, 460, 463, 505, 506, 529, 531, 534, 536, 539, 540, 546, 552, 553, 558, 559, 564, 566, 567, 579, 580, 581, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 627, 629, 634, 637, 638, 639, 640, 641, 642, 645, 646, 651, 652, 660, 662, 678, 702, 728, 743, 779, 798, 799, 800, 804, 805, 823, 847, 848, 854, 855, 856, 861, 865, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 882, 883, 884, 885, 897, 898, 929, 931, 932, 935, 988, 996, 998, 1000, 1003, 1008, 1010, 1015, 1019, 1020, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "accept_large_spars": [931, 932, 1039], "accept_spars": [139, 869, 931, 932, 1038, 1048], "access": [44, 82, 103, 109, 143, 144, 154, 183, 184, 185, 234, 242, 244, 249, 254, 309, 313, 316, 319, 320, 328, 346, 353, 358, 359, 371, 372, 373, 379, 383, 385, 386, 399, 403, 405, 406, 410, 411, 413, 446, 453, 460, 463, 533, 564, 565, 566, 567, 608, 616, 863, 864, 865, 920, 989, 996, 999, 1000, 1006, 1007, 1008, 1014, 1015, 1018, 1023, 1024, 1031, 1033, 1037, 1038, 1039, 1040, 1043, 1045, 1046, 1047, 1051], "acciaro": [1050, 1051], "accid": [206, 223], "accident": [399, 1031, 1035, 1040], "accommod": [172, 1039], "accompani": [263, 1039], "accomplish": [239, 401, 543, 997, 1001, 1003, 1024, 1048], "accord": [2, 56, 62, 64, 73, 82, 109, 140, 145, 163, 168, 206, 223, 236, 244, 245, 261, 263, 312, 314, 339, 347, 354, 371, 373, 383, 384, 385, 386, 397, 400, 401, 403, 405, 407, 408, 410, 411, 413, 433, 446, 448, 452, 456, 458, 461, 465, 501, 513, 514, 515, 522, 527, 529, 532, 533, 535, 537, 547, 550, 551, 558, 559, 560, 563, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 640, 641, 643, 644, 648, 657, 658, 669, 679, 691, 695, 736, 780, 781, 801, 802, 803, 804, 805, 808, 809, 810, 815, 826, 840, 841, 842, 843, 844, 849, 851, 852, 853, 854, 855, 856, 857, 858, 859, 868, 875, 883, 895, 897, 898, 905, 906, 907, 908, 910, 911, 994, 996, 1000, 1002, 1003, 1010, 1013, 1014, 1036, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "accordingli": [149, 184, 242, 339, 371, 375, 376, 1038, 1039, 1046], "account": [0, 53, 54, 88, 103, 122, 128, 134, 143, 149, 151, 154, 172, 178, 183, 184, 185, 223, 234, 239, 244, 257, 263, 286, 292, 309, 313, 316, 317, 322, 342, 347, 358, 367, 371, 385, 386, 394, 403, 406, 407, 408, 410, 411, 459, 558, 559, 564, 565, 626, 627, 629, 631, 632, 648, 672, 678, 704, 707, 729, 730, 731, 739, 744, 757, 784, 785, 788, 789, 802, 806, 819, 879, 989, 992, 994, 998, 1000, 1001, 1002, 1003, 1010, 1014, 1016, 1036, 1038, 1039, 1040, 1043, 1044, 1046, 1048, 1049, 1050, 1051], "acctactagaagtt": 383, "acctcctagaag": 383, "accumul": [48, 83, 141, 198, 375, 377, 403, 411, 822, 1000, 1032, 1039], "accur": [44, 49, 53, 60, 63, 64, 111, 120, 148, 167, 174, 183, 184, 200, 210, 220, 223, 257, 263, 270, 274, 275, 280, 316, 346, 347, 354, 370, 385, 401, 403, 405, 408, 410, 411, 412, 433, 439, 443, 447, 449, 455, 528, 535, 537, 539, 540, 542, 543, 544, 605, 606, 633, 804, 805, 845, 846, 948, 949, 992, 997, 1016, 1045], "accuraci": [2, 31, 38, 44, 46, 47, 48, 52, 63, 67, 68, 69, 70, 102, 103, 104, 105, 134, 140, 141, 144, 145, 152, 159, 160, 162, 168, 186, 188, 200, 206, 210, 213, 220, 221, 244, 250, 257, 261, 262, 263, 264, 265, 267, 269, 270, 277, 280, 285, 291, 292, 293, 301, 305, 308, 318, 322, 324, 325, 327, 335, 338, 339, 342, 354, 358, 384, 385, 401, 402, 403, 407, 410, 411, 412, 420, 433, 445, 465, 467, 468, 474, 529, 531, 538, 546, 547, 548, 550, 552, 554, 555, 556, 558, 561, 562, 564, 566, 609, 633, 657, 658, 665, 667, 670, 673, 674, 675, 692, 697, 703, 708, 711, 713, 718, 733, 734, 735, 739, 744, 755, 764, 788, 795, 797, 800, 823, 829, 832, 833, 834, 835, 836, 837, 840, 841, 842, 843, 844, 847, 852, 854, 855, 862, 900, 901, 905, 907, 910, 913, 915, 921, 948, 949, 989, 994, 995, 996, 997, 1001, 1003, 1004, 1008, 1012, 1014, 1016, 1039, 1040, 1049], "accuracy_histori": 48, "accuracy_multinomi": 200, "accuracy_ovr": 200, "accuracy_scor": [2, 64, 67, 134, 141, 168, 185, 244, 267, 275, 308, 319, 327, 346, 354, 384, 394, 399, 420, 554, 561, 708, 711, 730, 731, 735, 739, 784, 785, 788, 795, 797, 941, 989, 1000, 1032, 1033, 1034, 1043, 1048, 1049, 1052], "accuracy_test": 67, "acf": 143, "achar": [1038, 1039, 1040, 1041], "achiev": [44, 52, 56, 58, 65, 68, 123, 134, 142, 144, 149, 152, 154, 156, 175, 188, 206, 213, 260, 263, 270, 275, 308, 320, 327, 328, 335, 338, 339, 342, 346, 354, 358, 360, 365, 366, 368, 373, 377, 383, 385, 391, 399, 400, 401, 402, 403, 407, 408, 410, 411, 555, 562, 639, 648, 675, 677, 707, 730, 731, 739, 741, 764, 784, 785, 788, 804, 805, 841, 885, 989, 990, 992, 996, 1000, 1010, 1013, 1015, 1044], "achin": 1024, "achliopta": [236, 898, 899, 1012], "achraf": 1051, "acid": [308, 368], "acknowledg": [370, 607, 1048], "acl": [902, 1013, 1014], "acm": [365, 366, 403, 414, 440, 446, 453, 456, 508, 560, 675, 727, 757, 851, 1000, 1003, 1006, 1012], "acombin": [103, 139, 155, 156, 192, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "aconst": [104, 160, 270], "acopi": 104, "acoust": 1000, "acq": 48, "acquaint": 371, "acquir": [54, 265, 1043], "acquisit": [400, 719], "acronym": 375, "across": [0, 2, 15, 44, 53, 64, 88, 94, 103, 104, 115, 126, 140, 143, 150, 151, 154, 155, 156, 160, 162, 172, 183, 184, 192, 198, 202, 226, 243, 244, 245, 253, 257, 258, 260, 261, 262, 263, 264, 270, 272, 275, 276, 277, 283, 303, 308, 309, 314, 317, 322, 328, 339, 352, 353, 372, 373, 380, 385, 397, 401, 403, 407, 410, 411, 412, 415, 433, 436, 446, 448, 450, 453, 456, 458, 465, 468, 470, 484, 487, 489, 492, 494, 500, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 540, 541, 542, 543, 544, 548, 550, 551, 552, 553, 554, 556, 557, 558, 559, 560, 561, 564, 565, 586, 589, 592, 600, 605, 606, 609, 610, 631, 632, 633, 638, 639, 640, 641, 645, 646, 649, 651, 652, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 670, 675, 677, 678, 684, 685, 689, 690, 691, 692, 693, 694, 695, 704, 705, 717, 732, 758, 789, 794, 796, 798, 799, 801, 802, 803, 804, 805, 806, 807, 813, 815, 816, 817, 818, 819, 820, 821, 822, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 850, 854, 861, 862, 863, 870, 874, 875, 882, 883, 885, 886, 894, 897, 898, 900, 901, 905, 906, 907, 910, 913, 914, 948, 949, 970, 973, 989, 996, 998, 1000, 1010, 1014, 1016, 1020, 1024, 1031, 1034, 1037, 1038, 1039, 1040, 1041, 1049], "act": [155, 244, 335, 346, 371, 384, 409, 410, 713, 730, 731, 739, 784, 785, 788, 880, 884, 997, 1000, 1003, 1015, 1039], "action": [315, 346, 370, 374, 375, 389, 402, 1010, 1041], "activ": [53, 69, 180, 213, 243, 248, 254, 264, 323, 324, 328, 348, 365, 366, 369, 371, 372, 377, 379, 383, 385, 386, 389, 390, 394, 404, 493, 499, 523, 631, 634, 636, 649, 650, 652, 653, 654, 662, 663, 664, 681, 682, 683, 684, 685, 713, 718, 798, 861, 862, 863, 870, 901, 967, 996, 997, 998, 999, 1003, 1004, 1005, 1013, 1021, 1023, 1042], "active_": [649, 650, 653, 654], "active_features_": 1039, "actual": [44, 53, 65, 80, 93, 107, 116, 140, 143, 149, 151, 154, 163, 183, 188, 198, 206, 210, 213, 243, 250, 259, 266, 270, 309, 317, 348, 353, 354, 358, 360, 368, 371, 373, 376, 377, 383, 384, 385, 399, 401, 403, 408, 410, 411, 412, 428, 506, 512, 513, 524, 532, 535, 537, 544, 559, 560, 643, 644, 647, 657, 658, 665, 666, 667, 668, 669, 671, 673, 675, 676, 677, 679, 686, 691, 695, 701, 704, 709, 715, 721, 723, 724, 725, 786, 798, 804, 805, 817, 820, 821, 851, 863, 882, 905, 911, 939, 940, 941, 943, 944, 974, 992, 999, 1000, 1003, 1007, 1008, 1016, 1023, 1038, 1039, 1045, 1046, 1047], "actual_vs_predict": [44, 107, 154, 183, 259, 317, 701], "actuari": [401, 1000], "acustom": [64, 141, 154, 156, 185, 244, 275, 319], "ad": [44, 54, 59, 64, 103, 104, 107, 127, 129, 134, 139, 140, 141, 143, 149, 151, 154, 155, 156, 159, 160, 167, 172, 173, 174, 183, 184, 185, 190, 194, 204, 208, 210, 229, 233, 234, 238, 239, 243, 244, 246, 253, 257, 261, 262, 263, 264, 265, 270, 275, 277, 301, 303, 309, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 339, 347, 352, 353, 370, 371, 373, 375, 379, 383, 385, 386, 401, 408, 410, 411, 412, 413, 414, 415, 421, 425, 427, 430, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 455, 456, 457, 458, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 501, 502, 507, 509, 511, 512, 519, 520, 524, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 571, 579, 580, 581, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 604, 605, 606, 607, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 686, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 700, 701, 702, 704, 708, 709, 711, 712, 713, 714, 718, 721, 723, 724, 725, 726, 728, 729, 730, 731, 732, 735, 739, 740, 741, 742, 743, 744, 747, 754, 755, 758, 762, 767, 768, 770, 776, 778, 779, 783, 784, 785, 786, 788, 790, 791, 792, 798, 799, 800, 801, 802, 803, 804, 805, 807, 808, 810, 814, 815, 819, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 891, 894, 895, 897, 898, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 929, 931, 932, 938, 942, 943, 944, 948, 949, 954, 957, 958, 959, 960, 961, 964, 967, 970, 974, 980, 986, 988, 989, 993, 995, 996, 997, 1001, 1003, 1004, 1006, 1020, 1024, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "adaboost": [2, 68, 115, 133, 137, 142, 150, 153, 154, 156, 170, 180, 217, 321, 352, 516, 548, 550, 551, 556, 630, 703, 831, 913, 914, 1021, 1022, 1026, 1033], "adaboost_clf": 134, "adaboostclassifi": [2, 68, 136, 142, 394, 410, 551, 556, 558, 940, 1033, 1034, 1037, 1038, 1040, 1041, 1044, 1046, 1047, 1048, 1050], "adaboostregressor": [2, 135, 394, 410, 550, 559, 940, 1033, 1034, 1037, 1040, 1041, 1044, 1046, 1047], "adam": [0, 243, 299, 392, 862, 863, 1004, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "adamgonzo": 1045, "adamson": 1043, "adanhawth": [1039, 1040], "adapt": [86, 88, 134, 145, 146, 243, 248, 249, 257, 339, 359, 370, 371, 380, 403, 410, 413, 512, 513, 514, 515, 527, 675, 676, 677, 862, 863, 996, 1002, 1004, 1010, 1014, 1019, 1020, 1039, 1040, 1047, 1048], "adarsh": [1048, 1049], "add": [45, 52, 56, 59, 63, 64, 65, 67, 69, 70, 75, 79, 87, 103, 107, 111, 112, 116, 121, 126, 139, 141, 142, 143, 145, 150, 151, 154, 155, 156, 159, 161, 163, 167, 172, 173, 174, 178, 179, 185, 193, 197, 198, 203, 204, 207, 209, 210, 220, 228, 232, 233, 234, 236, 238, 239, 244, 246, 257, 262, 270, 272, 273, 275, 277, 283, 295, 301, 305, 307, 309, 312, 313, 314, 315, 316, 317, 321, 322, 338, 339, 341, 342, 347, 358, 369, 370, 371, 372, 373, 375, 377, 379, 385, 389, 399, 401, 407, 410, 411, 412, 512, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 600, 626, 627, 629, 631, 657, 658, 694, 697, 822, 845, 846, 902, 938, 958, 959, 989, 990, 999, 1000, 1006, 1010, 1013, 1014, 1020, 1028, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "add_2d_scatt": 225, "add_artist": [71, 126, 200, 226, 248, 249, 250, 253, 254], "add_ax": [67, 184, 229, 274], "add_categori": 242, "add_collect": [52, 228, 235], "add_dummy_featur": 2, "add_ind": [103, 154, 179, 185, 234, 244, 313, 316, 626, 627, 629, 990, 1040, 1043, 1047], "add_missing_valu": 179, "add_nois": 173, "add_self_request": [239, 958], "add_subplot": [47, 63, 65, 77, 97, 100, 126, 184, 220, 227, 229, 324, 325, 378], "add_trac": 140, "adddatapointbatch": 283, "addep": 1042, "addison": [588, 731], "addit": [2, 7, 38, 44, 45, 47, 52, 54, 55, 64, 99, 103, 104, 113, 120, 123, 126, 134, 138, 139, 140, 141, 143, 144, 151, 154, 156, 162, 172, 173, 174, 183, 184, 190, 194, 198, 200, 207, 208, 210, 229, 243, 244, 253, 257, 262, 265, 272, 276, 278, 282, 303, 309, 313, 314, 317, 319, 322, 326, 339, 348, 352, 354, 358, 359, 363, 364, 365, 366, 367, 370, 371, 373, 375, 376, 377, 379, 383, 384, 385, 386, 389, 397, 402, 403, 405, 407, 408, 411, 412, 413, 414, 427, 433, 437, 438, 440, 441, 442, 446, 453, 465, 470, 493, 500, 529, 531, 534, 536, 538, 539, 540, 546, 550, 551, 554, 555, 556, 557, 558, 559, 561, 562, 563, 564, 565, 566, 567, 580, 581, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 608, 610, 611, 618, 627, 629, 630, 634, 637, 638, 639, 640, 641, 642, 643, 644, 658, 669, 686, 687, 688, 692, 698, 699, 702, 743, 759, 760, 789, 793, 798, 799, 807, 824, 834, 836, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 858, 859, 861, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 882, 883, 884, 885, 887, 897, 898, 905, 906, 942, 949, 989, 994, 996, 1000, 1001, 1003, 1004, 1007, 1010, 1012, 1013, 1014, 1015, 1016, 1019, 1026, 1031, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1049, 1050, 1051, 1052], "addition": [86, 104, 136, 149, 172, 183, 206, 223, 239, 313, 315, 347, 371, 383, 401, 411, 609, 610, 645, 651, 670, 882, 989, 990, 1000, 1008, 1018, 1019, 1037, 1048, 1051], "additional_nois": 75, "additive_chi2": [619, 637, 766, 775], "additive_chi2_kernel": [2, 399, 637, 760, 766, 992, 1050], "additivechi2sampl": [2, 638, 639, 640, 641, 759, 760, 992, 1045, 1047], "address": [44, 210, 239, 272, 346, 366, 371, 402, 403, 411, 443, 656, 996, 997, 1002, 1003, 1004, 1005, 1006, 1010, 1024, 1039], "adeel": 1050, "adelr": 1039, "adequ": [359, 377, 564, 1044], "adeyemi": [1049, 1050], "adher": [2, 358, 373, 385, 942, 944, 1031, 1032], "adien": 1047, "adiffer": [104, 160, 270], "adijohar": 1045, "adil": 1046, "adimension": 183, "adithya": 1036, "aditi": [1049, 1050], "aditya": [1037, 1039, 1040, 1041, 1045, 1046], "adityadaflapurkar": 1039, "adjac": [403, 408, 448, 458, 583, 584, 634, 691, 695, 955, 997, 1003], "adjacency_matrix": 403, "adjust": [2, 44, 49, 64, 72, 74, 82, 91, 109, 134, 146, 158, 180, 210, 232, 237, 245, 262, 264, 280, 312, 342, 347, 378, 403, 404, 408, 410, 411, 433, 521, 550, 551, 554, 556, 558, 559, 561, 657, 658, 665, 667, 673, 674, 675, 704, 705, 708, 714, 715, 756, 758, 787, 796, 840, 841, 843, 844, 875, 897, 898, 905, 906, 907, 910, 913, 915, 937, 999, 1000, 1004, 1010, 1021, 1028, 1031, 1037, 1047, 1051], "adjusted_mutual_info_scor": [2, 73, 74, 82, 91, 403, 705, 715, 734, 756, 758, 787, 1000, 1031, 1039, 1043, 1047, 1051], "adjusted_rand_index": 705, "adjusted_rand_scor": [2, 73, 74, 82, 91, 347, 403, 704, 715, 734, 758, 787, 1000, 1044], "adjustweight": [64, 103, 104, 139, 141, 155, 160, 185, 233, 234, 244, 245, 246, 257, 261, 262, 263, 270, 275, 277, 301, 313, 314, 316, 319, 322, 353], "administr": [389, 390], "admir": [1046, 1047], "admiss": [236, 359], "adopt": [326, 373, 375, 383, 385, 901, 1000, 1014, 1039, 1046, 1048], "adoublet": [1046, 1047], "adpot": 318, "adrian": [1044, 1045, 1046], "adriano": 1051, "adrien": [1031, 1051], "adrin": [0, 386, 392, 397, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "adrinjalali": [1034, 1043], "adult": [319, 493, 1010], "advanc": [45, 151, 180, 184, 231, 233, 263, 282, 360, 371, 403, 408, 440, 485, 498, 532, 631, 638, 784, 798, 854, 863, 866, 885, 914, 989, 992, 1000, 1003, 1010, 1018, 1021, 1024, 1028, 1033], "advani": 1043, "advantag": [44, 45, 88, 90, 100, 103, 104, 120, 125, 139, 143, 147, 154, 160, 183, 185, 206, 207, 232, 233, 234, 243, 244, 245, 246, 249, 261, 263, 264, 270, 277, 282, 309, 313, 314, 316, 320, 322, 354, 385, 401, 407, 408, 411, 413, 437, 441, 456, 531, 587, 648, 673, 674, 764, 833, 834, 835, 865, 866, 905, 906, 907, 908, 909, 910, 911, 989, 992, 995, 996, 997, 1000, 1001, 1003, 1004, 1008, 1010, 1014, 1015, 1016, 1034], "advic": [379, 413, 621, 622], "advik": [1048, 1049], "advis": [53, 183, 192, 207, 239, 354, 371, 403, 411, 645, 651, 653, 659, 661, 671, 686, 992, 996, 1002, 1004, 1015, 1045], "advoc": 1001, "aeberhard": 368, "aeon": 1019, "aesthet": [303, 1016, 1036], "af": 74, "affan": 1037, "affanv14": 1038, "affect": [47, 63, 103, 104, 111, 143, 149, 155, 174, 179, 182, 183, 210, 229, 242, 243, 244, 253, 257, 261, 262, 263, 266, 273, 275, 308, 309, 318, 354, 358, 359, 360, 367, 371, 385, 388, 401, 403, 406, 407, 409, 411, 414, 416, 440, 446, 453, 465, 466, 467, 468, 469, 470, 471, 472, 475, 546, 547, 566, 699, 702, 712, 789, 801, 802, 804, 805, 806, 815, 819, 820, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 885, 886, 896, 903, 910, 999, 1003, 1013, 1015, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1048, 1049, 1051], "affili": 366, "affin": [2, 28, 72, 79, 82, 96, 97, 180, 303, 363, 373, 385, 408, 436, 437, 448, 450, 458, 509, 532, 691, 695, 704, 705, 717, 738, 794, 796, 901, 922, 994, 997, 1000, 1021, 1025, 1026, 1031, 1032, 1035, 1041, 1042, 1044, 1046], "affinity_matrix": [691, 695], "affinity_matrix_": [436, 448, 691], "affinity_propag": [2, 52, 79], "affinitypropag": [2, 74, 79, 316, 403, 1031, 1034, 1035, 1039, 1042, 1044, 1045, 1046, 1047, 1048], "affirm": 44, "afnlp": 1014, "afor": [897, 898], "aforement": [359, 407, 1001], "afraid": 389, "africa": 1010, "afroj": 1048, "aft": [309, 1034], "aftab": 1040, "after": [44, 56, 59, 60, 64, 80, 86, 88, 102, 103, 107, 112, 122, 134, 139, 143, 144, 149, 152, 154, 155, 156, 159, 163, 172, 174, 175, 176, 178, 183, 184, 188, 200, 201, 206, 234, 242, 243, 244, 246, 251, 263, 272, 275, 282, 283, 291, 293, 303, 304, 307, 308, 313, 316, 346, 347, 360, 366, 368, 370, 371, 373, 375, 377, 378, 379, 383, 385, 397, 399, 400, 401, 403, 404, 407, 408, 411, 412, 415, 433, 438, 443, 446, 447, 448, 449, 452, 458, 512, 529, 533, 547, 550, 551, 556, 557, 558, 559, 595, 626, 629, 657, 658, 665, 666, 667, 672, 674, 675, 676, 677, 692, 712, 727, 757, 795, 798, 799, 804, 805, 854, 861, 865, 878, 884, 905, 910, 911, 926, 989, 990, 994, 996, 997, 1000, 1004, 1005, 1010, 1012, 1014, 1015, 1016, 1020, 1031, 1034, 1038, 1039, 1042, 1043, 1046, 1049, 1050], "aftercalibr": 64, "afterfit": [154, 183], "afterward": [59, 104, 244, 262, 371, 375, 532, 538, 829], "ag": [103, 163, 183, 185, 196, 198, 206, 223, 243, 244, 246, 257, 303, 315, 316, 317, 319, 366, 368, 493, 1024], "again": [44, 59, 104, 146, 171, 173, 175, 183, 229, 264, 346, 354, 375, 380, 385, 386, 403, 404, 405, 410, 411, 464, 468, 564, 565, 633, 646, 650, 652, 654, 660, 662, 664, 692, 989, 996, 1014, 1028, 1031, 1039, 1048], "against": [65, 73, 116, 129, 137, 147, 158, 183, 188, 199, 200, 214, 222, 223, 239, 272, 309, 312, 335, 366, 371, 386, 397, 399, 401, 403, 407, 411, 434, 506, 539, 545, 548, 675, 677, 756, 758, 789, 803, 808, 810, 830, 834, 967, 992, 996, 1000, 1001, 1003, 1015], "agamemnon": [1038, 1039, 1040, 1041, 1043, 1044], "agarw": [1038, 1039, 1041], "agath": 1045, "agc": 175, "agct": 175, "agent": 1024, "agg": 172, "aggarw": 1051, "aggfunc": 274, "agglo": [84, 441], "agglom": [2, 52, 72, 73, 77, 79, 81, 89, 95, 100, 180, 226, 228, 324, 325, 403, 437, 441, 499, 691, 779, 1021, 1034], "agglomer": [2, 45, 46, 69, 72, 83, 104, 159, 161, 180, 193, 205, 241, 287, 325, 363, 403, 411, 441, 499, 598, 604, 644, 801, 806, 865, 1021, 1026], "agglomerativeclust": [2, 75, 76, 79, 81, 85, 89, 95, 100, 385, 403, 436, 438, 441, 1034, 1035, 1036, 1039, 1040, 1041, 1042, 1043, 1044, 1046, 1048], "aggreg": [93, 138, 223, 266, 272, 277, 316, 318, 403, 410, 412, 531, 552, 553, 592, 721, 724, 729, 746, 747, 749, 751, 752, 754, 786, 791, 792, 1001, 1003, 1010, 1047], "aggress": [2, 48, 665, 666, 675, 677, 804, 805, 1032, 1052], "aggressive_elimin": [275, 804, 805, 989], "agnost": [716, 999, 1008, 1049], "ago": [52, 375, 1020], "agouzoul": 1051, "agraw": [1034, 1039, 1045, 1046], "agre": [26, 158, 379, 386, 403, 787], "agreement": [0, 2, 403, 704, 716, 756, 758, 796, 1000], "agress": [665, 666, 675, 677], "agricultur": 996, "agriya": 1051, "aguiar": 412, "agundez": 1039, "agyapong": 1051, "ahead": 889, "ahmadi": 1042, "ahmadjubair33": 1045, "ahmedbgh": [1046, 1047], "ahn": 1043, "ahuja": [1038, 1045, 1046], "ai": [371, 383, 407], "ai8rahim": 1034, "aic": [2, 180, 189, 195, 196, 197, 202, 213, 253, 498, 650, 652, 653, 654, 655, 799, 866, 885, 989, 1021, 1031, 1038, 1044, 1045], "aic_criterion": 196, "aid": [260, 403, 793, 794, 997, 1024, 1031, 1043], "aidan": 1039, "aidar": 1045, "aiden": 1051, "aig": 52, "aiko": 1046, "aim": [53, 59, 112, 149, 179, 208, 210, 257, 291, 321, 326, 339, 360, 366, 371, 385, 397, 403, 405, 411, 444, 996, 1000, 1003, 1010, 1015, 1019, 1045, 1050], "ain_siz": 262, "air": [172, 765], "airport": 765, "airspe": 371, "aisha": [1049, 1050], "aishgrt1": 1039, "aishwarya": 1039, "aishwaryark": 1038, "aistat": 1013, "aitsaid": 1051, "aivision2020": 1038, "aj": [491, 1045], "ajai": 1051, "ak": [401, 1045, 1046], "aka": [2, 46, 298, 346, 383, 411, 448, 533, 535, 537, 541, 544, 579, 580, 614, 621, 650, 651, 653, 654, 655, 657, 658, 661, 665, 666, 667, 669, 675, 676, 677, 742, 872, 876, 878, 996, 1004, 1014, 1033, 1045], "akai": 1044, "akaik": [196, 198, 253, 655, 799, 989, 996], "akanksha": [1050, 1051], "akash": [1039, 1049], "aki": [1045, 1046, 1047], "akihiro": [1049, 1050], "akin": [44, 207, 385], "akinkunl": 1041, "akitti": 1036, "akshai": [1035, 1038, 1043], "akshay0724": 1038, "akshayah3": 1035, "akshita": 1046, "al": [0, 2, 51, 104, 109, 110, 134, 148, 196, 244, 262, 296, 366, 368, 400, 403, 405, 408, 410, 411, 412, 447, 495, 516, 517, 525, 532, 538, 541, 560, 681, 682, 719, 720, 840, 842, 862, 863, 898, 948, 949, 996, 997, 1000, 1006, 1010, 1012, 1015, 1016, 1039, 1044, 1047, 1048], "ala": [1046, 1047], "aladago": 1041, "alagusankar": 1052, "alam": [1046, 1047], "alan": [1038, 1039, 1042, 1044, 1045, 1049], "alastuei": 1034, "albeit": 63, "albert": [0, 361, 1038, 1039, 1040, 1043, 1044], "alberto": [1040, 1044, 1045, 1049, 1050], "alcalin": 368, "alcohol": [308, 368], "alcorn": 1039, "aldrian": 1035, "aleator": 53, "alec": 1041, "alejandro": [1032, 1037, 1048], "alek": [1044, 1045], "aleksandr": 1038, "aleksandra": 1042, "alemagnani": 1034, "alert": 1038, "alessandro": [1041, 1043, 1046], "alessia": 1044, "alex": [397, 411, 1015, 1031, 1034, 1039, 1041, 1042, 1043, 1045, 1046, 1047, 1048], "alexand": [0, 393, 403, 408, 532, 871, 1033, 1034, 1035, 1037, 1038, 1039, 1043, 1044, 1045, 1048, 1052], "alexandercbooth": 1038, "alexandr": [0, 386, 392, 393, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1048, 1051], "alexandracraciun": 1043, "alexandru": 435, "alexanmv": 1045, "alexei": 1036, "alexfield": 1037, "alexgoryainov": 1041, "alexi": [1031, 1034, 1035, 1038, 1048, 1049], "alexl": [1047, 1048], "alexqiao": [1049, 1050], "alexryndin": 1039, "alexshack": [1041, 1042, 1043], "alfalfa": 58, "alfano": 1038, "alfaro": [0, 361, 1042, 1043, 1044, 1045, 1046], "alfr": 0, "alfredo": 1051, "algebra": [359, 374, 383, 408, 411, 458, 871, 1010], "algesheim": 403, "algo": [78, 129], "algo_param": [79, 95], "algorithm": [2, 6, 8, 9, 11, 18, 29, 31, 33, 34, 39, 40, 42, 49, 54, 56, 57, 66, 72, 73, 77, 78, 80, 81, 83, 89, 90, 91, 92, 93, 94, 95, 99, 100, 102, 103, 104, 110, 111, 115, 120, 122, 134, 135, 139, 140, 150, 155, 158, 160, 172, 180, 183, 188, 197, 198, 209, 219, 221, 227, 229, 231, 233, 234, 235, 236, 242, 244, 245, 246, 249, 250, 251, 254, 257, 260, 261, 262, 263, 264, 270, 272, 277, 283, 289, 290, 292, 296, 301, 303, 305, 308, 312, 313, 314, 316, 317, 318, 319, 322, 326, 334, 346, 347, 348, 352, 353, 354, 358, 360, 364, 365, 366, 367, 368, 371, 372, 373, 374, 379, 380, 384, 385, 388, 399, 400, 403, 405, 406, 407, 408, 410, 411, 413, 414, 415, 416, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 465, 470, 471, 474, 478, 479, 480, 484, 500, 508, 509, 510, 511, 512, 519, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 539, 541, 542, 543, 544, 545, 550, 551, 552, 553, 556, 557, 560, 589, 601, 602, 609, 610, 634, 636, 638, 643, 644, 645, 647, 648, 649, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 670, 671, 673, 675, 676, 677, 678, 679, 681, 682, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 704, 705, 708, 717, 719, 736, 738, 744, 775, 779, 780, 794, 796, 798, 799, 833, 842, 843, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 858, 861, 866, 870, 872, 885, 889, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 931, 948, 949, 951, 966, 969, 974, 990, 992, 995, 997, 998, 999, 1000, 1002, 1005, 1006, 1010, 1013, 1014, 1015, 1019, 1020, 1021, 1022, 1024, 1026, 1031, 1032, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "algorithm_nam": 78, "ali": [1036, 1039, 1040, 1043, 1044, 1046, 1047, 1048, 1051], "alia": [53, 239, 262, 372, 379, 385, 394, 433, 439, 440, 443, 445, 461, 478, 479, 480, 530, 533, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 588, 609, 610, 616, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 800, 802, 803, 808, 810, 819, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 865, 868, 870, 871, 872, 877, 884, 885, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 973, 1006, 1020, 1031, 1045], "alias": [80, 81, 239, 369, 371, 374, 394, 595, 1031, 1035, 1045, 1050], "aliased_sample_weight": 239, "align": [67, 71, 147, 149, 179, 225, 228, 248, 274, 348, 385, 689, 693, 992, 1000, 1003, 1014, 1025, 1026, 1047, 1048], "alihan": [1044, 1050], "alik": [408, 998], "alin": 1044, "alison": 1038, "all": [0, 2, 4, 31, 44, 45, 47, 48, 51, 52, 54, 58, 62, 63, 64, 65, 67, 71, 74, 75, 77, 78, 85, 86, 87, 88, 93, 97, 100, 103, 104, 107, 113, 120, 122, 123, 132, 139, 140, 141, 142, 143, 146, 149, 150, 151, 154, 155, 156, 160, 163, 172, 173, 175, 179, 180, 182, 183, 184, 185, 186, 190, 194, 195, 200, 201, 202, 206, 207, 208, 209, 210, 214, 216, 220, 222, 223, 225, 226, 228, 232, 233, 234, 238, 239, 242, 243, 244, 245, 246, 249, 251, 253, 257, 261, 262, 264, 265, 266, 267, 269, 270, 271, 273, 275, 276, 277, 280, 283, 286, 288, 300, 301, 303, 304, 308, 309, 312, 313, 314, 315, 317, 318, 319, 320, 321, 322, 324, 326, 327, 328, 332, 335, 339, 340, 342, 343, 344, 346, 347, 348, 351, 352, 353, 354, 358, 359, 360, 364, 366, 367, 368, 369, 371, 373, 375, 376, 377, 379, 380, 383, 384, 385, 386, 390, 394, 397, 399, 400, 401, 402, 403, 404, 405, 407, 408, 410, 411, 412, 413, 414, 415, 417, 418, 420, 421, 422, 423, 425, 426, 427, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 456, 457, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 500, 505, 506, 512, 524, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 581, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 604, 605, 606, 608, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 686, 687, 688, 689, 690, 691, 692, 693, 694, 697, 698, 699, 700, 701, 702, 705, 713, 714, 715, 716, 717, 718, 720, 721, 724, 727, 728, 729, 730, 731, 733, 734, 736, 737, 738, 739, 743, 746, 747, 749, 751, 752, 754, 757, 762, 770, 775, 779, 782, 783, 784, 785, 786, 787, 788, 789, 791, 792, 794, 795, 796, 798, 799, 801, 802, 803, 804, 805, 807, 808, 810, 811, 813, 815, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 867, 868, 869, 870, 871, 872, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 889, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 920, 921, 927, 929, 931, 932, 933, 937, 939, 940, 941, 943, 955, 964, 974, 983, 988, 989, 990, 992, 993, 994, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1005, 1007, 1008, 1010, 1013, 1014, 1015, 1016, 1018, 1019, 1020, 1021, 1023, 1024, 1029, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1049, 1050, 1051, 1052], "all_class": 48, "all_displai": [2, 380, 1046], "all_estim": [2, 380, 1041, 1042, 1046], "all_funct": [2, 380, 1046], "all_handl": 200, "all_label": [200, 902], "all_model": 146, "all_or_ani": [983, 1041], "all_scor": 734, "all_split": [44, 53], "all_uppercas": 411, "allan": [346, 401, 1043], "allclos": [121, 151, 1012], "allefeld": 1044, "allen": [317, 1034, 1036, 1038, 1041], "allend": [1042, 1044], "allevi": [90, 149, 190, 194, 403, 1002], "allison": 317, "alloc": [2, 43, 46, 63, 94, 180, 275, 314, 367, 371, 372, 399, 403, 411, 439, 443, 455, 484, 533, 535, 537, 582, 586, 589, 645, 651, 659, 661, 804, 805, 807, 824, 829, 832, 989, 1010, 1019, 1021, 1025, 1026, 1035, 1036, 1041, 1042, 1048, 1050], "alloccurr": [103, 154, 185, 234, 244, 313, 316], "alloth": [103, 104, 244, 253, 257, 261, 262, 263, 275], "allouch": 1051, "allow": [0, 26, 44, 59, 67, 89, 91, 103, 104, 106, 107, 124, 125, 126, 137, 138, 139, 143, 144, 151, 152, 154, 155, 156, 160, 165, 167, 172, 173, 174, 176, 183, 184, 185, 197, 200, 202, 206, 210, 223, 226, 233, 234, 236, 243, 244, 245, 246, 248, 253, 257, 262, 263, 270, 275, 276, 277, 282, 301, 309, 312, 313, 314, 315, 316, 317, 320, 321, 322, 326, 328, 339, 340, 346, 353, 354, 358, 365, 366, 371, 372, 373, 375, 378, 379, 380, 383, 385, 386, 394, 397, 399, 401, 402, 403, 404, 406, 407, 408, 410, 411, 412, 413, 414, 433, 439, 440, 442, 443, 445, 460, 461, 462, 463, 478, 479, 480, 493, 520, 521, 530, 531, 533, 535, 539, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 580, 581, 587, 588, 591, 592, 595, 601, 609, 610, 614, 626, 627, 629, 633, 634, 637, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 687, 688, 690, 692, 699, 743, 763, 766, 775, 779, 782, 793, 794, 798, 799, 800, 801, 802, 803, 804, 805, 808, 810, 812, 815, 819, 822, 823, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 851, 852, 855, 856, 860, 862, 863, 865, 867, 868, 870, 871, 872, 877, 884, 885, 889, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 929, 931, 932, 944, 965, 989, 990, 992, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1010, 1012, 1013, 1014, 1015, 1016, 1019, 1020, 1024, 1028, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "allow_nan": [922, 930, 932, 1047], "allow_nd": [931, 932], "allow_non": 711, "allow_single_clust": [79, 442], "allow_unlabel": [118, 240, 520], "allowed_extens": 500, "allowedfeatur": [143, 151, 154, 257, 309, 317, 322], "allowedto": [143, 151, 154, 257, 309, 317, 322], "allprocessor": [156, 235, 257], "allth": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "allwein": 280, "almeida": [1032, 1033, 1044], "almeidayoel": 1045, "almer": 1038, "almost": [44, 52, 71, 140, 145, 208, 213, 239, 242, 257, 278, 308, 320, 327, 354, 364, 366, 375, 377, 383, 384, 385, 394, 403, 407, 408, 466, 467, 468, 469, 471, 472, 473, 798, 989, 995, 996, 999, 1000, 1015, 1039, 1044], "almubarak": [1044, 1045], "alon": [183, 210, 269, 335, 385, 401, 647, 668, 679, 1038, 1040], "along": [2, 52, 54, 89, 92, 99, 103, 116, 139, 141, 143, 146, 149, 154, 155, 172, 183, 184, 185, 197, 206, 234, 237, 239, 244, 262, 267, 309, 312, 313, 316, 322, 347, 348, 354, 366, 371, 375, 379, 380, 385, 389, 394, 397, 400, 408, 410, 411, 412, 415, 530, 547, 585, 610, 611, 629, 645, 646, 649, 650, 651, 652, 653, 654, 655, 659, 660, 661, 662, 675, 677, 680, 681, 682, 683, 684, 685, 780, 781, 793, 801, 815, 874, 875, 878, 879, 882, 883, 884, 885, 890, 891, 892, 894, 895, 896, 927, 951, 958, 974, 980, 989, 996, 1003, 1010, 1013, 1024, 1031, 1036, 1037, 1039, 1043, 1044, 1051], "alongsid": [371, 377, 385, 389, 412, 643, 645, 826, 827, 828, 829, 830, 832, 1000, 1007, 1019, 1020], "alonso": [1042, 1044], "aloqe": [1049, 1050], "alpaydin": 368, "alpha": [2, 44, 45, 47, 48, 50, 52, 53, 54, 56, 62, 64, 67, 68, 71, 73, 75, 77, 85, 89, 93, 98, 107, 113, 116, 120, 122, 123, 125, 128, 129, 134, 136, 137, 142, 146, 149, 150, 151, 153, 154, 155, 156, 163, 167, 170, 172, 173, 174, 175, 176, 178, 179, 183, 190, 191, 192, 193, 194, 195, 196, 197, 198, 200, 202, 203, 204, 206, 207, 208, 210, 211, 214, 217, 218, 223, 225, 226, 229, 237, 238, 243, 245, 248, 262, 263, 264, 265, 266, 267, 270, 271, 273, 275, 276, 282, 283, 286, 288, 291, 293, 298, 300, 303, 304, 305, 306, 308, 310, 313, 315, 316, 319, 326, 328, 332, 333, 336, 337, 339, 340, 342, 343, 344, 346, 358, 366, 373, 377, 383, 405, 406, 408, 410, 412, 413, 415, 442, 467, 468, 474, 524, 528, 530, 532, 533, 534, 535, 536, 537, 539, 540, 542, 543, 544, 545, 557, 593, 594, 596, 610, 612, 614, 615, 622, 630, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 659, 660, 661, 662, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 686, 724, 749, 840, 841, 842, 844, 862, 863, 901, 913, 914, 915, 916, 989, 996, 1000, 1002, 1004, 1008, 1013, 1014, 1015, 1016, 1028, 1031, 1033, 1034, 1035, 1036, 1038, 1039, 1043, 1044, 1045, 1046, 1047, 1049, 1050, 1051], "alpha_": [44, 113, 154, 183, 191, 196, 198, 468, 610, 643, 644, 646, 650, 652, 654, 655, 660, 662, 672, 674, 996, 1016, 1031, 1038], "alpha_1": [643, 644, 996], "alpha_2": [643, 644, 996], "alpha_a": 198, "alpha_b": 198, "alpha_bound": [176, 622], "alpha_h": [55, 408, 535, 537, 544, 1044], "alpha_i": [1002, 1015], "alpha_init": [191, 644, 996, 1041], "alpha_max": [154, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683], "alpha_min": [154, 645, 646, 649, 651, 652, 653, 655, 659, 660, 661, 662, 680, 681, 682, 683], "alpha_per_target": [154, 183, 672, 1043], "alpha_w": [55, 408, 535, 537, 544, 1044], "alphabet": [104, 385, 709, 722, 723, 742, 1023], "alphalpha": 58, "alphanumer": [264, 385, 586, 587, 589], "alphas_": [196, 198, 646, 649, 650, 652, 653, 654, 655, 660, 662, 681, 682, 1031, 1034, 1044], "alphas_enet": 197, "alphas_lar": 197, "alphas_lasso": 197, "alphas_positive_enet": 197, "alphas_positive_lar": 197, "alphas_positive_lasso": 197, "alphavantag": 52, "alphonsu": 1041, "alreadi": [2, 44, 46, 50, 88, 91, 104, 125, 126, 134, 149, 154, 160, 163, 183, 184, 192, 233, 240, 242, 245, 257, 264, 270, 283, 315, 318, 371, 372, 373, 375, 376, 383, 385, 399, 401, 402, 405, 407, 409, 410, 415, 433, 488, 496, 520, 530, 564, 565, 633, 645, 648, 664, 665, 666, 667, 673, 675, 676, 677, 684, 685, 728, 769, 779, 840, 860, 868, 874, 875, 877, 882, 902, 905, 906, 934, 960, 989, 992, 1006, 1010, 1011, 1020, 1028, 1032, 1036, 1039, 1043, 1044, 1045, 1046, 1050], "alsadi": 1039, "alsaedi": 1044, "alsalhi": [0, 1034, 1035], "alsawadi": 1044, "also": [0, 2, 26, 31, 44, 47, 51, 53, 56, 58, 59, 62, 63, 64, 65, 67, 69, 80, 86, 90, 91, 93, 97, 102, 103, 104, 109, 111, 115, 116, 120, 127, 129, 134, 137, 139, 140, 143, 144, 145, 146, 147, 149, 151, 152, 154, 155, 156, 159, 160, 161, 163, 167, 169, 172, 175, 176, 179, 180, 183, 184, 185, 186, 188, 191, 192, 198, 200, 201, 206, 207, 208, 210, 211, 214, 222, 223, 225, 233, 234, 235, 237, 239, 242, 243, 244, 246, 253, 254, 257, 261, 262, 263, 264, 265, 266, 268, 269, 270, 272, 273, 274, 275, 276, 277, 280, 282, 283, 291, 294, 295, 296, 298, 301, 303, 304, 305, 307, 308, 309, 312, 313, 314, 315, 316, 317, 319, 320, 321, 322, 329, 331, 332, 333, 335, 337, 339, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 360, 364, 365, 366, 367, 368, 370, 371, 373, 375, 377, 379, 380, 383, 384, 385, 386, 389, 391, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 415, 433, 434, 435, 437, 438, 441, 442, 443, 444, 446, 448, 450, 458, 459, 461, 463, 469, 471, 478, 480, 489, 493, 495, 500, 505, 529, 530, 532, 533, 538, 543, 546, 548, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 586, 587, 588, 589, 591, 592, 593, 594, 595, 596, 597, 598, 605, 606, 607, 608, 609, 610, 621, 631, 632, 634, 642, 643, 644, 645, 646, 649, 651, 652, 653, 655, 657, 658, 659, 660, 661, 662, 663, 671, 675, 677, 680, 681, 683, 686, 687, 691, 694, 695, 699, 710, 713, 722, 724, 730, 731, 739, 744, 764, 780, 781, 784, 785, 788, 798, 799, 801, 803, 804, 805, 815, 818, 821, 827, 828, 829, 830, 831, 832, 834, 844, 847, 848, 849, 851, 852, 853, 855, 856, 857, 861, 862, 863, 865, 867, 868, 873, 874, 878, 882, 885, 890, 894, 907, 910, 913, 914, 915, 916, 922, 931, 942, 949, 951, 958, 965, 989, 990, 992, 994, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1010, 1011, 1013, 1014, 1015, 1016, 1018, 1019, 1020, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050], "alsocal": 264, "alt": [58, 264, 328, 346, 347, 348, 366, 379, 484], "altai": 1041, "alter": [63, 179, 373, 385, 401, 730, 731, 739, 784, 785, 788, 1036, 1040, 1043], "altern": [44, 64, 103, 116, 141, 147, 149, 154, 185, 194, 206, 223, 233, 251, 254, 257, 264, 272, 312, 339, 346, 347, 348, 354, 366, 369, 371, 375, 377, 383, 385, 386, 389, 397, 398, 400, 401, 403, 404, 405, 407, 408, 410, 411, 413, 437, 438, 441, 442, 443, 448, 454, 459, 496, 535, 537, 538, 544, 580, 586, 587, 589, 616, 619, 642, 692, 706, 708, 709, 772, 775, 779, 782, 803, 834, 869, 875, 878, 891, 898, 900, 968, 994, 996, 997, 999, 1000, 1003, 1004, 1008, 1010, 1012, 1013, 1015, 1016, 1020, 1026, 1036, 1038, 1044, 1045, 1049, 1050], "alternate_sign": [48, 411, 580, 587, 1038], "although": [44, 49, 63, 141, 154, 182, 223, 232, 250, 282, 339, 354, 360, 373, 375, 379, 385, 403, 404, 408, 411, 493, 876, 999, 1001, 1002, 1003, 1006, 1016, 1031, 1039, 1046, 1051], "altman": [627, 990], "altogeth": [143, 377, 1039], "alva": 1041, "alvaro": [1037, 1039], "alvin": 1039, "alwai": [103, 104, 139, 140, 143, 146, 151, 154, 155, 183, 184, 185, 190, 192, 206, 223, 230, 233, 234, 236, 243, 244, 245, 246, 253, 257, 260, 261, 262, 263, 264, 266, 269, 270, 273, 275, 277, 301, 309, 310, 313, 314, 316, 317, 322, 332, 339, 342, 347, 354, 358, 359, 365, 369, 371, 372, 373, 377, 379, 384, 385, 389, 397, 401, 403, 404, 407, 410, 411, 412, 413, 420, 426, 439, 445, 460, 461, 463, 465, 478, 479, 480, 484, 493, 505, 506, 541, 546, 548, 549, 551, 553, 555, 556, 557, 558, 559, 561, 562, 565, 567, 579, 586, 587, 589, 592, 610, 626, 627, 629, 631, 632, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 666, 669, 670, 671, 672, 675, 677, 678, 695, 705, 712, 715, 721, 723, 724, 725, 728, 733, 735, 736, 740, 783, 786, 787, 790, 798, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 838, 839, 848, 849, 856, 857, 863, 870, 878, 883, 885, 888, 890, 891, 892, 893, 894, 895, 896, 898, 906, 907, 908, 910, 911, 913, 914, 916, 950, 960, 961, 989, 990, 992, 994, 996, 999, 1000, 1003, 1006, 1008, 1012, 1013, 1015, 1016, 1024, 1031, 1033, 1035, 1036, 1037, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1048, 1049, 1051, 1052], "always_accept_polici": 257, "always_reject_polici": 257, "alwaysrandomli": [314, 352, 353], "alyssa": [1034, 1038], "alyssaq": 1037, "am": [102, 107, 111, 154, 184, 346, 376, 405, 470, 1038], "amai": 1047, "aman": [1037, 1038, 1039, 1045, 1046], "amanda": [1039, 1042, 1043, 1044, 1045], "amar": [1045, 1046, 1047, 1049], "amax": 109, "amazon": 52, "amber": 385, "ambient": 229, "ambigu": [264, 376, 411, 569, 712, 949, 1003, 1040, 1042, 1044], "ambival": 93, "ambrosio": 1038, "ambroz": [1041, 1042], "amelia": 990, "amen": [377, 383, 413, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 989], "america": [51, 52, 111, 296, 366, 852, 1010], "american": [51, 52, 102, 112, 366, 403, 405, 409, 410, 411, 465, 470, 732, 885, 1000], "amerr": [1049, 1050], "ames_h": 242, "amg": [80, 99, 403, 448, 458, 691, 695, 1041, 1045, 1046], "amherst": 366, "ami": [73, 82, 91, 403, 704], "amicel": [1031, 1034], "amin": [109, 1051], "aminaka": 1035, "amit": [1031, 1045, 1046], "amlan": 1037, "amo": 1034, "amol": 1044, "among": [2, 65, 126, 175, 184, 186, 188, 206, 244, 245, 253, 261, 263, 270, 282, 314, 352, 353, 360, 366, 373, 385, 386, 401, 406, 443, 445, 509, 516, 554, 555, 795, 830, 848, 853, 855, 907, 910, 913, 914, 915, 916, 989, 992, 1000, 1001, 1007, 1010, 1015, 1016, 1031, 1037, 1038, 1041, 1048], "amongst": [52, 1016], "amor": [0, 382, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "amormachin": 1034, "amort": 1003, "amount": [38, 39, 48, 52, 67, 86, 99, 104, 109, 112, 120, 124, 135, 137, 143, 150, 173, 183, 194, 210, 223, 228, 237, 244, 257, 262, 276, 309, 314, 320, 321, 324, 327, 329, 335, 342, 348, 358, 359, 360, 373, 383, 403, 405, 408, 410, 411, 412, 439, 450, 465, 535, 536, 538, 540, 560, 594, 645, 646, 649, 650, 651, 652, 653, 654, 655, 659, 660, 661, 662, 664, 680, 683, 692, 804, 805, 845, 846, 851, 886, 901, 902, 915, 916, 989, 995, 996, 999, 1002, 1004, 1010, 1012, 1013, 1014, 1015, 1044, 1048], "amount_fraud": 257, "amount_iter": 327, "amount_label": 327, "amount_test": 257, "amount_train": 257, "amountthat": 326, "amourav": 1040, "amplitud": [146, 172, 174, 202, 996], "amplitude_nois": 75, "amput": 1020, "amrcod": 1045, "amsterdam": [397, 873, 1011], "amultipl": [143, 151, 154, 257, 275, 309, 317, 322], "amy12xx": 1043, "amzn": 52, "an": [0, 2, 26, 30, 38, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 63, 64, 65, 67, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 103, 104, 105, 107, 109, 110, 111, 112, 120, 121, 122, 123, 124, 125, 134, 135, 136, 137, 139, 140, 141, 142, 143, 144, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 159, 160, 163, 165, 167, 168, 169, 172, 173, 174, 176, 177, 178, 180, 182, 183, 184, 185, 188, 189, 190, 191, 194, 196, 197, 201, 203, 204, 206, 207, 208, 210, 211, 213, 219, 221, 222, 223, 225, 226, 227, 228, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 242, 243, 244, 245, 246, 248, 249, 251, 253, 254, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 272, 274, 275, 276, 277, 282, 283, 286, 289, 290, 291, 294, 296, 301, 303, 308, 309, 310, 313, 314, 315, 317, 318, 319, 320, 322, 325, 326, 329, 331, 332, 334, 335, 337, 338, 339, 344, 346, 347, 348, 350, 352, 353, 354, 358, 360, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 380, 384, 385, 386, 388, 389, 394, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 412, 413, 414, 415, 424, 427, 428, 431, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 498, 500, 505, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 572, 573, 574, 578, 579, 580, 581, 582, 583, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 604, 605, 606, 608, 609, 610, 611, 618, 621, 622, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 704, 705, 706, 707, 709, 711, 712, 718, 720, 721, 722, 728, 730, 731, 735, 736, 738, 743, 744, 746, 747, 749, 751, 752, 754, 757, 759, 760, 764, 765, 767, 768, 769, 770, 771, 774, 776, 777, 778, 779, 782, 783, 784, 785, 788, 789, 790, 791, 792, 793, 794, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 920, 921, 922, 923, 928, 929, 931, 932, 934, 935, 938, 942, 943, 944, 945, 947, 948, 949, 951, 953, 954, 957, 958, 959, 960, 961, 962, 964, 965, 966, 970, 973, 974, 980, 983, 985, 986, 987, 988, 990, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1019, 1020, 1021, 1023, 1024, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "ana": [1042, 1044, 1049], "anaconda": [0, 359, 369, 375], "anak": 1043, "analog": [44, 58, 148, 377, 410, 1000, 1001, 1015, 1040], "analogi": [999, 1000], "analys": [225, 353, 408, 804, 805, 997, 1019, 1024], "analysen": 446, "analysi": [2, 12, 28, 45, 47, 49, 50, 55, 56, 59, 63, 66, 72, 73, 75, 90, 96, 98, 109, 110, 111, 112, 113, 118, 119, 121, 122, 124, 125, 128, 143, 179, 180, 183, 198, 214, 226, 247, 249, 250, 253, 254, 256, 257, 260, 263, 264, 268, 269, 278, 283, 284, 285, 286, 294, 295, 303, 308, 332, 342, 347, 351, 363, 366, 368, 371, 373, 386, 400, 403, 405, 410, 411, 415, 435, 443, 444, 469, 471, 472, 478, 479, 481, 499, 501, 509, 512, 528, 529, 530, 531, 532, 534, 536, 537, 538, 539, 540, 541, 542, 543, 546, 547, 552, 553, 630, 637, 687, 688, 690, 691, 692, 693, 710, 719, 726, 727, 757, 789, 790, 793, 794, 798, 801, 827, 831, 847, 854, 865, 866, 871, 881, 885, 893, 920, 948, 949, 990, 996, 997, 999, 1000, 1010, 1018, 1019, 1021, 1022, 1024, 1025, 1026, 1031, 1032, 1033, 1035, 1040], "analyst": 868, "analyt": [125, 408, 413, 529, 619, 708, 990, 994, 997, 1000, 1024], "analyz": [44, 47, 56, 194, 264, 265, 272, 317, 346, 348, 376, 377, 403, 411, 500, 586, 587, 589, 789, 997, 1000, 1007, 1008, 1016, 1031, 1040], "anam": 1048, "anand": [1039, 1043], "ananiad": 1014, "anantharam": 1045, "anatur": 155, "anavelyz": 1044, "ana\u00ebl": 1041, "anbari": 525, "anchor": 274, "andcalibr": 64, "ander": [1035, 1041], "andersen": [744, 1045], "anderson": [51, 296, 366, 495, 1037, 1043, 1049, 1051], "andfor": 172, "andi": [1031, 1038], "andkwarg": 139, "andmomentum": 243, "ando": 1036, "andom_st": [257, 263], "andr": [1038, 1045, 1051], "andrea": [0, 386, 392, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046], "andreh7": 1038, "andrei": [1046, 1048, 1049], "andrew": [403, 458, 691, 695, 717, 738, 796, 880, 1004, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048], "andrewww": 1039, "andright": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "andrii": 1045, "andriushchenko": [1037, 1038], "androutsopoulo": [840, 1002], "andrzej": [535, 537, 544], "andr\u00e1": [1044, 1045, 1046, 1047], "andr\u00e9": [1044, 1045, 1047, 1050], "ands": 876, "andshould": 155, "andtermin": 243, "andthen": [103, 275], "andyscanzio": 1048, "anexampl": [244, 245, 261, 263, 314], "anexplos": [103, 104, 244, 253, 257, 261, 262, 263], "anextra": 264, "ang": 1038, "angel": [0, 393], "angela": [1041, 1042, 1046], "angelaambroz": 1042, "angelotti": 1050, "angermuel": [1035, 1036], "angl": [2, 54, 71, 123, 163, 248, 249, 250, 253, 254, 368, 408, 528, 534, 536, 539, 540, 542, 543, 545, 649, 650, 651, 652, 653, 654, 655, 662, 663, 664, 677, 681, 682, 683, 684, 685, 692, 997, 998, 1022, 1026, 1031], "angmar": 58, "angu": [1038, 1039, 1045], "angular": [409, 692, 765], "anh": [535, 537, 544], "ani": [2, 26, 38, 44, 48, 49, 53, 54, 58, 64, 79, 80, 88, 90, 103, 104, 139, 141, 143, 151, 154, 155, 156, 158, 160, 163, 172, 173, 174, 182, 183, 184, 185, 186, 198, 206, 210, 223, 232, 233, 234, 235, 236, 239, 244, 246, 249, 253, 254, 257, 261, 262, 263, 264, 266, 269, 270, 272, 275, 277, 280, 296, 301, 303, 304, 307, 309, 312, 313, 314, 315, 316, 317, 319, 320, 322, 335, 339, 348, 352, 353, 354, 358, 359, 360, 365, 366, 368, 369, 371, 373, 375, 376, 377, 379, 384, 385, 386, 389, 391, 394, 397, 399, 400, 401, 403, 404, 407, 408, 409, 410, 411, 412, 428, 436, 437, 442, 444, 445, 446, 448, 450, 452, 453, 457, 460, 463, 484, 485, 505, 506, 520, 531, 534, 536, 543, 548, 554, 555, 556, 557, 561, 562, 563, 564, 565, 566, 567, 577, 578, 580, 586, 587, 589, 591, 601, 609, 610, 619, 626, 631, 632, 644, 647, 657, 658, 665, 666, 667, 668, 675, 676, 677, 678, 679, 692, 696, 699, 700, 704, 716, 717, 719, 725, 737, 738, 753, 756, 758, 775, 779, 780, 781, 782, 793, 794, 796, 801, 804, 805, 813, 814, 834, 837, 845, 846, 851, 855, 864, 865, 869, 870, 874, 876, 878, 879, 886, 895, 896, 899, 902, 905, 906, 913, 914, 915, 916, 917, 919, 927, 931, 932, 942, 958, 983, 989, 990, 992, 995, 996, 997, 1000, 1001, 1002, 1003, 1006, 1007, 1008, 1010, 1012, 1013, 1014, 1015, 1016, 1019, 1023, 1032, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "aniket": [1046, 1048], "anil": [403, 448, 458], "anim": [346, 411], "aninteg": [143, 154, 184, 185, 309], "anintercept": [155, 244], "anirban": 411, "aniruddha": [1039, 1050, 1051], "anish": [1036, 1037], "anisha": 1041, "aniso": [79, 95], "anisotrop": [90, 169, 413, 616, 618, 621], "anisotropicli": [79, 95], "anjirbag": 1039, "ankan": 1036, "ankerst": [403, 446, 453], "ankit": [1034, 1041, 1043, 1045], "ankit810": 1042, "ankita": 1039, "ankur": [1036, 1047], "ann": [1031, 1043, 1045], "anna": 1039, "annaayzenshtat": 1039, "annal": [163, 194, 196, 368, 410, 470, 513, 514, 515, 556, 557, 655, 996], "annau": 1044, "annegnx": 1047, "anno": [692, 997], "annoi": 359, "annot": [2, 44, 49, 64, 143, 161, 188, 226, 267, 270, 346, 371, 372, 373, 403, 716, 919, 1000, 1016, 1040], "annotationbbox": 226, "announc": [0, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 375], "annual": [368, 403, 727, 757, 902, 1000, 1013], "anomali": [14, 49, 111, 150, 180, 219, 231, 242, 289, 290, 366, 465, 509, 519, 560, 638, 676, 851, 866, 909, 1006, 1019, 1021, 1037, 1038], "anomaly_algorithm": 232, "anomaly_frac": 242, "anoth": [44, 73, 120, 125, 134, 143, 144, 148, 163, 167, 175, 179, 183, 198, 210, 213, 230, 232, 239, 243, 249, 257, 263, 265, 266, 269, 273, 277, 293, 346, 348, 350, 354, 358, 360, 365, 366, 369, 371, 373, 377, 383, 385, 397, 400, 403, 407, 408, 410, 411, 412, 414, 438, 440, 448, 451, 458, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 505, 535, 537, 544, 672, 675, 692, 719, 807, 823, 824, 864, 865, 886, 958, 989, 990, 995, 996, 997, 1000, 1001, 1003, 1006, 1010, 1014, 1015, 1028, 1040, 1041, 1048], "anova": [2, 50, 87, 106, 157, 159, 162, 163, 180, 188, 330, 404, 441, 501, 512, 590, 593, 594, 596, 597, 598, 602, 603, 604, 607, 713, 827, 831, 865, 866, 885, 905, 910, 1015, 1021], "anova__percentil": [87, 338], "anova_filt": 160, "anova_svm": 160, "ansam": 1047, "answer": [182, 263, 371, 383, 397, 402, 727, 757, 1000, 1024], "ant": [718, 755, 1000], "anthoni": [1036, 1038, 1039], "anthony22": [1046, 1047], "anti": [194, 354, 604, 840, 1002], "anti_alias": [80, 81], "anticip": 53, "antoin": [1031, 1033, 1034, 1035, 1038, 1050, 1051, 1052], "antoinebak": [1050, 1051], "antoni": [1035, 1037, 1043, 1046, 1050, 1051], "antonin": 1038, "antonio": [1039, 1041], "anubhav": 1039, "anuja": 1041, "anulekh": 1046, "anumb": 156, "anupam": [899, 1012, 1046], "anurag": 1050, "any_method": 961, "anymor": [149, 185, 206, 265, 312, 313, 335, 354, 375, 404, 423, 669, 1037, 1040, 1043, 1044, 1045, 1047, 1048, 1050], "anyon": [371, 386, 402, 1023, 1024], "anyparamet": 275, "anyth": [348, 377, 385, 394, 404, 407, 961, 965, 1018, 1045], "anywai": [49, 346, 373, 664, 684, 685], "anywher": [304, 996], "anz": 1032, "aoif": [708, 1000], "ap": [2, 270, 707, 708, 1000], "apart": [183, 315, 335, 383, 385, 394, 404, 406, 412, 726, 1015, 1024, 1039], "aper": [104, 160, 244, 245, 261, 263, 270, 314], "api": [0, 52, 83, 89, 103, 131, 139, 143, 154, 160, 180, 183, 185, 231, 233, 234, 239, 243, 244, 260, 264, 265, 270, 272, 273, 277, 283, 309, 313, 316, 319, 320, 347, 348, 360, 364, 365, 371, 374, 375, 380, 381, 383, 384, 386, 389, 397, 398, 401, 402, 408, 410, 411, 413, 417, 420, 421, 422, 425, 427, 434, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 460, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 493, 501, 505, 507, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 552, 553, 560, 561, 563, 564, 565, 566, 567, 577, 578, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 608, 610, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 657, 670, 676, 687, 688, 689, 690, 691, 692, 702, 798, 799, 804, 805, 807, 824, 831, 849, 851, 853, 854, 857, 861, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 890, 891, 892, 893, 894, 895, 896, 897, 898, 903, 909, 910, 924, 942, 944, 967, 983, 986, 989, 998, 999, 1003, 1010, 1014, 1019, 1020, 1021, 1024, 1026, 1028, 1029, 1030, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047], "api_refer": 371, "apk": 389, "apolog": 1000, "apostolo": 1046, "appar": [115, 1002, 1024], "appdata": 389, "appeal": 386, "appear": [0, 48, 80, 103, 137, 154, 183, 185, 186, 234, 244, 258, 260, 261, 289, 290, 298, 300, 304, 313, 316, 325, 339, 346, 347, 348, 366, 369, 371, 376, 385, 405, 408, 484, 485, 552, 564, 565, 577, 609, 626, 627, 629, 697, 700, 702, 712, 716, 718, 783, 802, 819, 840, 841, 842, 843, 844, 907, 910, 951, 996, 1002, 1006, 1031, 1039, 1043, 1044, 1051], "append": [47, 48, 49, 52, 53, 56, 63, 67, 70, 73, 75, 79, 83, 94, 103, 104, 127, 137, 138, 139, 140, 144, 146, 149, 155, 160, 179, 186, 201, 210, 211, 213, 220, 223, 233, 234, 237, 238, 244, 246, 257, 262, 263, 266, 270, 272, 273, 277, 298, 299, 301, 309, 313, 316, 322, 327, 335, 338, 346, 347, 348, 350, 353, 377, 385, 404, 411, 657, 658, 905, 906, 912, 938, 1010], "appendix": [644, 675, 996, 1010], "appl": [52, 358, 369, 383, 1001], "appli": [2, 33, 49, 55, 58, 63, 64, 65, 69, 75, 79, 80, 81, 88, 89, 91, 95, 100, 103, 107, 116, 120, 121, 126, 128, 130, 139, 140, 141, 143, 144, 146, 154, 155, 156, 159, 167, 183, 184, 185, 194, 198, 200, 204, 210, 211, 219, 225, 226, 227, 232, 233, 234, 237, 239, 244, 246, 257, 262, 263, 264, 266, 275, 276, 277, 282, 292, 301, 303, 307, 308, 309, 313, 314, 316, 319, 322, 335, 339, 348, 352, 353, 354, 358, 363, 371, 373, 375, 379, 383, 384, 385, 394, 400, 401, 403, 404, 405, 407, 408, 410, 411, 412, 413, 415, 433, 436, 442, 448, 458, 460, 461, 463, 464, 465, 470, 478, 479, 480, 481, 505, 506, 513, 514, 515, 521, 528, 529, 530, 531, 532, 534, 536, 538, 539, 540, 545, 546, 547, 550, 551, 554, 555, 556, 557, 561, 562, 563, 586, 587, 588, 589, 626, 631, 632, 637, 638, 640, 641, 657, 658, 667, 675, 676, 677, 687, 691, 699, 701, 702, 707, 711, 727, 757, 759, 760, 782, 789, 793, 794, 801, 815, 831, 834, 840, 841, 842, 843, 844, 852, 854, 864, 865, 874, 881, 882, 885, 890, 891, 893, 894, 895, 896, 901, 912, 913, 914, 915, 916, 926, 931, 937, 940, 948, 949, 971, 990, 992, 996, 997, 998, 999, 1000, 1002, 1004, 1006, 1008, 1010, 1014, 1015, 1016, 1017, 1024, 1032, 1035, 1036, 1037, 1038, 1039, 1042, 1043, 1045, 1051], "applic": [43, 45, 58, 82, 88, 111, 180, 188, 206, 222, 227, 256, 257, 266, 303, 320, 358, 360, 366, 368, 371, 373, 377, 380, 383, 385, 401, 402, 403, 407, 408, 409, 410, 413, 414, 415, 440, 442, 448, 493, 529, 530, 531, 550, 551, 628, 687, 688, 689, 690, 694, 712, 730, 731, 739, 784, 785, 788, 831, 925, 989, 996, 997, 998, 999, 1000, 1004, 1006, 1012, 1016, 1019, 1020, 1021, 1023, 1024, 1031, 1032, 1037, 1039, 1042], "apply_along_axi": 301, "appr": 618, "appreci": [0, 371, 383], "approach": [45, 48, 64, 91, 96, 99, 124, 143, 163, 167, 178, 183, 186, 193, 196, 200, 206, 208, 213, 223, 225, 257, 262, 272, 280, 309, 328, 339, 346, 347, 348, 360, 370, 371, 377, 380, 385, 389, 391, 397, 401, 403, 405, 406, 407, 408, 409, 410, 411, 412, 413, 433, 439, 442, 444, 448, 458, 517, 529, 580, 587, 610, 634, 657, 658, 673, 674, 834, 850, 949, 989, 990, 996, 997, 1000, 1001, 1003, 1004, 1010, 1014, 1015, 1019, 1024, 1035, 1047], "appropri": [26, 64, 88, 90, 127, 155, 172, 183, 210, 239, 264, 269, 272, 277, 320, 350, 354, 371, 373, 379, 385, 397, 401, 403, 407, 409, 410, 414, 433, 440, 446, 453, 485, 486, 487, 493, 497, 498, 499, 501, 502, 507, 575, 580, 589, 590, 593, 594, 596, 597, 598, 671, 673, 686, 847, 848, 849, 851, 853, 855, 856, 857, 983, 996, 999, 1000, 1010, 1035, 1038, 1044, 1047, 1049, 1050], "approv": [371, 386, 410], "approx": [65, 120, 237, 408, 410, 411, 1000, 1007], "approxim": [0, 2, 24, 44, 45, 65, 70, 80, 86, 103, 111, 124, 125, 129, 138, 139, 145, 146, 155, 163, 168, 183, 184, 191, 206, 207, 219, 223, 227, 230, 231, 232, 233, 234, 235, 238, 244, 246, 254, 257, 262, 263, 268, 277, 278, 284, 285, 292, 301, 303, 305, 306, 308, 312, 313, 315, 316, 322, 346, 348, 352, 354, 363, 368, 380, 383, 385, 400, 401, 404, 406, 407, 408, 410, 413, 415, 416, 417, 427, 445, 465, 466, 469, 470, 471, 472, 478, 479, 480, 487, 493, 499, 518, 521, 530, 531, 532, 533, 535, 536, 537, 538, 540, 541, 542, 543, 544, 556, 557, 580, 587, 609, 610, 618, 637, 638, 639, 640, 641, 644, 656, 657, 658, 671, 673, 675, 676, 678, 686, 692, 759, 760, 765, 798, 802, 819, 826, 830, 831, 845, 846, 849, 853, 855, 856, 857, 861, 865, 866, 871, 875, 877, 878, 882, 894, 905, 910, 911, 948, 949, 973, 993, 994, 995, 996, 997, 999, 1003, 1004, 1005, 1006, 1007, 1008, 1012, 1014, 1015, 1016, 1019, 1021, 1026, 1031, 1032, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1051], "approximate_nearest_neighbor": [283, 1021], "approximateident": 1032, "april": [366, 663, 684, 685, 1000, 1035, 1043, 1048], "apriori": 223, "apt": [369, 379, 389], "aptitud": 183, "aqua": 272, "aquantitypredict": 391, "ar": [0, 2, 16, 26, 31, 32, 33, 38, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 69, 71, 73, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 95, 97, 99, 100, 102, 103, 104, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 122, 125, 126, 127, 130, 132, 134, 136, 137, 139, 140, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 159, 160, 162, 163, 165, 167, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 196, 197, 198, 199, 200, 201, 202, 203, 204, 206, 207, 208, 210, 214, 216, 223, 225, 226, 227, 232, 233, 234, 235, 236, 237, 238, 239, 240, 242, 243, 244, 245, 246, 249, 250, 251, 253, 256, 258, 260, 261, 262, 263, 264, 265, 266, 267, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 288, 289, 293, 296, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 316, 317, 318, 319, 320, 321, 322, 324, 326, 327, 328, 329, 333, 335, 337, 339, 342, 343, 344, 346, 347, 348, 350, 352, 353, 354, 358, 359, 360, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 384, 385, 386, 389, 391, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 417, 419, 423, 424, 427, 428, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 505, 506, 507, 509, 512, 513, 514, 515, 516, 517, 520, 521, 525, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 709, 711, 712, 713, 715, 716, 717, 718, 720, 721, 722, 723, 724, 726, 727, 728, 729, 730, 731, 732, 735, 736, 737, 738, 739, 741, 742, 743, 744, 746, 747, 749, 751, 752, 754, 755, 757, 758, 762, 763, 764, 766, 768, 769, 770, 774, 775, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 807, 808, 810, 813, 815, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 889, 890, 891, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 920, 921, 923, 927, 928, 929, 931, 932, 935, 936, 937, 940, 942, 943, 944, 948, 949, 950, 953, 954, 955, 957, 958, 961, 964, 965, 967, 970, 973, 974, 978, 979, 980, 983, 985, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1023, 1024, 1028, 1029, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "arab": 626, "arabi": [403, 705, 715, 787], "aradwad": 1042, "arafat": 1037, "arai": 1041, "arang": [44, 51, 53, 54, 75, 91, 93, 98, 105, 110, 111, 127, 130, 142, 145, 147, 148, 152, 159, 167, 169, 174, 175, 178, 179, 186, 194, 206, 209, 211, 214, 235, 237, 258, 263, 266, 271, 274, 282, 283, 296, 298, 305, 315, 324, 325, 327, 329, 335, 341, 344, 346, 348, 352, 353, 354, 383, 400, 407, 411, 461, 541, 831, 880, 884, 995, 996, 1004, 1010, 1014], "aravindh": 1046, "arbitarili": 346, "arbitrari": [2, 44, 53, 88, 116, 120, 121, 122, 139, 165, 174, 190, 206, 222, 223, 261, 303, 307, 309, 314, 320, 321, 346, 353, 371, 383, 385, 397, 404, 407, 408, 410, 411, 414, 415, 440, 442, 446, 451, 453, 461, 529, 530, 556, 557, 579, 638, 647, 668, 679, 688, 728, 743, 790, 802, 803, 808, 810, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 869, 871, 884, 989, 991, 992, 996, 997, 1000, 1003, 1010, 1020, 1031, 1032, 1035, 1037, 1038, 1039, 1041, 1045, 1047, 1050], "arbitrarili": [168, 249, 254, 346, 385, 413, 426, 461, 478, 479, 480, 549, 551, 553, 555, 557, 559, 562, 565, 567, 610, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 668, 669, 671, 672, 677, 678, 679, 721, 722, 723, 724, 725, 747, 786, 838, 839, 848, 856, 863, 886, 906, 908, 911, 914, 916, 1000, 1003, 1010, 1016], "arbitraryjump": 155, "arc": [368, 410], "archana": [1041, 1043], "archit": 1037, "architectur": [369, 373, 379, 383, 389, 397, 464, 903, 1004, 1024, 1031, 1048], "archiv": [48, 280, 365, 366, 368, 369, 403, 438, 497, 499, 507, 670, 759, 760, 998, 1015, 1023], "archive_filenam": 48, "archive_path": 48, "archive_sha256": 48, "arci": [708, 1000], "arcidiacono": [1045, 1046, 1048, 1049], "arcsin": [699, 765], "arctan": [71, 249, 254, 367, 515], "arctan2": [248, 250, 253], "ard": [2, 190, 643, 644, 645, 651], "ard_poli": 190, "ard_scor": 190, "ardregress": [2, 190, 194, 644, 940, 996, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1047, 1048], "area": [2, 51, 53, 150, 163, 206, 223, 242, 260, 263, 270, 272, 273, 335, 339, 340, 343, 368, 371, 375, 383, 403, 411, 702, 706, 707, 708, 789, 790, 997, 1000, 1003, 1018, 1033], "aread": 314, "areconvert": [143, 151, 154, 257, 309, 317, 322], "areindic": 264, "arel": [244, 245, 261, 263, 314], "aren": [16, 239, 346, 366, 375, 389, 727, 757, 1005, 1041, 1043], "areprint": 52, "areproduct": [155, 244], "aretransform": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "arezki": 1031, "arfa": 1037, "arff": [317, 371, 493, 1043, 1046, 1047], "arg": [139, 239, 299, 339, 372, 385, 408, 410, 417, 608, 699, 869, 967, 996, 1002, 1003], "arg_sort_bi": 53, "argentina": 765, "argmax": [64, 127, 155, 262, 276, 373, 410, 566, 833, 913, 1015, 1044, 1052], "argmin": [52, 145, 262, 373, 405, 528, 534, 542, 543, 684, 780, 781, 1016], "argpartit": 1038, "argsort": [55, 56, 58, 59, 60, 145, 147, 185, 186, 206, 223, 312, 324, 325, 346, 347, 366, 1008], "argument": [2, 103, 104, 139, 143, 147, 154, 155, 160, 183, 184, 185, 186, 192, 207, 233, 234, 236, 239, 243, 244, 246, 264, 270, 277, 309, 312, 313, 316, 322, 359, 365, 366, 371, 372, 373, 376, 377, 379, 380, 383, 385, 399, 403, 404, 407, 408, 410, 412, 414, 415, 417, 421, 425, 434, 436, 438, 439, 440, 441, 442, 443, 444, 445, 446, 448, 450, 453, 455, 457, 459, 460, 464, 465, 490, 493, 500, 505, 512, 530, 532, 533, 535, 537, 548, 556, 557, 560, 564, 565, 566, 567, 575, 579, 580, 586, 587, 589, 608, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 630, 638, 642, 645, 646, 649, 650, 651, 652, 653, 654, 655, 659, 660, 661, 662, 665, 667, 675, 676, 680, 683, 687, 688, 692, 696, 698, 699, 700, 701, 702, 714, 719, 736, 743, 764, 780, 781, 807, 824, 826, 827, 828, 829, 830, 832, 833, 834, 837, 847, 848, 849, 851, 853, 854, 855, 856, 857, 858, 859, 862, 865, 866, 869, 870, 903, 909, 919, 929, 938, 944, 968, 969, 983, 989, 992, 996, 997, 998, 1000, 1003, 1007, 1008, 1015, 1016, 1031, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1043, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "argumentsand": 155, "argv": 236, "ari": [73, 91, 347, 403, 705, 1036, 1042], "aria": [1039, 1040, 1046], "aric": 56, "arida": [1040, 1041, 1043, 1045, 1048], "ariel": [46, 366, 1031, 1037], "arif": [1049, 1050], "ariga": 1037, "arik": 1039, "arima": 1019, "aris": [2, 183, 266, 342, 359, 376, 379, 403, 715, 996, 997, 1043], "arisa": [1045, 1046], "arithmet": [238, 377, 379, 403, 548, 647, 668, 679, 704, 717, 737, 738, 758, 796, 852, 1000, 1039], "ari\u00f1o": 1034, "arjona": 1040, "arjun": 1051, "arka204": [1044, 1046], "arm": [369, 379, 989], "arm64": 374, "arm64v8": 379, "armstrong": 1043, "arnaud": [0, 393, 1032, 1033, 1034, 1035, 1036, 1037, 1049], "arnaudov": [1043, 1045], "arnaudstiegl": 1041, "arnold": [1031, 1032], "arnoldi": [688, 689, 693], "aroma": 309, "arora": [1039, 1046], "around": [0, 44, 64, 73, 85, 115, 134, 137, 146, 173, 184, 188, 200, 201, 204, 239, 242, 257, 266, 277, 301, 324, 326, 327, 335, 338, 339, 346, 347, 348, 353, 354, 366, 368, 371, 375, 377, 383, 391, 402, 403, 407, 408, 411, 414, 467, 468, 512, 541, 619, 639, 648, 667, 704, 743, 798, 807, 824, 851, 853, 855, 856, 857, 885, 996, 997, 999, 1000, 1006, 1010, 1014, 1019, 1020, 1023, 1024, 1035, 1036], "aroyan": 1050, "arpack": [52, 58, 79, 80, 99, 102, 104, 226, 244, 262, 319, 408, 447, 448, 449, 458, 532, 538, 541, 688, 689, 691, 693, 695, 997, 1037, 1038, 1043, 1047, 1048, 1049], "arpanchowdhri": 1041, "arr": 320, "arrai": [2, 46, 47, 48, 50, 51, 52, 53, 54, 58, 64, 69, 70, 71, 75, 79, 80, 86, 87, 94, 95, 97, 102, 103, 104, 112, 115, 118, 121, 122, 139, 141, 143, 145, 147, 149, 150, 151, 153, 154, 155, 156, 160, 163, 168, 169, 170, 172, 175, 183, 184, 185, 190, 192, 194, 201, 202, 206, 207, 222, 226, 227, 232, 233, 234, 235, 236, 239, 242, 243, 244, 245, 246, 248, 249, 250, 252, 253, 257, 258, 259, 261, 262, 263, 264, 267, 268, 270, 272, 275, 277, 282, 296, 306, 309, 312, 313, 314, 315, 316, 318, 319, 325, 331, 338, 339, 346, 352, 354, 358, 359, 364, 365, 366, 371, 372, 373, 374, 376, 377, 379, 381, 383, 384, 385, 397, 400, 402, 403, 404, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 424, 425, 426, 427, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 483, 484, 486, 487, 489, 490, 491, 493, 494, 495, 497, 498, 499, 500, 501, 503, 505, 506, 507, 508, 509, 510, 512, 516, 520, 521, 524, 526, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 579, 580, 581, 582, 584, 586, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 922, 924, 927, 928, 929, 930, 931, 932, 933, 936, 937, 947, 948, 949, 950, 951, 953, 955, 956, 963, 964, 965, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 985, 986, 988, 990, 995, 996, 998, 1000, 1001, 1003, 1004, 1006, 1007, 1010, 1011, 1012, 1014, 1015, 1016, 1018, 1024, 1026, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047], "arrang": [2, 59, 282, 631, 836, 837, 838, 839, 1000], "array_api": [399, 1050], "array_api_compat": 1050, "array_api_dispatch": [399, 464, 903], "array_api_support": [399, 924], "array_convert": 932, "array_equ": [566, 1038], "array_lik": 947, "array_paramet": 371, "array_sym": 985, "arrayfunc": [2, 380, 928], "arrow": [64, 143, 391, 1045], "arrow_arg": 49, "arrowprop": [49, 64, 143], "arrowstyl": [49, 143], "arroyo": 1045, "art": [314, 377, 648, 692, 1024], "artem": [1035, 1038, 1048], "arth": 1045, "arthur": [403, 443, 456, 1036, 1037, 1038, 1039, 1040, 1043, 1045, 1050], "arthurdbrn": [1050, 1051], "arthurmello": 1045, "articl": [0, 56, 102, 346, 366, 370, 371, 379, 407, 416, 471, 705, 996, 1000, 1044], "artiem": 1039, "artifact": [44, 54, 80, 81, 303, 360, 375, 1026], "artifici": [10, 141, 143, 151, 163, 179, 210, 225, 238, 257, 301, 346, 366, 367, 368, 376, 400, 403, 407, 408, 532, 696, 835, 862, 863, 993, 997, 999, 1001, 1007, 1012, 1016, 1020, 1024, 1031], "artist": [378, 434, 631, 698, 700, 701, 702, 807, 824, 919], "artsiom": 1038, "artsion": 1037, "artstein": 716, "artur": [1046, 1047], "arturo": [0, 382, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "arturoamor": 1045, "aruku": [1039, 1040], "arunav": 1042, "arunava": 1039, "arxiv": [371, 458], "arya": 1039, "as_dict": 373, "as_float_arrai": [2, 380, 1050], "as_fram": [44, 45, 103, 107, 126, 140, 143, 149, 154, 172, 183, 184, 185, 186, 196, 198, 206, 213, 221, 223, 242, 246, 257, 277, 280, 283, 286, 300, 308, 309, 312, 314, 316, 317, 365, 366, 485, 486, 487, 489, 493, 497, 498, 499, 501, 502, 507, 831, 1041, 1042, 1043, 1044, 1047], "asanyarrai": 373, "asarrai": [48, 56, 206, 223, 301, 326, 344, 346, 347, 351, 373, 385, 399, 727, 757, 853, 855, 856, 857, 1010, 1015, 1048], "ascend": [59, 103, 185, 309, 410, 446, 452, 592, 626, 634, 917, 918, 919, 1014, 1041, 1047], "ascent": [172, 413], "ascii": [51, 264, 296, 411, 483, 586, 587, 589], "asconst": 155, "ascontiguousarrai": 538, "asctim": 120, "aseem": 1038, "asgd": 1014, "ash": [49, 368, 1034, 1037, 1051], "ashah002": [1046, 1047, 1048], "ashim": 1041, "ashimb9": 1041, "ashimin": 1044, "ashish": [1044, 1047], "ashra": 643, "ashton": 1051, "ashutosh": [1038, 1039, 1041, 1043], "ashvith": 1044, "ashwin": [1046, 1047], "asia": [263, 1010], "asian": 411, "asid": [143, 144, 151, 154, 156, 213, 243, 257, 309, 317, 322, 397, 556, 557, 558, 559, 665, 666, 667, 675, 677, 862, 863], "asiniti": [103, 139, 155, 192, 233, 234, 244, 246, 253, 257, 262, 277, 301, 313, 316, 322], "asinvers": [257, 322], "asish": [1037, 1038], "ask": [0, 178, 179, 263, 370, 371, 375, 376, 379, 385, 386, 397, 412, 847, 848, 849, 851, 853, 855, 856, 857, 1023, 1047], "asnt": 1037, "asoppos": 326, "aspect": [47, 91, 103, 116, 120, 139, 155, 171, 184, 225, 232, 233, 234, 244, 246, 257, 262, 272, 277, 292, 301, 313, 316, 322, 358, 359, 360, 371, 385, 386, 403, 487, 657, 658, 989, 1000, 1016, 1024, 1048], "aspir": [163, 368, 371], "ass": [111, 112, 405, 470], "assembl": [282, 310, 348, 865], "assert": [48, 56, 121, 236, 263, 272, 359, 374, 1020], "assert_all_finit": [2, 358, 380, 464, 1050], "assert_allclos": 373, "assert_array_equ": 411, "assert_warn": 1044, "assert_warns_messag": 1044, "assertionerror": 1038, "assess": [45, 53, 64, 73, 93, 134, 144, 146, 183, 206, 223, 242, 259, 260, 262, 266, 371, 401, 410, 701, 744, 999, 1000, 1006, 1019, 1020, 1046, 1051], "assia": 1040, "assiaben": 1040, "assign": [48, 56, 59, 64, 71, 73, 80, 82, 90, 91, 93, 103, 104, 134, 139, 150, 152, 159, 161, 169, 218, 223, 232, 237, 240, 244, 253, 257, 261, 262, 263, 275, 298, 305, 310, 320, 329, 342, 344, 347, 366, 373, 385, 400, 407, 408, 410, 411, 412, 413, 436, 437, 438, 439, 441, 442, 443, 444, 445, 448, 450, 452, 455, 456, 457, 458, 512, 533, 558, 559, 561, 562, 591, 592, 605, 606, 609, 657, 658, 665, 666, 667, 675, 676, 677, 704, 705, 715, 716, 717, 719, 720, 730, 731, 732, 739, 740, 744, 756, 758, 784, 785, 787, 788, 794, 795, 796, 801, 804, 805, 807, 810, 815, 824, 826, 827, 828, 829, 832, 849, 855, 857, 858, 859, 872, 900, 901, 905, 906, 907, 908, 909, 910, 911, 936, 994, 996, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1010, 1013, 1024, 1031, 1036, 1038, 1039, 1048, 1049], "assign_label": [80, 403, 448, 458], "assist": [0, 371, 383, 402, 1010, 1023, 1024], "associ": [51, 62, 63, 64, 103, 111, 134, 139, 141, 155, 167, 182, 183, 185, 210, 233, 234, 244, 246, 251, 257, 262, 275, 277, 301, 309, 313, 316, 319, 322, 324, 326, 346, 353, 379, 403, 405, 407, 408, 410, 411, 421, 442, 445, 465, 466, 467, 468, 469, 470, 471, 472, 490, 491, 492, 521, 554, 558, 561, 603, 604, 629, 644, 657, 658, 665, 667, 673, 674, 675, 689, 695, 699, 732, 740, 823, 828, 848, 856, 870, 882, 894, 902, 911, 913, 915, 937, 970, 999, 1000, 1003, 1010, 1013, 1024, 1031, 1043, 1047], "assum": [49, 71, 88, 90, 103, 104, 143, 151, 154, 174, 178, 182, 183, 192, 198, 206, 223, 232, 235, 242, 244, 253, 254, 257, 261, 262, 263, 264, 272, 275, 303, 309, 317, 322, 342, 348, 359, 370, 371, 373, 377, 383, 384, 385, 388, 397, 400, 401, 403, 405, 407, 408, 410, 411, 413, 414, 419, 424, 435, 440, 442, 446, 453, 459, 465, 466, 467, 468, 469, 470, 471, 472, 500, 505, 506, 529, 539, 545, 546, 558, 559, 564, 565, 585, 586, 587, 589, 619, 631, 642, 643, 645, 646, 651, 657, 658, 659, 660, 661, 665, 666, 667, 670, 671, 675, 676, 677, 680, 684, 686, 687, 688, 692, 709, 722, 723, 727, 736, 742, 757, 765, 770, 775, 779, 782, 801, 804, 805, 815, 841, 847, 848, 851, 853, 855, 856, 861, 872, 885, 961, 975, 976, 977, 990, 994, 996, 998, 999, 1000, 1002, 1003, 1005, 1006, 1007, 1010, 1014, 1016, 1037, 1043], "assume_cent": [52, 70, 110, 405, 416, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476], "assume_finit": [358, 359, 464, 903], "assumpt": [33, 44, 49, 53, 63, 65, 72, 78, 104, 109, 110, 123, 172, 176, 180, 182, 206, 208, 232, 244, 259, 262, 282, 303, 377, 383, 384, 388, 401, 403, 405, 407, 408, 411, 413, 443, 447, 449, 484, 500, 509, 529, 531, 538, 649, 653, 799, 801, 804, 805, 815, 842, 897, 898, 994, 996, 1000, 1001, 1002, 1003, 1005, 1006, 1007, 1010, 1013, 1016, 1021, 1038, 1044], "assur": [0, 253, 385, 798, 799, 1038, 1039, 1040, 1041, 1042, 1043, 1044], "astel": 1039, "astolfi": 1031, "astr": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316], "astrai": 385, "astrain": 154, "astroml": 1019, "astronom": 1018, "astronomi": 1019, "astropi": 371, "astyp": [44, 54, 73, 76, 79, 86, 93, 95, 99, 112, 143, 145, 155, 182, 184, 199, 223, 228, 238, 242, 257, 274, 283, 310, 397, 411, 990, 996, 1038], "asv": 371, "asv_benchmark": 371, "asvalid": [143, 151, 154, 257, 309, 317, 322], "aswathavicki": [1049, 1050], "asymmetr": [146, 208, 385, 1036], "asymmetri": [208, 346], "asymptot": [109, 110, 198, 358, 405, 470, 533, 731, 996, 999, 1041], "atag": 175, "atanasoska": 1050, "atariah": 1040, "ateach": 156, "ateif": 1044, "atharva": 1045, "atheism": [58, 264, 328, 346, 347, 348, 366, 484], "atheist": 346, "athena": 1024, "ation": 411, "atla": 358, "atleast": [64, 139, 141, 154, 156, 185, 243, 244, 275, 314, 319, 352, 353], "atleast_2d": [146, 373], "atmaja": 1051, "atmospher": 172, "atol": [156, 183, 235, 373, 656, 671, 673, 845, 846, 850], "atom": [123, 129, 408, 528, 534, 536, 539, 540, 542, 543, 652, 662, 683, 996, 1031, 1044], "atomic_benchmark": 50, "atomic_benchmark_estim": 50, "atomic_runtim": 50, "atsushi": [1043, 1044], "attach": [48, 346, 428, 850, 1032, 1042], "attack": [242, 366], "attalla": 1045, "attard": 1044, "attempt": [44, 87, 103, 154, 155, 183, 184, 212, 233, 234, 243, 244, 246, 257, 258, 270, 277, 313, 316, 322, 346, 358, 370, 385, 403, 407, 414, 415, 440, 442, 446, 453, 460, 464, 630, 688, 689, 693, 819, 847, 848, 849, 851, 853, 855, 856, 857, 883, 885, 903, 931, 932, 996, 997, 1003, 1016, 1038, 1043, 1048], "attenberg": 411, "attent": [371, 379, 605, 606, 1014], "attenu": 167, "atth": 183, "attia": 798, "attr": [48, 89], "attract": [414, 440, 994, 1003, 1019], "attractador": [1038, 1039], "attransform": [103, 154, 185, 234, 244, 313, 316], "attrgett": [591, 595], "attribut": [2, 48, 63, 69, 82, 103, 104, 128, 132, 134, 139, 141, 143, 144, 154, 155, 156, 159, 160, 163, 183, 184, 185, 206, 213, 233, 234, 239, 243, 244, 246, 253, 257, 261, 262, 263, 264, 267, 270, 275, 277, 292, 296, 309, 313, 314, 315, 316, 322, 339, 348, 353, 360, 364, 365, 366, 368, 371, 374, 378, 383, 397, 399, 400, 401, 403, 404, 405, 406, 408, 410, 411, 412, 413, 414, 418, 419, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 504, 507, 512, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 577, 578, 579, 586, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 616, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 697, 698, 700, 701, 702, 737, 796, 798, 799, 800, 801, 804, 805, 807, 815, 823, 824, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 919, 920, 922, 962, 983, 988, 992, 994, 996, 1001, 1003, 1004, 1006, 1010, 1013, 1014, 1015, 1016, 1024, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "attributeerror": [404, 556, 575, 962, 1040, 1041, 1043, 1047, 1048], "attrselect": 1031, "atukorala": 1046, "atuo": [1047, 1048], "au": 314, "aubert": 1038, "auc": [2, 51, 63, 67, 163, 206, 223, 242, 260, 263, 267, 270, 272, 273, 319, 401, 407, 702, 708, 789, 790, 1000, 1036, 1039, 1043], "auc_scor": [1031, 1033], "audio": [365, 500], "audrei": [1049, 1050], "aufarkari": 1045, "aug": 1015, "augment": [2, 327, 629, 887, 1008, 1024], "augspurg": [1039, 1041], "august": [163, 368, 403, 508, 531, 1015, 1023, 1031, 1033, 1034, 1038, 1045], "aura": 1043, "aurelienmorgan": 1050, "auroc": 1000, "aur\u00e9lien": [1038, 1039, 1040, 1044, 1045], "austin": [0, 1038, 1050], "australian": [149, 389], "author": [0, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 365, 371, 374, 379, 383, 385, 386, 407, 447, 531, 872, 992, 1019, 1034], "authorit": 386, "authorship": 375, "auto": [58, 64, 70, 90, 91, 103, 104, 118, 139, 141, 143, 150, 151, 154, 155, 156, 160, 163, 171, 183, 184, 185, 225, 230, 233, 234, 243, 244, 245, 246, 257, 261, 262, 263, 270, 275, 277, 283, 286, 291, 301, 309, 312, 313, 314, 315, 316, 317, 319, 320, 322, 331, 332, 338, 341, 348, 365, 366, 373, 410, 413, 414, 433, 437, 440, 441, 442, 443, 445, 446, 448, 451, 452, 453, 455, 458, 493, 505, 506, 532, 535, 537, 538, 541, 544, 546, 554, 555, 558, 559, 560, 561, 562, 564, 591, 592, 595, 600, 605, 606, 628, 630, 631, 632, 634, 645, 646, 649, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 671, 672, 673, 679, 680, 681, 683, 684, 686, 688, 689, 690, 691, 692, 693, 694, 695, 698, 700, 702, 709, 731, 800, 804, 805, 823, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 858, 859, 862, 863, 878, 879, 886, 897, 898, 902, 905, 906, 907, 908, 909, 910, 911, 915, 916, 948, 949, 967, 969, 991, 994, 996, 997, 1003, 1010, 1019, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051, 1052], "auto_examples_jupyt": 180, "auto_examples_python": 180, "auto_viml": 1043, "auto_wrap_output_kei": 373, "autoclass": 368, "autocorrel": 407, "autolabel": 48, "autom": [264, 321, 374, 375, 389, 692, 989, 996, 997, 1000, 1019, 1024], "automat": [2, 44, 48, 52, 53, 64, 65, 80, 96, 98, 103, 104, 127, 139, 141, 143, 149, 154, 155, 160, 162, 183, 184, 185, 190, 209, 233, 234, 243, 244, 245, 246, 248, 249, 257, 261, 262, 263, 264, 270, 275, 277, 301, 303, 309, 310, 313, 314, 316, 317, 319, 322, 337, 339, 353, 359, 366, 369, 371, 373, 375, 379, 385, 389, 397, 399, 403, 404, 405, 408, 410, 411, 412, 427, 446, 448, 452, 458, 460, 461, 463, 493, 496, 512, 535, 537, 538, 544, 546, 548, 554, 558, 561, 581, 586, 589, 592, 600, 642, 644, 645, 646, 651, 652, 657, 658, 659, 660, 661, 662, 665, 666, 667, 671, 673, 674, 675, 677, 680, 683, 686, 688, 691, 695, 803, 818, 821, 831, 841, 862, 863, 866, 867, 869, 878, 879, 886, 897, 898, 905, 906, 907, 910, 913, 915, 919, 937, 970, 973, 988, 989, 991, 994, 999, 1004, 1010, 1014, 1016, 1019, 1020, 1031, 1034, 1035, 1036, 1042, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "automl": [1000, 1019], "automobil": 1024, "autoregress": 366, "autoviml": 1019, "autoviz": 1043, "auxiliari": [320, 1024, 1046], "av": 1039, "avail": [0, 2, 45, 51, 52, 54, 64, 76, 89, 90, 103, 104, 123, 126, 141, 145, 149, 154, 156, 163, 167, 172, 176, 182, 183, 184, 185, 198, 206, 213, 223, 226, 239, 242, 244, 253, 257, 261, 262, 263, 266, 267, 270, 275, 277, 288, 289, 290, 296, 308, 312, 313, 314, 315, 317, 318, 319, 321, 322, 327, 329, 354, 358, 365, 366, 368, 369, 370, 371, 372, 375, 376, 380, 384, 385, 389, 397, 400, 403, 404, 407, 408, 409, 410, 411, 412, 414, 443, 446, 447, 448, 449, 465, 466, 467, 468, 469, 470, 471, 472, 484, 485, 486, 487, 489, 490, 491, 492, 494, 495, 505, 532, 546, 552, 553, 554, 555, 556, 557, 561, 562, 564, 565, 566, 567, 591, 592, 600, 609, 610, 626, 631, 632, 646, 650, 652, 654, 656, 657, 658, 660, 662, 664, 667, 669, 670, 671, 672, 673, 674, 675, 681, 689, 696, 699, 733, 734, 801, 804, 805, 815, 828, 833, 834, 835, 836, 837, 838, 839, 851, 862, 863, 865, 872, 881, 889, 893, 898, 902, 957, 962, 989, 990, 994, 997, 999, 1000, 1001, 1002, 1003, 1006, 1010, 1013, 1014, 1015, 1018, 1019, 1020, 1023, 1024, 1026, 1031, 1036, 1037, 1038, 1039, 1040, 1041, 1044, 1045, 1047, 1050, 1052], "available_if": [2, 89, 385, 1044, 1045, 1048, 1052], "avalid": 156, "avebedrm": [303, 366, 486], "aventi": 52, "aveoccup": [303, 314, 366, 486], "averag": [2, 44, 53, 63, 64, 65, 73, 75, 79, 85, 93, 95, 100, 103, 137, 138, 139, 142, 143, 146, 149, 150, 155, 156, 163, 172, 183, 184, 192, 198, 206, 223, 233, 234, 242, 244, 246, 253, 257, 262, 266, 268, 271, 273, 277, 282, 301, 303, 312, 313, 316, 318, 320, 322, 328, 346, 354, 358, 366, 368, 383, 400, 401, 405, 407, 411, 412, 414, 415, 433, 434, 437, 440, 441, 442, 443, 445, 486, 490, 491, 520, 528, 529, 530, 534, 535, 537, 538, 542, 543, 544, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 566, 567, 585, 592, 631, 632, 647, 657, 658, 665, 666, 668, 671, 673, 675, 676, 677, 679, 686, 700, 703, 704, 706, 707, 708, 713, 720, 721, 724, 726, 727, 729, 730, 731, 735, 736, 737, 739, 740, 741, 744, 746, 747, 749, 751, 752, 754, 757, 765, 782, 783, 784, 785, 786, 788, 789, 791, 792, 796, 797, 798, 799, 829, 832, 851, 871, 886, 985, 990, 995, 996, 1001, 1004, 1006, 1007, 1014, 1015, 1016, 1031, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1045, 1046, 1047, 1048, 1049, 1050], "average_bike_rent": 184, "average_coef_": 1042, "average_feature_effect": 346, "average_intercept_": 1042, "average_linkag": 79, "average_method": [403, 704, 758, 1039], "average_pr": 149, "average_precis": [270, 700, 707, 1000], "average_precision_scor": [2, 270, 700, 706, 708, 783, 789, 1000, 1031, 1034, 1038, 1039, 1045, 1047], "average_week_demand": [44, 149], "averaged_inverted_cdf": [67, 206, 223, 304, 305, 306, 317, 870, 1051, 1052], "averoom": [303, 314, 366, 486], "avg": [46, 69, 102, 160, 261, 301, 324, 325, 566, 704, 713, 823, 1000, 1047], "avg_dist": [75, 782], "avgclaim": 223, "avgclaimamount": 223, "avi": [1043, 1044], "avidar": 1047, "avinash": 1043, "avm19": [1045, 1046, 1048], "avoid": [44, 47, 52, 53, 79, 90, 95, 103, 104, 139, 140, 143, 144, 149, 154, 155, 183, 184, 210, 214, 223, 233, 234, 239, 242, 243, 244, 246, 253, 257, 258, 261, 262, 263, 264, 268, 270, 276, 277, 291, 293, 294, 307, 308, 313, 316, 319, 322, 331, 332, 347, 359, 369, 371, 372, 373, 375, 376, 377, 383, 385, 386, 389, 397, 399, 401, 403, 405, 407, 410, 411, 414, 436, 438, 440, 448, 458, 464, 490, 491, 492, 496, 505, 506, 531, 536, 540, 633, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 689, 691, 693, 695, 702, 712, 793, 801, 802, 806, 812, 815, 826, 827, 828, 865, 868, 874, 875, 877, 882, 883, 884, 885, 888, 890, 891, 892, 893, 894, 895, 896, 898, 903, 949, 994, 997, 999, 1000, 1003, 1004, 1006, 1008, 1010, 1015, 1016, 1023, 1026, 1028, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051, 1052], "aw": 379, "awai": [63, 64, 65, 93, 109, 142, 167, 168, 172, 209, 257, 339, 340, 366, 401, 413, 627, 847, 848, 855, 856, 999, 1000, 1015], "await": 313, "awalei": 1039, "awar": [49, 55, 103, 139, 155, 160, 176, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322, 332, 346, 371, 373, 383, 386, 402, 407, 411, 564, 565, 647, 653, 654, 655, 657, 658, 668, 679, 851, 880, 1006, 1010, 1016, 1031, 1032, 1045], "awarn": 139, "awesom": 1024, "awwwyan": [1049, 1050], "ax": [44, 45, 47, 48, 49, 50, 52, 53, 55, 63, 65, 67, 68, 69, 71, 75, 77, 78, 86, 88, 89, 90, 97, 99, 100, 104, 107, 111, 113, 116, 118, 120, 126, 130, 134, 136, 139, 141, 143, 144, 149, 151, 152, 154, 155, 170, 171, 176, 178, 182, 183, 184, 185, 186, 188, 190, 191, 194, 198, 199, 200, 203, 204, 206, 207, 208, 210, 211, 213, 214, 216, 218, 219, 220, 223, 225, 226, 227, 228, 229, 230, 233, 238, 242, 243, 245, 248, 250, 253, 257, 258, 259, 260, 262, 263, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 291, 293, 294, 298, 299, 300, 303, 305, 306, 307, 308, 309, 310, 312, 313, 316, 317, 319, 331, 332, 333, 334, 336, 337, 339, 341, 342, 343, 344, 346, 347, 348, 350, 351, 367, 374, 408, 413, 434, 531, 538, 547, 630, 631, 697, 698, 700, 701, 702, 718, 807, 824, 919, 922, 1000, 1003, 1007, 1028, 1041, 1047, 1048], "ax0": [105, 107, 206, 235, 347], "ax1": [47, 50, 90, 93, 98, 100, 105, 107, 111, 118, 179, 186, 200, 206, 233, 235, 243, 248, 266, 274, 304, 308, 309, 327, 346, 347, 367], "ax2": [47, 90, 93, 98, 100, 111, 118, 179, 186, 200, 206, 233, 243, 248, 266, 274, 293, 304, 308, 309, 327, 346, 367], "ax3": [98, 327], "ax4": 98, "ax_": [150, 256, 266, 270, 272, 276, 286, 308, 312, 378, 434, 630, 697, 698, 700, 701, 702, 807, 824], "ax_bc": 307, "ax_bottom": 378, "ax_calibration_curv": [63, 65], "ax_colorbar": 303, "ax_det": 260, "ax_histi": 303, "ax_histx": 303, "ax_histx_zoom": 303, "ax_histy_zoom": 303, "ax_idx": 265, "ax_max": 67, "ax_origin": 307, "ax_qt": 307, "ax_roc": 260, "ax_row": 71, "ax_scatt": 303, "ax_scatter_zoom": 303, "ax_singl": 67, "ax_top_left": 378, "ax_top_right": 378, "ax_yj": 307, "ax_zoom_in": 303, "ax_zoom_out": 303, "axarr": [155, 303], "axes_": [149, 151, 243, 313, 319, 378, 631], "axes_idx": 307, "axes_list": 307, "axes_row": 199, "axesimag": 697, "axhlin": [127, 262, 266], "axi": [2, 44, 45, 47, 51, 52, 54, 55, 56, 58, 63, 64, 67, 73, 75, 81, 83, 85, 86, 87, 88, 94, 100, 103, 104, 107, 113, 116, 118, 120, 121, 122, 123, 124, 129, 136, 137, 141, 142, 143, 150, 153, 154, 156, 159, 171, 176, 178, 182, 183, 184, 185, 192, 197, 198, 201, 202, 206, 211, 214, 217, 219, 220, 222, 223, 226, 227, 230, 232, 234, 236, 237, 241, 244, 248, 250, 252, 253, 259, 260, 262, 264, 265, 270, 272, 273, 276, 282, 283, 288, 289, 290, 293, 294, 295, 301, 303, 307, 309, 310, 313, 316, 319, 325, 327, 329, 331, 334, 335, 338, 340, 341, 342, 344, 346, 347, 351, 352, 353, 366, 373, 380, 385, 401, 403, 411, 415, 434, 441, 460, 463, 528, 530, 533, 534, 536, 538, 540, 542, 543, 547, 583, 611, 630, 631, 684, 685, 701, 764, 780, 781, 782, 783, 807, 824, 833, 874, 875, 882, 883, 885, 890, 891, 892, 894, 895, 896, 919, 927, 931, 932, 951, 974, 980, 990, 1000, 1007, 1010, 1015, 1039, 1041, 1043, 1048, 1049], "axis_idx": 44, "axis_list": 122, "axp": 52, "axpi": 1052, "axvlin": [86, 93, 105, 113, 127, 145, 183, 185, 186, 198, 262, 269, 277, 342], "ayako": 1043, "ayan": 1045, "ayc\u0131": 1049, "aydor": [1038, 1039, 1042], "ayerdi": 1035, "aygeeem": 1050, "ayll\u00f3n": 1052, "aymer": 1032, "aymericbasset": 1047, "ayomid": 1041, "ayoub": 1051, "ayrat": 1051, "ayush": [1039, 1044], "ayzenshtat": [1024, 1039], "azaria": [1046, 1047], "azencott": 1045, "azim": [100, 126, 184, 225, 229], "azur": [0, 371], "azzedin": 1051, "b": [0, 2, 48, 50, 62, 64, 92, 98, 111, 127, 136, 137, 142, 146, 147, 155, 156, 168, 169, 170, 172, 175, 179, 183, 193, 194, 197, 206, 207, 212, 223, 240, 242, 257, 264, 266, 268, 273, 278, 282, 315, 327, 354, 366, 368, 371, 375, 376, 377, 400, 401, 403, 406, 407, 408, 411, 433, 478, 495, 497, 538, 563, 586, 587, 588, 589, 605, 606, 609, 610, 627, 645, 646, 647, 648, 657, 668, 671, 673, 675, 679, 686, 688, 705, 719, 731, 732, 793, 794, 812, 813, 852, 878, 879, 880, 881, 884, 885, 893, 920, 933, 949, 950, 964, 966, 990, 992, 996, 997, 998, 1000, 1003, 1005, 1010, 1014, 1015, 1031, 1039, 1042, 1044, 1045, 1046, 1051, 1052], "b0noi": 1037, "b0rxington": 1046, "b1": [219, 289, 334], "b12": [206, 223], "b1996": 410, "b1998": 410, "b1999": 410, "b2": [219, 289, 334], "b2001": 410, "b2011": 403, "b2c": 1024, "b30065": 305, "b5": 317, "b7a2ff": 307, "b_": 997, "b_1": 1004, "b_2": 1004, "b_column": 719, "b_i": 1005, "b_iv_i": 1005, "b_j": 403, "b_k": 403, "b_mask": 272, "b_row": 719, "b_true": 272, "ba": [52, 862, 863, 1004], "baak": 1045, "baam": [1044, 1045], "babaei": 1051, "babatchev": [1050, 1051], "babil": 314, "babino": [1044, 1045], "bac": 52, "bach": [408, 528, 533, 534, 535, 657, 996], "bachant": 1038, "back": [44, 125, 244, 359, 371, 385, 386, 397, 404, 411, 428, 439, 442, 443, 455, 478, 479, 480, 505, 506, 528, 530, 531, 532, 534, 535, 537, 538, 539, 541, 579, 629, 657, 658, 665, 666, 667, 675, 676, 677, 729, 870, 872, 873, 874, 878, 879, 880, 882, 883, 885, 897, 898, 905, 954, 996, 1000, 1004, 1034, 1039, 1041, 1042, 1045, 1049, 1050], "backend": [359, 374, 385, 464, 903, 967, 1000, 1034, 1039, 1040, 1041, 1042], "backend_kwarg": 967, "background": [45, 51, 81, 99, 150, 301, 305, 366, 371, 379, 403, 490, 491, 997, 1005, 1014, 1041], "background_point": 51, "backlink": 1036, "backport": [375, 380, 1038], "backprop": [1004, 1014], "backpropag": 1004, "backslash": 1046, "backtick": [371, 376], "backup": [505, 1031], "backward": [163, 239, 314, 374, 375, 385, 412, 493, 575, 600, 613, 614, 617, 618, 619, 621, 622, 918, 927, 1004, 1020, 1031, 1034, 1039, 1040, 1041, 1043, 1045, 1047], "bad": [93, 94, 168, 173, 183, 257, 320, 346, 354, 371, 403, 413, 692, 747, 989, 996, 997, 1002, 1008, 1031], "badaracco": 1044, "badli": [198, 206, 346, 360, 885, 996, 1010], "badr": 1046, "baeza": [588, 731, 1034], "bafor": 243, "bag": [2, 14, 64, 65, 102, 122, 133, 138, 140, 141, 148, 154, 156, 180, 185, 244, 275, 280, 319, 347, 348, 367, 401, 513, 514, 515, 552, 553, 554, 555, 556, 557, 561, 562, 742, 806, 831, 914, 998, 1001, 1021, 1022, 1026, 1031, 1033, 1034, 1035, 1036, 1037, 1044, 1045, 1047], "bagai": 1044, "baggingclassifi": [2, 385, 394, 410, 553, 915, 940, 990, 1034, 1037, 1038, 1039, 1042, 1046, 1047, 1049, 1051, 1052], "baggingregressor": [2, 137, 394, 410, 552, 916, 990, 1034, 1037, 1039, 1042, 1046, 1047, 1049, 1051, 1052], "baggipont": [1049, 1050], "bagu": 1051, "baharev": 1036, "bahavior": 346, "bahaviour": 346, "baibak": [1039, 1040], "bail": 1042, "bailei": [403, 704], "bajic": 1046, "baji\u0107": 1046, "baker": [1050, 1051, 1052], "bakir2003": 408, "bakiri": [835, 1001], "bak\u0131r": [45, 408, 532], "bala": [1031, 1034], "balakumaran": [1038, 1039], "balanc": [2, 44, 46, 53, 64, 65, 86, 99, 103, 104, 105, 134, 139, 141, 144, 155, 160, 162, 180, 185, 210, 211, 233, 234, 244, 245, 246, 253, 255, 257, 261, 263, 266, 267, 270, 275, 277, 301, 303, 313, 314, 316, 319, 322, 353, 360, 383, 385, 401, 402, 407, 408, 410, 499, 512, 531, 537, 538, 544, 554, 558, 561, 639, 657, 658, 665, 667, 673, 674, 675, 703, 708, 730, 744, 783, 788, 801, 802, 804, 805, 815, 818, 819, 865, 905, 907, 910, 913, 915, 936, 937, 989, 1015, 1016, 1021, 1031, 1033, 1036, 1037, 1040, 1041, 1045, 1051], "balanced_accuraci": [257, 277, 708, 823, 1000, 1039], "balanced_accuracy_scor": [2, 703, 788, 1000, 1039, 1052], "balanced_subsampl": [64, 141, 185, 244, 275, 319, 554, 561, 1039], "balaz": 1035, "baldi": 744, "ball": [102, 288, 296, 403, 409, 444, 692, 845, 846, 850, 853, 855, 856, 857, 1031, 1033, 1036, 1042], "ball_tre": [296, 414, 440, 442, 446, 453, 688, 689, 847, 848, 849, 850, 851, 853, 855, 856, 857, 1003, 1031, 1048], "ballen": 1051, "balltre": [2, 414, 440, 442, 446, 453, 688, 689, 699, 847, 848, 849, 850, 851, 853, 855, 856, 857, 997, 1031, 1033, 1035, 1039, 1044, 1047, 1048], "baloo": 997, "baluyot": 1040, "bamidel": 1041, "banana": [49, 1000], "band": [53, 262, 266, 305, 1010], "bandit": 989, "bandol": 309, "bandwidth": [2, 49, 79, 96, 238, 287, 288, 296, 383, 385, 403, 409, 444, 454, 457, 845, 846, 850, 993, 1000, 1006, 1042, 1046], "bandwidth_": 850, "banerje": 1051, "bangda": 1039, "banik": 1049, "banilo": [1035, 1036], "bank": [52, 58, 1024], "bannerje": [1047, 1048], "bansal": [1038, 1051], "bansod": [1036, 1037, 1038], "bao": [1037, 1045], "baod": 403, "baptbillard": 1044, "baptist": [1034, 1042], "bar": [48, 50, 55, 104, 140, 141, 143, 144, 147, 159, 163, 175, 178, 184, 190, 248, 253, 262, 264, 268, 282, 308, 309, 316, 317, 328, 347, 373, 406, 413, 579, 631, 647, 668, 679, 1000, 1007, 1014, 1016, 1037, 1038, 1039, 1040], "bar_color": 48, "bar_kw": 631, "bar_siz": 346, "baran": 1041, "barang": 1047, "baraniuk": 412, "barankaraku": 1043, "barata": 1047, "barber": 529, "barberogaston": 1043, "barbier": 1050, "bardiya": [1045, 1046], "bare": [366, 997], "barh": [55, 147, 178, 179, 182, 183, 185, 186, 246, 310, 346, 347, 348], "barikbin": 1047, "barkhorn": 1039, "barklei": 1041, "barmalei": [1035, 1036], "barn": [692, 997, 1036, 1038, 1041, 1049], "barnes_hut": [283, 692, 1038, 1039], "barnett": 1039, "barnhil": [591, 592], "barnowski": [1045, 1046], "barreca": [886, 1010], "barreto": 1045, "barri": [366, 1039], "barrier": 411, "barrycg": 1041, "bars_": 631, "bartelheim": 1042, "barth\u00e9lemi": [1047, 1048, 1050], "bartosz": 1040, "bart\u0142omiej": 1046, "barycent": [295, 1031], "basbug": 1038, "base": [0, 2, 14, 20, 24, 31, 32, 33, 35, 41, 45, 52, 53, 54, 55, 56, 59, 63, 64, 65, 71, 82, 89, 90, 91, 100, 102, 103, 104, 107, 111, 120, 121, 126, 132, 134, 135, 139, 140, 143, 144, 145, 146, 147, 149, 150, 152, 154, 155, 156, 157, 160, 161, 167, 172, 173, 175, 183, 184, 185, 186, 189, 190, 195, 197, 198, 200, 202, 206, 207, 213, 222, 223, 225, 232, 234, 239, 240, 242, 243, 244, 260, 261, 262, 264, 266, 270, 272, 275, 276, 280, 282, 283, 296, 301, 303, 304, 306, 308, 314, 316, 320, 328, 329, 333, 339, 347, 350, 358, 365, 366, 367, 368, 369, 372, 374, 375, 379, 383, 385, 386, 388, 397, 399, 401, 402, 404, 408, 409, 411, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 440, 441, 442, 443, 444, 445, 446, 448, 452, 453, 457, 459, 460, 461, 462, 463, 483, 497, 498, 505, 506, 529, 530, 532, 533, 534, 535, 536, 538, 543, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 576, 586, 589, 590, 591, 593, 594, 595, 596, 597, 598, 599, 600, 601, 604, 605, 606, 609, 610, 615, 616, 617, 620, 623, 631, 632, 634, 635, 643, 644, 645, 646, 647, 649, 650, 651, 652, 653, 654, 655, 657, 663, 668, 670, 671, 672, 673, 674, 679, 681, 682, 684, 685, 686, 690, 692, 704, 717, 727, 736, 737, 738, 740, 742, 756, 757, 758, 786, 789, 796, 800, 801, 803, 804, 805, 807, 808, 810, 815, 817, 819, 820, 821, 822, 829, 831, 835, 836, 839, 847, 848, 849, 851, 853, 855, 856, 857, 862, 863, 866, 867, 870, 877, 878, 880, 884, 885, 886, 894, 897, 898, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 921, 923, 925, 934, 942, 954, 969, 989, 991, 992, 994, 995, 997, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1010, 1012, 1013, 1014, 1015, 1016, 1019, 1020, 1021, 1024, 1026, 1027, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1042, 1049], "base_classifi": [327, 329], "base_clf": 433, "base_estim": [314, 401, 550, 551, 552, 553, 836, 839, 902, 989, 1042, 1044, 1045, 1046, 1047, 1050, 1051], "base_estimator_": [550, 551, 552, 553, 554, 555, 560, 561, 562, 563, 609, 1046], "base_estimator__": 1046, "base_lr": [282, 836], "base_model": 402, "base_x_test": 109, "base_x_train": 109, "basebag": [1037, 1039], "basebal": [58, 366], "basedecisiontre": [1039, 1040, 1043], "basedictionarylearn": 1031, "baseensembl": [1038, 1041], "baseestim": [2, 89, 132, 239, 283, 321, 371, 384, 385, 413, 418, 419, 420, 421, 424, 425, 426, 427, 599, 631, 632, 940, 954, 1031, 1038, 1041, 1043, 1045, 1046, 1050, 1051, 1052], "basegradientboost": 1032, "baselabelpropag": 1038, "baselearn": 156, "baselibsvm": 1041, "baselin": [63, 134, 143, 146, 156, 163, 186, 190, 223, 257, 273, 282, 314, 328, 347, 368, 403, 412, 548, 549, 633, 1000, 1003, 1047], "baseline_similar": 175, "baseline_similarity_bound": 175, "basemap": [51, 296], "basemixtur": [1039, 1040, 1051], "basemultilayerperceptron": [1039, 1041], "basenb": 1041, "baserandomproject": [897, 898], "basesearchcv": [1038, 1039], "basesgd": 1014, "basesgdclassifi": 1040, "baseshufflesplit": 1044, "bash": [359, 371, 379], "bashrc": 379, "basi": [2, 44, 46, 54, 125, 155, 167, 172, 174, 207, 257, 300, 315, 335, 339, 363, 369, 372, 403, 408, 410, 448, 531, 621, 631, 638, 691, 884, 998, 1010, 1015, 1022, 1026, 1039, 1041, 1044], "basic": [146, 166, 167, 172, 173, 175, 176, 179, 180, 277, 310, 340, 358, 360, 371, 375, 383, 385, 403, 407, 408, 410, 610, 621, 901, 913, 914, 915, 916, 989, 990, 1003, 1014, 1018, 1019, 1020, 1021, 1024], "basicconfig": 120, "basil": 1038, "basilisk": 1019, "basis_1": 207, "basis_2": 207, "basisfunct": 155, "basri": 510, "bassett": 996, "bastiaan": [1032, 1033], "bastian": 1039, "batch": [2, 48, 51, 97, 120, 124, 296, 316, 360, 380, 385, 411, 436, 438, 443, 445, 447, 449, 528, 530, 531, 533, 534, 535, 536, 537, 539, 540, 542, 543, 663, 684, 685, 802, 806, 819, 820, 840, 841, 842, 843, 844, 862, 863, 874, 875, 885, 898, 952, 967, 1004, 1005, 1014, 1031, 1035, 1036, 1039, 1040, 1041, 1042, 1044, 1046, 1047], "batch_dict_estim": 120, "batch_pca_estim": 120, "batch_siz": [2, 55, 58, 77, 97, 120, 123, 124, 243, 347, 408, 445, 531, 533, 534, 535, 536, 543, 861, 862, 863, 952, 953, 967, 1032, 1039, 1042, 1044, 1045], "batch_size_": 531, "batchkarov": [1032, 1036], "batchsampl": 243, "batiss": 1042, "batista": [1039, 1040, 1044], "batistaki": 403, "batoul": 1044, "battista": 1042, "batula": 1038, "bauk": [1039, 1040], "baum": 442, "baumgartn": 1038, "baxlei": 1038, "bay": [2, 33, 65, 68, 137, 143, 152, 167, 198, 253, 265, 309, 346, 366, 401, 408, 410, 411, 533, 546, 547, 655, 840, 841, 842, 843, 844, 886, 994, 995, 996, 1010, 1022, 1026, 1031, 1032, 1033, 1034, 1039, 1041, 1044, 1046], "bayer": [0, 1031, 1032, 1036, 1049], "bayesian": [2, 47, 65, 87, 98, 118, 178, 179, 180, 189, 194, 196, 203, 207, 212, 247, 249, 253, 254, 278, 288, 293, 304, 308, 344, 408, 433, 521, 525, 529, 610, 643, 644, 655, 656, 798, 799, 866, 868, 880, 885, 989, 1019, 1021, 1022, 1025, 1026, 1037, 1044], "bayesiangaussianmixtur": [2, 248, 249, 254, 799, 999, 1037, 1039, 1040, 1044, 1045, 1049], "bayesianridg": [2, 87, 178, 179, 190, 191, 194, 314, 626, 643, 996, 1038, 1039, 1040, 1041, 1044, 1045, 1047, 1048, 1051], "baz": [373, 579], "baze": 1040, "bbbbbb": 97, "bbox": [49, 52, 67, 71, 248, 249, 250, 253, 254, 305], "bbox_arg": 49, "bbox_to_anchor": [44, 73, 176, 262, 268, 341], "bc": 307, "bcde": 143, "bcross_val": 1031, "bde": 143, "bdegraaff": 1046, "bdt": 136, "beach": 1039, "bead": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "beam": [137, 1031], "bean": [244, 245, 261, 263, 314], "bear": [410, 1019], "bearer": 1039, "beatrizsmg": 1043, "beauchamp": [1032, 1035], "beaugnon": 1041, "becam": [154, 386, 1039], "becaus": [44, 45, 53, 58, 63, 64, 65, 67, 75, 81, 83, 103, 113, 116, 134, 139, 146, 149, 154, 155, 163, 168, 171, 174, 178, 183, 184, 186, 191, 195, 201, 206, 210, 212, 213, 223, 233, 234, 238, 239, 243, 244, 246, 249, 257, 260, 262, 263, 264, 269, 270, 277, 282, 283, 299, 300, 301, 303, 307, 308, 309, 310, 313, 316, 322, 326, 335, 339, 346, 347, 348, 350, 353, 354, 358, 359, 366, 371, 375, 376, 379, 383, 384, 385, 394, 397, 400, 401, 402, 403, 404, 407, 408, 409, 410, 411, 413, 416, 426, 433, 443, 444, 457, 461, 471, 478, 479, 480, 531, 533, 549, 551, 553, 555, 557, 559, 560, 562, 565, 567, 605, 606, 610, 631, 632, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 668, 669, 671, 672, 675, 676, 677, 678, 679, 689, 699, 712, 713, 721, 722, 723, 724, 725, 747, 764, 786, 789, 795, 801, 815, 829, 833, 838, 839, 848, 851, 853, 855, 856, 857, 863, 874, 875, 883, 885, 886, 890, 891, 893, 894, 895, 896, 906, 908, 911, 914, 916, 942, 965, 990, 992, 993, 994, 995, 996, 997, 998, 1000, 1001, 1003, 1005, 1007, 1010, 1015, 1016, 1024, 1037, 1038, 1040, 1041, 1042, 1043, 1045, 1047, 1050, 1051], "becker": [403, 1024, 1034, 1043], "becom": [83, 88, 90, 103, 104, 111, 139, 144, 155, 160, 183, 200, 208, 210, 233, 234, 239, 242, 244, 246, 257, 262, 264, 265, 270, 277, 283, 301, 304, 308, 313, 316, 322, 335, 339, 346, 354, 365, 371, 373, 375, 379, 385, 386, 403, 405, 410, 411, 413, 436, 446, 450, 451, 453, 579, 586, 587, 589, 618, 626, 657, 658, 675, 677, 879, 905, 906, 912, 995, 996, 997, 999, 1003, 1010, 1015, 1032, 1039, 1040, 1043, 1044, 1045, 1046, 1048, 1050, 1051], "beconsid": [103, 139, 143, 154, 183, 184, 185, 234, 244, 257, 309, 313, 316, 322], "bedefin": [64, 141, 185, 244, 275, 319, 353], "bednar": 1038, "bedroom": [303, 366], "been": [0, 44, 49, 64, 79, 86, 93, 112, 125, 132, 134, 147, 154, 163, 167, 172, 174, 183, 186, 229, 232, 234, 239, 240, 257, 261, 263, 264, 269, 270, 312, 313, 314, 315, 316, 318, 319, 320, 321, 322, 326, 346, 354, 359, 365, 366, 368, 369, 370, 371, 373, 375, 377, 379, 380, 383, 384, 385, 386, 394, 397, 399, 400, 401, 402, 403, 405, 407, 408, 410, 413, 428, 465, 467, 468, 470, 474, 483, 520, 531, 533, 546, 547, 564, 565, 579, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 610, 632, 633, 657, 658, 665, 666, 667, 672, 674, 675, 676, 677, 698, 700, 702, 720, 779, 780, 781, 794, 801, 804, 805, 807, 815, 823, 824, 829, 830, 854, 902, 905, 990, 992, 993, 995, 996, 997, 1000, 1001, 1003, 1006, 1010, 1012, 1014, 1015, 1020, 1024, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "beexplain": [104, 244, 262], "befor": [2, 48, 52, 63, 77, 102, 103, 104, 107, 116, 139, 143, 144, 149, 154, 155, 156, 159, 160, 172, 174, 176, 177, 178, 180, 183, 184, 185, 186, 192, 194, 196, 198, 201, 233, 234, 239, 243, 244, 246, 253, 257, 263, 264, 270, 277, 285, 286, 304, 307, 308, 309, 310, 313, 314, 315, 316, 321, 322, 338, 352, 353, 354, 358, 359, 366, 369, 371, 373, 375, 376, 377, 379, 380, 383, 385, 386, 388, 389, 397, 399, 401, 403, 404, 405, 407, 408, 410, 412, 415, 416, 439, 443, 444, 445, 455, 457, 461, 465, 466, 467, 468, 469, 470, 471, 472, 473, 475, 476, 478, 479, 480, 481, 486, 498, 531, 534, 535, 536, 537, 538, 541, 543, 544, 558, 559, 562, 564, 566, 567, 575, 586, 587, 589, 610, 626, 627, 629, 644, 665, 666, 667, 670, 675, 677, 686, 692, 694, 798, 799, 802, 806, 807, 819, 820, 822, 827, 829, 831, 845, 846, 853, 854, 855, 856, 857, 860, 865, 866, 869, 872, 879, 883, 884, 885, 886, 890, 891, 893, 894, 895, 896, 902, 913, 914, 924, 949, 983, 990, 996, 997, 1000, 1006, 1010, 1014, 1015, 1016, 1020, 1021, 1031, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "beforehand": [246, 286, 1016], "beforetrain": [143, 151, 154, 257, 309, 317, 322], "begin": [58, 132, 163, 167, 258, 265, 282, 315, 346, 354, 371, 376, 377, 385, 400, 403, 410, 550, 551, 556, 558, 559, 665, 666, 675, 676, 677, 989, 992, 996, 1000, 1010, 1012, 1014, 1039, 1045, 1046], "beginn": 1020, "behav": [44, 52, 85, 90, 210, 257, 258, 303, 314, 335, 354, 371, 373, 377, 384, 403, 404, 407, 885, 996, 1010, 1015, 1017, 1020, 1031, 1038, 1040, 1044, 1045, 1051], "behavior": [63, 67, 73, 85, 100, 103, 104, 139, 143, 154, 160, 178, 180, 183, 184, 197, 204, 206, 223, 234, 239, 244, 246, 254, 255, 257, 264, 266, 268, 270, 300, 301, 303, 305, 310, 313, 316, 335, 354, 359, 365, 368, 371, 373, 375, 379, 380, 385, 399, 401, 402, 403, 407, 410, 411, 533, 548, 563, 665, 666, 667, 675, 676, 677, 699, 701, 730, 731, 784, 785, 788, 801, 802, 803, 806, 815, 818, 819, 820, 821, 822, 842, 874, 875, 878, 905, 906, 943, 944, 989, 996, 1000, 1001, 1006, 1010, 1015, 1021, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1050, 1051, 1052], "behaviour": [100, 103, 125, 149, 154, 185, 207, 208, 223, 234, 244, 313, 316, 337, 371, 385, 397, 399, 403, 410, 556, 557, 561, 562, 600, 629, 802, 803, 806, 818, 819, 820, 821, 822, 903, 913, 914, 972, 989, 990, 1000, 1010, 1039, 1042, 1043, 1046, 1047, 1050, 1052], "behaviourdur": [314, 352, 353], "behind": [38, 86, 111, 134, 280, 375, 379, 405, 410, 999, 1003, 1012, 1047], "behrend": 1041, "behrouz": 1045, "behzad": 1037, "beier": 1042, "beimportantfew": 391, "being": [62, 64, 65, 71, 85, 88, 113, 116, 125, 134, 138, 149, 151, 167, 172, 185, 188, 202, 239, 242, 256, 263, 301, 307, 308, 335, 339, 346, 348, 369, 370, 371, 373, 376, 383, 385, 386, 402, 403, 405, 407, 410, 411, 412, 413, 414, 416, 433, 437, 438, 440, 441, 446, 452, 465, 471, 490, 520, 566, 639, 648, 655, 671, 673, 686, 702, 712, 718, 735, 737, 784, 798, 845, 846, 851, 853, 855, 856, 857, 880, 898, 950, 989, 990, 996, 997, 999, 1000, 1003, 1006, 1007, 1010, 1012, 1014, 1015, 1016, 1031, 1032, 1037, 1038, 1039, 1040, 1042, 1043, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "beings": 346, "beirouti": 1038, "belatedli": 1038, "belief": [58, 263, 861, 1005], "believ": [346, 347, 379, 383, 1024], "belkin": 997, "belkina": [692, 997], "bell": [2, 518, 1039, 1041, 1043, 1044], "bella": 1000, "bella2012": 1000, "bellet": [1038, 1039, 1040], "belmont": [913, 914, 1016], "belong": [62, 65, 67, 88, 93, 155, 165, 242, 263, 312, 318, 326, 365, 366, 400, 401, 403, 404, 406, 407, 410, 418, 436, 439, 443, 444, 445, 447, 449, 520, 709, 712, 732, 808, 814, 826, 872, 886, 921, 957, 958, 996, 999, 1000, 1002, 1003, 1004, 1006, 1015, 1019], "below": [0, 2, 49, 53, 63, 64, 65, 69, 71, 88, 93, 102, 103, 107, 111, 120, 132, 138, 139, 141, 143, 146, 154, 155, 158, 160, 182, 183, 184, 185, 192, 206, 208, 221, 222, 226, 230, 233, 234, 239, 242, 244, 246, 253, 257, 258, 261, 262, 266, 268, 269, 270, 277, 301, 303, 307, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 340, 346, 353, 354, 359, 364, 365, 371, 373, 375, 376, 380, 385, 386, 389, 391, 399, 403, 405, 406, 407, 408, 410, 411, 412, 413, 440, 442, 444, 464, 467, 468, 474, 487, 489, 491, 492, 493, 494, 495, 497, 498, 499, 501, 502, 507, 528, 534, 539, 545, 580, 593, 594, 595, 596, 597, 598, 632, 645, 651, 657, 658, 666, 667, 672, 674, 692, 699, 705, 744, 764, 798, 799, 801, 812, 815, 834, 865, 868, 878, 879, 882, 888, 894, 903, 989, 990, 994, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1010, 1014, 1015, 1016, 1017, 1019, 1027, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1049], "belowthi": 52, "beltran": 1049, "ben": [1033, 1034, 1035, 1038, 1039, 1040, 1043, 1048, 1051], "ben3940": 1045, "benavoli": 263, "benbihi": 1040, "bench_k_mean": 91, "benchmark": [283, 314, 321, 347, 348, 358, 364, 366, 371, 383, 389, 396, 401, 464, 512, 903], "benchmark_estim": 50, "benchmark_influ": 47, "benchmark_throughput": 50, "bend": 339, "benedek": 1047, "benedikt": 1035, "benediktsson": [1031, 1032, 1033], "benefici": [104, 106, 109, 120, 152, 257, 303, 304, 320, 397, 402, 997], "benefit": [44, 80, 89, 106, 107, 134, 135, 144, 149, 154, 155, 183, 219, 229, 235, 237, 257, 285, 316, 321, 358, 371, 380, 385, 401, 403, 444, 457, 464, 505, 564, 565, 657, 658, 665, 666, 667, 675, 676, 677, 836, 903, 905, 989, 995, 1003, 1010, 1024, 1031, 1034, 1035, 1036, 1043, 1044, 1045, 1046], "benev": 0, "benfield": 1038, "bengio": [263, 862, 863, 989, 1013], "bengtsson": 1035, "benhel": 372, "benhur": 1044, "benign": [163, 368, 497], "benjamin": [640, 1033, 1034, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1051], "benjamini": [593, 1037, 1038], "benjaminirv": 1036, "benjastudio": [1039, 1040], "benn": 1039, "bennett": [163, 368, 1000], "benni": 1045, "benoit": 1048, "beno\u00eet": 1044, "benson": 58, "bentlei": 1003, "benyamna": 1051, "bepass": 139, "beprint": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "beprovid": 183, "bera": 1046, "berei": 1045, "beren": 692, "berenbaum": 1047, "bereng": 1044, "bereturn": [103, 154, 155, 183, 233, 234, 243, 244, 246, 257, 270, 277, 313, 316, 322], "berg": [366, 1032, 1033, 1043, 1048], "bergman": [1048, 1049], "bergstra": [989, 1031, 1032], "berk": 1031, "berkecanrizai": 1046, "berkelei": [640, 913, 914], "berlin": [172, 403, 408, 532, 696, 727, 757, 1000], "bernardo": 1037, "bernd": 1046, "bernhard": [45, 408, 532, 836, 871, 901, 1001, 1006, 1015, 1037], "bernhardsson": 1024, "berni": 1042, "bernoulli": [2, 301, 411, 412, 840, 841, 842, 843, 844, 861, 862, 863, 868, 996, 1010, 1022, 1026, 1031], "bernoullinb": [2, 152, 360, 841, 842, 843, 844, 1001, 1002, 1032, 1033, 1035, 1038, 1043, 1044, 1046], "bernoullirbm": [2, 301, 862, 863, 1005, 1010, 1033, 1034, 1043, 1045, 1048], "bertin": 1024, "bertoncelj": 1042, "bertrand": [0, 393, 1031, 1037, 1038, 1043, 1044], "bertrandhaut": [1039, 1040], "bes": 262, "beset": [143, 154, 184, 185, 309], "besid": [154, 235, 277, 371, 376, 587, 989, 1039], "bessel": [413, 618], "bessi": 317, "besson": [1036, 1037], "best": [0, 44, 46, 48, 52, 53, 54, 58, 62, 64, 65, 75, 80, 87, 88, 94, 102, 103, 104, 105, 109, 115, 120, 124, 127, 128, 129, 137, 139, 140, 141, 143, 145, 146, 147, 149, 154, 156, 163, 167, 168, 172, 173, 178, 183, 185, 190, 194, 196, 198, 200, 211, 219, 220, 221, 225, 228, 232, 237, 238, 242, 244, 249, 250, 254, 256, 257, 261, 262, 263, 264, 267, 270, 271, 274, 275, 278, 282, 287, 292, 304, 309, 314, 315, 319, 320, 328, 335, 338, 339, 346, 347, 348, 352, 353, 358, 359, 365, 368, 370, 371, 374, 377, 384, 385, 389, 394, 397, 400, 401, 402, 403, 407, 408, 410, 411, 412, 413, 426, 439, 442, 443, 445, 447, 448, 449, 455, 458, 461, 468, 478, 479, 480, 535, 542, 543, 549, 551, 553, 554, 555, 556, 557, 559, 561, 562, 563, 565, 567, 591, 592, 595, 600, 609, 610, 634, 636, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 668, 669, 670, 671, 672, 674, 675, 677, 678, 679, 688, 689, 690, 693, 694, 703, 708, 712, 719, 720, 721, 722, 723, 724, 725, 729, 730, 740, 741, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 784, 785, 786, 788, 791, 792, 793, 794, 795, 797, 798, 799, 801, 804, 805, 815, 828, 830, 833, 838, 839, 848, 856, 862, 863, 906, 908, 911, 913, 914, 915, 916, 989, 994, 995, 996, 997, 1000, 1003, 1004, 1006, 1014, 1016, 1019, 1020, 1024, 1031, 1034, 1037, 1039, 1040, 1041, 1044, 1045, 1046, 1047, 1049], "best_alpha": 1031, "best_c": 342, "best_c_scal": 342, "best_clf": 105, "best_compon": 262, "best_estim": [801, 804, 805, 815], "best_estimator_": [46, 87, 103, 104, 105, 106, 109, 127, 238, 244, 253, 257, 261, 262, 263, 264, 267, 275, 287, 801, 804, 805, 815, 989, 1038], "best_idx": [58, 262], "best_index": [261, 267], "best_index_": [103, 104, 244, 253, 257, 261, 262, 263, 267, 275, 801, 804, 805, 815], "best_loss": [675, 677], "best_loss_": [862, 863, 1046], "best_low_complex": 262, "best_mean_scor": 262, "best_n_it": 455, "best_paramet": 264, "best_parameters_": 253, "best_params_": [103, 104, 105, 146, 167, 238, 244, 253, 257, 261, 262, 263, 267, 275, 314, 335, 384, 801, 804, 805, 815, 989], "best_recal": 261, "best_recall_std": 261, "best_recall_threshold": 261, "best_scor": [262, 267], "best_score_": [103, 104, 105, 238, 244, 253, 257, 261, 262, 263, 264, 267, 268, 275, 335, 402, 672, 674, 801, 804, 805, 815, 823, 1042], "best_score_idx": 262, "best_threshold_": [257, 277, 320, 823], "best_validation_score_": [862, 863, 1046], "bestrictli": [104, 244, 262], "bestsplit": [314, 352, 353], "beta": [2, 80, 115, 182, 210, 377, 401, 403, 406, 533, 535, 537, 544, 643, 730, 731, 737, 743, 784, 796, 798, 1000, 1033, 1036, 1038, 1040, 1041], "beta_": [210, 408], "beta_1": [243, 862, 863], "beta_2": [243, 862, 863], "beta_k": 408, "beta_loss": [55, 535, 537, 544, 1038], "betatim": 1046, "beth": 183, "better": [44, 45, 49, 53, 58, 59, 62, 64, 68, 83, 88, 104, 106, 107, 109, 110, 111, 112, 116, 120, 123, 126, 137, 140, 143, 144, 145, 146, 149, 154, 155, 156, 158, 160, 171, 172, 173, 175, 178, 183, 184, 185, 191, 194, 195, 198, 200, 206, 207, 208, 213, 220, 222, 223, 229, 237, 238, 239, 242, 253, 256, 257, 262, 263, 265, 266, 269, 270, 272, 273, 276, 280, 282, 301, 307, 308, 316, 317, 328, 335, 342, 346, 347, 348, 350, 354, 358, 366, 370, 371, 372, 373, 376, 377, 379, 385, 388, 391, 399, 401, 403, 405, 407, 408, 409, 410, 411, 413, 445, 446, 535, 537, 544, 556, 557, 558, 559, 605, 606, 629, 670, 676, 692, 709, 726, 735, 740, 743, 764, 799, 830, 840, 841, 842, 843, 844, 845, 846, 851, 862, 863, 882, 883, 886, 894, 897, 898, 905, 906, 989, 990, 992, 993, 994, 996, 997, 999, 1000, 1002, 1003, 1004, 1008, 1010, 1013, 1014, 1016, 1020, 1024, 1031, 1032, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1048, 1051], "better_prob": 263, "betterapproxim": 156, "betterthan": [143, 151, 154, 257, 309, 317, 322], "between": [2, 26, 38, 44, 45, 48, 49, 51, 52, 53, 59, 71, 73, 74, 75, 77, 78, 86, 93, 94, 99, 100, 103, 104, 115, 123, 125, 126, 128, 134, 137, 139, 140, 143, 144, 146, 149, 151, 154, 155, 156, 158, 167, 172, 173, 175, 180, 182, 183, 184, 185, 190, 194, 195, 197, 199, 200, 203, 206, 207, 208, 210, 211, 213, 223, 225, 228, 232, 233, 234, 235, 237, 239, 242, 243, 244, 246, 255, 257, 259, 262, 263, 264, 265, 266, 267, 268, 269, 270, 272, 275, 276, 277, 280, 282, 285, 289, 290, 292, 293, 301, 303, 308, 309, 310, 313, 315, 316, 317, 320, 322, 327, 328, 335, 339, 341, 342, 346, 347, 348, 353, 354, 358, 359, 366, 371, 373, 375, 379, 380, 383, 384, 385, 386, 394, 397, 399, 400, 402, 403, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 424, 436, 437, 439, 440, 441, 442, 443, 446, 448, 449, 450, 452, 453, 454, 459, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 499, 511, 512, 518, 521, 524, 531, 532, 533, 534, 535, 536, 537, 538, 543, 544, 546, 547, 550, 551, 556, 557, 559, 560, 561, 562, 582, 586, 588, 589, 590, 591, 592, 593, 594, 596, 597, 598, 600, 602, 603, 604, 605, 606, 607, 610, 619, 626, 631, 632, 633, 638, 641, 644, 645, 646, 651, 652, 655, 656, 657, 658, 659, 660, 661, 662, 665, 666, 667, 669, 675, 677, 678, 680, 683, 687, 688, 690, 692, 694, 695, 696, 699, 701, 703, 704, 705, 707, 709, 710, 714, 715, 716, 717, 719, 725, 726, 727, 730, 731, 732, 735, 737, 738, 744, 753, 755, 756, 757, 758, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 784, 785, 787, 788, 793, 794, 796, 797, 798, 799, 801, 802, 803, 804, 806, 810, 818, 819, 820, 821, 822, 830, 831, 833, 835, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 862, 863, 869, 872, 873, 874, 875, 876, 878, 879, 882, 883, 884, 886, 891, 894, 895, 899, 905, 906, 910, 913, 914, 915, 916, 918, 946, 958, 959, 969, 989, 992, 994, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1014, 1015, 1016, 1017, 1020, 1021, 1031, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050], "beus": [104, 160, 270], "bewar": 412, "beyond": [44, 65, 207, 208, 257, 358, 360, 370, 371, 383, 401, 410, 730, 731, 739, 784, 785, 788, 910, 997, 1001, 1010, 1015, 1039], "beyst": 1045, "bezuidenhout": 1044, "bf5fff": 118, "bfg": [172, 183, 299, 609, 610, 647, 648, 657, 668, 671, 673, 679, 686, 1003, 1004, 1046], "bgm": 798, "bharat": [407, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1049, 1050], "bharathi": 1042, "bhardwaj": [1038, 1039], "bhargav": 1037, "bhaskaran": [1038, 1039], "bhat": [1044, 1046, 1047, 1048], "bhattacharya": 1039, "bhattarai": 1041, "bhavika": 1043, "bhoomika": 1046, "bhsu": 1035, "bhtsne": [692, 1038], "bi": [88, 411], "bia": [44, 65, 67, 103, 109, 122, 133, 139, 141, 143, 146, 149, 154, 155, 156, 180, 183, 184, 185, 190, 191, 193, 233, 234, 244, 246, 257, 262, 268, 277, 298, 301, 313, 316, 322, 339, 342, 354, 366, 385, 401, 405, 409, 410, 413, 521, 553, 556, 557, 605, 606, 613, 641, 647, 648, 657, 658, 668, 669, 679, 862, 863, 878, 880, 884, 890, 891, 893, 894, 895, 896, 914, 923, 995, 996, 999, 1000, 1004, 1005, 1008, 1014, 1021], "bianca": 65, "bianp": 377, "bias": [49, 64, 113, 123, 146, 153, 182, 183, 185, 268, 366, 388, 401, 410, 433, 521, 546, 861, 885, 896, 995, 999, 1008, 1014, 1016], "biasiniti": 243, "bibhash": [1041, 1042], "bibl": 347, "bibliograph": 371, "bibtex": 0, "bic": [2, 180, 189, 195, 196, 197, 202, 213, 412, 498, 650, 652, 653, 654, 655, 799, 866, 885, 989, 999, 1021, 1031, 1038, 1044, 1045], "bic_criterion": 196, "bicker": 1041, "biclust": [2, 6, 60, 102, 326, 346, 347, 348, 411, 418, 445, 447, 449, 484, 508, 510, 589, 719, 796, 1000, 1021, 1025, 1026, 1033, 1037], "bicluster_ncut": 58, "biclustermixin": 2, "biclusters_": [59, 60, 418, 447, 449], "bidu": [1044, 1045], "biernat": 1043, "big": [44, 79, 93, 95, 211, 226, 242, 254, 359, 371, 377, 386, 405, 411, 415, 535, 558, 559, 561, 562, 807, 829, 840, 841, 842, 843, 844, 1020, 1024, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "bigg": [413, 618], "bigger": [48, 75, 93, 218, 263, 301, 339, 344, 347, 357, 359, 411, 434, 435, 505, 535, 851, 1026], "biggest": [403, 406, 408, 439], "biggest_inertia": [403, 439], "biggio": 1042, "bigram": [264, 411, 586, 587, 589], "bigram_vector": 411, "bijil": 1045, "bike": 1007, "bike_shar": 44, "bike_sharing_data_fil": 53, "bike_sharing_demand": [44, 184], "bilbro": 1038, "bill": [1041, 1042], "billaud": 1039, "billi": 1035, "billing": [1034, 1035, 1036], "billion": 1024, "bimod": [307, 409], "bin": [2, 44, 63, 65, 67, 86, 107, 136, 140, 143, 151, 154, 206, 236, 242, 257, 269, 288, 303, 304, 305, 306, 307, 309, 310, 317, 322, 369, 379, 389, 401, 409, 410, 434, 435, 444, 457, 558, 559, 602, 868, 870, 884, 951, 1039, 1040, 1041, 1045, 1049, 1050], "bin_cent": [86, 206], "bin_edg": 86, "bin_edges_": [86, 304, 870], "bin_seed": [79, 96, 444, 457, 1042], "binar": [2, 37, 270, 272, 273, 363, 365, 399, 755, 840, 869, 870, 872, 876, 878, 886, 889, 1000, 1002, 1026, 1045, 1047, 1051], "binari": [2, 31, 48, 54, 63, 64, 65, 103, 104, 138, 139, 140, 143, 150, 152, 154, 155, 160, 175, 183, 188, 199, 200, 201, 206, 213, 226, 233, 234, 242, 244, 245, 246, 253, 257, 260, 261, 262, 263, 264, 266, 272, 275, 277, 280, 287, 301, 309, 313, 314, 316, 321, 322, 335, 339, 353, 354, 365, 366, 367, 375, 376, 385, 389, 397, 400, 401, 402, 403, 410, 411, 413, 433, 434, 435, 448, 483, 497, 505, 506, 517, 520, 546, 547, 550, 552, 556, 558, 563, 564, 565, 579, 586, 587, 589, 591, 592, 600, 609, 626, 627, 628, 629, 630, 631, 632, 657, 658, 665, 667, 672, 673, 674, 675, 700, 703, 707, 708, 709, 712, 713, 715, 718, 720, 723, 728, 730, 731, 735, 736, 739, 740, 741, 742, 744, 783, 784, 785, 788, 789, 790, 795, 797, 800, 801, 802, 804, 805, 806, 807, 815, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 840, 851, 861, 872, 876, 878, 886, 889, 905, 907, 910, 921, 964, 990, 1001, 1002, 1003, 1004, 1005, 1007, 1008, 1010, 1011, 1012, 1014, 1015, 1016, 1028, 1032, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1045, 1046, 1048, 1049, 1051], "binary_crossentropi": 1045, "binary_eros": 54, "binary_onli": [1041, 1042], "binaryclassifi": 64, "binarytre": [850, 1035, 1039, 1043], "bincount": [64, 103, 104, 139, 141, 155, 160, 185, 233, 234, 244, 245, 246, 257, 261, 262, 263, 270, 275, 277, 301, 313, 314, 316, 319, 322, 353, 385, 407, 554, 558, 561, 657, 658, 665, 667, 673, 674, 675, 905, 907, 910, 913, 915, 936, 937, 1038], "bind": [389, 1019, 1031, 1038, 1039], "binder": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353], "binesh": [1047, 1048], "binet": [1041, 1046], "bing": [1037, 1038], "bingham": 1012, "bini": [143, 151, 154, 257, 309, 317, 322], "binned_numer": [206, 223], "binom": 996, "binomi": [145, 148, 257, 322, 410, 550, 556, 558, 996, 1045, 1048], "bio": 266, "biocsklearn": 1019, "bioinformat": [627, 990], "biola": [1049, 1050], "biologi": 51, "biometrika": [881, 893], "biostatist": [405, 474], "bipartit": [400, 449, 508, 1005], "biprateep": 1043, "birch": [2, 72, 79, 97, 180, 316, 360, 385, 442, 445, 509, 1021, 1025, 1026, 1035, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1047, 1048, 1050], "birch_model": 77, "bird": [580, 718, 755, 1000], "birodkar": [1036, 1037, 1039], "bischl": 365, "bisect": [2, 72, 90, 92, 93, 94, 176, 180, 259, 439, 443, 509, 1021, 1045], "bisect_km": 316, "bisect_mean": 439, "bisecting_strategi": [403, 439], "bisectingkmean": [2, 78, 403, 443, 1045, 1046, 1047], "bisector": 71, "bishop": [529, 531, 538, 742, 798, 996, 1001, 1015], "bisht": 1051, "bistochast": [400, 447], "biswadip": 1041, "biswaroop": 1046, "bit": [44, 53, 65, 86, 109, 123, 208, 280, 303, 335, 347, 354, 358, 366, 375, 385, 389, 391, 410, 411, 580, 587, 657, 835, 931, 932, 997, 1001, 1018, 1031, 1034, 1037, 1039, 1040, 1043, 1044, 1045, 1048, 1049, 1052], "bithash": 639, "bithash_": 639, "bitli": 1024, "bitmap": 368, "bittarello": 1044, "bjerr": 1039, "bla": [358, 359, 372, 377, 379, 779, 1031, 1039, 1040, 1042, 1043, 1049, 1052], "black": [44, 49, 50, 51, 53, 64, 71, 79, 82, 88, 89, 111, 112, 118, 120, 122, 142, 146, 158, 161, 167, 168, 172, 173, 176, 179, 183, 184, 190, 196, 198, 200, 206, 207, 208, 212, 214, 217, 218, 223, 232, 242, 248, 251, 260, 288, 298, 299, 301, 329, 344, 351, 352, 371, 403, 410, 413, 552, 553, 630, 1006, 1007, 1016], "blackberri": 309, "blackburn": [1034, 1037], "blackd0t": 1041, "blair": [46, 366], "blakeflei": 1037, "blame": 371, "blanc": 309, "blanchard": [1035, 1036], "blank": [93, 376, 990, 1016], "blazestorm001": 1050, "bldgtype": 143, "bleck": 1051, "bleed": 1024, "blei": [408, 533, 798], "bleich": [184, 1007], "bleki": 1043, "blend": [142, 154, 309, 385, 407], "bli": [359, 383], "blind": [119, 122, 180, 201, 205, 346, 408, 530, 538, 1021], "blindli": 64, "blink": 335, "blis_num_thread": 359, "blob": [2, 62, 70, 71, 77, 79, 90, 95, 97, 379, 403, 444, 509], "blobbi": 67, "blobs_param": 232, "block": [2, 288, 303, 316, 322, 366, 368, 371, 376, 379, 385, 400, 403, 406, 409, 448, 449, 458, 469, 475, 476, 484, 485, 508, 510, 695, 949, 1003, 1005], "block_siz": [469, 475, 476, 1035], "blocker": [375, 1049], "blocknum": 48, "blockwis": [400, 996], "blog": [316, 358, 371, 377, 379, 386, 1042], "blogpost": 376, "blondel": [0, 393, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1044], "blood": [163, 233, 368], "bloom": [380, 966], "blown": 338, "blue": [47, 49, 53, 59, 60, 64, 67, 71, 111, 118, 120, 134, 137, 141, 148, 149, 151, 154, 155, 161, 172, 174, 188, 191, 196, 198, 204, 228, 236, 256, 257, 258, 262, 263, 299, 308, 313, 319, 326, 352, 368, 403, 408, 1048], "blueski": 375, "blueviolet": [219, 289, 334], "blum": 1038, "blyston": [1041, 1042], "bmaisonn": 1043, "bmalezieux": 1044, "bmatrix": [400, 992], "bmc": 1010, "bme": [1049, 1050], "bmi": [163, 196, 198, 243, 368, 1008], "bmreinig": 1045, "bmug": 58, "bmva": 670, "bmvc": [670, 996], "bo": [64, 1043], "board": 0, "boat": 317, "bob": [1032, 1038], "bobyrev": 1038, "boca": 996, "bodega": 309, "bodenhof": [400, 719], "bodi": [48, 102, 163, 243, 317, 368], "body_bow": 102, "body_stat": 102, "boe": 52, "boechat": 1038, "boenisch": 1042, "boerner": 1045, "boersma": 1037, "bogazici": 368, "bogdan": 1031, "boggavarapu": 1043, "bohl": [1043, 1045], "bohn\u00e9": 1044, "boil": [134, 374, 385, 405], "boilerpl": [239, 373, 1024], "boisberrang": [0, 392, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "bold": [93, 146, 198, 203, 371], "boll": [996, 1051], "bolleddula": [1049, 1050], "bolmier": [1042, 1043, 1047], "boltzmann": [2, 67, 105, 180, 200, 220, 297, 499, 657, 713, 831, 861, 862, 863, 865, 891, 1021, 1025, 1026, 1033], "bommarito": [1034, 1035], "bonald": 1046, "bonami": 1051, "bone": [218, 344], "bonei": [1050, 1051], "bonferroni": 263, "bonu": [223, 369, 371], "bonusmalu": [206, 223], "boo": [163, 368], "book": [102, 439, 443, 445, 835, 840, 844, 996, 997, 998, 1001, 1043], "booktitl": 0, "bool": [52, 64, 82, 99, 103, 104, 112, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 179, 183, 184, 185, 192, 223, 233, 234, 235, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 353, 371, 373, 415, 416, 417, 418, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 455, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 505, 506, 507, 508, 509, 510, 511, 512, 516, 519, 520, 521, 524, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 572, 579, 580, 581, 583, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694, 695, 697, 698, 700, 702, 703, 707, 708, 709, 711, 712, 713, 714, 722, 727, 728, 729, 730, 731, 732, 739, 742, 743, 755, 757, 762, 764, 768, 770, 775, 779, 783, 784, 785, 786, 788, 790, 795, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 815, 819, 820, 823, 824, 825, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 921, 922, 923, 924, 925, 927, 929, 930, 931, 932, 942, 943, 944, 949, 950, 963, 964, 966, 970, 972, 980, 985, 986, 987, 988, 990, 1040, 1043, 1044], "bool_": 208, "boolean": [2, 132, 143, 151, 154, 239, 257, 309, 317, 322, 353, 366, 371, 373, 380, 404, 410, 411, 412, 460, 558, 559, 579, 580, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 605, 606, 628, 631, 632, 635, 648, 670, 699, 779, 834, 840, 861, 868, 888, 922, 927, 983, 990, 996, 1002, 1007, 1010, 1016, 1031, 1034, 1036, 1037, 1038, 1040, 1041, 1042, 1044, 1045, 1046, 1049], "boom": 1049, "boost": [2, 14, 47, 53, 67, 103, 133, 134, 135, 138, 139, 141, 151, 154, 156, 174, 180, 185, 186, 191, 208, 213, 257, 264, 299, 304, 307, 309, 310, 316, 319, 372, 377, 385, 402, 412, 444, 462, 463, 486, 493, 498, 517, 550, 551, 556, 557, 558, 559, 561, 562, 631, 632, 633, 634, 742, 743, 749, 751, 791, 801, 804, 805, 806, 822, 828, 831, 866, 878, 879, 886, 996, 1000, 1019, 1021, 1022, 1026, 1031, 1032, 1034, 1036, 1037, 1038, 1040, 1044], "booster": 1036, "boosting_error": 134, "boostingcolumntransform": 154, "boostingdecis": 410, "boostingi": 156, "booth": 1038, "bootstrap": [64, 137, 138, 141, 145, 150, 154, 156, 178, 185, 244, 266, 275, 314, 319, 407, 410, 551, 552, 553, 554, 555, 560, 561, 562, 937, 970, 996, 1031, 1032, 1034, 1036, 1039, 1041, 1044], "bootstrap_featur": [410, 552, 553], "bootstrap_indic": 266, "borchmann": 1046, "border": [442, 1041], "borderaxespad": [111, 262], "borderpad": 351, "borderwidth": 140, "borg": [687, 690, 694, 997], "borgn": 1044, "bori": [1035, 1043, 1047], "borja": 1035, "born": 1037, "borovec": 1045, "borovikova": 1042, "bosch": 1044, "bossan": [1043, 1045, 1046, 1047, 1049], "bossch": [0, 393, 1038, 1039, 1040, 1044, 1051], "boston": 1024, "bot": [375, 1005, 1045, 1048, 1049, 1050, 1051], "botelho": 1043, "both": [31, 44, 45, 47, 49, 50, 53, 55, 59, 63, 64, 65, 67, 71, 77, 87, 88, 97, 103, 109, 111, 115, 116, 125, 127, 132, 137, 139, 140, 141, 143, 144, 149, 153, 154, 155, 156, 158, 159, 161, 163, 167, 174, 176, 182, 183, 184, 185, 190, 194, 195, 196, 198, 200, 204, 206, 207, 208, 210, 211, 212, 213, 223, 229, 233, 234, 238, 239, 240, 244, 246, 248, 249, 250, 251, 252, 253, 257, 262, 263, 264, 265, 266, 269, 270, 272, 274, 275, 276, 277, 283, 295, 301, 303, 307, 308, 312, 313, 314, 316, 318, 319, 321, 322, 326, 327, 332, 337, 339, 346, 347, 348, 353, 354, 358, 359, 360, 364, 365, 366, 371, 373, 375, 377, 378, 380, 383, 384, 385, 386, 389, 394, 397, 399, 400, 401, 403, 404, 405, 406, 407, 408, 410, 411, 413, 416, 433, 442, 448, 458, 464, 471, 478, 479, 480, 481, 484, 485, 493, 494, 497, 499, 502, 504, 505, 506, 531, 535, 537, 544, 548, 552, 553, 554, 561, 562, 563, 564, 575, 586, 587, 589, 595, 605, 606, 626, 631, 632, 642, 656, 657, 658, 671, 673, 675, 677, 686, 699, 704, 712, 716, 730, 731, 732, 737, 739, 758, 762, 768, 784, 785, 788, 789, 790, 796, 804, 805, 807, 824, 834, 862, 863, 877, 879, 881, 893, 898, 903, 905, 906, 913, 915, 922, 935, 940, 950, 964, 974, 988, 989, 990, 991, 993, 994, 995, 996, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1010, 1013, 1014, 1015, 1016, 1019, 1020, 1024, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "botstein": [627, 990], "bottleneck": [243, 358, 377, 410, 444, 862, 863], "bottom": [46, 48, 52, 54, 55, 71, 73, 77, 79, 84, 86, 95, 97, 100, 118, 144, 152, 156, 206, 216, 232, 248, 250, 251, 254, 260, 263, 274, 288, 303, 325, 327, 328, 335, 371, 401, 403, 409, 585, 917, 994, 996, 1000, 1008, 1020], "bottom_h": 303, "bottou": [675, 676, 677, 1004, 1014], "bou": [1046, 1047], "boucaud": 1039, "boucher": 1038, "bouckaert": 263, "boukhobza": 1049, "boulard": 1048, "bouldin": [2, 726], "bouleng": [1050, 1051], "boulogn": 1034, "boulton": 1051, "boun": 368, "bound": [2, 65, 88, 171, 172, 173, 175, 180, 208, 223, 228, 231, 253, 262, 307, 375, 378, 403, 408, 411, 413, 414, 440, 485, 499, 509, 520, 533, 560, 593, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 631, 634, 636, 649, 653, 657, 676, 705, 736, 789, 798, 799, 845, 846, 882, 894, 897, 898, 899, 907, 908, 909, 912, 935, 996, 999, 1000, 1003, 1012, 1014, 1015, 1017, 1021, 1039, 1042, 1043, 1045, 1051], "bound_": 533, "boundari": [2, 51, 54, 63, 64, 65, 68, 71, 91, 93, 136, 142, 152, 155, 168, 169, 171, 180, 184, 189, 207, 220, 232, 237, 240, 264, 266, 280, 291, 293, 294, 296, 298, 301, 303, 305, 308, 323, 328, 330, 332, 333, 334, 335, 337, 343, 344, 351, 367, 401, 410, 411, 413, 433, 446, 452, 501, 509, 533, 546, 547, 586, 587, 589, 630, 657, 736, 762, 801, 834, 847, 853, 855, 856, 857, 880, 884, 901, 902, 907, 909, 910, 935, 994, 996, 1001, 1003, 1006, 1010, 1013, 1014, 1015, 1021, 1031, 1033, 1035, 1044, 1045, 1046, 1048, 1051], "bounding_ax_": [378, 631], "boundscheck": [359, 372], "boundsmust": 172, "bourassa": 410, "bourbeau": [1038, 1039, 1040], "bourboux": 1042, "bourguignat": 1036, "bournhonesqu": 1041, "bousquet": 901, "boutili": 1012, "boutsidi": 408, "bow": 404, "bown": 1037, "bowyer": 1049, "box": [44, 50, 88, 184, 185, 226, 280, 303, 307, 378, 408, 410, 509, 552, 553, 881, 893, 917, 919, 1000, 1001, 1007, 1010, 1016, 1039, 1047], "boxcox": 1050, "boxplot": [50, 111, 147, 183, 186, 277, 312], "boxplot_runtim": 50, "boxstyl": [49, 305], "boy": 1045, "boyd": 996, "boyl": [1048, 1049], "boyuan": [1035, 1036, 1037], "bp": [50, 147, 163, 196, 198, 368, 1008], "bpo": 879, "br": 136, "bracket": [371, 996], "bradi": 1038, "bradlei": [163, 368, 996], "bradshaw": [1034, 1035, 1038], "bradypu": [51, 296, 366, 495], "bradypus_variegatus_0": 51, "brain": 365, "branch": [64, 139, 141, 143, 150, 151, 154, 156, 185, 244, 257, 275, 309, 314, 317, 319, 322, 352, 353, 358, 369, 371, 374, 375, 403, 410, 438, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 913, 914, 915, 916, 918, 1003, 1007, 1016], "branching_factor": 438, "brand": [386, 389], "brandon": [1037, 1038, 1045, 1046], "brandt": 1042, "brandyn": 1031, "brault": 1038, "braun": 1039, "bravi": 1037, "braycurti": [446, 453, 699, 779, 780, 781, 1003], "braycurtisdist": 699, "brc": [403, 438], "brdav": [1049, 1050], "bre": [2, 633, 1016], "bread": 1024, "breadth": [845, 846, 850, 1024, 1033], "breadth_first": [845, 846, 850], "break": [2, 56, 80, 100, 102, 103, 112, 139, 143, 154, 180, 183, 184, 198, 212, 234, 239, 244, 245, 250, 261, 263, 280, 313, 314, 315, 316, 325, 330, 346, 348, 371, 375, 377, 384, 403, 465, 509, 638, 775, 779, 782, 798, 878, 885, 890, 907, 910, 996, 999, 1008, 1010, 1015, 1020, 1021, 1031, 1032, 1038, 1039, 1041, 1043, 1047, 1052], "break_ti": [244, 245, 261, 263, 314, 343, 907, 910, 1015, 1041], "breakdown": [111, 112, 222, 678, 996], "breakdown_": 678, "breakingdown": 155, "breast": [2, 163, 364, 497, 1008, 1026, 1036], "breast_canc": 327, "breast_cancer_data": 163, "brecht": 640, "bredin": 1035, "bredlund": 1050, "breiman": [185, 407, 410, 513, 514, 515, 552, 553, 561, 562, 633, 913, 914, 1008, 1016], "brekk": 1046, "brendan": [74, 436, 450, 1047, 1048, 1049], "brenden": 1045, "brenner": 1000, "breno": [1038, 1039], "brent": [1035, 1039, 1040], "brentfagan": 1040, "bresson": [1050, 1051], "brett": [1034, 1036, 1037, 1038, 1039, 1046], "brettingen": 1037, "breuer": 1042, "breunig": [403, 446, 453, 851, 1006], "breve": 1047, "brevin": [1047, 1048], "brew": [145, 369, 389], "brian": [0, 393, 708, 1000, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1041, 1042, 1044, 1045], "brice": [1043, 1044], "bridg": [383, 997], "brief": [371, 998], "briefli": [272, 370, 384, 410, 989, 1041], "brier": [2, 62, 63, 64, 65, 401, 709, 722, 1051, 1052], "brier1950": 1000, "brier_scor": 62, "brier_score_loss": [2, 62, 63, 64, 165, 401, 1000, 1039, 1040, 1041, 1049, 1051, 1052], "brigata": 368, "bright": 335, "brighter": 175, "brigi": [1042, 1043], "brigitta": [1041, 1042, 1043, 1047, 1049, 1050], "bring": [183, 303, 371, 408, 675, 677, 997, 1024], "british": 411, "brittl": [100, 403], "broad": [371, 385, 1019], "broadcast": 626, "broader": [305, 371, 996, 1023], "broadli": [385, 403], "brocchini": 1043, "brochart": 1048, "brockherd": 1033, "brodersen": 708, "broke": 1038, "broken": [389, 407, 597, 598, 634, 720, 927, 1000, 1016, 1034, 1038, 1039, 1040, 1042, 1045], "brook": [1034, 1035, 1043], "brought": 182, "brown": [51, 118, 296, 366, 495, 627, 990, 1036, 1038, 1039, 1040, 1043], "browser": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 371, 379, 1010, 1048], "broyden": 996, "brr": 190, "brr_poli": 190, "brr_score": 190, "bruce": [1041, 1042], "brucher": [0, 393, 1031], "brummitt": [1038, 1039], "brunak": 744, "brunner": 1035, "bruno": [1042, 1043, 1044, 1049], "brutal": 335, "brute": [283, 383, 398, 407, 414, 440, 442, 446, 453, 631, 632, 688, 689, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 1007, 1026, 1035, 1039, 1043, 1046, 1047, 1048, 1049], "bry": 214, "bryan": [1031, 1034, 1040, 1041, 1044], "br\u00f6mmel": [1045, 1046], "br\u00fblade": 309, "bsa": 765, "bsas_in_radian": 765, "bscikit": 1031, "bsd": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 377, 383], "bsh": 1046, "bsmtfinsf1": [143, 154], "bsmtfinsf2": 143, "bsmthalfbath": 143, "bsmtunfsf": 154, "bspline": [155, 884], "bsplines_": [207, 884], "bsr": [931, 932, 1044], "bss": [722, 1000], "bt": 411, "btol": [156, 183, 235, 656, 671, 673], "buck": 626, "budarz": 1044, "buddha": 1036, "budget": [143, 840, 841, 842, 843, 844, 989], "bueno": 765, "buffer": [83, 1044, 1049], "buffer_mb": 1031, "bug": [239, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 369, 373, 374, 375, 376, 379, 383, 385, 1020, 1031, 1032, 1033, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051], "bugfix": [375, 690, 694, 1031, 1045], "buguen": 1031, "buhmann": 708, "build": [0, 2, 7, 17, 36, 44, 47, 56, 64, 69, 78, 88, 100, 103, 106, 124, 134, 141, 142, 144, 150, 151, 154, 155, 156, 160, 162, 177, 178, 180, 183, 185, 213, 233, 234, 243, 244, 246, 257, 264, 268, 270, 271, 275, 277, 280, 282, 283, 300, 301, 304, 309, 310, 313, 316, 319, 322, 348, 354, 358, 359, 360, 367, 374, 375, 376, 377, 385, 389, 396, 403, 407, 410, 411, 438, 486, 498, 500, 521, 550, 551, 552, 553, 554, 555, 556, 557, 560, 561, 562, 563, 583, 584, 586, 587, 589, 626, 627, 629, 644, 691, 713, 714, 802, 806, 810, 819, 825, 827, 866, 883, 885, 913, 914, 915, 916, 918, 945, 949, 989, 990, 997, 1000, 1004, 1006, 1010, 1015, 1016, 1019, 1020, 1021, 1023, 1024, 1031, 1034, 1036, 1037, 1038, 1040, 1043], "build_analyz": [411, 586, 587, 589, 1041], "build_preprocessor": [411, 586, 587, 589, 1041], "build_projection_oper": 54, "build_token": [58, 411, 586, 587, 589], "build_tool": [371, 375, 379], "builder": [48, 50, 342, 375], "built": [2, 26, 116, 132, 134, 135, 142, 143, 144, 151, 154, 185, 213, 257, 266, 275, 280, 296, 309, 312, 317, 321, 322, 351, 353, 358, 366, 369, 371, 372, 375, 377, 379, 380, 383, 384, 385, 389, 397, 403, 404, 407, 410, 412, 441, 500, 550, 551, 552, 553, 556, 557, 558, 559, 586, 587, 591, 595, 638, 639, 640, 641, 642, 645, 646, 651, 657, 659, 660, 661, 662, 671, 672, 673, 674, 680, 804, 805, 812, 836, 839, 845, 846, 915, 916, 954, 983, 996, 1000, 1001, 1013, 1014, 1016, 1019, 1024, 1031, 1034, 1035, 1037, 1043, 1049], "builtin": 1015, "buitinck": [0, 393, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038], "bulk": [272, 414, 440], "bulk_benchmark": 50, "bulk_benchmark_estim": 50, "bulk_runtim": 50, "bull": [1038, 1050], "buluttekin": 1041, "bumblebe": 1044, "bump": 374, "bunch": [2, 51, 126, 239, 364, 365, 366, 460, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 504, 507, 512, 564, 565, 566, 567, 631, 632, 633, 864, 865, 913, 914, 915, 916, 958, 961, 1024, 1036, 1038, 1041, 1043, 1047], "bundl": [1039, 1040], "bupu": 184, "burden": [877, 1020], "bureau": 366, "buri": 371, "burjek": 1031, "burk": [0, 355, 1046], "burkhart": 1051, "burn": [1038, 1039], "burovski": 1051, "burst": 1000, "busch": [1039, 1040, 1042], "bush": [46, 366], "busi": [44, 206, 263, 272, 320, 379, 383, 402, 789, 996, 1000, 1024], "business_metr": 257, "business_scor": 257, "bussonni": [1031, 1043], "butler": [470, 1034, 1042, 1043], "butlerdavi": 470, "butmai": 155, "butter": 1024, "button": [322, 371, 379], "butyugina": 1047, "buuren": [626, 990], "buzenet": [1046, 1047], "bv_bunch": 51, "bwignal": 1034, "by_kei": 273, "byappli": 64, "bydefault": 156, "byensur": 172, "byfriedman": 156, "bymak": [104, 244, 262], "bypass": [160, 257, 316, 402, 404, 597, 645, 651, 823, 913, 914, 915, 916, 1047], "byproduct": 229, "byrd": 657, "byron": 1043, "bysvd_solv": [104, 244, 262], "byte": [86, 264, 411, 483, 500, 505, 506, 580, 586, 587, 589, 966, 1031, 1038, 1039, 1046, 1049], "bz2": [56, 505, 506], "bz2file": 56, "bzip2": 1031, "b\u00e9gude": 309, "c": [0, 2, 44, 46, 47, 48, 51, 52, 53, 58, 62, 63, 65, 67, 68, 71, 75, 77, 78, 85, 89, 90, 92, 93, 94, 98, 100, 103, 104, 106, 116, 118, 125, 126, 134, 136, 137, 139, 142, 143, 150, 152, 153, 155, 160, 163, 168, 169, 170, 171, 175, 188, 197, 199, 200, 201, 203, 204, 214, 216, 217, 218, 219, 221, 222, 225, 227, 229, 230, 233, 234, 237, 238, 240, 244, 245, 246, 249, 251, 252, 253, 254, 256, 257, 258, 260, 261, 262, 263, 266, 268, 270, 272, 274, 277, 283, 286, 289, 291, 292, 293, 294, 296, 298, 299, 301, 303, 304, 305, 308, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 326, 329, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 346, 351, 352, 358, 359, 365, 367, 368, 369, 371, 372, 374, 376, 379, 380, 383, 389, 390, 394, 400, 401, 403, 404, 405, 406, 407, 408, 410, 412, 416, 433, 438, 439, 442, 443, 445, 455, 464, 471, 520, 525, 531, 535, 537, 538, 544, 546, 547, 588, 605, 606, 609, 630, 638, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 669, 671, 672, 675, 677, 678, 684, 685, 688, 689, 692, 693, 708, 709, 714, 715, 718, 731, 732, 736, 742, 743, 759, 760, 801, 815, 824, 830, 832, 840, 841, 842, 843, 844, 845, 846, 852, 854, 861, 876, 878, 879, 880, 884, 886, 900, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 916, 920, 931, 932, 964, 989, 992, 993, 995, 996, 997, 998, 1000, 1002, 1003, 1005, 1007, 1010, 1012, 1014, 1015, 1016, 1019, 1024, 1028, 1031, 1032, 1034, 1036, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1047, 1049, 1050, 1052], "c0": [235, 309], "c1": [98, 175, 235, 309], "c2": [98, 175, 235, 309], "c22": 317, "c26": 317, "c3": [98, 309], "c4": [98, 309, 1022, 1026], "c5": [98, 1022, 1026], "c56poni": 1041, "c6": 98, "c99": 1019, "c_": [51, 63, 64, 65, 91, 111, 121, 142, 145, 151, 152, 169, 204, 218, 221, 232, 289, 306, 308, 329, 335, 343, 403, 658, 714, 715, 718, 1000], "c_0": [992, 998], "c_2": 403, "c_2d_rang": 335, "c_e": 403, "c_i": [403, 1003], "c_j": [403, 1005], "c_jh_j": 1005, "c_k": 546, "c_option": 104, "c_p": 996, "c_q": 403, "c_rang": 335, "c_scale": 342, "ca": [163, 368, 403, 438, 913, 914, 1012, 1016], "cabernet": 309, "cabin": 317, "cablevis": 52, "cabrera": 1041, "cach": [2, 53, 87, 99, 103, 139, 143, 154, 160, 180, 183, 185, 233, 234, 243, 244, 245, 246, 261, 263, 264, 270, 277, 283, 284, 286, 291, 295, 309, 313, 314, 316, 321, 322, 358, 359, 366, 373, 385, 437, 441, 446, 464, 482, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 499, 505, 506, 801, 847, 849, 865, 866, 903, 907, 908, 909, 910, 911, 984, 1003, 1015, 1021, 1034, 1038, 1039, 1040, 1041, 1043, 1044, 1046, 1047, 1049, 1050], "cache_path": 1003, "cache_s": [244, 245, 261, 263, 314, 464, 903, 907, 908, 909, 910, 911, 1015], "cached_pip": [104, 404], "cachedir": [87, 104, 380, 404], "caching_dir": 984, "caherrera": 1044, "cai": 1044, "caicedo": 1031, "cailean": [1049, 1050], "cainei": [1049, 1050], "caio": [1037, 1039, 1041], "caj": 52, "caje": 1032, "cal_clf": 64, "cal_clf_prob": 64, "cal_hous": 366, "cal_loss": 64, "calcot": 1044, "calcul": [2, 47, 52, 70, 80, 92, 104, 111, 132, 134, 138, 143, 154, 155, 156, 160, 172, 179, 183, 186, 210, 211, 222, 235, 237, 239, 262, 263, 269, 270, 272, 273, 278, 282, 333, 339, 340, 354, 358, 373, 378, 385, 394, 400, 401, 403, 407, 408, 410, 414, 434, 439, 440, 442, 444, 446, 447, 449, 451, 452, 467, 468, 474, 477, 533, 544, 560, 566, 595, 610, 619, 631, 632, 633, 643, 644, 645, 646, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 671, 672, 673, 674, 678, 680, 683, 688, 692, 707, 712, 716, 730, 731, 736, 737, 739, 745, 755, 765, 770, 772, 773, 774, 775, 779, 782, 784, 785, 788, 789, 790, 793, 794, 796, 807, 808, 810, 826, 830, 843, 845, 846, 870, 883, 884, 885, 891, 895, 905, 906, 937, 951, 992, 994, 996, 997, 998, 1000, 1002, 1003, 1004, 1008, 1010, 1013, 1015, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "cald": 900, "caleb": 1043, "caliabr": 1052, "calibr": [2, 53, 67, 137, 149, 155, 200, 223, 235, 257, 263, 265, 314, 385, 394, 433, 434, 435, 509, 512, 561, 566, 608, 657, 658, 675, 709, 730, 742, 785, 788, 789, 800, 823, 831, 843, 902, 905, 939, 989, 996, 1000, 1013, 1015, 1021, 1022, 1026, 1028, 1035, 1037], "calibrated_classifi": [64, 165], "calibrated_classifiers_": [64, 401, 433], "calibrated_clf": 433, "calibrated_df": [63, 65], "calibrated_forest": 989, "calibrated_scor": 165, "calibratedclassifiercv": [2, 62, 63, 64, 165, 354, 385, 394, 401, 675, 800, 823, 989, 1015, 1035, 1037, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "calibratedclassifiercvifit": 64, "calibration_curv": [2, 401, 433, 434, 1040, 1045, 1049], "calibration_displai": [63, 65], "calibrationdisplai": [2, 63, 65, 67, 401, 435, 939, 1044, 1045, 1049, 1050], "california": [2, 144, 175, 178, 179, 303, 309, 314, 364, 368, 486, 1026], "calinski": [2, 710, 1037], "calinski_harabasz_scor": [2, 403, 1039], "calinski_harabaz_scor": [1037, 1039], "cali\u0144ski": 403, "call": [53, 54, 56, 64, 80, 83, 87, 103, 104, 118, 132, 139, 141, 143, 145, 150, 151, 154, 155, 156, 160, 165, 167, 171, 172, 173, 175, 182, 184, 185, 192, 196, 200, 206, 207, 210, 223, 233, 234, 239, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 272, 275, 276, 277, 278, 280, 283, 285, 301, 308, 309, 310, 313, 314, 315, 316, 317, 319, 321, 322, 346, 347, 348, 353, 358, 359, 360, 366, 371, 372, 373, 376, 377, 378, 379, 380, 383, 384, 385, 386, 389, 394, 399, 401, 402, 403, 404, 405, 406, 407, 408, 410, 411, 413, 415, 426, 436, 439, 440, 442, 443, 445, 446, 447, 448, 449, 450, 453, 456, 458, 460, 461, 464, 465, 470, 478, 479, 480, 484, 487, 489, 492, 494, 500, 505, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 540, 541, 542, 543, 544, 548, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 567, 575, 580, 581, 586, 587, 589, 595, 600, 605, 606, 608, 609, 610, 613, 619, 626, 627, 628, 629, 630, 631, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 674, 675, 676, 677, 678, 679, 689, 690, 691, 692, 693, 694, 695, 697, 699, 700, 701, 704, 733, 743, 756, 772, 775, 779, 780, 781, 782, 794, 798, 799, 801, 802, 803, 804, 805, 806, 807, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 850, 851, 854, 856, 861, 862, 863, 864, 865, 868, 869, 870, 872, 874, 875, 877, 882, 885, 886, 889, 894, 895, 896, 897, 898, 902, 905, 906, 907, 908, 910, 911, 914, 916, 924, 926, 938, 942, 948, 949, 958, 959, 961, 967, 968, 970, 973, 983, 988, 989, 990, 992, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1008, 1010, 1012, 1013, 1015, 1016, 1019, 1024, 1026, 1028, 1031, 1032, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "callabl": [2, 64, 103, 104, 139, 141, 143, 151, 154, 155, 156, 160, 172, 183, 184, 185, 234, 244, 245, 246, 253, 257, 261, 262, 263, 264, 267, 275, 309, 313, 314, 316, 317, 319, 320, 322, 326, 385, 402, 407, 410, 411, 412, 414, 415, 437, 439, 440, 441, 442, 443, 445, 446, 448, 453, 455, 456, 460, 461, 462, 463, 528, 530, 532, 534, 536, 542, 543, 554, 555, 556, 557, 558, 559, 561, 562, 586, 587, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 609, 610, 619, 627, 629, 633, 638, 642, 658, 670, 672, 674, 687, 688, 691, 692, 696, 711, 719, 731, 733, 743, 772, 775, 779, 780, 781, 782, 793, 794, 801, 804, 805, 807, 815, 823, 824, 827, 828, 829, 830, 832, 845, 846, 847, 848, 849, 851, 853, 854, 855, 856, 857, 869, 878, 900, 901, 907, 908, 909, 910, 911, 942, 943, 944, 962, 968, 983, 989, 1010, 1031, 1035, 1038, 1039, 1040, 1041, 1043, 1045, 1047, 1050], "callablevia": [104, 244, 253, 257, 261, 262, 263], "callback": [528, 534, 536, 542, 543, 854, 942, 967, 1020, 1047, 1050], "callbl": 847, "calle": [2, 239, 959], "caller": [2, 239, 404, 645, 646, 651, 659, 660, 661, 680, 895, 896, 958, 959, 975, 976, 977, 1040], "callgrin": 377, "callgrind": 374, "calm": 52, "caltech": 346, "calvin": [1034, 1035], "calvo": [1039, 1040], "cambridg": [366, 408, 588, 840, 844, 996, 998, 1002], "came": 999, "camera_ind": 54, "camil": [1039, 1047, 1048, 1050, 1051], "camila": 1041, "camilaagw": 1041, "camilo": 1037, "campello": [403, 442], "campustrampu": 1038, "can": [0, 11, 20, 26, 38, 44, 45, 47, 48, 49, 50, 52, 53, 55, 58, 59, 62, 63, 64, 65, 67, 68, 69, 70, 73, 75, 77, 78, 80, 82, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 102, 103, 104, 105, 109, 110, 111, 112, 113, 116, 121, 123, 124, 125, 126, 127, 129, 130, 132, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 172, 173, 174, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 194, 196, 198, 199, 200, 201, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 221, 222, 223, 225, 226, 227, 232, 233, 234, 235, 236, 238, 239, 242, 243, 244, 246, 248, 249, 250, 251, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 269, 270, 272, 274, 275, 276, 277, 278, 280, 282, 283, 285, 287, 288, 289, 290, 292, 299, 300, 301, 303, 304, 305, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 325, 326, 328, 329, 332, 333, 335, 338, 339, 342, 346, 347, 348, 352, 353, 354, 358, 359, 360, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 375, 376, 377, 379, 380, 384, 385, 386, 388, 389, 390, 391, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 417, 426, 428, 433, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 448, 450, 452, 453, 454, 455, 457, 458, 460, 461, 462, 463, 464, 468, 478, 479, 480, 483, 493, 496, 500, 505, 506, 509, 518, 521, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 546, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 577, 578, 579, 580, 581, 582, 586, 587, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 602, 604, 605, 606, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 637, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 683, 686, 689, 691, 692, 693, 694, 695, 698, 699, 700, 701, 702, 704, 707, 709, 711, 712, 718, 720, 721, 722, 723, 724, 725, 727, 728, 730, 731, 733, 734, 738, 739, 740, 741, 744, 747, 753, 756, 757, 758, 759, 760, 764, 780, 781, 783, 784, 785, 786, 788, 789, 790, 795, 796, 798, 799, 800, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 815, 816, 817, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 855, 856, 857, 862, 863, 864, 865, 866, 868, 869, 870, 872, 873, 874, 875, 878, 879, 880, 883, 884, 885, 890, 897, 898, 902, 903, 905, 906, 907, 908, 910, 911, 913, 914, 915, 916, 917, 918, 921, 922, 924, 925, 927, 929, 931, 935, 937, 946, 948, 949, 956, 957, 958, 961, 964, 967, 970, 973, 980, 983, 984, 988, 989, 990, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1019, 1020, 1023, 1024, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "canberra": [446, 453, 699, 779, 780, 781, 1003], "canberradist": 699, "cancel": [410, 411, 764], "cancer": [2, 163, 364, 402, 497, 591, 592, 852, 1008, 1026, 1036], "candela": 368, "candid": [103, 104, 106, 143, 244, 253, 257, 261, 262, 263, 264, 271, 314, 360, 371, 375, 403, 410, 444, 446, 801, 804, 805, 813, 815, 996, 1003, 1016, 1037], "candidate_idx": 262, "candidatesi": 275, "candidatesthat": 275, "caninteract": [143, 151, 154, 257, 309, 317, 322], "cannon": 1046, "cannot": [44, 53, 75, 89, 103, 107, 113, 120, 125, 139, 143, 154, 160, 183, 184, 185, 194, 206, 223, 233, 234, 239, 243, 244, 246, 264, 270, 275, 276, 277, 303, 309, 313, 316, 322, 335, 342, 360, 370, 372, 377, 383, 385, 386, 391, 397, 399, 403, 404, 405, 407, 408, 410, 411, 413, 461, 518, 535, 536, 537, 540, 544, 608, 609, 612, 613, 614, 616, 618, 619, 621, 622, 624, 650, 654, 692, 702, 711, 717, 779, 804, 805, 852, 853, 855, 856, 857, 865, 866, 875, 876, 887, 929, 931, 932, 942, 989, 990, 994, 996, 997, 1000, 1001, 1006, 1010, 1015, 1016, 1020, 1024, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047], "canon": [2, 52, 385, 401, 410, 478, 479, 481, 769, 1020, 1022, 1026], "canonic": 385, "cant": [1048, 1049], "cantor": [627, 990], "canuma": 1044, "canva": 52, "cao": 403, "cap": [400, 403, 756, 1000, 1040], "capabl": [88, 89, 116, 149, 172, 210, 229, 373, 385, 389, 1001, 1004, 1015, 1016, 1024, 1031, 1040, 1048], "capac": [149, 167, 185], "capit": [50, 63, 319, 493, 807, 824], "capitain": 1049, "cappion": [692, 997], "cappuzzo": 1048, "capsiz": [143, 327], "caption": 102, "captur": [2, 44, 49, 52, 53, 73, 116, 146, 151, 158, 172, 183, 190, 194, 200, 206, 210, 254, 264, 276, 282, 313, 335, 339, 379, 403, 410, 411, 412, 568, 586, 587, 589, 851, 968, 1000, 1005, 1013, 1017, 1043], "car": 206, "carbal": [1048, 1051], "card": 1039, "cardin": [73, 103, 139, 141, 143, 147, 154, 183, 184, 185, 186, 234, 244, 309, 310, 313, 316, 318, 403, 410, 459, 678, 878, 879, 886, 1000, 1001, 1008, 1010, 1045, 1046], "cardiotocogram": 242, "care": [48, 88, 104, 147, 183, 257, 280, 339, 358, 360, 371, 375, 377, 383, 385, 386, 397, 402, 403, 405, 411, 433, 456, 465, 639, 657, 658, 665, 666, 667, 675, 676, 677, 695, 874, 875, 905, 997, 1015, 1024, 1028, 1047], "carefulli": [277, 358, 371, 401, 408, 1015], "carei": [1034, 1035, 1036, 1037, 1038, 1050], "carett": 1038, "cari": 1043, "carl": [172, 413, 609, 610, 613, 618, 621], "carla": 1047, "carlo": [0, 237, 361, 410, 413, 610, 640, 641, 992, 1005, 1031, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050], "carlson": 1038, "carlsson": 1034, "carmen": 309, "carnegi": 900, "caro": 1036, "carodorum": 309, "carol": [1037, 1038], "carolin": 1004, "caro\u00e7o": 1050, "carrascosa": [1024, 1035], "carre\u00f1o": 1046, "carri": [52, 68, 134, 257, 263, 266, 271, 276, 299, 305, 348, 386, 411, 554, 555, 556, 557, 561, 562, 563, 913, 914, 915, 916, 1024], "carrillo": 1036, "carsten": 1044, "cart": [1022, 1026], "carter": [1037, 1038, 1046, 1049, 1050], "cartesian": [103, 400, 632, 1003, 1046], "cartman_nabana": 1041, "cartograph": 188, "cartographi": 996, "caruana": [63, 65, 401, 433, 435], "carvaj": 1031, "casado": 1042, "casagrand": [1039, 1040], "casalegno": 1043, "cascad": 368, "case": [2, 31, 44, 47, 48, 53, 63, 65, 67, 71, 73, 82, 85, 88, 90, 94, 99, 103, 104, 112, 116, 125, 127, 137, 139, 140, 143, 146, 147, 154, 155, 156, 160, 162, 163, 165, 167, 172, 174, 179, 183, 184, 185, 186, 194, 195, 198, 199, 206, 207, 208, 210, 211, 213, 219, 221, 222, 223, 232, 233, 234, 235, 236, 237, 238, 239, 242, 243, 244, 246, 253, 256, 257, 260, 261, 262, 263, 264, 266, 269, 270, 272, 275, 277, 280, 283, 286, 290, 300, 301, 303, 305, 308, 309, 310, 312, 313, 314, 315, 316, 320, 321, 322, 328, 339, 346, 347, 348, 352, 353, 354, 358, 359, 360, 365, 366, 371, 372, 373, 375, 376, 377, 378, 380, 383, 384, 385, 386, 389, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 413, 414, 415, 433, 436, 439, 440, 442, 443, 447, 449, 459, 460, 461, 463, 470, 493, 505, 506, 512, 536, 538, 539, 540, 545, 546, 547, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 579, 580, 586, 589, 591, 592, 595, 600, 604, 607, 609, 610, 624, 626, 627, 629, 630, 631, 646, 647, 652, 655, 656, 657, 658, 660, 662, 665, 667, 668, 671, 673, 674, 675, 679, 681, 682, 683, 684, 685, 686, 699, 703, 708, 712, 718, 720, 721, 724, 727, 728, 729, 730, 731, 735, 736, 739, 743, 744, 746, 747, 749, 751, 754, 755, 757, 764, 779, 782, 784, 785, 786, 788, 789, 791, 795, 797, 799, 801, 804, 805, 807, 815, 819, 824, 825, 826, 827, 828, 829, 830, 832, 834, 842, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 865, 872, 874, 875, 878, 879, 880, 883, 884, 885, 886, 889, 895, 896, 897, 898, 905, 907, 910, 913, 914, 920, 925, 927, 937, 943, 949, 950, 988, 989, 990, 992, 994, 995, 997, 998, 999, 1001, 1002, 1003, 1004, 1006, 1007, 1010, 1014, 1015, 1016, 1019, 1020, 1024, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "caselli": [1039, 1040], "cash": 996, "cashman": 1041, "casino": [1045, 1046], "caspersen": 1050, "cass": 1037, "cassi": 309, "cast": [51, 53, 86, 206, 226, 365, 386, 411, 493, 643, 644, 645, 651, 655, 656, 659, 660, 661, 662, 663, 664, 672, 674, 966, 1038, 1039, 1040, 1041, 1044, 1046, 1048, 1051, 1052], "castachick": 1042, "castello": 1035, "castor": 1042, "castro": [1050, 1051], "casual": 371, "caswel": [1044, 1047], "cat": [52, 103, 184, 185, 242, 315, 316, 317, 318, 319, 320, 366, 411, 484, 580, 712, 718, 755, 784, 886, 1000, 1010, 1040, 1041, 1043], "cat_column": 242, "cat_linear_processor": 154, "cat_proc": [234, 313], "cat_selector": 154, "cat_str": 58, "cat_tree_processor": 154, "catajara": 1041, "catalfo": 1039, "catalin": 641, "catastroph": [257, 310, 764, 1020], "catch": [79, 95, 300, 359, 379, 380], "catch_warn": [79, 95, 239, 299, 300], "categor": [2, 44, 103, 133, 139, 149, 151, 154, 155, 180, 183, 184, 185, 206, 223, 233, 234, 242, 244, 246, 257, 262, 277, 301, 310, 313, 315, 316, 317, 318, 321, 322, 360, 363, 365, 366, 376, 385, 399, 404, 411, 462, 463, 485, 486, 493, 502, 558, 559, 579, 580, 605, 606, 631, 632, 647, 657, 658, 668, 679, 828, 840, 841, 842, 843, 844, 866, 868, 872, 873, 876, 878, 879, 886, 900, 901, 922, 990, 996, 1000, 1007, 1008, 1016, 1019, 1020, 1021, 1022, 1023, 1024, 1026, 1031, 1032, 1035, 1036, 1039, 1041, 1043, 1046, 1047, 1048, 1049, 1051], "categori": [2, 26, 58, 79, 95, 102, 103, 139, 143, 151, 154, 155, 183, 184, 185, 206, 213, 220, 233, 234, 242, 244, 246, 257, 262, 264, 277, 299, 300, 301, 305, 309, 310, 313, 314, 317, 319, 322, 328, 346, 347, 348, 365, 366, 380, 399, 403, 404, 410, 411, 413, 484, 493, 494, 500, 558, 559, 647, 657, 658, 668, 679, 744, 759, 760, 841, 878, 879, 886, 942, 943, 944, 990, 996, 997, 998, 1002, 1008, 1019, 1037, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050], "categorical_column": [44, 143, 183, 185, 242, 463], "categorical_columns_selector": 242, "categorical_columns_subset": 143, "categorical_crossentropi": [1041, 1045], "categorical_encod": 185, "categorical_featur": [44, 103, 143, 149, 151, 154, 184, 257, 309, 314, 315, 316, 317, 319, 322, 376, 383, 410, 558, 559, 631, 632, 1007, 1039, 1043, 1046, 1048, 1051], "categorical_preprocessor": [244, 309], "categorical_transform": 103, "categoricaldtyp": 383, "categoricalnb": [2, 840, 842, 843, 844, 1002, 1041, 1042, 1043, 1044, 1046, 1051], "categories_": [103, 139, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316, 878, 879, 886, 1010, 1039, 1046], "categoris": [942, 944], "category_1_fold": 500, "category_2_fold": 500, "category_count_": 841, "category_s": 347, "caterpillar": 52, "cathi": [1035, 1041], "catindex": 184, "catplot": 253, "caught": [352, 371, 379, 397], "caus": [44, 63, 65, 103, 139, 143, 146, 154, 168, 172, 183, 184, 206, 210, 211, 223, 234, 244, 282, 310, 313, 316, 328, 339, 348, 354, 369, 376, 401, 403, 408, 409, 411, 413, 439, 443, 445, 455, 506, 529, 580, 587, 609, 610, 779, 840, 841, 842, 844, 869, 878, 880, 883, 884, 931, 932, 990, 996, 1000, 1008, 1010, 1013, 1020, 1031, 1032, 1033, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1047, 1048, 1049, 1050, 1052], "causal": [180, 181, 203, 656, 786, 831, 1021], "causat": 183, "causenumer": 264, "caution": [183, 257, 375, 436, 450, 1039], "cautiou": 1038, "caveat": [407, 412, 413], "cawlei": [268, 1000], "cax": [67, 170, 274], "ca\u00f1ardo": 1034, "cb": [170, 236, 252], "cbar_ax": 274, "cbar_kw": [190, 194], "cc": 369, "cc18": 365, "cc_home": [913, 914], "cca": [2, 240, 406, 479, 481, 1001, 1035, 1039, 1040, 1041, 1043, 1045, 1049], "ccat": 366, "ccf2002": 992, "cclauss": 1039, "cco": 346, "ccp_alpha": [64, 141, 154, 156, 185, 244, 275, 312, 314, 319, 350, 352, 353, 554, 555, 556, 557, 561, 562, 913, 914, 915, 916, 1016, 1041], "ccp_path": [913, 914, 915, 916], "cd": [52, 120, 163, 368, 369, 371, 375, 377, 408, 467, 468, 474, 528, 534, 536, 537, 540, 542, 543, 544, 996, 1036, 1046], "cdef": 372, "cdf": 263, "cdist": 1044, "cdivis": 372, "cdot": [263, 339, 400, 403, 408, 409, 413, 613, 614, 618, 621, 622, 645, 871, 992, 994, 1000, 1004, 1010], "cdrig": 1045, "cdt": 58, "cea": [840, 1002], "ceballo": 1045, "ceder": [789, 1000], "ceethinwa": [1043, 1044], "ceh": 1046, "ceil": [64, 139, 141, 149, 154, 156, 185, 242, 244, 275, 314, 319, 352, 353, 554, 555, 556, 557, 560, 561, 562, 563, 592, 670, 804, 805, 913, 914, 915, 916, 1014], "celelibi": 1040, "celeo": 1035, "celeux": 525, "cell": [51, 52, 59, 64, 69, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 160, 163, 172, 183, 184, 185, 192, 233, 234, 235, 239, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 296, 301, 309, 313, 314, 316, 317, 319, 322, 326, 352, 353, 368, 376, 692, 1000, 1001, 1037, 1045], "cellular": 54, "celsiu": [184, 1007], "cemlyn": 1049, "cen": 744, "censor": 1019, "censu": 366, "center": [0, 2, 37, 44, 47, 48, 49, 52, 54, 62, 64, 70, 71, 73, 74, 75, 77, 78, 82, 83, 86, 88, 89, 92, 93, 94, 96, 97, 103, 104, 112, 125, 129, 144, 145, 146, 147, 154, 155, 156, 160, 161, 163, 172, 179, 183, 184, 192, 200, 201, 202, 206, 207, 216, 217, 228, 229, 232, 233, 234, 235, 242, 243, 244, 246, 248, 251, 252, 257, 258, 262, 264, 270, 274, 277, 288, 291, 293, 299, 303, 305, 306, 313, 316, 322, 326, 328, 333, 335, 336, 337, 341, 347, 348, 366, 367, 368, 376, 403, 405, 406, 408, 409, 410, 416, 436, 438, 439, 442, 443, 444, 445, 448, 450, 455, 456, 457, 458, 459, 465, 466, 467, 468, 469, 470, 471, 472, 473, 475, 476, 478, 479, 480, 481, 498, 509, 521, 531, 532, 538, 541, 547, 604, 607, 609, 610, 631, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 665, 666, 667, 670, 671, 672, 673, 674, 675, 677, 687, 690, 694, 696, 798, 870, 871, 874, 883, 885, 895, 896, 905, 906, 994, 996, 997, 999, 1007, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1042, 1043, 1044, 1045, 1048, 1052], "center1": 99, "center2": 99, "center3": 99, "center4": 99, "center_": 883, "center_box": [93, 509], "centers_0": 306, "centers_1": 306, "centers_init": 92, "cento": 369, "centr": 153, "central": [0, 54, 208, 366, 372, 403, 1006, 1019], "centrality_scor": 56, "centroid": [2, 77, 90, 91, 109, 180, 284, 291, 306, 316, 331, 347, 367, 394, 403, 438, 439, 442, 443, 444, 445, 448, 455, 456, 458, 501, 546, 630, 852, 1021, 1022, 1026, 1031, 1035, 1038, 1043, 1047], "centroids_": [438, 442, 852], "ceo": 1024, "cerda": 1045, "certain": [53, 67, 88, 144, 149, 183, 211, 222, 239, 263, 283, 307, 339, 354, 366, 367, 373, 375, 385, 388, 397, 399, 403, 408, 412, 637, 648, 652, 657, 662, 683, 865, 870, 905, 989, 992, 996, 997, 1000, 1001, 1004, 1010, 1015, 1019, 1036, 1040, 1043, 1046], "certainli": [86, 102, 183, 347, 402], "certainti": [263, 373, 996, 1000], "ceshin": 1037, "cest": 1000, "cetina": 1043, "cf": [310, 402, 403, 406, 438, 700, 996, 1010, 1020], "cflag": 369, "cft": 403, "cftree": 438, "cg": [103, 139, 155, 183, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322, 657, 658, 671, 673, 686, 996, 1035, 1036, 1038, 1042, 1044, 1045, 1048, 1049], "cga": 175, "cgi": 898, "cgohlk": [1034, 1035], "cgroup": [1044, 1045], "cgsavard": [1041, 1042], "ch6": 527, "chacon": 705, "chac\u00f3n": [403, 705], "chad": 1048, "chadi": 1039, "chai": [1043, 1046, 1047, 1050, 1051], "chain": [2, 36, 101, 103, 107, 134, 139, 143, 154, 160, 180, 183, 185, 233, 234, 235, 243, 246, 262, 264, 270, 271, 274, 277, 280, 281, 283, 286, 301, 309, 313, 316, 322, 354, 363, 383, 385, 413, 493, 499, 538, 610, 626, 657, 739, 801, 831, 834, 836, 837, 838, 839, 865, 866, 885, 989, 990, 1001, 1005, 1017, 1021, 1024, 1026], "chain_jaccard_scor": 282, "chain_method": [836, 1049], "chain_method_": 836, "chaitanya": 1042, "chaitanyamog": 1043, "chakhchoukh": 112, "chakravarti": [634, 636], "chalearn": 1000, "challeng": [52, 154, 167, 184, 190, 200, 223, 232, 360, 366, 367, 397, 403, 405, 458, 468, 1000, 1006, 1024], "chalmer": 1045, "chalmerlow": 1034, "chalulu": 1046, "chan": [0, 361, 843, 885, 1049, 1050, 1051, 1052], "chanc": [2, 72, 82, 134, 158, 180, 186, 206, 213, 220, 223, 263, 269, 272, 273, 309, 342, 347, 354, 370, 383, 402, 403, 407, 700, 702, 704, 705, 708, 716, 756, 758, 787, 796, 830, 1000, 1008, 1016, 1021, 1047], "chance_level_": [700, 702, 1047], "chance_level_kw": [242, 700, 702, 1047, 1051], "chance_level_kwarg": 702, "chandra": [1041, 1042, 1045], "chang": [2, 47, 52, 63, 64, 65, 103, 104, 120, 124, 125, 137, 139, 140, 141, 143, 147, 150, 151, 154, 155, 156, 165, 168, 172, 178, 182, 183, 184, 185, 186, 197, 207, 208, 210, 211, 233, 234, 243, 244, 245, 246, 253, 257, 258, 261, 262, 263, 264, 270, 273, 275, 277, 301, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 325, 335, 339, 348, 352, 353, 354, 358, 359, 360, 366, 373, 374, 375, 376, 379, 383, 385, 394, 403, 407, 410, 411, 413, 415, 423, 428, 433, 436, 439, 440, 442, 443, 445, 448, 450, 455, 458, 460, 461, 463, 464, 467, 468, 474, 478, 479, 480, 490, 491, 493, 501, 505, 506, 509, 510, 511, 519, 524, 528, 530, 532, 533, 534, 535, 536, 537, 538, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 573, 575, 576, 577, 578, 579, 580, 586, 587, 588, 589, 591, 592, 595, 600, 609, 610, 612, 613, 614, 616, 618, 619, 621, 622, 624, 626, 629, 630, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 686, 690, 692, 694, 698, 700, 702, 704, 707, 712, 716, 717, 728, 730, 731, 737, 738, 756, 758, 779, 784, 785, 786, 788, 790, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 808, 810, 815, 819, 820, 822, 823, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 850, 851, 852, 855, 856, 862, 863, 864, 865, 867, 868, 869, 870, 871, 872, 877, 878, 884, 885, 886, 893, 894, 899, 900, 901, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 919, 929, 931, 932, 944, 949, 960, 967, 968, 989, 990, 991, 999, 1000, 1001, 1003, 1010, 1013, 1014, 1015, 1016, 1020, 1029, 1030, 1052], "changed_onli": 1042, "changedbehaviorwarn": 1043, "changedbehaviourwarn": 1040, "changelog": [317, 371, 375, 379, 385, 1029, 1050, 1051, 1052], "changing_param": 47, "changing_param_valu": 47, "changyao": [1046, 1047], "channel": [359, 366, 369, 371, 389, 411, 490, 491, 581, 582, 584, 585, 1018, 1023], "channel_prior": 369, "chapman": 996, "chapter": [120, 354, 373, 403, 408, 410, 413, 527, 529, 531, 613, 618, 621, 642, 990, 993, 996, 1015, 1016], "char": [264, 411, 586, 587, 589, 1031], "char_wb": [264, 411, 586, 587, 589], "charact": [264, 348, 371, 376, 385, 411, 500, 505, 506, 586, 587, 589, 917, 1005, 1031, 1044, 1046], "character": [75, 223, 350, 403, 407, 997], "characteris": 1003, "characterist": [2, 79, 95, 163, 172, 180, 232, 233, 245, 255, 257, 258, 260, 303, 354, 366, 368, 376, 401, 402, 407, 410, 413, 500, 501, 622, 637, 657, 702, 706, 708, 728, 783, 789, 790, 820, 828, 831, 834, 872, 910, 996, 1021], "chardet": 411, "chardetect": 411, "charg": [0, 257, 371, 1018], "charikar": 992, "charl": [65, 257, 765, 1031, 1034, 1037, 1041, 1043, 1046, 1052], "charli": [1038, 1039, 1047], "charlton": 1038, "charra": [1046, 1048, 1049], "charron": [1024, 1034, 1035, 1042, 1043, 1044], "charset": [1031, 1033], "charset_error": 1033, "chart": [73, 144, 262, 268, 328, 391, 1001, 1034], "chartbeat": 1024, "chase": [52, 1031], "chasnovski": 1042, "chat": 1024, "chatbot": 371, "chatterje": 1042, "chaudhuri": 442, "chauhan": [1039, 1040, 1046, 1047, 1050], "chaumond": [1024, 1039], "chauvin": 744, "chave": 1051, "chavez": [46, 366], "chawla": 1041, "chayant": 1038, "chazalon": 1045, "cheaper": [184, 403, 413, 672, 992, 996], "cheaperopt": [154, 183], "cheat": [53, 335, 391, 1004, 1014, 1033], "chebee7i": 1035, "chebyshev": [446, 453, 699, 779, 780, 781, 1003], "chebyshevdist": 699, "check": [2, 42, 44, 45, 48, 56, 80, 86, 89, 124, 132, 139, 140, 143, 151, 154, 155, 167, 180, 182, 184, 185, 192, 195, 196, 198, 206, 226, 239, 249, 255, 257, 272, 280, 309, 315, 317, 321, 322, 326, 353, 358, 359, 369, 370, 371, 372, 373, 374, 375, 377, 378, 380, 381, 383, 384, 385, 389, 390, 394, 397, 404, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 487, 499, 505, 506, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 572, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 686, 687, 688, 689, 690, 691, 692, 693, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 829, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 931, 932, 933, 942, 943, 944, 954, 956, 957, 962, 963, 983, 984, 985, 987, 988, 995, 996, 997, 1000, 1015, 1016, 1021, 1024, 1026, 1031, 1032, 1034, 1038, 1042, 1043, 1044, 1045, 1046, 1048, 1050, 1051, 1052], "check_arrai": [2, 321, 373, 380, 464, 531, 903, 988, 1035, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050], "check_classifier_multioutput": 1041, "check_consistent_length": [2, 399, 1051], "check_cv": [2, 385, 1036], "check_decision_proba_consist": 1038, "check_estim": [2, 312, 321, 373, 385, 943, 944, 1038, 1039, 1040, 1041, 1042, 1043, 1045, 1046, 1050], "check_estimator_sparse_arrai": 1049, "check_estimator_sparse_data": 1049, "check_estimator_sparse_matrix": 1049, "check_estimator_sparse_tag": 1050, "check_estimators_fit_returns_self": 944, "check_estimators_pickl": 1048, "check_fit_idempot": 1040, "check_increas": 2, "check_input": [531, 545, 645, 646, 651, 659, 660, 661, 680, 686, 913, 914, 915, 916, 1039], "check_invers": [139, 183, 404, 461, 869, 1010, 1039, 1045, 1046], "check_is_fit": [2, 89, 132, 239, 374, 380, 385, 1041, 1044, 1045, 1050], "check_memori": [2, 380, 385, 1038], "check_metadata": 239, "check_methods_sample_order_invari": [1043, 1045], "check_methods_subset_invari": [1039, 1045], "check_nam": [572, 942, 943, 944, 1050], "check_non_neg": 1050, "check_pairwise_arrai": [1040, 1050], "check_param": 988, "check_random_st": [2, 94, 221, 227, 235, 241, 373, 380, 385], "check_regressor_multioutput": 1041, "check_requires_y_non": 1045, "check_sample_weight_equivalence_on_dense_data": 1050, "check_sample_weight_equivalence_on_sparse_data": 1050, "check_sample_weights_invari": 1050, "check_sample_weights_pandas_seri": 1039, "check_scalar": [2, 1045], "check_scor": [2, 385, 1049, 1050], "check_set_param": 1039, "check_symmetr": 2, "check_transformer_data_not_an_arrai": 1041, "check_transformers_unfitted_stateless": 1047, "check_x_i": [2, 380, 988, 1035, 1039, 1040, 1045, 1050], "checked_cv": 825, "checker": [2, 375, 825], "checkerboard": [2, 59, 400, 447, 449, 508, 510], "checking_statu": 257, "checkingclassifi": 1041, "checklist": [374, 375], "checkout": [369, 371, 375, 379], "checksum": [488, 1043], "cheeseman": 368, "chege": 1045, "chem": 1051, "chemic": 368, "chemometr": 368, "chen": [109, 110, 405, 410, 416, 471, 727, 757, 992, 1000, 1034, 1037, 1038, 1039, 1041, 1044, 1045, 1046, 1047, 1050, 1052], "chenal": [1040, 1041, 1043], "cherkasski": 996, "chernei": [1049, 1050], "chernyi": 1045, "cherri": 375, "cherti": 1035, "cherubin": 1037, "chestervil": 317, "cheuk": [1039, 1040], "cheung": 1032, "chevali": 1043, "chevalli": 1048, "chevron": 52, "chi": [2, 103, 111, 134, 307, 363, 412, 516, 590, 593, 594, 596, 597, 598, 602, 603, 604, 607, 637, 638, 639, 640, 641, 759, 760, 1026, 1031, 1036, 1037], "chi2": [2, 103, 411, 412, 448, 579, 590, 593, 594, 596, 597, 598, 603, 604, 607, 619, 637, 638, 639, 640, 641, 642, 760, 766, 775, 1031, 1038, 1045], "chi2_featur": 641, "chi2_kernel": [2, 399, 637, 641, 759, 766, 998, 1032, 1050], "chi2_stat": 602, "chi2and": 155, "chi2sampl": 637, "chiang": 1039, "chiara": [0, 362, 1041, 1042, 1043, 1044, 1045, 1046, 1047], "chibuik": 1044, "chicco": [1049, 1050], "chief": 1024, "chieh": [1038, 1039], "chigurupati": 1043, "chih": [657, 1036], "chilamkurthi": 1037, "child": [64, 139, 141, 143, 149, 151, 154, 156, 185, 239, 244, 257, 275, 309, 314, 317, 319, 322, 346, 352, 353, 359, 373, 383, 385, 394, 403, 410, 438, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 913, 914, 915, 916, 958, 959, 961, 1016, 1038, 1050], "child_idx": 76, "children": [353, 403, 410, 437, 441, 459, 563, 1035, 1048], "children_": [76, 437, 441, 459], "children_left": 353, "children_right": 353, "chime": 370, "chin": [368, 1035], "china": [403, 503, 504, 582, 585], "chines": 1019, "chinmaya": 1038, "chinthala": 1038, "chiotelli": 1040, "chip": [399, 1024], "chisquar": 307, "chistyakov": 1050, "chitteti": 1045, "chkoar": 1038, "chloe": 1045, "cho": 1042, "choe": 1040, "choi": [996, 1049], "choic": [2, 44, 47, 65, 75, 80, 88, 98, 102, 103, 109, 127, 139, 149, 155, 167, 168, 174, 178, 179, 184, 198, 207, 208, 233, 234, 242, 244, 246, 256, 257, 261, 262, 263, 266, 277, 288, 301, 310, 313, 314, 316, 322, 344, 346, 347, 354, 358, 369, 376, 385, 389, 403, 405, 407, 409, 410, 412, 413, 448, 458, 467, 468, 469, 470, 471, 472, 474, 535, 537, 538, 544, 556, 637, 646, 647, 655, 657, 658, 660, 668, 679, 692, 705, 743, 834, 847, 848, 853, 855, 856, 882, 885, 894, 896, 905, 906, 935, 989, 994, 996, 997, 998, 999, 1000, 1001, 1003, 1006, 1008, 1013, 1014, 1015, 1016, 1038, 1041, 1042, 1046, 1047], "choleski": [103, 110, 139, 155, 183, 206, 223, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322, 380, 467, 468, 474, 524, 610, 647, 649, 650, 653, 654, 655, 657, 658, 668, 671, 673, 679, 681, 682, 686, 789, 798, 799, 996, 1034, 1038, 1040, 1043, 1046, 1047, 1050, 1051], "cholesky_delet": 380, "cholesterol": [163, 368], "chong": 533, "choo": [1046, 1047], "choos": [44, 51, 52, 79, 80, 83, 86, 93, 95, 99, 103, 104, 109, 139, 142, 154, 155, 156, 160, 163, 183, 186, 201, 233, 234, 240, 244, 246, 257, 258, 262, 268, 270, 272, 275, 277, 301, 313, 314, 316, 322, 350, 352, 353, 354, 358, 359, 360, 373, 376, 379, 384, 385, 397, 401, 402, 403, 405, 407, 410, 411, 414, 439, 440, 443, 445, 455, 520, 529, 535, 552, 553, 556, 557, 580, 600, 657, 658, 671, 673, 678, 686, 688, 689, 693, 727, 757, 801, 804, 805, 815, 872, 905, 906, 913, 914, 915, 916, 989, 990, 991, 995, 996, 997, 998, 999, 1000, 1003, 1010, 1013, 1014, 1015, 1026, 1033, 1034, 1038, 1040, 1042], "choose_check_classifiers_label": 1041, "choose_random_sampl": 373, "chooseth": [314, 352, 353], "choraria": 1043, "chose": [77, 183], "chosen": [48, 59, 64, 80, 103, 104, 105, 139, 141, 143, 151, 154, 155, 156, 160, 168, 183, 184, 185, 198, 207, 222, 233, 234, 240, 244, 246, 253, 256, 257, 258, 262, 266, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 347, 352, 353, 354, 358, 383, 402, 403, 405, 406, 410, 413, 436, 442, 445, 447, 449, 450, 456, 493, 520, 532, 554, 555, 556, 557, 558, 559, 561, 562, 646, 652, 655, 657, 658, 660, 662, 670, 675, 676, 677, 678, 679, 690, 694, 795, 798, 799, 801, 804, 805, 815, 835, 854, 905, 906, 913, 914, 915, 916, 949, 989, 992, 994, 996, 997, 999, 1000, 1001, 1006, 1007, 1014, 1016, 1039, 1047, 1048], "chou": [1038, 1039], "choudhari": [1035, 1036, 1045, 1047], "choudhri": 1049, "chowdhuri": [1039, 1045], "choyal": [1038, 1039], "chri": [0, 393, 1031, 1034, 1039, 1040, 1041, 1042, 1045], "chrissobel": 1044, "christ": 58, "christian": [0, 58, 346, 347, 366, 392, 1024, 1031, 1032, 1035, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "christianwaldmann": 1046, "christin": [1046, 1047, 1050, 1051], "christo": [1040, 1041, 1043, 1045, 1048], "christof": [1035, 1036], "christoph": [184, 408, 413, 529, 609, 610, 613, 618, 621, 798, 996, 1001, 1032, 1036, 1039, 1042, 1043, 1044, 1045, 1046], "christopherlim98": 1045, "chrome": 1010, "chronolog": [366, 494], "chu": [852, 1047], "chuan": [433, 1004], "chugh": 1043, "chuliang": 1044, "chun": [1042, 1043, 1045, 1046, 1047], "chung": [1038, 1039], "chunk": [2, 48, 83, 358, 359, 403, 408, 414, 440, 445, 464, 535, 779, 782, 833, 834, 840, 841, 842, 843, 844, 903, 1002, 1038, 1039, 1040, 1041, 1042], "chunk_siz": 1032, "chunker": 411, "church": [898, 1012], "chyi": [1034, 1035, 1036, 1037, 1038], "ci": [88, 359, 374, 375, 399, 1002, 1037, 1039], "ciccolella": [692, 997], "cice": [1007, 1045], "cichocki": [408, 535, 537, 544], "cimport": [372, 380, 1039], "cindi": [1036, 1044, 1048, 1049], "cio": 365, "cipri\u00e1n": 1045, "circl": [2, 71, 93, 125, 152, 153, 180, 230, 240, 290, 293, 299, 303, 305, 323, 339, 344, 352, 367, 375, 379, 403, 448, 458, 511, 519, 765, 901, 1013, 1015, 1021], "circle1": 99, "circle2": 99, "circle3": 99, "circle4": 99, "circleci": [0, 53, 73, 171, 173, 175, 176, 249, 266, 301, 371], "circuit": [58, 997], "circular": 54, "circumst": [127, 223, 1003, 1019], "circumstanti": 206, "cisco": 52, "citat": [0, 365, 368, 383], "cite": [365, 383, 403], "citi": [404, 411, 462], "citizen": 1010, "city_categori": 404, "city_london": 404, "city_pari": 404, "city_sallisaw": 404, "cityblock": [75, 79, 403, 446, 453, 763, 779, 780, 781, 1003], "cividi": 75, "ciyou": 657, "cj": [1002, 1034, 1035, 1036, 1037, 1038], "cjlin": [188, 365, 483, 505, 506, 657, 1034], "ckdtree": [414, 440, 1033], "cl": [48, 52, 378, 385, 915], "clabel": [170, 216], "clae": 1039, "clai": 1031, "claim": [180, 189, 371, 460, 493, 549, 647, 668, 679, 706, 746, 751, 753, 831, 866, 869, 870, 878, 885, 996, 1021], "claimamount": 223, "claimnb": [206, 223], "clair": 1031, "clamp": [901, 1013], "clang": [369, 372], "clara": [365, 1043], "clare": 1041, "clarifi": [379, 386, 794], "clariti": [161, 371, 379, 383], "clark": 52, "class": [2, 4, 28, 31, 44, 48, 49, 50, 51, 52, 54, 58, 61, 62, 63, 65, 67, 71, 75, 88, 89, 91, 103, 104, 115, 118, 124, 125, 126, 128, 132, 133, 139, 140, 141, 143, 149, 150, 154, 155, 156, 160, 163, 165, 167, 168, 170, 171, 172, 173, 175, 176, 178, 179, 180, 183, 184, 185, 188, 189, 192, 199, 200, 201, 205, 213, 217, 220, 221, 226, 232, 233, 234, 239, 240, 242, 244, 245, 246, 248, 249, 250, 253, 255, 256, 257, 258, 260, 261, 262, 263, 264, 265, 269, 273, 274, 275, 277, 280, 282, 283, 286, 288, 289, 291, 292, 293, 294, 299, 301, 308, 309, 312, 313, 314, 316, 318, 319, 320, 321, 322, 324, 326, 327, 328, 330, 331, 333, 335, 336, 339, 343, 344, 346, 347, 348, 351, 353, 360, 363, 365, 366, 367, 368, 371, 372, 373, 375, 376, 377, 378, 380, 383, 384, 389, 394, 397, 398, 399, 401, 403, 404, 406, 408, 412, 413, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 457, 460, 461, 462, 463, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 483, 484, 485, 487, 489, 490, 491, 492, 493, 494, 497, 499, 500, 501, 505, 506, 507, 509, 511, 512, 516, 519, 520, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 571, 573, 575, 579, 580, 581, 583, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 712, 713, 714, 715, 716, 717, 718, 720, 722, 723, 728, 730, 731, 732, 734, 736, 737, 738, 739, 740, 741, 742, 744, 755, 756, 758, 783, 784, 785, 787, 788, 789, 790, 795, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 889, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 936, 937, 938, 939, 940, 942, 944, 954, 957, 958, 959, 962, 967, 970, 983, 989, 990, 991, 992, 994, 995, 996, 997, 999, 1001, 1002, 1004, 1007, 1008, 1010, 1011, 1013, 1016, 1020, 1021, 1022, 1024, 1026, 1028, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "class_0": [213, 368, 507], "class_1": [213, 368, 507], "class_2": [368, 507], "class_count_": [840, 841, 842, 843, 844], "class_id": [272, 273], "class_index": 88, "class_label": [64, 103, 139, 141, 155, 185, 233, 234, 244, 246, 257, 262, 275, 277, 301, 313, 316, 319, 322, 353, 385, 554, 558, 561, 657, 658, 665, 667, 673, 674, 675, 800, 823, 913, 915, 937, 1015], "class_likelihood_ratio": [2, 266, 1000, 1046, 1051, 1052], "class_log_prior_": [840, 841, 842, 844], "class_memb": 74, "class_member_mask": 82, "class_nam": [136, 256, 886, 917, 918, 919, 1016, 1047], "class_name0": [419, 438, 439, 441, 443, 445, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 638, 639, 640, 641, 688, 689, 692, 849, 854, 857, 861, 871, 897, 898], "class_name1": [419, 438, 439, 441, 443, 445, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 638, 639, 640, 641, 688, 689, 692, 849, 854, 857, 861, 871, 897, 898], "class_name2": [419, 438, 439, 441, 443, 445, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 638, 639, 640, 641, 688, 689, 692, 849, 854, 857, 861, 871, 897, 898], "class_of_interest": [67, 272, 630, 1048], "class_prior": [264, 366, 840, 841, 842, 844, 1032, 1035], "class_prior_": [548, 843, 852], "class_protein_loc": 280, "class_sep": [162, 293, 344, 512, 800, 823], "class_weight": [2, 46, 64, 103, 104, 139, 141, 155, 160, 185, 233, 234, 244, 245, 246, 257, 261, 262, 263, 270, 275, 277, 301, 313, 314, 316, 319, 322, 337, 353, 385, 554, 558, 561, 657, 658, 665, 667, 673, 674, 675, 676, 905, 907, 910, 912, 913, 915, 936, 937, 989, 1014, 1015, 1031, 1032, 1034, 1035, 1036, 1037, 1039, 1045, 1046, 1051], "class_weight_": [907, 910, 1046], "class_weight_vect": 936, "classes_": [132, 214, 233, 239, 272, 324, 325, 371, 373, 385, 428, 433, 434, 546, 547, 548, 550, 552, 554, 556, 558, 561, 564, 566, 591, 592, 609, 630, 657, 658, 665, 667, 673, 674, 675, 697, 698, 700, 702, 789, 800, 801, 804, 805, 815, 823, 833, 834, 835, 836, 837, 840, 841, 842, 843, 844, 847, 852, 855, 862, 865, 872, 873, 876, 886, 900, 901, 902, 905, 907, 910, 913, 915, 918, 1000, 1011, 1014, 1028, 1032, 1035, 1036, 1038, 1041, 1043], "classic": [2, 56, 104, 203, 225, 226, 227, 228, 229, 244, 248, 254, 262, 339, 368, 375, 405, 407, 408, 439, 443, 445, 455, 489, 497, 501, 507, 538, 631, 632, 687, 915, 916, 994, 996, 997, 999, 1002, 1010, 1019, 1031, 1032, 1036, 1045, 1052], "classicalmd": [2, 225, 226, 227, 228, 997, 1052], "classif": [2, 14, 20, 31, 32, 39, 41, 43, 46, 47, 50, 51, 55, 58, 61, 62, 63, 65, 68, 71, 73, 103, 104, 105, 109, 110, 115, 118, 123, 127, 134, 136, 138, 139, 140, 141, 142, 143, 147, 149, 150, 152, 154, 155, 158, 159, 160, 162, 163, 166, 172, 173, 183, 184, 185, 188, 189, 199, 200, 201, 206, 213, 215, 216, 217, 218, 220, 231, 233, 234, 237, 238, 242, 244, 245, 246, 251, 252, 255, 256, 257, 260, 261, 262, 263, 264, 272, 275, 277, 280, 281, 284, 285, 291, 292, 293, 295, 296, 297, 298, 300, 305, 306, 308, 309, 313, 314, 316, 319, 322, 324, 326, 327, 329, 330, 331, 335, 338, 340, 341, 342, 343, 345, 347, 348, 353, 354, 358, 360, 364, 365, 366, 368, 373, 376, 380, 384, 385, 398, 401, 402, 403, 404, 407, 408, 410, 411, 412, 420, 433, 434, 465, 471, 478, 483, 484, 485, 487, 489, 490, 491, 492, 493, 494, 496, 497, 499, 500, 501, 507, 509, 511, 512, 516, 517, 519, 520, 538, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 561, 562, 563, 564, 566, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 602, 603, 604, 607, 608, 609, 610, 612, 613, 621, 630, 631, 632, 638, 642, 657, 658, 665, 667, 673, 674, 675, 697, 703, 705, 708, 709, 712, 713, 715, 716, 718, 727, 728, 730, 731, 735, 736, 739, 742, 744, 755, 757, 759, 760, 762, 783, 784, 785, 787, 788, 789, 790, 795, 797, 800, 801, 802, 804, 805, 806, 807, 815, 819, 820, 821, 823, 824, 825, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 839, 840, 841, 842, 843, 844, 847, 852, 854, 855, 861, 862, 863, 865, 866, 870, 872, 877, 878, 879, 880, 884, 885, 886, 889, 891, 900, 901, 902, 905, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 921, 934, 937, 946, 989, 990, 992, 993, 994, 997, 998, 1002, 1005, 1007, 1008, 1010, 1011, 1013, 1019, 1021, 1022, 1023, 1024, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "classifi": [2, 31, 46, 47, 48, 49, 61, 64, 66, 69, 71, 89, 102, 103, 104, 105, 106, 125, 134, 135, 136, 137, 138, 141, 142, 145, 152, 154, 155, 159, 160, 161, 162, 169, 180, 185, 186, 188, 199, 204, 206, 214, 217, 220, 223, 232, 235, 237, 239, 245, 253, 256, 257, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 275, 280, 281, 285, 291, 292, 294, 298, 301, 305, 314, 315, 319, 321, 323, 324, 325, 327, 328, 330, 331, 333, 334, 336, 337, 338, 339, 343, 344, 348, 366, 368, 371, 373, 376, 383, 385, 394, 402, 403, 404, 407, 411, 412, 413, 420, 428, 429, 430, 432, 433, 434, 435, 484, 485, 493, 501, 509, 511, 512, 519, 528, 533, 534, 539, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 558, 560, 561, 563, 564, 565, 566, 567, 591, 592, 600, 604, 609, 621, 628, 630, 631, 632, 648, 657, 658, 665, 667, 670, 671, 672, 673, 674, 675, 697, 698, 700, 702, 703, 707, 708, 709, 711, 712, 713, 718, 720, 723, 727, 728, 730, 731, 733, 735, 736, 739, 740, 741, 742, 744, 755, 757, 783, 784, 785, 788, 789, 790, 795, 797, 800, 801, 804, 805, 807, 815, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 852, 853, 855, 856, 861, 862, 863, 866, 872, 885, 886, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 919, 921, 924, 925, 940, 942, 989, 990, 992, 995, 996, 997, 1000, 1001, 1002, 1005, 1008, 1010, 1013, 1014, 1015, 1016, 1019, 1020, 1021, 1022, 1024, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1048, 1049, 1050, 1051], "classification_data": 47, "classification_report": [2, 46, 69, 102, 160, 261, 301, 324, 325, 823, 1000, 1033, 1035, 1039, 1040, 1041, 1043, 1047, 1049, 1050, 1052], "classificationcriterion": 1039, "classifier_": [89, 239], "classifier_01": 320, "classifier_05": 320, "classifier__c": 103, "classifier__criterion": 244, "classifier__max_depth": 244, "classifier__max_featur": 244, "classifier__min_samples_leaf": 185, "classifier__n_estim": 244, "classifier__n_neighbor": 285, "classifier_idx": 67, "classifier_logit": [64, 433], "classifier_model": 285, "classifier_other_threshold": 800, "classifier_tag": [924, 1050], "classifier_tun": 823, "classifierchain": [2, 282, 385, 394, 837, 839, 1038, 1043, 1046, 1048, 1049, 1051], "classifiermixin": [2, 132, 239, 371, 373, 385, 407, 925, 1042, 1050], "classifiertag": [2, 924], "classify__c": 104, "classmethod": [371, 378, 434, 630, 631, 697, 698, 699, 700, 701, 702, 807, 824], "classnameprefixfeaturesoutmixin": [2, 373, 427, 1046], "claudio": [368, 1045, 1046, 1048, 1049, 1050, 1051], "claus": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 383], "clauss": 1048, "clb": 184, "clean": [85, 103, 205, 354, 363, 369, 409, 1006, 1010, 1041], "cleaner": 99, "cleanli": [95, 1031], "cleanup": [371, 1031], "clear": [44, 88, 93, 104, 183, 184, 308, 366, 370, 371, 373, 383, 384, 385, 401, 404, 409, 919, 920, 989, 994, 1042, 1043, 1044, 1049], "clear_data_hom": 2, "clearer": [230, 1015, 1050, 1052], "clearli": [44, 93, 123, 184, 204, 237, 339, 370, 371, 383, 385, 408, 410, 1001, 1007], "clegg": 1034, "clemen": 1035, "clement": [1038, 1039, 1043], "clenaghan": [1036, 1037], "cleveland": 366, "clever": 996, "cleverless": 1033, "clf": [46, 50, 51, 52, 62, 63, 64, 65, 68, 69, 74, 84, 87, 91, 96, 103, 138, 145, 148, 150, 155, 159, 160, 162, 169, 171, 186, 201, 204, 210, 214, 217, 218, 219, 220, 221, 233, 234, 237, 240, 246, 252, 260, 264, 268, 269, 271, 274, 275, 286, 289, 290, 291, 294, 298, 305, 308, 312, 313, 314, 322, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 346, 350, 351, 353, 358, 366, 384, 385, 397, 404, 407, 410, 412, 434, 546, 547, 550, 552, 554, 556, 558, 560, 561, 564, 591, 592, 595, 608, 631, 633, 637, 638, 639, 640, 641, 643, 644, 647, 651, 657, 658, 659, 660, 661, 665, 667, 668, 671, 672, 673, 674, 675, 676, 679, 697, 698, 700, 702, 711, 789, 801, 804, 805, 815, 833, 834, 835, 837, 840, 841, 842, 843, 844, 851, 852, 862, 905, 907, 909, 910, 913, 917, 919, 990, 992, 996, 1000, 1001, 1003, 1004, 1006, 1007, 1014, 1015, 1016, 1028], "clf1": [70, 155, 410, 566], "clf2": [70, 155, 373, 410, 566], "clf3": [70, 155, 373, 410, 566], "clf__": 264, "clf__alpha": 264, "clf__c": 404, "clf_descr": 346, "clf_disp": 1028, "clf_en_lr": 199, "clf_err": 138, "clf_isoton": 62, "clf_isotonic_scor": 62, "clf_l1_lr": 199, "clf_l2_lr": 199, "clf_list": [63, 65], "clf_name": [50, 346], "clf_no_weight": 344, "clf_pf": 843, "clf_prob": 64, "clf_sample_weight": 239, "clf_score": [62, 165], "clf_sel": 186, "clf_select": 159, "clf_sgd": 219, "clf_sigmoid": 62, "clf_sigmoid_scor": 62, "clf_weight": 344, "click": [234, 244, 264, 313, 319, 322, 371, 373, 379, 391, 1024], "clickabl": 1045, "client": 373, "clifford": 1044, "cliffordemmanuel": 1044, "clim": 170, "climatologi": 401, "climb": [403, 444, 457], "clinton": 58, "clip": [63, 65, 104, 223, 235, 303, 335, 634, 675, 742, 874, 875, 1010, 1035, 1042, 1043, 1050, 1052], "clmbst": 1043, "clock": 44, "clone": [2, 64, 89, 103, 139, 143, 146, 154, 160, 175, 183, 184, 185, 233, 234, 239, 243, 244, 246, 264, 270, 277, 301, 309, 313, 314, 316, 319, 322, 354, 369, 371, 374, 375, 377, 379, 385, 401, 404, 413, 433, 461, 566, 567, 595, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 807, 824, 829, 832, 836, 839, 865, 866, 902, 1031, 1037, 1039, 1043, 1047, 1048, 1050], "clone_kernel": [609, 610, 1041], "clone_with_theta": [175, 413, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624], "cloned_classifi": 428, "clonesof": [155, 156], "close": [8, 48, 52, 56, 62, 63, 65, 74, 80, 87, 93, 99, 100, 109, 110, 113, 125, 137, 143, 146, 150, 154, 155, 167, 168, 171, 172, 173, 174, 175, 183, 185, 194, 210, 212, 226, 232, 238, 242, 248, 254, 263, 264, 276, 277, 289, 290, 303, 312, 335, 339, 340, 347, 354, 366, 371, 373, 374, 375, 383, 385, 386, 401, 403, 406, 407, 410, 413, 414, 446, 451, 468, 505, 506, 529, 560, 627, 642, 646, 660, 671, 673, 686, 705, 747, 798, 819, 820, 840, 841, 842, 844, 851, 932, 989, 993, 994, 996, 997, 999, 1000, 1001, 1003, 1006, 1007, 1010, 1015, 1019, 1024, 1034, 1038, 1039, 1040], "close_pric": 52, "closer": [44, 73, 123, 125, 143, 153, 163, 167, 184, 190, 210, 339, 348, 401, 403, 408, 445, 550, 627, 712, 847, 848, 853, 855, 856, 857, 1000, 1015, 1038], "closest": [65, 80, 97, 210, 373, 403, 436, 438, 439, 443, 444, 445, 455, 652, 780, 781, 835, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 991, 994, 1001, 1003], "closest_observ": 870, "closur": 56, "cloud": [78, 115, 119, 121, 180, 379, 408, 530, 538, 692, 1000, 1019, 1021], "cloudpickl": 1026, "cls_info": 50, "cls_name": [48, 50], "cls_runtim": 48, "cls_stat": 48, "cls_valu": 50, "club": 368, "clue": [366, 379, 997], "clump": 229, "clust": [98, 446, 453], "cluster": [2, 49, 54, 55, 56, 57, 59, 62, 77, 78, 80, 83, 84, 86, 87, 90, 92, 94, 95, 102, 111, 132, 136, 142, 150, 158, 175, 186, 226, 228, 229, 230, 236, 242, 248, 249, 250, 251, 264, 289, 290, 292, 306, 313, 317, 324, 325, 337, 345, 346, 348, 353, 360, 364, 366, 368, 371, 373, 376, 383, 385, 398, 404, 409, 411, 414, 417, 418, 421, 429, 430, 432, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 484, 499, 500, 501, 508, 509, 510, 511, 512, 519, 527, 538, 541, 550, 561, 563, 587, 588, 589, 630, 691, 692, 695, 704, 705, 710, 714, 715, 717, 719, 726, 732, 737, 738, 756, 758, 779, 780, 787, 793, 794, 796, 798, 799, 857, 858, 866, 870, 877, 885, 924, 940, 942, 962, 983, 990, 997, 999, 1003, 1006, 1008, 1010, 1013, 1017, 1019, 1020, 1021, 1024, 1025, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038], "cluster_1": 150, "cluster_2": 150, "cluster_al": [444, 457], "cluster_cent": [74, 94, 96, 97, 457], "cluster_center_indic": [436, 450], "cluster_centers_": [77, 78, 83, 91, 93, 94, 96, 97, 120, 316, 347, 436, 439, 443, 444, 445], "cluster_centers_indic": [74, 450], "cluster_centers_indices_": [74, 436], "cluster_data": 92, "cluster_doc": 58, "cluster_hierarchy_": [403, 446], "cluster_id": [186, 347], "cluster_id_to_feature_id": 186, "cluster_label": [89, 93], "cluster_method": 446, "cluster_optics_dbscan": [2, 98, 403], "cluster_optics_xi": 2, "cluster_qr": [80, 403, 448, 458, 1045], "cluster_s": 347, "cluster_selection_epsilon": 442, "cluster_selection_method": 442, "cluster_std": [64, 74, 79, 82, 88, 89, 90, 92, 93, 95, 96, 97, 217, 232, 251, 306, 337, 367, 509], "cluster_word": 58, "clusterer_": 89, "clustering_algorithm": [78, 79, 95], "clustering_metr": 91, "clustermixin": [2, 373, 1048], "clusters_std": 337, "clyde": 1036, "cl\u00e9ment": [1040, 1044, 1046], "cm": [44, 46, 51, 52, 54, 59, 60, 62, 67, 68, 69, 74, 80, 81, 82, 83, 84, 85, 86, 87, 88, 91, 93, 94, 100, 111, 113, 120, 123, 136, 142, 161, 170, 171, 184, 214, 217, 218, 221, 226, 227, 228, 233, 236, 237, 241, 246, 256, 257, 258, 283, 286, 287, 289, 293, 296, 298, 300, 301, 303, 305, 314, 317, 324, 325, 329, 331, 332, 333, 335, 336, 337, 343, 344, 351, 368, 404, 697, 831, 918, 1000, 1010, 1016], "cm2013": 403, "cm_bright": [68, 298, 305], "cm_displai": 233, "cm_piyg": 305, "cmap": [44, 45, 46, 51, 52, 54, 59, 60, 67, 68, 69, 71, 75, 80, 81, 83, 84, 86, 87, 91, 100, 111, 113, 120, 123, 130, 136, 142, 155, 161, 170, 171, 184, 190, 194, 199, 214, 217, 218, 219, 221, 226, 227, 228, 236, 237, 241, 256, 258, 283, 287, 289, 291, 292, 294, 296, 298, 300, 301, 303, 305, 324, 325, 329, 331, 332, 333, 334, 335, 336, 337, 340, 343, 344, 351, 499, 630, 697, 1051], "cmap_bold": [291, 294], "cmap_cv": 258, "cmap_data": 258, "cmap_light": [291, 294], "cmcsa": 52, "cmd": [228, 687], "cmu": 900, "cname": 77, "cnb": 1002, "cnp": 372, "cnx": 1039, "co": [2, 44, 52, 54, 57, 59, 75, 100, 102, 151, 153, 172, 180, 183, 207, 227, 263, 278, 316, 346, 347, 348, 352, 375, 409, 411, 445, 447, 449, 484, 508, 589, 699, 719, 765, 796, 995, 1010, 1021, 1024, 1025, 1026], "co2": [166, 173, 174, 180, 413, 493, 610, 614, 621, 622, 624, 1021, 1038], "co2_data": 172, "co2_kernel": 172, "coars": [44, 142, 377, 444, 457], "coarser": [142, 146], "coast": [51, 296], "coastlin": [51, 163, 296, 368], "coca": 52, "cock": [154, 1040], "cockburn": 1033, "coclust": [58, 400, 447, 510], "cocoa": 1024, "code": [2, 31, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 365, 369, 370, 372, 374, 375, 380, 383, 385, 386, 389, 394, 397, 399, 402, 403, 410, 411, 438, 439, 443, 445, 455, 493, 523, 527, 528, 534, 535, 539, 540, 542, 543, 545, 563, 569, 579, 580, 645, 646, 649, 650, 651, 652, 653, 654, 655, 659, 660, 661, 662, 663, 664, 681, 682, 684, 685, 711, 833, 834, 835, 872, 879, 943, 989, 997, 1001, 1010, 1012, 1014, 1015, 1019, 1020, 1021, 1023, 1024, 1031, 1033, 1034, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "code_blood": 1051, "code_book_": 835, "code_init": [528, 542], "code_s": [280, 835, 1001], "codebas": [318, 354, 371, 372, 411, 1031, 1037], "codebook": [280, 563, 835], "codecov": 379, "codeofconduct": 371, "coder": [129, 539, 716], "codevig": 1037, "coe": 1051, "coef": [50, 87, 129, 182, 183, 190, 194, 199, 200, 202, 205, 209, 210, 211, 214, 220, 221, 246, 276, 300, 318, 343, 521, 645, 646, 648, 651, 652, 658, 659, 660, 661, 662, 668, 671, 673, 679, 680, 681, 682, 683, 684, 685, 686, 1004], "coef0": [155, 188, 244, 245, 261, 263, 314, 339, 341, 448, 532, 638, 639, 642, 776, 778, 907, 908, 909, 910, 911, 998, 1015], "coef_": [47, 50, 54, 87, 104, 115, 156, 159, 160, 163, 182, 183, 190, 193, 194, 195, 197, 199, 200, 201, 202, 203, 205, 209, 210, 211, 214, 220, 221, 235, 240, 246, 270, 276, 277, 310, 316, 333, 340, 343, 346, 354, 366, 373, 385, 406, 412, 461, 478, 479, 480, 546, 591, 592, 595, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 905, 906, 907, 908, 909, 910, 911, 983, 994, 996, 1014, 1015, 1031, 1033, 1036, 1038, 1043, 1045, 1048, 1049, 1050, 1051], "coef_agglomeration_": 87, "coef_en_lr": 199, "coef_i": 183, "coef_init": [645, 646, 651, 652, 659, 660, 661, 662, 665, 666, 667, 675, 676, 677, 680, 683], "coef_l": 197, "coef_l1_lr": 199, "coef_l2_lr": 199, "coef_lar": 197, "coef_lasso": 197, "coef_lasso_": 202, "coef_multi_task_lasso_": 202, "coef_p": 197, "coef_path": [652, 662, 683], "coef_path_": [649, 650, 653, 654, 996], "coef_path_continu": [652, 662, 683], "coef_path_lar": [652, 662, 683], "coef_pl": 197, "coef_positive_lar": 197, "coef_ridg": 193, "coef_selection_": 87, "coeff": 679, "coeff_diff": 195, "coeffici": [2, 26, 47, 50, 74, 82, 91, 93, 109, 110, 113, 120, 123, 143, 151, 154, 155, 156, 160, 167, 180, 181, 182, 189, 192, 193, 194, 195, 197, 199, 201, 202, 203, 204, 208, 209, 220, 223, 235, 244, 245, 246, 261, 263, 277, 300, 309, 310, 314, 315, 316, 317, 339, 342, 346, 347, 348, 358, 367, 373, 385, 388, 405, 406, 408, 412, 413, 416, 426, 448, 461, 463, 469, 471, 472, 474, 475, 476, 477, 478, 479, 480, 493, 521, 523, 524, 528, 532, 534, 536, 539, 540, 545, 549, 551, 553, 555, 557, 559, 562, 565, 567, 580, 587, 591, 595, 607, 610, 613, 626, 634, 635, 638, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 691, 701, 703, 716, 719, 730, 735, 739, 744, 751, 754, 776, 778, 786, 787, 789, 793, 794, 797, 816, 828, 831, 838, 839, 848, 856, 863, 866, 878, 885, 905, 906, 907, 908, 909, 910, 911, 914, 916, 991, 994, 996, 1014, 1015, 1021, 1031, 1035, 1036, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1048, 1051, 1052], "coefs_": [201, 300, 862, 863, 1004, 1036], "coefs_cf": 310, "coefs_enet": 197, "coefs_lar": 197, "coefs_lasso": 197, "coefs_no_cf": 310, "coefs_paths_": [658, 1041], "coefs_positive_enet": 197, "coefs_positive_lar": 197, "coefs_positive_lasso": 197, "coelho": [1032, 1034, 1035, 1039], "coelhudo": 1043, "cognit": [163, 368], "cohen": [2, 716, 1039], "cohen_kappa_scor": [2, 1000, 1036, 1038, 1052], "coher": 403, "cohort": 156, "coin": [52, 54, 56, 60, 72, 75, 76, 79, 86, 87, 89, 95, 99, 100, 123, 180, 403, 411, 437, 458, 1012, 1021], "coincid": [171, 208, 413, 1000], "col": [53, 58, 63, 65, 74, 77, 82, 88, 92, 96, 97, 102, 105, 140, 155, 172, 225, 242, 262, 343, 508, 510], "col_compl": 58, "col_idx": 60, "col_idx_shuffl": 59, "col_ind": [418, 447, 449], "col_indic": 149, "col_nam": 53, "col_split": 53, "cola": [52, 1051], "colab": 399, "cold": 283, "cole": 1040, "coleman": [1032, 1033], "colgat": [52, 56], "colin": [46, 366, 1037, 1051], "collabor": 371, "collaps": [44, 184, 242, 303, 335, 383], "colleagu": 263, "collect": [2, 42, 47, 50, 52, 53, 58, 63, 105, 138, 149, 150, 156, 163, 172, 179, 186, 196, 201, 228, 235, 266, 270, 321, 347, 348, 358, 366, 368, 375, 385, 389, 407, 408, 410, 411, 442, 460, 550, 551, 552, 553, 554, 555, 556, 557, 560, 561, 562, 563, 566, 567, 579, 581, 582, 586, 587, 588, 589, 631, 730, 731, 739, 779, 784, 785, 788, 803, 807, 808, 810, 824, 970, 973, 989, 995, 996, 1000, 1006, 1011, 1020, 1024, 1033, 1043], "collectionexactli": 264, "colleg": [0, 182], "college_degre": 182, "collei": [1050, 1051], "collid": 411, "collin": 1034, "collinear": [183, 186, 211, 223, 410, 564, 647, 668, 679, 702, 790, 878, 996, 1031, 1050], "collinearfeatur": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316], "collis": [347, 348, 411, 580, 587], "collot": [1045, 1046], "colombia": [51, 296, 366, 495], "colon": 371, "coloni": 366, "color": [0, 44, 47, 48, 49, 50, 51, 52, 53, 59, 62, 63, 64, 65, 67, 68, 70, 71, 74, 75, 77, 79, 80, 81, 82, 86, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 100, 109, 110, 111, 112, 113, 116, 118, 120, 121, 122, 124, 126, 127, 128, 129, 134, 135, 140, 142, 143, 145, 148, 149, 150, 151, 152, 154, 155, 161, 167, 169, 170, 171, 172, 173, 174, 175, 176, 179, 183, 185, 186, 190, 191, 193, 194, 196, 197, 198, 201, 202, 204, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 219, 222, 223, 226, 227, 228, 230, 232, 236, 237, 238, 240, 243, 248, 249, 250, 251, 252, 253, 254, 257, 258, 260, 262, 264, 266, 267, 268, 269, 270, 272, 273, 274, 276, 277, 282, 285, 288, 289, 290, 291, 294, 295, 296, 298, 303, 304, 305, 307, 308, 309, 313, 319, 326, 327, 328, 329, 333, 334, 335, 336, 337, 339, 341, 342, 343, 351, 352, 366, 368, 379, 403, 411, 490, 491, 503, 581, 582, 630, 1014, 1016, 1036, 1041, 1043, 1048, 1050, 1051], "color_continuous_scal": 264, "color_intens": 49, "color_it": [249, 253, 254], "color_map": 329, "color_of_interest": 630, "color_palett": [73, 135, 149, 253], "colorbar": [44, 51, 67, 75, 120, 130, 150, 155, 161, 168, 170, 171, 173, 184, 225, 236, 252, 274, 303, 335, 697, 1043], "colorbarbas": 303, "colorblind": [73, 135, 149, 201], "coloring_matrix": [109, 110], "colormap": [120, 155, 175, 335, 630, 697, 1044, 1051], "colors_": 77, "colors_list": 140, "colour": [251, 368, 411, 585, 1001], "colt": [727, 757, 1000], "colton": 992, "columbia": 0, "column": [2, 44, 48, 52, 53, 59, 60, 64, 67, 93, 101, 104, 107, 139, 141, 142, 143, 146, 149, 151, 154, 155, 163, 172, 178, 180, 182, 183, 184, 185, 186, 198, 206, 207, 210, 213, 223, 234, 241, 242, 243, 246, 253, 257, 262, 263, 264, 274, 275, 277, 282, 300, 308, 309, 310, 313, 314, 315, 316, 317, 319, 320, 322, 346, 347, 348, 353, 358, 365, 366, 368, 371, 373, 377, 380, 383, 384, 385, 400, 403, 404, 406, 407, 408, 410, 411, 412, 415, 418, 447, 449, 460, 462, 463, 467, 468, 474, 483, 484, 485, 486, 487, 489, 491, 493, 497, 498, 499, 501, 502, 505, 506, 507, 508, 510, 512, 523, 528, 531, 534, 538, 539, 545, 552, 554, 555, 558, 559, 561, 562, 563, 564, 579, 580, 587, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 605, 606, 609, 626, 629, 631, 632, 633, 645, 647, 651, 657, 659, 661, 663, 664, 668, 679, 684, 685, 697, 709, 713, 718, 719, 722, 730, 731, 739, 755, 764, 769, 770, 771, 774, 784, 785, 788, 789, 801, 804, 805, 815, 826, 831, 836, 839, 840, 841, 842, 843, 844, 845, 846, 865, 869, 870, 871, 872, 878, 879, 880, 884, 885, 886, 887, 889, 890, 891, 895, 896, 905, 907, 910, 913, 915, 922, 927, 931, 932, 937, 949, 964, 975, 976, 978, 986, 989, 990, 992, 996, 998, 1000, 1001, 1008, 1010, 1015, 1020, 1021, 1028, 1031, 1033, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051], "column_labels_": [59, 60, 400, 447, 449], "column_nam": 223, "column_or_1d": [2, 380, 1042, 1046], "column_result": 264, "column_stack": [76, 298, 305], "column_to_drop": 183, "column_tran": [223, 404], "column_transform": 320, "columnar": [365, 460, 1019], "columns_": [58, 400, 418, 447, 449], "columns_to_drop": 257, "columnsi": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "columnsinput": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "columntransform": [2, 44, 102, 103, 143, 154, 183, 184, 185, 206, 223, 234, 242, 244, 246, 309, 313, 315, 316, 317, 319, 363, 365, 383, 384, 394, 462, 463, 628, 870, 989, 990, 1026, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "columntransformerinot": [154, 184], "columnwis": 408, "com": [46, 52, 102, 283, 346, 366, 369, 371, 375, 376, 377, 379, 383, 403, 438, 531, 538, 670, 705, 1038], "coma": 1024, "comaniciu": [96, 403, 444], "comb": 1045, "combat": [298, 408], "combett": [1050, 1051], "combin": [2, 20, 44, 52, 53, 59, 63, 65, 94, 102, 103, 104, 105, 106, 107, 120, 126, 128, 129, 133, 135, 139, 143, 144, 148, 149, 155, 156, 160, 167, 173, 178, 179, 180, 183, 184, 185, 194, 200, 206, 210, 222, 223, 229, 232, 234, 237, 243, 244, 246, 263, 264, 270, 272, 274, 275, 277, 292, 299, 309, 313, 314, 315, 316, 317, 322, 338, 339, 348, 351, 358, 363, 367, 368, 371, 376, 384, 385, 399, 400, 401, 403, 404, 407, 408, 409, 410, 411, 412, 413, 415, 416, 441, 460, 462, 463, 469, 471, 472, 475, 476, 477, 485, 493, 505, 506, 512, 518, 521, 523, 528, 534, 535, 537, 539, 544, 546, 557, 559, 562, 564, 565, 609, 613, 615, 620, 623, 629, 633, 642, 645, 646, 651, 652, 657, 658, 659, 660, 661, 662, 665, 667, 671, 672, 673, 674, 675, 677, 678, 680, 683, 692, 701, 731, 789, 801, 804, 805, 812, 813, 826, 828, 832, 849, 864, 865, 866, 870, 878, 879, 880, 885, 905, 973, 989, 992, 993, 996, 1000, 1001, 1003, 1006, 1010, 1013, 1014, 1016, 1017, 1021, 1024, 1031, 1036, 1039, 1042, 1043, 1044, 1046, 1047], "combinator": 811, "combined_featur": 106, "combsccod": 1045, "comcast": 52, "come": [82, 102, 111, 116, 125, 143, 163, 167, 200, 237, 244, 245, 261, 263, 277, 312, 314, 346, 347, 358, 360, 364, 368, 371, 372, 373, 375, 379, 383, 385, 389, 397, 402, 403, 407, 410, 411, 435, 446, 452, 468, 547, 705, 796, 822, 907, 910, 954, 989, 990, 994, 997, 999, 1003, 1006, 1015, 1031, 1042, 1045, 1047], "comedi": 876, "comfort": [88, 410], "command": [236, 358, 359, 369, 371, 375, 377, 379, 389, 411, 505, 1019, 1033], "commensur": 0, "comment": [80, 346, 369, 370, 371, 372, 374, 375, 379, 483, 577, 1000], "commerc": 1024, "commerci": [407, 1024], "commit": [374, 375, 379, 1023, 1031, 1032, 1033, 1034], "committ": 1031, "commod": 1000, "common": [2, 53, 55, 56, 58, 103, 123, 154, 155, 160, 163, 180, 181, 182, 204, 210, 211, 233, 234, 243, 244, 246, 257, 258, 262, 263, 270, 277, 280, 313, 314, 316, 321, 322, 339, 346, 348, 353, 358, 365, 371, 373, 379, 381, 383, 384, 388, 389, 394, 400, 401, 403, 404, 407, 409, 412, 413, 443, 461, 463, 493, 572, 588, 631, 652, 671, 672, 701, 747, 754, 770, 802, 803, 806, 816, 818, 819, 820, 821, 822, 828, 831, 866, 868, 876, 877, 878, 883, 885, 890, 891, 893, 894, 895, 896, 922, 924, 951, 954, 989, 990, 996, 1000, 1003, 1006, 1010, 1015, 1016, 1019, 1020, 1021, 1024, 1026, 1031, 1039, 1041, 1042, 1046], "common_nod": 353, "common_node_id": 353, "common_param": [90, 143, 146, 149, 184, 238, 265, 266, 339], "common_scatter_plot_param": 155, "commonli": [206, 260, 276, 339, 364, 385, 403, 404, 413, 613, 759, 760, 798, 834, 877, 998, 1000, 1001, 1003, 1047], "commun": [239, 364, 370, 376, 379, 385, 386, 403, 410, 535, 537, 544, 692, 710, 877, 990, 997, 1003, 1010, 1014, 1018, 1019, 1023, 1024, 1039, 1040], "commut": [44, 53], "comp": [58, 115, 116, 123, 130, 262, 301, 328, 346, 347, 348, 366], "comp_cov": [465, 466, 467, 468, 469, 470, 471, 472], "compact": [163, 188, 303, 358, 368, 845, 846, 1016, 1033], "compani": [0, 206, 223, 402, 403, 1023, 1024], "companion": [371, 1010], "companioni": 1031, "compar": [44, 45, 49, 53, 58, 59, 62, 63, 65, 71, 72, 73, 75, 76, 78, 81, 82, 85, 87, 88, 89, 90, 91, 97, 100, 103, 104, 105, 106, 111, 112, 114, 116, 123, 127, 129, 133, 134, 135, 137, 139, 142, 143, 144, 146, 148, 149, 150, 151, 152, 154, 156, 160, 163, 171, 178, 179, 180, 183, 184, 185, 186, 189, 191, 193, 194, 196, 197, 198, 200, 201, 203, 206, 207, 209, 210, 212, 213, 215, 219, 222, 223, 225, 226, 229, 231, 234, 237, 240, 242, 243, 244, 245, 250, 251, 255, 257, 258, 261, 262, 264, 268, 270, 272, 274, 275, 276, 278, 280, 283, 284, 285, 286, 288, 289, 290, 292, 293, 294, 295, 297, 300, 302, 304, 307, 308, 310, 314, 317, 322, 328, 339, 344, 346, 347, 348, 352, 353, 354, 360, 366, 368, 371, 373, 397, 399, 400, 401, 402, 403, 405, 406, 407, 408, 410, 412, 413, 436, 437, 438, 440, 441, 442, 444, 445, 446, 448, 454, 459, 460, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 486, 493, 499, 501, 509, 511, 519, 521, 525, 528, 534, 536, 538, 542, 543, 548, 549, 558, 559, 560, 561, 562, 630, 638, 643, 644, 651, 652, 654, 656, 662, 675, 676, 683, 695, 705, 712, 715, 732, 739, 744, 787, 799, 801, 806, 815, 822, 828, 831, 838, 847, 851, 854, 858, 862, 863, 865, 866, 873, 874, 875, 877, 878, 879, 880, 881, 882, 883, 885, 886, 890, 891, 892, 893, 894, 895, 896, 905, 906, 907, 909, 910, 989, 992, 993, 994, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1010, 1011, 1014, 1015, 1016, 1019, 1021, 1031, 1033, 1038, 1039, 1044], "comparison": [48, 52, 54, 58, 61, 62, 63, 64, 66, 67, 70, 72, 74, 77, 83, 90, 91, 92, 93, 94, 96, 102, 110, 119, 121, 122, 124, 126, 130, 134, 136, 137, 140, 146, 149, 152, 155, 156, 157, 166, 172, 174, 176, 180, 185, 193, 194, 195, 196, 197, 199, 200, 204, 206, 210, 220, 223, 224, 227, 228, 229, 230, 231, 235, 243, 250, 255, 257, 258, 259, 260, 262, 267, 269, 275, 277, 282, 292, 298, 305, 307, 308, 312, 314, 328, 329, 332, 341, 345, 346, 347, 354, 366, 368, 385, 401, 403, 405, 406, 408, 412, 413, 433, 434, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 448, 458, 478, 479, 480, 484, 501, 509, 511, 512, 519, 522, 532, 538, 546, 547, 550, 561, 562, 579, 580, 586, 587, 588, 589, 604, 606, 609, 610, 614, 621, 624, 630, 638, 642, 656, 657, 658, 671, 687, 688, 689, 690, 691, 692, 704, 739, 744, 780, 789, 799, 801, 802, 803, 804, 806, 807, 815, 817, 818, 819, 820, 821, 822, 831, 840, 843, 847, 862, 863, 866, 878, 879, 883, 885, 886, 890, 891, 892, 893, 894, 895, 896, 905, 907, 908, 910, 911, 913, 989, 992, 993, 994, 997, 1000, 1002, 1003, 1006, 1015, 1021, 1028], "compat": [103, 139, 143, 154, 155, 160, 183, 185, 233, 234, 239, 243, 244, 246, 257, 262, 264, 266, 270, 277, 283, 301, 309, 313, 316, 321, 322, 365, 369, 373, 374, 380, 381, 383, 385, 389, 394, 397, 411, 459, 465, 505, 563, 575, 587, 601, 608, 613, 614, 617, 618, 619, 621, 622, 631, 632, 633, 657, 658, 672, 674, 775, 779, 802, 803, 806, 808, 809, 810, 811, 814, 816, 817, 818, 819, 820, 821, 822, 849, 850, 865, 870, 878, 879, 917, 918, 924, 927, 942, 944, 964, 1003, 1005, 1019, 1020, 1024, 1026, 1031, 1034, 1036, 1037, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1050, 1051, 1052], "compens": [112, 182, 184, 188, 206, 223, 264, 405, 408], "compet": [44, 183], "competit": [44, 67, 146, 346, 410, 643, 1000, 1003], "compil": [154, 283, 348, 358, 359, 372, 373, 374, 375, 379, 380, 383, 1019, 1031], "compl": 91, "complain": 1049, "complement": [2, 184, 273, 346, 631, 632, 803, 818, 821, 831, 840, 841, 842, 843, 844, 1007, 1022, 1026, 1039], "complementari": [44, 411], "complementnb": [2, 264, 346, 840, 841, 843, 844, 1002, 1039, 1043, 1044, 1046], "complet": [0, 2, 44, 73, 74, 79, 82, 85, 91, 95, 100, 103, 116, 139, 143, 149, 152, 154, 155, 156, 158, 160, 163, 180, 183, 184, 185, 186, 212, 231, 232, 233, 234, 239, 242, 243, 244, 246, 257, 261, 264, 270, 277, 308, 309, 310, 312, 313, 316, 322, 347, 354, 366, 371, 375, 376, 379, 383, 404, 407, 408, 410, 411, 437, 441, 445, 448, 458, 459, 460, 463, 492, 533, 534, 535, 536, 541, 543, 555, 566, 567, 579, 585, 586, 587, 589, 626, 627, 628, 629, 644, 648, 656, 670, 672, 704, 705, 715, 716, 717, 730, 732, 737, 738, 758, 787, 796, 833, 836, 839, 848, 864, 865, 866, 867, 934, 984, 994, 996, 1000, 1001, 1003, 1015, 1016, 1019, 1021, 1031, 1034, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1051], "completed_fac": 241, "completeness_scor": [2, 74, 82, 91, 313, 347, 403, 737, 738, 796, 1000], "complex": [43, 49, 50, 53, 55, 64, 105, 141, 154, 156, 162, 167, 172, 178, 180, 185, 200, 210, 219, 222, 231, 238, 239, 242, 255, 261, 267, 272, 275, 304, 312, 314, 315, 316, 319, 320, 322, 323, 335, 339, 348, 349, 352, 353, 367, 371, 376, 383, 403, 404, 408, 410, 414, 436, 440, 443, 444, 446, 463, 485, 497, 498, 499, 511, 531, 538, 548, 554, 555, 556, 557, 559, 561, 562, 602, 629, 637, 655, 657, 675, 676, 735, 751, 801, 804, 805, 815, 818, 831, 833, 861, 865, 866, 870, 878, 885, 901, 908, 911, 913, 914, 915, 916, 989, 990, 992, 993, 995, 997, 999, 1000, 1001, 1006, 1010, 1013, 1020, 1021, 1022, 1024, 1026, 1032, 1034, 1040, 1041, 1044, 1052], "complexity_comput": [47, 50], "complexity_label": [47, 50], "compli": [371, 385, 942, 1020], "complianc": [149, 371], "compliant": [317, 371, 1049, 1050, 1051, 1052], "complic": [65, 239, 298, 377, 413, 694, 1003], "compon": [2, 11, 44, 45, 56, 79, 91, 95, 102, 104, 105, 114, 115, 119, 121, 122, 124, 125, 127, 128, 130, 152, 172, 180, 182, 194, 214, 225, 236, 237, 240, 244, 248, 249, 250, 252, 253, 254, 256, 262, 264, 269, 283, 284, 285, 286, 294, 295, 301, 308, 314, 332, 351, 358, 363, 366, 371, 373, 377, 380, 397, 399, 403, 404, 406, 411, 413, 415, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 458, 459, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 499, 501, 512, 518, 523, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 570, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 695, 798, 799, 800, 801, 804, 805, 815, 823, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 895, 896, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 920, 948, 949, 992, 997, 999, 1010, 1012, 1015, 1019, 1020, 1021, 1022, 1024, 1025, 1026, 1031, 1033, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050], "component_1": 253, "component_2": 253, "component_indices_": [638, 1044], "components_": [46, 55, 91, 104, 116, 120, 122, 123, 130, 236, 237, 244, 262, 301, 308, 316, 385, 404, 408, 440, 528, 529, 530, 531, 533, 534, 535, 536, 537, 538, 540, 541, 638, 854, 861, 897, 898, 992, 1012, 1035, 1037, 1043, 1046, 1049], "components_col": 105, "compos": [2, 44, 45, 63, 101, 102, 103, 107, 116, 136, 143, 154, 180, 183, 184, 185, 206, 208, 223, 234, 242, 244, 246, 277, 280, 309, 313, 315, 316, 317, 319, 320, 384, 394, 403, 404, 407, 460, 461, 462, 463, 512, 550, 611, 999, 1001, 1021, 1031], "composit": [7, 36, 234, 313, 363, 407, 657, 789, 990, 996, 1009, 1026, 1032], "compound": [44, 223, 411, 609, 611, 679, 725, 753, 996], "compoundkernel": [2, 609, 1045], "comprehens": [339, 379, 411, 759, 760, 998, 1024, 1039], "compress": [43, 51, 56, 99, 103, 139, 143, 154, 162, 180, 183, 184, 234, 244, 280, 303, 313, 316, 366, 397, 403, 408, 411, 412, 651, 671, 692, 835, 878, 970, 973, 985, 996, 1001, 1010, 1021, 1031, 1040], "compressed_raccoon_kmean": 86, "compressed_raccoon_uniform": 86, "compris": [102, 146, 261, 346, 347, 348, 366, 383, 408, 410, 512, 808, 997], "compromis": [49, 65, 184, 358, 371, 646, 678, 1003, 1034], "comput": [2, 28, 44, 46, 47, 51, 52, 53, 54, 59, 64, 73, 76, 77, 80, 85, 87, 90, 91, 93, 94, 102, 103, 104, 110, 111, 112, 113, 121, 129, 137, 139, 141, 143, 144, 145, 146, 147, 148, 149, 151, 154, 155, 156, 160, 162, 163, 167, 172, 174, 175, 178, 183, 184, 185, 186, 188, 191, 192, 194, 195, 196, 197, 198, 206, 208, 210, 213, 219, 222, 223, 226, 228, 229, 233, 234, 235, 236, 238, 242, 243, 244, 245, 246, 253, 257, 259, 261, 262, 263, 264, 265, 266, 270, 272, 273, 274, 275, 277, 283, 285, 287, 289, 290, 292, 293, 296, 301, 303, 309, 312, 313, 314, 316, 317, 319, 320, 322, 325, 327, 328, 335, 339, 342, 346, 347, 348, 353, 359, 360, 365, 366, 368, 371, 373, 376, 377, 378, 380, 383, 384, 385, 388, 389, 397, 398, 399, 400, 401, 403, 405, 406, 408, 409, 410, 411, 412, 413, 414, 415, 416, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 448, 453, 455, 457, 458, 459, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 479, 513, 528, 529, 531, 532, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 564, 565, 566, 567, 571, 580, 583, 584, 587, 588, 589, 591, 592, 597, 598, 601, 602, 603, 604, 605, 606, 607, 609, 611, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 715, 716, 717, 718, 719, 720, 726, 727, 728, 730, 731, 732, 735, 737, 739, 740, 741, 744, 755, 756, 757, 758, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 793, 794, 795, 797, 798, 799, 800, 801, 804, 805, 807, 815, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 858, 859, 861, 862, 863, 870, 871, 874, 875, 880, 881, 882, 883, 884, 885, 889, 890, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 907, 910, 912, 913, 914, 915, 916, 946, 947, 948, 949, 966, 967, 972, 974, 980, 989, 992, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1008, 1010, 1012, 1013, 1014, 1015, 1016, 1019, 1020, 1024, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "computation": [38, 54, 109, 120, 140, 145, 154, 167, 283, 339, 346, 357, 372, 383, 403, 404, 407, 408, 410, 413, 535, 631, 632, 670, 764, 801, 803, 804, 805, 815, 828, 996, 997, 999, 1007, 1008, 1012, 1026, 1035], "computationallyexpens": [103, 104, 244, 253, 257, 261, 262, 263, 275], "compute_class_weight": [2, 385, 1034, 1045, 1051], "compute_corrected_ttest": 263, "compute_dist": [437, 441, 1043], "compute_full_tre": [437, 441, 1035], "compute_import": 1033, "compute_inverse_compon": [897, 898, 1012], "compute_inverse_transform": 1045, "compute_label": [438, 445], "compute_node_depth": 353, "compute_optics_graph": [2, 451, 452, 1048], "compute_sample_weight": [2, 1045], "compute_scor": [107, 127, 190, 191, 643, 644, 1040], "compute_score_for": 178, "compute_sourc": 415, "computed_scor": 644, "con": [397, 587, 999], "concat": [44, 103, 139, 143, 154, 178, 182, 183, 184, 198, 223, 234, 244, 313, 316, 878], "concaten": [2, 64, 71, 83, 94, 100, 101, 103, 104, 112, 136, 139, 143, 150, 154, 159, 175, 180, 183, 184, 185, 190, 193, 200, 219, 220, 226, 232, 234, 244, 248, 252, 253, 259, 268, 270, 271, 272, 273, 288, 301, 307, 309, 310, 313, 316, 325, 334, 338, 346, 404, 460, 463, 501, 506, 528, 534, 538, 539, 597, 782, 801, 864, 865, 867, 870, 878, 910, 1001, 1021, 1032, 1051], "concav": [163, 320, 368], "concentr": [47, 49, 98, 118, 125, 134, 152, 172, 179, 180, 230, 247, 249, 254, 293, 305, 326, 367, 371, 410, 439, 516, 798, 999, 1006, 1021], "concentrations_prior": 248, "concept": [2, 112, 140, 144, 239, 272, 383, 403, 409, 411, 992, 1000, 1003, 1016, 1018, 1024], "conceptu": [368, 410, 998], "concern": [38, 57, 72, 108, 114, 117, 119, 131, 133, 157, 164, 166, 177, 180, 187, 189, 224, 247, 253, 257, 279, 281, 284, 297, 302, 323, 330, 345, 349, 358, 373, 397, 997, 1012], "concis": [65, 206, 371, 376, 1042, 1044], "conclud": [67, 134, 183, 191, 223, 263, 316, 348, 354, 386, 865], "conclus": [44, 125, 183, 185, 206, 208, 263, 265, 354, 410], "concomit": [648, 996], "concret": [210, 372, 386, 402, 412, 673, 674, 897, 898, 996, 1014, 1019, 1050], "concurr": [385, 411, 967, 1043, 1045], "cond": 1050, "conda": [312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 359, 371, 372, 374, 375, 377, 379, 389, 390, 396, 397, 1016], "conda_prefix": 377, "condarc": 369, "condens": [188, 442], "condit": [2, 44, 52, 53, 63, 65, 104, 113, 139, 143, 146, 154, 180, 181, 183, 198, 200, 208, 211, 223, 239, 243, 244, 262, 266, 309, 315, 353, 377, 383, 388, 399, 400, 401, 402, 403, 405, 408, 410, 412, 447, 460, 467, 468, 469, 474, 493, 510, 520, 521, 533, 536, 537, 538, 540, 542, 544, 546, 547, 559, 626, 631, 632, 642, 649, 650, 651, 653, 654, 655, 669, 671, 672, 673, 674, 681, 682, 686, 697, 712, 717, 718, 737, 738, 796, 822, 840, 841, 842, 843, 844, 863, 866, 869, 878, 879, 882, 886, 949, 971, 994, 996, 997, 998, 1000, 1002, 1003, 1005, 1010, 1016, 1021, 1026, 1032, 1034, 1035, 1036, 1038, 1039, 1041, 1043, 1045, 1046, 1047, 1049, 1052], "condition": [52, 65, 206, 401, 405, 759, 994, 1000], "condition2": 154, "conditionedsystem": 52, "conduct": [182, 263, 413, 1023, 1045], "conf": [47, 65, 375, 401, 407, 840, 1002, 1045], "confer": [257, 263, 366, 403, 408, 414, 433, 435, 440, 446, 508, 532, 560, 696, 708, 727, 757, 861, 862, 863, 1000, 1006, 1012, 1016], "confid": [53, 62, 63, 64, 65, 67, 149, 172, 174, 244, 245, 249, 261, 263, 266, 314, 327, 386, 401, 413, 635, 657, 658, 665, 667, 670, 673, 674, 675, 698, 702, 707, 720, 727, 728, 740, 741, 757, 790, 833, 872, 905, 907, 910, 996, 999, 1000, 1001, 1006, 1013, 1014, 1015, 1024, 1041], "config": [53, 359, 369, 371, 372, 379, 625, 1039], "config_context": [2, 246, 321, 358, 359, 399, 625, 903, 1038, 1044, 1047], "configur": [2, 3, 47, 50, 65, 67, 103, 104, 139, 143, 154, 183, 184, 234, 239, 244, 246, 257, 277, 310, 313, 316, 346, 357, 369, 371, 373, 377, 383, 385, 389, 394, 399, 404, 411, 412, 427, 433, 438, 439, 440, 441, 443, 445, 448, 458, 460, 461, 464, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 587, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 609, 610, 625, 626, 627, 628, 629, 631, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 688, 689, 690, 691, 692, 694, 695, 789, 800, 801, 802, 803, 808, 810, 815, 819, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 852, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 967, 968, 997, 1000, 1010, 1015, 1019, 1026, 1035, 1038, 1039, 1040, 1041, 1043, 1045, 1046, 1047, 1048, 1052], "confirm": [44, 53, 67, 116, 137, 143, 146, 149, 162, 185, 206, 208, 257, 266, 269, 272, 308, 348, 375, 989, 1010, 1039], "conflict": [369, 374, 375, 379, 389, 1038, 1039], "conform": [53, 371, 579, 627, 833, 834, 1000, 1019, 1020, 1038, 1044], "confound": [182, 183], "confus": [2, 69, 180, 233, 255, 257, 272, 324, 325, 346, 385, 464, 501, 630, 651, 697, 713, 715, 718, 730, 731, 739, 755, 785, 788, 831, 903, 910, 1021, 1031, 1032, 1036, 1040, 1041, 1043, 1044, 1045, 1046], "confusingli": 369, "confusion_matrix": [2, 69, 233, 256, 257, 320, 324, 325, 399, 697, 713, 755, 800, 1000, 1032, 1037, 1038, 1041, 1042, 1044, 1048, 1052], "confusion_matrix_scor": 1000, "confusionmatrixdisplai": [2, 46, 69, 256, 315, 320, 324, 346, 630, 718, 1000, 1041, 1042, 1044, 1045, 1046, 1050], "congruenc": [653, 654, 655, 681, 682], "conjug": [183, 263, 448, 458, 671, 673, 686, 695, 996], "conjunct": [394, 403, 592, 702, 807, 823, 824, 826, 827, 828, 829, 832, 968, 990, 996, 1046], "connect": [2, 52, 79, 81, 84, 87, 95, 99, 369, 371, 380, 385, 405, 437, 441, 448, 458, 459, 583, 584, 695, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 998, 1000, 1003, 1005, 1013, 1023, 1035, 1044, 1048], "connected_compon": 1038, "connectionist": [862, 863], "conner": 1044, "connor": [1039, 1044, 1048, 1049, 1051], "connossor": [1039, 1040], "conocophillip": 52, "conort": 1024, "conquer": 949, "conrad": [1031, 1032, 1046, 1049, 1050], "conroi": 1046, "consecut": [134, 144, 207, 243, 383, 401, 407, 411, 439, 443, 445, 446, 448, 452, 455, 458, 534, 535, 536, 543, 600, 644, 665, 666, 667, 675, 676, 677, 798, 799, 806, 840, 841, 842, 843, 844, 862, 863, 989, 1010, 1039], "consensu": [2, 59, 60, 73, 370, 371, 386, 400, 403, 648, 670, 677, 678, 719, 1000], "consensus_scor": [2, 59, 60, 400, 1033], "consequ": [90, 127, 223, 263, 264, 303, 321, 332, 354, 401, 402, 408, 410, 558, 559, 561, 562, 563, 654, 655, 990, 1000, 1008, 1016, 1040, 1042, 1047, 1049], "conserv": [51, 375, 385, 580, 587, 897, 898, 999, 1012], "consid": [0, 44, 52, 53, 54, 59, 63, 64, 88, 99, 100, 103, 112, 120, 124, 126, 139, 141, 143, 146, 151, 154, 155, 156, 158, 162, 163, 179, 183, 184, 185, 200, 206, 208, 233, 234, 239, 244, 246, 257, 262, 263, 264, 266, 270, 272, 274, 275, 277, 283, 286, 289, 290, 301, 303, 309, 313, 314, 316, 317, 319, 320, 322, 326, 332, 339, 340, 342, 346, 352, 353, 354, 358, 359, 360, 363, 370, 371, 373, 377, 379, 383, 385, 386, 394, 397, 399, 402, 403, 408, 409, 410, 411, 412, 413, 414, 415, 434, 440, 442, 446, 453, 470, 505, 506, 518, 530, 538, 546, 547, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 583, 584, 586, 587, 589, 591, 605, 606, 619, 630, 631, 632, 645, 651, 657, 658, 659, 661, 670, 678, 688, 689, 690, 692, 693, 694, 696, 698, 700, 702, 705, 707, 715, 727, 731, 735, 757, 787, 789, 795, 847, 848, 849, 851, 853, 855, 856, 857, 860, 862, 863, 868, 878, 879, 886, 900, 901, 910, 911, 913, 914, 915, 916, 926, 958, 983, 989, 995, 996, 997, 998, 1000, 1001, 1003, 1006, 1007, 1008, 1010, 1014, 1015, 1016, 1028, 1034, 1035, 1039, 1043, 1044, 1046, 1047, 1048], "consider": [103, 104, 148, 149, 168, 171, 242, 244, 253, 258, 261, 262, 263, 264, 270, 275, 366, 371, 402, 413, 618, 801, 804, 805, 815, 823, 989, 996, 1002, 1006, 1014, 1024, 1048], "consist": [0, 2, 44, 47, 64, 69, 73, 89, 90, 102, 103, 104, 111, 118, 120, 140, 143, 149, 150, 154, 156, 160, 162, 163, 170, 172, 175, 179, 183, 184, 185, 186, 200, 206, 223, 234, 238, 242, 244, 269, 270, 272, 300, 308, 309, 312, 313, 315, 316, 342, 347, 354, 358, 364, 366, 368, 371, 373, 377, 378, 379, 380, 384, 385, 386, 399, 401, 403, 405, 409, 410, 411, 421, 422, 425, 426, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 459, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 486, 494, 528, 530, 531, 532, 533, 534, 535, 536, 537, 539, 540, 541, 551, 553, 555, 557, 559, 560, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 589, 610, 626, 627, 628, 629, 634, 637, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 673, 676, 677, 678, 686, 687, 688, 689, 690, 691, 700, 736, 798, 799, 808, 833, 834, 835, 837, 838, 839, 840, 848, 849, 851, 853, 856, 857, 863, 868, 869, 870, 872, 876, 877, 880, 881, 883, 884, 886, 897, 898, 901, 905, 906, 908, 909, 911, 914, 916, 922, 931, 933, 956, 970, 973, 988, 989, 992, 993, 994, 996, 997, 999, 1000, 1001, 1003, 1004, 1010, 1013, 1015, 1016, 1020, 1024, 1031, 1032, 1033, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "consol": 142, "consolid": [0, 385, 386, 1031], "consolidate_scor": 53, "consortium": [0, 1024], "constant": [2, 44, 103, 129, 137, 139, 149, 154, 155, 170, 173, 174, 179, 183, 185, 196, 207, 208, 210, 223, 233, 234, 239, 243, 244, 246, 260, 262, 266, 277, 295, 299, 301, 304, 306, 313, 316, 322, 342, 344, 354, 363, 373, 380, 385, 400, 401, 410, 413, 426, 442, 461, 478, 479, 480, 508, 510, 531, 535, 537, 544, 546, 547, 548, 549, 551, 553, 555, 557, 559, 562, 565, 567, 588, 604, 607, 610, 612, 626, 629, 631, 632, 634, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 675, 676, 677, 678, 679, 686, 689, 693, 695, 721, 724, 725, 729, 733, 776, 778, 786, 800, 823, 838, 839, 848, 856, 862, 863, 870, 881, 884, 893, 905, 906, 907, 908, 909, 910, 911, 912, 914, 916, 992, 994, 996, 1000, 1002, 1003, 1010, 1014, 1016, 1026, 1034, 1039, 1041, 1043, 1044, 1045, 1047, 1049, 1050], "constant_": 549, "constant_valu": [413, 612, 616], "constant_value_bound": [172, 413, 610, 612, 616], "constantini": 1047, "constantkernel": [2, 170, 172, 176, 413, 610, 616, 620, 623], "constantli": [73, 206, 722, 1024], "constitu": 368, "constitut": [83, 264, 385, 407, 410, 446, 452, 586, 587, 589, 1004], "constrain": [26, 81, 103, 120, 139, 143, 149, 151, 154, 155, 184, 199, 233, 234, 244, 246, 257, 262, 276, 277, 298, 301, 309, 313, 316, 317, 319, 322, 333, 335, 364, 385, 403, 408, 410, 506, 558, 559, 634, 657, 658, 690, 694, 823, 830, 996, 999, 1035], "constrained_layout": [120, 184, 225, 309, 310, 317], "constraint": [64, 88, 90, 120, 133, 141, 143, 154, 156, 180, 185, 197, 203, 210, 235, 242, 243, 244, 257, 258, 275, 299, 300, 301, 309, 313, 314, 322, 352, 353, 371, 383, 408, 411, 483, 505, 506, 554, 555, 556, 557, 558, 559, 561, 562, 631, 634, 656, 819, 820, 913, 914, 915, 916, 969, 989, 991, 996, 997, 1014, 1021, 1035, 1038, 1039, 1042, 1044, 1046, 1048], "constraintson": [156, 235], "constru": 411, "construct": [2, 44, 51, 102, 104, 134, 136, 138, 154, 155, 163, 223, 233, 239, 244, 245, 246, 261, 263, 296, 304, 306, 313, 314, 316, 365, 368, 373, 380, 385, 403, 404, 407, 408, 410, 411, 414, 428, 437, 438, 440, 441, 446, 448, 453, 459, 461, 463, 516, 532, 538, 541, 552, 553, 579, 585, 638, 688, 690, 691, 815, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 864, 865, 866, 867, 869, 910, 930, 932, 948, 949, 960, 964, 986, 989, 990, 992, 996, 997, 1000, 1001, 1003, 1010, 1013, 1015, 1016, 1020, 1036, 1038, 1039, 1042, 1045], "construct_grid": [51, 296], "constructor": [31, 32, 104, 235, 359, 373, 385, 399, 404, 411, 460, 463, 546, 547, 552, 564, 565, 566, 567, 579, 580, 586, 587, 595, 667, 675, 676, 801, 815, 847, 848, 849, 851, 853, 855, 856, 857, 864, 865, 866, 867, 989, 1001, 1010, 1015, 1020, 1031, 1032, 1034, 1035, 1036, 1038, 1041, 1042, 1043, 1044, 1045, 1046, 1048], "consult": 1000, "consum": [2, 103, 120, 139, 143, 154, 160, 183, 185, 233, 234, 243, 244, 246, 264, 270, 275, 277, 309, 313, 316, 322, 354, 365, 373, 385, 394, 403, 407, 410, 445, 804, 805, 865, 866, 957, 958, 967, 996, 1024, 1036, 1048], "consumed_param": [957, 958], "consumpt": [48, 103, 104, 244, 253, 257, 261, 262, 263, 358, 385, 403, 531, 554, 555, 561, 562, 801, 815, 826, 827, 828, 913, 914, 915, 916, 957, 958, 967, 1031, 1033, 1037, 1039, 1040, 1045], "contact": [383, 1019], "contain": [2, 50, 58, 62, 64, 65, 70, 75, 82, 89, 91, 102, 103, 104, 126, 136, 138, 139, 141, 143, 149, 150, 154, 155, 156, 160, 173, 183, 184, 185, 186, 188, 199, 210, 223, 232, 234, 239, 242, 243, 244, 246, 253, 257, 261, 263, 264, 269, 270, 272, 273, 275, 276, 282, 289, 290, 292, 303, 309, 313, 314, 315, 316, 319, 322, 325, 328, 346, 347, 352, 353, 364, 365, 366, 368, 371, 372, 373, 375, 376, 377, 378, 379, 380, 383, 385, 397, 399, 401, 403, 404, 406, 407, 408, 410, 411, 412, 413, 415, 417, 427, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 458, 460, 461, 462, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 493, 497, 499, 500, 501, 505, 506, 507, 511, 512, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 684, 685, 687, 688, 689, 690, 691, 692, 696, 697, 698, 700, 701, 702, 709, 712, 722, 736, 737, 738, 773, 780, 781, 789, 795, 798, 799, 800, 801, 804, 805, 807, 815, 819, 820, 823, 824, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 920, 927, 930, 931, 932, 945, 952, 953, 956, 957, 958, 964, 967, 968, 969, 970, 989, 990, 992, 998, 1000, 1001, 1004, 1006, 1008, 1010, 1011, 1013, 1016, 1019, 1023, 1031, 1033, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1048, 1049], "container": 397, "container_fold": 500, "container_path": 500, "contamin": [49, 111, 112, 150, 232, 242, 289, 290, 465, 560, 851, 1006, 1039, 1047, 1048], "content": [2, 7, 56, 264, 308, 346, 348, 366, 371, 375, 377, 397, 411, 482, 500, 505, 506, 586, 587, 589, 670, 919, 1009, 1018, 1024, 1032, 1041], "context": [2, 52, 64, 91, 103, 104, 139, 141, 143, 150, 154, 155, 156, 160, 183, 184, 185, 233, 234, 235, 244, 245, 246, 253, 257, 261, 262, 263, 270, 272, 275, 276, 277, 283, 301, 309, 313, 314, 316, 319, 320, 322, 326, 358, 359, 365, 370, 371, 372, 384, 385, 403, 404, 409, 410, 411, 413, 414, 433, 440, 442, 444, 446, 448, 453, 454, 457, 460, 463, 464, 468, 528, 532, 533, 534, 536, 539, 540, 541, 542, 543, 545, 552, 553, 554, 555, 560, 561, 562, 563, 564, 565, 566, 567, 592, 600, 605, 606, 609, 625, 626, 629, 631, 633, 638, 646, 650, 652, 654, 656, 657, 658, 660, 662, 664, 665, 667, 675, 678, 688, 689, 690, 691, 692, 693, 694, 775, 779, 782, 801, 804, 805, 807, 815, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 838, 847, 848, 851, 853, 855, 856, 858, 859, 864, 867, 900, 901, 903, 905, 906, 907, 908, 909, 910, 911, 990, 996, 1000, 1006, 1010, 1014, 1023, 1024, 1031, 1038, 1039, 1044, 1047], "contextu": 371, "contigu": [44, 60, 373, 383, 400, 407, 411, 439, 443, 445, 455, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 782, 820, 845, 846, 905, 907, 908, 909, 910, 911, 1015, 1034, 1041, 1045, 1049, 1052], "contin": [409, 1010], "conting": [2, 714, 715, 732, 756, 1037], "contingency_matrix": [2, 403, 756, 1039], "continu": [0, 2, 53, 56, 58, 77, 118, 143, 155, 167, 180, 184, 191, 207, 213, 223, 226, 229, 242, 243, 245, 249, 253, 254, 300, 302, 308, 309, 314, 315, 353, 359, 366, 369, 373, 374, 375, 376, 379, 383, 385, 386, 389, 403, 408, 410, 464, 489, 590, 593, 594, 597, 598, 602, 605, 606, 607, 631, 645, 646, 651, 652, 656, 659, 660, 661, 662, 727, 757, 813, 815, 868, 870, 872, 874, 875, 884, 885, 886, 902, 903, 914, 942, 964, 989, 996, 997, 1000, 1001, 1003, 1004, 1010, 1016, 1020, 1021, 1024, 1031, 1033, 1034, 1039, 1044, 1045, 1046, 1048, 1050], "continuesuntil": [154, 192], "continuous_featur": 376, "contour": [49, 51, 71, 80, 81, 111, 142, 163, 170, 171, 173, 216, 217, 218, 219, 232, 237, 252, 289, 296, 333, 334, 336, 337, 339, 340, 368, 378, 630, 631, 1006, 1014, 1051], "contour_kw": 631, "contourf": [51, 142, 219, 237, 289, 296, 298, 305, 306, 329, 334, 340, 630, 631], "contours_": [378, 631], "contract": [206, 223, 339, 359, 385, 1020], "contradict": 186, "contrari": [44, 54, 183, 226, 230, 242, 248, 266, 303, 346, 365, 403, 493, 541, 604, 803, 818, 886, 996, 1002, 1006], "contrast": [64, 128, 184, 204, 208, 238, 242, 263, 265, 292, 308, 347, 385, 401, 403, 406, 410, 413, 433, 445, 448, 458, 618, 642, 815, 861, 990, 993, 995, 996, 1000, 1003, 1005, 1008, 1010, 1013, 1014, 1016, 1041], "contrib": [318, 371, 373, 379, 383, 385, 403, 442, 1019, 1020, 1047], "contribut": [0, 54, 59, 147, 156, 172, 194, 210, 272, 308, 368, 369, 374, 375, 379, 385, 386, 389, 408, 409, 410, 443, 445, 550, 551, 556, 557, 727, 730, 757, 994, 1000, 1003, 1008, 1015, 1019, 1020, 1023, 1024, 1031, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "contributor": [359, 374, 375, 376, 379, 383, 385, 1000, 1018, 1020, 1032, 1033, 1034, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "control": [38, 52, 71, 94, 103, 104, 124, 125, 140, 143, 151, 154, 155, 156, 172, 174, 183, 194, 200, 204, 207, 210, 213, 235, 236, 243, 244, 253, 257, 261, 262, 263, 264, 266, 280, 285, 301, 309, 313, 315, 317, 322, 339, 350, 352, 358, 359, 364, 367, 371, 373, 376, 379, 383, 385, 389, 402, 403, 406, 407, 408, 409, 412, 413, 428, 436, 445, 450, 467, 468, 474, 528, 533, 534, 535, 536, 537, 540, 542, 543, 544, 545, 547, 548, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 591, 592, 594, 610, 613, 618, 624, 626, 631, 633, 638, 640, 641, 645, 646, 648, 649, 650, 651, 653, 654, 655, 671, 673, 675, 676, 681, 682, 686, 692, 701, 798, 799, 801, 802, 803, 804, 805, 806, 807, 815, 816, 817, 818, 819, 820, 821, 823, 824, 826, 827, 828, 829, 831, 832, 835, 836, 839, 862, 863, 884, 886, 897, 898, 903, 905, 906, 907, 908, 910, 911, 913, 914, 915, 916, 919, 942, 967, 986, 989, 996, 997, 999, 1000, 1001, 1003, 1006, 1007, 1010, 1012, 1014, 1015, 1016, 1019, 1020, 1022, 1026, 1031, 1033, 1035, 1036, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1049, 1050, 1051], "controlsth": 172, "convei": [68, 230, 305], "conveni": [53, 88, 172, 210, 242, 321, 363, 379, 383, 404, 407, 411, 413, 439, 443, 445, 447, 449, 460, 485, 610, 675, 677, 699, 729, 786, 864, 865, 973, 990, 992, 996, 997, 1007, 1024, 1031], "convent": [2, 132, 149, 257, 263, 371, 373, 374, 375, 377, 385, 399, 421, 422, 425, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 465, 466, 467, 468, 469, 470, 471, 472, 505, 506, 528, 530, 531, 532, 533, 534, 535, 536, 537, 539, 540, 541, 544, 560, 563, 566, 567, 579, 580, 581, 586, 587, 589, 626, 627, 628, 629, 676, 687, 688, 689, 690, 691, 718, 798, 799, 833, 834, 849, 851, 853, 857, 869, 877, 880, 881, 883, 886, 897, 898, 909, 942, 944, 1000, 1031, 1038, 1039, 1042, 1044, 1045, 1047, 1048], "convention": [333, 385, 901], "converg": [2, 52, 56, 90, 94, 103, 109, 110, 139, 144, 146, 149, 155, 156, 167, 173, 175, 176, 183, 201, 208, 213, 221, 233, 234, 235, 243, 244, 246, 249, 251, 253, 257, 262, 277, 299, 300, 301, 303, 308, 313, 316, 321, 322, 325, 360, 380, 383, 385, 400, 403, 408, 411, 413, 415, 436, 439, 442, 443, 444, 445, 448, 450, 455, 456, 457, 458, 467, 468, 474, 478, 479, 480, 530, 532, 533, 534, 535, 536, 543, 568, 609, 643, 644, 645, 646, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 667, 671, 673, 675, 677, 681, 682, 686, 688, 690, 691, 694, 695, 798, 799, 854, 862, 863, 900, 901, 907, 990, 995, 996, 997, 999, 1004, 1014, 1031, 1034, 1035, 1036, 1038, 1039, 1042, 1044, 1045, 1046, 1047, 1048, 1049, 1051], "converged_": [798, 799, 1049], "convergence_it": [436, 450], "convergenceespeci": [154, 192], "convergencewarn": [2, 171, 173, 175, 176, 213, 220, 249, 299, 300, 305, 380, 385, 798, 799, 1039, 1040, 1043, 1051], "convers": [2, 56, 139, 146, 199, 346, 354, 360, 365, 371, 373, 379, 383, 385, 397, 411, 569, 860, 869, 877, 931, 932, 985, 997, 1024, 1039, 1040, 1041, 1044, 1047, 1051], "convert": [2, 56, 71, 80, 99, 103, 123, 139, 155, 172, 186, 206, 225, 242, 245, 249, 250, 253, 254, 277, 296, 320, 353, 358, 365, 366, 380, 383, 385, 397, 399, 401, 411, 436, 439, 440, 443, 445, 446, 447, 448, 455, 460, 461, 493, 531, 538, 550, 551, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 569, 579, 580, 586, 587, 588, 589, 591, 592, 604, 626, 627, 628, 629, 645, 651, 657, 658, 659, 661, 665, 666, 667, 669, 673, 675, 676, 677, 692, 747, 779, 800, 823, 860, 869, 870, 872, 876, 878, 879, 880, 882, 905, 913, 914, 915, 916, 929, 931, 932, 956, 984, 985, 989, 996, 997, 998, 1000, 1010, 1011, 1015, 1016, 1031, 1033, 1034, 1035, 1036, 1037, 1039, 1041, 1042, 1043, 1046, 1047, 1048, 1049], "convex": [129, 145, 146, 180, 189, 218, 225, 326, 343, 347, 403, 405, 408, 416, 442, 448, 458, 469, 471, 472, 475, 476, 477, 657, 675, 692, 996, 997, 1003, 1004, 1014, 1021, 1044], "convinc": 183, "convolut": [46, 175], "convolv": 301, "coo": [385, 550, 551, 692, 872, 927, 931, 932, 1003, 1032, 1048], "coo_matrix": [54, 195, 448, 583, 584, 970, 973], "cook": [368, 491, 1031, 1037], "cookbook": [413, 621, 622], "cool": [411, 1031], "coolwarm": [258, 332], "cooman": 368, "cooper": 1051, "coord": [583, 1001], "coordin": [2, 51, 52, 54, 87, 104, 125, 153, 160, 171, 197, 225, 264, 270, 296, 358, 366, 408, 413, 439, 443, 444, 445, 457, 467, 468, 474, 528, 534, 535, 536, 537, 539, 540, 542, 543, 544, 545, 547, 583, 613, 645, 646, 650, 651, 652, 653, 654, 655, 657, 659, 660, 661, 662, 680, 681, 682, 683, 687, 688, 689, 690, 693, 694, 698, 706, 728, 765, 770, 905, 958, 997, 1015, 1031, 1034, 1035, 1036, 1040, 1042, 1044, 1045, 1046, 1051, 1052], "cop": 52, "cope": [232, 360, 366, 996], "copeland": [1039, 1040], "copi": [45, 52, 56, 79, 88, 95, 103, 104, 107, 123, 137, 149, 154, 155, 156, 163, 172, 178, 179, 183, 184, 185, 192, 195, 201, 212, 221, 223, 226, 233, 234, 235, 239, 243, 244, 246, 257, 262, 270, 277, 283, 313, 316, 318, 322, 324, 325, 327, 328, 329, 347, 351, 359, 368, 371, 373, 375, 376, 377, 383, 385, 399, 428, 433, 436, 438, 439, 440, 442, 443, 445, 450, 455, 478, 479, 480, 481, 497, 499, 507, 529, 530, 531, 532, 538, 545, 550, 551, 556, 558, 559, 569, 588, 595, 605, 606, 609, 610, 627, 629, 643, 644, 645, 646, 649, 650, 651, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 670, 671, 673, 678, 680, 683, 684, 685, 733, 770, 793, 801, 815, 845, 846, 860, 868, 871, 874, 875, 876, 877, 881, 882, 883, 885, 888, 890, 891, 892, 893, 894, 895, 896, 900, 901, 905, 907, 908, 909, 910, 911, 920, 929, 931, 932, 960, 970, 972, 973, 1010, 1015, 1016, 1020, 1031, 1034, 1037, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "copy_": 1031, "copy_cov": 545, "copy_gram": [681, 682, 685], "copy_x": [154, 156, 183, 192, 235, 439, 443, 455, 532, 643, 644, 645, 646, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 671, 673, 678, 680, 681, 682, 683, 684, 1033, 1039, 1040, 1050, 1052], "copy_x_train": [172, 609, 610], "copy_xi": 685, "copybutton": [371, 389, 396], "copyright": [0, 56], "corani": 263, "cordier": 1038, "core": [43, 50, 82, 88, 98, 103, 134, 139, 140, 142, 155, 180, 183, 184, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 317, 322, 357, 359, 371, 374, 379, 385, 389, 397, 403, 408, 410, 411, 414, 440, 442, 445, 446, 451, 453, 493, 496, 535, 587, 592, 657, 658, 667, 675, 840, 841, 842, 843, 844, 849, 857, 996, 1003, 1006, 1015, 1018, 1020, 1021, 1022, 1024, 1026, 1033, 1035, 1036, 1038, 1041, 1045, 1046, 1047], "core_dist": [98, 451, 452, 453], "core_distances_": [98, 446, 451, 453], "core_sampl": 414, "core_sample_indices_": [82, 440], "core_samples_mask": 82, "corei": [1032, 1039, 1040, 1051], "corentin": 1045, "cori": 1036, "corneil": 1044, "corner": [51, 54, 64, 86, 143, 182, 260, 264, 272, 273, 296, 319, 366, 371, 495, 917, 919, 1000, 1045], "cornerston": 1024, "cornflowerblu": [153, 202, 209, 215, 249, 251, 254, 270, 272, 288, 294, 352], "corona": 1044, "corpora": 408, "corpu": [55, 264, 347, 348, 366, 408, 586, 587, 588, 589, 1032], "corr": [115, 186, 263], "corrcoef": [115, 130, 228], "correct": [2, 31, 53, 64, 65, 90, 112, 134, 144, 175, 183, 194, 198, 206, 223, 248, 256, 257, 263, 270, 272, 280, 282, 335, 337, 346, 354, 368, 371, 373, 375, 383, 386, 399, 401, 403, 407, 408, 410, 411, 420, 426, 446, 452, 465, 470, 484, 498, 500, 634, 666, 675, 677, 703, 704, 708, 712, 713, 718, 721, 724, 725, 729, 730, 731, 735, 739, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 784, 785, 786, 788, 791, 792, 795, 797, 833, 834, 835, 842, 850, 876, 984, 996, 1000, 1001, 1015, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050], "correct_covari": [465, 470], "corrected_std": 263, "corrected_var": 263, "correctli": [2, 158, 162, 206, 223, 239, 270, 272, 278, 293, 310, 326, 335, 371, 380, 385, 408, 410, 420, 433, 465, 546, 547, 548, 550, 552, 554, 556, 558, 561, 564, 566, 609, 657, 665, 667, 673, 674, 675, 703, 795, 797, 800, 823, 833, 834, 835, 836, 840, 841, 842, 843, 844, 847, 852, 855, 862, 885, 900, 901, 905, 907, 908, 909, 910, 911, 913, 915, 950, 997, 1000, 1003, 1004, 1010, 1015, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1050, 1051, 1052], "correl": [2, 52, 65, 113, 115, 116, 130, 141, 147, 149, 151, 159, 162, 172, 180, 181, 182, 184, 185, 194, 198, 200, 203, 204, 223, 263, 282, 309, 313, 314, 327, 364, 367, 368, 376, 385, 388, 400, 405, 407, 412, 446, 453, 478, 479, 481, 490, 491, 497, 521, 561, 604, 607, 626, 633, 634, 635, 643, 645, 651, 681, 682, 744, 758, 779, 780, 781, 831, 845, 846, 882, 883, 885, 894, 991, 996, 1001, 1007, 1010, 1014, 1016, 1021, 1022, 1026, 1031, 1032, 1033, 1044, 1045], "correlation_coeffici": 607, "correlation_model": 1038, "correspond": [2, 51, 53, 54, 59, 64, 65, 69, 76, 86, 98, 104, 109, 113, 122, 134, 137, 140, 141, 142, 143, 150, 154, 155, 159, 160, 162, 163, 168, 172, 173, 176, 183, 184, 198, 200, 206, 207, 210, 214, 223, 233, 238, 239, 244, 246, 253, 257, 260, 262, 264, 266, 267, 270, 272, 273, 277, 296, 308, 314, 315, 316, 321, 347, 350, 351, 353, 354, 359, 365, 366, 367, 370, 371, 373, 375, 378, 379, 384, 385, 386, 400, 401, 402, 403, 405, 406, 407, 408, 410, 411, 412, 413, 418, 424, 433, 435, 437, 441, 444, 447, 449, 455, 457, 459, 460, 468, 478, 479, 480, 486, 487, 489, 490, 491, 492, 493, 531, 538, 541, 542, 543, 546, 547, 549, 552, 554, 556, 557, 558, 561, 580, 582, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 609, 610, 616, 627, 629, 631, 632, 634, 642, 645, 646, 647, 651, 657, 658, 659, 660, 661, 667, 668, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 686, 687, 690, 691, 692, 694, 703, 709, 710, 713, 722, 725, 726, 735, 739, 743, 747, 753, 755, 775, 779, 783, 789, 790, 795, 797, 798, 799, 800, 801, 804, 805, 807, 815, 823, 824, 826, 834, 836, 837, 840, 841, 842, 843, 844, 845, 846, 850, 851, 852, 854, 862, 863, 872, 875, 876, 878, 879, 882, 886, 894, 903, 905, 906, 907, 910, 913, 914, 915, 916, 926, 936, 942, 958, 961, 974, 989, 990, 992, 993, 994, 996, 997, 999, 1000, 1001, 1003, 1004, 1005, 1006, 1007, 1010, 1011, 1014, 1015, 1028, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050, 1051], "correspondingli": 1048, "corri": 1042, "corrobor": 383, "corrupt": [45, 127, 194, 212, 222, 383, 861, 996, 1008], "cort": [1042, 1043, 1046, 1047], "cortex": 408, "cos_transform": 44, "cosin": [2, 44, 75, 264, 278, 283, 288, 363, 366, 385, 399, 403, 408, 409, 437, 441, 446, 453, 532, 588, 589, 619, 696, 761, 762, 763, 766, 771, 772, 775, 779, 780, 781, 845, 846, 850, 877, 1003, 1016, 1026, 1041, 1052], "cosine_dist": [2, 399, 696, 763, 1003, 1037, 1050], "cosine_similar": [2, 339, 399, 761, 766, 998, 1036, 1050], "cosinesimil": 283, "cosmo": 58, "cost": [0, 44, 64, 100, 123, 140, 141, 143, 149, 154, 156, 165, 167, 180, 183, 185, 188, 225, 233, 237, 244, 245, 255, 261, 263, 265, 267, 270, 272, 275, 277, 312, 314, 319, 320, 335, 347, 348, 349, 352, 353, 371, 377, 379, 383, 399, 402, 403, 410, 474, 493, 497, 534, 535, 536, 543, 548, 554, 555, 556, 557, 558, 561, 562, 600, 608, 609, 618, 626, 645, 646, 651, 652, 657, 659, 660, 661, 662, 667, 671, 673, 675, 677, 686, 688, 692, 700, 702, 718, 743, 785, 788, 800, 801, 823, 831, 866, 885, 903, 905, 906, 907, 910, 913, 914, 915, 916, 949, 992, 996, 997, 1000, 1003, 1013, 1014, 1015, 1021, 1022, 1026, 1037, 1040, 1041], "cost_complexity_pruning_path": [350, 913, 914, 915, 916], "costa": [1039, 1044], "costin": 1031, "costli": [104, 109, 141, 178, 257, 264, 343, 359, 372, 375, 377, 403, 439, 626, 809, 811, 897, 898, 949, 1000, 1003, 1012, 1020], "costlier": 670, "costs_": [467, 468, 1047], "could": [44, 49, 53, 54, 65, 67, 73, 77, 86, 103, 104, 120, 123, 135, 136, 143, 146, 149, 160, 167, 172, 179, 182, 183, 184, 206, 207, 210, 214, 223, 229, 237, 238, 239, 256, 257, 263, 269, 276, 282, 291, 294, 315, 331, 332, 346, 350, 353, 360, 371, 377, 379, 385, 389, 397, 401, 407, 410, 411, 415, 470, 530, 535, 605, 606, 628, 670, 803, 808, 810, 990, 996, 997, 1000, 1007, 1008, 1010, 1015, 1020, 1028, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1049, 1051], "couldn": [1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "count": [2, 24, 44, 53, 55, 63, 65, 76, 82, 86, 102, 103, 118, 183, 184, 206, 208, 223, 236, 246, 257, 264, 277, 280, 283, 309, 313, 314, 321, 347, 348, 366, 368, 375, 380, 385, 386, 401, 403, 408, 410, 411, 442, 445, 485, 493, 533, 541, 579, 586, 587, 588, 589, 592, 602, 616, 639, 697, 705, 715, 718, 730, 731, 739, 755, 784, 785, 787, 788, 840, 844, 845, 846, 854, 857, 868, 917, 919, 951, 966, 988, 989, 992, 996, 1000, 1002, 1003, 1010, 1016, 1024, 1031, 1034, 1036, 1039, 1040, 1042, 1043, 1048], "count_nonzero": [47, 50, 358], "count_onli": [845, 846], "counter": [58, 134, 270, 403, 675, 676, 677, 1044], "counterpart": [989, 997, 1015], "countlagged_count_1hlagged_count_2hlagged_count_3hlagged_count_1dlagged_count_1d_1hlagged_count_7dlagged_count_7d_1hlagged_mean_24hlagged_max_24hlagged_min_24hlagged_mean_7dlagged_max_7dlagged_min_7di64i64i64i64i64i64i64i64f64i64i64f64i64i6416nullnullnullnullnullnullnullnullnullnullnullnullnull4016nullnullnullnullnullnullnullnullnullnullnullnull324016nullnullnullnullnullnullnullnullnullnullnull13324016nullnullnullnullnullnullnullnullnullnull1133240nullnullnullnullnullnullnullnullnullnull111332nullnullnullnullnullnullnullnullnullnull21113nullnullnullnullnullnullnullnullnullnull3211nullnullnullnullnullnullnullnullnullnull8321nullnullnullnullnullnullnullnullnullnull14832nullnullnullnullnullnullnullnullnullnul": 53, "countlagged_count_1hlagged_count_2hlagged_count_3hlagged_count_1dlagged_count_1d_1hlagged_count_7dlagged_count_7d_1hlagged_mean_24hlagged_max_24hlagged_min_24hlagged_mean_7dlagged_max_7dlagged_min_7di64i64i64i64i64i64i64i64f64i64i64f64i64i642472032241571601697013593": 53, "countri": [309, 319, 493, 997], "counts_": 1043, "countvector": [2, 55, 328, 348, 366, 376, 404, 408, 411, 460, 485, 533, 580, 587, 588, 589, 1031, 1033, 1036, 1039, 1040, 1041, 1042, 1043, 1044, 1049], "coupl": [55, 85, 86, 88, 226, 365, 366, 371, 400, 401, 403, 412, 587, 911, 989, 1015], "cournapeau": [0, 393, 1031, 1034], "cours": [48, 49, 188, 277, 358, 371, 373, 383, 402, 408, 411, 412, 990, 995, 996, 1018, 1024], "coursecentr": [403, 438], "coursel": 1050, "courtesi": 371, "couvreur": [1040, 1041], "cov": [71, 113, 116, 136, 253, 371, 385, 389, 396, 406, 416, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 516, 529, 531, 538, 545], "cov_": [51, 113], "cov_class_1": 71, "cov_class_2": 71, "cov_init": 1047, "cov_test": 51, "cov_train": 51, "cov_typ": [250, 487], "covar": [248, 249, 254], "covari": [2, 49, 52, 66, 70, 104, 110, 115, 127, 130, 148, 150, 167, 172, 174, 209, 232, 244, 247, 249, 251, 252, 253, 254, 262, 270, 294, 319, 380, 385, 394, 403, 406, 408, 413, 416, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 501, 512, 516, 524, 529, 531, 538, 545, 546, 547, 560, 609, 610, 612, 621, 622, 630, 643, 644, 649, 653, 655, 681, 682, 685, 689, 693, 798, 799, 801, 820, 999, 1006, 1010, 1021, 1022, 1025, 1026, 1031, 1033, 1034, 1035, 1036, 1038, 1040], "covariance_": [52, 71, 111, 113, 465, 466, 467, 468, 469, 470, 471, 472, 546, 547, 994, 1038], "covariance_correct": [465, 470], "covariance_eigh": [104, 244, 262, 320, 538, 1049], "covariance_estim": [70, 546, 994, 1043], "covariance_prior": [254, 798], "covariance_prior_": 798, "covariance_reweight": [465, 470], "covariance_typ": [79, 249, 250, 252, 253, 254, 798, 799, 1047, 1051], "covariancematric": 253, "covariances_": [248, 249, 250, 253, 254, 798, 799, 1038], "cover": [85, 188, 206, 223, 354, 363, 366, 371, 384, 634, 720, 795, 822, 1000, 1001, 1018], "coverag": [2, 51, 53, 146, 149, 206, 223, 296, 366, 374, 399, 495, 626, 720], "coverage_error": [2, 1000, 1035, 1045], "coverage_fract": 146, "coverages_land": 51, "covertyp": [2, 364, 487, 1026], "covtyp": 188, "cow": 1032, "cowlei": 1041, "cowton": 1045, "cox": [303, 307, 881, 893, 1010, 1039, 1047], "cpo": [163, 368], "cpu": [0, 94, 103, 104, 139, 154, 155, 233, 234, 244, 246, 253, 257, 261, 262, 263, 264, 277, 283, 301, 313, 316, 317, 322, 358, 359, 377, 379, 385, 389, 399, 411, 493, 560, 631, 646, 650, 652, 654, 657, 658, 660, 662, 664, 665, 667, 675, 678, 801, 815, 826, 827, 828, 849, 857, 898, 1000, 1036, 1045, 1046, 1048, 1049, 1050], "cpu_count": [77, 140, 283], "cpuexecutionprovid": 397, "cpython": [371, 372, 377, 1046], "cr": 996, "craeton": [1049, 1050], "craft": 374, "craig": [1012, 1034, 1039], "crall": [1038, 1044], "crammer": [665, 666, 675, 677, 736, 996, 1000, 1015], "crammer06a": [665, 666, 675, 677], "crammer_sing": [104, 160, 270, 905, 1001, 1015, 1031], "cranenburgh": 1035, "crash": [52, 371, 397, 464, 895, 896, 903, 1010, 1035, 1039, 1047, 1048, 1050, 1051], "crawl": [518, 940], "craze": 1038, "crc": 996, "creat": [2, 44, 45, 48, 51, 59, 60, 64, 65, 69, 71, 73, 76, 78, 79, 80, 82, 85, 91, 93, 95, 100, 103, 104, 111, 116, 122, 125, 126, 136, 139, 142, 143, 144, 146, 150, 153, 154, 155, 162, 167, 169, 172, 173, 174, 176, 179, 182, 183, 184, 185, 190, 192, 195, 201, 204, 207, 208, 217, 218, 227, 234, 237, 239, 242, 243, 244, 245, 253, 257, 258, 259, 261, 262, 263, 264, 273, 277, 291, 293, 294, 305, 307, 308, 312, 313, 315, 316, 329, 331, 332, 336, 337, 340, 342, 343, 348, 350, 354, 359, 366, 367, 369, 370, 371, 373, 375, 376, 377, 378, 379, 380, 384, 385, 389, 390, 397, 401, 403, 404, 407, 409, 410, 411, 413, 434, 447, 449, 461, 462, 496, 512, 513, 514, 515, 543, 550, 554, 555, 556, 557, 560, 561, 562, 563, 586, 587, 589, 595, 627, 629, 630, 631, 632, 697, 698, 700, 701, 702, 731, 783, 801, 803, 807, 811, 815, 819, 824, 826, 827, 835, 866, 878, 884, 907, 910, 913, 914, 915, 916, 920, 929, 952, 953, 960, 972, 984, 990, 996, 999, 1001, 1003, 1007, 1010, 1011, 1012, 1014, 1015, 1016, 1018, 1019, 1024, 1028, 1031, 1032, 1034, 1037, 1041, 1044, 1045, 1046, 1047, 1048, 1049, 1052], "create_ax": 303, "create_species_bunch": 51, "createfeatur": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316], "createindex": 283, "creatingpredict": 156, "creation": [373, 508, 509, 510, 512, 516, 517, 518, 520, 521, 522, 523, 524, 525, 526, 527, 655, 845, 846, 1024, 1038, 1039, 1040, 1044], "creativ": 365, "creator": [163, 365, 368], "cred_int_df": 263, "cred_interv": 263, "credibl": 263, "credit": [366, 410, 996, 1024], "credit_amount": 257, "credit_card": 257, "credit_gain": 257, "credit_gain_scor": 257, "credit_histori": 257, "creighton": 317, "crispinlogan": [1043, 1046, 1047, 1049], "cristian": 641, "cristina": 1043, "criteria": [64, 90, 103, 104, 139, 140, 141, 155, 156, 160, 180, 185, 189, 198, 213, 233, 234, 244, 246, 253, 257, 262, 263, 270, 275, 277, 301, 313, 316, 319, 322, 353, 379, 403, 412, 437, 462, 478, 479, 480, 498, 554, 555, 556, 557, 561, 562, 645, 651, 655, 657, 658, 670, 692, 866, 885, 905, 906, 913, 914, 915, 916, 990, 999, 1000, 1004, 1014, 1021, 1034, 1039, 1042], "criteriaar": [154, 156, 314, 352], "criterion": [64, 65, 103, 104, 109, 110, 141, 154, 156, 183, 185, 186, 196, 213, 235, 244, 245, 253, 257, 261, 262, 263, 275, 313, 319, 352, 353, 373, 380, 385, 403, 408, 437, 441, 445, 448, 455, 458, 529, 534, 536, 543, 554, 555, 556, 557, 561, 562, 592, 600, 604, 626, 633, 643, 644, 647, 655, 656, 665, 666, 667, 668, 670, 671, 673, 675, 676, 677, 679, 690, 691, 694, 695, 710, 711, 799, 801, 804, 805, 807, 815, 824, 827, 828, 829, 830, 832, 902, 907, 908, 909, 910, 911, 913, 914, 915, 916, 996, 999, 1000, 1008, 1013, 1016, 1022, 1026, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1047, 1048, 1051, 1052], "criterion_": [196, 198, 655], "critic": [365, 371, 375, 384, 410, 692, 997, 1000, 1008, 1015, 1024, 1042], "crockett": 1046, "crombach": 1033, "crop": [379, 1046], "cross": [2, 9, 30, 52, 53, 54, 64, 65, 71, 87, 90, 91, 103, 104, 105, 106, 107, 109, 113, 116, 127, 140, 142, 143, 145, 146, 149, 154, 157, 160, 161, 163, 183, 184, 189, 194, 195, 196, 197, 202, 206, 208, 213, 223, 240, 244, 245, 250, 251, 253, 255, 260, 263, 264, 265, 267, 269, 270, 271, 272, 275, 277, 278, 280, 287, 301, 302, 304, 309, 312, 314, 319, 327, 335, 342, 352, 366, 371, 380, 383, 384, 385, 397, 398, 401, 404, 405, 408, 410, 411, 412, 413, 433, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 490, 498, 499, 501, 512, 538, 564, 565, 573, 591, 592, 595, 600, 604, 607, 641, 642, 645, 646, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 671, 672, 673, 674, 675, 677, 678, 680, 681, 682, 683, 684, 685, 701, 702, 706, 713, 729, 731, 742, 786, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 836, 839, 847, 855, 865, 866, 870, 885, 886, 903, 907, 910, 922, 956, 999, 1000, 1003, 1004, 1008, 1010, 1015, 1016, 1020, 1021, 1022, 1024, 1026, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1048, 1049], "cross_decomposit": [2, 114, 115, 116, 180, 240, 478, 479, 480, 481, 1001, 1021, 1035, 1036, 1038, 1039, 1040], "cross_val": 1031, "cross_val_predict": [2, 64, 154, 259, 312, 394, 401, 407, 410, 433, 564, 565, 827, 828, 1035, 1036, 1037, 1038, 1040, 1042, 1044, 1048, 1050], "cross_val_scor": [2, 53, 127, 178, 179, 180, 255, 259, 268, 278, 318, 338, 354, 371, 383, 394, 407, 410, 468, 517, 573, 703, 743, 801, 826, 828, 847, 855, 913, 914, 989, 1000, 1021, 1031, 1032, 1033, 1034, 1035, 1038, 1039, 1040, 1043, 1044, 1047, 1048, 1050], "cross_valid": [2, 44, 53, 143, 149, 154, 183, 208, 239, 259, 266, 273, 277, 280, 309, 319, 322, 371, 384, 394, 399, 573, 702, 826, 827, 1000, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1046, 1047, 1048, 1050, 1051], "crossentropi": [257, 322, 558], "crossvalid": [263, 278], "crowd": [379, 386, 997, 1020], "crucial": [52, 149, 182, 210, 258, 272, 358, 370, 371, 385, 386, 403, 413, 1015], "crude": 1042, "crunch": 377, "cruz": 175, "crypt": [58, 366], "cryptograph": 380, "cs_": 658, "cs_note": 412, "cs_point": 142, "csail": [403, 665, 666, 675, 677, 842], "csc": [2, 358, 383, 385, 411, 524, 548, 550, 551, 669, 692, 872, 874, 880, 885, 888, 890, 896, 927, 931, 932, 964, 974, 975, 977, 978, 979, 980, 1003, 1010, 1039, 1040, 1042, 1045], "csc_matrix": [448, 554, 555, 560, 561, 562, 563, 882, 913, 914, 915, 916, 990, 1010, 1016, 1036], "csco": 52, "csgraph": [385, 1044], "csie": [188, 365, 483, 505, 506, 657], "csizsek": 1038, "csr": [2, 56, 103, 139, 143, 154, 155, 183, 184, 185, 233, 234, 243, 244, 246, 257, 270, 277, 313, 316, 320, 322, 348, 358, 365, 366, 380, 383, 385, 411, 439, 442, 443, 445, 446, 455, 494, 505, 520, 524, 550, 551, 554, 555, 561, 562, 563, 588, 629, 657, 692, 714, 769, 793, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 860, 868, 872, 874, 876, 877, 878, 880, 883, 884, 885, 888, 889, 890, 892, 895, 898, 913, 914, 915, 916, 927, 931, 932, 956, 964, 974, 975, 976, 977, 978, 979, 980, 981, 982, 1003, 1010, 1014, 1031, 1032, 1037, 1039, 1040, 1046, 1047, 1048], "csr_arrai": 981, "csr_matrix": [103, 139, 143, 154, 183, 184, 234, 244, 283, 313, 316, 436, 440, 448, 493, 531, 541, 554, 555, 556, 557, 560, 561, 562, 563, 586, 591, 592, 714, 831, 860, 878, 880, 907, 908, 910, 911, 913, 914, 915, 916, 950, 956, 971, 974, 975, 976, 977, 978, 979, 980, 981, 982, 985, 1001, 1010, 1014, 1015, 1016, 1046], "css": 1043, "cst": 994, "cstride": 184, "csv": [52, 365, 368, 376, 1039, 1044], "csytraci": 1034, "ct": [54, 175, 246, 404, 460, 462, 463], "ctc": 175, "cttt": 175, "cube": [415, 530], "cubic": [111, 413], "cuda": [383, 399], "cue": 999, "culprit": 383, "cultiv": 368, "cultur": 366, "cum_claim": [206, 223], "cum_exposur": [206, 223], "cumsum": [145, 206, 223, 1038, 1052], "cumtim": 377, "cumul": [2, 145, 184, 206, 223, 403, 727, 736, 757, 882, 894, 1010, 1014, 1038, 1040, 1041], "cumulated_claim": 206, "cumulated_exposur": 206, "cumulative_claim_amount": 223, "cumulative_exposur": 223, "cunha": [1032, 1033], "cup": [366, 1000], "cupi": [317, 320, 321, 322, 383, 399, 1048, 1049, 1050], "cupy_to_ndarrai": 399, "curat": [371, 374], "cure": 996, "curic": [1039, 1040], "current": [0, 2, 7, 48, 64, 80, 103, 134, 139, 141, 154, 156, 172, 183, 185, 223, 234, 243, 244, 264, 275, 303, 312, 313, 314, 316, 319, 352, 353, 359, 360, 366, 371, 372, 376, 380, 383, 385, 386, 399, 400, 403, 407, 410, 411, 412, 413, 436, 442, 446, 464, 465, 466, 467, 468, 469, 470, 471, 472, 529, 532, 538, 550, 551, 554, 555, 556, 557, 559, 561, 562, 563, 574, 589, 591, 609, 616, 625, 626, 629, 645, 666, 670, 674, 675, 676, 677, 789, 798, 799, 850, 854, 862, 863, 881, 893, 903, 913, 914, 915, 916, 919, 921, 922, 923, 968, 974, 989, 994, 996, 1000, 1003, 1004, 1010, 1020, 1023, 1039, 1043, 1045, 1046, 1047], "current_count": 76, "current_month": 172, "current_sklearn_vers": 574, "current_sz_mb": 48, "currentcontrolset": 389, "currentiniti": 253, "currentmodul": 371, "curs": [346, 347, 403, 409, 1002, 1003], "cursor": [140, 264], "curv": [2, 30, 48, 51, 61, 62, 64, 67, 73, 107, 109, 137, 139, 140, 145, 165, 180, 189, 190, 206, 223, 225, 227, 230, 231, 233, 235, 242, 243, 247, 248, 249, 250, 252, 253, 255, 257, 263, 273, 276, 299, 304, 312, 320, 339, 352, 378, 398, 402, 407, 409, 433, 434, 435, 499, 507, 512, 518, 522, 548, 561, 631, 644, 657, 698, 700, 702, 706, 707, 708, 709, 728, 730, 742, 783, 785, 788, 789, 790, 798, 799, 807, 818, 824, 829, 831, 832, 843, 866, 885, 905, 910, 996, 997, 999, 1000, 1006, 1016, 1021, 1022, 1024, 1026, 1028, 1033, 1034, 1037, 1041, 1043, 1044, 1045, 1046, 1047, 1051], "curvatur": 298, "curve_kwarg": [242, 245, 257, 260, 272, 273, 702, 1028], "curve_kwargs_list": 273, "cusick": 1041, "custom": [2, 15, 31, 42, 103, 104, 131, 154, 160, 162, 165, 180, 185, 214, 234, 243, 244, 253, 255, 257, 262, 263, 264, 267, 270, 271, 275, 285, 290, 294, 312, 313, 316, 330, 332, 333, 335, 336, 338, 346, 348, 363, 366, 369, 373, 378, 379, 380, 383, 384, 385, 394, 397, 403, 404, 407, 413, 464, 485, 490, 491, 499, 501, 535, 537, 544, 546, 554, 555, 561, 562, 568, 570, 629, 630, 690, 699, 713, 779, 801, 831, 869, 903, 910, 943, 983, 994, 1003, 1019, 1020, 1021, 1024, 1026, 1031, 1035, 1036, 1038, 1039, 1041, 1042, 1043, 1046, 1047, 1048, 1049, 1050], "custom_combin": 878, "custom_cv": 407, "custom_cv_2fold": 407, "custom_fnames_enc": 878, "custom_nam": 346, "custom_scor": 320, "custom_scorer_modul": 1000, "custom_scoring_funct": 1000, "custom_valu": [184, 631, 632, 1051], "customari": 709, "customestim": 132, "customkernel": 617, "customvector": 411, "cut": [58, 67, 78, 80, 98, 99, 162, 163, 165, 180, 227, 255, 264, 266, 280, 320, 327, 375, 383, 400, 402, 403, 442, 448, 449, 458, 493, 586, 589, 657, 691, 695, 817, 823, 828, 866, 885, 1010, 1021], "cut_dist": [88, 442], "cutler": [913, 914], "cutoff": [190, 955, 1010, 1040], "cutoffs_x0": 303, "cutoffs_x1": 303, "cv": [2, 44, 52, 53, 62, 63, 64, 65, 87, 103, 104, 105, 106, 109, 127, 140, 143, 145, 149, 154, 162, 178, 179, 183, 198, 205, 208, 239, 244, 253, 257, 259, 261, 262, 263, 264, 265, 266, 268, 269, 273, 275, 277, 278, 280, 309, 317, 319, 320, 321, 322, 335, 342, 384, 385, 394, 401, 402, 407, 410, 412, 433, 468, 564, 565, 592, 600, 646, 650, 652, 654, 658, 660, 662, 664, 672, 674, 702, 731, 801, 803, 804, 805, 806, 807, 815, 816, 817, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 832, 836, 839, 847, 855, 886, 913, 914, 989, 992, 995, 996, 1000, 1010, 1033, 1037, 1038, 1039, 1040, 1041, 1043, 1045, 1047, 1048, 1049, 1050, 1051, 1052], "cv_alpha": [650, 654], "cv_alphas_": [198, 650, 654, 1043], "cv_best_it": 145, "cv_clf": 145, "cv_color": 145, "cv_estim": 145, "cv_line": 145, "cv_mape_scor": 53, "cv_model": 183, "cv_result": [44, 53, 103, 140, 149, 162, 261, 262, 264, 266, 273, 322, 394, 702, 828, 1000], "cv_results_": [103, 104, 105, 113, 140, 154, 162, 183, 244, 253, 257, 261, 262, 263, 264, 267, 271, 274, 275, 285, 335, 468, 592, 672, 674, 801, 804, 805, 815, 823, 1037, 1041, 1043, 1044, 1049, 1050], "cv_results_ecoc": 280, "cv_results_lr": 208, "cv_results_ovo": 280, "cv_results_ovr": 280, "cv_results_qr": 208, "cv_results_tre": 280, "cv_results_tuned_model": 277, "cv_results_vanilla_model": 277, "cv_score": [145, 277], "cv_test_scor": 829, "cv_train_scor": 829, "cv_valu": 1039, "cv_values_": [672, 674, 1049], "cvc": 52, "cve": 1044, "cvx": 52, "cwitt": 1039, "cxx": 369, "cxxflag": 369, "cyan": [109, 137, 183, 294], "cybernet": 770, "cycl": [0, 16, 44, 77, 79, 83, 95, 120, 197, 249, 254, 270, 272, 315, 316, 371, 375, 394, 408, 577, 578, 626, 804, 805, 927, 989, 990, 996, 1039, 1040, 1041, 1043, 1044, 1045, 1046], "cycler": 74, "cyclic": [44, 154, 192, 645, 646, 651, 652, 659, 660, 661, 662, 996, 1043], "cyclic_cossin_linear_pipelin": 44, "cyclic_cossin_linear_predict": 44, "cyclic_cossin_transform": 44, "cyclic_hour": 44, "cyclic_month": 44, "cyclic_spline_interactions_pipelin": 44, "cyclic_spline_linear_pipelin": 44, "cyclic_spline_linear_predict": 44, "cyclic_spline_poly_pipelin": 44, "cyclic_spline_poly_predict": 44, "cyclic_spline_transform": 44, "cyclic_weekdai": 44, "cyl": [51, 296], "cynthias13w": 1048, "cyt": 280, "cython": [42, 316, 358, 359, 369, 371, 374, 380, 383, 389, 396, 399, 403, 410, 505, 1010, 1011, 1014, 1015, 1019, 1020, 1031, 1034, 1035, 1037, 1043, 1046, 1047, 1048, 1049, 1052], "cython3": 369, "cythonx": 372, "c\u00e1rdena": 1050, "c\u00e8sar": 1000, "d": [0, 2, 46, 47, 48, 50, 51, 52, 53, 55, 56, 68, 69, 73, 74, 77, 82, 83, 93, 94, 96, 102, 103, 113, 118, 120, 123, 127, 129, 143, 165, 167, 175, 183, 206, 213, 221, 223, 230, 235, 236, 237, 238, 251, 263, 271, 277, 282, 289, 290, 296, 300, 321, 324, 325, 335, 339, 340, 348, 365, 366, 368, 371, 373, 377, 383, 401, 403, 405, 406, 408, 410, 411, 413, 414, 440, 442, 443, 448, 456, 459, 484, 490, 500, 523, 531, 533, 554, 555, 562, 563, 579, 580, 588, 608, 613, 614, 618, 621, 622, 627, 643, 644, 647, 668, 669, 670, 679, 688, 689, 692, 693, 697, 699, 705, 708, 721, 722, 723, 724, 725, 727, 757, 765, 779, 782, 789, 813, 840, 842, 844, 845, 846, 861, 872, 876, 878, 879, 881, 893, 898, 915, 916, 920, 942, 992, 994, 996, 997, 998, 999, 1000, 1002, 1008, 1010, 1012, 1015, 1016, 1034, 1036, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1047, 1049, 1051, 1052], "d120af76829af0d256338dc6dd4be5df4fd1f35bf3a283cab66a51c1c6abd06a": 53, "d1997": 410, "d2": [722, 723, 724, 1000], "d2_absolute_error_scor": [2, 724, 1000, 1045], "d2_brier_scor": [2, 1000, 1052], "d2_log_loss_scor": [2, 1000, 1049, 1051], "d2_pinball_scor": [2, 1000, 1045], "d2_pinball_score_08": 1000, "d2_tweedie_scor": [2, 399, 1000, 1044, 1050, 1051], "d2_tweedie_score_15": 1000, "d55e00": 248, "d81b60": 307, "d83": 368, "d_": [111, 403, 408, 647, 668, 679, 779, 997, 1002], "d_c": 403, "d_chunk": 782, "d_fit": 688, "d_fix": 129, "d_m": 403, "d_multi": 129, "da": [366, 1046, 1047, 1049], "dagm": 992, "dagstuhl": 1000, "dai": [0, 44, 52, 53, 149, 155, 172, 184, 207, 368, 371, 884, 1000, 1024, 1037, 1038, 1045, 1046], "daiki": 1035, "daili": [52, 149, 1024], "dakota": 1041, "dale": 1044, "dalla": 1039, "dalmia": [1037, 1038, 1039], "damag": 411, "damicelli": 1046, "damink": 1048, "daml": [403, 448, 458], "damp": [79, 403, 436, 450], "dan": [56, 1031, 1035, 1036, 1037, 1039, 1040, 1051], "danek": 1051, "danfrankj": 1035, "dang": [678, 996, 1049], "danger": [207, 407], "dangi": 1048, "dangl": 56, "dangonite57": [1046, 1047], "daniel": [317, 358, 886, 1010, 1024, 1031, 1032, 1033, 1034, 1036, 1037, 1038, 1039, 1041, 1043, 1045, 1048, 1050, 1051], "daniela": [1045, 1046], "danielgaerb": 1046, "danielsen": 1038, "danielweitzenfeld": 1034, "daniil": 1038, "danil": 1039, "dani\u00ebl": 1042, "danna": 1041, "danni": [1034, 1035, 1036], "dantzig": 342, "danylo": 1040, "dao": 1039, "daphn": 1042, "dare": 1041, "darioka": [1043, 1045, 1046], "dariu": [1038, 1039], "dark": [137, 183, 335, 366, 1048], "dark2": [63, 65, 226], "darkblu": 294, "darker": 155, "darkorang": [110, 124, 128, 129, 207, 216, 228, 249, 250, 251, 254, 270, 272, 288, 294, 295, 326, 352], "darkorchid": 215, "darkr": [219, 289, 334], "darpa": 366, "darren": [1045, 1046], "darshan": 1043, "dart": 1019, "dartmouth": 0, "dasarathi": 368, "dasgupta": [411, 442, 899, 1012], "dash": [70, 111, 134, 145, 167, 170, 172, 183, 203, 207, 208, 214, 217, 218, 242, 257, 263, 273, 337, 1014], "dashdot": [145, 167, 170, 242], "dask": [1020, 1039], "data": [0, 2, 10, 17, 23, 27, 37, 38, 39, 43, 46, 48, 51, 53, 54, 55, 58, 60, 63, 65, 68, 69, 70, 72, 73, 75, 76, 77, 78, 79, 80, 84, 85, 86, 87, 89, 92, 93, 94, 95, 98, 100, 101, 103, 104, 106, 110, 112, 118, 120, 123, 124, 126, 128, 130, 132, 134, 137, 139, 140, 142, 143, 145, 146, 151, 152, 153, 155, 156, 160, 165, 166, 167, 168, 169, 171, 172, 174, 176, 178, 180, 183, 184, 189, 190, 193, 194, 197, 198, 203, 205, 206, 207, 208, 209, 212, 213, 214, 218, 219, 221, 222, 223, 225, 226, 227, 228, 229, 232, 234, 235, 236, 237, 239, 241, 242, 243, 244, 246, 248, 249, 250, 251, 252, 254, 256, 257, 261, 262, 263, 265, 266, 267, 268, 271, 275, 277, 278, 280, 282, 283, 287, 289, 291, 292, 293, 294, 296, 299, 300, 302, 304, 305, 306, 310, 312, 313, 314, 316, 317, 318, 320, 322, 325, 326, 328, 329, 331, 332, 334, 339, 340, 344, 346, 351, 352, 353, 357, 359, 363, 364, 365, 366, 367, 368, 371, 373, 374, 377, 378, 379, 380, 384, 389, 391, 394, 397, 399, 400, 401, 402, 405, 406, 408, 409, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 426, 427, 428, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 455, 456, 457, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 505, 506, 507, 508, 510, 511, 512, 517, 518, 519, 520, 521, 523, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 570, 579, 580, 581, 582, 583, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 604, 605, 606, 607, 609, 610, 616, 617, 621, 624, 626, 627, 628, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 696, 697, 698, 699, 700, 701, 702, 704, 705, 707, 708, 710, 711, 713, 717, 718, 720, 726, 728, 729, 730, 731, 732, 735, 737, 738, 739, 741, 742, 755, 756, 758, 762, 764, 765, 770, 779, 784, 785, 786, 788, 789, 790, 794, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 921, 922, 924, 925, 926, 927, 929, 930, 931, 932, 935, 936, 937, 946, 948, 949, 964, 967, 970, 971, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 986, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1011, 1012, 1013, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "data1010": 1036, "data_filenam": [498, 502], "data_hom": [482, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 1038, 1047], "data_home_path": 496, "data_id": [45, 143, 172, 183, 206, 223, 233, 257, 277, 280, 309, 365, 493], "data_ind": 54, "data_max": 1036, "data_max_": [875, 1036], "data_min": 1036, "data_min_": [875, 1036], "data_modul": 126, "data_nam": 389, "data_path": 48, "data_rang": 1036, "data_range_": [875, 1036], "data_sampl": 55, "data_set": 299, "data_size_mb": 348, "data_stream": 48, "data_test": [237, 257, 264, 346, 506], "data_test_size_mb": 346, "data_train": [237, 257, 264, 346, 506], "data_train_size_mb": 346, "data_transform": 638, "data_transpos": [1045, 1047], "data_unravel_indic": 54, "data_vers": 389, "dataa": [64, 103, 104, 139, 141, 155, 160, 185, 233, 234, 244, 245, 246, 257, 261, 262, 263, 270, 275, 277, 301, 313, 314, 316, 319, 322, 353], "databas": [48, 163, 308, 358, 360, 366, 368, 403, 408, 410, 411, 414, 438, 440, 507, 552, 553, 898, 1012], "dataclass": 373, "dataconversionwarn": 2, "datadimensionalitywarn": 2, "datafram": [2, 44, 53, 63, 67, 102, 103, 104, 134, 140, 143, 146, 151, 154, 155, 162, 172, 178, 182, 183, 184, 185, 190, 194, 198, 210, 213, 223, 234, 243, 244, 246, 253, 257, 261, 262, 263, 264, 266, 274, 275, 277, 280, 308, 309, 310, 313, 315, 316, 317, 322, 342, 346, 347, 365, 366, 371, 373, 376, 385, 404, 410, 427, 438, 439, 441, 443, 445, 460, 462, 463, 464, 478, 479, 480, 481, 485, 486, 487, 489, 493, 497, 498, 499, 501, 502, 507, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 558, 559, 563, 564, 565, 566, 567, 579, 580, 581, 587, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 688, 689, 692, 801, 804, 805, 815, 831, 849, 854, 857, 861, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 903, 927, 956, 970, 973, 988, 989, 990, 1019, 1020, 1034, 1035, 1037, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1051], "datainto": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316], "datalim": 250, "datapoint": [44, 77, 85, 89, 171, 172, 174, 237, 238, 242, 258, 263, 282, 413, 442, 499, 554, 555, 556, 557, 561, 562, 563, 610, 913, 914, 915, 916, 993], "datarollhexasphericon": 1050, "dataset": [2, 38, 46, 47, 49, 50, 51, 54, 55, 56, 58, 59, 60, 64, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 96, 97, 103, 104, 105, 106, 107, 111, 112, 113, 116, 119, 122, 123, 124, 125, 129, 130, 133, 135, 136, 137, 138, 139, 141, 144, 146, 147, 148, 149, 150, 151, 152, 153, 155, 156, 159, 160, 161, 162, 163, 165, 166, 168, 170, 173, 175, 178, 179, 185, 186, 188, 189, 192, 195, 196, 197, 199, 201, 204, 205, 209, 210, 211, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 227, 229, 230, 231, 233, 234, 236, 238, 240, 241, 244, 245, 246, 248, 250, 251, 252, 254, 256, 258, 259, 260, 263, 264, 265, 266, 267, 268, 271, 272, 273, 274, 275, 276, 283, 285, 286, 287, 289, 290, 291, 292, 293, 294, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 322, 323, 324, 325, 326, 327, 330, 331, 333, 335, 336, 337, 338, 340, 342, 343, 344, 347, 348, 349, 350, 353, 354, 359, 360, 374, 375, 377, 384, 385, 388, 389, 397, 399, 400, 401, 402, 403, 404, 407, 408, 409, 410, 411, 412, 415, 418, 423, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 454, 455, 465, 466, 469, 470, 471, 472, 474, 477, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 540, 542, 543, 546, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 567, 581, 582, 585, 586, 587, 588, 590, 591, 592, 593, 594, 596, 597, 598, 599, 600, 601, 603, 604, 605, 606, 607, 608, 609, 610, 612, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 627, 630, 631, 632, 633, 634, 637, 638, 639, 642, 644, 645, 646, 648, 650, 651, 652, 654, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 701, 702, 703, 704, 708, 710, 711, 730, 756, 758, 788, 789, 793, 794, 796, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 815, 816, 817, 818, 819, 820, 821, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 844, 847, 848, 849, 851, 853, 854, 855, 856, 857, 858, 861, 862, 863, 865, 866, 870, 878, 879, 883, 885, 887, 895, 896, 897, 898, 899, 900, 901, 902, 905, 906, 907, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 923, 931, 932, 936, 937, 989, 990, 992, 993, 994, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1012, 1013, 1014, 1015, 1016, 1019, 1020, 1021, 1024, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038], "dataset_44063": 53, "dataset_nam": [242, 283], "datasets_0004_44063": 53, "datasets_nam": 242, "datasetwhen": 275, "datastructur": [1039, 1043], "datastuctur": 1048, "datatyp": [383, 460, 462, 1038, 1041], "date": [44, 102, 149, 163, 172, 184, 366, 368, 371, 375, 386, 404, 1019, 1020], "dateco2datef641958": 172, "daten": [446, 1039, 1040], "datenbergwerk": 1041, "datetim": [44, 56, 172, 184], "datta": 1050, "dauphin": 1033, "dave": [1031, 1038, 1039, 1045, 1047], "davi": [2, 470, 726, 1000, 1035], "david": [0, 112, 366, 393, 403, 410, 413, 458, 529, 533, 564, 565, 621, 622, 627, 726, 798, 902, 990, 996, 1004, 1013, 1024, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "davidblnc": [1046, 1047], "davidleon123": 1049, "davies_bouldin_scor": [2, 403, 1039], "davis2006": 1000, "daw": [0, 393, 1031, 1032, 1033, 1034, 1035], "dawson": [1035, 1049, 1050], "dayn": [1046, 1047], "db": [82, 88, 403], "dbauer9": 1042, "dberenbaum": 1047, "dbg": 377, "dbpedia": 56, "dbpedia_resource_prefix_len": 56, "dbscan": [2, 72, 73, 74, 79, 88, 93, 96, 98, 158, 180, 318, 383, 385, 442, 446, 448, 451, 509, 704, 705, 717, 738, 794, 796, 857, 885, 1003, 1021, 1025, 1026, 1031, 1033, 1035, 1036, 1038, 1039, 1040, 1047, 1048], "dbscan_clust": 442, "dc267f": 201, "dcc": 366, "dcg": [727, 757, 1000, 1038], "dcg_score": [2, 757, 1000, 1038, 1041], "dd": [51, 52, 152, 296, 495], "ddof": [263, 885, 896], "de": [52, 154, 309, 368, 634, 688, 765, 996, 997, 1020, 1032, 1033, 1034, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1048, 1049, 1051], "dea": [1045, 1046, 1047, 1050, 1051, 1052], "deactiv": [244, 275, 365, 372, 377, 389, 404, 804, 805, 1045], "dead": 1049, "deadlock": 386, "deal": [63, 90, 103, 143, 149, 178, 183, 194, 229, 272, 277, 280, 339, 348, 371, 376, 404, 411, 412, 413, 470, 493, 703, 708, 764, 788, 871, 949, 996, 1024, 1034, 1046, 1047, 1052], "dealloc": 1048, "dean": [154, 1039, 1045, 1047, 1049], "death": 366, "debian": [0, 358, 369, 377], "debias": 129, "deborah": [1037, 1038, 1048], "debug": [2, 354, 359, 372, 374, 377, 385, 388, 399, 626, 904, 1039, 1043], "debugg": [374, 379], "dec": [155, 207, 280, 676, 884, 909, 1015], "decad": [183, 1020], "decai": [172, 243, 541, 862, 863, 949, 1000, 1014, 1035], "decal": 1043, "decemb": [112, 149, 172, 366, 663, 684, 685, 1031, 1039, 1041, 1043, 1044, 1046, 1050], "decent": [232, 262, 366, 1002], "deci": 272, "decid": [44, 51, 90, 93, 103, 144, 149, 154, 156, 165, 172, 254, 260, 263, 270, 366, 371, 375, 386, 397, 402, 411, 413, 414, 440, 446, 453, 556, 557, 610, 634, 645, 646, 649, 650, 651, 652, 653, 654, 655, 659, 660, 661, 662, 670, 680, 683, 798, 847, 848, 849, 851, 853, 855, 856, 857, 868, 999, 1006, 1024, 1044, 1047, 1050], "decil": [631, 1042], "deciles_hlines_": 631, "deciles_vlines_": 631, "decim": [63, 173, 467, 468, 918, 1038, 1039], "decis": [0, 2, 41, 44, 63, 64, 65, 68, 71, 76, 89, 91, 93, 103, 124, 126, 128, 133, 136, 137, 138, 139, 144, 152, 153, 154, 155, 156, 162, 163, 169, 171, 183, 189, 193, 214, 215, 218, 220, 232, 233, 234, 235, 243, 244, 245, 246, 255, 261, 262, 263, 266, 267, 269, 270, 280, 291, 294, 298, 301, 303, 304, 305, 308, 313, 314, 316, 322, 323, 327, 328, 331, 332, 333, 334, 335, 336, 337, 343, 344, 346, 358, 367, 368, 371, 373, 385, 397, 398, 401, 403, 410, 433, 465, 493, 497, 501, 509, 516, 533, 546, 547, 548, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 591, 592, 608, 630, 631, 632, 643, 644, 645, 646, 649, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 698, 700, 702, 703, 707, 718, 720, 727, 728, 736, 740, 741, 743, 757, 783, 785, 788, 789, 790, 795, 800, 801, 804, 805, 815, 817, 823, 828, 831, 833, 834, 836, 847, 852, 866, 885, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 994, 996, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1013, 1014, 1015, 1019, 1020, 1021, 1022, 1024, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1040, 1041, 1044, 1045, 1047, 1048, 1049, 1051], "decision_funct": [49, 51, 63, 65, 89, 136, 150, 165, 217, 218, 219, 233, 242, 244, 245, 257, 261, 263, 270, 277, 289, 290, 298, 305, 314, 319, 333, 334, 335, 339, 340, 344, 373, 385, 401, 402, 407, 410, 433, 465, 546, 547, 550, 552, 556, 558, 560, 564, 591, 592, 630, 631, 632, 657, 658, 665, 667, 673, 674, 675, 676, 698, 700, 702, 707, 720, 727, 728, 736, 740, 741, 743, 757, 783, 789, 790, 795, 800, 801, 804, 805, 815, 823, 826, 833, 834, 835, 836, 851, 852, 865, 872, 902, 905, 907, 909, 910, 924, 996, 1000, 1006, 1007, 1014, 1015, 1028, 1031, 1033, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1048, 1050, 1051], "decision_function_shap": [244, 245, 261, 263, 312, 314, 343, 907, 910, 1015, 1036, 1037, 1040, 1041], "decision_path": [64, 139, 141, 154, 156, 185, 244, 275, 319, 353, 554, 555, 561, 562, 563, 913, 914, 915, 916, 1037, 1042], "decision_threshold": [257, 277], "decision_tre": [917, 918, 919, 1016], "decision_tree_learn": [913, 914, 1016], "decisionboundarydisplai": [2, 49, 67, 68, 71, 89, 136, 150, 155, 200, 214, 219, 266, 286, 291, 294, 308, 331, 332, 333, 334, 336, 337, 339, 344, 351, 1045, 1046, 1048, 1049, 1051], "decisiontre": [142, 550, 1036], "decisiontreeclassifi": [2, 68, 134, 136, 142, 267, 280, 318, 350, 351, 353, 373, 385, 402, 410, 550, 552, 554, 556, 558, 561, 630, 711, 807, 829, 914, 915, 917, 918, 919, 990, 1001, 1016, 1032, 1033, 1035, 1036, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048], "decisiontreeclassifierifit": 353, "decisiontreeregressor": [2, 135, 137, 243, 304, 312, 318, 352, 376, 551, 553, 555, 556, 557, 559, 562, 631, 632, 913, 916, 918, 944, 990, 1001, 1016, 1032, 1033, 1036, 1037, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048], "decisiontreeregressorifit": [314, 352], "declan": 1043, "declar": [52, 89, 226, 239, 354, 371, 372, 377, 385, 439, 442, 443, 455, 467, 468, 474, 690, 694, 1038, 1042, 1051], "decod": [48, 296, 366, 385, 500, 566, 586, 587, 589, 1031, 1032], "decode_error": [48, 264, 411, 500, 586, 587, 589, 1033], "decompos": [11, 120, 124, 137, 305, 531, 535, 826, 949, 995, 996, 1000, 1017, 1025, 1026], "decomposit": [2, 9, 45, 46, 55, 56, 83, 91, 102, 104, 105, 106, 116, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133, 152, 154, 183, 225, 226, 228, 237, 240, 241, 244, 262, 287, 292, 308, 316, 319, 320, 347, 360, 364, 377, 380, 385, 399, 400, 401, 404, 410, 415, 445, 447, 448, 449, 458, 478, 479, 480, 492, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 553, 610, 649, 650, 651, 652, 653, 654, 655, 662, 663, 664, 671, 672, 673, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 798, 799, 854, 861, 864, 867, 883, 914, 948, 949, 996, 997, 1000, 1017, 1019, 1021, 1022, 1025, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038], "decompress": [397, 1031], "decor": [2, 184, 312, 371, 372, 373, 380, 807, 824, 938, 942, 944, 962, 968, 1041, 1044, 1047, 1049], "decoupl": [410, 1002], "decreas": [64, 80, 88, 91, 99, 100, 107, 139, 149, 151, 154, 156, 162, 163, 175, 183, 184, 186, 213, 235, 236, 243, 244, 265, 270, 275, 298, 305, 308, 312, 314, 319, 350, 352, 353, 358, 360, 401, 403, 410, 437, 441, 459, 518, 531, 532, 538, 554, 555, 556, 557, 558, 559, 561, 562, 563, 600, 634, 635, 636, 675, 676, 677, 706, 712, 728, 783, 790, 862, 863, 913, 914, 915, 916, 989, 991, 992, 996, 997, 1000, 1003, 1004, 1007, 1008, 1014, 1015, 1024, 1033, 1038, 1041, 1044], "decreaseif": [64, 141, 143, 151, 154, 185, 244, 257, 275, 309, 314, 317, 319, 322, 352, 353], "decreasingif": [154, 156], "dede00": [79, 95, 96], "dedic": [44, 183, 261, 369, 375, 377, 383, 386, 399, 403, 582, 671, 673, 686, 989, 996, 1019, 1039, 1048, 1052], "deduc": 47, "deduct": [0, 1004], "dedupl": 1035, "deeksha": 1043, "deem": [271, 531, 1008, 1044], "deep": [206, 373, 385, 397, 410, 417, 428, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 770, 798, 799, 800, 801, 804, 805, 815, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 1004, 1005, 1019, 1020, 1024, 1036, 1042, 1043, 1045], "deepak": [1050, 1051], "deeper": [143, 346, 1016], "deepest": [143, 151, 154, 257, 309, 317, 322, 558, 559, 1042], "deeplook": 1041, "deeppink": 272, "deepyaman": 1050, "def": [44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 58, 63, 65, 70, 71, 73, 75, 76, 85, 88, 89, 91, 94, 102, 103, 107, 118, 120, 122, 123, 127, 129, 132, 134, 137, 139, 143, 145, 146, 149, 154, 170, 172, 173, 175, 176, 178, 179, 183, 184, 186, 191, 196, 198, 200, 206, 207, 213, 214, 215, 223, 225, 226, 234, 239, 240, 242, 244, 248, 249, 250, 251, 253, 254, 257, 258, 261, 262, 263, 264, 266, 271, 274, 278, 283, 288, 290, 293, 296, 299, 301, 303, 305, 308, 309, 312, 313, 316, 320, 328, 331, 335, 339, 344, 346, 347, 348, 358, 366, 371, 373, 377, 378, 383, 404, 407, 411, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 505, 506, 530, 595, 599, 609, 610, 617, 782, 878, 938, 942, 944, 962, 1000, 1007, 1015], "default": [44, 52, 53, 55, 63, 64, 77, 80, 88, 92, 103, 104, 120, 126, 139, 140, 141, 143, 150, 151, 154, 155, 156, 159, 160, 167, 172, 178, 179, 183, 184, 185, 190, 191, 192, 198, 204, 206, 207, 223, 233, 234, 235, 236, 242, 243, 244, 245, 246, 251, 253, 257, 258, 260, 261, 262, 263, 264, 266, 270, 272, 275, 277, 282, 283, 301, 303, 307, 309, 310, 312, 313, 314, 316, 317, 319, 320, 322, 326, 339, 342, 343, 346, 347, 348, 350, 352, 353, 354, 358, 359, 365, 366, 369, 373, 374, 375, 376, 377, 378, 379, 380, 383, 384, 385, 389, 394, 397, 401, 402, 403, 404, 407, 408, 410, 411, 412, 414, 415, 416, 417, 419, 420, 422, 424, 425, 426, 427, 428, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 582, 583, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 707, 708, 709, 711, 712, 713, 714, 716, 718, 719, 720, 721, 722, 723, 724, 725, 727, 728, 729, 730, 731, 732, 735, 736, 737, 739, 740, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 772, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 929, 930, 931, 932, 935, 936, 937, 938, 940, 942, 943, 944, 948, 949, 950, 951, 952, 953, 954, 955, 964, 966, 967, 969, 970, 972, 973, 974, 980, 983, 985, 986, 988, 989, 990, 992, 994, 996, 999, 1000, 1001, 1003, 1004, 1006, 1007, 1010, 1012, 1014, 1015, 1016, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "default_bas": [79, 95], "default_rng": [155, 266, 328], "default_scor": 376, "default_target_attribut": 365, "default_tim": [220, 251], "defaultdict": [50, 53, 63, 186, 266, 347, 348], "defazio": [657, 996], "defens": 280, "defer": 371, "defici": [547, 997, 1014, 1049, 1050], "defin": [8, 28, 47, 52, 64, 65, 71, 86, 88, 90, 99, 102, 103, 105, 116, 120, 125, 132, 134, 135, 139, 141, 143, 150, 154, 155, 156, 160, 163, 167, 174, 175, 176, 183, 184, 185, 186, 190, 207, 213, 222, 223, 232, 233, 234, 236, 239, 243, 244, 245, 246, 248, 253, 257, 262, 263, 264, 266, 270, 272, 273, 274, 275, 277, 280, 283, 301, 303, 309, 313, 314, 316, 319, 320, 322, 335, 339, 342, 344, 346, 347, 352, 353, 358, 367, 370, 371, 372, 373, 377, 378, 380, 383, 384, 385, 397, 398, 399, 400, 402, 403, 404, 405, 407, 408, 409, 410, 411, 413, 418, 419, 420, 422, 424, 425, 426, 427, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 455, 459, 460, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 485, 516, 517, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 604, 607, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 621, 622, 626, 627, 628, 629, 630, 631, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 696, 697, 699, 708, 709, 710, 712, 716, 721, 723, 724, 725, 726, 729, 732, 739, 742, 746, 747, 749, 751, 752, 754, 755, 758, 761, 767, 782, 786, 791, 792, 793, 794, 798, 799, 800, 801, 804, 805, 815, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 865, 866, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 892, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 935, 937, 940, 947, 958, 959, 961, 983, 989, 990, 996, 997, 998, 999, 1001, 1002, 1003, 1005, 1006, 1007, 1008, 1010, 1012, 1014, 1015, 1016, 1020, 1026, 1028, 1033, 1037, 1038, 1039, 1041, 1042, 1043, 1045, 1046, 1047, 1048, 1050], "definit": [2, 91, 112, 172, 196, 206, 260, 270, 283, 347, 371, 372, 373, 385, 388, 403, 405, 406, 408, 524, 526, 532, 610, 627, 692, 708, 718, 729, 747, 759, 798, 799, 989, 992, 994, 996, 998, 1000, 1003, 1014, 1018, 1026, 1035, 1039, 1046, 1051], "definitelyuncertain": 1037, "deflat": [183, 406, 415, 530], "defoi": 1044, "deform": [150, 253, 344], "degener": [118, 249, 415, 436, 450, 530, 720, 996, 1000, 1040, 1044, 1045], "degrad": [149, 184, 232, 303, 328, 342, 347, 409, 779, 1008], "degre": [44, 71, 122, 136, 155, 172, 178, 182, 183, 184, 188, 190, 194, 196, 198, 207, 210, 238, 244, 245, 248, 249, 250, 253, 254, 261, 263, 278, 301, 314, 315, 332, 339, 341, 408, 412, 442, 448, 495, 532, 538, 638, 639, 642, 655, 658, 776, 798, 801, 851, 880, 884, 907, 908, 909, 910, 911, 992, 993, 995, 996, 997, 998, 1000, 1001, 1003, 1006, 1007, 1010, 1013, 1015, 1034, 1040, 1044, 1045, 1048], "degrees_of_freedom_": 798, "degrees_of_freedom_prior": 798, "degrees_of_freedom_prior_": 798, "dei": 1043, "deil": [1032, 1042, 1043], "dein": 411, "dekel": [665, 666, 675, 677, 996], "del": [56, 377, 1043, 1044], "delai": [2, 103, 104, 244, 253, 257, 261, 262, 263, 371, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 801, 815, 826, 827, 1045, 1046, 1049], "delalleau": 1013, "delanou": 1042, "delattr": 1043, "delayed_funct": 967, "delbert": [74, 436, 450], "deleg": [89, 377, 427, 428, 608, 918, 988, 1035, 1037, 1043], "delet": [2, 104, 325, 327, 375, 376, 465, 470, 482], "delete_index": 325, "delete_indic": 325, "deleteri": 1038, "deli": 397, "deliber": 996, "delimit": [371, 1006, 1046], "deliv": [358, 1024], "deliveri": 375, "dell": 52, "delong": [1043, 1044], "delta": [406, 448, 997], "delta_": 997, "delta_k": 406, "delteil": 1035, "delv": [862, 863], "demand": [103, 104, 145, 149, 244, 253, 257, 261, 262, 263, 385, 411, 801, 815, 826, 827], "demarc": 93, "demiraj": [1046, 1047], "demo": [53, 54, 57, 58, 72, 73, 75, 76, 79, 80, 86, 87, 89, 90, 92, 93, 94, 95, 97, 100, 150, 158, 180, 186, 194, 236, 251, 253, 264, 272, 318, 326, 346, 347, 373, 400, 403, 411, 414, 436, 437, 440, 442, 443, 444, 446, 447, 449, 450, 451, 454, 457, 499, 508, 509, 510, 538, 704, 705, 717, 719, 738, 794, 796, 866, 885, 886, 1021], "demo_param": 373, "demonstr": [47, 53, 58, 59, 60, 63, 69, 72, 75, 78, 88, 94, 100, 102, 104, 134, 138, 144, 147, 155, 156, 160, 161, 175, 176, 180, 186, 200, 207, 208, 212, 239, 245, 246, 250, 254, 255, 259, 262, 266, 269, 272, 278, 285, 288, 295, 302, 304, 305, 307, 308, 310, 314, 323, 325, 326, 328, 329, 333, 339, 343, 346, 347, 348, 352, 354, 360, 366, 367, 371, 376, 383, 394, 399, 403, 407, 410, 443, 499, 509, 517, 557, 643, 697, 703, 713, 743, 799, 801, 848, 870, 901, 913, 989, 990, 994, 1000, 1001, 1002, 1003, 1010, 1013, 1016, 1021], "dem\u0161ar": [263, 1050], "den": [0, 393, 1032, 1033, 1038, 1039, 1040, 1043, 1044, 1051], "dendrit": [403, 710], "dendro": 186, "dendro_idx": 186, "dendrogram": [72, 180, 186, 353, 403, 437, 441, 501, 1021, 1043], "denero": 736, "deng": [1035, 1036, 1037], "dengemann": 1032, "dengyong": 901, "deni": [1033, 1034, 1038, 1039, 1040, 1046, 1047], "denni": 1045, "denois": [43, 69, 83, 84, 86, 99, 119, 125, 129, 180, 408, 493, 532, 534, 538, 582, 585, 831, 875, 1021], "denomin": [270, 410, 411, 416, 471, 588, 704, 758, 994], "denot": [103, 104, 139, 143, 154, 161, 183, 184, 185, 234, 244, 253, 257, 261, 262, 263, 264, 309, 313, 316, 380, 385, 389, 401, 403, 407, 410, 586, 587, 589, 801, 807, 815, 824, 870, 878, 879, 984, 989, 992, 996, 998, 1000, 1001, 1010, 1013, 1048], "dens": [52, 54, 67, 88, 103, 139, 143, 154, 155, 156, 180, 183, 184, 185, 189, 194, 202, 234, 235, 244, 309, 313, 316, 317, 358, 380, 385, 403, 408, 410, 412, 439, 442, 443, 445, 460, 463, 493, 520, 521, 524, 531, 532, 541, 563, 605, 606, 628, 629, 651, 656, 657, 658, 665, 666, 667, 671, 672, 675, 676, 677, 686, 688, 689, 692, 693, 761, 762, 768, 780, 793, 862, 863, 870, 877, 878, 880, 882, 883, 884, 885, 894, 895, 896, 897, 898, 905, 906, 907, 908, 910, 911, 950, 970, 973, 990, 993, 996, 997, 1000, 1001, 1003, 1006, 1010, 1012, 1013, 1014, 1015, 1016, 1021, 1031, 1033, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "dense_lasso": 195, "dense_output": [762, 768, 898, 950, 1039, 1052], "densematrix": [103, 154, 155, 183, 233, 234, 243, 244, 246, 257, 270, 277, 313, 316, 322], "denser": [414, 440], "densif": 1040, "densifi": [385, 657, 658, 665, 666, 667, 675, 676, 677, 905, 990, 1033], "densiti": [2, 51, 82, 88, 93, 98, 103, 107, 129, 143, 154, 161, 163, 170, 180, 183, 184, 185, 195, 206, 220, 223, 229, 232, 234, 236, 244, 247, 248, 254, 263, 269, 280, 284, 289, 290, 303, 309, 313, 316, 335, 346, 366, 368, 380, 385, 403, 410, 414, 422, 440, 442, 444, 446, 448, 460, 463, 495, 499, 533, 538, 546, 547, 798, 799, 801, 845, 846, 850, 851, 898, 994, 996, 999, 1003, 1005, 1006, 1012, 1019, 1021, 1022, 1025, 1026, 1033, 1035, 1039, 1040, 1046, 1047], "density_": 898, "density_estim": [422, 924], "densitymixin": 2, "denton": 1033, "deodhar": 1043, "deoli": 1044, "depart": [175, 403], "depend": [2, 26, 44, 45, 47, 53, 65, 73, 86, 103, 107, 124, 139, 140, 143, 146, 147, 149, 151, 154, 155, 156, 158, 162, 172, 173, 178, 180, 181, 183, 186, 188, 191, 194, 223, 226, 231, 232, 233, 234, 238, 242, 244, 246, 253, 257, 262, 263, 264, 268, 269, 270, 272, 277, 283, 299, 301, 303, 308, 313, 314, 316, 317, 320, 322, 332, 339, 342, 347, 348, 354, 358, 359, 360, 364, 369, 371, 373, 374, 379, 380, 383, 384, 385, 386, 388, 389, 396, 397, 399, 403, 405, 407, 408, 410, 411, 412, 413, 414, 434, 435, 436, 440, 442, 443, 445, 446, 448, 450, 453, 455, 456, 458, 460, 465, 480, 485, 486, 487, 490, 493, 497, 498, 499, 501, 502, 507, 531, 532, 538, 541, 548, 552, 556, 557, 559, 586, 587, 588, 589, 600, 602, 605, 606, 610, 626, 631, 632, 637, 639, 647, 657, 658, 668, 670, 672, 675, 676, 677, 679, 686, 691, 695, 711, 730, 731, 739, 779, 782, 784, 785, 788, 793, 794, 798, 799, 820, 830, 847, 848, 849, 851, 853, 854, 855, 856, 857, 863, 864, 866, 878, 879, 882, 885, 899, 906, 907, 910, 914, 929, 988, 989, 990, 992, 993, 994, 996, 997, 999, 1000, 1002, 1003, 1004, 1005, 1008, 1012, 1014, 1015, 1016, 1021, 1026, 1028, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1042, 1046, 1047, 1048, 1051], "dependabot": [1049, 1050, 1051], "dependen": 342, "depict": [134, 265, 410, 999], "deploi": [257, 320, 358, 388, 397, 402, 1020, 1024], "deploy": [379, 397, 1019, 1020, 1024], "depot": 52, "deprec": [2, 16, 64, 103, 139, 143, 147, 154, 155, 156, 183, 184, 185, 186, 233, 234, 244, 245, 246, 257, 261, 262, 263, 277, 301, 309, 312, 313, 314, 315, 316, 322, 359, 373, 374, 375, 380, 385, 394, 433, 438, 443, 446, 453, 455, 460, 463, 533, 550, 566, 567, 577, 578, 580, 626, 646, 652, 657, 658, 660, 662, 665, 666, 675, 676, 677, 678, 698, 700, 702, 712, 732, 743, 779, 780, 781, 804, 805, 829, 830, 832, 836, 839, 852, 864, 902, 907, 910, 927, 929, 931, 932, 942, 944, 966, 989, 990, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "deprecated_api_refer": 371, "deprecationwarn": [1041, 1050], "dept": 368, "depth": [44, 64, 139, 141, 143, 147, 150, 151, 154, 156, 185, 244, 257, 275, 280, 309, 314, 317, 319, 322, 350, 352, 353, 358, 369, 371, 375, 384, 410, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 845, 846, 850, 913, 914, 915, 916, 917, 919, 955, 1005, 1006, 1016, 1033, 1034, 1042], "der": [692, 696, 997, 1034, 1035, 1039], "derek": 1039, "deriv": [44, 58, 129, 130, 145, 155, 172, 175, 183, 185, 196, 198, 201, 207, 359, 366, 405, 407, 409, 410, 411, 413, 415, 437, 441, 442, 461, 488, 530, 604, 616, 621, 647, 668, 675, 679, 862, 863, 867, 878, 884, 905, 906, 994, 996, 997, 1000, 1004, 1006, 1015, 1028, 1031, 1032, 1033, 1038, 1039, 1040, 1046], "deros": 1042, "derouich": 1031, "derweh": 1049, "desai": [1038, 1040, 1043, 1044, 1046, 1047], "desalvo": 989, "descamp": 1039, "descend": [142, 626, 1041], "descent": [2, 47, 52, 54, 103, 104, 139, 144, 155, 160, 180, 183, 189, 196, 197, 232, 233, 234, 237, 243, 244, 246, 257, 262, 270, 277, 289, 301, 313, 315, 316, 322, 334, 408, 410, 467, 468, 474, 484, 493, 500, 528, 534, 535, 536, 537, 539, 540, 542, 543, 544, 545, 630, 638, 645, 646, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 667, 671, 673, 675, 676, 677, 680, 681, 682, 683, 686, 694, 831, 862, 863, 866, 905, 909, 973, 997, 1004, 1006, 1015, 1021, 1022, 1026, 1031, 1034, 1035, 1036, 1038, 1040, 1042, 1044, 1045, 1046, 1052], "descentdirect": 52, "descr": [126, 163, 364, 365, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 497, 498, 499, 500, 501, 502, 504, 507, 512, 1039], "describ": [2, 44, 53, 89, 103, 139, 143, 154, 163, 183, 184, 223, 234, 237, 244, 253, 263, 264, 272, 313, 316, 354, 358, 359, 364, 366, 368, 370, 371, 373, 376, 379, 385, 386, 399, 400, 403, 405, 406, 407, 408, 410, 411, 413, 458, 465, 469, 470, 487, 492, 493, 494, 497, 498, 499, 500, 501, 502, 507, 513, 514, 515, 525, 605, 606, 644, 658, 667, 714, 798, 799, 840, 842, 878, 880, 903, 949, 989, 992, 995, 996, 999, 1000, 1002, 1006, 1014, 1015, 1016, 1023, 1039, 1041], "descript": [2, 53, 163, 183, 309, 364, 365, 370, 371, 375, 376, 379, 383, 385, 403, 411, 448, 458, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 497, 498, 499, 500, 501, 502, 504, 507, 512, 541, 629, 675, 763, 766, 779, 1000, 1014, 1015, 1023, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "descriptor": [385, 505, 506], "deseri": 397, "deserv": [371, 377], "deshmukh": 1044, "deshpand": [1036, 1037], "design": [0, 2, 54, 59, 104, 111, 134, 154, 170, 182, 183, 192, 239, 244, 253, 257, 261, 262, 263, 303, 309, 353, 360, 365, 371, 376, 383, 384, 385, 386, 388, 389, 391, 396, 397, 399, 403, 410, 412, 512, 525, 631, 632, 647, 664, 668, 675, 679, 684, 801, 819, 820, 840, 842, 990, 996, 997, 1000, 1001, 1010, 1018, 1019, 1024, 1033, 1040, 1049], "desir": [51, 62, 104, 136, 143, 163, 179, 206, 208, 262, 272, 303, 307, 309, 320, 364, 371, 379, 391, 397, 400, 403, 406, 407, 408, 412, 413, 500, 535, 537, 541, 544, 564, 591, 600, 601, 663, 669, 684, 685, 699, 708, 737, 845, 846, 850, 865, 870, 872, 875, 876, 878, 879, 881, 882, 886, 889, 891, 893, 894, 935, 969, 992, 994, 997, 1003, 1010, 1014, 1015, 1016, 1031, 1039, 1040, 1041, 1044], "desislava": 1045, "desktop": 369, "despin": [270, 272, 700, 702, 1050], "despit": [65, 103, 116, 154, 173, 185, 200, 206, 223, 234, 238, 244, 292, 313, 316, 385, 394, 405, 626, 627, 629, 996, 1003, 1024, 1039, 1040], "dessyvv": 1045, "dest": 317, "destin": 1024, "destroi": [269, 411, 796, 874, 1010], "det": [2, 180, 245, 255, 272, 273, 371, 405, 512, 548, 561, 698, 702, 728, 790, 831, 866, 885, 905, 947, 1021, 1043, 1051], "det_curv": [2, 260, 698, 783, 790, 1000, 1043, 1044, 1049, 1051], "detail": [2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 52, 64, 65, 90, 103, 104, 134, 135, 137, 139, 141, 142, 143, 147, 150, 151, 154, 155, 156, 160, 180, 183, 184, 185, 192, 196, 198, 210, 230, 233, 234, 235, 237, 238, 242, 243, 244, 246, 253, 254, 257, 261, 262, 263, 264, 270, 275, 277, 286, 289, 290, 301, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 326, 350, 352, 353, 354, 358, 359, 360, 363, 364, 365, 366, 371, 373, 375, 376, 377, 379, 383, 384, 385, 386, 389, 397, 399, 402, 403, 406, 407, 408, 410, 411, 412, 413, 414, 427, 428, 433, 439, 440, 442, 443, 444, 446, 447, 448, 449, 453, 454, 455, 457, 458, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 493, 501, 521, 528, 532, 533, 534, 536, 538, 539, 540, 541, 542, 543, 545, 546, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 591, 592, 595, 600, 605, 606, 609, 613, 618, 621, 626, 627, 629, 630, 631, 633, 638, 639, 644, 645, 646, 650, 652, 654, 655, 656, 657, 658, 660, 662, 664, 665, 667, 670, 671, 672, 673, 674, 675, 677, 678, 686, 688, 689, 690, 691, 692, 693, 694, 695, 697, 701, 705, 711, 713, 731, 775, 779, 780, 781, 782, 799, 801, 804, 805, 807, 815, 817, 819, 820, 821, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 838, 843, 847, 848, 850, 851, 853, 855, 856, 858, 859, 861, 864, 865, 867, 869, 870, 882, 886, 894, 900, 901, 902, 903, 907, 910, 913, 914, 915, 916, 942, 967, 986, 989, 990, 994, 996, 998, 999, 1000, 1001, 1003, 1004, 1006, 1008, 1013, 1016, 1022, 1023, 1024, 1026, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "detcurvedisplai": [2, 260, 315, 728, 1043, 1044, 1048, 1049, 1051, 1052], "detect": [2, 14, 43, 48, 50, 59, 71, 96, 98, 111, 112, 113, 141, 143, 150, 180, 192, 210, 219, 231, 245, 255, 257, 263, 266, 272, 273, 284, 303, 309, 320, 334, 366, 371, 375, 383, 385, 401, 402, 403, 405, 407, 411, 425, 442, 445, 460, 462, 465, 466, 469, 470, 471, 472, 484, 485, 487, 489, 493, 507, 509, 512, 519, 534, 535, 536, 543, 548, 560, 561, 586, 589, 594, 630, 638, 676, 698, 702, 728, 790, 831, 851, 855, 866, 875, 878, 879, 883, 884, 885, 905, 909, 992, 996, 1019, 1020, 1021, 1022, 1024, 1025, 1026, 1031, 1034, 1037, 1038, 1039, 1041, 1043, 1044, 1046, 1047, 1050, 1051], "detectand": 264, "detection_error_tradeoff": 1000, "detector": [2, 366, 385, 431, 851], "determin": [2, 49, 51, 54, 58, 64, 80, 88, 103, 104, 111, 134, 136, 139, 140, 143, 149, 150, 151, 154, 156, 160, 161, 172, 183, 184, 185, 190, 191, 200, 204, 209, 234, 235, 243, 244, 253, 257, 261, 262, 263, 264, 270, 275, 276, 303, 308, 309, 313, 316, 317, 322, 339, 348, 353, 354, 370, 371, 373, 380, 384, 385, 400, 401, 403, 407, 408, 410, 411, 412, 413, 426, 433, 437, 438, 439, 441, 443, 445, 446, 452, 455, 456, 457, 461, 465, 466, 468, 469, 470, 471, 472, 478, 479, 480, 484, 487, 489, 492, 494, 500, 505, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 534, 536, 539, 540, 549, 550, 551, 553, 555, 556, 557, 558, 559, 560, 562, 564, 565, 567, 580, 581, 582, 586, 589, 592, 600, 605, 606, 609, 610, 611, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 634, 635, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 668, 669, 671, 672, 673, 674, 675, 677, 678, 679, 686, 689, 690, 692, 693, 694, 702, 707, 711, 724, 730, 731, 739, 784, 785, 786, 788, 789, 794, 801, 803, 804, 805, 807, 815, 823, 824, 825, 826, 827, 828, 829, 830, 832, 836, 838, 839, 841, 848, 850, 851, 856, 861, 862, 863, 869, 870, 878, 879, 880, 882, 886, 894, 905, 906, 908, 911, 914, 916, 919, 947, 957, 958, 964, 969, 970, 973, 989, 992, 994, 999, 1003, 1005, 1006, 1008, 1010, 1013, 1014, 1016, 1031, 1036, 1039, 1040, 1042, 1043, 1044, 1050, 1051], "determinedbi": 183, "determinist": [91, 146, 314, 352, 353, 359, 367, 385, 403, 439, 443, 445, 447, 448, 449, 454, 455, 458, 548, 556, 557, 561, 562, 581, 582, 691, 695, 812, 813, 861, 913, 914, 924, 992, 996, 1000, 1032, 1035, 1037, 1039, 1040, 1043, 1046, 1047], "detlefsen": 1045, "detomaso": 1038, "detriment": [47, 67, 162, 277, 359, 412, 996], "dev": [176, 183, 223, 268, 273, 369, 371, 375, 377, 379, 942, 944, 1000, 1024, 1027, 1038, 1043, 1046, 1047], "dev0": [369, 375, 1023, 1027, 1029], "dev514": 1045, "devansh": [1038, 1039], "devanshkyada27": 1048, "devashish": 1037, "devel": 369, "develop": [0, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 318, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 358, 366, 370, 371, 375, 377, 383, 385, 386, 388, 394, 397, 399, 400, 405, 406, 410, 411, 417, 420, 427, 490, 801, 942, 944, 983, 996, 1003, 1016, 1019, 1020, 1021, 1023, 1024, 1031, 1039, 1040, 1041, 1046, 1049, 1050], "developing_estim": 1021, "devi": 1043, "devianc": [2, 143, 145, 148, 151, 154, 156, 206, 223, 243, 257, 309, 314, 317, 318, 322, 352, 410, 550, 555, 556, 558, 559, 562, 647, 668, 679, 721, 724, 725, 748, 750, 753, 863, 914, 916, 996, 1016, 1032, 1041, 1042, 1044, 1045, 1047], "deviant": [212, 1006], "deviat": [53, 59, 71, 94, 103, 111, 137, 140, 141, 142, 143, 144, 154, 155, 163, 167, 172, 174, 176, 183, 190, 212, 233, 234, 242, 243, 244, 246, 257, 260, 261, 262, 263, 264, 266, 270, 277, 289, 290, 303, 308, 313, 316, 322, 363, 367, 368, 376, 380, 385, 407, 410, 413, 446, 468, 498, 508, 509, 510, 511, 513, 514, 515, 519, 521, 522, 527, 549, 592, 610, 633, 643, 644, 670, 725, 753, 807, 824, 851, 852, 874, 875, 885, 894, 895, 896, 996, 1000, 1006, 1010, 1037, 1038, 1039, 1042, 1043, 1044], "deviations_": 852, "devic": [407, 580, 986, 1019, 1049], "devnani": 1043, "deweight": 951, "dexter": 1041, "dezub": 1038, "df": [44, 53, 63, 65, 149, 154, 182, 184, 190, 194, 206, 223, 253, 263, 307, 309, 319, 347, 376, 411, 462, 588, 589, 989, 990, 1048], "df_": 223, "df_freq": 223, "df_max_": [63, 65], "df_min_": [63, 65], "df_out": 319, "df_sev": 223, "df_std": 347, "df_test": [206, 223], "df_train": [206, 223], "dfrac": [1004, 1010], "dgemm": 358, "dgesdd": 377, "dhanshre": 1046, "dhifallah": 1051, "dhillon": [2, 58, 400, 447, 449, 508], "dhingra": [1039, 1040, 1043, 1048], "dhyei": 1051, "di": [385, 403, 408, 528, 534, 663, 684, 685, 898, 1035, 1044], "dia": 1048, "diabet": [2, 47, 147, 156, 163, 179, 196, 198, 204, 259, 364, 410, 498, 826, 827, 828, 1008, 1026], "diadochokinet": 1046, "diag": [52, 113, 175, 250, 253, 408, 413, 529, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 798, 799, 996, 1046, 1051], "diag_kind": [182, 183], "diagnos": [163, 266, 368, 379, 388, 404], "diagnosi": [163, 266, 368, 852], "diagnost": [163, 186, 266, 364, 385, 402, 497, 712, 827, 828, 1000, 1008, 1019, 1020, 1026], "diagon": [2, 44, 52, 63, 65, 75, 113, 115, 126, 172, 223, 242, 250, 253, 254, 256, 260, 335, 400, 403, 405, 413, 449, 467, 468, 474, 477, 508, 510, 524, 529, 547, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 649, 650, 653, 654, 655, 681, 682, 701, 715, 793, 798, 799, 849, 857, 992, 994, 996, 999, 1000, 1003, 1010, 1037, 1039, 1040, 1041], "diagram": [2, 63, 65, 103, 244, 313, 319, 373, 401, 403, 434, 435, 464, 903, 1010, 1042, 1043, 1048, 1049], "diamet": 403, "diamond": 251, "diaz": 1039, "dice": [446, 453, 699, 779, 780, 781, 1003], "dicedist": 699, "dichotomis": 1016, "dickerson": 1032, "dickson": 1038, "dico": 123, "dict": [49, 50, 51, 52, 56, 64, 100, 102, 103, 104, 105, 106, 139, 140, 141, 143, 144, 146, 148, 151, 154, 155, 160, 183, 184, 185, 204, 212, 232, 233, 234, 241, 242, 244, 245, 246, 250, 253, 257, 260, 261, 262, 263, 264, 267, 270, 272, 273, 275, 277, 283, 287, 301, 305, 309, 313, 314, 316, 317, 319, 322, 328, 335, 339, 347, 348, 353, 360, 363, 365, 373, 383, 385, 404, 407, 414, 415, 417, 421, 425, 427, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 493, 512, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 608, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 697, 698, 700, 701, 702, 711, 712, 713, 763, 766, 772, 780, 781, 798, 799, 800, 801, 804, 805, 807, 812, 813, 815, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 920, 922, 936, 937, 942, 943, 955, 958, 961, 988, 989, 1000, 1010, 1026, 1031, 1037, 1038, 1047, 1048, 1049], "dict_count_vector": 348, "dict_init": [528, 534, 542, 543], "dict_kei": [126, 625], "dict_learn": [2, 380, 528, 534, 543, 1032, 1039, 1041, 1044, 1045, 1047], "dict_learning_onlin": [2, 542, 1032, 1041, 1044, 1045, 1048], "dict_pos_code_estim": 120, "dict_pos_dict_estim": 120, "dict_pos_estim": 120, "dict_typ": 579, "dictat": 403, "dictionari": [2, 45, 46, 47, 48, 72, 84, 86, 103, 104, 119, 149, 151, 180, 205, 239, 241, 244, 253, 257, 261, 262, 263, 347, 348, 364, 365, 366, 373, 383, 385, 403, 411, 445, 460, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 504, 507, 512, 523, 528, 534, 535, 536, 537, 539, 540, 541, 542, 543, 545, 564, 565, 566, 567, 579, 580, 582, 585, 586, 587, 592, 631, 632, 633, 663, 684, 685, 701, 702, 711, 713, 801, 804, 805, 812, 813, 815, 823, 828, 864, 869, 878, 913, 914, 915, 916, 920, 922, 936, 942, 943, 944, 958, 961, 989, 996, 1000, 1015, 1021, 1025, 1026, 1031, 1039, 1042, 1043, 1044, 1045, 1046, 1050], "dictionariesdictionari": [104, 244, 253, 257, 261, 262, 263], "dictionaryin": [104, 244, 253, 257, 261, 262, 263], "dictionarylearn": [2, 408, 534, 536, 537, 539, 540, 541, 542, 543, 1032, 1036, 1038, 1041, 1044, 1045, 1046, 1047, 1051], "dictlearn": 1036, "dictsdictionari": [103, 275], "dictvector": [2, 48, 58, 102, 180, 345, 346, 347, 366, 411, 484, 580, 586, 587, 588, 589, 878, 1021, 1031, 1032, 1035, 1041, 1043, 1044, 1047, 1048], "did": [146, 167, 183, 186, 206, 213, 223, 249, 257, 310, 347, 366, 397, 626, 712, 820, 907, 1032, 1033, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1046], "didact": [67, 371, 1020], "didi": [1037, 1038, 1039, 1040], "didn": [239, 354, 385, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "die": 997, "diebold": 263, "diederik": [243, 862, 863, 1004, 1046], "diederikwp": 1046, "diego": [1032, 1033], "diegodlh": [1038, 1039], "diemert": [1024, 1033, 1034], "diesel": [206, 223], "dietterich": [263, 835, 1001], "diff": [374, 383, 1000], "diff_embed": 293, "differ": [2, 26, 44, 45, 47, 50, 52, 54, 55, 59, 62, 65, 67, 68, 71, 72, 73, 76, 77, 78, 80, 81, 82, 85, 86, 88, 89, 90, 91, 97, 98, 99, 100, 102, 103, 104, 106, 111, 115, 116, 118, 120, 122, 123, 125, 127, 128, 129, 134, 137, 139, 140, 142, 143, 144, 146, 148, 149, 154, 155, 156, 158, 163, 165, 166, 167, 168, 169, 172, 173, 174, 178, 179, 180, 182, 183, 185, 188, 190, 191, 195, 196, 197, 198, 199, 200, 206, 207, 208, 210, 211, 212, 213, 222, 223, 225, 226, 227, 228, 230, 232, 234, 235, 237, 238, 239, 242, 244, 245, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 276, 277, 278, 280, 282, 283, 286, 289, 290, 292, 298, 299, 302, 304, 305, 307, 308, 312, 313, 314, 316, 320, 322, 328, 329, 330, 331, 333, 334, 335, 337, 338, 342, 343, 346, 347, 348, 352, 354, 358, 359, 360, 365, 366, 368, 370, 371, 374, 375, 376, 378, 379, 380, 384, 385, 389, 391, 397, 399, 400, 401, 402, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 416, 428, 433, 436, 437, 438, 439, 440, 442, 443, 444, 445, 446, 447, 448, 449, 454, 455, 458, 460, 471, 474, 486, 490, 491, 493, 500, 501, 505, 506, 509, 511, 519, 534, 535, 536, 537, 543, 544, 546, 547, 552, 553, 560, 579, 580, 586, 587, 588, 589, 592, 610, 612, 613, 614, 618, 621, 622, 626, 630, 631, 632, 633, 637, 642, 643, 644, 646, 648, 650, 652, 654, 656, 657, 660, 665, 666, 671, 673, 675, 676, 677, 679, 690, 692, 694, 698, 700, 701, 704, 705, 706, 707, 709, 715, 717, 718, 728, 729, 730, 731, 732, 735, 736, 738, 744, 758, 759, 760, 762, 779, 783, 784, 785, 787, 788, 790, 793, 794, 796, 799, 801, 803, 804, 805, 806, 807, 810, 815, 816, 817, 819, 820, 821, 823, 824, 826, 828, 829, 832, 840, 841, 842, 843, 844, 845, 846, 847, 848, 851, 855, 858, 861, 865, 870, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 890, 891, 892, 893, 894, 895, 896, 905, 906, 907, 908, 910, 911, 913, 914, 915, 916, 958, 965, 989, 990, 992, 993, 995, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1010, 1013, 1014, 1015, 1016, 1017, 1019, 1020, 1021, 1024, 1026, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "difference_plot": 268, "differenti": [126, 270, 410, 413, 556, 557, 618, 621], "differentn": 264, "differentparamet": [103, 104, 244, 253, 257, 261, 262, 263, 275], "differentrun": [314, 352, 353], "difficult": [88, 134, 183, 213, 242, 371, 379, 401, 408, 410, 550, 551, 556, 558, 559, 995, 997, 999, 1003, 1005, 1007, 1016, 1024, 1031, 1045], "difficulti": [49, 65, 223, 303, 360, 371, 401, 862, 863, 999, 1003], "diffus": 172, "digest": [321, 371, 1046, 1050], "digg": [1024, 1038], "digicosm": 0, "digit": [2, 45, 52, 53, 66, 67, 72, 84, 86, 89, 90, 92, 93, 94, 95, 100, 104, 105, 123, 139, 161, 163, 180, 199, 200, 220, 221, 224, 225, 227, 229, 236, 237, 251, 256, 261, 265, 287, 292, 293, 297, 299, 300, 318, 323, 326, 328, 347, 364, 371, 377, 403, 409, 410, 412, 437, 441, 443, 499, 538, 541, 546, 563, 657, 687, 688, 689, 690, 691, 692, 697, 704, 705, 713, 717, 718, 738, 794, 796, 831, 854, 861, 865, 866, 875, 885, 891, 898, 901, 910, 917, 918, 919, 997, 1000, 1003, 1005, 1013, 1021, 1026, 1035], "digraph": 917, "dijkstra": [380, 688, 997], "dikramasrour": 1051, "dilemma": 995, "dillon": [1039, 1040, 1041], "dilut": [186, 368], "dilutedsauc": 1039, "dim": [214, 236, 291, 292, 294, 331, 332, 524, 699, 1048], "dim_reduction_method": 292, "dimens": [2, 38, 49, 52, 53, 55, 73, 75, 86, 104, 113, 115, 120, 126, 163, 169, 171, 172, 173, 175, 184, 194, 204, 227, 229, 232, 236, 237, 243, 244, 249, 250, 262, 287, 288, 292, 306, 339, 346, 347, 348, 366, 368, 372, 385, 403, 408, 409, 413, 415, 438, 439, 441, 443, 444, 445, 448, 460, 461, 478, 479, 480, 490, 491, 512, 521, 522, 526, 527, 530, 538, 546, 580, 581, 582, 583, 585, 587, 595, 610, 618, 621, 640, 643, 658, 687, 690, 691, 692, 694, 695, 699, 765, 775, 779, 826, 845, 846, 850, 864, 897, 898, 899, 907, 908, 909, 910, 911, 931, 932, 933, 964, 970, 973, 990, 992, 994, 996, 997, 998, 1001, 1003, 1004, 1006, 1012, 1015, 1019, 1038, 1040, 1041, 1043, 1051], "dimension": [2, 11, 38, 46, 49, 50, 58, 68, 75, 79, 87, 88, 90, 91, 95, 101, 103, 105, 106, 115, 116, 118, 120, 126, 127, 128, 134, 139, 152, 163, 167, 169, 170, 174, 180, 183, 194, 207, 222, 224, 226, 227, 229, 232, 236, 237, 240, 249, 250, 262, 284, 287, 291, 293, 305, 332, 339, 346, 354, 358, 363, 366, 367, 368, 371, 380, 385, 400, 401, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 441, 443, 445, 461, 465, 468, 469, 478, 479, 480, 481, 484, 485, 486, 487, 489, 490, 491, 492, 494, 497, 498, 499, 501, 502, 507, 512, 516, 529, 531, 532, 535, 536, 537, 538, 541, 544, 546, 560, 563, 570, 597, 605, 630, 639, 640, 641, 651, 687, 688, 689, 690, 691, 692, 693, 694, 696, 699, 710, 726, 798, 799, 801, 831, 845, 846, 847, 850, 853, 854, 861, 865, 866, 869, 875, 880, 885, 897, 898, 899, 905, 909, 949, 985, 991, 992, 995, 996, 1001, 1002, 1006, 1012, 1013, 1014, 1015, 1016, 1021, 1022, 1024, 1025, 1026, 1031, 1032, 1033, 1034, 1036, 1037, 1038, 1040, 1043, 1046, 1047, 1052], "dimensionalityreduct": 368, "diminish": 411, "dimitri": [1044, 1045, 1046, 1047, 1048, 1051], "dimmick": 368, "dinga92": [1049, 1050], "dingwal": 1038, "dionisi": 1045, "diop": 1041, "dipan": 1049, "dir": 1052, "direct": [52, 115, 116, 120, 122, 128, 163, 212, 248, 254, 260, 264, 292, 301, 308, 335, 340, 369, 371, 372, 375, 379, 386, 389, 403, 406, 408, 411, 412, 448, 458, 467, 468, 474, 531, 538, 546, 586, 587, 589, 600, 640, 688, 854, 994, 995, 996, 1001, 1003, 1005, 1020, 1031, 1034], "direction": 1049, "direction_vector": 301, "directionfor": 52, "directli": [0, 46, 58, 65, 80, 89, 103, 104, 126, 139, 143, 154, 155, 160, 163, 172, 175, 183, 185, 194, 196, 206, 212, 223, 233, 234, 243, 244, 246, 253, 257, 261, 262, 263, 264, 268, 270, 275, 277, 301, 303, 309, 313, 316, 319, 320, 321, 322, 348, 354, 358, 369, 371, 372, 373, 375, 377, 383, 384, 385, 386, 399, 400, 401, 403, 404, 405, 406, 407, 411, 413, 438, 448, 458, 460, 461, 465, 470, 524, 564, 565, 566, 567, 591, 595, 610, 619, 631, 642, 645, 646, 651, 652, 659, 660, 661, 662, 676, 680, 683, 690, 731, 775, 779, 782, 793, 794, 801, 804, 805, 815, 829, 830, 832, 848, 850, 864, 865, 866, 872, 882, 884, 887, 894, 989, 996, 998, 1003, 1005, 1007, 1010, 1015, 1016, 1028, 1031, 1039, 1040, 1042, 1043, 1044, 1047, 1048, 1050, 1051, 1052], "director": 1024, "directori": [0, 2, 48, 103, 139, 143, 154, 160, 183, 185, 233, 234, 243, 244, 246, 264, 270, 277, 285, 309, 313, 316, 322, 365, 369, 371, 373, 375, 377, 379, 385, 389, 404, 437, 441, 446, 482, 488, 496, 865, 866, 1045], "direr": [1034, 1035, 1038, 1039], "dirichlet": [2, 43, 46, 180, 248, 249, 254, 258, 411, 484, 533, 535, 537, 586, 589, 798, 1019, 1021, 1025, 1026, 1031, 1036, 1037], "dirichlet_distribut": [248, 798, 999, 1037], "dirichlet_process": [248, 254, 798, 999, 1037], "disabl": [138, 143, 151, 154, 156, 184, 239, 257, 309, 310, 317, 319, 322, 346, 369, 371, 394, 411, 445, 456, 464, 534, 535, 536, 543, 556, 557, 558, 559, 608, 864, 882, 894, 903, 931, 932, 1010, 1037, 1040, 1044, 1046, 1049, 1050], "disadvantag": [408, 413, 996, 997, 1004, 1014, 1015, 1016], "disagre": [736, 1007], "disambigu": [371, 833, 902, 1013, 1046], "disappear": [996, 1031], "disappoint": 44, "discard": [48, 88, 184, 192, 266, 358, 400, 405, 412, 505, 506, 546, 595, 626, 629, 643, 878, 882, 894, 990, 996, 1039, 1043, 1049], "disclaim": 1019, "disclos": 384, "disconnect": 1044, "discontinu": [44, 383, 1000], "discord": [371, 705, 1023], "discount": [2, 366, 403, 727, 757, 1038, 1041], "discounted_cumulative_gain": 727, "discourag": [210, 383, 389, 689], "discov": [347, 403, 408, 411, 414, 440, 444, 1046, 1049], "discoveri": [2, 263, 366, 377, 380, 403, 410, 412, 414, 440, 508, 552, 553, 560, 590, 593, 594, 596, 597, 598, 604, 720, 741, 784, 939, 940, 941, 1000, 1012, 1024, 1045, 1046], "discrep": [411, 1035], "discret": [2, 44, 68, 80, 118, 129, 134, 152, 166, 180, 184, 191, 206, 223, 243, 257, 280, 298, 302, 306, 329, 360, 363, 366, 367, 371, 375, 384, 385, 403, 408, 411, 413, 434, 435, 444, 448, 456, 457, 458, 489, 511, 512, 519, 550, 556, 586, 587, 590, 593, 594, 597, 598, 605, 606, 609, 610, 611, 615, 616, 617, 656, 657, 801, 812, 823, 831, 840, 841, 844, 866, 870, 878, 879, 882, 885, 894, 905, 910, 914, 964, 989, 996, 997, 998, 1000, 1001, 1003, 1016, 1019, 1021, 1026, 1033, 1036, 1044, 1045, 1046], "discrete_featur": [605, 606], "discrim": 206, "discrimin": [2, 12, 49, 50, 55, 66, 109, 110, 111, 112, 113, 126, 127, 128, 158, 160, 163, 180, 188, 220, 226, 240, 253, 292, 368, 401, 410, 471, 509, 546, 547, 563, 630, 784, 854, 989, 997, 1000, 1003, 1014, 1016, 1021, 1022, 1026, 1034], "discriminant_analysi": [2, 68, 70, 71, 128, 226, 292, 354, 399, 533, 546, 547, 854, 994, 1001, 1031, 1034, 1035, 1036, 1037, 1038], "discriminatori": 401, "discuss": [44, 86, 91, 163, 183, 198, 225, 230, 257, 266, 280, 346, 354, 360, 366, 368, 371, 376, 377, 379, 383, 385, 386, 402, 403, 405, 409, 410, 412, 413, 495, 681, 682, 847, 848, 853, 855, 856, 990, 994, 996, 997, 1000, 1003, 1010, 1017, 1018, 1020, 1023, 1034], "diseas": [47, 156, 163, 179, 266, 368, 712, 1000], "disentangl": 997, "disjoint": [143, 401, 403, 404, 433, 704, 732, 756, 758, 997], "disk": [46, 54, 321, 366, 371, 376, 385, 397], "disp": [44, 67, 69, 136, 149, 150, 151, 155, 256, 266, 276, 286, 308, 313, 319, 332, 337, 434, 630, 697, 700, 701, 854], "disp1": 631, "disp2": 631, "dispar": [690, 694, 997], "dispatch": [103, 104, 244, 253, 257, 261, 262, 263, 385, 399, 464, 801, 815, 826, 827, 828, 903, 967, 968, 1026, 1046, 1049, 1050], "dispatch_next": 967, "dispatch_one_batch": 967, "dispatchedthan": [103, 104, 244, 253, 257, 261, 262, 263], "dispers": [71, 277, 403, 710, 726, 996], "displai": [2, 52, 63, 65, 67, 71, 73, 80, 93, 103, 104, 112, 113, 115, 116, 120, 140, 150, 151, 154, 178, 180, 183, 184, 197, 223, 231, 232, 242, 246, 252, 253, 257, 260, 261, 262, 263, 264, 265, 270, 272, 276, 278, 293, 309, 313, 314, 334, 351, 358, 371, 373, 374, 378, 380, 389, 391, 404, 408, 411, 412, 417, 434, 460, 463, 464, 493, 538, 561, 629, 630, 631, 657, 686, 697, 698, 700, 701, 702, 713, 718, 783, 790, 801, 807, 815, 824, 831, 865, 866, 878, 880, 885, 903, 910, 917, 918, 919, 939, 967, 986, 1000, 1004, 1019, 1021, 1026, 1040, 1042, 1043, 1045, 1046, 1052], "display_label": [46, 256, 697, 1043], "dispos": 989, "disproportion": 409, "disput": 140, "disregard": [346, 385, 411, 426, 461, 478, 479, 480, 549, 551, 553, 555, 557, 559, 562, 565, 567, 610, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 677, 678, 721, 722, 723, 724, 725, 786, 838, 839, 848, 856, 863, 874, 875, 881, 882, 885, 890, 893, 894, 896, 906, 908, 911, 914, 916, 1000, 1039], "disrupt": [359, 369], "dissemin": 1019, "dissimilar": [228, 339, 385, 400, 448, 687, 690, 694, 997, 1037, 1047], "dissimilarity_matrix_": [687, 690], "dist": [111, 226, 236, 375, 465, 466, 467, 468, 469, 470, 471, 472, 699, 764, 770, 845, 846], "dist_": [465, 470], "dist_embed": 293, "dist_linkag": 186, "dist_matrix": 448, "dist_matrix_": 688, "distanc": [2, 38, 75, 88, 90, 93, 94, 98, 100, 108, 112, 125, 127, 163, 178, 180, 186, 195, 207, 209, 225, 227, 228, 230, 236, 242, 283, 285, 286, 291, 293, 295, 296, 303, 308, 312, 316, 317, 339, 346, 347, 358, 368, 380, 383, 385, 400, 403, 405, 408, 409, 413, 414, 436, 437, 438, 439, 440, 441, 442, 443, 445, 446, 448, 451, 452, 453, 454, 455, 457, 458, 459, 464, 465, 466, 467, 468, 469, 470, 471, 472, 535, 537, 544, 605, 606, 614, 618, 619, 621, 622, 627, 657, 658, 665, 667, 673, 674, 675, 676, 677, 687, 688, 689, 690, 692, 693, 694, 695, 696, 699, 703, 726, 735, 759, 761, 763, 764, 765, 766, 769, 770, 771, 772, 773, 774, 779, 780, 781, 782, 793, 794, 797, 801, 815, 834, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 858, 859, 860, 884, 899, 903, 905, 907, 909, 910, 911, 913, 914, 915, 916, 990, 994, 997, 998, 1000, 1003, 1006, 1010, 1012, 1014, 1015, 1021, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "distance_matrix": 186, "distance_metr": [2, 687, 779, 845, 846, 847, 848, 849, 850, 851, 853, 855, 856, 857, 858, 859], "distance_threshold": [76, 437, 441, 1040, 1043], "distancebetween": 155, "distancemetr": [2, 385, 409, 848, 1003, 1039, 1043, 1044, 1045, 1048], "distancemetric64": [845, 846], "distances_": [76, 437, 441, 1043], "distant": [403, 692, 1003], "distil": 230, "distinct": [93, 143, 154, 155, 184, 185, 200, 244, 263, 309, 326, 346, 348, 366, 376, 385, 386, 407, 410, 411, 587, 802, 811, 819, 879, 880, 900, 901, 989, 996, 1003, 1006, 1039], "distinguish": [44, 59, 75, 111, 118, 125, 208, 260, 280, 366, 385, 386, 413, 989, 1000, 1003, 1006], "distort": [38, 104, 205, 236, 368, 401, 874, 875, 882, 894, 899, 997, 1010, 1012], "distribut": [2, 26, 38, 43, 44, 48, 49, 50, 53, 59, 65, 71, 73, 79, 85, 86, 88, 90, 95, 100, 103, 104, 107, 110, 111, 112, 116, 118, 126, 134, 136, 139, 146, 150, 155, 158, 163, 167, 172, 176, 180, 182, 183, 184, 186, 188, 190, 200, 206, 208, 210, 227, 229, 232, 233, 234, 236, 242, 244, 246, 248, 253, 254, 257, 259, 262, 263, 269, 271, 275, 277, 280, 284, 288, 301, 302, 303, 305, 308, 313, 316, 318, 322, 324, 325, 340, 342, 346, 358, 359, 364, 367, 368, 369, 371, 372, 376, 385, 401, 403, 405, 407, 408, 409, 415, 443, 445, 465, 466, 467, 468, 469, 470, 471, 472, 484, 495, 500, 512, 513, 514, 515, 516, 520, 529, 530, 533, 547, 548, 549, 560, 610, 624, 639, 641, 643, 644, 647, 657, 658, 668, 678, 679, 688, 689, 690, 692, 706, 708, 725, 753, 790, 798, 799, 805, 806, 813, 815, 819, 820, 831, 841, 844, 850, 854, 861, 868, 874, 875, 881, 882, 883, 884, 885, 893, 894, 895, 900, 901, 909, 920, 951, 970, 989, 994, 996, 998, 999, 1000, 1002, 1003, 1005, 1006, 1012, 1013, 1019, 1020, 1021, 1025, 1026, 1031, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1047, 1050], "distributionsor": [103, 275], "district": [179, 366], "ditenberg": 1038, "div": 242, "dive": [116, 371, 377, 989], "diverg": [55, 145, 155, 225, 230, 288, 535, 537, 544, 692, 861, 997, 999, 1000, 1005, 1007, 1038, 1039, 1044, 1050], "divers": [0, 385, 410], "divid": [73, 78, 104, 120, 160, 172, 206, 242, 243, 244, 248, 262, 347, 354, 367, 368, 400, 402, 403, 407, 408, 410, 465, 466, 467, 468, 469, 470, 471, 472, 509, 516, 531, 538, 675, 676, 677, 709, 719, 727, 735, 739, 747, 757, 795, 797, 862, 863, 907, 910, 949, 952, 953, 989, 997, 999, 1000, 1003, 1010, 1014, 1016, 1031, 1038, 1039, 1042], "dividend": 1000, "divis": [264, 316, 403, 411, 588, 589, 592, 712, 713, 730, 731, 739, 747, 784, 785, 788, 1000, 1035, 1039, 1040, 1043, 1047, 1048, 1051], "divisor": 1000, "divo": 1041, "divyanshu": 1044, "divyaprabha": 1042, "diwakar": 1045, "dixon": [770, 1041, 1042], "dizietasahi": 1041, "di\u1ec5n": 1046, "djipei": [1036, 1037], "dl": 675, "dlabal": 1035, "dlimi": 1051, "dll": 1045, "dlovel": 1039, "dmallia17": 1044, "dmitri": [1036, 1038, 1039, 1040, 1044, 1047, 1048, 1050, 1051, 1052], "dmitrij": 1035, "dmytro": 1044, "dn": 1003, "dna": [383, 627, 990], "dnf": 389, "do": [0, 31, 44, 50, 52, 53, 63, 65, 77, 88, 94, 103, 106, 124, 126, 129, 138, 139, 141, 142, 143, 146, 147, 149, 154, 155, 160, 165, 172, 178, 183, 184, 185, 206, 210, 223, 225, 227, 233, 234, 239, 240, 242, 243, 244, 246, 254, 257, 258, 261, 262, 264, 266, 270, 276, 277, 282, 283, 285, 289, 301, 309, 313, 315, 316, 319, 322, 329, 332, 335, 339, 340, 342, 346, 347, 348, 353, 354, 358, 359, 360, 366, 368, 370, 371, 372, 373, 374, 375, 377, 378, 379, 385, 386, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 410, 411, 412, 422, 446, 457, 460, 463, 500, 533, 535, 541, 549, 552, 579, 580, 586, 587, 589, 600, 631, 632, 644, 645, 651, 654, 655, 657, 658, 665, 667, 675, 698, 728, 738, 764, 779, 783, 803, 818, 821, 837, 838, 842, 869, 870, 872, 879, 883, 885, 890, 891, 893, 894, 895, 896, 913, 914, 915, 916, 930, 973, 989, 992, 994, 996, 997, 1000, 1001, 1003, 1004, 1008, 1010, 1015, 1016, 1019, 1023, 1024, 1028, 1031, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "do_early_stopping_": [558, 559], "doc": [0, 44, 48, 53, 58, 321, 346, 348, 359, 371, 375, 376, 379, 385, 389, 396, 411, 586, 587, 589, 779, 782, 793, 794, 828, 1031, 1035, 1045, 1050], "doc_environ": 379, "doc_it": 48, "doc_linux": 379, "doc_topic_distr": [533, 1038], "doc_topic_prior": [408, 533], "doc_topic_prior_": 533, "dock": 1050, "docker": [379, 397, 1044, 1045], "dock\u00e8": [1040, 1041, 1042, 1048, 1049, 1050, 1051], "docstr": [52, 371, 373, 377, 385, 444, 457, 468, 699, 701, 938, 989, 1003, 1004, 1014, 1031, 1038, 1039, 1044, 1045, 1048, 1051], "doctest": [371, 385, 1031], "document": [2, 17, 43, 46, 50, 52, 55, 56, 57, 60, 64, 73, 90, 91, 93, 94, 102, 103, 104, 118, 120, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 183, 184, 185, 192, 220, 233, 234, 235, 236, 239, 240, 242, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 300, 301, 309, 313, 316, 317, 319, 322, 326, 342, 348, 352, 353, 358, 359, 360, 365, 366, 367, 369, 370, 372, 373, 374, 375, 376, 377, 379, 383, 385, 386, 389, 391, 394, 397, 399, 400, 403, 408, 411, 414, 440, 443, 444, 445, 449, 453, 460, 484, 485, 496, 498, 508, 518, 520, 533, 541, 561, 586, 587, 588, 589, 602, 608, 630, 638, 642, 657, 667, 673, 675, 696, 697, 699, 703, 705, 717, 738, 759, 760, 770, 780, 781, 794, 796, 801, 804, 805, 807, 815, 824, 835, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 858, 859, 866, 877, 905, 910, 927, 930, 932, 946, 967, 989, 996, 998, 1000, 1001, 1002, 1003, 1004, 1008, 1014, 1017, 1021, 1024, 1032, 1033, 1037, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "document_clust": 1037, "document_nam": 58, "documentfrequ": 264, "doddington": 1000, "doe": [28, 44, 47, 48, 49, 52, 53, 62, 63, 64, 67, 68, 71, 75, 80, 86, 88, 90, 102, 103, 104, 105, 116, 130, 134, 139, 140, 141, 142, 143, 144, 148, 149, 154, 155, 156, 163, 165, 173, 183, 184, 185, 194, 200, 206, 208, 212, 223, 225, 226, 227, 228, 230, 232, 233, 234, 235, 236, 237, 239, 240, 242, 243, 244, 246, 250, 251, 253, 257, 258, 261, 262, 263, 264, 265, 266, 270, 272, 273, 275, 277, 282, 283, 296, 303, 305, 307, 309, 310, 313, 314, 315, 316, 319, 321, 322, 327, 333, 335, 342, 344, 346, 347, 348, 352, 353, 358, 359, 365, 369, 371, 372, 373, 375, 379, 384, 385, 391, 394, 397, 399, 401, 403, 404, 407, 408, 410, 411, 412, 413, 428, 436, 438, 440, 442, 443, 445, 446, 450, 452, 463, 469, 475, 483, 496, 500, 505, 524, 532, 534, 535, 536, 541, 543, 546, 547, 550, 551, 554, 555, 556, 557, 558, 559, 560, 561, 562, 579, 580, 581, 586, 587, 589, 591, 592, 595, 600, 604, 609, 631, 637, 648, 649, 650, 653, 654, 655, 658, 670, 681, 682, 698, 700, 702, 707, 729, 730, 731, 735, 737, 739, 744, 784, 785, 788, 789, 795, 801, 804, 805, 815, 862, 866, 867, 868, 870, 872, 874, 875, 877, 878, 879, 882, 885, 886, 894, 897, 898, 902, 905, 906, 913, 914, 915, 916, 920, 931, 935, 942, 949, 952, 953, 954, 967, 983, 989, 990, 992, 994, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1008, 1010, 1014, 1015, 1016, 1020, 1031, 1032, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1050, 1051], "doepk": 1038, "doesn": [48, 183, 206, 239, 249, 282, 300, 335, 379, 385, 389, 397, 403, 411, 412, 416, 428, 471, 631, 632, 665, 667, 675, 716, 829, 832, 837, 847, 848, 862, 874, 875, 999, 1000, 1016, 1035, 1048], "dog": [315, 316, 318, 319, 320, 580, 784, 886, 1010], "dohmatob": [1036, 1037, 1038], "dohri": [1048, 1049], "doi": [188, 206, 223, 371, 403, 675], "dok": [550, 551, 872, 1044], "dokato": 1038, "dolan": 366, "dollar": [183, 366], "dolmatov": 1041, "dolphin": 346, "domain": [149, 206, 277, 309, 321, 385, 388, 407, 410, 634, 721, 724, 725, 802, 803, 808, 809, 810, 996, 1020, 1050], "domenico": [1050, 1051], "domin": [140, 179, 186, 206, 211, 242, 272, 308, 366, 377, 401, 885, 1002, 1010, 1016, 1047], "domingo": [65, 789, 1000], "dominik": [1038, 1047], "don": [65, 87, 102, 149, 183, 201, 226, 239, 240, 257, 263, 276, 283, 327, 332, 336, 346, 347, 358, 365, 371, 373, 375, 377, 379, 384, 389, 394, 402, 404, 411, 423, 645, 651, 833, 913, 914, 915, 916, 924, 965, 989, 996, 999, 1001, 1004, 1006, 1014, 1035, 1040, 1047, 1048, 1049], "don86": 1038, "donald": [46, 366, 403, 726, 990], "donat": 233, "done": [0, 46, 48, 49, 51, 53, 55, 56, 58, 83, 85, 86, 103, 123, 143, 149, 151, 154, 160, 163, 172, 173, 184, 185, 188, 190, 194, 195, 210, 222, 234, 238, 239, 244, 253, 257, 261, 264, 267, 272, 283, 306, 309, 313, 314, 316, 317, 321, 322, 346, 347, 348, 352, 354, 359, 365, 369, 371, 375, 378, 379, 380, 383, 385, 394, 403, 405, 407, 408, 410, 420, 426, 437, 438, 441, 446, 448, 468, 478, 479, 480, 481, 485, 532, 558, 559, 580, 604, 605, 606, 627, 629, 631, 633, 642, 643, 644, 658, 709, 722, 723, 742, 798, 799, 801, 815, 817, 820, 821, 823, 869, 883, 943, 984, 989, 990, 993, 996, 997, 1000, 1002, 1003, 1004, 1010, 1013, 1014, 1015, 1016, 1020, 1031, 1033, 1038, 1041, 1043, 1047], "dong": 1041, "donn": 1036, "donoho": [689, 693, 997], "donor": [163, 368], "donovan": 1037, "dor": 1039, "dorin": [96, 444], "dormagen": 1041, "doshi": 1050, "dot": [2, 56, 70, 79, 82, 87, 90, 95, 109, 110, 111, 113, 115, 116, 121, 122, 123, 127, 129, 134, 137, 155, 167, 168, 174, 175, 183, 192, 194, 200, 202, 203, 237, 249, 250, 252, 253, 257, 260, 264, 267, 331, 333, 339, 358, 373, 377, 380, 385, 400, 408, 411, 530, 535, 537, 544, 588, 589, 613, 645, 646, 649, 651, 652, 653, 656, 659, 660, 661, 662, 680, 683, 686, 762, 764, 877, 917, 950, 998, 1002, 1010, 1014, 1015, 1040], "dot_data": [917, 1016], "dot_product": 950, "dotproduct": [2, 170, 171, 176, 413, 610, 624], "dotson": 1036, "doubl": [71, 104, 140, 244, 262, 275, 371, 385, 408, 535, 537, 538, 544, 687, 845, 846, 856, 983, 990, 997, 1015, 1016, 1031, 1041, 1042, 1050, 1052], "doubt": [371, 372, 375, 996, 1006, 1019], "doucet": 1045, "douetteau": 1024, "doug": [1032, 1033, 1043], "dougal": [1033, 1035, 1036, 1038, 1039, 1040, 1041], "dougla": 1039, "douillard": 1038, "doumouro": 1040, "douriez": [1041, 1042], "dowl": 1037, "down": [80, 81, 112, 134, 143, 155, 220, 221, 227, 236, 237, 239, 244, 245, 261, 263, 266, 280, 301, 303, 314, 339, 344, 354, 365, 374, 379, 385, 405, 408, 439, 446, 452, 588, 591, 592, 638, 648, 775, 779, 782, 874, 875, 880, 883, 884, 895, 907, 910, 917, 996, 1039], "downarrow": 1002, "download": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 364, 366, 368, 369, 375, 376, 379, 391, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 507, 1016, 1023, 1026, 1035, 1036, 1039, 1043, 1044, 1045, 1050, 1051], "download_20newsgroup": 1035, "download_if_miss": [484, 485, 486, 487, 489, 490, 491, 492, 494, 495, 1038], "download_url": 48, "downsampl": 123, "downsid": 348, "downstream": [44, 103, 104, 111, 139, 143, 154, 183, 184, 234, 244, 262, 310, 313, 316, 348, 411, 528, 531, 534, 538, 539, 604, 878, 1010, 1041], "downweight": [405, 533], "dowon": [1039, 1040], "dozen": [384, 413], "do\u0161ilovi\u0107": [1048, 1049], "dp": [249, 254], "dpgmm": [249, 254, 1031, 1035, 1037], "dpi": [216, 919, 1044], "dpy_debug": 377, "dqd": 377, "dr": [0, 163, 368, 403, 1045], "draft": [371, 386], "drag": 391, "dragon": 1010, "drama": 411, "dramat": 360, "dramsch": 1041, "drastic": [167, 204, 236, 271, 403, 407, 870, 1003, 1013], "draw": [44, 47, 64, 93, 139, 141, 150, 154, 156, 176, 183, 185, 243, 244, 265, 270, 275, 319, 335, 378, 406, 408, 409, 410, 552, 553, 554, 555, 560, 561, 562, 563, 610, 633, 701, 702, 807, 824, 917, 919, 999, 1019, 1044, 1045, 1052], "drawback": [222, 992, 995], "drawcoastlin": [51, 296], "drawcountri": [51, 296], "drawn": [47, 85, 111, 137, 162, 167, 176, 182, 243, 270, 287, 346, 359, 367, 403, 409, 410, 413, 415, 465, 466, 467, 468, 469, 470, 471, 472, 512, 520, 530, 552, 553, 554, 555, 560, 561, 562, 563, 610, 626, 631, 640, 841, 897, 898, 915, 916, 996, 1010, 1012, 1034], "drawstyl": [350, 700], "draxu": 1031, "drew": [1040, 1049, 1050], "drewhogg": 1046, "drewmjohnston": 1040, "drgfreeman": 1041, "driessen": [405, 465, 470, 1006], "drift": [104, 874, 875, 1020], "drivag": [206, 223], "drive": [360, 408, 409, 546, 1014, 1024], "driven": [0, 186, 1024], "driver": [206, 223, 1046], "drop": [44, 45, 53, 103, 107, 116, 139, 141, 149, 154, 155, 156, 172, 182, 183, 184, 185, 186, 206, 210, 223, 234, 242, 244, 246, 257, 273, 309, 313, 314, 316, 317, 319, 328, 347, 375, 379, 404, 408, 410, 460, 463, 564, 565, 566, 567, 629, 695, 698, 700, 702, 728, 783, 790, 864, 878, 884, 990, 996, 1000, 1010, 1019, 1031, 1032, 1036, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1051], "drop_binary_enc": 878, "drop_dupl": 275, "drop_enc": [878, 1010], "drop_first": 695, "drop_idx": 878, "drop_idx_": [878, 1042, 1046], "drop_intermedi": [698, 700, 702, 728, 783, 790, 1047, 1051], "drop_nul": [53, 172], "dropdown": [163, 371, 989, 1000], "dropdropremainderpassthroughpassthroughhistgradientboostingregressor": 143, "dropped_result": 143, "dropper": 143, "dror": 1040, "dross": 531, "dro\u017cd\u017c": 1034, "drskd": 1045, "druck": 1045, "drucker": [135, 410, 551], "drug": 996, "dry": 184, "dryden": 102, "ds_ana": 1044, "ds_cnt": [68, 305, 306], "dschult": 56, "dscullei": 445, "dseg": 102, "dsouza": [1042, 1043, 1044, 1045], "dsquareindia": 1037, "dss": 1024, "dt": [83, 123, 172, 411, 1016], "dtreeviz": 1019, "dtype": [44, 48, 50, 51, 52, 56, 82, 86, 87, 98, 102, 103, 139, 143, 145, 147, 148, 150, 151, 154, 168, 169, 170, 179, 183, 184, 185, 208, 223, 234, 244, 246, 248, 257, 261, 264, 267, 271, 277, 280, 290, 296, 309, 313, 315, 316, 317, 318, 322, 325, 353, 365, 366, 371, 373, 383, 385, 399, 404, 407, 410, 411, 418, 419, 421, 424, 438, 439, 443, 444, 445, 446, 447, 449, 455, 460, 462, 463, 465, 468, 470, 484, 485, 486, 487, 493, 494, 495, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 511, 519, 539, 545, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 579, 580, 583, 584, 586, 587, 589, 591, 592, 599, 600, 604, 626, 627, 628, 629, 631, 632, 639, 640, 643, 644, 645, 651, 655, 656, 659, 660, 661, 662, 663, 664, 670, 672, 674, 697, 699, 705, 714, 715, 732, 739, 742, 756, 787, 807, 826, 828, 829, 841, 845, 846, 848, 856, 870, 876, 878, 879, 885, 886, 888, 890, 891, 892, 893, 894, 895, 896, 899, 907, 908, 909, 910, 911, 913, 914, 915, 916, 926, 928, 929, 931, 932, 956, 966, 970, 973, 974, 975, 976, 977, 980, 985, 986, 990, 1001, 1010, 1013, 1015, 1032, 1034, 1035, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "dtype_exclud": [103, 462], "dtype_includ": [103, 143, 154, 242, 404, 462], "du": [0, 392, 393, 1031, 1032, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "dua": 1040, "dual": [52, 102, 103, 104, 139, 154, 155, 160, 192, 233, 234, 244, 246, 257, 262, 270, 277, 301, 312, 313, 316, 322, 342, 346, 411, 412, 467, 468, 474, 610, 645, 646, 651, 652, 657, 658, 659, 660, 661, 662, 680, 683, 731, 845, 846, 905, 906, 907, 910, 996, 1015, 1033, 1042, 1045, 1047, 1052], "dual_coef_": [532, 642, 907, 908, 909, 910, 911, 1015, 1035], "dual_gap": [467, 468, 474, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683], "dual_gap_": [645, 646, 651, 652, 659, 660, 661, 662, 1044], "dualiti": [52, 468, 996], "dualtre": [845, 846], "dualwil": [104, 160, 270], "duan": [1040, 1042], "duart": [1036, 1044, 1046, 1049], "dubai": 411, "duboi": [1037, 1039], "dubou": 1041, "dubourg": [0, 393, 1024, 1031, 1035], "duchesnai": [0, 393, 1031], "duck": [373, 385, 1041], "ducktyp": [1035, 1048], "duckworth": 1031, "ducout": 1045, "duda": [368, 994], "due": [49, 53, 64, 65, 86, 88, 93, 103, 104, 107, 134, 137, 155, 167, 183, 184, 190, 194, 199, 206, 208, 222, 223, 236, 242, 244, 249, 253, 257, 261, 262, 263, 271, 272, 275, 277, 282, 283, 308, 309, 328, 339, 342, 346, 347, 348, 371, 377, 383, 385, 389, 401, 402, 403, 407, 408, 410, 413, 439, 442, 443, 455, 532, 536, 540, 541, 571, 670, 801, 804, 805, 809, 811, 815, 826, 827, 830, 833, 837, 838, 870, 874, 875, 885, 990, 996, 997, 999, 1000, 1001, 1003, 1007, 1014, 1015, 1020, 1031, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050], "dueck": [74, 436, 450], "dugnat": 1045, "duhaim": 1039, "dummi": [2, 134, 135, 206, 223, 239, 257, 260, 266, 376, 398, 548, 549, 733, 878, 887, 924, 1001, 1010, 1016, 1026, 1032, 1034, 1035, 1036, 1038], "dummy_classifiers_misclassification_error": 134, "dummy_clf": [134, 548], "dummy_leaf_": 438, "dummy_regr": 549, "dummy_sev": 223, "dummybiclust": 418, "dummyclassifi": [2, 134, 257, 260, 266, 549, 733, 1000, 1032, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1049], "dummyestim": [156, 556, 557], "dummyregressor": [2, 206, 223, 548, 1000, 1001, 1032, 1034, 1035, 1038, 1039, 1041, 1044, 1045, 1049], "dumont": 1016, "dump": [2, 56, 397, 483, 845, 846], "dump_svmlight_fil": [2, 1031, 1032, 1036, 1046, 1048], "duong": [1048, 1049], "duplic": [359, 370, 371, 372, 385, 403, 414, 440, 444, 445, 512, 634, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 829, 876, 985, 1003, 1031, 1034, 1043, 1045, 1047, 1048, 1050], "dupont": 52, "dupr": [1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047], "dupr\u00e9": [0, 393, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047], "duqu": [1044, 1051], "durat": [44, 48, 206, 223, 242, 257, 285, 348, 359, 407, 822, 967, 968, 996, 1000], "duration_sec": 50, "duration_test": 346, "duration_train": 346, "dure": [0, 44, 45, 52, 53, 83, 88, 91, 103, 104, 107, 116, 125, 138, 139, 143, 144, 149, 151, 154, 155, 160, 167, 172, 183, 184, 185, 186, 198, 200, 207, 213, 234, 244, 253, 257, 261, 262, 263, 265, 277, 283, 309, 313, 314, 315, 316, 317, 339, 358, 360, 369, 371, 373, 375, 376, 385, 386, 403, 404, 408, 410, 411, 413, 414, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 455, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 609, 610, 612, 613, 614, 616, 618, 619, 621, 622, 624, 626, 627, 628, 629, 631, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 700, 790, 798, 799, 800, 801, 804, 805, 815, 823, 826, 827, 828, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 890, 896, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 989, 990, 992, 996, 997, 1003, 1010, 1012, 1016, 1026, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1050], "duron": 1045, "duti": 386, "dutt": 1047, "dutta": [1048, 1049], "duv2014": 413, "duvenaud": [413, 621, 622], "dwight": 1046, "dx": [52, 54, 699], "dx_c": 1007, "dy": [52, 699], "dye": 1044, "dylan": [1038, 1041], "dymil": 1050, "dynam": [52, 53, 184, 577, 578, 675, 676, 677, 1016, 1024, 1037, 1043, 1048], "dzi": 1049, "dziki": 1034, "d\u00b2": 223, "d\u00f6pfert": 1039, "e": [0, 26, 44, 48, 50, 51, 53, 63, 64, 65, 69, 71, 86, 88, 90, 94, 102, 103, 104, 109, 111, 112, 113, 115, 116, 123, 125, 126, 134, 137, 139, 141, 143, 145, 146, 149, 150, 151, 154, 155, 156, 159, 160, 162, 163, 172, 175, 182, 183, 184, 185, 188, 191, 194, 198, 206, 207, 208, 210, 223, 225, 226, 233, 234, 235, 238, 239, 243, 244, 246, 257, 259, 260, 262, 263, 264, 266, 268, 269, 270, 275, 277, 278, 280, 282, 289, 296, 301, 305, 308, 309, 312, 313, 314, 316, 317, 319, 320, 322, 342, 348, 352, 353, 354, 358, 359, 360, 363, 365, 366, 367, 368, 369, 370, 371, 372, 373, 375, 376, 377, 383, 384, 385, 389, 394, 397, 399, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 433, 435, 437, 440, 441, 443, 446, 450, 459, 460, 462, 465, 466, 467, 468, 469, 471, 472, 493, 495, 497, 498, 499, 500, 521, 530, 532, 533, 535, 537, 538, 546, 547, 548, 550, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 564, 565, 566, 567, 575, 579, 580, 586, 587, 588, 589, 591, 592, 595, 600, 601, 602, 604, 605, 606, 607, 609, 610, 616, 621, 622, 627, 629, 632, 633, 634, 642, 643, 644, 645, 646, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 683, 686, 688, 690, 692, 694, 697, 699, 701, 702, 704, 705, 708, 709, 722, 728, 729, 730, 731, 732, 739, 742, 743, 756, 764, 768, 779, 786, 789, 790, 798, 799, 800, 801, 804, 805, 807, 814, 815, 819, 823, 824, 826, 827, 828, 829, 830, 832, 844, 845, 846, 847, 848, 849, 851, 855, 856, 857, 861, 862, 863, 868, 870, 873, 874, 875, 876, 877, 878, 879, 880, 881, 883, 884, 885, 886, 888, 890, 891, 892, 893, 894, 895, 896, 905, 906, 912, 913, 914, 915, 916, 920, 948, 949, 951, 955, 956, 958, 961, 974, 985, 989, 990, 992, 994, 995, 996, 997, 998, 999, 1000, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1014, 1015, 1016, 1020, 1023, 1024, 1028, 1031, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050, 1051, 1052], "e0129126": 365, "e11": 366, "e2": [899, 996], "e41a1c": [79, 95], "e501": [163, 346], "e67e22": 262, "e_": 408, "each": [0, 2, 28, 44, 47, 48, 50, 51, 52, 53, 55, 56, 59, 63, 64, 65, 67, 69, 71, 73, 76, 78, 79, 81, 82, 86, 88, 91, 93, 94, 102, 103, 104, 105, 106, 107, 115, 116, 118, 120, 121, 125, 126, 127, 128, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 152, 153, 154, 155, 156, 159, 160, 163, 169, 171, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 195, 197, 198, 200, 202, 204, 206, 207, 208, 210, 211, 213, 220, 223, 226, 232, 233, 234, 236, 237, 238, 239, 240, 242, 243, 244, 246, 248, 251, 253, 256, 257, 258, 259, 261, 262, 263, 264, 266, 268, 269, 272, 273, 277, 280, 282, 283, 286, 288, 292, 294, 296, 298, 299, 301, 303, 304, 305, 306, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 322, 324, 325, 326, 328, 329, 335, 339, 342, 347, 348, 350, 351, 352, 353, 354, 358, 359, 360, 365, 366, 367, 368, 369, 371, 372, 373, 375, 376, 379, 380, 383, 384, 385, 394, 397, 400, 401, 402, 403, 404, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 417, 420, 421, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 455, 456, 457, 459, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 501, 502, 505, 506, 507, 508, 509, 510, 511, 512, 516, 519, 520, 523, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 602, 603, 604, 605, 606, 607, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 702, 707, 708, 710, 713, 719, 726, 729, 730, 731, 739, 740, 746, 747, 749, 751, 752, 754, 755, 759, 760, 763, 764, 765, 766, 767, 769, 770, 771, 772, 774, 775, 777, 779, 780, 781, 782, 784, 785, 786, 788, 789, 791, 792, 793, 794, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 815, 816, 817, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 889, 890, 891, 892, 894, 895, 896, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 922, 937, 944, 949, 951, 952, 957, 958, 970, 975, 976, 977, 980, 989, 990, 992, 994, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1024, 1031, 1033, 1034, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051, 1052], "eachboost": 156, "eachlabel": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "eager": 257, "eargl": 1045, "earl": 1034, "earli": [44, 47, 55, 79, 95, 133, 134, 140, 142, 143, 151, 154, 156, 180, 189, 196, 243, 257, 307, 309, 313, 317, 321, 322, 385, 410, 437, 441, 445, 459, 486, 493, 533, 534, 535, 536, 543, 550, 551, 556, 557, 558, 559, 626, 644, 655, 665, 666, 667, 675, 677, 692, 751, 831, 862, 863, 973, 997, 1003, 1010, 1014, 1020, 1021, 1024, 1031, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1045, 1046, 1048, 1051], "earlier": [140, 184, 210, 365, 371, 406, 836, 839, 1010, 1029, 1032, 1044, 1046], "earliest": [365, 997], "early_exagger": [692, 1038], "early_stop": [140, 143, 149, 151, 154, 184, 213, 243, 257, 298, 309, 315, 317, 322, 346, 385, 410, 558, 559, 665, 666, 667, 675, 676, 677, 862, 863, 1014, 1039, 1042, 1045, 1046, 1050, 1051], "earlystop": [143, 151, 154, 309, 317], "earn": [182, 183, 386], "earth": [227, 347, 765], "eas": [104, 186, 253, 308, 371, 374, 377, 996, 1014, 1019, 1020, 1024, 1042, 1043, 1045], "easi": [184, 213, 223, 251, 261, 263, 335, 346, 354, 366, 371, 377, 379, 383, 384, 397, 403, 410, 497, 501, 507, 872, 989, 995, 999, 1007, 1010, 1019, 1020, 1024, 1041, 1046, 1047, 1051], "easier": [79, 95, 99, 113, 190, 197, 228, 234, 242, 260, 261, 303, 335, 346, 354, 366, 371, 373, 376, 379, 383, 389, 405, 407, 464, 512, 903, 942, 995, 996, 997, 1000, 1007, 1016, 1020, 1024, 1040, 1045], "easiest": [373, 379, 404, 997], "easili": [44, 49, 68, 126, 160, 186, 209, 221, 237, 239, 243, 246, 263, 265, 272, 288, 305, 321, 322, 371, 373, 385, 386, 397, 404, 410, 411, 413, 445, 994, 996, 1010, 1014, 1015, 1016, 1023, 1037], "easlii": 233, "ec": [303, 527], "ecat": 366, "echo": [369, 375], "eckert": 1036, "eckhart": 491, "eclf": [155, 410], "eclf1": 566, "eclf2": 566, "eclf3": 566, "eclf_other_threshold": 155, "ecml": 0, "ecoc": 280, "ecolog": [51, 296, 366, 495], "econom": [182, 183, 263], "econometr": 996, "econometrica": 996, "ecosystem": [321, 371, 379, 990, 1018, 1024, 1050], "ecuador": [51, 296, 366, 495], "ed": [138, 148, 403, 410, 517, 556, 557, 1012, 1031, 1038], "eddi": [1034, 1048, 1049], "eden": 1046, "edern": [1046, 1047], "edg": [52, 64, 80, 99, 123, 143, 161, 228, 264, 270, 375, 379, 385, 400, 403, 405, 449, 558, 559, 583, 584, 586, 587, 589, 798, 842, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 870, 918, 1010, 1013, 1024, 1037, 1039, 1042, 1045], "edgar": 1050, "edge_model": 52, "edgecolor": [52, 62, 67, 68, 71, 77, 89, 93, 100, 118, 136, 142, 150, 152, 153, 155, 158, 168, 169, 171, 175, 184, 200, 208, 214, 217, 218, 219, 236, 237, 238, 240, 242, 248, 251, 263, 266, 278, 286, 289, 290, 291, 294, 298, 305, 306, 308, 329, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 344, 351, 352, 630], "edit": [77, 368, 369, 370, 371, 375, 379, 383, 389, 527, 531, 835, 852, 994, 996, 1001, 1007], "editor": [371, 383], "edm": 996, "edoardo": [1046, 1048, 1049, 1050, 1052], "edouard": [0, 393, 1031], "edson": [1000, 1036], "edu": [48, 56, 163, 188, 280, 346, 365, 366, 368, 403, 445, 483, 497, 499, 505, 506, 507, 531, 640, 643, 657, 665, 666, 675, 677, 678, 681, 682, 840, 842, 844, 854, 861, 898, 900, 913, 914, 998], "eduardo": [1034, 1036, 1044, 1045], "educ": [182, 183, 319, 371, 383, 493, 716, 1001], "edvardlindelof": 1041, "edward": [172, 613, 618, 621, 1034, 1039, 1040, 1041, 1042, 1046, 1049, 1050, 1051], "edwinensa": 1037, "edwinwenink": 1044, "eec": [445, 640], "ef": 1046, "eff": 1016, "effect": [44, 46, 64, 65, 73, 75, 80, 86, 90, 95, 98, 100, 101, 103, 104, 105, 116, 118, 123, 125, 134, 139, 141, 143, 144, 146, 148, 151, 154, 155, 156, 160, 162, 167, 168, 172, 174, 180, 181, 183, 184, 185, 186, 194, 201, 203, 206, 207, 208, 210, 211, 212, 222, 224, 227, 229, 233, 234, 235, 242, 243, 244, 246, 249, 253, 255, 257, 259, 262, 263, 264, 265, 268, 270, 271, 272, 275, 277, 283, 295, 301, 302, 304, 307, 309, 313, 314, 316, 319, 322, 323, 328, 335, 339, 340, 342, 343, 344, 346, 347, 348, 352, 353, 354, 359, 371, 376, 383, 385, 401, 403, 404, 408, 409, 410, 411, 413, 414, 438, 442, 446, 460, 461, 463, 464, 486, 493, 497, 511, 521, 522, 538, 554, 555, 556, 557, 561, 562, 563, 586, 587, 588, 589, 604, 607, 608, 625, 645, 648, 656, 657, 658, 672, 675, 677, 678, 686, 691, 692, 701, 702, 703, 732, 754, 786, 790, 798, 802, 806, 812, 820, 824, 831, 832, 851, 862, 863, 869, 870, 874, 875, 877, 881, 882, 883, 885, 886, 890, 891, 892, 893, 894, 895, 896, 902, 903, 905, 908, 910, 911, 913, 914, 915, 916, 931, 932, 949, 967, 973, 989, 994, 995, 996, 997, 999, 1000, 1001, 1003, 1007, 1008, 1010, 1013, 1014, 1015, 1016, 1021, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "effective_learning_r": [243, 862, 863], "effective_metric_": [847, 848, 849, 851, 853, 855, 856, 857, 1003], "effective_metric_params_": [847, 848, 849, 851, 853, 855, 856, 857], "effective_rank": [518, 521], "effectsof": [244, 245, 261, 263, 314], "efficaci": 198, "effici": [38, 44, 45, 52, 54, 77, 80, 86, 88, 104, 120, 135, 140, 144, 152, 154, 183, 184, 188, 198, 201, 208, 213, 244, 262, 288, 320, 321, 346, 358, 363, 365, 371, 373, 374, 376, 377, 383, 385, 397, 399, 400, 403, 408, 409, 410, 413, 415, 438, 439, 442, 443, 445, 446, 448, 450, 453, 455, 457, 458, 493, 530, 531, 532, 535, 537, 538, 541, 560, 563, 571, 579, 580, 586, 587, 589, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 631, 632, 633, 637, 639, 654, 657, 658, 663, 665, 666, 667, 672, 674, 675, 676, 677, 678, 684, 685, 687, 688, 727, 757, 764, 780, 781, 798, 799, 801, 815, 834, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 870, 882, 894, 898, 905, 914, 916, 949, 989, 992, 994, 996, 997, 999, 1000, 1001, 1003, 1004, 1005, 1006, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1019, 1024, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "efficiencywarn": [2, 860, 1046], "effort": [314, 371, 377, 383, 1019, 1024, 1042, 1044], "efron": [163, 368, 681, 682, 996], "eg": 983, "egashira": 1046, "egehan": 1049, "egg": [709, 1000, 1039], "egger": 1049, "egin": 403, "egli": [1038, 1048], "egor": 1043, "egress": [103, 257], "ehrenheim": [1038, 1039], "eib": [836, 1001], "eickenberg": [1031, 1033, 1034, 1035, 1036], "eig": 1038, "eig_tol": 1032, "eig_val": 248, "eig_vec": 248, "eigen": [154, 183, 448, 546, 672, 691, 695, 994, 1037, 1040], "eigen_solv": [52, 79, 80, 99, 225, 226, 408, 448, 458, 532, 688, 689, 691, 693, 695, 997, 1032, 1041, 1044, 1045, 1046], "eigen_tol": [80, 448, 458, 691, 695, 1032, 1045, 1046], "eigendecompos": 408, "eigendecomposit": [154, 183, 458, 672, 687, 691, 695, 871, 992, 997, 1052], "eigenfac": [43, 55, 180, 241, 366, 408, 491, 538, 697, 713, 815, 831, 885, 910, 1017, 1021, 1031], "eigenface_titl": 46, "eigenmap": [225, 689, 691, 693, 695, 1025, 1026, 1032], "eigensolv": [408, 448, 458, 532, 541, 695, 997], "eigenvalu": [104, 154, 183, 244, 253, 262, 319, 400, 403, 405, 448, 458, 465, 466, 467, 468, 469, 470, 471, 472, 532, 538, 546, 672, 687, 688, 689, 691, 693, 695, 871, 992, 997, 1010, 1033, 1037, 1040, 1041, 1042, 1043], "eigenvalues_": [532, 687, 1044], "eigenvector": [2, 43, 80, 116, 126, 180, 248, 403, 448, 458, 531, 532, 538, 547, 688, 689, 691, 695, 949, 997, 1021, 1031, 1035, 1045], "eigenvector_centr": 56, "eigenvectors_": [532, 1044], "eigh": [71, 248, 249, 250, 253, 254, 408, 415, 530, 532, 1046, 1049], "eighteenth": 403, "eighth": [560, 1006], "eigsh": [408, 532, 1037, 1038], "eiler": 1010, "einsum": 293, "eitan": 1048, "either": [44, 50, 65, 103, 104, 140, 142, 143, 151, 154, 155, 156, 160, 165, 172, 183, 185, 196, 233, 234, 242, 244, 253, 257, 258, 261, 262, 263, 264, 267, 270, 272, 275, 277, 288, 309, 313, 316, 317, 322, 342, 346, 353, 358, 359, 363, 366, 369, 371, 372, 373, 385, 394, 397, 399, 401, 403, 404, 406, 407, 408, 409, 410, 411, 412, 413, 415, 438, 443, 448, 483, 493, 509, 521, 530, 531, 533, 541, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 563, 564, 565, 580, 581, 582, 586, 587, 588, 589, 591, 592, 595, 600, 605, 606, 609, 610, 621, 626, 629, 631, 632, 649, 653, 655, 663, 675, 677, 681, 682, 690, 697, 698, 702, 706, 707, 712, 720, 725, 727, 728, 729, 730, 731, 736, 739, 740, 741, 753, 757, 770, 783, 784, 785, 786, 788, 789, 790, 795, 801, 804, 805, 807, 815, 824, 825, 826, 827, 828, 829, 830, 832, 835, 865, 895, 896, 902, 905, 906, 913, 914, 915, 916, 920, 958, 962, 988, 989, 996, 1000, 1001, 1002, 1003, 1004, 1005, 1008, 1010, 1014, 1015, 1031, 1034, 1040, 1041, 1042, 1045, 1049, 1051], "ekaterina": [1037, 1038, 1039, 1040, 1042, 1047], "ekman": [1033, 1037], "el": [525, 1044, 1046, 1047], "elabonga": [1047, 1048], "elabor": 1001, "elad": [663, 684, 685], "elaps": [51, 81, 100, 103, 139, 140, 141, 143, 154, 155, 156, 160, 183, 184, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322, 358, 460, 463, 566, 567, 864, 865, 866, 867], "elapsed_tim": [47, 100, 141, 154, 222], "elapsed_time_structur": 100, "elapsed_time_unstructur": 100, "elast": [2, 26, 52, 103, 139, 155, 180, 189, 194, 195, 198, 199, 202, 216, 233, 234, 239, 244, 246, 257, 262, 276, 277, 301, 313, 316, 322, 344, 467, 468, 474, 498, 521, 643, 645, 646, 651, 656, 657, 658, 659, 660, 661, 662, 667, 675, 677, 680, 681, 683, 989, 1000, 1014, 1021, 1022, 1026, 1031, 1036, 1040, 1041], "elastic_net": 216, "elastic_net_color": 216, "elastic_net_contour": 216, "elasticnet": [2, 47, 50, 103, 139, 155, 192, 199, 233, 234, 244, 246, 257, 262, 271, 276, 277, 301, 316, 322, 358, 377, 383, 408, 646, 651, 656, 657, 658, 659, 660, 661, 662, 667, 675, 677, 680, 996, 1001, 1014, 1031, 1032, 1035, 1036, 1037, 1039, 1040, 1042, 1043, 1044, 1045, 1049, 1051, 1052], "elasticnetcv": [2, 194, 385, 394, 645, 651, 659, 660, 661, 662, 680, 996, 1031, 1034, 1042, 1044, 1045, 1048, 1049, 1050, 1051, 1052], "elasticnetifit": 192, "elbo": 408, "eldar": [405, 416, 471], "eleanor": 1046, "elec2": 149, "electr": [52, 149, 368, 403], "electron": [58, 163, 366, 368, 535, 537, 544, 626], "element": [2, 87, 120, 137, 138, 148, 154, 155, 234, 243, 256, 262, 264, 270, 272, 313, 347, 350, 353, 368, 370, 371, 373, 380, 386, 400, 403, 407, 408, 410, 411, 414, 440, 442, 448, 460, 483, 505, 509, 511, 517, 519, 523, 524, 528, 534, 535, 537, 547, 554, 555, 556, 557, 561, 562, 563, 564, 565, 583, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 616, 631, 632, 657, 658, 665, 666, 667, 675, 676, 677, 707, 717, 728, 735, 737, 747, 764, 770, 779, 783, 789, 790, 835, 845, 846, 847, 848, 849, 851, 852, 853, 855, 856, 860, 862, 863, 868, 884, 885, 888, 892, 905, 910, 913, 914, 915, 916, 951, 952, 953, 970, 972, 973, 985, 994, 996, 997, 1000, 1001, 1004, 1007, 1010, 1011, 1012, 1016, 1024, 1036, 1037, 1039, 1041, 1042, 1043, 1045, 1047, 1051], "elementari": [899, 1012], "elementwis": [408, 535, 537, 544], "elena": 1038, "elenafillo": 1051, "eleni": 1044, "eleph": 580, "elev": [100, 126, 184, 225, 229, 487], "eleven": 1020, "elfner": 1045, "elham": 1051, "elia": 1037, "eliaschiavon": 1046, "eliasi": [1046, 1047, 1048], "elicit": 1000, "elif": [47, 48, 191, 208, 240, 250, 288, 881], "elimin": [2, 18, 157, 160, 163, 180, 258, 261, 262, 287, 324, 403, 407, 444, 499, 512, 591, 592, 595, 600, 657, 804, 805, 820, 865, 875, 985, 1000, 1021, 1022, 1024, 1026, 1031], "elisabeth": [317, 1048], "elizabeth": [1038, 1040, 1043], "elkan": [65, 257, 313, 401, 433, 439, 443, 455, 675, 1037, 1041, 1042, 1044, 1045], "ell": [71, 248, 249, 250, 254, 400], "ell_": 996, "ell_0": [996, 1000], "ell_1": [408, 996], "ell_2": 996, "ella": 1012, "ellen": 1038, "elli": [1037, 1040], "elliot": [1048, 1049], "elliott": 1038, "ellips": [71, 232, 248, 249, 250, 253, 254, 1006], "ellipsoid": [49, 66, 70, 111, 112, 113, 180, 247, 248, 250, 251, 252, 253, 254, 546, 547, 630, 798, 799, 994, 999, 1021], "ellipt": [90, 996], "ellipticenvelop": [2, 49, 232, 466, 469, 470, 471, 472, 560, 1006, 1031, 1034, 1038, 1039, 1044], "eln": 1042, "elong": 403, "els": [2, 44, 48, 51, 52, 53, 58, 71, 76, 79, 82, 88, 89, 95, 113, 124, 137, 142, 143, 146, 147, 154, 155, 156, 175, 178, 179, 183, 184, 186, 192, 198, 200, 220, 223, 226, 232, 235, 236, 238, 239, 240, 241, 242, 258, 260, 262, 263, 264, 267, 274, 275, 283, 288, 296, 298, 299, 305, 312, 339, 346, 347, 353, 371, 375, 377, 410, 411, 413, 415, 423, 433, 445, 505, 517, 530, 566, 617, 624, 643, 644, 645, 646, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 665, 666, 667, 671, 672, 673, 675, 678, 680, 681, 682, 683, 703, 709, 722, 789, 795, 797, 804, 805, 831, 852, 869, 881, 884, 892, 905, 906, 920, 963, 965, 967, 986, 988, 1016], "elsewher": [52, 385, 458, 459, 467, 468, 474], "eltermann": 1034, "elucid": 992, "elvezio": [648, 996], "elvi": [1036, 1037, 1038], "em": [249, 250, 253, 254, 439, 443, 455, 533, 798, 799, 999, 1045], "emad": 1049, "email": [0, 346, 383, 386, 411, 840, 1002, 1024], "emami": 1045, "emanuel": 1032, "emb": [167, 226, 236, 292, 364, 365, 458, 695, 997], "embark": [103, 185, 246, 312, 316, 317], "embed": [2, 27, 38, 72, 79, 80, 88, 89, 95, 100, 139, 167, 180, 224, 227, 228, 229, 231, 283, 292, 307, 324, 325, 385, 403, 437, 448, 458, 485, 499, 541, 546, 563, 580, 638, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 854, 866, 875, 897, 898, 899, 992, 1003, 1006, 1012, 1017, 1019, 1021, 1025, 1026, 1031, 1032, 1042, 1043, 1045, 1051], "embedding_": [228, 385, 687, 688, 689, 690, 691, 692], "emelia": 1051, "emerg": [403, 1024], "emeritu": 386, "emiko": 1045, "emil": 1045, "emili": [1042, 1043, 1050, 1052], "emilyxinyi": [1049, 1050, 1051], "emipr": 798, "emir": [1046, 1047], "emit": [1042, 1049], "emlearn": 1019, "emma": [1048, 1051], "emmanouil": 1045, "emmanuel": [1031, 1038, 1039, 1040, 1048], "emp_cov": [109, 111, 113, 474, 477], "emp_cov_contour": 111, "emp_mah": 111, "emphas": [183, 344, 377, 408, 1000], "emphasi": [344, 402, 406, 907, 908, 909, 910, 911, 1007, 1019], "empir": [2, 49, 53, 62, 63, 71, 72, 77, 78, 91, 97, 108, 110, 111, 113, 143, 149, 180, 191, 223, 269, 303, 309, 321, 401, 403, 407, 410, 413, 443, 445, 456, 465, 466, 467, 468, 470, 473, 474, 529, 531, 536, 538, 540, 546, 548, 562, 588, 601, 638, 648, 666, 670, 677, 678, 716, 721, 724, 725, 830, 840, 841, 842, 844, 852, 863, 886, 934, 973, 992, 994, 1000, 1002, 1004, 1010, 1012, 1014, 1021, 1025, 1026, 1050], "empirical_covari": [2, 109, 405, 474, 475, 477, 1047], "empiricalcovari": [2, 109, 111, 112, 405, 465, 469, 470, 471, 472, 1006], "emploi": [0, 52, 167, 238, 385, 405, 411, 446, 474, 580, 587, 1023, 1024, 1037], "employ": [183, 257], "employe": 0, "empti": [94, 102, 103, 129, 154, 185, 217, 234, 244, 313, 316, 327, 358, 366, 375, 403, 415, 423, 479, 530, 558, 559, 629, 630, 812, 870, 910, 912, 920, 926, 931, 932, 938, 960, 961, 990, 1015, 1033, 1035, 1039, 1040, 1042, 1043, 1045, 1046, 1047, 1050, 1051], "emptyset": 1000, "emul": [183, 379], "en": [56, 62, 379, 528, 534, 593, 635, 663, 667, 670, 684, 685, 695, 705, 847, 848, 853, 854, 855, 856, 883, 899, 913, 914, 996, 1000, 1015, 1016], "enabl": [2, 16, 53, 83, 103, 104, 139, 143, 149, 150, 151, 154, 160, 183, 184, 185, 213, 227, 233, 234, 239, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 277, 305, 309, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 343, 369, 371, 376, 379, 383, 385, 389, 394, 399, 403, 404, 408, 410, 411, 433, 439, 440, 443, 445, 460, 461, 464, 478, 479, 480, 530, 531, 532, 533, 535, 538, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 577, 578, 588, 589, 600, 609, 610, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 798, 799, 800, 801, 802, 803, 804, 808, 810, 819, 823, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 865, 866, 868, 870, 871, 872, 877, 878, 879, 884, 885, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 920, 961, 968, 990, 992, 999, 1000, 1003, 1010, 1011, 1014, 1015, 1020, 1024, 1031, 1037, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050, 1051, 1052], "enable_cython_pairwise_dist": [464, 903], "enable_halving_search_cv": [2, 146, 274, 275, 314, 375, 804, 805, 989], "enable_hist_gradient_boost": [375, 1040], "enable_iterative_imput": [2, 178, 179, 375, 626, 990, 1040], "enable_metadata_rout": [103, 139, 143, 154, 160, 183, 185, 233, 234, 239, 243, 244, 246, 257, 264, 270, 277, 309, 313, 316, 319, 321, 322, 394, 433, 439, 440, 443, 445, 460, 461, 464, 468, 478, 479, 480, 530, 533, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 588, 591, 592, 595, 600, 609, 610, 626, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 800, 801, 802, 803, 804, 805, 808, 810, 815, 819, 823, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 864, 865, 866, 868, 870, 871, 872, 877, 884, 885, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 1047], "enable_my_experimental_featur": 375, "enblom": [1049, 1050], "enc": [304, 306, 316, 318, 878, 879, 1010], "enc_auto": 886, "enc_high_smooth": 886, "enc_low_smooth": 886, "encapsul": [378, 404, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 800, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916], "enclos": 989, "encod": [2, 44, 48, 51, 88, 103, 120, 139, 149, 151, 154, 155, 180, 183, 184, 185, 205, 206, 233, 234, 242, 244, 246, 257, 262, 264, 272, 277, 301, 302, 304, 305, 306, 313, 314, 316, 317, 321, 322, 335, 346, 348, 363, 365, 367, 376, 383, 385, 399, 404, 407, 408, 410, 411, 413, 460, 483, 493, 500, 523, 528, 534, 536, 537, 539, 541, 542, 543, 545, 548, 558, 559, 563, 564, 566, 579, 586, 587, 589, 629, 647, 657, 658, 668, 671, 679, 736, 803, 808, 810, 828, 831, 865, 866, 868, 870, 872, 873, 876, 878, 879, 884, 886, 889, 903, 922, 989, 990, 996, 997, 1000, 1002, 1003, 1005, 1014, 1019, 1021, 1026, 1032, 1033, 1039, 1043, 1045, 1046, 1047, 1048, 1049], "encoded_missing_valu": [143, 154, 184, 185, 309, 879, 1010, 1045, 1046], "encodings_": [318, 886, 1010], "encompass": [385, 446, 452, 552, 553, 997], "encount": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316, 359, 369, 389, 397, 403, 410, 411, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 558, 559, 561, 562, 579, 840, 841, 842, 844, 878, 974, 1010, 1014, 1019, 1023, 1024, 1039, 1042, 1052], "encourag": [183, 197, 210, 298, 335, 370, 371, 383, 1015, 1019, 1049], "encrypt": 1019, "encyclopedia": 1000, "end": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 369, 371, 373, 383, 385, 386, 389, 394, 399, 400, 403, 404, 406, 410, 446, 452, 464, 484, 485, 505, 506, 534, 543, 554, 555, 556, 557, 561, 562, 563, 644, 645, 646, 649, 650, 651, 652, 653, 654, 659, 660, 661, 662, 680, 681, 682, 683, 801, 804, 805, 815, 822, 826, 863, 865, 903, 913, 914, 915, 916, 953, 955, 983, 989, 992, 996, 997, 999, 1000, 1010, 1012, 1014, 1019, 1024, 1036, 1038, 1041, 1044, 1045, 1050], "end_": 48, "end_bodi": 48, "end_d": 48, "end_idx": [52, 228], "end_reut": 48, "end_titl": 48, "end_top": 48, "endian": 1043, "endo": 1044, "endpoint": [54, 304, 338, 634], "endswith": 262, "enemi": 371, "energi": [52, 149, 379, 861, 1005], "enet": [194, 276], "enet_path": [2, 197, 385, 645, 646, 651, 659, 660, 661, 1033, 1035, 1044, 1052], "enet_tol": [52, 467, 468, 474, 1036], "enforc": [44, 52, 64, 71, 86, 100, 120, 141, 143, 149, 151, 154, 156, 172, 185, 202, 244, 257, 275, 292, 309, 314, 317, 319, 322, 352, 353, 358, 371, 405, 408, 410, 420, 426, 505, 524, 528, 534, 536, 539, 540, 542, 543, 545, 554, 555, 558, 559, 561, 562, 869, 884, 913, 914, 915, 916, 931, 932, 990, 996, 997, 1033, 1039, 1041, 1043, 1047, 1051], "enforce_estimator_tags_i": 1041, "enforceequ": 155, "eng": 1039, "engag": [371, 377, 386], "engemann": [1033, 1034, 1038], "engin": [43, 67, 75, 139, 143, 149, 155, 172, 180, 184, 207, 358, 365, 368, 403, 407, 409, 411, 460, 493, 559, 638, 672, 701, 817, 819, 820, 821, 822, 828, 863, 864, 866, 869, 870, 875, 878, 880, 884, 990, 992, 1000, 1010, 1021, 1037], "english": [55, 58, 102, 264, 346, 347, 348, 371, 376, 411, 586, 587, 589, 1019, 1020, 1044], "ength_scal": 172, "enh": 375, "enhanc": [120, 210, 328, 370, 371, 375, 383, 385, 403, 1000, 1029, 1030, 1031, 1032, 1033, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "enjoi": [77, 257], "enough": [2, 44, 53, 65, 67, 73, 79, 95, 140, 142, 149, 154, 167, 178, 184, 185, 198, 206, 237, 240, 242, 257, 275, 276, 307, 346, 348, 354, 369, 371, 373, 375, 386, 401, 403, 405, 407, 410, 564, 565, 587, 801, 804, 805, 807, 815, 829, 949, 989, 994, 997, 999, 1000, 1006, 1010, 1015, 1019, 1024, 1037, 1047, 1048], "enrich": 339, "ensembl": [2, 44, 47, 50, 53, 64, 65, 67, 68, 89, 134, 135, 136, 137, 138, 140, 141, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 169, 178, 179, 184, 185, 186, 206, 226, 232, 241, 242, 244, 245, 257, 260, 275, 280, 282, 305, 309, 312, 313, 314, 315, 316, 317, 318, 319, 321, 322, 346, 351, 352, 354, 358, 371, 375, 376, 384, 385, 394, 397, 401, 403, 407, 412, 433, 501, 512, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 631, 632, 634, 657, 702, 804, 805, 823, 831, 835, 836, 866, 869, 878, 909, 913, 915, 916, 940, 989, 1000, 1001, 1006, 1007, 1016, 1019, 1021, 1022, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038], "ensemble_clf": 138, "ensemble_jaccard_scor": 282, "ensembleregressorsensembl": 391, "ensur": [53, 59, 64, 67, 76, 90, 104, 113, 118, 134, 140, 141, 149, 155, 186, 206, 226, 244, 257, 258, 262, 266, 300, 353, 354, 358, 359, 371, 373, 376, 377, 386, 389, 394, 399, 401, 403, 404, 407, 415, 433, 465, 530, 531, 538, 552, 553, 610, 626, 696, 705, 783, 789, 790, 822, 826, 898, 931, 932, 942, 944, 949, 956, 967, 996, 997, 1000, 1010, 1016, 1033, 1035, 1036, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050], "ensure_2d": [931, 932], "ensure_all_finit": [779, 929, 931, 932, 1050], "ensure_min_featur": [931, 932], "ensure_min_sampl": [931, 932], "ensure_non_neg": [932, 1050], "entail": [103, 154, 155, 183, 233, 234, 243, 244, 246, 257, 270, 277, 313, 316, 322, 384, 883, 885, 1014], "enter": [372, 375, 403, 438, 1007, 1052], "entertain": 996, "entic": 183, "entir": [69, 103, 139, 143, 154, 155, 178, 183, 184, 206, 213, 233, 234, 244, 246, 257, 262, 264, 277, 301, 303, 313, 316, 322, 339, 353, 354, 365, 372, 385, 397, 403, 407, 409, 411, 468, 489, 531, 586, 587, 588, 589, 646, 650, 652, 654, 657, 658, 660, 662, 664, 665, 667, 675, 681, 682, 735, 797, 823, 833, 834, 837, 862, 864, 865, 878, 890, 891, 893, 894, 895, 896, 924, 969, 990, 1000, 1010, 1014, 1016, 1040, 1041], "entireti": 385, "entiti": [386, 727, 757], "entitl": [277, 286, 402, 610, 847, 992], "entri": [0, 103, 107, 149, 154, 155, 172, 179, 183, 184, 257, 259, 312, 347, 354, 371, 375, 377, 379, 384, 385, 400, 401, 403, 408, 410, 413, 459, 468, 493, 528, 529, 534, 542, 543, 558, 559, 586, 589, 592, 608, 610, 619, 631, 637, 639, 646, 650, 652, 654, 655, 658, 660, 662, 663, 664, 672, 674, 681, 682, 684, 685, 699, 702, 704, 707, 709, 712, 715, 716, 718, 722, 727, 730, 731, 732, 735, 736, 739, 744, 757, 759, 760, 784, 786, 789, 790, 793, 794, 814, 829, 845, 846, 853, 854, 855, 856, 857, 876, 882, 894, 985, 989, 990, 996, 1000, 1003, 1010, 1015, 1020, 1038, 1041, 1042, 1044, 1048], "entropi": [2, 51, 64, 65, 141, 185, 244, 275, 296, 314, 319, 324, 325, 353, 354, 366, 401, 403, 410, 415, 495, 530, 554, 561, 605, 606, 657, 717, 737, 738, 742, 796, 913, 915, 996, 997, 1000, 1004, 1016, 1033, 1035, 1039, 1040, 1045, 1047, 1048, 1050, 1052], "entrypoint_to_bug_reproduc": 372, "enumer": [44, 48, 50, 51, 52, 54, 55, 56, 58, 63, 65, 67, 68, 73, 75, 76, 77, 78, 79, 83, 88, 92, 93, 94, 95, 98, 100, 102, 110, 112, 113, 116, 121, 123, 129, 137, 140, 143, 144, 145, 147, 148, 149, 169, 171, 176, 186, 191, 193, 199, 206, 226, 227, 230, 232, 237, 241, 242, 248, 249, 250, 251, 253, 254, 257, 258, 262, 265, 266, 272, 288, 292, 293, 295, 301, 305, 306, 324, 325, 327, 329, 333, 335, 341, 342, 346, 351, 366, 367, 556, 557, 561, 562, 782, 802, 803, 806, 808, 809, 810, 811, 814, 816, 817, 818, 819, 820, 821, 822], "env": [369, 379, 389, 390], "environ": [0, 3, 52, 64, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 183, 184, 185, 192, 233, 234, 235, 239, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 326, 352, 353, 358, 366, 368, 369, 371, 373, 374, 377, 383, 389, 390, 399, 404, 496, 1020, 1024, 1026, 1038, 1039, 1048, 1051], "environment": [51, 194, 223], "environmenterror": 1047, "eom": 442, "eoss": 0, "ep": [52, 68, 79, 80, 82, 88, 98, 154, 197, 226, 228, 236, 383, 403, 414, 440, 446, 451, 467, 468, 474, 630, 645, 646, 649, 650, 651, 652, 653, 654, 655, 659, 660, 661, 662, 680, 681, 682, 683, 690, 694, 714, 742, 857, 897, 898, 899, 1012, 1046, 1047, 1051], "epanechnikov": [288, 409, 845, 846, 850], "ephemer": 379, "ephrem": 1046, "epimorph": 1048, "epistem": 53, "epoch": [220, 243, 385, 533, 665, 666, 667, 675, 676, 677, 862, 863, 1014, 1038, 1039, 1044], "epp": [403, 704], "eps_": [659, 661], "eps_rang": 236, "epsilon": [2, 88, 98, 193, 228, 238, 243, 318, 341, 408, 442, 451, 642, 648, 666, 675, 677, 747, 862, 863, 906, 908, 911, 993, 996, 1000, 1004, 1014, 1015, 1031], "epsilon_": 843, "epsilon_i": 1000, "epsilon_insensit": [666, 675, 677, 906, 996, 1014], "epsilon_valu": 193, "epsth": 52, "eq": [257, 413, 416, 471, 721, 724, 725, 852], "equal": [44, 51, 52, 64, 71, 73, 86, 93, 100, 103, 104, 111, 116, 122, 134, 139, 141, 146, 154, 155, 156, 160, 170, 183, 185, 192, 207, 208, 216, 222, 233, 234, 243, 244, 246, 250, 253, 256, 257, 261, 262, 263, 269, 270, 272, 275, 277, 293, 301, 305, 309, 313, 314, 316, 319, 322, 335, 337, 343, 347, 352, 353, 366, 367, 371, 373, 385, 400, 401, 403, 407, 408, 410, 411, 416, 433, 436, 437, 438, 439, 441, 443, 445, 450, 455, 456, 459, 465, 470, 475, 476, 500, 509, 512, 516, 529, 530, 531, 536, 538, 540, 541, 546, 547, 548, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 563, 586, 591, 592, 595, 597, 598, 605, 606, 624, 627, 628, 630, 631, 632, 633, 634, 636, 640, 641, 645, 646, 648, 651, 652, 657, 658, 659, 660, 661, 662, 670, 687, 699, 707, 718, 720, 728, 730, 740, 741, 783, 784, 788, 789, 790, 795, 797, 801, 802, 804, 805, 814, 815, 819, 822, 826, 833, 837, 838, 845, 846, 847, 848, 852, 853, 854, 855, 856, 857, 862, 863, 868, 869, 870, 877, 880, 883, 884, 885, 886, 888, 895, 902, 905, 906, 912, 913, 914, 915, 916, 937, 949, 974, 980, 994, 996, 997, 1000, 1001, 1003, 1004, 1006, 1010, 1014, 1015, 1016, 1032, 1035, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1052], "equalto": 314, "equat": [2, 64, 65, 103, 139, 141, 154, 155, 156, 185, 233, 234, 244, 246, 257, 262, 275, 277, 301, 313, 314, 316, 319, 322, 342, 352, 353, 371, 403, 408, 410, 554, 555, 556, 557, 561, 562, 563, 588, 626, 657, 658, 681, 682, 686, 764, 885, 913, 914, 915, 916, 990, 997, 1000, 1005, 1039], "equi": 999, "equiangular": 996, "equidist": [143, 692], "equip": 1024, "equiv": [992, 1015], "equival": [44, 55, 71, 88, 90, 103, 143, 150, 151, 154, 155, 156, 162, 167, 172, 183, 184, 185, 192, 194, 200, 223, 233, 234, 243, 244, 246, 253, 257, 270, 272, 275, 277, 283, 308, 309, 313, 316, 317, 322, 339, 348, 354, 358, 377, 380, 384, 385, 397, 403, 404, 405, 406, 407, 408, 410, 412, 413, 414, 437, 439, 440, 441, 442, 443, 445, 446, 453, 460, 465, 470, 490, 506, 531, 538, 555, 558, 559, 560, 561, 562, 586, 589, 612, 615, 618, 620, 623, 645, 646, 647, 651, 653, 657, 658, 665, 666, 667, 668, 671, 675, 676, 679, 682, 686, 687, 688, 693, 708, 724, 735, 743, 748, 749, 750, 762, 771, 780, 781, 798, 799, 804, 805, 809, 811, 836, 839, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 862, 868, 874, 875, 877, 880, 881, 882, 883, 885, 893, 895, 896, 935, 936, 943, 947, 985, 989, 994, 996, 997, 998, 1000, 1006, 1010, 1014, 1015, 1016, 1039, 1040, 1041, 1042, 1044, 1045, 1048, 1050, 1052], "equivalentto": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "er": [567, 1051], "era": 1020, "eras": [103, 139, 155, 156, 192, 233, 234, 243, 244, 246, 257, 262, 277, 301, 313, 316, 322, 556, 557, 645, 651, 657, 659, 661, 665, 666, 667, 675, 676, 677, 862, 863], "ereg": [156, 410], "eren": [0, 1033, 1034], "eric": [1034, 1035, 1036, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1049, 1050, 1051], "ericellwang": [1044, 1045], "erich": [446, 1035, 1036, 1039, 1040, 1042, 1043, 1044, 1045, 1049], "erick": 1036, "erik": [366, 1024, 1034], "eriksson": 1038, "erin": [280, 1043], "erl": 280, "erlbaum": 257, "erling": 1036, "ermolaevpa": [1045, 1046], "ernst": [410, 554, 555, 562, 563, 915, 916], "err": [56, 115, 124, 134], "err_cov_emp_ful": 112, "err_cov_emp_pur": 112, "err_cov_mcd": 112, "err_loc_emp_ful": 112, "err_loc_emp_pur": 112, "err_loc_mcd": 112, "errno": 389, "erron": [111, 112, 408, 996, 1032, 1039, 1043], "error": [2, 15, 26, 31, 44, 45, 47, 53, 54, 56, 64, 65, 103, 104, 107, 109, 110, 112, 124, 129, 133, 137, 139, 140, 141, 143, 145, 147, 149, 151, 154, 155, 156, 163, 167, 178, 180, 182, 183, 184, 185, 194, 198, 201, 203, 204, 206, 208, 211, 212, 219, 223, 233, 234, 235, 238, 239, 243, 244, 245, 246, 253, 254, 255, 257, 259, 261, 262, 263, 264, 268, 272, 273, 275, 277, 278, 280, 289, 290, 301, 309, 313, 314, 316, 317, 319, 321, 322, 334, 342, 346, 347, 352, 359, 368, 369, 371, 373, 374, 375, 376, 380, 383, 385, 394, 397, 401, 403, 404, 405, 407, 408, 410, 411, 412, 433, 434, 439, 440, 443, 445, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 500, 512, 521, 528, 530, 533, 534, 535, 539, 540, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 573, 588, 590, 593, 594, 596, 597, 598, 604, 609, 610, 628, 631, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 684, 688, 689, 690, 692, 693, 696, 698, 700, 701, 702, 709, 711, 720, 721, 722, 724, 728, 741, 744, 745, 746, 747, 748, 749, 751, 752, 754, 765, 779, 783, 789, 790, 791, 792, 800, 801, 802, 803, 804, 805, 807, 808, 810, 815, 819, 823, 824, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 850, 852, 853, 855, 856, 857, 860, 862, 863, 864, 865, 866, 868, 870, 871, 872, 877, 878, 879, 884, 885, 900, 901, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 929, 930, 931, 932, 935, 964, 983, 986, 988, 989, 990, 991, 993, 994, 995, 997, 1001, 1004, 1008, 1010, 1014, 1015, 1016, 1021, 1022, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "error_": [528, 540], "error_i": [140, 264], "error_norm": [110, 112, 465, 466, 467, 468, 469, 470, 471, 472], "error_on_new": 628, "error_r": 138, "error_scor": [103, 104, 244, 253, 257, 261, 262, 263, 275, 801, 804, 805, 807, 815, 824, 827, 828, 829, 832, 989, 1035, 1039, 1043, 1046], "error_x": [140, 264], "errorbar": [73, 94, 105, 110, 112, 143, 162, 173, 174, 285, 327, 338, 807, 824], "errorbar_": [807, 824], "errorbar_kw": [807, 824], "errorbarcontain": [807, 824], "errors_coef": 210, "errors_lines_": 701, "erwan": 1048, "erwin": 1034, "escal": 386, "escalant": 1000, "escalera": 1000, "escap": [1044, 1046, 1050], "eschibli": 1043, "eschlbeck": 1045, "esdi": 58, "esp": [403, 1031], "especi": [44, 48, 53, 64, 88, 89, 103, 139, 141, 143, 146, 149, 154, 155, 156, 183, 185, 200, 204, 206, 233, 234, 239, 244, 246, 257, 262, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 347, 352, 353, 354, 359, 365, 371, 379, 383, 385, 401, 403, 411, 439, 445, 498, 535, 554, 555, 556, 557, 561, 562, 563, 645, 646, 647, 649, 651, 652, 653, 657, 658, 659, 660, 661, 662, 668, 679, 695, 705, 747, 840, 841, 842, 843, 844, 913, 914, 915, 916, 996, 1002, 1003, 1010, 1024, 1034, 1039, 1043, 1044, 1045], "espinoza": [1032, 1033], "essenc": [605, 606, 744, 997, 1000], "essenti": [0, 263, 272, 317, 369, 403, 407, 408, 506, 1000, 1003, 1020, 1024, 1039], "est": [154, 155, 183, 200, 220, 239, 241, 257, 277, 305, 314, 354, 397, 410, 559, 736, 870, 954, 989, 1000, 1010, 1014, 1042, 1043], "est1": [385, 631], "est2": [385, 631], "est_freq": 223, "est_g": 321, "est_idx": 305, "est_nam": 155, "est_proba": 155, "est_sev": 223, "establish": [379, 383, 386, 625, 990], "estefania": 1045, "ester": [403, 414, 440], "estev": [1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "estim": [2, 4, 7, 8, 13, 16, 26, 30, 31, 32, 36, 44, 46, 47, 48, 49, 50, 51, 52, 53, 62, 64, 65, 67, 70, 71, 73, 74, 79, 82, 87, 88, 89, 90, 91, 94, 96, 103, 104, 105, 106, 115, 116, 120, 121, 122, 127, 129, 133, 134, 138, 139, 140, 141, 142, 144, 146, 148, 149, 150, 151, 154, 155, 156, 160, 161, 162, 163, 165, 166, 167, 168, 170, 172, 174, 176, 177, 178, 182, 183, 184, 185, 189, 192, 194, 196, 198, 200, 203, 206, 208, 210, 211, 213, 222, 223, 231, 232, 233, 236, 238, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 272, 273, 274, 275, 276, 277, 278, 279, 282, 283, 284, 290, 294, 303, 305, 309, 315, 316, 318, 320, 338, 339, 342, 347, 348, 350, 351, 352, 353, 358, 359, 360, 363, 369, 371, 374, 375, 378, 379, 380, 381, 389, 394, 397, 398, 401, 402, 403, 406, 408, 411, 412, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 454, 457, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 486, 487, 489, 492, 493, 495, 498, 499, 521, 524, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 572, 573, 574, 575, 577, 578, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 604, 605, 606, 608, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 683, 686, 687, 688, 689, 690, 691, 692, 697, 698, 700, 701, 702, 707, 708, 711, 712, 713, 716, 718, 720, 721, 724, 725, 727, 728, 729, 730, 731, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 757, 783, 784, 785, 786, 788, 789, 790, 791, 792, 795, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 815, 817, 819, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 890, 891, 893, 894, 896, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 921, 922, 923, 924, 925, 930, 931, 932, 934, 936, 937, 940, 942, 943, 944, 945, 954, 957, 958, 959, 961, 983, 987, 988, 995, 997, 999, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1016, 1017, 1020, 1021, 1022, 1024, 1025, 1026, 1028, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "estimate_bandwidth": [2, 79, 96, 403, 444, 457], "estimated_coef": [645, 646, 651, 659, 660, 661, 680, 681, 682], "estimatedand": [143, 151, 154, 309, 317], "estimator_": [209, 239, 277, 314, 423, 550, 551, 552, 553, 554, 555, 560, 561, 562, 563, 591, 592, 595, 670, 800, 823, 902, 983, 1046], "estimator__alpha": 146, "estimator__max_depth": [385, 989], "estimator_alpha": 142, "estimator_check": [2, 312, 373, 385, 942, 943, 944, 1038, 1039, 1041, 1042, 1045, 1046, 1047, 1049, 1050, 1051, 1052], "estimator_checks_gener": [2, 942, 1050], "estimator_conf": 50, "estimator_config": 50, "estimator_dict": 213, "estimator_errors_": [134, 550, 551], "estimator_html_repr": [2, 373, 404, 1020, 1042, 1043, 1044, 1045, 1048], "estimator_modul": 373, "estimator_nam": [50, 213, 373, 378, 434, 574, 698, 700, 702, 930], "estimator_samples_": 1042, "estimator_typ": [420, 421, 422, 425, 426, 924, 1050], "estimator_weights_": [134, 550, 551], "estimatorcheckfailedwarn": [2, 942], "estimatorcv": 385, "estimatori": 64, "estimatorinst": 154, "estimators_": [141, 142, 155, 156, 200, 220, 240, 312, 385, 410, 550, 551, 552, 553, 554, 555, 556, 557, 560, 561, 562, 563, 564, 565, 566, 567, 833, 834, 835, 836, 837, 838, 839, 1032, 1038, 1045], "estimators_early_stop": 144, "estimators_features_": [552, 553, 560], "estimators_samples_": [552, 553, 554, 555, 560, 561, 562, 563, 1037, 1039, 1042, 1048], "estimatorto": [103, 154, 185, 234, 244, 313, 316], "estimatorwithvalidationset": 321, "estimatorwithvalidationset__param_to_optim": 321, "est\u00e8v": [0, 392, 1039, 1042, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "est\u00e8vc": 1049, "esuli": [1038, 1043], "esvhd": 1040, "et": [0, 2, 51, 104, 109, 110, 134, 148, 196, 244, 262, 296, 366, 368, 400, 403, 405, 408, 410, 411, 412, 447, 495, 516, 517, 525, 532, 538, 541, 560, 681, 682, 719, 720, 840, 842, 862, 863, 898, 948, 949, 996, 997, 1000, 1006, 1010, 1012, 1015, 1016, 1039, 1047], "eta": [408, 533, 675, 676, 677, 1004, 1014, 1036], "eta0": [48, 665, 666, 667, 675, 676, 677, 996, 1014, 1052], "eta_0": 1014, "etc": [2, 143, 155, 206, 223, 244, 258, 267, 268, 320, 321, 354, 358, 360, 371, 373, 375, 376, 383, 384, 385, 394, 397, 400, 404, 407, 411, 485, 500, 524, 554, 555, 561, 562, 667, 675, 692, 718, 772, 801, 815, 836, 839, 869, 880, 913, 914, 915, 916, 917, 919, 931, 932, 942, 989, 990, 994, 1000, 1003, 1019, 1020, 1024, 1031, 1038, 1040, 1041, 1050], "eth": 1041, "ethan": [1034, 1037], "ethic": 149, "etiquett": 371, "etl": [1020, 1024], "euclidean": [2, 38, 75, 90, 91, 195, 228, 236, 242, 283, 286, 291, 312, 317, 339, 347, 399, 400, 403, 408, 409, 410, 411, 413, 436, 437, 440, 441, 442, 446, 448, 453, 456, 459, 528, 534, 542, 543, 587, 614, 618, 621, 622, 675, 677, 687, 690, 692, 695, 696, 699, 763, 764, 770, 771, 772, 773, 779, 780, 781, 782, 793, 794, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 858, 859, 899, 990, 994, 997, 998, 1001, 1003, 1012, 1035, 1038, 1039, 1040, 1041, 1047, 1048, 1052], "euclidean_dist": [2, 228, 236, 373, 399, 414, 446, 450, 453, 688, 694, 763, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 1031, 1036, 1039, 1040, 1048, 1050], "euclideandist": 699, "eugen": [368, 1032, 1037, 1051], "eunji": 1039, "eunseop": 1041, "euro": 320, "europ": [411, 1010], "european": [727, 757, 1000], "eustach": [1024, 1033, 1034], "eval_and_get_f1": 328, "eval_gradi": [172, 175, 413, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624], "evalml": 1019, "evalu": [2, 28, 30, 44, 45, 46, 50, 51, 62, 69, 72, 77, 78, 82, 88, 97, 103, 104, 123, 134, 140, 141, 143, 144, 146, 149, 154, 158, 159, 170, 180, 184, 186, 188, 191, 198, 208, 223, 231, 244, 253, 255, 256, 260, 261, 262, 263, 266, 268, 269, 270, 272, 274, 275, 277, 278, 282, 290, 292, 296, 303, 308, 310, 314, 318, 319, 328, 335, 339, 346, 354, 364, 366, 371, 373, 377, 385, 388, 404, 411, 412, 413, 443, 445, 460, 462, 484, 487, 489, 490, 493, 506, 517, 533, 548, 560, 564, 565, 589, 592, 600, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 630, 631, 632, 633, 646, 652, 697, 698, 699, 700, 701, 702, 703, 704, 705, 711, 713, 714, 715, 717, 718, 727, 728, 737, 738, 743, 755, 756, 757, 758, 787, 796, 798, 799, 801, 804, 805, 807, 815, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 836, 842, 845, 846, 851, 863, 865, 866, 872, 875, 878, 879, 883, 884, 885, 890, 891, 893, 894, 895, 896, 907, 910, 913, 934, 942, 973, 992, 996, 998, 1002, 1003, 1006, 1007, 1008, 1011, 1014, 1016, 1018, 1019, 1021, 1024, 1025, 1026, 1031, 1032, 1033, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1044], "evaluate_everi": 533, "evaluate_model_and_stor": 309, "evaluation_result": 67, "evaluation_std": 347, "evaluations_std": 347, "evelyn": [1049, 1050], "even": [38, 44, 53, 54, 64, 65, 75, 77, 85, 103, 107, 116, 123, 139, 140, 141, 143, 146, 154, 155, 156, 160, 173, 183, 184, 185, 198, 206, 207, 213, 223, 229, 230, 233, 234, 238, 239, 243, 244, 246, 249, 257, 262, 264, 269, 270, 275, 277, 280, 301, 303, 305, 307, 308, 309, 313, 314, 316, 319, 322, 328, 329, 342, 346, 347, 348, 352, 353, 354, 360, 366, 370, 371, 372, 373, 375, 376, 379, 383, 385, 397, 401, 403, 404, 405, 407, 408, 410, 411, 413, 437, 439, 441, 442, 443, 444, 445, 455, 457, 529, 532, 554, 555, 556, 557, 561, 562, 580, 587, 592, 626, 627, 629, 638, 657, 658, 695, 700, 705, 716, 744, 762, 768, 775, 779, 782, 787, 789, 828, 865, 866, 888, 890, 891, 892, 893, 894, 895, 896, 897, 898, 913, 914, 915, 916, 942, 949, 969, 989, 990, 992, 994, 996, 999, 1000, 1003, 1005, 1006, 1008, 1010, 1012, 1014, 1015, 1016, 1024, 1038, 1039, 1040, 1043, 1045, 1048, 1051, 1052], "evenli": [2, 48, 85, 100, 146, 186, 210, 258, 411, 953], "event": [0, 44, 206, 223, 266, 401, 403, 586, 587, 635, 840, 936, 996, 1001, 1002, 1019, 1024, 1037], "eventu": [7, 251, 403, 412, 591, 1024], "ever": [140, 153, 380, 410, 1024], "everi": [44, 64, 120, 141, 143, 149, 151, 154, 156, 172, 178, 185, 192, 207, 226, 238, 244, 249, 254, 257, 264, 272, 275, 309, 315, 317, 319, 322, 353, 354, 366, 371, 373, 375, 379, 385, 399, 401, 403, 405, 407, 408, 411, 436, 450, 505, 528, 533, 536, 542, 554, 555, 556, 557, 558, 559, 561, 588, 589, 601, 645, 646, 648, 651, 652, 658, 659, 660, 661, 662, 663, 664, 665, 667, 671, 672, 673, 674, 675, 684, 685, 686, 692, 696, 755, 772, 780, 781, 814, 854, 913, 915, 917, 919, 937, 993, 995, 997, 1000, 1001, 1002, 1010, 1016, 1024, 1031, 1035, 1037, 1040, 1044, 1048], "everingham": 1000, "everingham2010": 1000, "everybodi": [365, 371], "everyon": [371, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "everyth": [324, 354, 375, 377, 383, 397, 399, 460, 956, 1019, 1020, 1031], "everywher": 385, "evgeni": [1042, 1051], "evid": [269, 346, 379, 403, 407, 408, 410, 643, 798, 999], "evol": 1000, "evolut": [48, 50, 275, 358, 360], "evolv": [380, 1046], "ex": [102, 369, 372, 389, 1035, 1036], "exact": [45, 47, 103, 104, 113, 125, 140, 172, 184, 192, 210, 237, 244, 253, 257, 261, 262, 263, 283, 319, 354, 358, 359, 365, 371, 373, 379, 380, 383, 384, 385, 403, 410, 412, 428, 478, 479, 480, 484, 493, 531, 532, 538, 558, 559, 637, 641, 645, 687, 692, 801, 815, 826, 827, 828, 907, 910, 989, 992, 996, 997, 1006, 1010, 1014, 1015, 1038, 1039, 1041], "exactli": [103, 134, 182, 190, 194, 201, 206, 208, 210, 254, 257, 271, 304, 342, 346, 373, 379, 400, 403, 407, 408, 411, 416, 442, 449, 465, 466, 467, 468, 469, 470, 471, 472, 473, 475, 476, 512, 523, 588, 589, 614, 675, 677, 703, 705, 764, 802, 819, 826, 992, 996, 997, 998, 1000, 1001, 1016, 1031, 1037, 1038, 1044], "exactlyzero": 52, "exagger": [100, 183, 692, 997], "examin": [159, 377, 379, 403, 854], "exampl": [2, 31, 44, 45, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 358, 359, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 378, 379, 380, 381, 383, 384, 385, 388, 389, 396, 397, 400, 401, 403, 404, 405, 406, 407, 408, 409, 410, 412, 414, 415, 416, 418, 419, 421, 422, 424, 425, 428, 429, 430, 432, 435, 452, 453, 455, 457, 459, 467, 474, 476, 477, 481, 482, 483, 490, 494, 500, 502, 503, 504, 505, 506, 513, 514, 515, 525, 526, 528, 542, 543, 544, 545, 552, 569, 570, 575, 581, 583, 584, 590, 593, 594, 596, 599, 601, 607, 611, 615, 619, 620, 623, 625, 628, 635, 636, 637, 641, 649, 650, 653, 659, 660, 662, 665, 666, 674, 682, 684, 685, 686, 694, 695, 696, 699, 708, 710, 711, 714, 715, 716, 720, 721, 724, 725, 726, 727, 729, 731, 732, 734, 737, 740, 741, 744, 745, 748, 752, 755, 757, 759, 760, 761, 764, 765, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 781, 782, 784, 792, 795, 797, 808, 809, 810, 811, 812, 813, 814, 825, 837, 839, 841, 845, 846, 855, 856, 857, 859, 860, 867, 868, 871, 873, 876, 887, 888, 890, 892, 893, 895, 896, 897, 900, 904, 906, 907, 915, 916, 917, 918, 927, 928, 929, 930, 931, 933, 935, 936, 937, 938, 939, 940, 941, 945, 947, 948, 949, 950, 951, 952, 955, 956, 963, 964, 965, 966, 969, 970, 971, 972, 974, 975, 976, 977, 978, 979, 980, 981, 982, 984, 985, 986, 987, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1012, 1013, 1014, 1015, 1016, 1017, 1020, 1021, 1022, 1024, 1026, 1028, 1032, 1033, 1034, 1035, 1037, 1038, 1039, 1041, 1044, 1046, 1047, 1048, 1050], "example_funct": 371, "example_gaussian_process_plot_gp_probabilistic_classification_after_regress": 1031, "example_gaussian_process_plot_gp_regress": 1031, "exampleclassifi": 239, "exampleclassifierexampleclassifi": 239, "exampleestim": 371, "exampleregressor": 239, "examples_pattern": 371, "exampletransform": 239, "exc": [280, 983], "exce": [115, 262, 282, 313, 413, 438, 512, 600, 648, 657, 1040, 1043, 1045], "exceed": [804, 805, 1037], "excel": [152, 365, 371, 410, 690, 694, 996, 1024], "except": [2, 51, 64, 79, 86, 103, 123, 132, 139, 140, 141, 149, 154, 155, 183, 185, 213, 220, 232, 233, 234, 239, 243, 244, 246, 257, 262, 270, 271, 275, 277, 283, 296, 299, 300, 301, 303, 305, 313, 316, 317, 319, 321, 322, 364, 371, 373, 374, 376, 383, 385, 394, 397, 399, 400, 404, 407, 408, 410, 411, 413, 426, 456, 461, 464, 478, 479, 480, 506, 551, 553, 554, 555, 557, 559, 561, 562, 565, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 610, 626, 629, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 677, 678, 686, 711, 779, 808, 838, 839, 845, 846, 848, 851, 856, 862, 863, 869, 883, 885, 903, 906, 908, 911, 914, 916, 930, 942, 943, 953, 983, 985, 989, 996, 1000, 1015, 1032, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1048, 1049, 1050, 1052], "exception": 223, "excerpt": [46, 1012], "excess": [210, 442, 1010, 1038], "exchang": [397, 1023], "excit": 1038, "exclud": [48, 58, 103, 143, 154, 155, 182, 183, 184, 185, 234, 244, 303, 309, 313, 316, 371, 375, 385, 442, 460, 462, 730, 731, 739, 784, 785, 788, 814, 822, 880, 974, 996, 1000, 1003, 1040, 1047, 1050], "exclus": [103, 154, 185, 234, 244, 313, 316, 359, 383, 385, 408, 410, 626, 627, 629, 803, 818, 821, 989, 996, 1000, 1001, 1024, 1038, 1042], "exec": 383, "execut": [65, 178, 194, 198, 238, 268, 359, 369, 371, 377, 397, 399, 403, 408, 414, 439, 457, 801, 807, 815, 824, 826, 827, 828, 829, 832, 850, 967, 968, 1010, 1013, 1021, 1033, 1036, 1039], "exemplar": [403, 436, 450], "exemplifi": 385, "exercis": [2, 360, 368, 371, 502, 1034], "exhaust": [2, 163, 264, 275, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 358, 368, 376, 384, 398, 403, 410, 801, 804, 805, 815, 895, 896, 898, 996, 1026], "exhibit": [168, 211, 339, 346, 388, 407, 408, 410, 413, 1008], "exist": [48, 49, 53, 56, 58, 86, 103, 139, 143, 154, 183, 184, 223, 234, 244, 263, 300, 303, 313, 316, 339, 365, 370, 373, 374, 377, 383, 385, 386, 389, 397, 403, 407, 408, 410, 411, 418, 423, 428, 433, 439, 440, 443, 445, 447, 449, 461, 464, 478, 479, 480, 488, 496, 530, 533, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 583, 587, 588, 595, 601, 609, 610, 631, 632, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 698, 700, 702, 763, 766, 770, 800, 802, 803, 806, 808, 809, 810, 811, 814, 816, 817, 818, 819, 820, 821, 822, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 865, 868, 870, 871, 872, 877, 878, 879, 884, 885, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 983, 992, 997, 999, 1000, 1004, 1006, 1007, 1010, 1024, 1028, 1031, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "exist_ok": 48, "existing_credit": 257, "exit": [104, 283, 375, 379, 464], "exp": [2, 80, 87, 99, 129, 137, 146, 168, 194, 215, 243, 288, 293, 296, 313, 314, 318, 339, 401, 403, 404, 409, 415, 448, 461, 518, 530, 533, 614, 615, 621, 640, 760, 767, 777, 862, 863, 881, 994, 996, 998, 1002, 1003, 1004, 1013, 1014, 1015], "exp10": 183, "exp_dirichlet_component_": 533, "exp_dist_embed": 293, "expand": [44, 64, 82, 98, 139, 141, 154, 156, 185, 234, 244, 275, 309, 313, 314, 319, 352, 353, 354, 363, 373, 410, 440, 446, 496, 554, 555, 556, 557, 561, 562, 563, 913, 914, 915, 916, 1000, 1032, 1039, 1040, 1047], "expand_frame_repr": 223, "expans": [44, 178, 314, 446, 880, 1040], "expect": [2, 44, 45, 50, 53, 62, 64, 67, 73, 79, 86, 103, 104, 116, 118, 125, 134, 137, 139, 141, 143, 146, 149, 154, 156, 160, 161, 167, 173, 180, 181, 183, 185, 195, 199, 206, 207, 208, 210, 213, 223, 234, 235, 236, 239, 242, 243, 244, 249, 250, 253, 254, 257, 262, 264, 269, 270, 283, 308, 309, 313, 316, 321, 342, 344, 346, 347, 354, 358, 359, 371, 373, 375, 376, 377, 378, 379, 380, 383, 384, 385, 386, 388, 394, 399, 401, 403, 404, 405, 407, 410, 411, 412, 414, 426, 460, 461, 463, 464, 465, 478, 479, 480, 493, 520, 529, 533, 535, 538, 549, 551, 552, 553, 555, 557, 559, 560, 562, 564, 565, 567, 569, 572, 586, 587, 589, 593, 595, 604, 610, 626, 631, 632, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 673, 674, 677, 678, 695, 704, 705, 716, 736, 789, 795, 801, 815, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 851, 855, 856, 857, 858, 863, 866, 871, 878, 879, 882, 885, 886, 895, 896, 903, 905, 906, 907, 908, 909, 910, 911, 914, 916, 926, 942, 943, 944, 964, 970, 989, 996, 999, 1000, 1002, 1006, 1010, 1014, 1015, 1016, 1021, 1023, 1026, 1031, 1032, 1033, 1036, 1037, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "expected_anomaly_fract": 242, "expected_failed_check": [942, 943, 944, 1050], "expected_i": 146, "expected_n_anomali": 242, "expected_ri": 705, "expected_to_fail": [572, 942], "expected_to_fail_reason": [572, 942], "expectedli": 346, "expens": [89, 104, 140, 154, 160, 167, 182, 184, 233, 260, 270, 272, 335, 339, 346, 347, 348, 360, 377, 385, 403, 404, 407, 410, 411, 445, 464, 505, 801, 804, 805, 815, 828, 903, 905, 997, 999, 1010, 1015, 1024, 1035], "experi": [31, 134, 170, 174, 182, 183, 184, 185, 188, 208, 257, 280, 308, 342, 347, 348, 359, 365, 371, 373, 374, 386, 407, 512, 729, 786, 996, 1001, 1012, 1018, 1019, 1024], "experienc": 371, "experiment": [2, 146, 178, 179, 206, 274, 275, 314, 315, 320, 321, 322, 373, 374, 381, 383, 385, 394, 407, 490, 493, 546, 577, 578, 626, 696, 804, 805, 989, 990, 996, 999, 1000, 1019, 1020, 1026, 1039, 1040, 1043, 1044, 1045, 1046, 1048, 1049, 1050, 1051, 1052], "expert_r": 404, "expertis": [370, 371, 383], "expit": [145, 257, 322, 410, 558, 996, 1038], "explain": [2, 44, 45, 52, 65, 89, 105, 115, 116, 128, 146, 167, 172, 173, 184, 185, 206, 223, 232, 239, 254, 273, 309, 320, 346, 347, 359, 371, 373, 383, 397, 406, 408, 413, 490, 518, 521, 531, 538, 541, 546, 624, 647, 655, 668, 679, 721, 722, 723, 724, 725, 729, 786, 996, 1003, 1016, 1042, 1044, 1045], "explained_vari": [347, 1000], "explained_variance_": [116, 531, 538, 541, 1038], "explained_variance_ratio": 1037, "explained_variance_ratio_": [105, 128, 320, 347, 408, 531, 538, 541, 546, 1034, 1037], "explained_variance_scor": [2, 399, 1000, 1034, 1038, 1045, 1051], "explan": [65, 116, 239, 358, 370, 371, 401, 411, 989, 999, 1001, 1016, 1019, 1024, 1034], "explic": 1012, "explicit": [44, 143, 149, 180, 184, 188, 231, 239, 277, 339, 358, 359, 360, 370, 372, 383, 385, 386, 394, 404, 411, 417, 468, 496, 498, 499, 538, 548, 549, 637, 638, 640, 675, 801, 802, 809, 849, 857, 865, 905, 910, 965, 992, 994, 996, 1000, 1010, 1016, 1019, 1021, 1031, 1035, 1040, 1041, 1044, 1048, 1051], "explicitli": [44, 80, 103, 139, 141, 143, 155, 167, 174, 178, 179, 207, 233, 234, 235, 239, 244, 246, 257, 262, 275, 277, 301, 313, 316, 319, 322, 339, 348, 354, 359, 365, 367, 371, 372, 373, 375, 383, 385, 394, 397, 399, 407, 411, 413, 490, 532, 546, 547, 577, 578, 595, 626, 647, 657, 658, 668, 679, 709, 722, 728, 783, 789, 790, 804, 805, 836, 839, 845, 846, 871, 895, 896, 988, 989, 990, 992, 994, 996, 997, 1000, 1002, 1003, 1010, 1024, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1043, 1044, 1045, 1049, 1050], "explicitvalu": 52, "explod": 309, "exploit": [63, 282, 397, 1001, 1020, 1034], "exploit_incremental_learn": [807, 829], "explor": [53, 73, 104, 137, 138, 149, 186, 229, 230, 242, 244, 253, 257, 261, 262, 263, 264, 265, 271, 272, 280, 310, 314, 335, 347, 354, 365, 368, 370, 377, 403, 410, 468, 801, 804, 812, 886, 989, 996, 997, 999, 1005, 1007, 1010, 1024, 1037], "exploratori": [183, 371, 1024], "explos": [801, 815, 826, 827, 828], "expm1": 107, "expon": [243, 413, 615, 675, 676, 677, 813, 862, 863, 880, 989], "exponenti": [2, 80, 107, 155, 167, 172, 243, 288, 293, 409, 410, 413, 445, 533, 551, 556, 613, 618, 621, 638, 642, 759, 760, 845, 846, 850, 862, 863, 880, 992, 996, 1000, 1015, 1038, 1044], "export": [2, 369, 372, 373, 389, 399, 917, 918, 1016, 1019, 1040, 1050], "export_graphviz": [2, 1016, 1036, 1038, 1044, 1046, 1047, 1049], "export_text": [2, 1016, 1040, 1047, 1052], "expos": [2, 143, 151, 154, 163, 239, 257, 276, 280, 309, 315, 317, 322, 359, 364, 368, 373, 385, 394, 401, 404, 410, 412, 413, 433, 460, 550, 551, 558, 559, 564, 565, 566, 567, 591, 592, 600, 610, 800, 801, 804, 805, 815, 823, 834, 835, 836, 837, 838, 839, 920, 996, 1000, 1002, 1019, 1028, 1031, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1051, 1052], "exposur": [206, 223, 996], "express": [44, 47, 52, 53, 103, 104, 134, 140, 167, 172, 183, 244, 253, 257, 261, 262, 263, 264, 309, 314, 332, 339, 348, 365, 366, 371, 372, 377, 383, 397, 403, 408, 409, 410, 411, 446, 452, 453, 586, 587, 589, 716, 789, 801, 807, 815, 824, 826, 827, 828, 829, 832, 852, 992, 996, 1000, 1004, 1010, 1011, 1016, 1039], "expsinesquar": [2, 167, 172, 176, 413], "exstrac": 1000, "extend": [32, 53, 64, 88, 89, 104, 132, 160, 207, 252, 257, 270, 321, 335, 368, 369, 383, 385, 401, 403, 408, 410, 433, 495, 630, 657, 720, 822, 834, 837, 838, 870, 872, 889, 905, 906, 909, 920, 992, 1000, 1001, 1015, 1020, 1022, 1026, 1036, 1037, 1038, 1039, 1041, 1046, 1050], "extens": [270, 272, 288, 358, 359, 365, 366, 369, 372, 374, 375, 379, 380, 383, 397, 403, 408, 493, 500, 531, 742, 942, 951, 997, 999, 1000, 1019, 1024, 1031, 1037, 1044, 1045, 1047, 1048], "extent": [0, 2, 49, 91, 169, 170, 171, 236, 343, 436, 532, 696, 798, 1000], "extercond": 143, "extern": [167, 257, 360, 364, 368, 371, 373, 376, 383, 384, 385, 400, 403, 411, 412, 413, 591, 609, 610, 717, 738, 796, 996, 999, 1000, 1003, 1016, 1020, 1026, 1039, 1043], "externallydefin": 172, "exterqu": [143, 154], "extmath": [2, 104, 244, 251, 262, 346, 380, 449, 946, 947, 948, 949, 950, 951, 1031, 1032, 1037, 1038, 1041, 1045, 1046, 1048, 1051, 1052], "extr": 48, "extra": [2, 80, 103, 142, 143, 149, 154, 183, 184, 185, 234, 241, 244, 283, 309, 313, 316, 319, 348, 369, 370, 372, 385, 397, 399, 410, 411, 434, 439, 443, 455, 460, 529, 554, 555, 563, 588, 589, 700, 701, 826, 849, 915, 916, 938, 999, 1003, 1031, 1034, 1036, 1037, 1039, 1044, 1046, 1051, 1052], "extra_cflag": 377, "extra_tre": [915, 916], "extract": [2, 17, 43, 44, 46, 48, 51, 52, 56, 83, 88, 101, 102, 103, 104, 115, 120, 140, 159, 163, 180, 220, 244, 255, 262, 268, 271, 301, 338, 346, 348, 354, 363, 366, 368, 377, 380, 383, 403, 404, 407, 408, 446, 448, 451, 452, 458, 460, 484, 485, 490, 491, 500, 501, 528, 531, 532, 533, 534, 535, 536, 537, 538, 540, 542, 543, 544, 581, 582, 586, 587, 589, 591, 592, 595, 597, 630, 718, 789, 801, 815, 842, 864, 865, 910, 922, 949, 958, 965, 989, 997, 1001, 1005, 1010, 1014, 1019, 1021, 1024, 1026, 1031, 1032, 1040, 1043, 1051], "extract_dbscan": 403, "extract_patches_2d": [2, 83, 123, 411, 585, 1039], "extract_scor": 266, "extractal": 48, "extractor": [206, 301, 360, 366, 385, 411, 500, 579, 580, 586, 587, 589, 989, 1031], "extran": 371, "extrapol": [44, 67, 155, 167, 190, 207, 235, 266, 884, 1000, 1010, 1016, 1044, 1046], "extratre": [142, 152, 358, 1034], "extratreeclassifi": [2, 554, 563, 916, 990, 1001, 1016, 1035, 1040, 1041, 1042, 1044, 1045, 1046, 1048, 1050], "extratreeregressor": [2, 555, 560, 563, 915, 990, 1001, 1006, 1016, 1040, 1041, 1042, 1044, 1045, 1046, 1048, 1050], "extratreesclassifi": [2, 142, 152, 321, 410, 412, 555, 561, 563, 915, 916, 990, 1001, 1034, 1035, 1039, 1040, 1041, 1044, 1045, 1046, 1047, 1048, 1050], "extratreesregressor": [2, 241, 321, 410, 554, 562, 563, 915, 916, 990, 1001, 1034, 1037, 1039, 1040, 1041, 1044, 1045, 1046, 1047, 1048, 1050], "extrem": [2, 146, 206, 208, 241, 242, 276, 303, 310, 327, 347, 371, 374, 402, 403, 408, 554, 555, 561, 562, 563, 631, 632, 678, 725, 753, 915, 916, 917, 919, 1000, 1002, 1052], "extrema": 994, "exxon": 52, "ey": [111, 112, 250, 254, 335, 366, 531, 538, 547], "eyast": 1045, "ezebunandu": 1043, "ezeiza": 765, "ezri": 1044, "f": [0, 2, 44, 45, 47, 51, 52, 53, 55, 56, 58, 59, 64, 67, 69, 73, 78, 81, 82, 85, 86, 88, 91, 97, 100, 103, 107, 116, 123, 134, 137, 140, 141, 143, 144, 146, 149, 154, 155, 157, 159, 162, 163, 165, 167, 173, 174, 176, 180, 182, 183, 184, 185, 186, 188, 194, 195, 198, 199, 200, 204, 206, 207, 208, 210, 211, 215, 219, 221, 223, 226, 236, 238, 239, 242, 243, 244, 246, 253, 257, 261, 262, 263, 264, 265, 266, 269, 270, 272, 273, 275, 276, 277, 283, 286, 298, 299, 300, 305, 308, 309, 312, 314, 316, 318, 319, 320, 321, 324, 325, 328, 334, 339, 342, 346, 347, 348, 354, 366, 371, 372, 373, 377, 379, 383, 397, 401, 404, 408, 410, 411, 412, 413, 483, 505, 506, 528, 529, 534, 535, 563, 579, 580, 581, 585, 590, 593, 594, 596, 597, 598, 602, 603, 604, 605, 606, 607, 616, 626, 631, 634, 657, 696, 713, 724, 727, 730, 731, 757, 784, 785, 788, 789, 802, 803, 806, 808, 809, 810, 811, 814, 816, 817, 818, 819, 820, 821, 822, 823, 829, 830, 832, 862, 863, 867, 876, 879, 880, 884, 885, 886, 912, 920, 931, 932, 983, 992, 995, 997, 1004, 1007, 1008, 1010, 1014, 1021, 1033, 1039, 1040, 1041, 1043, 1045, 1051], "f0_c0": 886, "f0_c1": 886, "f0_c2": 886, "f0e442": 248, "f1": [2, 46, 63, 69, 102, 160, 261, 301, 324, 325, 328, 407, 713, 730, 731, 739, 784, 823, 1000, 1001, 1035, 1047], "f1_c0": 886, "f1_c1": 886, "f1_c2": 886, "f1_macro": [407, 1000, 1035], "f1_micro": [1000, 1035], "f1_sampl": 1000, "f1_score": [2, 63, 270, 328, 366, 399, 402, 739, 1000, 1031, 1033, 1034, 1035, 1036, 1040, 1041, 1047, 1048, 1050, 1052], "f1_weight": [1000, 1035], "f2": [375, 1001], "f2001": 1000, "f2006": 1000, "f3": 1001, "f4": 495, "f401": [126, 146, 178, 179, 184, 225, 227, 274, 275, 314], "f64": 262, "f781bf": [75, 79, 95, 96], "f7bd01": 75, "f_": [410, 413, 634, 731, 1000], "f_0": 151, "f_1": [151, 1000], "f_beta": 1000, "f_c": [160, 246, 316], "f_classif": [2, 103, 159, 160, 246, 316, 338, 412, 590, 593, 594, 596, 597, 598, 602, 604, 607], "f_classiffunct": [103, 160, 246, 316], "f_i": 401, "f_idx": 151, "f_j": [401, 1008], "f_m": 410, "f_n": 270, "f_p": 270, "f_regress": [2, 87, 158, 412, 590, 593, 594, 596, 597, 598, 602, 603, 607, 1034, 1038, 1045, 1048], "f_score": 270, "f_statist": [603, 604], "f_test": 158, "fa": [2, 119, 130, 180, 278, 377, 408, 469, 472, 529, 538, 801, 827, 1021], "fa_estim": 120, "fa_scor": 127, "fab": [1024, 1041, 1042], "fabia": [400, 719], "fabian": [0, 393, 1031, 1032, 1033, 1034, 1035, 1037, 1038, 1040, 1048], "fabiana": 1042, "fabianhen": [1050, 1051], "fabio": 1037, "fabisch": [0, 393, 1033, 1034, 1035, 1037, 1052], "fabrizio": 1046, "face": [2, 43, 45, 55, 72, 84, 86, 119, 123, 125, 129, 130, 180, 231, 364, 371, 375, 403, 408, 410, 445, 468, 490, 491, 492, 518, 529, 530, 534, 536, 537, 538, 540, 555, 582, 656, 672, 697, 713, 815, 831, 848, 885, 910, 934, 1003, 1016, 1017, 1021, 1026, 1031, 1039, 1050], "face_id": 241, "facecolor": [52, 64, 71, 93, 120, 136, 175, 225, 240, 263, 290, 305, 333, 336, 339, 340, 341], "faces_cent": 120, "facial": 366, "facil": [999, 1019], "facilit": [358, 385, 397, 399, 1019, 1020, 1037, 1040], "fact": [44, 51, 58, 63, 112, 116, 134, 144, 146, 185, 236, 246, 280, 282, 346, 365, 378, 383, 385, 399, 406, 408, 409, 410, 411, 648, 667, 669, 704, 994, 996, 1000, 1003, 1010, 1014, 1015, 1020, 1024, 1045], "facto": 1041, "factor": [2, 11, 43, 46, 49, 52, 64, 68, 79, 80, 86, 88, 95, 119, 125, 129, 143, 151, 152, 154, 180, 183, 219, 230, 232, 242, 257, 274, 275, 278, 283, 284, 298, 299, 303, 305, 309, 314, 316, 317, 322, 326, 334, 358, 359, 367, 371, 377, 380, 385, 400, 403, 410, 411, 413, 436, 438, 450, 465, 467, 468, 469, 470, 472, 474, 484, 501, 511, 512, 524, 529, 532, 533, 535, 537, 538, 541, 542, 543, 544, 546, 547, 558, 559, 560, 586, 589, 595, 612, 648, 649, 650, 653, 654, 655, 681, 682, 692, 719, 784, 801, 804, 805, 827, 851, 885, 899, 901, 909, 948, 949, 989, 996, 997, 1003, 1010, 1013, 1017, 1021, 1025, 1026, 1031, 1032, 1034, 1035, 1037, 1045, 1047], "factoranalysi": [2, 120, 127, 130, 408, 541, 1032, 1034, 1043, 1045], "factori": [94, 257, 263, 411, 924, 926], "facundo": [1042, 1045], "fagan": 1040, "fail": [2, 44, 87, 99, 121, 127, 175, 176, 190, 194, 210, 239, 243, 263, 269, 312, 321, 359, 369, 371, 374, 379, 386, 389, 406, 407, 436, 468, 470, 572, 675, 676, 677, 711, 862, 863, 921, 923, 930, 942, 943, 944, 989, 997, 1031, 1032, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1045, 1046, 1047, 1048, 1050, 1051], "failur": [180, 181, 183, 203, 371, 379, 389, 572, 656, 786, 831, 931, 932, 942, 943, 944, 1021, 1023, 1024, 1044, 1045, 1049, 1051, 1052], "fair": [52, 65, 321, 328, 410, 690, 694, 834, 1000, 1001, 1024], "fairer": 354, "fairli": [113, 145, 156, 227, 299, 379, 403, 556, 557, 699, 1001], "faith": [58, 340], "fake": 411, "falak": 1040, "fall": [26, 31, 44, 53, 146, 149, 174, 262, 263, 371, 403, 411, 428, 442, 443, 505, 506, 728, 729, 795, 882, 894, 954, 999, 1000, 1010, 1040, 1050], "fallback": [386, 389, 833, 834, 1000], "fals": [2, 44, 45, 47, 48, 50, 51, 52, 54, 55, 59, 60, 62, 64, 65, 69, 70, 71, 77, 79, 80, 81, 87, 88, 97, 100, 102, 103, 104, 110, 112, 118, 124, 128, 129, 134, 139, 140, 141, 143, 146, 147, 149, 150, 151, 154, 155, 156, 160, 167, 172, 173, 174, 175, 183, 184, 185, 186, 190, 191, 192, 194, 195, 201, 204, 206, 207, 211, 212, 213, 221, 223, 225, 226, 227, 228, 233, 234, 235, 239, 240, 242, 243, 244, 245, 246, 248, 253, 257, 260, 261, 262, 263, 264, 266, 267, 270, 271, 272, 273, 274, 275, 276, 277, 278, 283, 287, 293, 296, 299, 300, 301, 303, 304, 309, 310, 312, 313, 314, 315, 316, 317, 319, 320, 322, 326, 335, 337, 339, 342, 343, 346, 347, 365, 371, 372, 373, 376, 385, 394, 399, 401, 402, 403, 404, 405, 407, 408, 410, 411, 412, 413, 415, 416, 428, 429, 430, 431, 432, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 447, 448, 449, 450, 455, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 505, 506, 507, 509, 510, 512, 520, 521, 524, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 603, 604, 605, 606, 607, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 631, 634, 636, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 690, 694, 695, 697, 698, 699, 700, 701, 702, 703, 708, 709, 711, 712, 713, 714, 715, 718, 719, 727, 728, 729, 730, 731, 732, 739, 744, 755, 757, 762, 764, 768, 770, 775, 779, 783, 784, 785, 786, 788, 790, 795, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 815, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 874, 875, 876, 877, 878, 880, 881, 882, 883, 884, 885, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 921, 922, 923, 924, 925, 929, 930, 931, 932, 942, 943, 944, 950, 962, 963, 964, 966, 967, 970, 971, 973, 980, 985, 986, 988, 989, 990, 996, 1000, 1003, 1010, 1014, 1015, 1031, 1032, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1048, 1049, 1050, 1051, 1052], "false_": 635, "false_discovery_r": 593, "falseamount": 154, "falseappli": 264, "falsedu": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "falseen": [244, 245, 261, 263, 314], "falseflag": [154, 183], "falseif": [52, 103, 104, 139, 143, 150, 154, 155, 156, 160, 183, 184, 185, 233, 234, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 309, 313, 314, 316, 322], "falseind": 139, "falseonli": 184, "falseset": 104, "falsethi": [103, 143, 154, 183, 184, 185, 234, 244, 275, 309, 313, 316], "falsewhen": [64, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 183, 185, 192, 233, 234, 235, 243, 244, 246, 257, 262, 275, 277, 301, 309, 313, 316, 317, 319, 322], "falsewheth": [64, 141, 154, 156, 172, 185, 192, 243, 244, 245, 257, 261, 263, 264, 275, 314, 319], "falsewil": 155, "famili": [2, 46, 243, 257, 358, 360, 385, 403, 406, 408, 411, 412, 590, 593, 594, 596, 597, 598, 604, 862, 863, 881, 893, 996, 1010, 1014, 1035, 1045], "familiar": [371, 409, 1039], "famou": [366, 368, 410, 1015], "famous": 1002, "fan": [0, 359, 386, 392, 399, 1015, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "fanci": 411, "fancybox": 341, "fanelli": [1046, 1047], "fang": [657, 1038, 1039], "fanni": 1041, "fantasi": 1005, "fantast": 1024, "faouzi": [1041, 1042], "faq": [0, 379, 407, 692, 997, 1010], "far": [63, 93, 113, 168, 174, 183, 184, 206, 223, 257, 335, 339, 346, 348, 371, 380, 413, 720, 885, 974, 1005, 1006, 1015, 1024], "farach": 992, "farahsae": 1039, "farawai": 1003, "fare": [103, 185, 246, 316, 317, 1035, 1036], "fargo": 52, "farhan": 1047, "farid": 1050, "farlei": [0, 393, 1031], "farouk": [1039, 1040], "farther": 726, "farthest": 403, "farwel": 1051, "fasci": [1050, 1051], "fashion": [2, 47, 64, 139, 141, 144, 154, 156, 185, 213, 244, 272, 275, 314, 319, 352, 353, 359, 385, 400, 401, 403, 408, 410, 550, 554, 555, 556, 557, 561, 562, 563, 600, 626, 831, 854, 869, 872, 878, 889, 913, 914, 915, 916, 970, 990, 996, 1000, 1010, 1016, 1040], "fast": [2, 53, 65, 95, 103, 104, 139, 155, 183, 188, 194, 198, 220, 221, 233, 234, 237, 238, 244, 246, 253, 257, 261, 262, 263, 264, 277, 301, 304, 313, 316, 322, 348, 358, 366, 371, 380, 397, 399, 403, 405, 407, 408, 410, 411, 415, 442, 443, 465, 470, 505, 529, 530, 532, 535, 537, 541, 544, 561, 562, 563, 586, 587, 589, 631, 632, 639, 657, 658, 671, 673, 686, 699, 801, 815, 826, 827, 837, 838, 845, 846, 850, 861, 949, 969, 992, 996, 999, 1002, 1003, 1005, 1006, 1016, 1019, 1024, 1031, 1032, 1037, 1038, 1041, 1042], "fast_dict": 1041, "fast_dot": 1038, "fast_logdet": [2, 380], "fast_svd": 1031, "faster": [38, 47, 58, 97, 100, 103, 105, 120, 139, 140, 143, 144, 146, 149, 151, 154, 155, 163, 183, 184, 188, 192, 195, 206, 208, 220, 221, 223, 233, 234, 238, 242, 243, 244, 246, 257, 262, 277, 283, 285, 300, 301, 309, 313, 315, 316, 320, 321, 322, 346, 347, 348, 358, 365, 371, 379, 380, 385, 397, 403, 408, 412, 413, 414, 415, 439, 443, 445, 447, 448, 449, 458, 505, 528, 529, 530, 533, 534, 535, 536, 537, 539, 540, 542, 543, 544, 545, 556, 557, 558, 559, 560, 642, 645, 646, 651, 652, 657, 658, 659, 660, 661, 662, 671, 673, 683, 686, 691, 695, 727, 757, 779, 780, 781, 845, 846, 847, 850, 855, 862, 863, 880, 882, 884, 894, 898, 949, 969, 989, 993, 996, 1001, 1003, 1004, 1007, 1012, 1014, 1015, 1016, 1019, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "fastest": [90, 183, 261, 348, 443, 669, 671, 673, 686, 948, 949, 999], "fastest_top_recall_high_precision_index": 261, "fastica": [2, 119, 180, 205, 408, 529, 532, 538, 1021, 1031, 1033, 1039, 1045, 1046, 1049], "fastkmean": 445, "fastmcd": [405, 465, 470], "fastnc": 861, "fat": [518, 521], "fatima": [1045, 1048], "fato": 1044, "fauchereau": 1044, "fault": [379, 1039, 1041, 1043], "faulti": [209, 1031], "faust": [1049, 1052], "favor": [45, 67, 113, 140, 248, 254, 383, 405, 410, 731, 809, 811, 864, 989, 1008, 1033, 1035, 1037, 1038, 1040, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "favorit": [371, 383, 1024], "favour": [793, 997, 999, 1040, 1051, 1052], "fawcett": [789, 790, 1000], "fazlul": 1033, "fbach": [528, 534], "fbeta_scor": [2, 399, 730, 743, 784, 1000, 1033, 1034, 1035, 1036, 1041, 1047, 1051, 1052], "fc": [49, 288, 366], "fc2009": 1000, "fcd116": 118, "fcharra": 1046, "fcluster": 186, "fcostin": 1031, "fd": 48, "fdr": 590, "fe6100": 201, "feasibl": [371, 874, 875, 885], "feast": 404, "feat": [48, 50, 375, 411], "feat0": [234, 313], "feat1": [234, 313, 411], "feat2": [234, 313, 411], "feat3": [234, 313, 411], "feat_idx": 626, "feat_nam": 162, "featur": [2, 8, 16, 17, 18, 24, 26, 33, 43, 45, 46, 47, 48, 50, 51, 52, 55, 58, 59, 63, 64, 65, 67, 68, 69, 70, 72, 77, 83, 91, 93, 96, 101, 102, 103, 104, 105, 111, 112, 115, 116, 118, 120, 122, 124, 127, 128, 130, 133, 135, 138, 140, 142, 146, 148, 150, 153, 154, 155, 156, 158, 160, 167, 168, 169, 172, 173, 175, 178, 179, 181, 182, 183, 184, 189, 191, 192, 193, 194, 195, 197, 198, 200, 204, 205, 206, 207, 208, 210, 211, 213, 214, 220, 221, 222, 226, 231, 233, 234, 236, 241, 242, 244, 245, 246, 255, 257, 258, 260, 261, 262, 263, 266, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 282, 286, 287, 288, 291, 292, 294, 297, 298, 300, 302, 303, 306, 310, 311, 313, 316, 317, 318, 319, 320, 321, 322, 324, 325, 327, 328, 329, 330, 331, 332, 335, 339, 342, 345, 348, 351, 352, 353, 354, 363, 364, 365, 366, 367, 368, 369, 373, 374, 376, 378, 379, 380, 383, 384, 385, 386, 388, 389, 391, 397, 401, 403, 405, 406, 407, 408, 409, 413, 414, 415, 416, 417, 419, 424, 426, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 505, 506, 507, 509, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 525, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 570, 577, 578, 579, 580, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 609, 610, 612, 613, 614, 617, 618, 619, 621, 622, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 681, 684, 685, 686, 687, 688, 689, 690, 691, 692, 697, 701, 702, 703, 713, 721, 722, 723, 724, 725, 742, 743, 746, 747, 749, 759, 760, 764, 765, 767, 768, 769, 770, 771, 772, 774, 775, 776, 777, 778, 779, 782, 786, 789, 791, 793, 794, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 890, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 922, 931, 932, 946, 966, 974, 975, 976, 980, 988, 989, 992, 994, 995, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1011, 1012, 1013, 1014, 1015, 1016, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1026, 1028, 1029, 1030, 1031, 1032, 1033, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "feature_": 162, "feature_0": 918, "feature_1": [630, 918], "feature_2": 630, "feature_3": 162, "feature_4": 162, "feature_8": 162, "feature_all_": 842, "feature_count_": [840, 842, 844], "feature_extract": [2, 48, 55, 58, 80, 81, 83, 84, 87, 99, 102, 123, 180, 264, 328, 345, 346, 347, 348, 360, 366, 403, 404, 411, 460, 541, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 878, 998, 1031, 1032, 1033, 1034, 1037, 1038], "feature_import": 147, "feature_importances_": [141, 147, 163, 185, 186, 385, 410, 412, 550, 551, 554, 555, 556, 557, 561, 562, 563, 591, 592, 595, 913, 914, 915, 916, 1033, 1036, 1040], "feature_index": 411, "feature_indices_": 1039, "feature_info": 512, "feature_log_prob_": [840, 841, 842, 844], "feature_map": [237, 303], "feature_map__n_compon": 237, "feature_map_fouri": 237, "feature_map_nystroem": [237, 638], "feature_nam": [55, 58, 103, 126, 130, 141, 143, 147, 151, 154, 155, 163, 183, 184, 185, 201, 214, 234, 243, 244, 277, 286, 303, 309, 312, 313, 314, 316, 319, 332, 346, 351, 364, 366, 376, 404, 460, 486, 487, 489, 493, 497, 498, 499, 501, 502, 507, 580, 630, 631, 632, 886, 917, 918, 919, 1008, 1016, 1047], "feature_name_combin": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316, 878, 1047], "feature_names_": 579, "feature_names_in": 1045, "feature_names_in_": [246, 310, 315, 373, 385, 424, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 609, 610, 626, 627, 628, 629, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 800, 801, 804, 805, 815, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 988, 1044, 1045, 1046, 1047, 1049], "feature_names_out": [139, 419, 424, 438, 439, 441, 443, 445, 460, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 563, 564, 565, 566, 567, 579, 586, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 688, 689, 692, 849, 854, 857, 861, 864, 865, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 1045, 1048], "feature_rang": [104, 301, 875, 891, 1010, 1033, 1043], "feature_select": [2, 87, 103, 104, 106, 157, 158, 159, 160, 161, 162, 163, 180, 246, 314, 316, 338, 354, 385, 394, 404, 412, 579, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 989, 1021, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1050], "feature_selector": 163, "feature_to_plot": 202, "feature_union": 1047, "featureagglomer": [2, 84, 87, 436, 437, 1017, 1034, 1040, 1041, 1044, 1045, 1047, 1048, 1049], "featureand": 150, "featureforg": 1024, "featurehash": [2, 48, 58, 102, 180, 345, 346, 347, 360, 366, 411, 484, 579, 586, 587, 588, 589, 878, 1021, 1032, 1037, 1038, 1039, 1045, 1046, 1051], "featureheash": 348, "featurenam": 139, "features_": [628, 990], "features__pca__n_compon": 106, "features__univ_select__k": 106, "features_idx": 303, "features_info": 184, "features_nam": [182, 1038], "features_samples_ratio": 70, "features_select": 162, "featureselector": 599, "featuresout": 264, "featuresshould": 391, "featuretool": 1019, "featureunion": [2, 7, 44, 103, 106, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316, 363, 385, 394, 460, 628, 867, 990, 1020, 1024, 1026, 1032, 1035, 1036, 1037, 1039, 1040, 1041, 1042, 1043, 1045, 1046, 1047, 1049, 1051], "featureweight": [104, 160, 270], "featurewis": [2, 881], "feb": [74, 436, 450], "februari": [0, 405, 469, 1000, 1032, 1036, 1048], "fed": [48, 154, 354, 366, 411, 989, 1005, 1010, 1042], "feda": [1039, 1040], "feder": 1019, "federico": [1033, 1034, 1039, 1040, 1045], "federicopisanu": 1041, "feed": [48, 103, 116, 139, 143, 154, 183, 184, 207, 234, 239, 244, 313, 316, 348, 366, 376, 383, 403, 411, 743, 878, 1001], "feedback": [260, 321, 369, 370, 371, 372, 386, 1019, 1023, 1039], "feedforward": [862, 863], "feedstock": 375, "feel": [65, 179, 303, 321, 370, 371, 379, 403, 442, 1016, 1050], "feel_temp": [44, 184], "feghali": 1048, "fei": [560, 1006], "feickert": 1050, "feld": [1035, 1047], "feldbauer": [1039, 1040, 1041, 1042, 1045], "feldman": [1033, 1038, 1039, 1040, 1041], "felip": [1044, 1045, 1046, 1047], "felix": [1033, 1038, 1039, 1041, 1043, 1044, 1045], "femal": [103, 183, 317, 376, 878, 879, 1010], "fenc": 376, "feng": [1041, 1043, 1044, 1045], "fenil": 1044, "fenx": 1039, "fercoq": 996, "ferdman": 1048, "ferenc": 1024, "fernand": [1039, 1045, 1046], "fernandez": 1040, "fernando": [1036, 1043], "fern\u00e1ndez": 1045, "ferrando": 1041, "ferrari": 1039, "ferreira": [1039, 1044, 1045], "ferri": [412, 1000], "ferria": 1038, "ferrin": 1045, "ferriss": 1038, "ferr\u00e9": 1045, "ferr\u00edn": 1042, "fetal": 242, "fetch": [2, 52, 56, 154, 183, 223, 257, 264, 277, 364, 365, 366, 371, 375, 376, 379, 408, 488, 493, 586, 587, 589, 1039, 1047], "fetch_": 1038, "fetch_20newsgroup": [2, 55, 58, 102, 264, 328, 346, 347, 348, 366, 485, 1036, 1041, 1049, 1051], "fetch_20newsgroups_vector": [2, 47, 220, 236, 366, 1031, 1041, 1043, 1048, 1049, 1051], "fetch_california_h": [2, 140, 144, 178, 179, 303, 314, 366, 1040, 1042, 1049], "fetch_covtyp": [2, 188, 242, 314, 366, 1040, 1043, 1045, 1049], "fetch_fil": [2, 53, 321, 1050], "fetch_kddcup99": [2, 242, 366, 1038, 1039, 1040, 1043, 1044, 1049], "fetch_lfw_pair": [2, 366, 1036, 1046, 1049, 1051], "fetch_lfw_peopl": [2, 46, 366, 1046, 1049, 1051], "fetch_mldata": 1039, "fetch_olivetti_fac": [2, 83, 120, 241, 366, 1039, 1040, 1041, 1049], "fetch_openml": [2, 44, 45, 53, 103, 107, 143, 149, 154, 172, 183, 184, 185, 206, 213, 221, 223, 233, 242, 246, 257, 277, 280, 282, 283, 300, 309, 312, 316, 319, 365, 375, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047], "fetch_rcv1": [2, 366, 1036, 1040, 1049], "fetch_species_distribut": [2, 51, 296, 1040, 1049], "fetcher": [321, 364, 1036, 1038, 1047], "feth": 1031, "feurer": [1034, 1039], "fevott": [408, 535, 537, 544], "few": [0, 47, 55, 58, 80, 85, 100, 124, 143, 149, 151, 154, 170, 173, 174, 198, 206, 208, 223, 238, 239, 248, 257, 265, 266, 270, 295, 300, 303, 307, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 322, 324, 342, 348, 358, 366, 367, 368, 371, 373, 384, 386, 394, 397, 400, 401, 403, 407, 408, 410, 412, 413, 445, 558, 559, 654, 692, 695, 898, 949, 970, 996, 997, 999, 1000, 1003, 1004, 1013, 1015, 1016, 1024, 1037, 1047, 1049], "fewer": [44, 54, 64, 88, 104, 134, 142, 144, 206, 244, 262, 358, 372, 403, 412, 413, 414, 444, 457, 538, 592, 696, 835, 953, 996, 1001, 1003, 1036, 1037, 1038], "fewest": [262, 626], "ff": 379, "ff0000": [68, 291, 298], "ff3333": 118, "ff7216": 118, "ff7f00": [79, 95, 232], "ff9c34": [92, 97], "ffaaaa": 291, "ffc107": 307, "fft": 639, "fhaselbeck": 1043, "fhoang7": 1040, "fhr": 242, "fi": [876, 1000], "fibins": [1039, 1040], "fictiti": 1000, "fidel": 54, "fidor": 1047, "fiedler": 1037, "fiegel": [1043, 1044, 1046], "field": [103, 143, 154, 163, 183, 184, 185, 223, 234, 244, 309, 313, 316, 368, 373, 375, 400, 403, 404, 411, 460, 495, 498, 616, 996, 998, 1007, 1015, 1023, 1032], "fifth": [238, 993], "fig": [44, 45, 47, 48, 49, 50, 53, 55, 63, 65, 67, 71, 77, 78, 86, 88, 90, 93, 97, 99, 105, 109, 111, 116, 120, 125, 126, 130, 134, 140, 141, 143, 144, 146, 147, 149, 151, 152, 154, 155, 170, 176, 178, 184, 186, 188, 191, 196, 199, 200, 202, 203, 204, 206, 207, 210, 213, 218, 220, 223, 225, 226, 227, 228, 229, 230, 233, 235, 242, 243, 253, 257, 258, 259, 260, 262, 263, 264, 265, 266, 269, 272, 274, 276, 277, 282, 283, 285, 287, 288, 296, 299, 300, 303, 304, 305, 307, 308, 309, 312, 316, 317, 332, 339, 341, 342, 343, 344, 346, 347, 348, 350, 367, 378], "fig1": 100, "fig2": 100, "fig3": 100, "figaspect": 307, "fight": [100, 210, 1024], "fighter": 102, "fignum": 340, "figsiz": [44, 45, 46, 50, 52, 53, 54, 55, 63, 64, 65, 67, 68, 69, 71, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 95, 97, 98, 99, 100, 105, 107, 111, 113, 115, 116, 118, 120, 123, 124, 125, 126, 129, 130, 134, 136, 137, 144, 145, 146, 147, 149, 152, 154, 155, 158, 169, 171, 175, 176, 178, 179, 183, 184, 186, 188, 190, 191, 194, 200, 201, 202, 204, 205, 206, 207, 208, 210, 212, 213, 216, 219, 221, 223, 225, 226, 227, 229, 230, 232, 233, 235, 237, 240, 241, 242, 243, 248, 250, 251, 254, 257, 258, 259, 260, 262, 265, 266, 267, 270, 272, 273, 276, 277, 278, 282, 283, 285, 286, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 316, 317, 324, 326, 328, 333, 335, 339, 340, 341, 342, 343, 344, 346, 347, 348, 367, 919], "figtext": 328, "figur": [46, 47, 48, 50, 52, 54, 62, 63, 64, 65, 68, 73, 74, 75, 77, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 94, 95, 96, 97, 98, 100, 109, 113, 115, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 134, 135, 136, 137, 145, 146, 147, 148, 149, 152, 153, 156, 158, 159, 162, 168, 169, 170, 171, 174, 175, 179, 183, 184, 185, 186, 190, 194, 197, 201, 202, 205, 207, 208, 212, 216, 220, 221, 222, 227, 228, 229, 232, 236, 237, 238, 240, 241, 243, 248, 250, 251, 254, 256, 262, 267, 268, 278, 288, 292, 293, 296, 298, 301, 303, 305, 306, 310, 312, 314, 324, 325, 326, 328, 333, 335, 340, 351, 352, 371, 403, 409, 410, 411, 413, 434, 630, 631, 697, 698, 700, 701, 702, 807, 824, 919, 989, 993, 996, 999, 1000, 1003, 1004, 1007, 1008, 1014, 1015, 1016, 1044], "figure_": [69, 184, 243, 312, 314, 378, 434, 630, 631, 697, 698, 700, 701, 702, 807, 824], "filali": 1039, "file": [2, 48, 52, 53, 69, 264, 321, 346, 347, 358, 359, 360, 365, 366, 368, 369, 374, 375, 376, 377, 383, 397, 404, 408, 483, 488, 490, 491, 493, 500, 505, 506, 531, 577, 578, 586, 587, 589, 917, 1003, 1016, 1021, 1023, 1031, 1032, 1034, 1037, 1038, 1039, 1040, 1043, 1044, 1045, 1046, 1047, 1050], "file_1": 500, "file_2": 500, "file_42": 500, "file_43": 500, "file_44": 500, "file_id": 365, "file_path": 488, "filenam": [2, 48, 56, 126, 264, 366, 371, 375, 377, 397, 484, 488, 497, 500, 501, 504, 586, 587, 589, 1031, 1036, 1039, 1040], "filesystem": [379, 389, 1044], "filho": 401, "filip": [1048, 1049], "filipj8": [1038, 1039], "fill": [71, 142, 185, 258, 288, 351, 385, 404, 408, 512, 524, 535, 537, 544, 585, 629, 917, 919, 990, 1003, 1016], "fill_between": [53, 146, 149, 167, 172, 174, 176, 190, 191, 223, 262, 263, 265, 266, 267, 273, 807, 824], "fill_between_": [807, 824], "fill_between_kw": [807, 824], "fill_betweenx": 93, "fill_diagon": [186, 228], "fill_legend": 223, "fill_valu": [103, 154, 179, 185, 234, 244, 313, 316, 417, 420, 426, 427, 626, 629, 1010, 1039, 1047, 1048], "fillna": [223, 242], "filo": [1031, 1034], "filter": [2, 18, 48, 55, 80, 81, 105, 212, 223, 261, 263, 264, 285, 346, 359, 366, 377, 380, 403, 411, 444, 484, 485, 500, 586, 589, 593, 594, 595, 596, 597, 598, 775, 840, 940, 966, 1002, 1003, 1041, 1051], "filter_param": 775, "filtered_cv_result": 261, "filterwarn": [79, 95, 220, 299, 300, 371, 1010], "final": [2, 44, 53, 64, 65, 71, 75, 77, 88, 102, 103, 111, 113, 116, 125, 134, 135, 137, 139, 144, 147, 154, 155, 156, 160, 172, 179, 182, 184, 186, 188, 190, 194, 196, 198, 204, 206, 208, 222, 223, 226, 228, 232, 246, 252, 257, 261, 269, 280, 283, 309, 310, 312, 313, 335, 339, 358, 360, 366, 369, 371, 372, 373, 375, 383, 384, 385, 400, 401, 403, 404, 407, 410, 411, 412, 433, 438, 443, 444, 448, 455, 458, 460, 533, 552, 553, 564, 565, 567, 592, 626, 646, 652, 658, 670, 678, 690, 694, 719, 801, 833, 834, 865, 866, 902, 905, 989, 990, 992, 996, 997, 1000, 1003, 1006, 1007, 1010, 1013, 1024, 1036, 1039, 1040, 1041, 1042, 1044], "final_estim": [154, 312, 410, 564, 565], "final_estimator_": [154, 564, 565], "final_estimatorridgecv": 154, "final_lay": 410, "final_layer_gbr": 410, "final_layer_rfr": 410, "final_step": 77, "financ": [257, 1001], "financi": [0, 52, 403, 410, 996], "find": [2, 44, 45, 46, 52, 56, 65, 75, 80, 81, 82, 85, 86, 88, 90, 98, 103, 104, 105, 111, 112, 120, 122, 124, 125, 130, 143, 144, 154, 156, 167, 171, 172, 173, 175, 184, 194, 196, 198, 208, 213, 225, 227, 229, 230, 235, 242, 244, 253, 257, 261, 262, 263, 264, 274, 276, 286, 291, 292, 293, 308, 312, 314, 318, 320, 337, 338, 339, 342, 346, 347, 350, 352, 353, 359, 368, 371, 372, 373, 376, 377, 380, 383, 384, 385, 386, 391, 400, 402, 403, 405, 406, 408, 410, 411, 412, 414, 437, 440, 441, 442, 446, 447, 448, 449, 458, 528, 532, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 555, 562, 580, 587, 609, 610, 646, 649, 652, 653, 654, 655, 657, 658, 670, 675, 688, 707, 730, 731, 739, 783, 784, 785, 788, 789, 795, 800, 801, 815, 823, 847, 848, 849, 851, 853, 855, 856, 857, 878, 879, 884, 897, 898, 899, 913, 914, 916, 928, 948, 949, 951, 989, 990, 992, 995, 996, 997, 999, 1000, 1001, 1004, 1006, 1010, 1014, 1015, 1016, 1018, 1024, 1031, 1038, 1039, 1040, 1041, 1043, 1045, 1046, 1049], "findal": 348, "findoriya": 1051, "fine": [44, 73, 142, 163, 200, 210, 221, 254, 261, 339, 352, 368, 371, 375, 385, 411, 442, 949, 1003, 1006, 1015, 1020, 1041], "finer": [44, 53, 73, 285, 335, 359, 403, 407, 989, 1003, 1041], "finfo": [52, 228, 467, 468, 474, 604, 649, 650, 653, 654, 655, 681, 682, 1046], "finish": [163, 251, 371, 997], "finit": [65, 172, 248, 254, 358, 366, 385, 464, 535, 548, 580, 604, 607, 609, 610, 657, 728, 729, 779, 786, 798, 826, 903, 929, 930, 931, 932, 996, 999, 1000, 1024, 1038, 1039, 1043, 1045, 1046, 1052], "finn": [1039, 1040], "firefox": 1010, "fireplac": 143, "fireplacequ": 143, "firm": [52, 403], "first": [0, 2, 44, 45, 47, 48, 51, 53, 56, 59, 63, 64, 67, 68, 69, 71, 88, 89, 91, 94, 97, 98, 99, 100, 102, 103, 104, 107, 111, 115, 116, 125, 126, 128, 134, 135, 139, 141, 142, 143, 144, 145, 147, 149, 151, 154, 155, 156, 159, 160, 163, 167, 168, 169, 172, 173, 174, 175, 179, 182, 183, 184, 185, 186, 188, 190, 192, 198, 204, 207, 208, 213, 214, 219, 226, 229, 234, 236, 237, 239, 240, 241, 243, 244, 245, 246, 250, 253, 254, 257, 258, 261, 263, 264, 265, 266, 270, 272, 274, 275, 276, 280, 282, 283, 285, 288, 292, 293, 294, 298, 300, 303, 305, 308, 309, 310, 313, 314, 316, 319, 325, 328, 331, 332, 335, 337, 346, 347, 348, 350, 351, 352, 353, 354, 359, 360, 365, 366, 368, 369, 370, 371, 373, 375, 376, 377, 379, 383, 385, 397, 400, 401, 402, 403, 406, 407, 408, 410, 411, 412, 413, 415, 439, 442, 443, 446, 455, 456, 460, 468, 479, 483, 484, 486, 487, 489, 491, 494, 497, 499, 501, 505, 506, 507, 525, 530, 531, 532, 535, 538, 550, 554, 555, 556, 557, 558, 559, 561, 562, 563, 564, 580, 582, 586, 587, 588, 589, 591, 592, 599, 609, 610, 616, 620, 623, 630, 631, 632, 633, 645, 651, 658, 665, 667, 673, 675, 688, 695, 698, 699, 700, 702, 712, 716, 731, 737, 743, 764, 765, 783, 790, 795, 798, 799, 804, 805, 806, 807, 808, 813, 815, 822, 824, 833, 834, 836, 837, 839, 840, 841, 842, 843, 844, 845, 846, 850, 853, 854, 855, 856, 857, 858, 859, 862, 863, 864, 865, 870, 878, 882, 883, 884, 886, 887, 894, 895, 907, 910, 913, 914, 915, 916, 918, 920, 926, 927, 931, 932, 933, 942, 951, 953, 968, 970, 973, 985, 988, 989, 990, 994, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1007, 1010, 1011, 1014, 1015, 1016, 1024, 1031, 1032, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1047, 1048, 1050, 1051], "first_img_data": 504, "first_pca_compon": 308, "first_quart": 129, "first_week": 149, "firstiter": 275, "firstli": [123, 156, 235, 358, 383, 656], "fisach": 1037, "fiscal": 0, "fischer": [1036, 1037], "fischler": 996, "fischoff": 1043, "fish": 315, "fisher": [368, 410, 501, 635], "fisher1958": 410, "fisher_transform": 635, "fissler": 1000, "fissler2022": 1000, "fit": [2, 23, 26, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 58, 60, 62, 63, 65, 67, 68, 69, 70, 71, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 91, 94, 95, 96, 97, 98, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 120, 122, 123, 124, 125, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 148, 149, 150, 151, 152, 153, 154, 155, 156, 159, 160, 161, 162, 163, 167, 168, 169, 170, 171, 173, 174, 175, 176, 180, 182, 183, 184, 185, 186, 188, 189, 193, 194, 195, 196, 198, 199, 200, 201, 203, 204, 205, 206, 207, 209, 210, 211, 213, 214, 217, 218, 219, 220, 221, 222, 223, 228, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 260, 261, 263, 264, 265, 266, 267, 268, 271, 272, 274, 275, 276, 277, 278, 280, 283, 285, 286, 287, 288, 289, 291, 292, 293, 294, 296, 298, 299, 300, 301, 302, 304, 305, 306, 307, 308, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 339, 340, 342, 343, 344, 346, 347, 350, 351, 353, 358, 360, 363, 366, 368, 371, 374, 376, 377, 380, 383, 385, 397, 399, 400, 401, 402, 403, 404, 405, 407, 408, 409, 411, 412, 413, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 506, 507, 521, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 573, 575, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 608, 609, 610, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 694, 697, 698, 700, 701, 702, 710, 711, 724, 733, 736, 751, 789, 798, 799, 800, 801, 804, 805, 807, 815, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 889, 893, 894, 895, 896, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 922, 924, 925, 940, 958, 961, 983, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1003, 1004, 1005, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1019, 1020, 1021, 1022, 1024, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "fit_": 1044, "fit_algorithm": [120, 528, 534, 1046, 1047], "fit_and_evalu": 347, "fit_and_plot_model": 308, "fit_and_scor": 213, "fit_data": 60, "fit_dur": 283, "fit_ecoc": 1035, "fit_grid_point": 1042, "fit_intercept": [47, 103, 104, 139, 154, 155, 156, 160, 183, 190, 191, 192, 195, 201, 204, 211, 219, 232, 233, 234, 235, 244, 246, 257, 262, 270, 271, 277, 301, 310, 313, 316, 322, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 686, 905, 906, 912, 996, 1014, 1035, 1039, 1040, 1041, 1043, 1044, 1045, 1051], "fit_inverse_transform": [45, 125, 532, 1040], "fit_ovo": 1035, "fit_ovr": 1035, "fit_param": [239, 385, 427, 433, 438, 441, 461, 529, 531, 534, 536, 539, 540, 546, 552, 553, 564, 565, 566, 567, 580, 581, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 626, 627, 629, 634, 637, 638, 639, 640, 641, 664, 670, 807, 824, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 849, 854, 857, 861, 864, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 882, 883, 884, 885, 897, 898, 961, 1038, 1041, 1042, 1043, 1045, 1047, 1048, 1049, 1050], "fit_path": [649, 653, 654, 655, 681, 682], "fit_predict": [58, 89, 90, 93, 232, 242, 290, 321, 373, 385, 403, 421, 425, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 448, 465, 560, 608, 676, 793, 794, 798, 799, 851, 857, 865, 909, 925, 1006, 1036, 1039, 1040, 1044, 1046, 1048], "fit_prior": [264, 366, 840, 841, 842, 844], "fit_status_": [907, 908, 909, 910, 911], "fit_tim": [53, 91, 143, 198, 213, 262, 265, 407, 828, 829], "fit_timemapermsemaepinball_loss_05pinball_loss_50pinball_loss_95strstrstrstrstrstrstr": 53, "fit_times_nb": 265, "fit_times_svm": 265, "fit_transform": [44, 45, 46, 50, 52, 55, 58, 79, 82, 85, 86, 91, 95, 104, 121, 124, 126, 130, 143, 152, 188, 199, 221, 223, 225, 226, 227, 228, 229, 230, 235, 236, 239, 240, 244, 246, 262, 264, 283, 287, 299, 303, 304, 308, 309, 310, 312, 315, 317, 318, 319, 320, 321, 335, 346, 347, 348, 354, 363, 366, 373, 376, 377, 385, 399, 404, 408, 411, 412, 419, 427, 438, 439, 441, 443, 445, 460, 462, 464, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 608, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 687, 688, 689, 690, 691, 692, 696, 849, 854, 857, 861, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 903, 925, 990, 992, 996, 1001, 1003, 1010, 1011, 1012, 1035, 1036, 1037, 1039, 1040, 1041, 1043, 1045, 1047, 1048, 1049, 1050], "fitacross": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "fitand": [64, 139, 141, 143, 150, 151, 154, 156, 185, 244, 257, 275, 309, 317, 319, 322], "fitfailedwarn": [2, 103, 104, 244, 253, 257, 261, 262, 263, 275, 801, 804, 805, 807, 815, 824, 827, 828, 829, 832], "fitted_transform": 460, "fitter": 1016, "fitting_weight": 394, "fittingon": [156, 235], "fitzgerald": 1039, "fitzk": 1024, "five": [149, 162, 249, 257, 325, 328, 366, 528, 536, 542, 997, 1003, 1015, 1024, 1031], "five_imag": 411, "fix": [2, 44, 48, 52, 59, 63, 71, 80, 103, 129, 139, 140, 142, 147, 149, 154, 167, 168, 172, 175, 183, 185, 186, 194, 208, 223, 234, 242, 244, 254, 266, 276, 298, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 347, 352, 353, 358, 359, 365, 367, 369, 370, 371, 375, 379, 383, 385, 386, 394, 403, 404, 407, 408, 410, 411, 413, 448, 458, 468, 501, 509, 528, 534, 537, 539, 545, 546, 556, 557, 561, 562, 586, 589, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 629, 652, 662, 667, 669, 683, 686, 691, 695, 707, 786, 798, 815, 822, 847, 848, 850, 853, 855, 856, 872, 875, 889, 913, 914, 924, 949, 968, 989, 996, 999, 1000, 1003, 1010, 1020, 1029, 1030, 1032, 1033, 1039, 1040, 1041, 1042, 1043, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "fixed_classes_uniform_labelings_scor": 73, "fixed_vocabulary_": [586, 589], "fixedthresholdclassifi": [2, 155, 165, 257, 321, 402, 823, 1049, 1050], "fixm": 375, "fixtur": [359, 371], "fkaren27": 1045, "flach": [401, 1000], "flach2008": 1000, "flach2015": 1000, "flag": [154, 172, 183, 239, 242, 257, 319, 369, 371, 372, 374, 394, 399, 460, 609, 610, 626, 672, 674, 729, 786, 921, 922, 1015, 1037, 1041, 1042, 1044, 1045, 1046, 1047, 1050], "flair": 1002, "flak": 1046, "flake8": 577, "flamari": 1051, "flanagan": [1040, 1041], "flander": [1049, 1050], "flat": [2, 78, 120, 184, 225, 226, 227, 261, 403, 410, 411, 436, 442, 444, 457, 506, 1007, 1031, 1032, 1047], "flat_grid": 237, "flatnonzero": [129, 196, 262, 271, 272, 782], "flatten": [55, 69, 228, 237, 261, 307, 332, 343, 377, 499, 566, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 854], "flatten_transform": [155, 566, 1038], "flatter": [44, 63], "flavanoid": [49, 368], "flaviomorelli": 1041, "flavor": [371, 1003], "flavour": 410, "flaw": [385, 410], "flaxman": [1033, 1035], "fledg": [360, 411], "fleet": 44, "fleme": 1046, "flennerhag": 1039, "fletcher": [996, 1031, 1035], "flexibl": [44, 63, 143, 178, 206, 262, 276, 304, 321, 332, 348, 378, 383, 397, 407, 413, 673, 905, 906, 989, 994, 996, 1000, 1004, 1010, 1019, 1024, 1040, 1044], "flier": 50, "flink": 102, "flip": [124, 228, 580, 743, 949, 1002, 1035, 1044], "flip_i": 512, "flip_sign": 949, "float": [2, 47, 50, 52, 64, 76, 80, 81, 86, 93, 94, 98, 99, 100, 103, 104, 123, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 175, 183, 184, 185, 192, 195, 228, 233, 234, 235, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 267, 270, 271, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 326, 342, 348, 352, 353, 358, 365, 366, 371, 380, 385, 399, 402, 403, 404, 411, 412, 414, 415, 416, 420, 422, 426, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 448, 450, 451, 452, 453, 454, 455, 457, 458, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 508, 509, 510, 511, 512, 513, 514, 515, 516, 518, 519, 521, 522, 524, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 581, 582, 586, 589, 590, 591, 592, 593, 594, 595, 596, 600, 601, 609, 610, 612, 613, 614, 615, 616, 618, 619, 621, 622, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 735, 736, 737, 738, 739, 740, 741, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 756, 757, 758, 760, 767, 770, 776, 777, 778, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 794, 795, 796, 797, 798, 799, 800, 801, 803, 804, 805, 807, 815, 818, 821, 823, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 865, 868, 871, 872, 878, 879, 881, 883, 885, 886, 887, 888, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 919, 928, 929, 931, 932, 935, 946, 947, 964, 974, 980, 985, 990, 1000, 1001, 1003, 1004, 1010, 1015, 1016, 1031, 1032, 1033, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1049, 1051, 1052], "float16": 1040, "float32": [56, 145, 228, 301, 317, 359, 366, 371, 372, 373, 385, 397, 399, 554, 555, 556, 557, 560, 561, 562, 563, 591, 592, 639, 640, 657, 699, 764, 870, 913, 914, 915, 916, 929, 975, 976, 977, 1016, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051], "float64": [46, 51, 52, 53, 54, 86, 103, 105, 139, 143, 145, 146, 147, 148, 154, 167, 183, 184, 185, 234, 238, 244, 257, 264, 271, 274, 309, 313, 316, 317, 318, 335, 359, 365, 371, 372, 373, 385, 402, 410, 411, 416, 454, 467, 468, 471, 474, 475, 476, 493, 494, 505, 506, 513, 514, 515, 517, 528, 534, 536, 539, 540, 542, 543, 545, 579, 580, 587, 589, 595, 640, 647, 649, 650, 653, 654, 655, 656, 657, 662, 668, 669, 672, 674, 679, 681, 682, 686, 699, 739, 815, 870, 878, 879, 886, 898, 907, 908, 910, 911, 914, 916, 926, 929, 931, 947, 970, 973, 975, 976, 977, 996, 1015, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1048, 1049, 1051, 1052], "float64desir": [103, 139, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "float64typ": 264, "float_info": 58, "floch": 1048, "floor": 54, "floor_x": 54, "flore": 1044, "florian": [1024, 1031, 1035, 1037, 1041, 1048], "florin": 1049, "flow": 373, "flowchart": [391, 407], "flower": [126, 128, 272, 503, 504, 1000, 1019], "floyd": [366, 688, 997], "floydsoft": 1035, "fluctuat": [52, 93, 149, 206, 270, 1039], "flush": 213, "fly": [145, 376, 505, 506, 580, 1031, 1033, 1040], "flyingdutchman23": 1044, "flyingimmidev": 1031, "flynn": [1044, 1046], "fmax": 223, "fmi": [403, 732], "fmin_l_bfgs_b": [172, 609, 610], "fmt": [94, 216], "fn": [260, 320, 403, 712, 718, 730, 731, 732, 783, 784, 785, 788, 1000, 1001], "fn_c": 272, "fna": [163, 368], "fnlwgt": [319, 493], "fnr": [260, 698, 728, 1051], "fo": 411, "focu": [44, 49, 120, 134, 167, 254, 293, 358, 376, 401, 410, 550, 551, 556, 558, 559, 677, 997, 1000, 1003, 1010, 1019, 1020, 1023], "focus": [63, 109, 198, 280, 328, 366, 371, 383, 997, 1010, 1019], "fokow": 1048, "fold": [2, 44, 52, 64, 103, 104, 106, 109, 140, 142, 143, 145, 154, 162, 183, 198, 244, 245, 250, 253, 257, 258, 259, 261, 262, 263, 264, 266, 273, 275, 277, 309, 310, 314, 327, 342, 354, 366, 371, 374, 375, 384, 385, 394, 402, 403, 412, 433, 468, 490, 533, 564, 565, 592, 600, 646, 650, 652, 654, 658, 660, 662, 664, 672, 674, 702, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 836, 839, 886, 907, 910, 989, 996, 1000, 1010, 1015, 1031, 1033, 1035, 1036, 1037, 1039, 1040, 1042, 1043, 1048, 1050], "folder": [2, 104, 366, 369, 371, 375, 379, 389, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 500, 1003], "folkman": 1038, "folloni": 1042, "follow": [0, 26, 44, 47, 58, 64, 65, 69, 73, 87, 88, 90, 96, 103, 104, 118, 120, 129, 134, 137, 139, 141, 146, 147, 151, 154, 155, 156, 158, 172, 173, 178, 182, 183, 184, 185, 186, 190, 192, 194, 196, 198, 206, 207, 220, 223, 233, 234, 239, 240, 242, 244, 246, 254, 257, 260, 262, 263, 264, 272, 273, 275, 277, 280, 301, 303, 309, 310, 312, 313, 314, 315, 316, 317, 319, 320, 322, 332, 342, 346, 347, 348, 350, 352, 353, 354, 358, 359, 365, 366, 368, 369, 370, 371, 373, 375, 376, 377, 378, 379, 380, 383, 384, 385, 386, 389, 391, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 418, 420, 422, 424, 425, 426, 427, 433, 437, 439, 441, 442, 443, 444, 445, 449, 457, 458, 459, 460, 461, 464, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 504, 505, 506, 507, 512, 531, 535, 537, 538, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 567, 579, 586, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 626, 627, 628, 629, 630, 631, 632, 633, 645, 651, 657, 658, 669, 670, 679, 692, 694, 699, 705, 709, 712, 713, 718, 722, 789, 820, 842, 847, 848, 849, 851, 853, 855, 856, 857, 864, 868, 869, 870, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 894, 903, 905, 906, 910, 913, 914, 915, 916, 920, 927, 942, 944, 948, 989, 990, 991, 992, 993, 994, 995, 996, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1019, 1020, 1023, 1028, 1031, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051, 1052], "folwarczn\u00fd": 1048, "fonari": [1043, 1044], "fond": 1024, "fondat": 1024, "font": [146, 198, 219, 237, 917, 919], "font_manag": [112, 289, 334], "font_prop": 112, "font_siz": 307, "fontdict": [55, 100], "fontnam": [917, 1044], "fontproperti": [112, 289, 334], "fontsiz": [45, 48, 50, 55, 67, 71, 83, 93, 123, 142, 158, 170, 171, 173, 176, 184, 191, 205, 211, 216, 226, 227, 251, 258, 262, 267, 268, 269, 274, 275, 301, 307, 328, 341, 919], "fontweight": [93, 203], "foo": [373, 579, 1004], "food": [0, 368], "foot": 1018, "footer": [55, 102, 264, 346, 347, 366, 484, 485], "footnot": [1007, 1019], "footprint": [104, 244, 262, 314, 317, 358, 360, 403, 408, 538, 1033, 1036, 1037, 1042, 1043, 1046], "fopenmp": [369, 372], "foral": [403, 413, 612], "forallow": [143, 151, 154, 257, 309, 317, 322], "foran": 155, "forbid": [403, 410], "forbidden": [184, 410], "forc": [134, 154, 156, 167, 183, 192, 210, 235, 257, 276, 283, 307, 346, 365, 369, 398, 407, 410, 446, 453, 493, 604, 607, 645, 646, 651, 652, 656, 659, 660, 661, 662, 671, 672, 673, 680, 683, 686, 755, 779, 782, 823, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 907, 908, 909, 910, 911, 929, 931, 932, 1010, 1026, 1036, 1039, 1040, 1041, 1043, 1044, 1045, 1047], "force_all_finit": [779, 929, 931, 932, 1042, 1045, 1050], "force_alpha": [264, 840, 841, 842, 844, 1046], "force_finit": [604, 607, 729, 786, 1000, 1045], "force_int_remainder_col": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316, 460, 463, 1051], "force_writ": [931, 932, 1049], "forcomput": 184, "forcv": 154, "ford": 52, "forearli": [156, 243], "forecast": [43, 44, 146, 149, 166, 173, 174, 180, 208, 262, 263, 401, 402, 413, 488, 493, 559, 610, 614, 621, 622, 624, 701, 743, 746, 747, 749, 791, 822, 827, 828, 831, 1000, 1019, 1021], "foreground": [75, 99], "foreign_work": 257, "foreman": 1038, "forese": 383, "forest": [2, 14, 51, 64, 65, 68, 133, 139, 142, 144, 145, 147, 148, 149, 150, 152, 154, 156, 178, 180, 181, 188, 232, 244, 260, 264, 275, 296, 314, 321, 346, 352, 354, 364, 384, 385, 401, 412, 459, 460, 486, 487, 493, 495, 512, 552, 553, 554, 555, 557, 558, 559, 560, 561, 562, 563, 629, 633, 801, 806, 831, 838, 865, 879, 909, 913, 914, 915, 989, 990, 1001, 1008, 1016, 1021, 1022, 1026, 1028, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1040, 1048], "forest_import": 141, "forestclassifi": 1036, "forestcolumntransform": 154, "forestcov": 242, "forestgreen": 328, "forg": [312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 359, 372, 374, 375, 379, 389, 390], "forget": [184, 354, 359, 365, 375, 383, 408, 997], "forget_factor": [408, 535], "forgiv": 735, "forina": 368, "fork": [369, 371, 379, 383, 1019], "forkserv": 383, "form": [2, 44, 49, 58, 64, 69, 77, 93, 103, 120, 139, 141, 143, 151, 154, 155, 156, 172, 174, 175, 180, 183, 185, 233, 234, 238, 239, 244, 246, 254, 257, 262, 263, 275, 277, 301, 309, 313, 316, 317, 319, 322, 324, 353, 354, 365, 368, 371, 373, 375, 385, 386, 400, 403, 406, 407, 408, 409, 410, 411, 413, 415, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 455, 459, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 684, 686, 687, 688, 689, 690, 691, 692, 693, 699, 798, 799, 800, 801, 804, 805, 806, 809, 811, 815, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 937, 942, 943, 944, 958, 961, 989, 991, 993, 994, 996, 997, 1000, 1001, 1004, 1005, 1006, 1010, 1015, 1019, 1037, 1041, 1043, 1050], "formal": [385, 386, 403, 410, 845, 846, 997, 1000, 1001, 1004], "format": [2, 48, 51, 52, 53, 60, 91, 94, 102, 103, 111, 120, 129, 137, 139, 142, 143, 145, 147, 154, 158, 159, 183, 184, 185, 188, 191, 195, 206, 223, 234, 244, 246, 258, 268, 270, 271, 274, 278, 287, 288, 291, 292, 307, 309, 312, 313, 316, 320, 321, 341, 347, 350, 353, 358, 364, 370, 371, 373, 374, 379, 380, 384, 385, 397, 407, 410, 411, 427, 438, 439, 441, 443, 445, 446, 448, 455, 460, 464, 478, 479, 480, 481, 483, 485, 493, 494, 495, 505, 506, 507, 520, 524, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 548, 554, 555, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 582, 585, 587, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 645, 651, 657, 658, 659, 661, 665, 666, 667, 675, 676, 677, 688, 689, 692, 697, 711, 712, 713, 720, 740, 741, 752, 769, 792, 793, 834, 847, 848, 849, 851, 853, 854, 855, 856, 857, 858, 859, 860, 861, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 889, 892, 897, 898, 903, 905, 917, 931, 932, 955, 963, 967, 975, 976, 977, 978, 979, 980, 990, 1000, 1003, 1008, 1010, 1011, 1014, 1016, 1026, 1031, 1032, 1033, 1034, 1036, 1037, 1038, 1039, 1040, 1042, 1044, 1046, 1048, 1049, 1050], "format_func": 288, "formatstrformatt": 143, "formatter_result": 91, "former": [52, 348, 402, 410, 411, 562, 803, 810, 819, 1002, 1031, 1037, 1040], "formerli": [210, 1032, 1035, 1037, 1038], "formor": 52, "formul": [103, 134, 139, 155, 167, 176, 200, 210, 233, 234, 244, 246, 257, 262, 272, 277, 301, 313, 316, 322, 371, 403, 405, 408, 411, 413, 416, 471, 546, 547, 554, 561, 649, 650, 653, 654, 655, 657, 658, 664, 669, 764, 770, 799, 907, 910, 913, 915, 996, 1000, 1001, 1004, 1010, 1022, 1026, 1048], "formula": [109, 110, 400, 403, 405, 416, 469, 471, 513, 514, 515, 588, 642, 645, 646, 649, 650, 651, 652, 653, 654, 655, 659, 660, 661, 662, 663, 675, 677, 704, 730, 731, 756, 765, 822, 989, 994, 996, 1000, 1005, 1006, 1010, 1014, 1036, 1038, 1040, 1051], "formulationi": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "formulti": [64, 141, 185, 244, 275, 319, 353], "forprob": [244, 245, 261, 263, 314], "forrest": [1042, 1043], "forsal": [58, 348, 366], "forsvc": [104, 160, 244, 245, 261, 263, 270, 314], "forsyth": 1039, "forth": [104, 160, 270, 371, 379], "fortin": [1031, 1033, 1034, 1035], "fortran": [415, 538, 645, 646, 651, 652, 659, 660, 661, 662, 664, 680, 683, 684, 685, 931, 932, 1031, 1034, 1035, 1039, 1052], "fortun": [0, 377, 410, 1044, 1045], "forum": 1018, "forveri": 52, "forward": [47, 134, 139, 163, 239, 314, 371, 394, 397, 412, 505, 506, 536, 540, 550, 556, 557, 600, 667, 684, 685, 865, 869, 996, 1020, 1043, 1051, 1052], "foster": 1039, "fouchet": 1037, "found": [0, 46, 53, 58, 59, 60, 64, 103, 104, 130, 139, 141, 143, 154, 156, 162, 167, 171, 172, 173, 175, 183, 184, 185, 210, 234, 240, 244, 253, 257, 261, 262, 263, 264, 265, 266, 275, 276, 308, 309, 312, 313, 314, 315, 316, 317, 318, 319, 335, 348, 352, 353, 358, 360, 365, 368, 370, 371, 373, 383, 385, 386, 397, 400, 402, 403, 406, 407, 408, 410, 411, 413, 428, 437, 440, 441, 455, 468, 554, 555, 556, 557, 561, 562, 586, 588, 609, 610, 627, 635, 646, 650, 652, 654, 660, 662, 664, 670, 671, 673, 675, 677, 686, 688, 712, 719, 801, 804, 805, 815, 823, 842, 847, 848, 854, 876, 878, 879, 913, 914, 915, 916, 920, 928, 983, 987, 989, 992, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1010, 1014, 1015, 1016, 1020, 1023, 1031, 1034, 1035, 1038, 1039, 1041, 1045, 1048], "foundat": [0, 154, 257, 371, 401, 1003], "founder": 1024, "fouqu": 1031, "fouquet": [1047, 1048], "four": [64, 65, 141, 143, 159, 175, 185, 188, 193, 207, 244, 250, 251, 257, 275, 319, 325, 328, 332, 353, 367, 371, 385, 554, 561, 719, 913, 915, 937, 996, 998, 999, 1000, 1010], "fourier": [2, 24, 237, 637, 638, 639, 640, 641, 759, 760, 992], "fourier_approx_svm": 237, "fourier_scor": 237, "fourier_tim": 237, "fournier": 1040, "fourth": 142, "fowkl": [403, 732], "fowlk": [732, 1037], "fowlkes_mallows_scor": [2, 403, 1000, 1037, 1039, 1051], "fox": [320, 411, 1047], "fp": [48, 257, 260, 320, 403, 712, 718, 730, 731, 732, 783, 784, 785, 788, 1000, 1051], "fp_c": 272, "fpgawesom": 1045, "fpr": [2, 51, 233, 242, 257, 260, 272, 273, 378, 590, 594, 698, 702, 706, 728, 790, 1000, 1028, 1031, 1047], "fpr_a": 272, "fpr_b": 272, "fpr_grid": 272, "fpr_score": 257, "fr": [528, 534, 657, 663, 684, 685, 759, 760, 998], "fraa\u00df": 1048, "frac": [64, 111, 112, 134, 260, 263, 270, 272, 315, 400, 401, 403, 405, 408, 409, 410, 411, 413, 426, 459, 461, 478, 479, 480, 551, 553, 555, 557, 559, 562, 565, 567, 610, 614, 618, 621, 622, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 668, 669, 671, 672, 677, 678, 679, 696, 709, 730, 731, 756, 770, 838, 839, 848, 856, 863, 906, 908, 911, 914, 916, 992, 994, 995, 996, 997, 998, 1000, 1002, 1003, 1004, 1005, 1007, 1008, 1010, 1012, 1014, 1015, 1016], "frac12": [410, 992], "fractal": [163, 368], "fraction": [2, 44, 63, 64, 65, 139, 141, 143, 146, 149, 154, 156, 185, 206, 213, 244, 257, 270, 275, 314, 319, 342, 347, 352, 353, 401, 407, 410, 434, 435, 445, 446, 452, 453, 512, 524, 554, 555, 556, 557, 561, 562, 563, 588, 591, 600, 665, 666, 667, 670, 675, 676, 677, 703, 721, 722, 723, 724, 725, 735, 795, 797, 803, 807, 829, 830, 844, 872, 907, 908, 909, 913, 914, 915, 916, 967, 996, 1000, 1003, 1007, 1008, 1010, 1015, 1016, 1020, 1032, 1033, 1034, 1045, 1048, 1052], "fragil": 654, "fragment": [88, 123, 375, 379], "frame": [44, 103, 126, 149, 172, 183, 184, 206, 257, 309, 319, 366, 371, 383, 386, 485, 486, 487, 489, 493, 497, 498, 499, 501, 502, 507, 1043], "frameon": [47, 212], "framework": [263, 358, 383, 385, 397, 403, 636, 688, 798, 996, 997, 1004, 1020, 1024, 1031, 1037], "fran": [1043, 1044, 1045], "franc": [309, 765], "francesco": [1043, 1046], "franci": [533, 657, 996, 1037], "francia": 1045, "francidona": 1041, "francisco": [411, 1012], "franck": [1046, 1048, 1049], "franco": 1041, "francoi": [1031, 1044], "francoisgoupil": 1045, "frank": [263, 836, 1001, 1036, 1040, 1041, 1051], "frankhui": 1039, "franki": 1044, "franz": 1039, "franziska": 1042, "fran\u00e7oi": [0, 355, 1034, 1052], "fraud": [257, 320, 407, 996, 1024], "fraudul": [257, 996, 1024], "fraudulent_accept": 257, "fraudulent_refus": 257, "fred": [102, 1031, 1044], "freddi": [1050, 1051], "freder": 1041, "frederick": 1044, "fredrik": 1039, "free": [45, 65, 88, 172, 173, 179, 205, 253, 303, 365, 370, 371, 372, 379, 383, 389, 401, 411, 448, 607, 670, 861, 911, 989, 992, 996, 1000, 1018, 1020, 1039], "freebsd": 374, "freedom": [44, 122, 172, 196, 198, 199, 263, 538, 655, 658, 798, 996, 1034], "freeland": 1046, "freestand": 373, "freez": [165, 375, 389, 397, 608, 1024, 1039, 1050], "frei": [74, 436, 450, 1041], "freija": 1039, "freita": [1036, 1038, 1039], "frellwan": 1044, "fremtpl2": 223, "fremtpl2freq": 223, "fremtpl2sev": 223, "french": [223, 309], "freq": [183, 194, 348], "frequenc": [58, 64, 65, 103, 104, 139, 141, 143, 154, 155, 156, 160, 167, 183, 184, 185, 194, 202, 206, 233, 234, 236, 244, 245, 246, 257, 261, 262, 263, 264, 270, 275, 277, 301, 309, 313, 314, 316, 319, 322, 346, 347, 348, 353, 366, 383, 401, 407, 408, 410, 411, 412, 548, 552, 553, 554, 556, 557, 558, 561, 586, 587, 588, 589, 602, 657, 658, 663, 665, 667, 673, 674, 675, 684, 685, 834, 869, 878, 879, 905, 907, 910, 913, 915, 937, 996, 997, 1002, 1010, 1014, 1016, 1033, 1035, 1036, 1042, 1049], "frequent": [73, 103, 134, 139, 143, 154, 179, 183, 184, 185, 234, 244, 266, 273, 277, 309, 313, 316, 347, 368, 371, 411, 548, 588, 629, 855, 878, 879, 882, 894, 990, 992, 1000, 1014, 1020, 1049, 1051], "frequentist": 525, "fresh": [535, 1020, 1041], "fresh_restart": 535, "fresh_restarts_max_it": 535, "freund": [410, 550, 551], "fri": [44, 149, 184, 366], "frid": [1024, 1034], "friedman": [2, 137, 138, 148, 154, 156, 262, 314, 352, 405, 407, 410, 474, 513, 514, 515, 517, 555, 556, 557, 562, 591, 592, 835, 852, 913, 914, 916, 994, 996, 1001, 1007, 1016], "friedman2001": 410, "friedman2002": 410, "friedman_ms": [154, 156, 314, 352, 555, 556, 557, 562, 914, 916, 1016, 1047, 1048], "friend": [417, 1035], "friendli": [120, 201, 359, 371, 379, 408, 898, 1012, 1013, 1019, 1020], "fring": [85, 403], "fritsch": [0, 393, 1031, 1032, 1034], "fritzk": 1046, "fro": [408, 535, 537, 544, 693, 996], "fro_2": [660, 662], "frobeniu": [55, 123, 439, 443, 455, 465, 466, 467, 468, 469, 470, 471, 472, 528, 534, 535, 537, 542, 543, 544, 996, 1038], "frobenius_norm": 688, "from": [0, 2, 38, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 316, 317, 318, 319, 320, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 360, 363, 364, 366, 367, 368, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 384, 385, 386, 388, 389, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 925, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 960, 962, 963, 964, 965, 966, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 989, 990, 992, 994, 995, 996, 997, 998, 999, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1018, 1019, 1020, 1021, 1024, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "from_cv_result": [273, 322, 702, 1051], "from_dtyp": [44, 143, 151, 154, 257, 309, 317, 319, 322, 383, 410, 558, 559, 1048], "from_estim": [46, 49, 63, 65, 67, 68, 71, 89, 136, 139, 149, 150, 151, 155, 184, 200, 214, 219, 238, 243, 245, 256, 257, 260, 265, 266, 270, 276, 286, 291, 294, 308, 312, 313, 314, 315, 317, 318, 319, 320, 331, 332, 333, 334, 336, 337, 339, 344, 351, 378, 401, 434, 435, 630, 631, 632, 697, 698, 700, 701, 702, 707, 718, 728, 783, 785, 788, 789, 790, 807, 824, 829, 832, 995, 1000, 1007, 1028, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "from_predict": [44, 53, 69, 107, 154, 183, 242, 259, 270, 272, 315, 324, 346, 378, 434, 435, 630, 697, 698, 700, 701, 702, 707, 718, 728, 783, 785, 788, 789, 790, 1000, 1028, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "frombuffer_empti": 1038, "fromkei": [264, 920], "fromnumer": 377, "front": 1038, "frontal": 366, "frontend": 377, "frontier": [49, 219, 289, 334, 1006], "frozen": [2, 64, 165, 257, 321, 433, 608, 1021], "frozen_clf": 608, "frozenestim": [2, 62, 63, 64, 155, 164, 180, 257, 277, 320, 373, 401, 402, 433, 512, 657, 709, 800, 831, 1021, 1050], "frozenestimat": 64, "frozenestimatorfrozenestim": 64, "frsi": 1039, "fruit": [371, 1001], "fr\u00e9minvil": [1048, 1049], "fs1995": 410, "ftfy": 411, "ftorres16": [1045, 1046], "ftp": [163, 368, 681, 682], "ftwo_scor": [731, 743, 1000], "fu": [657, 1035], "fuck": [1043, 1044], "fuent": [1032, 1033], "fugled": 1048, "fujikawa": 1038, "fukatani": 1038, "fulfil": [139, 371, 403, 410, 552, 553, 801, 804, 805, 815, 865, 869, 996], "full": [0, 2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 358, 359, 360, 364, 366, 369, 371, 373, 376, 379, 383, 385, 386, 389, 399, 403, 405, 407, 408, 411, 417, 420, 426, 427, 437, 441, 443, 445, 455, 484, 485, 488, 489, 493, 494, 497, 498, 499, 500, 501, 502, 504, 507, 532, 534, 538, 547, 556, 557, 564, 565, 631, 647, 649, 653, 657, 658, 668, 679, 721, 724, 729, 746, 747, 749, 751, 752, 754, 786, 791, 792, 798, 799, 812, 842, 937, 989, 996, 999, 1002, 1003, 1007, 1010, 1013, 1020, 1031, 1035, 1037, 1039, 1041, 1042, 1044, 1045, 1047, 1048, 1049, 1050, 1051], "full_data": 190, "full_lik": 98, "full_model": 285, "fulli": [53, 79, 88, 141, 146, 322, 328, 358, 365, 366, 371, 385, 403, 409, 410, 412, 439, 443, 554, 555, 561, 562, 913, 914, 915, 916, 917, 919, 990, 996, 1005, 1013, 1019, 1044, 1045, 1051], "fullpap": 1013, "fultz": 1044, "fun": [415, 530, 1018, 1024], "fun_arg": [415, 530], "func": [51, 64, 104, 107, 139, 141, 143, 154, 156, 183, 185, 191, 223, 244, 262, 264, 275, 296, 309, 319, 371, 399, 404, 461, 699, 869, 1010, 1037, 1039, 1048, 1049, 1051], "func_metr": 627, "func_min": [609, 610], "func_minp": 172, "funcformatt": 288, "function": [2, 4, 28, 44, 45, 46, 47, 48, 52, 53, 55, 59, 60, 64, 65, 73, 80, 86, 87, 88, 90, 92, 99, 102, 103, 104, 107, 120, 123, 125, 126, 129, 132, 139, 140, 141, 143, 144, 145, 146, 147, 148, 149, 150, 151, 154, 155, 156, 159, 160, 162, 163, 165, 167, 170, 171, 172, 173, 174, 175, 179, 180, 182, 183, 184, 185, 186, 189, 190, 192, 193, 194, 200, 201, 204, 206, 207, 208, 212, 213, 218, 221, 223, 225, 233, 234, 235, 238, 239, 242, 243, 244, 245, 246, 253, 255, 257, 261, 263, 264, 265, 266, 270, 271, 272, 275, 276, 278, 280, 283, 298, 301, 303, 309, 312, 313, 315, 316, 317, 318, 319, 320, 321, 322, 326, 327, 329, 332, 333, 334, 335, 336, 337, 339, 342, 344, 346, 347, 351, 352, 353, 354, 358, 359, 363, 364, 365, 366, 367, 368, 369, 371, 372, 373, 374, 375, 376, 377, 383, 384, 385, 389, 394, 397, 398, 401, 402, 403, 404, 405, 406, 408, 409, 411, 412, 414, 415, 418, 420, 422, 425, 426, 427, 433, 436, 439, 440, 441, 443, 444, 446, 448, 450, 453, 454, 455, 456, 457, 460, 461, 464, 465, 467, 468, 470, 474, 484, 485, 487, 489, 492, 493, 494, 500, 505, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 540, 541, 542, 543, 544, 546, 547, 548, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 564, 569, 573, 579, 580, 586, 587, 589, 590, 591, 592, 593, 594, 596, 597, 598, 599, 600, 602, 605, 606, 607, 609, 610, 614, 618, 619, 621, 622, 626, 627, 630, 631, 632, 633, 634, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 698, 699, 700, 702, 703, 704, 706, 711, 716, 719, 721, 722, 723, 724, 725, 728, 729, 733, 735, 736, 739, 741, 742, 743, 751, 756, 758, 762, 763, 764, 766, 769, 772, 775, 779, 780, 781, 782, 783, 784, 786, 790, 793, 794, 795, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 812, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 839, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 874, 875, 877, 881, 882, 883, 884, 885, 886, 889, 891, 894, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 920, 929, 938, 940, 941, 942, 943, 948, 949, 958, 960, 961, 966, 967, 968, 970, 973, 974, 983, 988, 989, 990, 991, 993, 995, 997, 998, 1001, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1013, 1014, 1016, 1019, 1020, 1021, 1022, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1050, 1051, 1052], "functionestim": 184, "functionitself": 326, "functionpass": 326, "functiontransform": [2, 44, 102, 139, 206, 223, 397, 399, 460, 461, 1010, 1036, 1037, 1039, 1044, 1045, 1046, 1048, 1050], "functool": 223, "fundament": [73, 82, 112, 200, 347, 371, 375, 383, 384, 406, 493, 535, 537, 544, 708, 996, 1000, 1018], "funder": 0, "fung": 407, "funnel": [490, 491], "funni": 102, "furlanello": 744, "furrer": 1048, "further": [2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 63, 77, 103, 109, 116, 120, 137, 142, 144, 162, 167, 172, 183, 185, 190, 194, 225, 230, 239, 257, 260, 263, 264, 270, 317, 335, 347, 353, 358, 371, 383, 385, 397, 402, 403, 405, 408, 410, 411, 413, 440, 448, 458, 512, 529, 532, 580, 613, 621, 627, 657, 658, 665, 666, 667, 675, 676, 677, 691, 695, 738, 775, 779, 782, 793, 794, 841, 847, 848, 855, 856, 883, 885, 905, 907, 910, 949, 999, 1000, 1002, 1003, 1004, 1006, 1008, 1010, 1014, 1015, 1040, 1044], "furthermor": [44, 53, 64, 73, 140, 143, 151, 154, 184, 185, 242, 243, 245, 283, 309, 317, 346, 347, 358, 360, 378, 403, 408, 410, 411, 559, 588, 604, 618, 704, 737, 756, 758, 796, 863, 905, 996, 1008, 1034, 1038, 1051, 1052], "fuse": [372, 1037, 1047], "fusion": 383, "futur": [0, 53, 172, 207, 245, 315, 318, 371, 375, 379, 385, 386, 397, 407, 411, 493, 531, 634, 822, 1001, 1015, 1016, 1024, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "futurewarn": [371, 379, 1038, 1039, 1040, 1042, 1044, 1047, 1048, 1050, 1051], "fuxin": 641, "fw": 688, "fwe": 590, "f\u00e9lix": [1031, 1033, 1034, 1035, 1039], "f\u00fcr": 1000, "g": [0, 26, 44, 48, 50, 52, 62, 63, 64, 65, 69, 86, 88, 98, 102, 103, 104, 113, 116, 127, 134, 137, 139, 143, 145, 146, 151, 154, 155, 156, 160, 168, 169, 170, 175, 179, 182, 183, 184, 185, 193, 197, 206, 207, 208, 210, 223, 230, 233, 234, 238, 239, 243, 244, 246, 248, 257, 262, 263, 264, 267, 268, 270, 274, 275, 277, 282, 289, 308, 309, 313, 316, 317, 320, 322, 327, 341, 342, 348, 354, 358, 363, 366, 367, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 383, 385, 394, 397, 399, 401, 403, 405, 407, 408, 410, 411, 412, 413, 415, 460, 500, 525, 528, 530, 531, 534, 538, 552, 553, 554, 555, 556, 558, 559, 561, 562, 564, 565, 566, 567, 579, 580, 586, 587, 589, 591, 592, 595, 600, 602, 610, 616, 621, 622, 629, 632, 633, 658, 663, 672, 673, 674, 676, 679, 685, 692, 697, 720, 729, 739, 741, 764, 779, 786, 789, 804, 805, 807, 819, 823, 824, 826, 827, 828, 829, 830, 832, 835, 840, 844, 847, 848, 849, 852, 854, 855, 856, 857, 861, 868, 870, 874, 875, 878, 881, 883, 885, 886, 888, 890, 891, 892, 893, 894, 895, 896, 905, 913, 914, 915, 916, 948, 949, 961, 989, 990, 994, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1010, 1014, 1015, 1016, 1020, 1023, 1024, 1028, 1031, 1035, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1050, 1051], "g0g0gadget": 1041, "g2015": 1007, "g_": 403, "g_i": [410, 648], "g_j": [647, 668, 679], "ga": 0, "gaaca": 175, "gaatattaggccga": 383, "gabor": 1045, "gabriel": [1039, 1040, 1041, 1044, 1045], "gael": [0, 392, 1020, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "gaetandecast": 1051, "gaido": 1040, "gaidon": 1031, "gain": [2, 64, 86, 141, 149, 185, 227, 244, 253, 270, 275, 283, 285, 319, 320, 325, 346, 347, 353, 370, 377, 379, 383, 410, 493, 529, 554, 558, 559, 561, 562, 727, 757, 798, 799, 834, 913, 915, 1001, 1005, 1013, 1016, 1034, 1038, 1041], "gain_matrix": 257, "galleri": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 366, 371, 373, 385, 389, 396, 1021, 1031, 1035, 1038], "galli": 1043, "gallopoulo": 408, "galvez": 1036, "gambl": 52, "gameiro": 1045, "gamma": [2, 44, 45, 46, 47, 49, 51, 67, 68, 69, 125, 143, 151, 154, 155, 188, 219, 232, 237, 238, 244, 245, 261, 263, 265, 268, 274, 309, 314, 317, 324, 325, 326, 327, 329, 332, 334, 335, 338, 339, 341, 344, 406, 408, 410, 413, 448, 532, 559, 618, 619, 638, 639, 640, 642, 643, 644, 647, 679, 684, 691, 725, 748, 753, 760, 767, 776, 777, 778, 798, 812, 815, 900, 901, 902, 907, 908, 909, 910, 911, 989, 992, 996, 998, 1013, 1015, 1031, 1032, 1034, 1035, 1036, 1038, 1039, 1041, 1042, 1045, 1046, 1047], "gamma_": [532, 1047], "gamma_0": [248, 254], "gamma_2d_rang": 335, "gamma_bound": 619, "gamma_k": 406, "gamma_rang": 335, "gammaregressor": [2, 223, 313, 316, 321, 679, 996, 1042, 1045, 1046, 1050], "ganasekhar": 1051, "gandenberg": 1040, "ganesh": [1036, 1048], "ganevgv": 1041, "gangesh": 1043, "gangwar": 1038, "ganiev": [1036, 1037, 1038], "ganssl": 1038, "gap": [44, 52, 53, 149, 154, 192, 346, 366, 407, 467, 468, 474, 586, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 822, 913, 914, 915, 916, 997, 1039, 1043, 1045, 1052], "garagecar": [143, 154], "garagefinish": 143, "garagetyp": 154, "garageyrblt": 107, "garbag": 1043, "garcia": 1044, "garc\u00eda": [1040, 1041, 1046], "gardin": 365, "gardner": [1039, 1040], "garg": [1041, 1042], "gargsya": 1041, "gari": [366, 1038], "garret": 1035, "garreta": [1033, 1034], "garrett": 1035, "garri": 368, "garriga": [269, 407, 830], "gasmi": 1045, "gaspari": [1050, 1051], "gasquez": 1038, "gate": [368, 1044], "gather": [316, 318, 379, 386, 403, 1010, 1024], "gatsbi": 1013, "gaug": 183, "gaull": 765, "gaurav": [1039, 1040, 1041, 1042, 1043, 1045], "gauravahlawat": [1039, 1040], "gaussian": [2, 8, 20, 29, 44, 45, 47, 49, 65, 67, 68, 71, 79, 80, 81, 88, 90, 94, 98, 109, 110, 111, 112, 113, 118, 121, 122, 123, 129, 135, 136, 142, 146, 150, 152, 179, 190, 193, 194, 196, 204, 215, 216, 217, 218, 232, 236, 238, 250, 251, 288, 293, 296, 298, 306, 307, 329, 332, 339, 340, 363, 367, 373, 376, 385, 403, 405, 408, 409, 415, 448, 465, 466, 467, 468, 469, 470, 471, 472, 493, 501, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 519, 521, 522, 527, 529, 541, 546, 547, 550, 560, 609, 610, 612, 613, 614, 616, 617, 618, 621, 622, 624, 626, 642, 643, 671, 676, 679, 703, 725, 742, 753, 777, 798, 799, 801, 815, 840, 841, 842, 843, 844, 845, 846, 850, 881, 885, 893, 897, 898, 899, 994, 996, 997, 998, 1006, 1021, 1022, 1024, 1025, 1026, 1031, 1032, 1034, 1035, 1037, 1038, 1039, 1041, 1043, 1045], "gaussian_filt": [54, 80, 81, 87], "gaussian_process": [2, 67, 68, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 180, 385, 413, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 642, 1001, 1021, 1034, 1037, 1038], "gaussianhmm": 1031, "gaussianmeasur": 172, "gaussianmixtur": [2, 79, 90, 249, 250, 251, 252, 253, 254, 399, 409, 798, 999, 1037, 1039, 1040, 1044, 1045, 1047, 1049, 1051, 1052], "gaussianmixturegaussianmixtur": 253, "gaussiannb": [2, 62, 63, 65, 68, 265, 354, 401, 410, 433, 566, 840, 841, 842, 844, 866, 994, 1001, 1002, 1035, 1036, 1037, 1039, 1044, 1047], "gaussiannois": 373, "gaussianprocessclassifi": [2, 67, 68, 168, 169, 170, 171, 175, 385, 413, 610, 618, 619, 621, 622, 1001, 1037, 1039, 1041, 1045, 1051], "gaussianprocessregressor": [2, 167, 172, 173, 174, 175, 176, 413, 609, 612, 613, 614, 615, 616, 620, 623, 624, 642, 1001, 1034, 1037, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1052], "gaussianprocessregressorifit": 172, "gaussianrandomproject": [2, 898, 1012, 1032, 1045, 1047, 1048], "gauthier": 1045, "gauz": 1039, "gave": [65, 401, 801, 804, 805, 815, 872], "gavil\u00e1n": 1052, "gavin": [627, 990], "gaynor": 397, "ga\u00ebl": [386, 1024], "gb": [156, 410, 550, 632], "gbc": 354, "gbd": 139, "gbdt": [139, 184, 257, 312, 313, 318, 376, 410], "gbdt_appli": 139, "gbdt_applyfunctiontransform": 139, "gbdt_cst": 313, "gbdt_leaves_yield": 139, "gbdt_model": 139, "gbdt_no_cst": [151, 313], "gbdt_pipelin": 154, "gbdt_with_monotonic_cst": 151, "gbdt_with_monotonic_cst_df": 151, "gbgradientboostingregressor": 156, "gbm": [145, 410, 1034], "gbm_early_stop": 144, "gbm_full": 144, "gbp": 1024, "gbr": 146, "gbr_l": 146, "gbrt": [44, 53, 206, 410], "gbrt_mean_poisson": 53, "gbrt_median": 53, "gbrt_percentile_5": 53, "gbrt_percentile_95": 53, "gbrt_predict": 44, "gbt": 358, "gc": 50, "gca": [48, 79, 95, 116, 122, 170, 211, 214, 216, 232, 245, 267, 291, 293, 304, 331, 333, 336, 337, 1007, 1028], "gcc": [369, 372, 377, 383], "gcf": [48, 1007], "gcv": [672, 674], "gcv_mode": [154, 183, 672, 1033], "gd": [52, 156], "gdb": [372, 374, 1023], "gdex1": 1041, "ge": [52, 991, 1002, 1043], "ge0": 1016, "gear": 1018, "geb": 58, "gebremichael": [1046, 1047], "gedeck": 1038, "geevarghes": 1046, "gefel": 1000, "gegr": 411, "gei": 1033, "geiger": [1048, 1049], "geist": 368, "gelavizh": 1042, "gelder": 1042, "gemm": 1049, "gen": 782, "gen_batch": [2, 380, 953], "gen_cov": 111, "gen_even_slic": [2, 206, 380, 952], "gender": [244, 878, 1010], "gender_femal": 878, "gender_mal": 878, "gene": [175, 365, 400, 447, 510, 591, 592, 852, 885], "gener": [0, 2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 58, 60, 63, 64, 65, 66, 67, 68, 69, 70, 73, 75, 76, 77, 78, 79, 80, 83, 84, 85, 86, 87, 89, 91, 92, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 110, 112, 115, 116, 117, 120, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 158, 160, 161, 163, 165, 168, 169, 170, 171, 172, 175, 178, 179, 182, 183, 184, 185, 186, 188, 192, 193, 195, 196, 197, 198, 199, 201, 203, 204, 205, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 291, 292, 293, 294, 296, 298, 299, 300, 303, 304, 305, 306, 307, 308, 309, 310, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 343, 344, 346, 347, 348, 350, 351, 352, 353, 358, 359, 363, 364, 366, 368, 372, 373, 374, 375, 376, 377, 379, 380, 383, 384, 397, 400, 401, 403, 407, 409, 411, 412, 413, 414, 415, 419, 424, 426, 433, 436, 439, 440, 442, 443, 445, 448, 450, 454, 455, 456, 458, 460, 461, 463, 465, 468, 470, 478, 479, 480, 484, 487, 489, 492, 493, 494, 500, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 529, 530, 531, 533, 535, 537, 538, 540, 541, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 563, 564, 565, 567, 580, 581, 582, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 609, 610, 613, 614, 617, 618, 619, 621, 622, 626, 627, 628, 629, 630, 631, 632, 633, 634, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 668, 669, 670, 671, 672, 674, 675, 676, 677, 678, 679, 684, 685, 689, 690, 691, 692, 693, 694, 695, 697, 698, 700, 701, 702, 704, 706, 717, 721, 724, 725, 738, 744, 758, 779, 782, 786, 794, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 835, 836, 837, 838, 839, 845, 846, 848, 850, 851, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 867, 868, 869, 870, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 890, 891, 893, 894, 895, 896, 897, 898, 905, 906, 907, 908, 910, 911, 914, 916, 917, 918, 919, 942, 943, 944, 948, 949, 952, 953, 966, 969, 970, 973, 988, 989, 990, 992, 994, 995, 997, 999, 1000, 1001, 1003, 1005, 1006, 1007, 1008, 1012, 1013, 1015, 1016, 1021, 1022, 1023, 1024, 1026, 1028, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1049, 1050, 1051, 1052], "generalis": [789, 1000], "generaliz": [339, 410], "generate_data": [47, 70], "generate_dataset": 50, "generate_missing_valu": 149, "generate_onli": [942, 1041, 1050], "generate_synthetic_data": 54, "generickernelmixin": [175, 1041], "genericunivariateselect": [2, 412, 593, 594, 596, 597, 598, 600, 1045, 1047, 1048], "generos": 371, "genesi": [1045, 1047], "genet": 1019, "gennaro": [1050, 1051], "genoa": 368, "genom": [59, 510, 1019], "genotyp": 365, "gensim": 1019, "gentil": [368, 1043], "gentli": 408, "genvalen": [1043, 1044, 1045, 1046, 1047], "geodes": [225, 688, 997], "geoff": [433, 836, 1001], "geoffrei": [862, 863, 1004, 1042, 1043, 1044, 1045, 1047], "geograph": [44, 51, 296, 366, 495], "geometr": [122, 403, 688, 704, 732, 758, 997, 1039], "geometri": [100, 403, 997, 1003], "geomspac": 318, "georg": [46, 366, 403, 1037, 1043, 1044, 1045, 1046], "georgi": [1039, 1042], "georgiamaydai": 1046, "geospati": [296, 409], "geovan": [1044, 1045, 1051], "geq": [236, 401, 408, 410, 996, 1000, 1010, 1014, 1015], "ger": 411, "gerhard": [46, 366], "german_credit": 257, "germer": [1046, 1047], "geroldcsend": 1044, "geron": [1039, 1044, 1045], "gerstein": 510, "gertrud": 1038, "gertz": 446, "gervai": [1033, 1034], "gesa": 1043, "gesdd": 949, "gessei": 1050, "gesvd": 949, "get": [2, 3, 44, 45, 49, 52, 53, 56, 58, 73, 85, 89, 103, 104, 121, 125, 146, 149, 160, 163, 167, 172, 173, 178, 183, 184, 185, 186, 201, 208, 220, 223, 225, 239, 240, 244, 253, 257, 261, 262, 263, 264, 265, 267, 271, 274, 275, 276, 280, 283, 288, 296, 304, 312, 319, 325, 332, 335, 337, 340, 344, 346, 348, 350, 352, 359, 364, 365, 366, 369, 371, 372, 373, 374, 376, 377, 378, 385, 389, 397, 399, 401, 402, 403, 404, 405, 407, 408, 410, 411, 412, 413, 417, 419, 424, 426, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 458, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 608, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 695, 699, 721, 722, 723, 724, 725, 727, 733, 734, 743, 757, 764, 765, 770, 786, 789, 798, 799, 800, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 826, 827, 828, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 920, 939, 940, 941, 948, 949, 954, 958, 960, 989, 995, 996, 997, 999, 1000, 1010, 1013, 1014, 1015, 1016, 1020, 1031, 1034, 1037, 1039, 1042, 1044, 1045, 1048], "get_adjacency_matrix": 56, "get_arrai": [845, 846], "get_bin_se": 444, "get_cmap": [63, 65, 340], "get_color": 47, "get_config": [2, 464, 782, 903, 968, 1046], "get_covari": [529, 531, 538], "get_data": [505, 506], "get_data_hom": [2, 48], "get_depth": [913, 914, 915, 916, 1040], "get_feature_nam": [315, 1039, 1040, 1042, 1043, 1044], "get_feature_names_out": [2, 55, 58, 103, 139, 143, 154, 183, 184, 185, 234, 244, 309, 313, 315, 346, 347, 348, 366, 373, 385, 404, 411, 419, 424, 427, 438, 439, 441, 443, 445, 460, 463, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 563, 564, 565, 566, 567, 579, 586, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 688, 689, 692, 849, 854, 857, 861, 864, 865, 867, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 1010, 1044, 1045, 1046, 1047, 1048, 1049], "get_figur": 134, "get_height": [48, 144, 328], "get_indic": [58, 418, 447, 449], "get_initial_mean": 251, "get_legend_handles_label": [149, 200, 238, 265, 270], "get_lin": 299, "get_metadata_rout": [239, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 800, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 957, 958, 959, 960, 961, 1048], "get_metr": 699, "get_minibatch": 48, "get_n_cal": [845, 846], "get_n_leav": [913, 914, 915, 916, 1040], "get_n_split": [385, 802, 803, 806, 808, 809, 810, 811, 814, 816, 817, 818, 819, 820, 821, 822], "get_nam": 305, "get_output_feature_nam": 1045, "get_param": [264, 322, 374, 385, 413, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 800, 801, 804, 805, 815, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 989, 1041, 1042, 1043, 1045, 1046], "get_precis": [465, 466, 467, 468, 469, 470, 471, 472, 529, 531, 538], "get_redirect": 56, "get_routing_for_object": [2, 239, 958], "get_scor": [2, 179, 319, 385, 734, 1038, 1047], "get_scorer_nam": [2, 402, 733, 1000, 1045, 1048], "get_shap": [58, 418, 447, 449], "get_stop_word": [586, 587, 589], "get_submatrix": [418, 447, 449], "get_subplotspec": 378, "get_support": [159, 163, 314, 579, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 1033], "get_tag": 2, "get_tree_stat": [845, 846], "get_untrusted_typ": 397, "get_width": [48, 144, 328], "get_x": [48, 144, 328], "get_xaxi": [248, 293, 303], "get_xlim": [111, 143, 203, 211, 303], "get_xticklabel": 274, "get_yaxi": [293, 303], "get_ybound": 86, "get_ylim": [203, 276, 303, 304], "getattr": [44, 48, 257, 303, 373, 385, 1047], "getgaurav2": 1041, "getmoredataget": 391, "gettempdir": 1003, "getter": [465, 466, 467, 468, 469, 470, 471, 472, 591, 592, 595], "geurt": [410, 552, 553, 554, 555, 562, 563, 915, 916], "gewili": [1046, 1047], "gguiomar": 1051, "ghahramani": 900, "gharibi": 1041, "ghg": 1037, "ghislain": 1043, "gholdman1": 1042, "ghorai": 1039, "ghosh": [0, 393, 403, 1031, 1032, 1048, 1049], "gia": 1042, "giancarlo": 1045, "gianr": 1046, "gibb": [861, 1005, 1019], "gideon": 1041, "giessel": 1037, "gigant": [1039, 1041, 1046, 1047], "gijsber": 1045, "gil": [321, 358, 359, 372, 1034, 1039, 1040, 1043, 1044, 1048, 1050, 1051], "gilad": 1024, "gilberto": 1039, "gilbertson": [1045, 1046], "gilch": 1038, "gile": [1034, 1035], "gill": [0, 393, 1031, 1032, 1033, 1034, 1035, 1036, 1037], "gilliam": 1038, "gilmor": 1035, "gim": 1043, "gini": [64, 65, 141, 185, 186, 206, 223, 244, 275, 314, 319, 353, 554, 561, 789, 913, 915, 989, 1008, 1016, 1039, 1040, 1047, 1048], "gionanidi": 1045, "giorgio": [1036, 1037, 1038, 1050], "giorgiop": 1036, "giotto": 1019, "giovanni": [1037, 1039], "gist": [371, 379, 1023], "gist_rainbow": 630, "git": [369, 373, 375, 377, 379, 1023, 1027, 1031, 1047, 1049, 1050], "github": [0, 52, 64, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 183, 184, 185, 192, 233, 234, 235, 239, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 283, 301, 309, 313, 314, 316, 317, 319, 322, 326, 352, 353, 369, 370, 374, 375, 376, 377, 379, 383, 385, 386, 397, 399, 692, 1019, 1023], "githubusercont": 52, "gitter": [1038, 1039], "giudic": 1043, "giusepp": [1039, 1040], "give": [2, 44, 52, 53, 54, 62, 63, 79, 82, 93, 95, 97, 100, 102, 103, 104, 107, 122, 143, 145, 167, 172, 176, 178, 183, 184, 198, 199, 206, 207, 208, 232, 244, 253, 254, 257, 260, 261, 262, 263, 265, 272, 285, 289, 292, 301, 309, 315, 316, 320, 321, 328, 358, 360, 366, 368, 370, 371, 373, 375, 377, 379, 383, 384, 385, 386, 391, 397, 400, 401, 403, 404, 405, 408, 410, 411, 413, 415, 428, 442, 443, 445, 447, 455, 468, 493, 496, 500, 530, 535, 546, 547, 548, 549, 554, 555, 561, 562, 563, 591, 592, 595, 605, 606, 637, 646, 658, 660, 664, 675, 720, 731, 737, 740, 795, 801, 804, 805, 815, 826, 827, 828, 830, 845, 846, 847, 848, 849, 851, 852, 853, 855, 856, 857, 882, 883, 885, 886, 894, 996, 1000, 1003, 1004, 1005, 1007, 1008, 1010, 1014, 1015, 1016, 1018, 1019, 1024, 1031, 1035, 1038, 1039, 1041, 1042, 1043, 1045, 1047, 1051, 1052], "givea": 184, "given": [2, 8, 31, 47, 50, 51, 52, 53, 64, 65, 67, 73, 82, 91, 93, 103, 104, 109, 115, 121, 125, 139, 140, 141, 143, 149, 150, 152, 154, 155, 156, 160, 165, 167, 174, 183, 184, 185, 192, 194, 206, 207, 210, 223, 226, 232, 233, 234, 236, 237, 239, 241, 242, 243, 244, 245, 246, 253, 257, 259, 261, 262, 263, 264, 265, 266, 270, 272, 275, 277, 286, 289, 290, 291, 301, 305, 309, 313, 314, 315, 316, 319, 320, 321, 322, 346, 347, 348, 352, 353, 358, 360, 366, 370, 371, 373, 377, 379, 380, 383, 385, 397, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 416, 429, 430, 431, 432, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 452, 454, 455, 456, 457, 459, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 474, 477, 478, 479, 480, 483, 490, 493, 498, 500, 502, 520, 530, 533, 535, 536, 537, 540, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 586, 587, 588, 589, 591, 592, 599, 605, 606, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 630, 631, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 681, 686, 688, 690, 691, 697, 698, 699, 700, 701, 702, 704, 705, 706, 712, 714, 717, 718, 720, 725, 727, 728, 735, 737, 738, 741, 753, 756, 757, 759, 760, 765, 775, 779, 782, 783, 785, 788, 789, 790, 795, 796, 798, 799, 800, 801, 802, 803, 804, 805, 807, 808, 810, 813, 815, 819, 823, 824, 826, 827, 828, 829, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 862, 863, 864, 865, 866, 867, 868, 870, 871, 872, 875, 876, 877, 878, 879, 880, 881, 882, 884, 885, 891, 892, 894, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 920, 924, 935, 936, 937, 957, 958, 960, 983, 987, 989, 992, 994, 996, 997, 998, 999, 1000, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1013, 1014, 1015, 1016, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1049, 1050, 1051, 1052], "gkevinyen5418": 1039, "gkf": 407, "gkiasta": 1044, "gl": [163, 368], "glanc": [280, 370], "glaser": [1039, 1040], "glass": 366, "glasso": [405, 474], "glaxosmithklin": 52, "glemaitr": [1040, 1041, 1043], "glen": 1044, "glenn": 1037, "glennfrutiz": 1045, "glibc": 379, "glm": [206, 223, 313, 647, 668, 679, 996, 1031, 1042], "glm_freq": 223, "glm_pure_premium": 223, "glm_sev": 223, "glmnet": [645, 646, 1031], "glob": 48, "global": [2, 3, 48, 50, 77, 90, 120, 143, 206, 225, 226, 246, 272, 300, 309, 313, 321, 328, 354, 358, 359, 377, 383, 385, 399, 403, 413, 438, 448, 458, 464, 588, 625, 631, 688, 691, 692, 695, 707, 730, 731, 739, 784, 785, 788, 789, 819, 886, 901, 903, 989, 997, 1000, 1006, 1010, 1016, 1024, 1039, 1046, 1050], "global_dtyp": 359, "global_random_se": 359, "globular": [95, 403], "glorot": [862, 863], "glossari": [2, 52, 64, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 183, 184, 185, 192, 233, 234, 235, 243, 244, 245, 246, 253, 257, 261, 262, 263, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 326, 352, 353, 354, 371, 373, 377, 414, 415, 433, 436, 439, 440, 442, 443, 444, 445, 446, 447, 448, 449, 450, 453, 454, 455, 456, 457, 458, 460, 463, 465, 468, 470, 484, 487, 489, 492, 494, 500, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 548, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 581, 582, 592, 600, 605, 606, 609, 610, 626, 631, 633, 638, 639, 640, 641, 645, 646, 648, 649, 650, 651, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 677, 678, 686, 688, 689, 690, 691, 692, 693, 694, 695, 701, 775, 779, 782, 794, 798, 799, 801, 802, 803, 804, 805, 806, 807, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 847, 848, 850, 851, 853, 854, 855, 856, 858, 859, 861, 862, 863, 864, 867, 870, 882, 886, 894, 897, 898, 900, 901, 905, 906, 907, 910, 913, 914, 915, 916, 921, 925, 948, 949, 970, 973, 989, 990, 996, 1039], "glu": [163, 368], "glushchenkov": 1045, "gl\u00f2ria": [1044, 1046], "gm": 799, "gmil": 366, "gmm": [79, 91, 92, 180, 247, 249, 252, 253, 254, 501, 509, 799, 820, 999, 1021, 1031, 1032, 1035, 1036, 1037], "gmm_": 1032, "gmm_bic_scor": 253, "gmmgmm": 391, "gmmhmm": [1031, 1032], "gnb": [62, 63, 65, 410, 566, 1002], "gnb_isoton": 63, "gnb_sigmoid": 63, "gneit": 1000, "gneiting2007": 1000, "gneiting2009": 1000, "gneiting2014": 1000, "gnu": 369, "go": [2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 366, 371, 375, 376, 380, 386, 389, 399, 404, 408, 410, 412, 439, 558, 559, 561, 562, 720, 884, 926, 952, 953, 1010, 1016, 1020, 1042], "goadrich": 1000, "goal": [50, 56, 59, 65, 85, 90, 116, 149, 178, 184, 188, 206, 220, 223, 241, 242, 257, 260, 261, 321, 346, 359, 360, 366, 371, 373, 375, 376, 377, 385, 386, 388, 394, 408, 412, 539, 545, 588, 591, 740, 1000, 1003, 1005, 1006, 1014, 1015, 1016, 1024, 1039], "god": [58, 346, 347], "godbol": 784, "goe": [0, 44, 52, 73, 139, 183, 353, 371, 410, 467, 468, 474, 554, 555, 561, 562, 563, 913, 914, 915, 916, 1010, 1014], "goetz": [1038, 1039], "goh": 1048, "gohlk": 1036, "goix": [0, 1035, 1037, 1038, 1039, 1040], "gold": [70, 202, 207, 209, 212, 215, 219, 222, 249, 254, 270, 289, 334, 377], "goldbaum": [1049, 1050], "goldberg": [854, 1003], "goldfarb": 996, "goldman": 52, "goldstein": [184, 1007], "goldszmidt": 1012, "gollonet": [0, 393], "goltermann": 1043, "golub": [531, 843, 885], "golubin": 1038, "gome": [1044, 1045, 1049, 1051], "gomez": [1039, 1046, 1048], "gommer": [1034, 1037, 1038, 1046, 1047, 1049, 1050], "goncalo": [1038, 1039], "gone": [1031, 1032], "gonthier": 1042, "gonz\u00e1lez": 1051, "gon\u00e7alo": 1051, "goo": [163, 368], "good": [44, 49, 59, 63, 65, 75, 79, 80, 82, 85, 86, 88, 91, 103, 106, 112, 116, 129, 139, 140, 142, 145, 146, 149, 155, 162, 168, 172, 178, 183, 194, 198, 206, 207, 212, 220, 230, 232, 233, 234, 236, 239, 242, 244, 246, 249, 251, 256, 257, 262, 263, 269, 276, 277, 301, 308, 309, 313, 314, 316, 320, 322, 324, 329, 335, 346, 347, 354, 358, 359, 360, 370, 372, 373, 374, 377, 379, 383, 385, 400, 401, 403, 405, 407, 408, 410, 411, 412, 413, 433, 435, 440, 531, 556, 558, 559, 588, 629, 639, 646, 647, 655, 657, 658, 660, 668, 679, 690, 694, 724, 732, 743, 765, 830, 899, 924, 949, 989, 995, 996, 997, 1000, 1001, 1003, 1004, 1005, 1007, 1008, 1010, 1014, 1015, 1016, 1020, 1024, 1037], "goodby": 371, "goodman": [1031, 1036], "googl": [0, 56, 383, 399, 403, 438, 949, 1031], "gool": 1000, "gorb": 1043, "gordon": [58, 1037, 1041, 1043, 1045, 1051], "gorelli": [1039, 1040, 1044, 1046, 1049, 1050, 1051], "gorgolewski": [0, 393, 1031, 1034], "gorilla": 346, "gorinevski": 996, "gorodkin": 744, "gorro\u00f1o": [1042, 1044, 1045], "got": [173, 239, 270, 354, 376, 548, 648, 664, 1044, 1046, 1048, 1050], "gotten": [996, 1010], "gou": 403, "gouillart": 1031, "goupil": [0, 355], "goutam": 1051, "gov": [56, 368], "govern": [183, 354, 358, 371, 385, 1024], "govin": 1037, "go\u0144da": 1046, "gp": [170, 172, 175, 413, 609, 610, 621, 1037], "gp_fix": 168, "gp_opt": 168, "gpapadok": [1041, 1045], "gpassino": 1035, "gpc": [2, 68, 136, 142, 152, 166, 172, 173, 175, 180, 215, 216, 217, 218, 238, 252, 298, 306, 329, 340, 501, 609, 610, 612, 613, 618, 619, 621, 622, 703, 742, 1021, 1022, 1026, 1041], "gpc_rbf_anisotrop": 169, "gpc_rbf_isotrop": 169, "gperftool": 374, "gplearn": 1019, "gpr": [2, 121, 166, 168, 174, 176, 180, 493, 609, 610, 612, 613, 614, 615, 620, 621, 622, 623, 624, 1021, 1022, 1026, 1041], "gpr_model": 176, "gprof": 374, "gpu": [317, 320, 399, 1004, 1020, 1048], "gr": 898, "grab": 371, "gracefulli": [1034, 1035], "grad": [377, 1024], "gradd": 377, "grade": 1000, "gradi": 1041, "gradient": [2, 14, 47, 53, 67, 80, 99, 103, 133, 134, 135, 138, 139, 141, 151, 154, 155, 156, 172, 173, 174, 180, 183, 185, 186, 189, 191, 196, 208, 232, 233, 234, 237, 243, 244, 246, 257, 262, 264, 277, 289, 299, 301, 303, 304, 307, 309, 310, 316, 319, 334, 385, 402, 403, 413, 448, 458, 462, 463, 484, 486, 493, 498, 500, 517, 550, 551, 556, 557, 558, 559, 561, 562, 584, 609, 610, 611, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 630, 631, 633, 634, 638, 647, 648, 657, 658, 667, 668, 671, 673, 675, 676, 677, 679, 686, 692, 694, 695, 742, 743, 749, 751, 791, 801, 804, 805, 806, 822, 828, 831, 861, 862, 863, 866, 878, 879, 886, 909, 973, 997, 1000, 1003, 1004, 1005, 1006, 1019, 1021, 1022, 1026, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1040, 1041, 1044, 1046, 1048], "gradient_boost": [139, 1033, 1034, 1040], "gradientboost": [139, 156, 275, 1036], "gradientboostingclassifi": [2, 139, 145, 148, 305, 383, 550, 558, 631, 632, 1001, 1007, 1031, 1032, 1033, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1048], "gradientboostingclassifier__learning_r": 305, "gradientboostingregressor": [2, 47, 144, 146, 147, 154, 156, 358, 376, 383, 551, 559, 631, 632, 996, 1000, 1001, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1048], "gradual": [210, 243, 862, 863, 942, 944, 1014], "graduat": 368, "graham": [1036, 1037], "grai": [46, 54, 80, 81, 83, 84, 86, 120, 123, 148, 163, 204, 206, 223, 236, 240, 241, 270, 300, 368, 408, 490, 491, 499, 518, 1042], "grain": [44, 68, 73, 200, 237, 254, 305, 377, 411, 442, 1020], "gram": [2, 154, 180, 189, 239, 264, 344, 373, 408, 411, 485, 521, 545, 586, 587, 588, 589, 645, 646, 649, 650, 651, 652, 653, 654, 655, 659, 660, 661, 662, 663, 664, 680, 681, 682, 683, 684, 685, 768, 989, 996, 1010, 1015, 1021, 1031, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1042, 1044, 1045], "gram_test": 1015, "gram_train": 1015, "gramfort": [0, 386, 392, 996, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045], "grammar": [371, 383], "grammatrix": 154, "grant": [0, 242, 257, 371], "granular": 1050, "grape": 404, "graph": [2, 56, 63, 79, 80, 99, 175, 225, 260, 283, 285, 327, 328, 358, 371, 374, 385, 400, 405, 414, 437, 440, 441, 448, 449, 453, 458, 459, 467, 468, 474, 508, 583, 584, 688, 691, 692, 695, 783, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 860, 901, 955, 997, 1000, 1003, 1005, 1013, 1016, 1019, 1024, 1031, 1038, 1039, 1041, 1044, 1046], "graph_laplacian": 1038, "graph_lasso": [474, 1039], "graph_model": 285, "graph_shortest_path": [380, 1044], "graphic": [8, 58, 112, 184, 328, 346, 347, 348, 366, 377, 403, 405, 408, 793, 794, 798, 835, 917, 1000, 1001, 1007, 1019], "graphical_lasso": [2, 380, 467, 468, 1039, 1047], "graphicallasso": [2, 113, 405, 465, 466, 468, 469, 470, 471, 472, 474, 1039, 1047], "graphicallassocv": [2, 52, 113, 394, 405, 467, 469, 470, 471, 472, 474, 1039, 1043, 1045, 1047, 1049], "graphicallassocvifit": 52, "graphlasso": [467, 1036, 1039], "graphlassocv": [468, 1033, 1039], "graphviz": [917, 1016, 1050], "grasp": [277, 1015, 1020], "grassberg": [605, 606], "grate": 1024, "graviton": 379, "gray_r": [69, 123, 170, 226, 301, 324, 325], "grayscal": 69, "greasemonkei": 379, "great": [88, 182, 183, 354, 371, 383, 408, 765, 1020, 1024, 1031, 1038], "greater": [63, 73, 104, 118, 134, 136, 160, 172, 183, 222, 237, 242, 243, 244, 251, 253, 257, 262, 269, 270, 282, 289, 290, 314, 350, 358, 376, 385, 401, 402, 403, 406, 410, 437, 441, 442, 445, 448, 459, 468, 533, 538, 554, 555, 556, 557, 558, 559, 561, 562, 563, 591, 592, 595, 609, 610, 627, 639, 641, 663, 665, 666, 670, 675, 676, 677, 692, 707, 709, 712, 720, 722, 728, 736, 737, 740, 741, 743, 783, 789, 790, 796, 798, 799, 835, 847, 848, 855, 856, 862, 863, 868, 883, 895, 899, 902, 905, 906, 913, 914, 915, 916, 949, 969, 989, 995, 996, 997, 1000, 1001, 1006, 1010, 1015, 1016, 1034, 1039, 1042, 1044, 1045, 1046, 1048, 1051], "greater_is_bett": [146, 320, 743, 1000], "greaterthan": [52, 143, 151, 154, 156, 257, 309, 317, 322], "greatest": [88, 389, 403, 872, 1039], "greatli": [143, 237, 317, 371, 379, 448, 1003, 1016, 1037, 1045], "greedi": [163, 410, 412, 443, 445, 456, 556, 557, 600, 996, 1016], "greedili": [116, 163, 403, 407, 412, 456], "greek": [52, 56, 60, 72, 86, 99, 123, 180, 403, 458, 1021], "green": [64, 112, 118, 137, 146, 151, 167, 188, 230, 262, 299, 304, 308, 313, 319, 385, 1001, 1039, 1040, 1042, 1043], "greenhal": 1039, "greg": [1024, 1037, 1038, 1040, 1041], "gregori": [1037, 1041, 1042, 1043, 1044], "gregorystrubel": 1044, "gregov": 1039, "grei": [45, 273, 303, 342, 366, 1051], "grep": 371, "greyscal": 301, "grid": [2, 46, 48, 50, 51, 52, 59, 63, 64, 65, 77, 87, 94, 103, 104, 105, 106, 109, 113, 142, 143, 152, 154, 160, 162, 171, 180, 182, 183, 184, 185, 198, 223, 230, 234, 237, 238, 239, 243, 248, 253, 255, 257, 260, 264, 267, 268, 270, 275, 282, 285, 287, 288, 296, 301, 305, 306, 308, 309, 313, 316, 322, 332, 334, 335, 341, 346, 366, 373, 378, 383, 385, 398, 404, 407, 409, 410, 411, 444, 457, 460, 468, 495, 499, 512, 519, 630, 631, 632, 646, 649, 652, 653, 655, 658, 660, 662, 675, 713, 729, 731, 743, 786, 789, 801, 804, 805, 812, 815, 817, 831, 832, 865, 910, 993, 995, 1000, 1003, 1007, 1020, 1021, 1026, 1031, 1034, 1035, 1036, 1038, 1039, 1045, 1047, 1048, 1049, 1050, 1051], "grid_encod": 306, "grid_model": 285, "grid_posit": [63, 65], "grid_resolut": [184, 314, 333, 630, 631, 632], "grid_scores_": [1037, 1043, 1044], "grid_search": [106, 140, 244, 253, 261, 271, 319, 404, 1033, 1034, 1035, 1036, 1037, 1038], "grid_siz": [51, 94, 296, 366, 495], "grid_to_graph": [2, 81, 84, 87, 403, 411, 1044], "grid_tograph": 1034, "grid_valu": [184, 632, 1007, 1047], "gridsearch": [87, 109, 274], "gridsearchcv": [2, 44, 87, 101, 103, 105, 106, 109, 127, 140, 180, 238, 244, 253, 255, 257, 261, 263, 264, 268, 271, 274, 280, 285, 287, 301, 305, 314, 318, 319, 321, 335, 339, 354, 359, 373, 383, 385, 394, 399, 404, 407, 410, 413, 417, 499, 517, 537, 538, 573, 597, 605, 652, 703, 731, 743, 812, 815, 865, 875, 905, 913, 989, 996, 1000, 1004, 1014, 1015, 1021, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1045, 1046, 1048, 1049, 1050, 1051, 1052], "gridsearchcvifit": [104, 253, 257, 261, 262, 263], "gridsearchcvinot": 244, "gridsiz": 236, "gridspec": [63, 65, 98, 248, 378], "gridspecfromsubplotspec": 378, "griffith": [1039, 1040], "grigorev": 1036, "grigorio": 735, "grime": [689, 693, 997], "grinsztajn": 1048, "grisel": [0, 386, 392, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "griva": [1045, 1046], "grlivarea": 143, "grobler": [0, 393, 1031, 1032, 1033, 1034], "groceryheist": 1044, "groenen": [687, 690, 694, 997], "grok": 483, "groothui": [626, 990], "grother": 368, "ground": [2, 28, 59, 69, 75, 82, 90, 91, 94, 109, 113, 116, 123, 150, 175, 194, 202, 206, 207, 242, 254, 266, 347, 385, 403, 703, 704, 705, 708, 712, 713, 714, 715, 717, 718, 721, 724, 725, 727, 729, 730, 731, 735, 737, 738, 739, 740, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 784, 785, 786, 787, 788, 791, 792, 796, 797, 1000, 1013, 1039], "ground_truth": [88, 290], "group": [0, 2, 52, 73, 75, 88, 91, 93, 184, 186, 206, 226, 239, 254, 258, 264, 309, 319, 326, 347, 353, 366, 373, 376, 385, 386, 394, 403, 409, 410, 411, 414, 428, 442, 492, 586, 587, 589, 592, 718, 789, 801, 802, 803, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 826, 827, 828, 829, 830, 832, 878, 879, 915, 916, 942, 944, 996, 997, 999, 1000, 1001, 1010, 1016, 1017, 1019, 1037, 1038, 1039, 1040, 1043, 1044, 1045, 1047, 1048, 1049, 1050], "group_1": 878, "group_2": 878, "group_3": 878, "group_by_dynam": 172, "group_df": 213, "group_kfold": 802, "group_prior": 258, "groupbi": [44, 149, 184, 213, 223], "groupinfrequ": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316], "groupkfold": [2, 258, 268, 319, 394, 407, 592, 806, 807, 808, 809, 810, 819, 824, 826, 827, 828, 829, 832, 1037, 1044, 1050], "groupshufflesplit": [2, 258, 407, 1037], "grow": [44, 53, 100, 188, 194, 285, 342, 348, 358, 383, 399, 405, 410, 411, 554, 555, 556, 557, 561, 562, 563, 811, 845, 846, 913, 914, 915, 916, 989, 1000, 1003, 1016, 1024, 1034, 1035], "grower": [149, 410, 558, 559, 561, 562], "grown": [368, 410, 550, 551, 552, 553, 554, 555, 561, 562, 913, 914, 915, 916, 1016], "growth": [1000, 1036, 1037], "grumman": 52, "grusak": 1041, "gryllo": [1036, 1039], "gryze": [1033, 1036], "grzegorz": [1038, 1041], "gs_time": 274, "gsh": 274, "gsh_time": 274, "gsiisg": 1046, "gsk": 52, "gss": [407, 803], "gt": [69, 103, 104, 139, 143, 154, 160, 183, 184, 185, 234, 244, 246, 253, 261, 262, 264, 275, 309, 313, 316, 371, 375, 391], "gu": [1042, 1043, 1045], "guan": 1041, "guangguo": 1037, "guarante": [47, 48, 65, 103, 111, 112, 139, 149, 154, 155, 183, 213, 233, 234, 236, 243, 244, 246, 257, 262, 270, 277, 282, 283, 301, 303, 313, 316, 322, 347, 354, 360, 365, 371, 379, 380, 397, 403, 407, 408, 411, 442, 533, 644, 657, 658, 667, 671, 673, 675, 677, 686, 694, 803, 818, 821, 845, 846, 883, 885, 888, 890, 891, 892, 893, 894, 895, 896, 898, 899, 912, 931, 932, 992, 996, 997, 999, 1000, 1003, 1008, 1012, 1016, 1041, 1049], "gubri": [1039, 1040], "gudmalwar": 1043, "gued": 1049, "guerin": [1037, 1038], "guess": [56, 104, 134, 142, 244, 262, 407, 410, 411, 529, 535, 537, 538, 544, 789, 1000, 1014], "guestrin": 410, "guha": 1046, "gui": [1032, 1042], "guid": [0, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 52, 53, 63, 64, 65, 88, 101, 103, 104, 120, 139, 140, 141, 143, 151, 154, 155, 156, 176, 180, 183, 184, 185, 196, 208, 225, 233, 234, 239, 244, 245, 246, 253, 257, 261, 262, 263, 270, 275, 277, 289, 290, 293, 301, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 352, 353, 369, 370, 371, 376, 377, 378, 379, 384, 385, 386, 391, 394, 404, 410, 414, 415, 416, 417, 420, 426, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 453, 455, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 613, 614, 615, 618, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 697, 698, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 728, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 919, 945, 986, 1000, 1001, 1031, 1032, 1033, 1034, 1036, 1038, 1040, 1041, 1048, 1049, 1050, 1051, 1052], "guidanc": [383, 384, 413, 631, 697, 698, 700, 702, 989, 1000], "guidelin": [2, 26, 370, 374, 376, 377, 379, 383, 403, 410], "guiel": 491, "guilherm": 1034, "guillaum": [0, 392, 1024, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "guillem": [1040, 1041, 1046], "guillemot": [0, 1037, 1038], "guillermo": 1045, "guiniol": 1038, "guiomar": 1051, "guitar": 1046, "guitton": 1043, "guiweb": 1044, "gulati": [1036, 1037, 1038], "gun": [58, 366], "gunduz": 1049, "gunesbayir": [1046, 1047], "gunnar": [532, 949], "guntitat": 1050, "guo": [401, 433, 1044], "guoci": 1038, "gupta": [899, 1012, 1038, 1039, 1042, 1043, 1044, 1045, 1047, 1048, 1049, 1050], "gustafson": [1046, 1047], "gustav": 1037, "gustavo": [1039, 1040, 1045], "gutierrez": 1041, "guttman": 694, "guyon": [512, 591, 592, 1000], "guyon2015": 1000, "guzman": 1051, "gwulf": [1035, 1036], "gyeongja": 1049, "gz": [48, 375, 389, 505, 506], "gzip": 1031, "g\u00e9ron": 1039, "g\u00f3rski": [1042, 1043], "g\u00f6khan": [45, 408, 532], "g\u00f6n\u00fcl": 1049, "g\u00fcnther": [1044, 1048], "h": [45, 46, 53, 91, 120, 121, 134, 135, 152, 163, 169, 183, 250, 288, 291, 298, 305, 316, 329, 331, 348, 368, 377, 401, 403, 405, 408, 409, 410, 411, 414, 440, 516, 529, 532, 535, 537, 544, 550, 564, 565, 580, 588, 605, 606, 689, 693, 704, 708, 758, 840, 844, 845, 846, 851, 861, 876, 885, 992, 994, 996, 997, 998, 1000, 1002, 1004, 1005, 1014, 1016, 1037, 1042, 1046, 1047, 1048], "h1998": 410, "h2009": 1007, "h4dr1en": 1041, "h5py": 365, "h_": 996, "h_i": [408, 1005], "h_init": 377, "h_j": 1005, "h_l": 994, "h_m": 410, "h_pad": [120, 142, 351], "h_samples_": 861, "ha": [0, 44, 45, 48, 51, 52, 53, 63, 67, 71, 73, 79, 83, 88, 89, 90, 93, 103, 104, 106, 111, 112, 116, 120, 132, 139, 142, 143, 144, 146, 147, 149, 151, 154, 155, 156, 160, 161, 162, 167, 172, 173, 174, 179, 183, 184, 185, 186, 188, 201, 206, 207, 208, 212, 222, 223, 225, 232, 233, 234, 235, 236, 238, 239, 242, 243, 244, 245, 246, 248, 249, 251, 253, 254, 257, 258, 261, 262, 263, 264, 266, 267, 269, 270, 274, 275, 277, 282, 286, 289, 290, 291, 293, 300, 301, 303, 304, 306, 308, 309, 312, 313, 314, 315, 316, 317, 318, 320, 321, 322, 324, 327, 328, 335, 339, 340, 341, 346, 352, 353, 354, 358, 359, 360, 365, 366, 368, 369, 370, 371, 372, 373, 375, 376, 379, 380, 383, 384, 385, 386, 389, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 410, 411, 412, 413, 415, 428, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 457, 458, 459, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 490, 491, 494, 495, 505, 506, 513, 523, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 618, 626, 627, 628, 629, 631, 632, 633, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 684, 686, 687, 688, 689, 690, 691, 692, 694, 695, 698, 700, 702, 711, 713, 720, 723, 732, 742, 764, 775, 779, 780, 781, 790, 794, 798, 799, 801, 802, 804, 805, 806, 807, 808, 815, 819, 822, 823, 824, 829, 830, 833, 834, 836, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 865, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 920, 922, 930, 931, 932, 951, 969, 984, 989, 990, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1012, 1013, 1014, 1015, 1016, 1020, 1023, 1024, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "haan": 1040, "haar": [54, 1048], "haas": 1041, "habchi": 1041, "haberland": [1046, 1047], "haberth\u00fcr": 1038, "hack": [48, 50], "had": [44, 49, 81, 146, 149, 172, 239, 303, 309, 315, 354, 371, 372, 379, 394, 411, 414, 440, 990, 1000, 1024, 1031, 1032, 1038, 1039, 1040, 1041, 1042, 1046], "hadamard": 373, "haddad": 1038, "hadrien": [1038, 1041], "hadshirt": 1041, "haenel": 1034, "haesun": [1043, 1046, 1047, 1050, 1051], "hafner": 1044, "hagai": 798, "hagberg": 56, "hahn": [1038, 1039], "haiat": 1043, "haidar": [1044, 1045], "hail": 309, "hailei": [1041, 1042], "hain": 366, "haitz": [1042, 1044, 1045], "hakaa1": [1038, 1039], "hakan": 1051, "hal": [544, 657, 759, 760, 998], "halchenko": [0, 393, 1031, 1032, 1033, 1034, 1037, 1038, 1039, 1040, 1047, 1051], "hale": [1033, 1045], "half": [2, 44, 62, 123, 143, 149, 151, 154, 237, 241, 243, 261, 263, 275, 309, 314, 317, 352, 366, 367, 408, 410, 459, 519, 559, 591, 595, 600, 771, 863, 864, 872, 914, 1000, 1003, 1016], "half_cal": 595, "half_selector": 595, "halfbath": 143, "halford": [1039, 1046, 1047], "halkidi": 403, "halko": [104, 244, 262, 408, 532, 538, 541, 948, 949], "hall": [996, 1038, 1042], "hallock": 1037, "halpert": [692, 997], "halv": [2, 180, 255, 267, 271, 341, 398, 512, 561, 577, 801, 804, 805, 910, 1021, 1026, 1043], "halvic": 1043, "halvinggridsearchcv": [2, 274, 275, 314, 394, 399, 577, 805, 989, 1043, 1045, 1046, 1048, 1049, 1050], "halvingrandomsearchcv": [2, 146, 275, 314, 394, 399, 577, 804, 989, 1043, 1045, 1046, 1047, 1048, 1049, 1050], "halvingrandomsearchcvifit": 275, "halwai": 1037, "ham": [2, 47, 446, 453, 579, 699, 703, 709, 735, 742, 779, 780, 781, 797, 1003], "hamada": 1043, "hamdi": [1048, 1049], "hammerbach": 1035, "hamming_loss": [2, 47, 399, 703, 797, 1000, 1033, 1037, 1040, 1051, 1052], "hammingdist": 699, "hammoudeh": 1040, "hamoumi": 1044, "hampu": 1035, "hamza": 1051, "hamzeh": [0, 1034, 1035], "han": [403, 438, 446, 453, 1031, 1039, 1040, 1044], "hancock": 1041, "hand": [45, 66, 67, 84, 86, 116, 122, 123, 125, 140, 146, 158, 161, 172, 180, 183, 184, 200, 201, 210, 229, 235, 236, 238, 239, 242, 256, 257, 260, 265, 272, 277, 287, 324, 325, 335, 352, 358, 365, 366, 368, 371, 373, 377, 379, 384, 401, 408, 409, 410, 412, 420, 426, 499, 642, 697, 713, 789, 831, 886, 910, 989, 993, 996, 1000, 1002, 1004, 1008, 1013, 1015, 1021, 1024], "handbook": [720, 741, 1000], "handi": [82, 103, 347, 348, 372, 1047], "handk": 1047, "handl": [2, 44, 49, 103, 139, 140, 143, 147, 149, 150, 154, 155, 183, 184, 188, 194, 200, 233, 234, 238, 239, 244, 246, 257, 262, 265, 270, 272, 277, 280, 282, 283, 290, 301, 309, 312, 313, 316, 319, 322, 346, 348, 353, 358, 363, 365, 371, 372, 373, 380, 381, 383, 385, 403, 410, 411, 413, 493, 541, 575, 579, 580, 586, 587, 589, 609, 634, 645, 646, 651, 657, 658, 659, 660, 661, 667, 674, 675, 677, 680, 720, 789, 869, 878, 879, 884, 905, 906, 910, 917, 921, 950, 958, 961, 997, 1000, 1001, 1002, 1003, 1006, 1008, 1015, 1016, 1019, 1020, 1024, 1026, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "handle_data": 48, "handle_endtag": 48, "handle_miss": [155, 884, 1052], "handle_starttag": 48, "handle_unknown": [44, 103, 139, 143, 154, 183, 184, 185, 234, 242, 244, 246, 309, 313, 316, 878, 879, 1010, 1035, 1039, 1043, 1044, 1050], "handler": 1042, "handler_map": 290, "handlerpathcollect": 290, "handletextpad": 351, "handpick": 232, "handprint": 368, "handwritten": [52, 72, 85, 90, 92, 93, 94, 139, 161, 180, 224, 225, 227, 229, 236, 251, 261, 293, 300, 301, 324, 325, 347, 364, 403, 410, 443, 499, 538, 541, 546, 563, 687, 688, 689, 690, 691, 692, 704, 705, 717, 738, 794, 796, 854, 866, 875, 885, 898, 997, 1003, 1021, 1026], "hang": [371, 1041, 1042], "hanjun": [1050, 1051], "hank": 1034, "hanmin": [0, 393, 1038, 1039, 1040, 1041, 1042, 1050], "hann": 1031, "hanna": [1035, 1036, 1042], "hannah": [1041, 1043, 1045], "hannel": [1039, 1040], "hannoun": 1051, "hansen": 1039, "hansin": [1045, 1046], "hanu\u0161": 1048, "hanxiang": [678, 996], "hao": [1042, 1043, 1045, 1046], "haoi": 1048, "haoran": 1039, "haoyin": [1042, 1044, 1045], "happen": [2, 45, 64, 65, 139, 196, 257, 303, 309, 347, 354, 358, 359, 369, 370, 371, 373, 375, 376, 377, 383, 385, 386, 389, 397, 403, 405, 407, 410, 433, 512, 569, 657, 786, 883, 885, 905, 942, 996, 1000, 1001, 1015, 1020, 1039, 1043, 1044, 1046, 1047, 1048, 1049, 1051, 1052], "happi": [183, 257, 346, 371, 383, 386, 819, 820], "haqu": [1033, 1034, 1035], "harabasz": [2, 710], "harabaz": 1037, "hard": [49, 104, 155, 206, 232, 236, 244, 262, 263, 265, 360, 370, 383, 385, 402, 403, 408, 411, 531, 538, 566, 675, 907, 908, 909, 910, 911, 996, 1013, 1015, 1016, 1020, 1040, 1041], "hardcod": [436, 450, 1039], "harder": [143, 151, 154, 257, 272, 273, 307, 309, 317, 322, 366, 370, 371, 373, 379, 383, 403, 512, 558, 559], "hardest": 391, "hardin": 112, "hardli": [88, 605, 606], "hardwar": [58, 328, 348, 358, 359, 366, 383, 389, 397, 399, 1019, 1045, 1046], "hare": 996, "harfouch": 1047, "harikrishnan": 1033, "harizo": [1037, 1038], "harm": [346, 373, 411, 796], "harmanan": [1048, 1049], "harmon": [44, 73, 347, 403, 532, 538, 730, 731, 737, 784, 796, 1000], "haroldfox": [1039, 1040], "harper": 1038, "harri": [1035, 1037, 1043, 1044, 1051], "harsanyi": 1047, "harsh": [420, 433, 465, 546, 547, 548, 550, 552, 554, 556, 558, 561, 564, 566, 609, 657, 665, 667, 673, 674, 675, 800, 823, 833, 834, 835, 836, 840, 841, 842, 843, 844, 847, 852, 855, 862, 900, 901, 905, 907, 910, 913, 915, 1041, 1043, 1046], "harshit5674": 1046, "hart": [368, 994, 1039], "hartong": 1042, "harutaka": 1044, "harvest": 309, "has_fit_paramet": [2, 380], "hasan": 1046, "hasattr": [79, 89, 95, 113, 132, 142, 223, 236, 298, 305, 346, 385, 418, 422, 428, 962, 1041], "haseeb": [1044, 1045], "hash": [2, 48, 53, 133, 180, 347, 348, 358, 360, 363, 371, 374, 383, 410, 511, 541, 554, 563, 579, 580, 587, 639, 840, 966, 992, 1021, 1026, 1032, 1035, 1038], "hashabl": [385, 873, 876, 1011], "hashcode55": 1037, "hasher": [152, 348, 411], "hashingvector": [2, 48, 348, 360, 411, 485, 586, 588, 589, 1032, 1038, 1039, 1040, 1041, 1044, 1051], "hashlib": 48, "hasil": 1035, "hasn": 394, "hassaan": [1039, 1040], "hassan": [1044, 1050], "hassen": 1031, "hassoun": 1046, "hasti": [2, 134, 137, 138, 148, 163, 196, 262, 368, 407, 410, 516, 517, 550, 556, 557, 627, 655, 721, 724, 725, 835, 852, 898, 913, 914, 990, 994, 996, 1001, 1007, 1012, 1014, 1016], "hat": [112, 129, 259, 263, 288, 315, 369, 401, 405, 409, 410, 709, 991, 996, 997, 1000, 1002, 1004], "hathidara": 1043, "hatwar": [1039, 1040], "hauck": 1037, "hausamann": [1039, 1040], "haussler": 175, "hav": 391, "have": [0, 2, 26, 44, 45, 47, 48, 49, 51, 52, 53, 54, 63, 64, 65, 67, 73, 77, 78, 80, 81, 83, 86, 88, 90, 93, 95, 97, 98, 100, 102, 103, 104, 109, 111, 116, 118, 125, 134, 139, 141, 142, 143, 144, 146, 149, 154, 155, 156, 159, 160, 163, 167, 168, 172, 173, 174, 178, 179, 182, 183, 184, 185, 186, 188, 190, 194, 204, 206, 207, 208, 210, 223, 229, 232, 233, 234, 239, 240, 242, 243, 244, 246, 249, 250, 251, 253, 256, 257, 260, 262, 263, 264, 266, 269, 270, 275, 276, 277, 278, 280, 283, 285, 286, 289, 290, 301, 303, 308, 309, 310, 312, 313, 314, 315, 316, 319, 321, 322, 325, 326, 327, 332, 338, 339, 340, 342, 346, 347, 352, 353, 354, 358, 359, 360, 365, 366, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 383, 384, 385, 386, 389, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 417, 428, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 483, 489, 491, 492, 493, 505, 506, 511, 520, 521, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 579, 580, 581, 582, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 631, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 684, 686, 687, 688, 689, 690, 691, 692, 698, 699, 702, 704, 705, 711, 712, 715, 720, 727, 728, 732, 737, 757, 758, 759, 760, 783, 786, 787, 793, 796, 798, 799, 800, 801, 804, 805, 806, 807, 812, 815, 819, 823, 824, 826, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 890, 891, 893, 894, 895, 896, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 924, 931, 933, 935, 937, 949, 974, 989, 990, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1010, 1012, 1013, 1014, 1015, 1016, 1017, 1019, 1020, 1023, 1024, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "havea": 264, "havebeen": [154, 314], "haveequ": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "havelabeleddatado": 391, "haversin": [2, 296, 409, 699, 763, 765, 1003, 1040, 1043], "haversine_dist": [2, 763, 1040], "haversinedist": 699, "haveweight": [104, 160, 244, 245, 261, 263, 270, 314], "hawaii": 172, "haxbi": 0, "haya": 1045, "hayashi": 1039, "hazen": 870, "hbgt": 149, "hd": 52, "hdb": [88, 442], "hdbscan": [2, 72, 79, 82, 98, 180, 236, 440, 509, 885, 990, 1019, 1021, 1025, 1026, 1047, 1048, 1049, 1052], "hdbscan_min_cluster_s": 79, "hdbscan_min_sampl": 79, "hdf5": 365, "hdl": [163, 368], "hdmetor": 1037, "hdz": 1051, "he": [371, 727, 757, 862, 863, 895, 896, 1000, 1038, 1045, 1046], "head": [0, 53, 64, 103, 172, 183, 196, 198, 223, 246, 253, 309, 312, 317, 371, 379, 392, 408, 831, 1024, 1036, 1037, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "head_width": 64, "header": [55, 102, 264, 346, 347, 366, 369, 411, 484, 485, 801, 804, 805, 815], "heali": 403, "health": 320, "heap": 446, "heapq": 459, "heard": 371, "heart": 242, "heat": [154, 335, 403, 448, 458, 695], "heatingqc": 154, "heatmap": [184, 186, 190, 194, 274, 317, 335, 631, 1007], "heatmap_kw": 631, "heatmaps_": 631, "heavei": 1039, "heavi": [208, 383, 400, 1020], "heavier": [129, 405, 996], "heavili": [198, 358, 359, 371, 379, 648, 654, 779, 1017], "heavy_rain": [44, 184], "hebei": 403, "hedlund": 1047, "hedyati": 1035, "hee": [1038, 1041], "heer": 1042, "hegd": 1048, "heidelberg": [172, 403, 408, 532, 696, 727, 757, 1000], "height": [48, 55, 86, 123, 144, 163, 303, 309, 319, 328, 346, 409, 442, 490, 491, 503, 584], "heightpet_catpet_dogf64f64f64": 319, "heikki": 1012, "heilman": [1035, 1036], "heitz": 309, "held": [44, 48, 103, 104, 127, 143, 147, 185, 213, 250, 266, 271, 282, 407, 410, 556, 557, 558, 559, 701, 801, 804, 805, 815, 862, 863, 874, 875, 989, 990, 999, 1008, 1052], "helder": [1035, 1044, 1045, 1051], "heldout_scor": 145, "helen": 317, "heli": 1038, "hello": [371, 379, 962, 966], "helloifeven": 962, "helm": [1049, 1050], "helmu": 1035, "help": [0, 42, 44, 49, 51, 64, 88, 102, 104, 106, 125, 130, 184, 194, 204, 223, 225, 257, 262, 264, 266, 276, 280, 301, 321, 328, 332, 335, 347, 348, 354, 358, 359, 371, 372, 373, 374, 375, 376, 377, 379, 380, 385, 386, 388, 397, 399, 403, 404, 407, 411, 413, 427, 433, 533, 575, 626, 649, 653, 664, 684, 685, 692, 714, 841, 874, 875, 913, 914, 915, 916, 990, 994, 995, 997, 999, 1000, 1002, 1004, 1010, 1011, 1016, 1018, 1019, 1020, 1023, 1024, 1037, 1038, 1039, 1042, 1045, 1049], "helper": [45, 46, 123, 223, 274, 364, 373, 374, 384, 407, 464, 573, 903, 988, 1031, 1038, 1039, 1040, 1044, 1051], "helvetica": [917, 919], "heme": 1048, "hempstalk": 1038, "henc": [73, 93, 104, 183, 210, 236, 244, 257, 262, 272, 335, 346, 347, 358, 366, 373, 375, 377, 385, 389, 403, 407, 410, 411, 483, 505, 536, 538, 540, 560, 588, 642, 645, 651, 659, 661, 671, 686, 704, 705, 709, 715, 732, 758, 787, 796, 817, 820, 821, 840, 841, 842, 843, 844, 880, 958, 997, 999, 1000, 1001, 1006, 1007, 1010, 1020, 1038, 1039, 1042, 1043, 1045], "hendrick": 1052, "hendrik": [0, 393, 1031, 1034, 1035, 1036, 1037], "henri": [1036, 1037, 1038, 1039, 1041, 1042, 1043, 1045, 1046, 1051], "henriqu": 1050, "henrymooresc": [1045, 1046], "hepe": [678, 996], "here": [44, 48, 49, 52, 53, 54, 56, 64, 65, 90, 91, 99, 100, 103, 104, 109, 113, 118, 122, 123, 125, 127, 128, 130, 134, 137, 140, 143, 147, 149, 154, 155, 160, 163, 167, 175, 176, 183, 184, 185, 188, 190, 194, 198, 201, 206, 210, 212, 220, 221, 223, 225, 227, 228, 232, 237, 239, 242, 243, 244, 249, 250, 251, 253, 256, 257, 260, 261, 262, 263, 265, 266, 268, 270, 272, 273, 275, 276, 277, 280, 283, 285, 292, 295, 299, 300, 301, 305, 308, 314, 316, 319, 321, 324, 326, 335, 339, 342, 344, 348, 350, 352, 354, 358, 359, 360, 365, 366, 369, 370, 371, 372, 373, 376, 377, 379, 383, 384, 394, 397, 400, 402, 403, 404, 406, 407, 408, 409, 410, 411, 414, 416, 433, 436, 437, 438, 439, 440, 441, 442, 443, 445, 448, 460, 468, 471, 533, 535, 536, 540, 541, 560, 564, 565, 566, 567, 579, 580, 582, 586, 589, 592, 600, 608, 627, 629, 646, 650, 652, 654, 660, 662, 664, 672, 674, 689, 691, 695, 699, 712, 727, 757, 795, 800, 801, 804, 805, 807, 815, 823, 824, 825, 826, 827, 828, 829, 830, 832, 841, 845, 846, 869, 877, 880, 883, 886, 897, 898, 908, 967, 989, 992, 996, 997, 998, 999, 1000, 1003, 1006, 1010, 1012, 1013, 1014, 1015, 1019, 1020, 1023, 1024, 1031, 1039, 1044], "hereaft": 386, "hereund": 1006, "herilalaina": [1038, 1039, 1041], "hermano": [1046, 1047], "hermida": [1040, 1044], "hernandez": 1000, "hern\u00e1ndez": 1000, "hero": [405, 416, 471], "herrou": 1045, "hershei": 1000, "hertel": 1048, "herv": 1035, "hervieu": 1031, "herv\u00e9": 1035, "heryanto": 1038, "hesit": 371, "hessian": [103, 139, 143, 151, 154, 155, 225, 226, 227, 233, 234, 244, 246, 257, 262, 277, 301, 309, 313, 316, 317, 322, 410, 558, 559, 647, 657, 658, 668, 679, 689, 693, 996, 1004, 1025, 1026, 1046, 1050], "hessian_tol": [689, 693], "heterogen": [44, 48, 49, 62, 88, 101, 103, 180, 184, 206, 246, 308, 312, 348, 363, 365, 383, 460, 484, 538, 579, 589, 713, 865, 869, 905, 997, 1007, 1010, 1019, 1021, 1026, 1035, 1039, 1041, 1042, 1049], "heteroscedast": [120, 127, 146, 208, 408, 881, 893], "heteroschedast": 1000, "heuer": 1034, "heurist": [52, 55, 143, 145, 242, 244, 245, 261, 263, 275, 314, 346, 359, 403, 412, 445, 448, 457, 458, 505, 506, 534, 536, 543, 675, 676, 677, 691, 695, 804, 805, 907, 908, 909, 910, 911, 936, 997, 998, 1003, 1014, 1016, 1024, 1031, 1032, 1036, 1040, 1043, 1044], "hexbin": 236, "hexdigest": 48, "hgbdt": 140, "hgbdt_model": 184, "hgbdt_model_without_interact": 184, "hgbdt_preprocessor": 184, "hgbt": [140, 149, 410], "hgbt_cst": 149, "hgbt_no_cst": 149, "hgbt_quantil": 149, "hhchen1105": 1050, "hhu": 1040, "hi": [0, 404, 1000], "hibon": 1038, "hida": [1046, 1047], "hidden": [44, 184, 243, 300, 301, 371, 379, 400, 408, 861, 862, 863, 1004, 1005, 1019, 1031, 1042], "hidden_layer_s": [184, 243, 298, 300, 862, 863, 1004], "hide": [53, 78, 371, 379, 407, 840, 841, 842, 843, 844, 1034, 1039, 1047], "hideaki": 1045, "hierarch": [2, 54, 59, 60, 72, 75, 79, 80, 85, 86, 87, 89, 90, 180, 186, 229, 316, 353, 385, 411, 437, 439, 441, 442, 501, 509, 511, 519, 527, 544, 732, 858, 885, 1017, 1021, 1025, 1026, 1031, 1034, 1035, 1047], "hierarchi": [76, 186, 371, 446, 452, 459, 1005], "higgin": [1048, 1049], "high": [0, 38, 44, 49, 51, 52, 63, 65, 68, 73, 75, 79, 82, 88, 90, 95, 98, 102, 106, 111, 112, 122, 123, 137, 139, 140, 141, 143, 146, 147, 149, 150, 152, 154, 155, 163, 167, 173, 179, 182, 184, 185, 186, 194, 203, 204, 207, 208, 210, 219, 225, 226, 227, 232, 236, 244, 245, 248, 254, 261, 263, 265, 269, 270, 289, 290, 298, 300, 305, 307, 308, 309, 310, 314, 318, 327, 332, 334, 335, 346, 347, 352, 358, 366, 368, 371, 376, 379, 380, 383, 384, 400, 401, 402, 403, 407, 409, 410, 411, 412, 413, 440, 443, 445, 446, 448, 465, 468, 478, 479, 480, 560, 563, 564, 565, 643, 669, 670, 678, 689, 692, 693, 727, 732, 743, 747, 757, 790, 793, 809, 811, 845, 846, 850, 879, 880, 884, 886, 907, 909, 910, 969, 989, 994, 995, 996, 997, 999, 1000, 1003, 1004, 1006, 1008, 1010, 1012, 1015, 1016, 1017, 1019, 1020, 1031, 1032, 1034, 1035, 1039, 1042, 1043, 1044, 1045, 1046], "high_cardin": 309, "high_cardinality_featur": 309, "high_i": 203, "high_precision_cv_result": 261, "high_recall_cv_result": 261, "high_x": 203, "higher": [44, 53, 90, 103, 104, 111, 123, 127, 134, 137, 139, 140, 143, 146, 150, 151, 154, 155, 160, 161, 167, 169, 174, 175, 183, 184, 185, 188, 192, 200, 204, 206, 207, 210, 223, 229, 230, 244, 253, 254, 256, 257, 261, 262, 263, 264, 266, 270, 275, 278, 288, 308, 309, 317, 322, 335, 339, 346, 347, 348, 352, 354, 358, 366, 369, 373, 400, 402, 403, 405, 410, 412, 413, 414, 440, 444, 445, 467, 474, 506, 529, 536, 540, 545, 550, 551, 558, 559, 570, 586, 589, 605, 606, 618, 626, 630, 634, 636, 645, 646, 651, 652, 659, 660, 661, 662, 675, 677, 678, 704, 725, 729, 753, 786, 798, 801, 804, 805, 807, 815, 824, 829, 832, 851, 854, 880, 897, 898, 899, 905, 906, 907, 908, 909, 910, 911, 918, 992, 996, 997, 999, 1000, 1003, 1007, 1010, 1014, 1015, 1032, 1037, 1039, 1046, 1048], "highest": [2, 56, 64, 67, 113, 155, 159, 163, 210, 261, 263, 274, 275, 314, 346, 371, 383, 401, 403, 407, 410, 412, 433, 552, 554, 561, 590, 593, 594, 596, 597, 598, 601, 602, 604, 630, 634, 636, 727, 757, 795, 798, 801, 804, 805, 815, 902, 913, 951, 989, 996, 1000, 1001, 1004, 1014, 1016, 1043], "highest_protocol": 397, "highli": [44, 49, 64, 65, 104, 111, 112, 122, 130, 150, 194, 203, 211, 257, 263, 266, 272, 299, 339, 347, 358, 359, 371, 377, 383, 401, 403, 407, 410, 411, 448, 458, 493, 560, 670, 692, 813, 815, 861, 996, 1000, 1003, 1004, 1006, 1014, 1015, 1018, 1019], "highlight": [44, 55, 88, 103, 111, 118, 132, 138, 139, 141, 151, 163, 165, 167, 168, 173, 178, 179, 184, 185, 186, 188, 196, 200, 206, 208, 223, 234, 239, 243, 244, 245, 246, 257, 258, 259, 262, 275, 277, 285, 307, 309, 327, 346, 348, 371, 375, 376, 379, 383, 413, 439, 442, 443, 460, 463, 486, 487, 493, 498, 499, 501, 509, 512, 518, 521, 535, 538, 554, 558, 559, 561, 562, 564, 597, 600, 608, 627, 629, 631, 633, 639, 645, 647, 651, 657, 668, 675, 679, 688, 697, 701, 702, 717, 718, 733, 743, 749, 779, 789, 796, 800, 801, 802, 804, 805, 807, 815, 823, 824, 827, 828, 831, 847, 849, 865, 866, 870, 875, 878, 879, 880, 884, 885, 886, 902, 903, 905, 910, 913, 914, 924, 932, 942, 944, 988, 997, 1000, 1008, 1010, 1015, 1021, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "highlight_min": [146, 198], "higuera": 365, "hila": 403, "hilbert": [211, 871, 992, 1010], "hilferti": 111, "hill": [403, 444, 457, 1041, 1052], "him": 411, "himanshu": [1042, 1045], "hind": 1045, "hinder": 1041, "hing": [2, 48, 63, 104, 160, 215, 217, 270, 271, 332, 333, 337, 339, 385, 665, 675, 736, 905, 912, 996, 1014, 1015], "hinge_loss": [2, 339, 675, 677, 1000, 1035, 1043, 1044], "hinrich": 408, "hint": [183, 358, 372, 376, 394, 444, 1000], "hinton": [692, 854, 861, 862, 863, 997, 1003, 1004, 1005], "hintz": 1037, "hiramatsu": 1048, "hirofumi": [1042, 1043], "hirsch": 1039, "hirschberg": [403, 717, 738, 796], "hirzel": 1044, "hispan": 183, "hist": [44, 63, 65, 86, 107, 136, 140, 206, 208, 236, 242, 257, 269, 288, 303, 307, 309, 316, 319, 410], "hist_drop": 143, "hist_n": 143, "hist_nbin": 303, "hist_no_interact": 317, "hist_one_hot": 143, "hist_ordin": 143, "hist_quantil": 316, "hist_target": 143, "hist_x0": 303, "hist_x1": 303, "histgradientb": 257, "histgradientboost": 1043, "histgradientboostingclassifi": [2, 67, 139, 140, 257, 312, 313, 314, 315, 317, 319, 322, 354, 359, 383, 397, 556, 561, 631, 632, 990, 1019, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "histgradientboostingclassifierhistgradientboostingclassifi": 257, "histgradientboostingclassifierifit": 257, "histgradientboostingregressor": [2, 44, 47, 53, 135, 140, 143, 146, 147, 149, 151, 154, 178, 184, 206, 309, 312, 313, 314, 315, 317, 318, 319, 322, 383, 410, 557, 562, 631, 632, 634, 990, 1000, 1007, 1019, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "histgradientboostingregressor__interaction_cst": 184, "histgradientboostingregressor__max_depth": 143, "histgradientboostingregressor__max_it": 143, "histgradientboostingregressorifit": [151, 317], "histgradientboostingregressorinot": 143, "histogram": [2, 53, 63, 65, 86, 133, 135, 139, 143, 144, 146, 147, 151, 180, 206, 213, 236, 264, 269, 288, 303, 314, 316, 318, 319, 401, 486, 493, 556, 557, 558, 559, 561, 562, 631, 641, 743, 749, 759, 760, 791, 801, 806, 822, 828, 831, 992, 998, 1010, 1021, 1025, 1026, 1043, 1046, 1048], "histor": [52, 206, 257, 997, 1020], "histori": [52, 375, 556, 557, 1031], "hit": [208, 377], "hitesh": 1043, "hjortkj\u00e6r": 1045, "hkey_local_machin": 389, "hleb": [1044, 1046, 1047, 1048, 1050, 1051, 1052], "hline": 122, "hlle": 997, "hmasdev": 1045, "hmc": 52, "hmm": [1031, 1032, 1033, 1034, 1036], "hmmlearn": 1019, "hn": 377, "hnyk": [1037, 1038], "ho": [410, 552, 553, 1000, 1036, 1039, 1040, 1045], "hoang": [1040, 1041], "hobson": 1037, "hoc": [64, 162, 163, 165, 180, 255, 257, 266, 280, 320, 327, 385, 402, 433, 493, 657, 817, 823, 828, 866, 885, 1021], "hochberg": [593, 1037, 1038], "hochreit": [400, 719], "hockei": [58, 366], "hoctor": 1043, "hod": 257, "hoda1394": 1043, "hoenig": 1031, "hoesli": 410, "hoffman": [408, 533, 1036, 1043], "hogan": 1039, "hoh": 1039, "hold": [0, 48, 53, 64, 65, 103, 139, 141, 143, 154, 183, 184, 185, 206, 210, 234, 239, 244, 257, 264, 275, 309, 313, 316, 319, 353, 364, 371, 372, 373, 385, 401, 403, 407, 410, 411, 413, 500, 554, 558, 561, 587, 631, 632, 633, 737, 801, 804, 805, 815, 841, 872, 873, 878, 879, 886, 889, 913, 915, 990, 994, 1000, 1004, 1014, 1015, 1016, 1039, 1043, 1049], "holdgraf": 1039, "holdov": [257, 322], "holdselig": 411, "hole": [180, 224, 225, 230, 527, 692, 693, 997, 1021, 1045], "holger": 1038, "holidai": [44, 184], "holm": [836, 1001, 1048], "holman": 1046, "holmstr\u00f6m": 1033, "holohan": [1046, 1048], "holt": [0, 393, 1031], "holub": 531, "holzer": 1051, "home": [2, 7, 52, 53, 73, 154, 171, 173, 175, 176, 249, 266, 301, 317, 366, 369, 379, 389, 482, 488, 496, 678, 1024], "homebrew": [374, 389], "homepag": [366, 527, 1016], "homm": 1046, "homo": 91, "homogen": [2, 73, 74, 79, 80, 82, 88, 91, 100, 347, 366, 383, 385, 405, 407, 410, 413, 442, 613, 704, 717, 732, 737, 738, 758, 796, 997, 998, 1000, 1040], "homogeneity_completeness_v_measur": [2, 403, 1040], "homogeneity_scor": [2, 74, 82, 91, 347, 403, 717, 737, 796, 1000], "homomorph": 1019, "homoscedast": [127, 235, 307, 1000, 1039], "homoschedast": 1000, "honda": 52, "honei": 994, "hong": [1037, 1039, 1043, 1044, 1045, 1047, 1049], "hongh": 1039, "hongkahjun": 1038, "honglu": 1041, "hongshaoyang": 1046, "honl": [1043, 1044], "honolulu": 1000, "honor": 309, "hood": [397, 996, 1015], "hoover": [1036, 1037, 1038, 1040], "hope": [31, 45, 173, 223, 385, 1040], "hopefulli": [266, 379, 1031], "hopfensperg": [1048, 1049, 1050], "hopper": 1036, "horizont": [67, 120, 225, 228, 237, 262, 303, 306, 376, 385, 460, 512, 697, 701], "horizontal_distance_to_hydrologi": 487, "horizontalalign": [52, 64, 68, 75, 79, 95, 232, 248, 298, 305], "hornik": 634, "hornstein": 1046, "horrel": 1038, "hoshia": 1045, "hossein": [1039, 1040, 1041], "host": [0, 140, 318, 346, 366, 371, 375, 379, 380, 488, 898, 1018, 1047], "hot": [2, 44, 103, 139, 154, 155, 183, 184, 206, 233, 234, 244, 246, 257, 262, 272, 277, 301, 304, 305, 309, 313, 314, 316, 321, 322, 335, 385, 410, 411, 548, 563, 579, 647, 657, 658, 668, 679, 868, 870, 872, 873, 876, 878, 879, 886, 996, 1010, 1039, 1045, 1046], "hot_r": [52, 303], "hotel": 1024, "hotspot": 377, "hour": [44, 149, 183, 184, 319, 371, 377, 493, 997], "hour_co": 44, "hour_df": 44, "hour_sin": 44, "hour_workday_interact": 44, "hourli": [44, 149, 183], "hourly_wag": 182, "hous": [2, 107, 144, 154, 178, 179, 257, 303, 314, 364, 486, 1026], "house_pric": [107, 154], "houseag": [303, 314, 366, 486], "household": 366, "housestyl": [143, 154], "hover": 319, "hover_data": [140, 264], "how": [0, 44, 45, 47, 48, 49, 50, 53, 59, 60, 63, 64, 65, 69, 70, 73, 83, 84, 85, 86, 90, 93, 101, 102, 103, 104, 106, 109, 111, 116, 129, 134, 135, 138, 139, 142, 143, 144, 146, 147, 149, 151, 152, 154, 155, 160, 161, 165, 172, 174, 180, 183, 184, 185, 186, 188, 192, 197, 198, 200, 204, 207, 208, 209, 210, 213, 219, 223, 229, 230, 233, 234, 237, 239, 241, 242, 243, 244, 245, 246, 253, 254, 257, 258, 259, 261, 262, 263, 264, 265, 270, 272, 273, 275, 277, 278, 282, 283, 285, 286, 287, 289, 290, 295, 300, 308, 309, 310, 313, 314, 315, 316, 317, 318, 319, 321, 322, 328, 332, 333, 335, 338, 339, 342, 346, 347, 350, 352, 353, 358, 359, 360, 366, 369, 370, 372, 373, 374, 376, 379, 384, 385, 386, 391, 394, 397, 399, 400, 401, 402, 403, 404, 405, 407, 408, 409, 410, 411, 412, 413, 414, 417, 427, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 462, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 501, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 608, 609, 610, 621, 622, 626, 627, 628, 629, 630, 631, 632, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 704, 720, 758, 793, 798, 799, 800, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 828, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 943, 958, 983, 989, 990, 994, 995, 996, 997, 999, 1000, 1006, 1007, 1008, 1010, 1012, 1013, 1015, 1016, 1020, 1024, 1026, 1031, 1033, 1036, 1042, 1045, 1046, 1047, 1050, 1051], "howel": 1038, "howev": [0, 44, 45, 47, 53, 54, 62, 63, 65, 67, 73, 81, 82, 86, 88, 93, 103, 104, 107, 109, 113, 115, 125, 127, 137, 139, 140, 143, 146, 147, 154, 155, 160, 163, 165, 167, 172, 173, 183, 184, 185, 192, 198, 206, 210, 226, 229, 230, 232, 234, 238, 239, 242, 243, 244, 245, 253, 257, 261, 262, 263, 270, 275, 276, 277, 278, 280, 282, 283, 288, 299, 303, 313, 314, 316, 320, 339, 342, 346, 347, 352, 354, 358, 359, 360, 365, 366, 368, 370, 371, 373, 377, 379, 383, 385, 394, 397, 399, 400, 401, 402, 403, 404, 405, 407, 408, 409, 410, 411, 412, 413, 436, 439, 443, 445, 447, 450, 455, 493, 505, 529, 538, 548, 564, 579, 580, 581, 587, 604, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 629, 631, 632, 637, 642, 654, 655, 671, 686, 692, 695, 700, 764, 766, 801, 803, 804, 805, 815, 818, 821, 828, 832, 833, 844, 862, 863, 868, 877, 878, 883, 907, 908, 910, 927, 954, 969, 989, 990, 993, 994, 995, 996, 997, 999, 1000, 1001, 1003, 1004, 1005, 1007, 1008, 1010, 1014, 1015, 1016, 1040, 1041, 1043, 1044, 1047], "hoyer": [408, 1034], "hp": 52, "hpq": 52, "hrishikesh": [1032, 1033], "hristo": [1039, 1046], "hron\u010dok": 1051, "hsiang": [657, 1035], "hsieh": 1037, "hspace": [46, 54, 55, 79, 95, 120, 223, 232, 248, 250, 251, 254, 288, 314, 325, 332], "hstack": [54, 70, 77, 159, 230, 241, 258, 338, 407, 864], "hsuan": 1036, "ht2001": 1000, "htf": 410, "htm": [913, 914], "html": [2, 44, 48, 52, 64, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 160, 163, 172, 175, 176, 183, 184, 185, 188, 192, 233, 235, 239, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 326, 352, 353, 366, 368, 371, 372, 374, 375, 379, 394, 404, 407, 411, 417, 483, 505, 506, 657, 840, 844, 942, 944, 945, 998, 1019, 1020, 1042, 1043, 1044, 1045, 1046, 1048, 1049, 1050, 1051, 1052], "htmledit": [840, 844, 998], "htmlparser": 48, "htsedebenham": 1046, "http": [44, 46, 48, 52, 53, 56, 62, 103, 163, 175, 176, 188, 206, 213, 221, 223, 230, 239, 277, 280, 282, 283, 300, 365, 366, 368, 369, 371, 375, 376, 377, 379, 383, 385, 389, 394, 403, 407, 412, 438, 445, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 499, 505, 506, 507, 527, 528, 531, 534, 538, 593, 635, 640, 643, 657, 663, 665, 666, 667, 670, 675, 677, 678, 681, 682, 684, 685, 692, 695, 705, 721, 724, 725, 759, 760, 770, 840, 842, 844, 847, 848, 853, 854, 855, 856, 861, 883, 898, 899, 900, 913, 914, 942, 944, 996, 998, 1000, 1013, 1016, 1050], "hu": [1036, 1039, 1041], "hua": [560, 1006], "huang": [366, 657, 1037, 1042], "huangk10": 1042, "huard": 1031, "huber": [26, 156, 193, 215, 410, 557, 648, 675, 677, 1014, 1031, 1033, 1034, 1043], "huberlossfunct": 1044, "huberregressor": [2, 87, 167, 180, 189, 204, 210, 211, 212, 310, 521, 669, 670, 671, 677, 678, 996, 1021, 1037, 1038, 1039, 1040], "hubert": [403, 705, 715, 787], "hubert1985": 705, "huberti": 1051, "hudson": 317, "hue": [126, 149, 253, 263, 308, 368], "huerta": 1041, "hug": [0, 393, 1039, 1040, 1041, 1042, 1043, 1044, 1045], "huge": [208, 211, 358, 377, 626, 1034], "hugh": [880, 1033, 1044], "hugo": [46, 366, 1037, 1042, 1043, 1044, 1045, 1050, 1051], "hugorichard": 1043, "hugu": 1035, "hui": [196, 535, 537, 544, 655, 996], "huiginn": 1031, "huilgolkar": [1032, 1033], "hujiahong726": 1047, "hull": 1048, "humahn": 1046, "human": [120, 184, 346, 371, 403, 408, 862, 863, 1000, 1007, 1040], "humid": [44, 184, 1007], "hunan": 1039, "hundr": [0, 77, 143, 145, 151, 154, 226, 257, 307, 309, 317, 322, 366, 407, 410, 558, 559, 997, 1042], "hunt": 1046, "hunter": 1040, "hurt": [358, 531, 1039], "husak": 1045, "huszar": 1024, "hut": [692, 997, 1036, 1038, 1041], "huynh": [1041, 1043], "hv": 411, "hvassard": 1045, "hwan": 1042, "hwang": 1037, "hybrid": [442, 648, 1019], "hye": 1042, "hyper": [2, 44, 65, 103, 140, 256, 257, 263, 268, 301, 335, 354, 373, 383, 384, 385, 398, 407, 410, 412, 464, 643, 644, 805, 813, 815, 861, 903, 995, 996, 1000, 1003, 1014, 1015, 1019, 1026, 1031, 1045, 1050, 1051], "hyperband": 989, "hyperbol": [243, 339, 641, 862, 863, 998, 1004], "hypercub": [232, 512], "hyperlink": 1033, "hyperparamet": [2, 103, 105, 106, 149, 167, 168, 174, 175, 178, 180, 184, 190, 194, 198, 219, 223, 232, 242, 255, 257, 261, 262, 266, 268, 274, 275, 285, 301, 321, 346, 373, 385, 403, 407, 408, 410, 413, 499, 532, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 642, 652, 658, 664, 672, 675, 729, 786, 801, 815, 910, 989, 994, 995, 996, 999, 1000, 1002, 1004, 1006, 1014, 1020, 1021, 1033, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1047, 1051], "hyperparameter_baseline_similar": 175, "hyperparameter_grid": 319, "hyperparameter_length_scal": 614, "hyperplan": [136, 170, 180, 189, 214, 240, 266, 330, 331, 332, 333, 334, 335, 339, 340, 509, 630, 657, 658, 665, 667, 673, 674, 675, 676, 905, 907, 909, 910, 1014, 1015, 1021], "hyperplane_handl": 200, "hyperplane_label": 200, "hyperspher": 367, "hypothes": 996, "hypothesi": [146, 263, 269, 407, 690, 694, 830, 997], "hypothet": 65, "hyunjin": 1031, "hyvarinen": [415, 530], "h\u00e9lion": 1042, "i": [0, 2, 8, 31, 38, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 71, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 292, 293, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 321, 322, 324, 325, 326, 327, 328, 329, 333, 334, 335, 339, 340, 342, 343, 344, 346, 347, 348, 350, 351, 352, 354, 358, 359, 360, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 377, 378, 379, 380, 384, 385, 386, 388, 389, 391, 394, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 408, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 423, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 505, 506, 507, 508, 509, 511, 512, 513, 514, 515, 516, 517, 518, 520, 521, 523, 524, 525, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 570, 573, 574, 575, 576, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 771, 772, 774, 775, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 929, 930, 931, 932, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 947, 948, 949, 951, 954, 955, 956, 958, 959, 960, 961, 962, 963, 964, 966, 967, 968, 969, 970, 971, 973, 974, 980, 983, 984, 985, 986, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1023, 1026, 1027, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "i32": 262, "i64": 262, "i_ax": 283, "i_dataset": [79, 95, 232], "i_j": 1008, "iain": [163, 368, 996], "iampat": 1039, "ian": [1033, 1035, 1040, 1041, 1043, 1046, 1047, 1049, 1052], "iasoon": 1045, "ibay": 1031, "ibieta": 1044, "ibm": [52, 58, 201, 328, 348, 366], "ibn": 1031, "ibnukhsein": 1048, "ibraheem": 1040, "ibrahima": 1041, "ibraim": [1036, 1037, 1038], "ib\u00e1\u00f1ez": [1039, 1040, 1043], "ic": [2, 48, 280, 314, 365, 368, 388, 497, 499, 507, 631, 632, 709, 1026, 1043, 1044], "ica": [11, 122, 415, 1016, 1025, 1026], "ica_estim": 120, "icann": 696, "icassp": 1000, "icdm": [560, 1006], "icdmw": 403, "ice_lines_kw": 631, "icml": [63, 65, 401, 403, 411, 433, 435, 840, 842, 861, 1000, 1002, 1014], "icml03": 842, "icon": [319, 373], "icyblad": 1038, "id": [0, 2, 46, 53, 58, 223, 296, 353, 365, 366, 371, 379, 405, 407, 411, 417, 491, 492, 493, 917, 919, 944, 945, 1039, 1040, 1043], "id3": [1022, 1026], "idea": [45, 86, 111, 112, 140, 163, 172, 183, 207, 225, 257, 288, 335, 350, 358, 359, 371, 376, 377, 405, 406, 407, 408, 409, 410, 412, 605, 606, 996, 997, 1000, 1003, 1006, 1024], "ideal": [206, 208, 223, 257, 260, 263, 270, 272, 273, 354, 370, 371, 372, 373, 375, 376, 379, 383, 385, 401, 402, 727, 757, 989, 999, 1014, 1015, 1020, 1023], "idelberg": 1048, "ident": [53, 58, 97, 103, 139, 143, 145, 154, 183, 184, 185, 203, 206, 223, 232, 234, 236, 243, 244, 309, 313, 314, 316, 329, 346, 352, 353, 366, 373, 385, 400, 403, 404, 405, 407, 413, 416, 434, 435, 448, 460, 461, 469, 471, 472, 475, 476, 477, 484, 500, 548, 556, 557, 561, 562, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 642, 678, 679, 699, 704, 705, 737, 786, 796, 803, 806, 816, 817, 820, 821, 847, 848, 854, 862, 863, 869, 870, 882, 894, 913, 914, 993, 994, 997, 1000, 1003, 1004, 1015, 1035, 1039, 1040, 1041, 1045, 1049], "identif": [366, 371, 403, 494, 989, 1000], "identifi": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 314, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 365, 366, 370, 371, 376, 385, 402, 403, 404, 407, 410, 411, 440, 442, 446, 453, 483, 493, 505, 506, 604, 642, 648, 699, 712, 775, 830, 851, 852, 870, 900, 901, 989, 996, 1006, 1013, 1024, 1038, 1040, 1045, 1046], "identitytransform": 183, "idf": [2, 55, 58, 236, 264, 328, 346, 347, 348, 366, 408, 518, 541, 586, 587, 588, 589, 844, 852, 877, 989, 998, 1002, 1010, 1031], "idf_": [411, 588, 589, 1039, 1050], "idfi": 264, "idier": [408, 535, 537, 544], "idiom": 377, "idir": 1051, "idl": 1042, "ido": [1046, 1047], "idpol": [206, 223], "idx": [51, 58, 88, 129, 136, 140, 142, 143, 149, 155, 176, 184, 186, 194, 205, 206, 214, 226, 257, 273, 351, 404, 407], "idx_a": 272, "idx_avg_max_test_scor": 276, "idx_b": 272, "idx_r": 205, "idx_sort": 206, "idxmax": 342, "idxmin": 261, "ie": [75, 99, 121, 436, 704, 1010], "ieee": [96, 110, 112, 368, 403, 405, 412, 416, 444, 471, 531, 560, 663, 684, 685, 726, 770, 996, 1000, 1006], "ieeexplor": 770, "ieic": [535, 537, 544], "iem": 657, "if_binari": [103, 139, 143, 154, 183, 184, 234, 244, 246, 313, 316, 878, 1010, 1042], "if_delegate_has_method": [1044, 1045], "iff": [590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 876], "ifflatten_transform": 155, "ifnon": [244, 245, 261, 263, 314], "iforest": 242, "iforest_kw": 242, "iglesi": 1046, "ignacio": 1034, "ignor": [2, 44, 46, 48, 56, 79, 82, 88, 95, 103, 104, 134, 139, 143, 151, 154, 155, 160, 172, 183, 184, 185, 196, 206, 220, 233, 234, 239, 244, 245, 246, 253, 254, 257, 261, 262, 263, 264, 270, 277, 299, 300, 301, 308, 309, 313, 314, 316, 317, 322, 339, 347, 359, 371, 373, 375, 377, 385, 389, 394, 403, 404, 410, 411, 421, 422, 425, 428, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 456, 457, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 484, 500, 505, 506, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 577, 579, 580, 581, 586, 587, 588, 589, 595, 600, 601, 608, 609, 610, 626, 627, 628, 629, 630, 631, 632, 634, 638, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 707, 711, 713, 714, 727, 730, 731, 739, 756, 757, 764, 770, 775, 779, 784, 785, 788, 789, 798, 799, 800, 802, 803, 804, 806, 808, 809, 810, 811, 814, 816, 817, 818, 819, 820, 821, 822, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 862, 863, 864, 865, 868, 869, 870, 871, 872, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 897, 898, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 943, 974, 983, 988, 996, 997, 1000, 1002, 1006, 1010, 1015, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1048, 1049, 1051], "ignore_attribut": 365, "ignore_error": 87, "ignore_implicit_zero": [184, 882, 894], "ignore_ti": [727, 757], "ignore_warn": [213, 305, 1037], "ignored_new_col": 404, "ignoredand": 264, "ignorerevsfil": 371, "igor": [1037, 1038, 1044], "ih": 288, "ii": [51, 121, 184, 258, 368, 411, 539, 580, 581, 587, 637, 665, 666, 675, 677, 868, 877, 996, 1010, 1048], "iid": 1039, "iii": [1045, 1048], "iijima": 1040, "iinfo": 1046, "ij": [263, 293, 400, 403, 408, 535, 537, 544, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 996, 997, 1000, 1002, 1005, 1010, 1015], "ijcnn": 1000, "ijcv": 1000, "ijet": 403, "ik": [996, 1000], "ikeda": 1043, "ikko": 1044, "il": [50, 663, 684, 685, 996, 1000], "ilambharathi": [1034, 1035], "ili": [1047, 1048], "ilic": 1044, "ilion": 1045, "iliya": 1046, "iljin": [1046, 1047], "ill": [52, 75, 113, 211, 266, 301, 467, 468, 474, 649, 650, 653, 654, 655, 681, 682, 996, 999, 1041], "illustr": [49, 53, 61, 62, 64, 67, 68, 70, 85, 89, 90, 100, 102, 103, 106, 107, 109, 111, 116, 118, 122, 134, 137, 141, 148, 149, 151, 153, 154, 156, 158, 163, 166, 167, 168, 169, 170, 172, 173, 174, 175, 180, 182, 184, 185, 188, 198, 204, 206, 208, 210, 213, 215, 216, 218, 219, 222, 223, 225, 226, 228, 230, 232, 234, 235, 237, 238, 239, 241, 244, 252, 257, 263, 270, 275, 277, 284, 292, 306, 308, 311, 312, 314, 319, 320, 327, 328, 335, 336, 340, 342, 343, 347, 348, 354, 358, 368, 371, 373, 376, 379, 384, 402, 406, 408, 410, 411, 512, 554, 555, 561, 562, 592, 609, 610, 612, 613, 614, 618, 621, 622, 854, 989, 996, 1000, 1003, 1006, 1012, 1013, 1014, 1015, 1019, 1021, 1024], "iloc": [44, 149, 154, 183, 184, 223, 263, 286], "ilya": [1038, 1049, 1050], "ilyasolomatin": 1051, "im": [120, 130, 274, 287], "im_": 697, "im_kw": [697, 1045], "imacul": 1037, "imag": [2, 43, 46, 54, 59, 60, 69, 72, 75, 76, 79, 80, 84, 87, 89, 91, 95, 100, 102, 119, 120, 125, 129, 161, 163, 171, 180, 199, 226, 234, 237, 241, 261, 292, 300, 301, 313, 324, 325, 346, 347, 363, 364, 366, 368, 371, 376, 379, 385, 389, 396, 402, 403, 408, 437, 441, 448, 458, 490, 491, 492, 493, 499, 500, 503, 504, 531, 532, 534, 538, 581, 582, 583, 584, 585, 605, 606, 691, 697, 739, 831, 870, 875, 996, 1000, 1001, 1003, 1005, 1012, 1016, 1019, 1021, 1024, 1026, 1031, 1034, 1039, 1040, 1044, 1046, 1047], "image_height": [581, 582, 585], "image_index": [324, 325], "image_nam": 503, "image_patch": 585, "image_reconstruct": 585, "image_s": 585, "image_shap": [120, 241], "image_width": [581, 582, 585], "imagebox": 226, "imageio": 365, "imagenet": [862, 863], "images_restor": 84, "imagin": [121, 165, 167, 239, 321, 339, 407, 408, 411, 996], "imamura": 1045, "imbal": [256, 266, 277, 328, 407, 707, 730, 731, 739, 784, 785, 788, 789, 1000], "imbalanc": [64, 206, 257, 266, 270, 272, 277, 347, 383, 401, 407, 433, 703, 708, 788, 802, 806, 842, 1000, 1002, 1008, 1019], "imbert": [1038, 1040, 1043, 1045, 1048, 1049], "img": [45, 83, 99, 503, 584], "img_height": 581, "img_to_graph": [2, 80, 99, 411, 1034, 1044], "img_width": 581, "imit": 346, "immanuel": [0, 1031, 1032, 1036], "immedi": [88, 103, 104, 244, 253, 257, 261, 262, 263, 371, 383, 801, 815, 826, 827, 1039], "immens": 1024, "immensu": 1039, "immers": [690, 694], "immobil": 44, "immut": 397, "imp": 990, "imp_mean": [626, 629], "impact": [0, 52, 53, 63, 67, 72, 73, 77, 78, 91, 97, 103, 104, 107, 134, 159, 160, 180, 182, 183, 184, 191, 208, 210, 223, 242, 244, 253, 256, 257, 261, 262, 263, 270, 275, 280, 286, 308, 317, 342, 347, 354, 358, 359, 364, 383, 386, 401, 403, 408, 443, 445, 533, 537, 544, 588, 665, 666, 667, 671, 673, 675, 676, 677, 692, 795, 801, 804, 805, 815, 828, 845, 846, 847, 848, 882, 894, 905, 906, 934, 949, 970, 973, 989, 999, 1007, 1015, 1021, 1038, 1041, 1044], "imped": 379, "imperfect": [729, 786, 1000, 1033], "imperfectli": [703, 735, 1000], "implant": 60, "implement": [2, 13, 31, 46, 47, 53, 54, 56, 64, 80, 89, 103, 104, 112, 120, 139, 140, 143, 149, 151, 154, 155, 160, 183, 186, 188, 194, 198, 219, 223, 225, 232, 233, 234, 238, 239, 243, 244, 246, 253, 257, 261, 262, 263, 264, 270, 272, 275, 277, 280, 282, 283, 285, 288, 301, 306, 309, 312, 313, 314, 315, 316, 317, 318, 321, 322, 346, 348, 358, 359, 360, 365, 366, 368, 369, 371, 372, 373, 375, 376, 377, 379, 380, 385, 389, 394, 399, 400, 403, 405, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 433, 438, 439, 440, 442, 443, 444, 445, 446, 471, 493, 505, 529, 530, 531, 532, 533, 535, 538, 540, 550, 551, 552, 554, 555, 558, 559, 560, 564, 569, 580, 586, 587, 589, 591, 595, 599, 609, 610, 631, 632, 639, 640, 644, 645, 652, 656, 657, 658, 662, 663, 667, 670, 671, 673, 674, 675, 676, 677, 683, 684, 685, 686, 688, 691, 692, 695, 707, 709, 711, 720, 731, 736, 739, 743, 779, 783, 789, 790, 798, 800, 801, 804, 805, 807, 815, 819, 820, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 844, 847, 848, 850, 853, 855, 856, 861, 862, 863, 865, 887, 895, 896, 902, 905, 906, 907, 908, 909, 910, 911, 943, 948, 949, 958, 961, 966, 969, 970, 989, 990, 992, 994, 996, 997, 998, 999, 1000, 1001, 1002, 1004, 1005, 1006, 1010, 1012, 1013, 1016, 1017, 1019, 1020, 1022, 1024, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "impli": [44, 167, 172, 183, 346, 347, 348, 408, 410, 413, 470, 570, 580, 609, 610, 621, 736, 935, 996, 997, 1042], "implic": [354, 371], "implicit": [2, 206, 385, 410, 411, 569, 658, 681, 682, 994, 999, 1019, 1040], "implicitli": [155, 348, 380, 410, 595, 631, 632, 847, 855, 884, 990, 992, 1007, 1010, 1015, 1049, 1051], "import": [2, 16, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 143, 144, 145, 146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 181, 182, 183, 184, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 310, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 360, 365, 366, 367, 369, 370, 371, 373, 375, 376, 377, 378, 379, 380, 383, 384, 385, 388, 389, 390, 394, 397, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 575, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 955, 956, 962, 963, 964, 965, 966, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 989, 990, 992, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1020, 1021, 1024, 1026, 1028, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1049, 1050], "importance_gett": [412, 591, 592, 595, 1043], "importances_mean": [141, 147, 185, 186, 312, 633, 1008], "importances_std": [141, 633, 1008], "important_word": 58, "importantli": [44, 54, 121, 173, 184, 188, 303, 371, 403, 1049], "importerror": [51, 86, 123, 283, 296, 379], "importlib": 1044, "impos": [90, 100, 151, 197, 202, 210, 309, 383, 403, 408, 410, 411, 524, 656, 996], "imposs": [146, 348], "impract": 910, "impress": 1024, "improp": [385, 1038], "improv": [0, 31, 44, 62, 63, 70, 109, 110, 113, 125, 130, 134, 135, 140, 142, 143, 144, 145, 146, 148, 149, 151, 154, 156, 159, 179, 183, 188, 195, 204, 206, 213, 223, 243, 257, 262, 264, 266, 280, 283, 286, 301, 308, 309, 318, 328, 338, 339, 347, 352, 354, 359, 369, 374, 376, 377, 379, 380, 383, 385, 386, 397, 399, 408, 410, 412, 445, 446, 528, 529, 531, 534, 535, 536, 538, 539, 540, 543, 551, 554, 555, 556, 557, 558, 559, 561, 562, 609, 610, 642, 651, 663, 665, 666, 667, 671, 672, 673, 674, 675, 677, 684, 686, 692, 730, 731, 784, 785, 788, 789, 854, 862, 863, 879, 881, 893, 913, 914, 916, 949, 989, 994, 996, 997, 1000, 1003, 1004, 1014, 1015, 1016, 1018, 1019, 1020, 1024, 1031, 1032, 1033, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "improvingbi": [156, 243], "improvis": [51, 296], "impur": [64, 139, 147, 154, 156, 186, 244, 275, 314, 319, 352, 353, 388, 410, 412, 550, 551, 554, 555, 556, 557, 561, 562, 563, 913, 914, 915, 916, 917, 919, 1016, 1026, 1036, 1037, 1038, 1039], "impuritygreat": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "imput": [2, 103, 149, 154, 155, 185, 234, 244, 246, 313, 316, 363, 375, 384, 385, 394, 404, 410, 486, 498, 562, 578, 626, 627, 628, 629, 638, 644, 671, 827, 848, 866, 883, 884, 930, 932, 1019, 1021, 1026, 1033, 1034], "imputation_const": 244, "imputation_mean": 244, "imputation_ord": [626, 1041], "imputation_sequence_": 626, "impute_estim": 178, "imran": [1033, 1034, 1035], "imread": 69, "imshow": [45, 46, 54, 69, 75, 80, 81, 83, 84, 86, 87, 91, 113, 120, 123, 130, 169, 170, 171, 175, 186, 199, 221, 226, 241, 274, 287, 301, 324, 325, 335, 343, 365, 631, 697, 1045], "in1d": 1038, "in_bodi": 48, "in_titl": 48, "in_top": 48, "in_topic_d": 48, "inaccess": 88, "inaccur": 1050, "inact": [348, 365, 371], "inadvert": [182, 385], "inadvis": 397, "inappropri": [366, 407, 413, 822], "inbuilt": 407, "inc": [0, 102, 262, 990, 1012, 1024], "incap": 88, "incentiv": 375, "incept": 1020, "inchoos": [103, 104, 244, 253, 257, 261, 262, 263, 275], "includ": [0, 11, 18, 44, 64, 69, 71, 88, 100, 103, 104, 111, 139, 140, 141, 143, 144, 145, 154, 155, 160, 179, 182, 183, 184, 185, 194, 206, 210, 223, 234, 239, 244, 253, 257, 261, 262, 263, 264, 270, 275, 280, 283, 299, 303, 309, 313, 315, 316, 318, 319, 321, 322, 335, 340, 344, 346, 348, 353, 354, 358, 359, 365, 367, 369, 371, 372, 373, 375, 376, 377, 379, 380, 385, 386, 389, 397, 399, 400, 403, 404, 406, 407, 408, 410, 411, 412, 413, 414, 440, 442, 446, 452, 462, 465, 466, 467, 468, 469, 470, 471, 472, 485, 486, 487, 493, 497, 498, 499, 501, 502, 507, 531, 538, 554, 561, 571, 608, 631, 637, 645, 646, 651, 659, 660, 661, 664, 680, 688, 689, 697, 713, 730, 731, 736, 738, 739, 772, 784, 785, 788, 796, 801, 803, 804, 805, 814, 815, 818, 821, 828, 831, 853, 855, 856, 857, 867, 878, 879, 880, 884, 902, 905, 906, 913, 915, 917, 919, 931, 932, 935, 937, 940, 942, 943, 944, 958, 989, 996, 999, 1000, 1001, 1003, 1004, 1010, 1014, 1015, 1016, 1019, 1020, 1023, 1024, 1031, 1033, 1034, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "include_bia": [44, 155, 190, 244, 278, 880, 884, 1045], "include_boundari": [935, 1045], "include_self": [79, 100, 695, 858, 859, 1035], "include_valu": 697, "inclus": [0, 371, 373, 379, 446, 452, 755, 787, 1000, 1001, 1031, 1045], "incom": [303, 366, 375, 436], "incoming_count": 56, "incompat": [375, 493, 990, 1039, 1040], "incomplet": [371, 389, 399, 403, 705, 796, 990, 997, 1035, 1037], "inconjunct": 257, "inconsist": [2, 244, 245, 261, 263, 314, 385, 397, 411, 505, 506, 574, 907, 910, 935, 1006, 1015, 1026, 1031, 1036, 1037, 1038, 1039, 1041, 1044, 1046, 1047, 1048], "inconsistentversionwarn": [2, 397, 1047], "incorpor": [318, 371, 404, 410, 999, 1019, 1024], "incorrect": [134, 182, 327, 354, 371, 403, 605, 606, 631, 632, 735, 1031, 1033, 1034, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1050], "incorrectli": [192, 270, 410, 411, 550, 556, 558, 735, 741, 1000, 1032, 1037, 1039, 1040, 1042, 1047], "incr_mean_variance_axi": [2, 1037, 1043], "increas": [2, 44, 47, 52, 55, 64, 73, 78, 88, 90, 91, 94, 103, 107, 123, 134, 135, 137, 139, 140, 141, 142, 143, 144, 149, 151, 154, 155, 156, 159, 163, 167, 171, 172, 173, 183, 184, 185, 188, 191, 193, 199, 206, 207, 208, 210, 223, 230, 233, 234, 236, 243, 244, 246, 249, 250, 257, 262, 263, 264, 265, 270, 275, 276, 277, 298, 301, 304, 305, 308, 309, 313, 314, 316, 317, 319, 320, 322, 325, 335, 342, 344, 347, 348, 350, 352, 353, 358, 359, 360, 370, 379, 380, 383, 385, 401, 403, 405, 408, 410, 411, 414, 436, 440, 442, 448, 459, 467, 468, 474, 529, 533, 550, 551, 554, 555, 556, 557, 558, 559, 561, 562, 564, 565, 626, 634, 635, 636, 644, 649, 650, 653, 654, 655, 657, 658, 665, 666, 667, 675, 676, 677, 681, 682, 684, 685, 692, 706, 707, 712, 779, 783, 790, 804, 805, 834, 853, 855, 856, 857, 860, 862, 863, 870, 879, 905, 913, 914, 915, 916, 949, 989, 991, 995, 996, 997, 999, 1000, 1003, 1010, 1014, 1015, 1016, 1024, 1031, 1033, 1036, 1040, 1042, 1043, 1046, 1049, 1051], "increasing_": 634, "increasing_bool": 635, "increment": [2, 104, 119, 125, 126, 128, 180, 214, 266, 269, 351, 375, 377, 438, 443, 459, 501, 530, 531, 532, 533, 536, 538, 541, 600, 645, 657, 665, 807, 829, 837, 838, 840, 841, 842, 843, 844, 874, 875, 885, 905, 906, 974, 996, 1002, 1021, 1034, 1035], "incrementalpca": [2, 124, 360, 408, 530, 532, 536, 538, 541, 1035, 1038, 1039, 1041, 1042, 1045, 1050, 1052], "incur": [64, 618, 905, 1015, 1039], "ind": [54, 77, 145, 347, 845, 846], "inde": [45, 47, 63, 65, 71, 75, 86, 88, 91, 100, 113, 116, 125, 134, 137, 143, 154, 155, 162, 163, 167, 183, 185, 190, 194, 196, 198, 206, 208, 265, 266, 270, 272, 280, 283, 303, 308, 342, 347, 354, 358, 370, 376, 384, 385, 386, 403, 405, 407, 410, 564, 565, 996, 1010, 1014, 1045], "indecisiveus": [1042, 1043], "indefinit": 375, "indent": [373, 967], "independ": [2, 33, 53, 63, 65, 73, 80, 121, 122, 124, 139, 142, 174, 184, 200, 241, 242, 260, 263, 266, 268, 272, 282, 303, 310, 312, 347, 354, 358, 359, 367, 384, 385, 389, 397, 400, 401, 403, 404, 405, 406, 407, 411, 415, 445, 460, 484, 500, 512, 513, 514, 515, 517, 529, 530, 532, 534, 536, 537, 543, 544, 548, 549, 602, 605, 606, 624, 639, 643, 644, 645, 646, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 671, 672, 673, 674, 704, 705, 717, 737, 738, 756, 758, 796, 803, 830, 834, 836, 838, 839, 877, 881, 882, 883, 885, 889, 890, 891, 892, 894, 895, 896, 899, 907, 908, 909, 910, 911, 989, 992, 994, 996, 997, 1000, 1001, 1002, 1005, 1007, 1010, 1015, 1016, 1025, 1026, 1031, 1032, 1037, 1039, 1041, 1046], "inder128": 1041, "inderjeet": 1042, "inderjit": [400, 449], "indeterminaci": 541, "index": [2, 52, 55, 56, 73, 74, 75, 76, 82, 83, 91, 100, 103, 104, 134, 139, 141, 143, 149, 154, 160, 163, 178, 182, 183, 184, 185, 186, 206, 210, 223, 234, 243, 244, 246, 249, 250, 253, 254, 257, 258, 261, 262, 263, 264, 266, 274, 275, 276, 277, 283, 303, 308, 309, 310, 313, 316, 320, 324, 325, 347, 348, 366, 368, 369, 371, 373, 375, 380, 383, 385, 400, 404, 407, 408, 410, 411, 418, 439, 443, 444, 445, 446, 447, 449, 450, 453, 455, 456, 460, 463, 500, 506, 554, 555, 556, 557, 561, 562, 563, 585, 586, 587, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 616, 631, 632, 639, 697, 704, 705, 712, 716, 718, 732, 739, 758, 780, 781, 787, 789, 795, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 831, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 878, 913, 914, 915, 916, 922, 953, 970, 973, 978, 979, 996, 1000, 1002, 1003, 1004, 1014, 1016, 1019, 1031, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "index_alpha_path_a": 196, "index_alpha_path_b": 196, "index_map": 56, "indexerror": [1039, 1040], "indexhash": 639, "indexhash_": 639, "indian": 366, "indic": [2, 52, 58, 59, 63, 64, 92, 93, 99, 103, 104, 107, 116, 120, 126, 134, 139, 143, 144, 151, 154, 172, 175, 179, 182, 183, 184, 185, 227, 234, 236, 239, 244, 253, 256, 257, 261, 262, 263, 265, 266, 269, 270, 275, 283, 296, 309, 313, 316, 317, 322, 324, 325, 328, 346, 347, 348, 353, 359, 366, 371, 372, 373, 375, 379, 380, 383, 385, 399, 400, 401, 403, 405, 407, 408, 410, 411, 414, 418, 423, 433, 436, 440, 446, 447, 448, 449, 451, 452, 453, 456, 460, 463, 468, 483, 505, 506, 508, 509, 510, 520, 529, 554, 555, 556, 557, 558, 559, 561, 562, 563, 564, 579, 586, 587, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 619, 626, 627, 628, 629, 631, 632, 638, 645, 646, 649, 650, 651, 652, 653, 654, 660, 662, 664, 672, 674, 681, 682, 687, 690, 692, 694, 696, 702, 703, 707, 712, 713, 718, 719, 720, 723, 726, 728, 729, 730, 731, 732, 735, 739, 740, 741, 742, 755, 772, 779, 780, 781, 782, 783, 784, 785, 786, 788, 789, 790, 793, 794, 795, 797, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 838, 839, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 869, 872, 876, 878, 886, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 919, 921, 922, 927, 931, 932, 937, 953, 964, 965, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 990, 995, 996, 997, 1000, 1001, 1002, 1003, 1004, 1007, 1010, 1011, 1014, 1015, 1020, 1031, 1032, 1033, 1034, 1035, 1036, 1039, 1041, 1042, 1044, 1046, 1047, 1048, 1049, 1050, 1051], "indicator_": [626, 627, 629], "indicator_matrix_": 1036, "indigo": 222, "indirect": [266, 372, 385], "indirectli": [223, 339], "indispens": 1024, "indistinguish": 303, "individu": [2, 44, 80, 93, 111, 133, 135, 137, 150, 153, 154, 155, 158, 161, 176, 180, 181, 183, 186, 206, 223, 233, 242, 243, 257, 262, 266, 268, 272, 282, 312, 319, 320, 339, 342, 359, 372, 373, 375, 378, 380, 385, 388, 394, 400, 404, 407, 410, 411, 433, 448, 458, 460, 493, 498, 500, 506, 552, 553, 556, 557, 559, 560, 562, 564, 565, 566, 567, 601, 607, 609, 631, 632, 642, 644, 656, 657, 658, 667, 670, 671, 672, 673, 674, 675, 676, 677, 686, 702, 712, 719, 729, 735, 751, 752, 786, 791, 792, 801, 815, 833, 837, 838, 840, 841, 842, 843, 844, 863, 866, 874, 875, 877, 878, 879, 882, 884, 885, 890, 891, 892, 905, 906, 936, 1000, 1001, 1010, 1015, 1021, 1026, 1032, 1035, 1037, 1043, 1045, 1047], "indptr": [56, 283, 353, 974, 975, 976, 977, 978, 979, 980, 981, 982, 1039, 1047], "induc": [26, 64, 89, 103, 139, 141, 143, 154, 156, 183, 184, 185, 194, 199, 201, 207, 220, 234, 238, 242, 244, 275, 313, 314, 316, 319, 342, 348, 352, 353, 400, 408, 410, 442, 445, 536, 540, 550, 554, 555, 556, 557, 561, 562, 563, 642, 727, 757, 878, 913, 914, 915, 916, 970, 993, 1000, 1014], "induct": [44, 67, 72, 132, 146, 175, 180, 385, 403, 410, 417, 437, 509, 561, 626, 630, 900, 901, 962, 983, 996, 1013, 1021, 1033], "inductive_learn": 89, "inductivecluster": 89, "industri": [403, 1019], "ineffect": [307, 401, 1010, 1039, 1040], "ineffici": [2, 410, 439, 571, 833, 834, 1003, 1005], "inequ": [353, 385, 403, 439, 443, 455, 699, 998, 1003], "inertia": [90, 91, 94, 347, 403, 439, 443, 445, 448, 455, 456, 458, 459, 1042], "inertia_": [91, 94, 97, 439, 443, 445, 1042], "inessa": 1050, "inf": [52, 107, 156, 170, 183, 293, 380, 403, 413, 442, 446, 451, 452, 453, 457, 467, 468, 474, 550, 551, 556, 557, 591, 592, 595, 604, 605, 606, 618, 626, 634, 636, 647, 648, 649, 651, 668, 670, 671, 675, 676, 677, 679, 686, 712, 729, 731, 747, 779, 786, 790, 861, 870, 877, 929, 930, 931, 932, 947, 1000, 1010, 1038, 1040, 1041, 1042, 1043, 1045, 1046, 1047, 1049, 1052], "infant": 1010, "infeas": [996, 1003, 1005], "infer": [26, 143, 180, 181, 183, 203, 249, 253, 254, 263, 309, 328, 351, 365, 373, 383, 397, 407, 408, 488, 490, 493, 505, 506, 512, 531, 533, 535, 537, 544, 546, 547, 550, 556, 557, 631, 634, 656, 709, 722, 723, 724, 742, 786, 798, 799, 807, 824, 831, 841, 852, 879, 886, 900, 901, 913, 914, 915, 916, 964, 990, 996, 999, 1000, 1005, 1010, 1013, 1016, 1019, 1020, 1021, 1032, 1036, 1037, 1042, 1045, 1048], "inferencesess": 397, "inferenti": 89, "inferior": [437, 441, 1042], "infin": [2, 104, 244, 262, 263, 342, 538, 681, 682, 712, 728, 790, 826, 912, 930, 1003, 1051], "infinit": [65, 207, 248, 266, 339, 358, 413, 442, 621, 622, 779, 798, 929, 931, 932, 992, 999, 1010, 1015, 1039, 1041, 1044, 1045, 1046, 1048, 1049], "inflammatori": 366, "inflat": [90, 182, 183, 185, 403, 407, 1000, 1010], "inflect": 265, "influenc": [43, 49, 53, 67, 111, 112, 134, 180, 183, 193, 238, 248, 271, 303, 310, 314, 335, 339, 342, 352, 354, 360, 405, 408, 410, 426, 436, 450, 461, 478, 479, 480, 485, 498, 551, 553, 555, 557, 559, 562, 565, 567, 610, 627, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 675, 677, 678, 735, 751, 831, 838, 839, 847, 848, 855, 856, 863, 882, 883, 894, 906, 908, 911, 914, 916, 931, 989, 994, 995, 996, 1003, 1006, 1010, 1014, 1015, 1021, 1024, 1034, 1039, 1040], "influenti": [210, 347, 1024], "info": [2, 46, 77, 103, 120, 143, 151, 154, 183, 184, 185, 234, 239, 244, 257, 261, 309, 313, 316, 317, 322, 368, 370, 375, 385, 411, 460, 493, 558, 559, 957], "inform": [2, 3, 44, 45, 48, 51, 52, 53, 54, 63, 64, 65, 70, 71, 73, 74, 82, 86, 91, 99, 100, 102, 103, 104, 116, 139, 140, 141, 143, 151, 154, 155, 157, 159, 160, 162, 163, 167, 172, 180, 183, 184, 185, 186, 188, 189, 190, 191, 194, 207, 210, 213, 220, 222, 223, 233, 234, 239, 243, 244, 246, 250, 251, 253, 257, 258, 262, 263, 264, 265, 268, 270, 272, 275, 276, 277, 286, 289, 290, 293, 301, 309, 310, 313, 315, 316, 317, 319, 322, 326, 338, 342, 346, 347, 348, 351, 353, 354, 358, 364, 365, 366, 367, 368, 370, 371, 372, 373, 374, 376, 377, 379, 383, 384, 385, 386, 394, 397, 400, 402, 407, 408, 410, 411, 412, 413, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 458, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 489, 491, 492, 493, 494, 497, 498, 499, 500, 501, 502, 507, 512, 521, 525, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 604, 605, 606, 607, 608, 609, 610, 626, 627, 628, 629, 631, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 686, 687, 688, 689, 690, 691, 692, 695, 697, 698, 700, 701, 702, 704, 705, 715, 727, 731, 744, 756, 757, 758, 787, 789, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 828, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 890, 891, 893, 894, 895, 896, 897, 898, 900, 901, 902, 904, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 919, 924, 958, 983, 988, 990, 992, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1010, 1011, 1014, 1016, 1020, 1021, 1023, 1024, 1031, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "informatik": 1000, "informed": 1000, "infrastructur": [0, 300, 318, 399, 1019, 1020], "infrequ": [103, 139, 143, 154, 183, 184, 185, 234, 244, 309, 313, 878, 879, 1000, 1031, 1045, 1046, 1047], "infrequent_categories_": [316, 318, 878, 879, 1010], "infrequent_if_exist": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316, 878, 1010], "infrequent_sklearn": [878, 1010], "infrequentcategori": [103, 139, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "infti": [223, 413, 618, 996, 1010, 1038], "ing": 411, "ingela": 1045, "ingest": 411, "ingredi": 413, "ingrid": 1041, "inher": [130, 155, 203, 228, 354, 403, 407, 408, 560, 990, 992, 994, 995, 997, 1001], "inherit": [239, 371, 373, 384, 385, 417, 575, 675, 925, 940, 942, 954, 996, 1031, 1036, 1037, 1038, 1039, 1041, 1042, 1043, 1046, 1047, 1048, 1050, 1052], "inhibit": [414, 440], "inhomogen": [413, 613], "ini": 251, "init": [2, 55, 77, 91, 92, 94, 97, 156, 184, 191, 225, 226, 229, 230, 249, 251, 283, 347, 373, 379, 403, 408, 410, 439, 443, 445, 447, 449, 455, 456, 535, 537, 544, 545, 556, 557, 631, 632, 690, 692, 694, 854, 997, 1031, 1040, 1043, 1045, 1046, 1047], "init_": [556, 557], "init_param": [248, 251, 253, 254, 399, 798, 799, 1052], "init_s": [94, 347, 445], "init_size_": 1043, "init_tim": 251, "initi": [0, 47, 52, 56, 72, 74, 77, 78, 90, 91, 93, 96, 97, 112, 147, 155, 156, 168, 172, 173, 180, 183, 191, 201, 220, 225, 226, 230, 243, 247, 249, 250, 253, 263, 283, 314, 326, 335, 347, 354, 359, 366, 371, 373, 375, 379, 380, 383, 385, 399, 403, 408, 410, 412, 413, 415, 438, 439, 443, 444, 445, 446, 447, 448, 449, 455, 456, 457, 458, 509, 512, 528, 529, 530, 534, 535, 537, 540, 542, 543, 544, 545, 550, 551, 556, 557, 560, 591, 605, 606, 609, 610, 618, 619, 626, 639, 644, 645, 646, 647, 651, 652, 657, 659, 660, 661, 662, 665, 666, 667, 668, 670, 675, 676, 677, 679, 680, 683, 690, 691, 692, 694, 695, 702, 798, 799, 835, 854, 861, 862, 863, 901, 934, 948, 949, 969, 973, 974, 992, 996, 997, 999, 1004, 1005, 1006, 1014, 1016, 1019, 1021, 1028, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050, 1051], "initial_imputer_": 626, "initial_strategi": 626, "initial_theta": [172, 609, 610], "initialis": [120, 535, 537, 544, 1031, 1039, 1040], "initializationoccur": 253, "initializedcheck": 372, "inject": [242, 366, 410], "inki": 1037, "inli": [232, 996, 1006], "inlier": [111, 150, 209, 232, 242, 303, 385, 405, 425, 465, 560, 670, 676, 851, 882, 894, 908, 909, 911, 996, 1006, 1038, 1039, 1044], "inlier_mask": 209, "inlier_mask_": [209, 670], "inlier_plot": 111, "inliers_mask": 112, "inlin": [216, 371, 372, 1016], "inmemori": [103, 154, 155, 183, 233, 234, 243, 244, 246, 257, 270, 277, 313, 316, 322], "inner": [65, 125, 146, 149, 264, 268, 282, 321, 326, 358, 411, 439, 511, 580, 587, 608, 617, 647, 668, 679, 776, 778, 992, 1000, 1010, 1015, 1032, 1035, 1045, 1048, 1051], "inner_clf": 1000, "inner_cv": [268, 319], "inner_it": 377, "inner_numb": 326, "inner_stat": 1045, "inner_stats_": 1045, "innermost": 1052, "inpaint": 408, "inparallel": 155, "inplac": [2, 103, 104, 154, 155, 183, 184, 223, 233, 234, 242, 243, 244, 246, 257, 270, 275, 277, 313, 316, 322, 450, 478, 479, 480, 481, 860, 868, 871, 874, 875, 877, 881, 882, 883, 885, 972, 975, 976, 977, 981, 982, 1040], "inplace_column_scal": 2, "inplace_csr_column_scal": [2, 380], "inplace_csr_row_normalize_l1": [2, 380], "inplace_csr_row_normalize_l2": [2, 380], "inplace_row_scal": 2, "inplace_swap_column": 2, "inplace_swap_row": 2, "inproceed": 0, "input": [2, 44, 46, 50, 52, 64, 65, 68, 70, 103, 104, 105, 120, 124, 139, 141, 142, 143, 146, 147, 151, 154, 155, 156, 160, 173, 174, 175, 183, 184, 185, 188, 190, 192, 206, 209, 210, 213, 220, 223, 233, 234, 235, 236, 238, 239, 243, 244, 245, 246, 253, 257, 258, 260, 261, 262, 263, 264, 270, 275, 276, 277, 280, 287, 288, 300, 301, 304, 305, 306, 307, 309, 312, 313, 314, 315, 316, 317, 319, 320, 321, 322, 326, 335, 339, 343, 348, 352, 353, 365, 368, 371, 374, 375, 376, 380, 381, 383, 384, 385, 397, 400, 401, 404, 407, 408, 409, 410, 411, 412, 413, 415, 421, 424, 425, 426, 427, 428, 433, 434, 435, 436, 437, 438, 441, 444, 445, 446, 450, 453, 454, 457, 460, 461, 463, 464, 465, 467, 468, 478, 479, 480, 485, 500, 506, 513, 514, 515, 517, 521, 525, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 610, 619, 621, 626, 627, 628, 629, 630, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 684, 685, 686, 687, 688, 689, 690, 692, 693, 696, 697, 698, 699, 700, 701, 702, 721, 722, 723, 724, 725, 729, 746, 747, 749, 751, 752, 754, 755, 762, 768, 772, 773, 775, 779, 780, 781, 782, 786, 791, 792, 798, 799, 800, 801, 804, 805, 807, 815, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 892, 893, 897, 898, 900, 901, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 922, 924, 925, 926, 928, 929, 930, 931, 932, 933, 937, 942, 944, 946, 948, 960, 965, 972, 974, 980, 981, 982, 985, 986, 988, 990, 992, 994, 996, 997, 998, 999, 1000, 1002, 1003, 1004, 1005, 1007, 1008, 1012, 1013, 1014, 1015, 1016, 1019, 1020, 1024, 1026, 1028, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "input_featur": [103, 139, 143, 154, 183, 184, 190, 234, 244, 313, 316, 373, 385, 419, 424, 438, 439, 441, 443, 445, 460, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 563, 564, 565, 566, 567, 579, 586, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 688, 689, 692, 849, 854, 857, 861, 864, 865, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 1047], "input_nam": [930, 932, 964, 986, 1045], "input_tag": [924, 1050], "input_typ": [348, 411, 580], "inputfeatur": [103, 139, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "inputtag": [2, 924], "inria": [0, 657, 1018, 1031], "insensit": [238, 642, 675, 677, 789, 906, 993, 1014, 1015, 1031], "insepar": [163, 368], "insequenti": [103, 139, 143, 154, 160, 183, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322], "insert": [93, 183, 206, 383, 403, 483, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 920], "insid": [56, 58, 64, 155, 184, 208, 239, 263, 326, 335, 360, 365, 366, 373, 377, 394, 403, 411, 586, 587, 589, 884, 958, 961, 1007, 1024, 1048, 1052], "insideword": 264, "insight": [44, 47, 103, 104, 183, 184, 197, 207, 208, 223, 244, 253, 257, 261, 262, 263, 275, 300, 303, 346, 353, 401, 402, 801, 804, 805, 815, 828, 1007, 1016, 1024, 1051], "insist": 102, "inspect": [2, 44, 49, 64, 67, 68, 71, 89, 94, 103, 136, 139, 141, 143, 147, 149, 150, 151, 154, 155, 156, 160, 167, 172, 173, 183, 185, 186, 200, 214, 219, 233, 234, 243, 244, 246, 257, 263, 264, 266, 270, 275, 277, 286, 291, 294, 308, 309, 312, 313, 314, 315, 316, 317, 319, 322, 331, 332, 333, 334, 336, 337, 339, 344, 346, 351, 352, 353, 359, 373, 385, 403, 404, 410, 411, 460, 554, 555, 556, 557, 561, 562, 630, 631, 632, 633, 834, 865, 866, 913, 914, 915, 916, 942, 987, 1000, 1001, 1004, 1007, 1008, 1015, 1019, 1021, 1026, 1034, 1050], "inspir": [110, 151, 184, 223, 371, 383, 410, 558, 559, 936, 990, 1000, 1040], "instabl": [100, 183, 293, 413, 448, 532, 536, 540, 695, 1038, 1041, 1044], "instal": [86, 246, 283, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 358, 359, 371, 372, 374, 375, 377, 379, 383, 384, 390, 396, 397, 399, 403, 411, 448, 458, 493, 691, 695, 1016, 1018, 1038, 1039, 1040, 1044, 1045, 1050, 1051], "installment_commit": 257, "instanc": [2, 44, 48, 50, 53, 62, 64, 65, 86, 89, 91, 103, 104, 137, 139, 141, 143, 149, 150, 151, 154, 155, 156, 160, 163, 165, 172, 179, 183, 184, 185, 192, 194, 233, 234, 239, 242, 243, 244, 245, 246, 253, 257, 259, 261, 262, 263, 264, 270, 272, 274, 275, 277, 294, 301, 309, 312, 313, 314, 316, 317, 319, 322, 326, 329, 331, 332, 338, 339, 346, 347, 348, 352, 353, 357, 358, 359, 365, 366, 368, 369, 370, 371, 373, 375, 376, 377, 379, 380, 383, 385, 389, 394, 397, 399, 400, 401, 402, 403, 404, 407, 408, 410, 411, 412, 413, 414, 415, 417, 427, 428, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 453, 454, 455, 456, 458, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 484, 487, 489, 492, 493, 494, 500, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 572, 575, 579, 580, 581, 582, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 608, 609, 610, 619, 626, 627, 628, 629, 631, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 707, 720, 730, 731, 739, 772, 775, 779, 780, 781, 782, 784, 785, 788, 789, 793, 794, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 894, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 918, 931, 932, 934, 942, 943, 944, 948, 949, 957, 958, 959, 960, 969, 970, 973, 983, 984, 988, 989, 990, 996, 997, 1000, 1002, 1003, 1006, 1008, 1010, 1014, 1015, 1016, 1020, 1026, 1031, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "instanceth": 257, "instancevector": [104, 160, 270], "instanci": 1040, "instant": [202, 371], "instantan": 505, "instanti": [103, 104, 154, 170, 315, 374, 394, 410, 446, 564, 565, 600, 629, 801, 804, 805, 807, 815, 824, 826, 827, 828, 829, 830, 832, 938, 1006, 1031, 1039, 1043, 1047], "instantiatedwith": [103, 104, 244, 253, 257, 261, 262, 263, 275], "instead": [0, 44, 45, 46, 53, 59, 64, 86, 88, 89, 90, 103, 104, 125, 137, 141, 151, 154, 155, 160, 163, 167, 183, 185, 206, 208, 220, 223, 229, 233, 234, 242, 243, 244, 246, 254, 259, 260, 262, 264, 265, 270, 275, 276, 277, 282, 288, 303, 312, 313, 314, 315, 316, 319, 321, 322, 335, 337, 339, 346, 348, 353, 354, 358, 359, 365, 366, 369, 370, 371, 372, 373, 375, 376, 379, 380, 383, 384, 385, 394, 397, 399, 403, 404, 406, 407, 408, 409, 410, 411, 412, 414, 426, 433, 436, 437, 438, 439, 440, 441, 442, 443, 445, 446, 452, 455, 461, 463, 478, 479, 480, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 506, 507, 512, 530, 532, 533, 535, 537, 538, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 580, 581, 587, 588, 605, 606, 609, 610, 611, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 629, 631, 634, 637, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 681, 686, 690, 694, 698, 700, 702, 707, 709, 747, 775, 779, 780, 781, 784, 798, 799, 800, 801, 802, 803, 805, 808, 810, 813, 815, 817, 819, 820, 821, 823, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 865, 866, 867, 868, 870, 871, 872, 877, 878, 883, 884, 885, 895, 896, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 918, 919, 937, 942, 943, 944, 949, 958, 974, 989, 990, 992, 996, 997, 999, 1000, 1001, 1004, 1005, 1010, 1014, 1015, 1016, 1019, 1028, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "instinct": 346, "institut": [0, 257, 368, 1003], "instruct": [264, 321, 322, 358, 371, 372, 373, 374, 375, 376, 379, 383, 384, 385, 500, 586, 587, 589, 1023, 1031], "instrument": [52, 102, 121, 182], "insuffici": [388, 999], "insur": [180, 189, 206, 402, 460, 493, 549, 647, 668, 679, 706, 746, 751, 753, 831, 866, 869, 870, 878, 885, 996, 1021], "int": [48, 50, 52, 53, 54, 56, 64, 73, 79, 95, 103, 104, 112, 137, 139, 141, 143, 145, 149, 150, 151, 154, 155, 156, 160, 168, 169, 170, 172, 176, 179, 182, 183, 184, 185, 192, 199, 201, 206, 223, 230, 232, 233, 234, 235, 238, 242, 243, 244, 245, 246, 248, 253, 257, 258, 261, 262, 263, 264, 270, 275, 277, 283, 288, 290, 296, 301, 309, 310, 313, 314, 316, 317, 319, 322, 325, 326, 348, 352, 353, 366, 371, 373, 383, 385, 401, 404, 407, 411, 414, 415, 418, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 478, 479, 480, 481, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 499, 500, 505, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 582, 583, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 605, 606, 609, 610, 616, 626, 627, 628, 629, 630, 631, 632, 633, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 698, 700, 701, 702, 703, 704, 705, 707, 709, 713, 722, 727, 728, 730, 731, 732, 735, 739, 757, 758, 770, 775, 779, 780, 781, 782, 783, 784, 785, 788, 790, 794, 795, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 867, 868, 869, 870, 871, 872, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 927, 931, 932, 934, 935, 948, 949, 951, 952, 953, 955, 966, 969, 970, 973, 978, 979, 996, 1007, 1031, 1037, 1041, 1042, 1051], "int32": [155, 242, 283, 310, 371, 385, 439, 443, 445, 447, 449, 455, 907, 908, 909, 910, 911, 966, 1015, 1040, 1046, 1047, 1048], "int64": [44, 54, 87, 103, 183, 184, 257, 272, 277, 280, 309, 319, 353, 385, 411, 421, 438, 444, 446, 493, 511, 512, 516, 583, 586, 639, 645, 646, 651, 652, 664, 714, 715, 841, 870, 899, 929, 956, 985, 1001, 1012, 1039, 1042, 1044, 1046, 1047, 1048], "int64dtyp": 1048, "intact": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316, 878], "intcontrol": [103, 104, 244, 253, 257, 261, 262, 263, 275], "integ": [2, 44, 52, 56, 64, 86, 103, 104, 143, 150, 151, 154, 156, 183, 184, 185, 206, 223, 234, 244, 253, 257, 261, 262, 263, 264, 275, 309, 313, 314, 316, 317, 322, 326, 352, 353, 354, 358, 365, 366, 368, 373, 376, 380, 384, 385, 403, 404, 407, 408, 410, 411, 414, 428, 433, 440, 458, 460, 463, 468, 483, 493, 495, 498, 499, 500, 502, 505, 506, 509, 511, 512, 516, 519, 547, 556, 557, 558, 559, 560, 564, 565, 569, 580, 586, 587, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 626, 627, 628, 629, 631, 632, 643, 646, 650, 652, 654, 658, 660, 662, 664, 672, 674, 675, 677, 699, 714, 736, 801, 803, 804, 805, 806, 808, 810, 815, 816, 817, 820, 821, 823, 825, 828, 836, 839, 841, 844, 845, 846, 870, 878, 879, 884, 885, 886, 889, 899, 901, 913, 914, 915, 916, 927, 964, 965, 966, 969, 990, 996, 1001, 1003, 1010, 1013, 1015, 1016, 1031, 1033, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1047, 1048, 1050, 1051], "integervalu": 275, "integr": [0, 53, 77, 103, 160, 175, 198, 300, 314, 321, 359, 369, 373, 374, 375, 377, 379, 385, 389, 408, 413, 414, 442, 715, 756, 787, 974, 999, 1007, 1024, 1032, 1034, 1035, 1043, 1044, 1048, 1050], "intel": [1000, 1019], "intelex": [389, 1019], "intellectu": 182, "intellig": [96, 163, 257, 346, 368, 403, 410, 444, 552, 553, 637, 696, 726, 835, 862, 863, 1001, 1012, 1020, 1024], "intend": [90, 91, 124, 154, 183, 207, 246, 339, 346, 371, 372, 378, 383, 385, 399, 403, 407, 464, 580, 672, 699, 874, 875, 885, 903, 922, 943, 995, 996, 1000, 1004, 1011, 1019, 1050], "intens": [99, 123, 283, 368, 372, 383, 385, 408, 439, 443, 455, 605, 606, 631, 632, 803, 989, 1007, 1024, 1039], "intention": 65, "inter": [2, 75, 141, 262, 354, 407, 410, 716], "interact": [2, 43, 67, 143, 147, 149, 151, 154, 155, 156, 180, 206, 230, 234, 244, 257, 264, 309, 313, 322, 370, 371, 372, 373, 375, 377, 383, 385, 386, 397, 404, 556, 557, 558, 559, 631, 632, 880, 884, 989, 992, 996, 997, 998, 1005, 1007, 1010, 1018, 1020, 1033, 1038, 1045, 1046], "interaction_cst": [143, 151, 154, 184, 257, 309, 317, 322, 410, 558, 559, 1046], "interaction_onli": [44, 67, 155, 244, 880, 996, 1010], "interactionof": 156, "interactiveshellapp": 377, "intercept": [103, 104, 123, 139, 154, 155, 156, 160, 183, 192, 200, 201, 204, 214, 222, 233, 234, 235, 244, 246, 257, 262, 270, 277, 301, 313, 316, 322, 343, 385, 433, 478, 479, 480, 546, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 686, 722, 880, 884, 887, 905, 906, 912, 996, 998, 1000, 1005, 1014, 1015, 1034, 1036, 1040, 1041, 1051], "intercept_": [193, 200, 214, 240, 333, 340, 343, 385, 478, 479, 480, 546, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 905, 906, 907, 908, 909, 910, 911, 994, 996, 1014, 1015, 1031, 1038, 1043, 1045, 1048], "intercept_hidden_": 861, "intercept_init": [665, 666, 667, 675, 677], "intercept_sc": [103, 104, 139, 155, 160, 233, 234, 244, 246, 257, 262, 270, 277, 301, 313, 316, 322, 657, 658, 905, 906, 912, 996, 1015], "intercept_visible_": 861, "interceptparamet": 64, "intercepts_": [862, 863, 1004], "interchang": [1019, 1048], "interclass": 75, "interdepend": 512, "interest": [44, 46, 53, 67, 77, 79, 83, 88, 95, 99, 104, 134, 146, 154, 160, 163, 172, 178, 183, 184, 185, 198, 206, 207, 208, 223, 226, 237, 256, 257, 260, 263, 264, 266, 270, 272, 277, 280, 320, 321, 335, 342, 347, 353, 358, 366, 368, 371, 373, 376, 377, 379, 383, 386, 402, 403, 405, 408, 411, 413, 490, 491, 497, 501, 507, 645, 646, 905, 990, 996, 997, 1000, 1005, 1006, 1007, 1020, 1024, 1031, 1048], "interestingli": [109, 163, 1010], "interfac": [2, 43, 103, 104, 134, 139, 143, 154, 160, 180, 183, 185, 233, 234, 243, 244, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 309, 313, 316, 322, 364, 365, 372, 373, 375, 380, 383, 385, 407, 413, 414, 437, 441, 446, 493, 550, 699, 801, 804, 805, 815, 865, 866, 891, 984, 989, 1003, 1015, 1019, 1020, 1024, 1026, 1031, 1033, 1036, 1037, 1039, 1040, 1045, 1047], "interfer": [319, 1041], "interim": 1038, "interior": [669, 996, 1046], "interleav": [2, 367, 383, 519], "intermedi": [44, 47, 85, 88, 139, 146, 242, 335, 383, 411, 556, 557, 618, 865, 1000, 1043, 1049], "intern": [0, 44, 64, 103, 104, 113, 125, 139, 140, 141, 143, 144, 147, 149, 151, 154, 155, 156, 160, 163, 168, 172, 178, 180, 185, 206, 239, 243, 244, 245, 257, 261, 263, 270, 275, 277, 283, 285, 302, 309, 314, 317, 319, 322, 326, 348, 352, 353, 354, 359, 366, 368, 373, 377, 380, 383, 385, 394, 399, 400, 403, 407, 408, 410, 411, 412, 413, 414, 433, 435, 440, 461, 464, 508, 531, 532, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 591, 592, 609, 610, 639, 642, 645, 651, 667, 671, 675, 677, 696, 708, 732, 735, 759, 760, 784, 831, 845, 846, 861, 862, 863, 865, 866, 870, 884, 886, 900, 901, 903, 905, 906, 907, 910, 913, 914, 915, 916, 996, 997, 998, 1000, 1003, 1006, 1010, 1012, 1015, 1016, 1021, 1024, 1031, 1034, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "internet": [366, 376, 1000, 1010], "interop": 1019, "interoper": [397, 399, 413, 1020], "interp": [272, 273, 335], "interp1d": [652, 662, 683], "interp_tpr": 273, "interpol": [44, 54, 69, 75, 83, 84, 87, 91, 113, 120, 123, 155, 171, 174, 180, 189, 190, 199, 221, 235, 241, 272, 278, 287, 295, 301, 325, 335, 413, 634, 644, 652, 662, 671, 683, 700, 707, 848, 856, 866, 880, 884, 991, 996, 1000, 1010, 1021, 1038, 1043], "interpolated_inverted_cdf": 870, "interpret": [44, 65, 103, 104, 143, 149, 154, 155, 163, 174, 180, 181, 182, 184, 185, 200, 206, 207, 211, 221, 223, 234, 244, 256, 262, 263, 265, 266, 277, 301, 304, 307, 309, 313, 314, 316, 321, 346, 348, 358, 371, 372, 377, 379, 380, 385, 388, 401, 403, 404, 409, 411, 448, 460, 461, 463, 493, 538, 569, 610, 631, 638, 642, 652, 671, 672, 691, 692, 695, 697, 698, 700, 701, 702, 730, 754, 759, 760, 784, 793, 794, 807, 816, 828, 829, 831, 834, 866, 878, 885, 970, 994, 996, 1000, 1001, 1007, 1008, 1010, 1016, 1019, 1021, 1031, 1032, 1036, 1039, 1044, 1045, 1046, 1050, 1052], "interquartil": [242, 883, 895], "interquartile_rang": 883, "interrog": 411, "interrupt": [996, 1000], "intersect": [264, 332, 400, 403, 739], "interv": [2, 53, 64, 65, 133, 141, 149, 154, 156, 174, 180, 185, 194, 206, 207, 208, 223, 244, 263, 275, 319, 366, 385, 401, 407, 410, 413, 434, 435, 513, 514, 515, 554, 555, 557, 559, 561, 562, 634, 635, 637, 676, 743, 749, 751, 805, 831, 868, 870, 884, 907, 908, 909, 935, 992, 996, 1000, 1010, 1016, 1021, 1038, 1042], "intervent": [88, 183], "intfor": [104, 244, 262], "intl": [65, 407], "intofold": [143, 309], "intointeg": [143, 151, 154, 257, 309, 317, 322], "intp": [418, 447, 449], "intra": [44, 264, 586, 589, 793, 794], "intract": [89, 408, 997, 1005], "intric": [210, 509], "intricaci": 371, "intrins": [190, 385, 408, 410, 1003, 1008, 1014, 1043], "introduc": [44, 109, 111, 112, 125, 149, 155, 162, 180, 185, 190, 194, 200, 204, 210, 231, 236, 239, 242, 244, 270, 317, 318, 321, 348, 367, 369, 371, 373, 375, 376, 379, 383, 385, 394, 401, 403, 405, 407, 408, 410, 411, 427, 437, 438, 439, 441, 443, 445, 455, 460, 464, 478, 479, 480, 481, 493, 501, 512, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 552, 553, 563, 564, 565, 566, 567, 579, 580, 581, 587, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 657, 663, 684, 685, 688, 689, 692, 831, 849, 854, 857, 861, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 899, 903, 994, 996, 999, 1002, 1003, 1006, 1010, 1012, 1014, 1015, 1021, 1031, 1032, 1037, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1049, 1050], "introduct": [162, 223, 261, 371, 402, 407, 408, 411, 588, 789, 790, 840, 844, 996, 998, 1000, 1002, 1025, 1026], "introductori": [146, 166, 167, 172, 173, 175, 176, 180, 231, 413, 610, 621, 1021, 1024], "introspect": [44, 46, 103, 377, 556, 557, 587, 1010], "intrus": 366, "intuit": [44, 53, 68, 79, 85, 95, 104, 125, 134, 137, 143, 158, 160, 167, 183, 184, 207, 208, 227, 232, 244, 245, 261, 263, 264, 270, 280, 288, 305, 308, 314, 332, 335, 339, 347, 371, 385, 401, 403, 405, 407, 409, 644, 783, 784, 785, 788, 876, 905, 907, 908, 910, 911, 992, 996, 997, 1000, 1001, 1007, 1010, 1011, 1015, 1024, 1031], "intuitivevisu": [244, 245, 261, 263, 314], "inv": [109, 113, 299], "inv_boxcox": 1050, "inv_kw_arg": [139, 869], "invalid": [2, 48, 206, 385, 442, 576, 670, 712, 775, 988, 996, 1000, 1037, 1039, 1041, 1042, 1044, 1045, 1047, 1050, 1051], "invalidparametererror": 1000, "invalu": 1024, "invari": [75, 368, 385, 403, 413, 613, 689, 748, 819, 820, 996, 997, 1000, 1015, 1020, 1039, 1042, 1043, 1044], "invent": 1003, "inventor": 1002, "inventori": 1024, "invers": [2, 8, 52, 64, 87, 103, 104, 108, 109, 110, 134, 139, 141, 143, 154, 155, 160, 180, 183, 184, 185, 233, 234, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 272, 275, 277, 286, 301, 313, 314, 316, 319, 322, 335, 347, 348, 353, 363, 385, 404, 406, 407, 408, 410, 411, 415, 441, 461, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 524, 530, 531, 532, 536, 538, 540, 554, 558, 561, 587, 588, 589, 627, 643, 644, 657, 658, 665, 667, 673, 674, 675, 676, 677, 679, 725, 744, 753, 798, 799, 847, 848, 855, 856, 862, 863, 865, 869, 872, 878, 879, 881, 897, 898, 905, 906, 907, 910, 911, 913, 915, 937, 994, 996, 1000, 1003, 1004, 1010, 1014, 1015, 1021, 1025, 1026, 1031, 1034, 1039, 1042, 1043, 1045, 1049, 1050, 1052], "inverse_components_": [897, 898, 1012, 1045], "inverse_func": [107, 139, 183, 404, 461, 869, 1010, 1039, 1049], "inverse_funcwil": 139, "inverse_transform": [45, 84, 87, 103, 104, 125, 139, 143, 154, 160, 183, 184, 185, 234, 244, 287, 309, 313, 316, 347, 394, 408, 411, 441, 461, 478, 479, 480, 528, 530, 531, 532, 534, 535, 536, 537, 538, 539, 540, 541, 579, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 629, 801, 804, 805, 815, 865, 869, 870, 872, 873, 874, 875, 876, 878, 879, 881, 882, 883, 885, 897, 898, 1010, 1011, 1012, 1033, 1035, 1036, 1037, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051, 1052], "inversefunct": 183, "invert": [113, 125, 160, 226, 347, 348, 383, 405, 411, 629, 689, 693, 1010, 1040], "invert_yaxi": [179, 348], "inverted_cdf": [870, 1052], "invest": [377, 1024], "investig": [125, 130, 134, 179, 342, 371, 397, 996], "invok": [257, 314, 373, 528, 534, 536, 542, 543, 564, 566, 567, 800, 823, 826, 902, 1043, 1048], "involv": [308, 310, 312, 320, 335, 339, 358, 360, 366, 371, 385, 386, 397, 406, 413, 699, 833, 834, 997, 1001, 1003, 1007, 1008, 1015, 1019, 1024, 1039], "invscal": [243, 299, 675, 676, 677, 862, 863, 1014], "io": [365, 368, 371, 375, 377, 379, 385, 692, 1019, 1026, 1029], "ioangatop": 1048, "ioanni": 735, "ioerror": 1047, "iofal": 1045, "ion": 1046, "ionescu": [641, 992, 1041], "iowa": [143, 154, 242], "ipca": [2, 124, 530, 531], "ipdb": 379, "ipm": 669, "ipynb": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353], "ipython": [373, 376, 377, 379], "ipython_config": 377, "iq": 182, "iqbal": 1043, "iqr": [242, 883, 895], "ir": [235, 408, 588, 727, 757, 840, 844, 998, 1000], "iren": [1046, 1047, 1051], "iri": [2, 51, 56, 68, 70, 76, 106, 119, 122, 124, 130, 133, 134, 135, 136, 138, 152, 159, 166, 168, 171, 172, 175, 180, 188, 189, 200, 201, 205, 237, 246, 250, 256, 265, 268, 269, 272, 273, 286, 292, 294, 298, 299, 305, 314, 323, 328, 330, 331, 333, 335, 337, 338, 339, 340, 343, 349, 350, 352, 353, 364, 365, 384, 397, 403, 404, 407, 408, 410, 493, 501, 538, 546, 550, 554, 561, 609, 621, 630, 675, 801, 815, 831, 900, 901, 902, 905, 910, 913, 917, 918, 919, 920, 989, 990, 994, 999, 1000, 1003, 1007, 1010, 1013, 1014, 1015, 1016, 1021, 1026, 1044], "iris": [126, 270], "iris_61": 365, "iris_969": 365, "iris_version_3": 365, "irreduc": [137, 1000], "irregular": [172, 339, 403, 1003], "irregularities_kernel": 172, "irrelev": [158, 194, 354, 377, 405, 410, 412, 602, 741, 1000], "irrespect": [206, 236, 257, 272, 283, 604], "irvin": 368, "is_categor": 631, "is_categorical_": [558, 559], "is_classifi": [2, 373, 385, 1050], "is_cluster": [2, 1050], "is_data_valid": [670, 996], "is_fit": [2, 983], "is_fitted_": [417, 420, 422, 425, 426], "is_inli": [465, 560, 851], "is_leav": 353, "is_max_test_scor": 105, "is_model_valid": [670, 996], "is_multilabel": [2, 380, 1048], "is_outlier_detector": [2, 1050], "is_paramet": 987, "is_pypi": 1049, "is_regressor": [2, 373, 385, 1050], "is_scalar_nan": 1044, "is_sh": 274, "is_split_nod": 353, "is_stationari": [175, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624], "isa": [58, 64], "isaac": [1037, 1038, 1040, 1041, 1048], "isaack": 1044, "isaactrost": 1048, "isakov": 1043, "isbinari": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "isbn": [368, 403, 996], "isclos": 56, "isconsid": 243, "isdetermin": [155, 244], "isdiffer": 172, "isdigit": [58, 411], "iseith": [103, 104, 154, 244, 253, 257, 261, 262, 263, 275], "isfals": 139, "ish": 70, "ishaan": 1044, "ishan": [1044, 1045], "ishank": [1036, 1037, 1038], "ishikawa": [1043, 1044], "isin": 325, "isinst": [71, 142, 200, 223, 373, 385], "isinvers": [104, 160, 244, 245, 261, 263, 270, 314], "islic": [48, 79, 95], "islow": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "ism": 1035, "isn": [143, 151, 154, 163, 257, 275, 309, 312, 317, 322, 346, 348, 354, 359, 371, 375, 379, 512, 558, 559, 592, 795, 804, 805, 878, 1003, 1015, 1041, 1049], "isneith": 64, "isnon": 183, "isnot": [103, 154, 155, 183, 233, 234, 243, 244, 246, 257, 270, 277, 313, 316, 322], "iso": [136, 166, 180, 217, 227, 609, 612, 613, 1021], "iso_reg": 634, "isoformat": 56, "isol": [2, 143, 150, 232, 242, 347, 369, 377, 389, 560, 851, 909, 1040, 1041], "isolationforest": [2, 133, 180, 209, 232, 242, 303, 630, 831, 909, 1006, 1021, 1037, 1038, 1039, 1040, 1042, 1044, 1045, 1046, 1047, 1048, 1050, 1052], "isolationforestifit": 150, "isomap": [2, 52, 85, 139, 180, 224, 227, 229, 236, 293, 312, 316, 410, 499, 541, 546, 563, 687, 689, 690, 691, 692, 854, 866, 875, 898, 1003, 1021, 1025, 1026, 1039, 1041, 1044, 1045, 1046, 1047, 1048], "isomap__n_neighbor": 312, "isometr": [225, 688, 690, 691, 692, 997], "isoton": [2, 62, 63, 64, 107, 180, 231, 433, 634, 635, 636, 656, 934, 997, 1021, 1022, 1026, 1032, 1033, 1034, 1035, 1037, 1044, 1047], "isotonic_regress": [2, 634, 1044], "isotonicregress": [2, 235, 991, 1032, 1033, 1034, 1035, 1037, 1039, 1040, 1041, 1043, 1045, 1046, 1047], "isotonicregression0": 634, "isotrop": [2, 71, 88, 90, 94, 125, 169, 171, 225, 227, 403, 405, 413, 509, 516, 529, 614, 618, 619, 621, 622], "isotropi": 408, "ispass": 172, "isr": 412, "isrecommend": 155, "issam": [0, 1037], "isset": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "isstop": [143, 151, 154, 257, 309, 317, 322], "issu": [0, 2, 44, 63, 103, 110, 116, 139, 143, 154, 172, 183, 184, 206, 223, 234, 244, 264, 268, 310, 313, 316, 321, 359, 365, 374, 375, 376, 380, 385, 386, 388, 389, 394, 397, 399, 401, 403, 405, 406, 411, 445, 448, 458, 469, 478, 479, 480, 531, 536, 540, 570, 586, 587, 589, 610, 626, 691, 695, 770, 876, 878, 881, 893, 938, 990, 997, 1000, 1008, 1010, 1015, 1019, 1020, 1023, 1031, 1033, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1046, 1048, 1049, 1050, 1051, 1052], "issuenumb": 379, "ist": 412, "isupp": 411, "isuru": 1043, "isus": 172, "itakura": [408, 535, 537, 544, 1038], "ital": 328, "itali": 368, "item": [2, 48, 49, 50, 51, 52, 53, 56, 67, 78, 88, 107, 138, 140, 143, 146, 151, 154, 162, 183, 204, 208, 213, 226, 238, 239, 241, 250, 257, 260, 264, 266, 270, 309, 316, 317, 322, 325, 347, 364, 371, 372, 373, 380, 404, 460, 523, 558, 559, 586, 587, 589, 631, 694, 813, 878, 900, 901, 920, 927, 955, 992, 1013, 1020], "item_idx": 303, "iter": [2, 48, 52, 55, 56, 64, 68, 80, 103, 104, 113, 120, 123, 134, 137, 139, 140, 142, 143, 144, 145, 147, 148, 149, 151, 154, 155, 156, 160, 163, 175, 176, 178, 180, 183, 190, 191, 192, 213, 220, 233, 234, 243, 244, 245, 246, 250, 251, 253, 255, 257, 258, 261, 262, 263, 264, 270, 271, 274, 277, 298, 300, 301, 305, 309, 313, 314, 316, 317, 322, 325, 326, 327, 328, 335, 371, 377, 379, 380, 384, 385, 398, 399, 403, 406, 408, 410, 412, 415, 433, 436, 437, 439, 441, 443, 444, 445, 448, 450, 455, 457, 458, 459, 467, 468, 474, 478, 479, 480, 512, 528, 529, 530, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 550, 551, 556, 557, 558, 559, 561, 564, 565, 579, 580, 586, 587, 589, 591, 592, 600, 609, 626, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 688, 689, 690, 692, 693, 694, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 839, 854, 861, 862, 863, 864, 865, 869, 876, 878, 880, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 920, 943, 948, 949, 956, 957, 958, 959, 967, 989, 990, 996, 997, 999, 1000, 1003, 1004, 1005, 1013, 1014, 1015, 1016, 1021, 1024, 1026, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1050, 1051], "iter_minibatch": 48, "iter_offset": 1045, "iter_offset_": 1045, "iterated_pow": [104, 244, 262, 529, 532, 538, 1037], "iterationrath": [154, 192], "iterativeimput": [2, 177, 179, 180, 375, 394, 486, 562, 578, 627, 628, 629, 638, 644, 671, 827, 848, 866, 883, 1021, 1040, 1041, 1042, 1043, 1045, 1046, 1047, 1048, 1049, 1050], "itergrid": 1033, "itertool": [48, 77, 79, 95, 155, 184, 197, 249, 254, 263, 270, 272], "ith": [103, 139, 143, 154, 183, 184, 185, 234, 243, 244, 309, 313, 316, 493, 775, 779, 841, 862, 863, 878, 879], "ith_cluster_silhouette_valu": 93, "ithhidden": 243, "iti": [103, 139, 143, 154, 155, 156, 160, 183, 185, 192, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322], "itk": [1041, 1042, 1043], "itmust": 172, "its": [0, 2, 7, 26, 44, 49, 52, 53, 54, 58, 59, 64, 65, 67, 71, 73, 75, 88, 98, 99, 103, 109, 111, 113, 116, 118, 125, 126, 132, 134, 140, 141, 142, 143, 144, 146, 149, 154, 163, 167, 172, 174, 183, 184, 185, 186, 188, 190, 198, 204, 218, 222, 223, 227, 232, 234, 239, 241, 242, 244, 245, 246, 248, 253, 254, 257, 261, 262, 263, 266, 268, 270, 272, 275, 277, 283, 285, 289, 290, 305, 309, 313, 314, 315, 316, 319, 321, 326, 327, 332, 339, 344, 346, 347, 350, 353, 354, 359, 360, 364, 365, 366, 367, 371, 372, 373, 375, 376, 379, 383, 384, 385, 386, 389, 391, 394, 397, 400, 401, 403, 404, 405, 406, 407, 408, 409, 410, 411, 413, 414, 415, 419, 427, 436, 438, 440, 441, 442, 446, 450, 452, 456, 459, 460, 461, 463, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 494, 500, 520, 528, 529, 530, 531, 532, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 550, 552, 553, 554, 555, 556, 557, 561, 562, 563, 564, 580, 581, 585, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 610, 611, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 627, 629, 634, 637, 638, 639, 640, 641, 643, 644, 670, 671, 673, 684, 685, 686, 687, 688, 692, 696, 699, 702, 708, 726, 730, 731, 737, 738, 742, 779, 782, 784, 790, 798, 799, 801, 826, 833, 834, 836, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 861, 864, 865, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 882, 883, 884, 885, 897, 898, 901, 905, 906, 907, 910, 913, 915, 931, 932, 937, 944, 958, 989, 992, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1006, 1007, 1008, 1013, 1014, 1015, 1016, 1019, 1024, 1031, 1033, 1034, 1035, 1037, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1050, 1051], "itsaphel": 1049, "itself": [28, 62, 65, 82, 88, 134, 146, 150, 184, 194, 239, 245, 257, 272, 283, 310, 335, 347, 358, 360, 370, 371, 373, 377, 385, 394, 397, 401, 403, 414, 436, 437, 440, 441, 442, 465, 466, 467, 468, 469, 470, 471, 472, 524, 528, 530, 531, 532, 534, 535, 536, 537, 538, 539, 540, 548, 563, 566, 581, 590, 593, 594, 596, 597, 598, 600, 601, 608, 638, 639, 640, 641, 642, 644, 654, 689, 691, 775, 779, 793, 794, 840, 841, 842, 843, 844, 845, 846, 850, 858, 859, 870, 871, 872, 900, 901, 958, 992, 996, 997, 999, 1003, 1004, 1008, 1019, 1035, 1046], "iv": [182, 1000], "ivan": [1039, 1040, 1043, 1046, 1049, 1050], "ivanllt": 1046, "iver": 1037, "iverson": 996, "ivicajov": 1034, "ivl": 186, "ivt": 531, "iv\u00e1n": [1038, 1044], "iwhalv": 1044, "iwona": 1048, "ix": [51, 272, 341], "iy_j": 1010, "iyer": 1042, "izadifar": 1049, "j": [0, 51, 56, 73, 74, 75, 78, 94, 102, 110, 111, 112, 134, 137, 138, 148, 161, 168, 179, 184, 217, 228, 241, 248, 262, 263, 268, 274, 287, 293, 296, 307, 317, 353, 359, 365, 366, 368, 375, 377, 383, 392, 400, 401, 403, 405, 407, 408, 410, 411, 413, 414, 433, 436, 440, 442, 449, 450, 465, 470, 495, 510, 513, 514, 515, 517, 525, 528, 531, 533, 534, 535, 537, 538, 544, 550, 556, 557, 591, 592, 631, 632, 636, 643, 644, 647, 648, 665, 666, 668, 675, 677, 679, 688, 689, 690, 692, 693, 694, 696, 705, 708, 710, 714, 716, 718, 721, 724, 725, 727, 756, 757, 759, 760, 775, 779, 789, 790, 793, 794, 834, 835, 842, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 858, 859, 876, 885, 886, 913, 914, 989, 990, 994, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1010, 1012, 1014, 1015, 1016, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "j0rd1smit": 1043, "ja": [406, 1038], "jaccard": [2, 282, 400, 446, 453, 699, 703, 719, 730, 735, 739, 779, 780, 781, 797, 1003, 1039, 1040], "jaccard_scor": [2, 282, 399, 703, 730, 735, 797, 1000, 1040, 1043, 1051, 1052], "jaccard_similarity_scor": [1033, 1035, 1040], "jaccarddist": 699, "jack": [1033, 1036, 1044, 1045, 1046, 1047, 1049], "jacklangerman": [1039, 1040], "jackman": 1032, "jackmartin": 1037, "jackson": [1037, 1038, 1040], "jacob": [0, 393, 1036, 1037, 1038], "jacobi": 1046, "jacobsen": 1034, "jacopo": [1039, 1040], "jacqu": [1032, 1034], "jaehong": 1041, "jaehyun": 1043, "jaewon": 1039, "jai": [1041, 1045], "jaidev": 1036, "jaim": 1041, "jaimin": 1050, "jain": [1037, 1038, 1039, 1043, 1045, 1046], "jair": 1038, "jake": [0, 393, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1043, 1045], "jakemick": 1033, "jakhar": 1043, "jakirkham": [1038, 1039, 1040, 1046, 1047], "jakob": 1050, "jakub": 1048, "jakubek": [1044, 1045], "jalali": [0, 386, 392, 397, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "jalexand3r": 1045, "jamaoui": [1039, 1040, 1043], "jame": [0, 368, 407, 835, 1001, 1031, 1032, 1033, 1034, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1047, 1048, 1050], "jamestwebb": [1033, 1034], "jami": 1039, "jamieson": 989, "jan": [0, 155, 207, 280, 393, 884, 1031, 1034, 1035, 1036, 1037, 1039, 1040, 1043, 1047], "jana": 1041, "janet": 368, "janez": 1050, "jane\u017e": [1032, 1033], "janfidor": [1046, 1047], "janhang": 1041, "janin": 1038, "janna": 1037, "jannik": 1044, "janso": 1031, "jansson": [1034, 1046], "januari": [371, 1031, 1032, 1041, 1043, 1046, 1048, 1050], "janvanrijn": [1039, 1040], "jaqu": [0, 393, 1031, 1032, 1033, 1034], "jardim": 1044, "jare": 1046, "jarfa": 1037, "jarir": 1044, "jarkko": 696, "jarosch": 1033, "jaroslaw": 1038, "jarrod": [0, 393, 1040, 1047, 1048], "jarvelin": [727, 757, 1000], "jaskowiak": 442, "jason": [45, 408, 532, 901, 1037, 1039, 1043, 1046], "jatin": [1035, 1037], "jauhar": 1045, "jauvin": 1032, "java": [403, 438], "javier": [1035, 1049], "jawahar": 992, "jax": 1048, "jay": 1038, "jaya": 1045, "jayaratn": [1042, 1043, 1046, 1047], "jayratn": 1043, "jayzed82": 1038, "jb": [1047, 1048], "jbdelafoss": 1038, "jbirch": [403, 438], "jblackburn": 1037, "jc": [1038, 1039], "jdcaballero": 1035, "jdethuren": [1039, 1040], "je": 1045, "jean": [1031, 1034, 1035, 1036, 1037, 1038, 1044], "jeann": 1045, "jeanselm": 1041, "jeb": 1039, "jeevan": 1043, "jeff": [1035, 1037, 1044, 1045], "jeffrei": [1034, 1037], "jeffrey04": [1036, 1037], "jelfner": 1045, "jell": 1034, "jen": [657, 1039], "jen09": 408, "jenatton": 408, "jenni": 1045, "jennif": 1044, "jensen": [1037, 1043], "jeong": 1041, "jeremi": [1024, 1036, 1037, 1038, 1039, 1042, 1043], "jeremiedbb": [1039, 1040, 1041], "jeremynixon": 1037, "jeroen": 1037, "jeroenpeterbo": 1043, "jeroko": 1038, "jeromedock": 1041, "jerphanion": [0, 392, 1043, 1044, 1045, 1046, 1047, 1048, 1049], "jerryzhu": 900, "jesper": 1041, "jess": [836, 1001, 1044], "jess010": 1034, "jessica": 1037, "jessicakk0711": 1047, "jessicali9530": [46, 366], "jesu": [58, 346, 347], "jet": 100, "jevnik": 1036, "jewalikar": 1037, "jf": 1040, "jfraj": 1036, "jha": [1035, 1041, 1045, 1050], "jhay": 1043, "jhun": 470, "jia": 1037, "jiacheng": 1038, "jiali": 1036, "jian": 403, "jianbo": [403, 448, 458, 691], "jiang": [401, 1035, 1042], "jianzhu": 1044, "jiawei": [1047, 1048, 1049], "jiaxiang": 1043, "jiayi": 1050, "jie": [1039, 1040, 1043], "jiefangxuanyan": 1044, "jigna": 1043, "jihan": 1045, "jill": 1037, "jim": 1033, "jim0421": 1043, "jimenez": [1044, 1045], "jimmi": [243, 862, 863, 1004, 1037, 1039], "jim\u00e9nez": [0, 361, 1039, 1042, 1043, 1044, 1045, 1046], "jin": [638, 1042, 1043], "jindal": 1043, "jinkun": 1039, "jiongyan": 1039, "jiquan": 1004, "jirair": 1050, "jirka": 1045, "jiten": 1046, "jitendra": [403, 448, 458, 691], "jitter": [134, 649, 653, 1042], "jiyuan": 1037, "jjabl": 1039, "jjmistri": 1042, "jkarolczak": 1046, "jkleint": [1038, 1039], "jl": [236, 898], "jmlr": [0, 403, 665, 666, 675, 677, 704, 996, 1015], "jmlr_2014": 692, "jmontoyam": 1038, "jnboehm": 1044, "jnt": 407, "joaak": [1039, 1040], "joan": [1038, 1039, 1040, 1041], "joanna": 1041, "joaorodriguesist": 1051, "joaquin": 1043, "job": [52, 64, 103, 104, 139, 141, 143, 149, 150, 154, 155, 156, 183, 184, 185, 234, 235, 244, 251, 253, 257, 261, 262, 263, 275, 309, 313, 316, 319, 326, 371, 375, 391, 410, 414, 433, 440, 442, 444, 446, 448, 453, 454, 457, 460, 463, 464, 468, 528, 532, 533, 534, 536, 539, 540, 542, 543, 545, 552, 553, 554, 555, 560, 561, 562, 563, 564, 565, 566, 567, 600, 605, 606, 609, 633, 638, 656, 688, 689, 690, 691, 692, 693, 694, 775, 779, 782, 801, 804, 805, 807, 815, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 838, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 864, 867, 900, 901, 903, 967, 1024, 1050], "joblib": [2, 42, 52, 64, 77, 87, 103, 104, 139, 140, 141, 143, 150, 154, 155, 156, 160, 183, 184, 185, 233, 234, 235, 243, 244, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 283, 301, 309, 313, 316, 319, 322, 326, 366, 369, 371, 374, 375, 380, 383, 385, 389, 396, 404, 414, 433, 437, 440, 441, 442, 444, 446, 448, 453, 454, 457, 460, 463, 468, 505, 506, 528, 532, 533, 534, 536, 539, 540, 542, 543, 545, 552, 553, 554, 555, 560, 561, 562, 563, 564, 565, 566, 567, 592, 600, 605, 606, 609, 631, 633, 638, 646, 650, 652, 654, 656, 657, 658, 660, 662, 664, 665, 667, 675, 678, 688, 689, 690, 691, 692, 693, 694, 775, 779, 782, 801, 804, 805, 807, 815, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 838, 847, 848, 851, 853, 855, 856, 858, 859, 864, 865, 866, 867, 900, 901, 967, 968, 984, 1000, 1020, 1026, 1031, 1032, 1034, 1036, 1038, 1039, 1040, 1042, 1043, 1046, 1048, 1049, 1050, 1051], "joblib_start_method": 383, "jochen": 1033, "jock": 102, "joe": [1036, 1049, 1050], "joei": 1047, "joel": [0, 386, 392, 411, 532, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1048, 1049, 1050, 1051], "johann": [1033, 1034, 1039, 1041, 1042, 1045], "johanna": [112, 1049], "johannah": 1037, "johanwork": 1044, "john": [368, 411, 533, 708, 736, 770, 880, 907, 908, 910, 911, 990, 996, 1000, 1031, 1032, 1033, 1034, 1036, 1037, 1038, 1039, 1040, 1044, 1046, 1047, 1048, 1049, 1050, 1052], "johnathanpi": [1046, 1047], "johnson": [38, 88, 180, 228, 231, 303, 307, 363, 485, 499, 881, 893, 897, 898, 899, 1010, 1017, 1021, 1026, 1039, 1045, 1047, 1051], "johnson_lindenstrauss_min_dim": [2, 236, 1012, 1032], "johnston": [163, 368, 996, 1040], "johnstott": 1039, "johnthagen": 1046, "johnwon": 307, "join": [51, 52, 58, 88, 178, 223, 263, 305, 366, 386, 459, 1023, 1031, 1039], "joint": [104, 146, 160, 180, 184, 189, 194, 195, 197, 198, 205, 225, 257, 270, 404, 610, 651, 661, 692, 840, 841, 842, 843, 844, 905, 996, 997, 1001, 1005, 1007, 1011, 1021, 1031], "jointli": [26, 202, 270, 403, 408, 996], "joli": [0, 393, 1032, 1033, 1034, 1035, 1036, 1037], "jon": [346, 1038, 1041, 1042, 1044, 1045, 1048], "jona": [1043, 1048], "jonatan": 1039, "jonathan": [366, 1035, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1047], "joncral": 1037, "jone": [0, 366, 393, 1031, 1050], "jong": 1038, "jonker": [400, 719], "joona": 1031, "jordal": 1037, "jordan": [403, 408, 691, 798, 1041, 1042, 1045, 1046], "jordi": 1037, "jorg": [657, 1034, 1043, 1045], "jorgecardena": 1050, "jori": [0, 393, 1038, 1039, 1040, 1043, 1044, 1051], "jose": [163, 368, 657, 1000, 1039, 1041], "joseph": [1034, 1035, 1036, 1037, 1043, 1045, 1046, 1050], "josephsalmon": [1038, 1039, 1040], "josh": [411, 1038, 1051], "joshi": [1037, 1039, 1045, 1048, 1049], "joshua": [317, 366, 1033, 1034, 1036, 1037, 1043, 1046, 1047], "joshuakennethjon": 1040, "jos\u00e9": [724, 1034, 1044, 1049], "jotasi": 1039, "joudet": [1038, 1039], "journal": [0, 112, 184, 263, 269, 280, 365, 366, 368, 401, 403, 405, 410, 448, 458, 469, 531, 538, 626, 634, 644, 689, 692, 693, 705, 715, 732, 735, 736, 759, 760, 787, 830, 835, 881, 893, 989, 990, 994, 996, 997, 998, 1000, 1001, 1007, 1012, 1014, 1015], "jovan": [1045, 1046], "joydeep": 403, "jo\u00e3o": [1046, 1049, 1050], "jo\u00ebl": 1039, "jpcar": 1049, "jpeg": [365, 366, 490, 491], "jpfrancoia": [1037, 1038], "jpg": [503, 582, 585], "jpienaar": [1049, 1050], "jpm": 52, "jpmml": 1019, "jpmorgan": [52, 1024], "jr": 996, "jrenni": 842, "jrfiedler": 1037, "jschendel": [1038, 1039], "jschuerz": 1045, "jshn9515": 1051, "json": [53, 365, 371, 389], "jth": [775, 779], "juan": [0, 361, 1031, 1042, 1043, 1044, 1045, 1046], "juanfe88": 1046, "judg": [91, 212, 403], "judgment": [254, 371, 1000], "judithabk6": 1042, "juergen": [1041, 1046], "jul": 272, "juli": [163, 368, 412, 735, 886, 1010, 1034, 1038, 1039, 1040, 1049, 1051], "julia": [403, 717, 738, 796], "julian": [1038, 1039, 1049, 1050], "juliankahnert": 1037, "juliaschoepp": [1046, 1047], "juliathebrav": 1037, "julien": [0, 392, 657, 996, 1024, 1031, 1034, 1038, 1039, 1043, 1044, 1045, 1046, 1047, 1048, 1049], "juliet": 1039, "julietcl": 1039, "julio": 1044, "julyrashchenko": 1044, "jumon": 1042, "jump": [44, 204, 207, 303, 368, 371, 384, 411, 884], "jumpi": 411, "june": [403, 997, 1037, 1047, 1051], "juneja": [1049, 1050], "jung": [1038, 1042, 1046], "jungkook": 1036, "jungl": 997, "jupyt": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 372, 373, 404, 464, 903, 1016, 1019, 1020, 1042, 1045, 1051], "jupyterlit": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353], "jurgen": 1024, "juri": 563, "jurman": 744, "jur\u010da": 1051, "just": [44, 53, 64, 68, 102, 103, 116, 120, 139, 140, 141, 143, 149, 150, 154, 155, 156, 163, 172, 185, 192, 226, 233, 234, 237, 243, 244, 246, 257, 262, 263, 270, 274, 275, 277, 283, 298, 301, 313, 316, 319, 322, 335, 346, 347, 353, 354, 366, 370, 371, 372, 373, 375, 376, 379, 383, 384, 385, 400, 401, 402, 403, 404, 407, 410, 412, 415, 464, 530, 532, 543, 552, 553, 554, 555, 556, 557, 560, 561, 562, 563, 577, 582, 609, 610, 645, 651, 656, 657, 659, 661, 665, 666, 667, 675, 676, 677, 807, 824, 854, 862, 863, 989, 996, 999, 1000, 1001, 1004, 1008, 1010, 1014, 1020, 1031, 1035, 1037, 1039, 1043, 1047], "justglow": 1040, "justif": 675, "justifi": [371, 377, 401, 562], "justin": [1033, 1039, 1043], "jvm": 1044, "jygerardi": [1046, 1047], "j\u00e9r\u00e9mie": [0, 392, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "j\u00e9r\u00f4me": [1040, 1041, 1042, 1048, 1049, 1050, 1051], "j\u00eann": 1037, "j\u00f6rg": [403, 446, 453, 1039], "j\u00f6rn": 1038, "j\u00f8rgensen": [996, 1048], "k": [2, 34, 51, 52, 55, 56, 58, 62, 64, 67, 68, 72, 73, 74, 77, 82, 83, 86, 88, 89, 93, 96, 98, 100, 103, 106, 107, 111, 118, 120, 127, 134, 136, 139, 142, 143, 150, 152, 153, 155, 159, 160, 163, 168, 170, 171, 175, 176, 178, 179, 180, 183, 184, 185, 186, 191, 193, 197, 200, 202, 208, 217, 219, 233, 234, 236, 238, 240, 241, 242, 244, 246, 248, 251, 253, 257, 259, 262, 263, 266, 267, 272, 273, 276, 277, 283, 285, 288, 289, 290, 291, 292, 294, 295, 296, 301, 304, 305, 306, 307, 310, 312, 313, 316, 322, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 345, 346, 348, 353, 354, 359, 366, 368, 371, 379, 380, 383, 385, 394, 399, 400, 401, 404, 405, 406, 408, 409, 410, 411, 412, 413, 415, 436, 439, 440, 442, 443, 444, 445, 446, 447, 448, 449, 455, 456, 458, 465, 468, 484, 499, 509, 520, 528, 534, 538, 541, 542, 543, 546, 547, 550, 552, 554, 555, 556, 579, 587, 588, 589, 590, 592, 593, 594, 596, 597, 598, 604, 605, 606, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 630, 638, 639, 647, 649, 650, 652, 653, 654, 655, 657, 658, 662, 663, 664, 665, 666, 668, 675, 677, 678, 679, 681, 682, 683, 684, 685, 688, 691, 695, 696, 704, 705, 708, 717, 727, 738, 744, 757, 759, 760, 762, 767, 770, 775, 776, 777, 778, 780, 794, 795, 796, 798, 799, 802, 806, 808, 809, 810, 813, 816, 817, 819, 820, 822, 823, 829, 840, 845, 846, 847, 848, 849, 850, 851, 853, 855, 856, 857, 858, 859, 866, 870, 871, 872, 876, 877, 878, 880, 881, 885, 893, 898, 912, 920, 934, 944, 949, 973, 989, 990, 992, 993, 994, 996, 997, 998, 999, 1002, 1004, 1005, 1006, 1008, 1013, 1014, 1015, 1016, 1019, 1021, 1025, 1026, 1031, 1032, 1033, 1034, 1037, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1048, 1049, 1050], "k0": 994, "k1": [413, 620, 623], "k1__": 413, "k1__constant_valu": 171, "k1__k1": 413, "k1__k1__constant_valu": 413, "k1__k1__constant_value_bound": 413, "k1__k2": 413, "k1__k2__length_scal": [173, 413], "k1__k2__length_scale_bound": 413, "k2": [413, 620, 623], "k2__": 413, "k2__length_scal": 413, "k2__length_scale_bound": 413, "k_": [400, 413, 615, 618, 620, 623, 775, 992, 1010], "k_1": [2, 413, 620, 623], "k_2": [2, 413, 620, 623], "k_best": [314, 590, 902, 1013, 1048], "k_diag": [611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624], "k_fit_all_": 871, "k_fit_rows_": 871, "k_gradient": [611, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624], "k_init": [439, 455], "k_mean": [2, 97, 380, 385, 1039, 1047], "k_means_cluster_cent": 97, "k_means_elkan": 1039, "k_means_label": 97, "k_new": 871, "k_ret": [845, 846], "k_true": [845, 846], "ka00ri": [1046, 1047], "kachaiev": 1048, "kaczmarzyk": 1048, "kadatatlu": 1044, "kadota": 1045, "kaggl": [46, 154, 366, 384, 1000], "kahni": 1043, "kai": [368, 560, 1006, 1038], "kaicheng": 1035, "kaichogami": 1037, "kailasa": [1045, 1046], "kaim": [862, 863], "kaiser": [408, 529], "kakati": 1046, "kalla": 1051, "kalli": [1039, 1040], "kalyan": 1037, "kamalakerdadi": [1036, 1037], "kamani": 1051, "kamar": 1039, "kamchyev": 1048, "kamel": 1031, "kamishima": [1037, 1038], "kamm": 1000, "kanai": [1037, 1038, 1039], "kanazu": [1046, 1047], "kanchimo": 1049, "kang": [1039, 1041], "kania": [1046, 1047], "kanika": 1041, "kanishk": 1046, "kanissh": 1046, "kanji": 1044, "kanniah": [1034, 1035], "kansal": 1037, "kapadni": 1046, "kapeln": [184, 1007], "kapil": 1052, "kapoor": [1039, 1040], "kappa": [2, 533, 716], "kapur": 1038, "kar": 1037, "karan": [1038, 1039, 1040], "karayev": 1033, "karbownik": 1044, "karen": 1044, "karger": [842, 1002], "karhunen": 531, "karin": [626, 990], "karl": 1039, "karlo": [1048, 1049], "karnofski": 1038, "karnowski": 1043, "karol": 1034, "kartik": 1043, "karypi": 403, "kaseorg": 1041, "kashif": 1036, "kasim": 1035, "kaski": 696, "kasper": 1039, "kassa": [1046, 1047], "kastner": [0, 393, 1033, 1034, 1035, 1042, 1043], "kat": 1038, "kataev": [1039, 1040], "kataki": [720, 735, 741, 1000], "katarina": [1041, 1043], "katheleen": 365, "kathi": [1038, 1041], "kathleen": 1038, "kathryn": 1042, "kati": 1038, "katotten": 1045, "katrin": [1039, 1040], "katrina": 1042, "katriopla": 1039, "katyal": 1041, "katz": [1036, 1043, 1044], "katzfuss": 1000, "kaufmann": [1012, 1016, 1043], "kaushik": [1038, 1045, 1046, 1047, 1049], "kaushik94": 1034, "kawamura": 1044, "kawwa": 1044, "kayawari": 1044, "kaylani2": 1043, "kaynak": 368, "kazmar": 1035, "kb": [103, 183, 184, 257], "kbest": [104, 590], "kbin": [310, 317], "kbinsdescret": 870, "kbinsdiscret": [2, 44, 67, 86, 118, 180, 191, 206, 223, 243, 302, 305, 310, 317, 343, 509, 602, 656, 868, 884, 914, 1010, 1021, 1039, 1043, 1044, 1045, 1047, 1049, 1051], "kbinsdiscretizer__n_bin": 305, "kcachegrind": 374, "kd": [288, 403, 409, 1003, 1039, 1040, 1041], "kd_tree": [414, 440, 442, 446, 453, 688, 689, 847, 848, 849, 850, 851, 853, 855, 856, 857, 1003, 1044, 1048], "kdd": [48, 188, 366, 401, 433, 1012], "kdd06_rp": 898, "kddcup": [242, 364, 489, 1026], "kddcup99": [2, 366, 489], "kde": [182, 183, 277, 280, 287, 288, 296, 409, 850], "kdt": 1003, "kdtree": [2, 442, 446, 453, 688, 689, 845, 847, 848, 849, 850, 851, 853, 855, 856, 857, 1033, 1035, 1039, 1043, 1044, 1047, 1048], "ke": [410, 1042, 1043], "kearn": 1034, "keat": [1046, 1047], "keep": [46, 53, 65, 77, 103, 104, 107, 123, 125, 140, 149, 162, 173, 178, 182, 183, 184, 185, 186, 194, 204, 206, 207, 208, 213, 223, 228, 243, 244, 246, 253, 258, 261, 262, 307, 308, 315, 325, 326, 335, 346, 347, 350, 354, 358, 359, 363, 371, 373, 375, 384, 385, 401, 403, 404, 405, 406, 407, 408, 426, 446, 461, 478, 479, 480, 481, 490, 491, 531, 537, 538, 541, 544, 551, 553, 555, 557, 559, 562, 565, 567, 593, 596, 598, 601, 610, 633, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 675, 676, 677, 678, 708, 709, 819, 838, 839, 848, 856, 862, 863, 901, 906, 908, 911, 914, 916, 996, 1001, 1005, 1008, 1010, 1020, 1023, 1024, 1026, 1031, 1036, 1039, 1040, 1044, 1045, 1047, 1049, 1051], "keep_empty_featur": [103, 154, 185, 234, 244, 313, 316, 626, 627, 629, 990, 1046, 1050], "keerti": 1046, "kegl": 1035, "kei": [2, 48, 50, 53, 56, 77, 103, 104, 126, 140, 143, 151, 154, 162, 178, 182, 183, 184, 185, 223, 234, 239, 242, 244, 245, 253, 257, 261, 262, 263, 264, 266, 267, 275, 309, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 328, 360, 364, 373, 376, 377, 378, 383, 385, 386, 389, 394, 403, 404, 407, 413, 460, 468, 558, 559, 564, 565, 566, 567, 586, 589, 592, 608, 616, 625, 631, 633, 658, 702, 711, 801, 804, 805, 813, 815, 823, 828, 864, 865, 920, 936, 966, 1008, 1020, 1026, 1028, 1037, 1043, 1044, 1046, 1047, 1049], "keidar": 1050, "keith": [346, 1031, 1036], "kekalainen": [727, 757, 1000], "kelkar": [1038, 1039, 1041], "kelleh": [708, 1000], "kelleher2015": 1000, "kellei": [366, 1033, 1034], "keller": 1043, "kellogg": 52, "kellycarmodi": 1041, "kemal": [0, 1033, 1034], "kemenad": 1042, "kemk": 1042, "ken": [368, 1033, 1040], "ken4git": 1045, "kendal": 1046, "kendrick": 1043, "kennedi": [1038, 1041, 1048], "kenneth": [1012, 1031, 1032, 1037, 1038, 1045, 1046], "kenni": 1043, "kensuk": 1041, "kent": 58, "kenta": 1034, "kento": [1046, 1047], "kept": [65, 104, 172, 244, 253, 262, 283, 342, 365, 397, 413, 493, 532, 535, 537, 538, 544, 595, 608, 609, 610, 618, 619, 643, 695, 798, 799, 932, 1010, 1039, 1040], "kera": [383, 1019], "kerimov": [1038, 1039], "kernal": 125, "kernc": [1031, 1045, 1046], "kernel": [2, 24, 25, 28, 43, 46, 49, 50, 51, 67, 68, 69, 84, 99, 106, 116, 119, 121, 129, 132, 155, 161, 166, 168, 169, 170, 171, 174, 178, 193, 204, 207, 214, 219, 231, 232, 240, 244, 245, 256, 261, 263, 265, 268, 269, 273, 284, 289, 294, 308, 315, 326, 329, 330, 332, 333, 335, 336, 337, 338, 340, 343, 354, 358, 363, 373, 383, 385, 391, 401, 403, 404, 407, 411, 426, 436, 444, 448, 457, 458, 461, 478, 479, 480, 487, 493, 495, 499, 501, 511, 530, 531, 532, 538, 541, 551, 553, 555, 557, 559, 562, 565, 567, 591, 592, 609, 610, 611, 612, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 630, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 675, 676, 677, 678, 688, 690, 691, 692, 695, 736, 759, 760, 762, 767, 768, 775, 776, 777, 778, 801, 807, 812, 815, 831, 833, 838, 839, 845, 846, 848, 850, 856, 863, 865, 866, 871, 875, 877, 878, 880, 885, 900, 901, 905, 906, 907, 908, 909, 910, 911, 914, 916, 922, 989, 995, 996, 997, 1000, 1001, 1003, 1006, 1013, 1014, 1021, 1022, 1025, 1026, 1031, 1032, 1033, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1052], "kernel_": [167, 168, 169, 170, 171, 172, 173, 174, 176, 609, 610], "kernel__k1": 172, "kernel__k1__k1": 172, "kernel__k1__k1__k1": 172, "kernel__k1__k1__k1__k1": 172, "kernel__k1__k1__k1__k1__constant_valu": 172, "kernel__k1__k1__k1__k1__constant_value_bound": 172, "kernel__k1__k1__k1__k2": 172, "kernel__k1__k1__k1__k2__length_scal": 172, "kernel__k1__k1__k1__k2__length_scale_bound": 172, "kernel__k1__k1__k2": 172, "kernel__k1__k1__k2__k1": 172, "kernel__k1__k1__k2__k1__k1": 172, "kernel__k1__k1__k2__k1__k1__constant_valu": 172, "kernel__k1__k1__k2__k1__k1__constant_value_bound": 172, "kernel__k1__k1__k2__k1__k2": 172, "kernel__k1__k1__k2__k1__k2__length_scal": 172, "kernel__k1__k1__k2__k1__k2__length_scale_bound": 172, "kernel__k1__k1__k2__k2": 172, "kernel__k1__k1__k2__k2__length_scal": 172, "kernel__k1__k1__k2__k2__length_scale_bound": 172, "kernel__k1__k1__k2__k2__period": 172, "kernel__k1__k1__k2__k2__periodicity_bound": 172, "kernel__k1__k2": 172, "kernel__k1__k2__k1": 172, "kernel__k1__k2__k1__constant_valu": 172, "kernel__k1__k2__k1__constant_value_bound": 172, "kernel__k1__k2__k2": 172, "kernel__k1__k2__k2__alpha": 172, "kernel__k1__k2__k2__alpha_bound": 172, "kernel__k1__k2__k2__length_scal": 172, "kernel__k1__k2__k2__length_scale_bound": 172, "kernel__k2": 172, "kernel__k2__k1": 172, "kernel__k2__k1__k1": 172, "kernel__k2__k1__k1__constant_valu": 172, "kernel__k2__k1__k1__constant_value_bound": 172, "kernel__k2__k1__k2": 172, "kernel__k2__k1__k2__length_scal": 172, "kernel__k2__k1__k2__length_scale_bound": 172, "kernel__k2__k2": 172, "kernel__k2__k2__noise_level": 172, "kernel__k2__k2__noise_level_bound": 172, "kernel__length_scal": 167, "kernel__period": 167, "kernel_approxim": [2, 44, 67, 155, 178, 180, 187, 188, 219, 232, 237, 314, 637, 638, 639, 640, 641, 676, 759, 760, 871, 992, 1021, 1032, 1038, 1048], "kernel_dens": [845, 846], "kernel_label": 341, "kernel_metr": [2, 638, 639, 640, 641], "kernel_param": [155, 448, 532, 638, 642], "kernel_pca": [45, 125, 404], "kernel_pca_": 688, "kernel_pca_back_proj_ax": 125, "kernel_pca_proj_ax": 125, "kernel_ridg": [2, 167, 238, 642, 1001, 1035], "kernel_ridge_tun": 167, "kernel_svm": 237, "kernel_svm_scor": 237, "kernel_svm_tim": 237, "kernelapproximationkernel": 391, "kernelcenter": [2, 399, 1010, 1041, 1045, 1047, 1048], "kerneldens": [2, 287, 288, 296, 409, 1033, 1039, 1040, 1044, 1045, 1046], "kernelpca": [2, 45, 404, 408, 530, 531, 538, 541, 688, 690, 692, 871, 1010, 1032, 1033, 1037, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1048], "kernelridg": [2, 125, 167, 238, 671, 993, 1001, 1035, 1048], "kertesz": 1045, "keshat": [665, 666, 675, 677, 996], "keshavan": 1041, "kesshi": [1041, 1042], "kevad": 1041, "kevin": [642, 1033, 1035, 1037, 1038, 1041, 1042, 1043, 1045, 1046, 1048, 1050, 1051], "kevlani": 1039, "keyber": 1049, "keyerror": [920, 1041], "keyword": [103, 139, 143, 154, 155, 183, 184, 185, 234, 244, 309, 313, 316, 346, 365, 371, 373, 376, 378, 385, 403, 414, 417, 434, 440, 441, 446, 448, 453, 460, 463, 493, 500, 532, 535, 537, 556, 557, 564, 565, 566, 567, 608, 619, 630, 631, 638, 642, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 687, 688, 692, 697, 698, 699, 700, 701, 702, 775, 779, 780, 781, 782, 793, 794, 807, 824, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 865, 869, 944, 968, 989, 997, 1000, 1003, 1013, 1031, 1035, 1037, 1038, 1039, 1041, 1043, 1045, 1046, 1047, 1048, 1049, 1050], "kf": [407, 806], "kfold": [2, 52, 64, 87, 103, 104, 140, 143, 145, 154, 183, 244, 253, 257, 258, 261, 262, 263, 268, 275, 309, 354, 407, 433, 468, 564, 565, 592, 600, 646, 650, 652, 654, 660, 662, 664, 672, 801, 804, 805, 807, 809, 811, 815, 820, 822, 824, 825, 826, 827, 828, 829, 830, 832, 836, 839, 886, 1032, 1033, 1034, 1036, 1037, 1039, 1041, 1049], "khaja": 1046, "khan": [1046, 1047], "khandelw": 1043, "khanduja": 1034, "khant": 1046, "kharsa": 1045, "khedkar": 1045, "khetarp": 1051, "khine": 1045, "kho": 1046, "khoo": 1043, "khosasi": 1044, "khosrow": 1000, "khoual": 1044, "khwaja": 1046, "ki": 1000, "kian": [1036, 1046, 1047, 1048], "kid": 1010, "kieker": [1039, 1040], "kielczewski": 1037, "kie\u00dfl": 1042, "kilian": [411, 433, 1046, 1047], "kill": [346, 383], "killer": [371, 1024], "kilobyt": 86, "kilomet": 765, "kim": [996, 1039, 1040, 1041, 1045, 1050, 1051], "kimayoung": 1045, "kimberli": 52, "kimbinyi": 1043, "kind": [44, 49, 52, 53, 62, 63, 107, 128, 140, 154, 158, 183, 184, 253, 256, 257, 259, 272, 310, 314, 317, 332, 335, 346, 359, 360, 364, 366, 371, 377, 383, 384, 401, 403, 406, 407, 408, 410, 411, 412, 484, 485, 500, 505, 506, 518, 521, 586, 631, 632, 701, 940, 996, 1002, 1007, 1016, 1034, 1043, 1045, 1046, 1047], "king": 936, "kingjr": 1037, "kingma": [243, 862, 863, 1004], "kink": 198, "kiragu": 1043, "kiran": 1043, "kirandevraj": 1046, "kiril": [1038, 1039, 1041, 1043], "kirkbi": [1038, 1039], "kirkham": [1036, 1037, 1039], "kirthi": 1041, "kishan": 1048, "kishimoto": 1043, "kishor": 1044, "kislovskii": 1048, "kit": 383, "kitchen": [640, 992], "kj": [365, 1002], "kjell": 1037, "kk": 1000, "kl": [408, 997, 1039], "kl_divergence_": [692, 1038], "klarup": 1038, "klass": 98, "klau": [408, 532, 871], "kleczewski": [1038, 1039], "kleiber": 1045, "klein": 1051, "klevebr": 1039, "klima": 1046, "klopfer": 1040, "kluge": [1046, 1047], "kluger": [2, 400, 447, 510], "klusacek": 1000, "km": [94, 316, 347], "kmatt10": 1044, "kmb": 52, "kmean": [2, 58, 59, 72, 73, 75, 78, 80, 83, 86, 90, 91, 94, 98, 180, 251, 253, 254, 306, 316, 347, 380, 394, 403, 429, 430, 432, 436, 439, 444, 445, 448, 458, 509, 710, 793, 794, 798, 799, 870, 1003, 1010, 1021, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048], "kmeans_estim": 120, "kmeans_model": 403, "kmeans_plusplu": [2, 92, 403, 1043, 1048, 1052], "kmode": 1019, "kms15": [1039, 1040], "knee": 403, "kneighbor": [308, 316, 847, 848, 849, 851, 853, 1003, 1035, 1040, 1044, 1045, 1046, 1047], "kneighbors_graph": [2, 79, 95, 100, 283, 385, 403, 437, 441, 695, 847, 848, 849, 851, 853, 855, 856, 857, 859, 1003, 1031, 1035, 1040], "kneighborsclassifi": [2, 68, 285, 286, 291, 292, 308, 314, 316, 346, 410, 600, 848, 852, 853, 854, 855, 856, 1001, 1003, 1031, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1050], "kneighborsclassifierkneighbor": 391, "kneighborsregressor": [2, 178, 241, 295, 316, 410, 567, 847, 853, 855, 856, 1001, 1003, 1031, 1033, 1035, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1050], "kneighborstransform": [2, 283, 285, 312, 692, 857, 1003, 1041, 1045, 1046, 1050], "knight": 309, "knn": [137, 178, 286, 291, 292, 295, 308, 314, 326, 346, 600, 847, 854, 855, 900, 901, 1003, 1013, 1037], "knn__weight": 286, "knn_graph": 100, "knnimput": [2, 179, 312, 626, 629, 990, 1041, 1042, 1045, 1046, 1047, 1048, 1050], "knnquerybatch": 283, "knot": [44, 155, 207, 315, 884, 1010, 1044], "know": [86, 99, 103, 104, 139, 155, 160, 163, 167, 176, 183, 223, 233, 234, 239, 240, 244, 246, 253, 257, 261, 262, 263, 276, 277, 280, 282, 301, 313, 316, 322, 324, 342, 347, 358, 371, 383, 394, 397, 403, 406, 407, 408, 411, 497, 501, 507, 645, 651, 657, 658, 727, 757, 801, 815, 890, 891, 893, 894, 895, 896, 913, 914, 915, 916, 989, 999, 1000, 1001, 1003, 1012, 1037, 1038, 1041, 1043], "knowledg": [90, 149, 183, 222, 242, 257, 263, 276, 277, 366, 371, 374, 377, 384, 385, 403, 407, 410, 414, 440, 508, 552, 553, 560, 720, 737, 741, 784, 834, 1000, 1001, 1012, 1049], "known": [2, 51, 56, 63, 65, 82, 90, 91, 100, 112, 126, 128, 129, 143, 151, 154, 172, 174, 179, 194, 206, 207, 223, 232, 257, 263, 264, 265, 272, 292, 296, 304, 309, 315, 317, 320, 321, 322, 324, 332, 339, 347, 360, 366, 368, 369, 371, 379, 383, 385, 399, 400, 401, 403, 404, 405, 406, 407, 408, 410, 411, 413, 434, 459, 478, 480, 495, 505, 506, 541, 548, 551, 552, 553, 558, 559, 586, 587, 589, 592, 607, 621, 632, 657, 658, 671, 681, 682, 687, 694, 704, 710, 713, 718, 722, 730, 744, 756, 758, 796, 834, 840, 841, 842, 843, 844, 847, 852, 855, 861, 889, 949, 990, 992, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1010, 1015, 1016, 1050], "known_val": 626, "knox": 1043, "knp": 626, "knr": 410, "knyazev": [403, 448, 458, 695, 1041, 1044, 1045], "ko": [52, 64, 168], "kobak": [692, 1044, 1050, 1051, 1052], "kobaski": 1044, "kobayashi": [1043, 1044], "kober": 1039, "kobi": 736, "koch": [1033, 1039, 1040, 1042, 1043], "kocot": 1042, "koehler": 1035, "koen": [1039, 1040], "koenker": [724, 996], "koh": [996, 1024], "kohavi": 407, "kohli": [1048, 1049], "koi8": 411, "koivunen": 112, "kokhlikyan": [1038, 1039], "koki": 1043, "koko": [1039, 1045, 1046], "kolawol": 1044, "kolganov": 1036, "kolh": 1033, "kolstad": 58, "komarov": [1049, 1050], "komey": [1045, 1046], "kommireddi": 1045, "kondratyev": 1045, "kong": 1044, "konstantin": [1036, 1037, 1038], "konstantino": [1039, 1048], "konwar": 1042, "koonc": 1039, "korba": 366, "korean": 1019, "kornel": 1037, "kornev": 1046, "korobko": [1048, 1049, 1050, 1051], "korobov": [1032, 1033, 1034, 1037, 1038], "korolev": 1041, "kosic": 1043, "kosobrodov": 1039, "kossaifi": [1031, 1035, 1036], "kossen": [1046, 1047], "kossori": [1039, 1040], "kostelac": [1046, 1047], "kot271828": 1044, "kothari": 1042, "kotwalia": [1039, 1040], "koumenti": 1046, "koushik": 1045, "koustav": [1048, 1049], "kovalevskyi": 1037, "kowalski87": 1034, "koyama": 1045, "kozachenko": [605, 606], "kozynet": [1043, 1045], "kpca": [2, 530, 531, 532, 1025, 1026, 1031], "kr": [238, 263, 1045], "kr_fit": 238, "kr_predict": 238, "kraig": 1046, "kraktu": 1049, "kranthi": 1045, "kranz": 1024, "kraskov": [605, 606], "krasouli": [1038, 1039, 1040, 1041, 1043, 1044], "kratzwald": 1037, "krauss": 1051, "krawczyk": 1045, "krawutschk": [1046, 1047], "krell": [1035, 1037], "kriegel": [403, 414, 440, 446, 453, 851, 1006], "krinitsyn": 1039, "krishna": [1037, 1038, 1039, 1040, 1041, 1042, 1045, 1046], "krishnachaitanya9": 1042, "krishnakalyan3": 1037, "krishnan": [1041, 1051, 1052], "krivich": [1037, 1038, 1040], "kronovet": 1036, "krr": [238, 642, 993], "krsto": 1049, "krum": [1043, 1045], "krumetoft": 1045, "krump": 1036, "kruskal": [634, 690, 694, 997, 1051], "kryggird": 1051, "krzeminski": 1038, "krzysztof": 365, "ksemb": 1039, "kshitij": [1046, 1047, 1049], "ksvd": [663, 684, 685, 996], "ksvm": 188, "ksvm_score": 188, "ksvm_time": 188, "kth": 58, "ku": [1035, 1036], "kuai": [1039, 1040], "kubin": 1042, "kuhlmann": [1038, 1039], "kulbear": 1040, "kulkarni": 1039, "kull": [401, 1000], "kullback": [55, 225, 408, 535, 537, 544, 692, 997, 1038], "kulsinski": [446, 453, 699, 779, 780, 781], "kulsinskidist": [699, 1047], "kumar": [0, 366, 393, 403, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1051], "kumaresshan": [1039, 1040, 1043], "kumawat": 1045, "kund": [1047, 1048], "kunj": 1044, "kuno": [1049, 1050], "kuo": 1035, "kurumeyuta": 1044, "kurz": [1045, 1046], "kusanagi": [1042, 1044], "kusanagi2": 1043, "kushal": [1039, 1040], "kushan": 1048, "kushwah": [1047, 1048], "kushwaha": 1043, "kusterl": 1041, "kuth": 1037, "kvam": [1032, 1034], "kvle": 1037, "kw_arg": [139, 869, 1010, 1037], "kwarg": [76, 123, 139, 239, 373, 378, 417, 421, 425, 434, 438, 444, 446, 460, 465, 532, 535, 537, 560, 608, 630, 645, 646, 651, 652, 659, 660, 661, 662, 676, 680, 683, 698, 699, 700, 702, 743, 864, 865, 869, 909, 920, 961, 967, 988, 1038, 1042, 1044, 1048], "kwd": [772, 775, 779, 782, 793, 794], "kwei": [1034, 1035, 1036, 1037, 1038], "kxytim": 1044, "kybernetika": 368, "kye": 1039, "kyeongpil": 1039, "kyle": [0, 393, 1032, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1042, 1043], "kyledrogo": 1039, "kyler": 1036, "k\u00e4rkk\u00e4inen": 996, "l": [0, 47, 54, 56, 75, 80, 81, 99, 100, 112, 137, 163, 172, 183, 185, 203, 210, 214, 215, 268, 269, 270, 280, 299, 307, 342, 368, 369, 377, 379, 400, 401, 403, 407, 408, 410, 413, 470, 513, 514, 515, 535, 537, 544, 552, 553, 554, 555, 562, 563, 588, 605, 606, 609, 610, 614, 618, 621, 622, 633, 647, 648, 657, 668, 671, 673, 679, 686, 689, 692, 693, 705, 715, 726, 727, 732, 757, 787, 842, 876, 913, 914, 915, 916, 989, 994, 996, 997, 1000, 1002, 1003, 1004, 1008, 1012, 1014, 1016, 1034, 1039, 1043, 1044, 1045, 1046, 1048, 1050], "l1": [2, 26, 43, 47, 56, 75, 99, 103, 104, 113, 115, 139, 154, 155, 156, 160, 180, 189, 190, 192, 195, 197, 198, 202, 204, 210, 216, 220, 233, 234, 244, 246, 257, 262, 264, 270, 276, 277, 283, 300, 301, 313, 314, 315, 316, 322, 352, 380, 383, 403, 405, 408, 414, 437, 441, 446, 453, 460, 465, 466, 467, 468, 469, 470, 471, 472, 474, 493, 499, 501, 528, 534, 535, 536, 537, 539, 540, 544, 545, 555, 562, 587, 588, 589, 595, 643, 644, 645, 646, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 665, 666, 667, 669, 671, 675, 676, 677, 678, 680, 688, 736, 763, 769, 774, 779, 780, 781, 786, 815, 822, 831, 847, 848, 849, 851, 852, 853, 855, 856, 857, 858, 859, 866, 877, 885, 892, 905, 906, 912, 914, 916, 934, 981, 996, 998, 1000, 1003, 1010, 1014, 1015, 1016, 1021, 1036, 1038, 1044, 1047], "l1_color": 216, "l1_contour": 216, "l1_distanc": 1031, "l1_min_c": [2, 201, 996, 1015, 1031], "l1_plot": 221, "l1_ratio": [47, 50, 55, 103, 139, 155, 192, 194, 197, 199, 233, 234, 244, 246, 257, 262, 271, 276, 277, 301, 313, 316, 322, 358, 383, 408, 535, 537, 544, 645, 646, 651, 657, 658, 659, 660, 661, 662, 667, 675, 677, 680, 996, 1014, 1032, 1034, 1036, 1043, 1045, 1051], "l1_ratio_": [646, 658, 660], "l1_ratios_": 658, "l2": [2, 54, 75, 103, 104, 113, 115, 139, 143, 151, 154, 155, 160, 180, 182, 183, 189, 190, 192, 194, 197, 199, 201, 206, 211, 216, 220, 221, 223, 233, 234, 243, 244, 245, 246, 257, 261, 262, 263, 264, 270, 276, 277, 283, 301, 303, 309, 313, 314, 316, 317, 322, 328, 346, 347, 373, 380, 383, 399, 403, 405, 408, 410, 411, 414, 437, 441, 446, 453, 521, 535, 537, 544, 555, 558, 559, 562, 587, 588, 589, 642, 645, 646, 647, 648, 651, 656, 657, 658, 659, 660, 661, 662, 667, 668, 671, 675, 677, 679, 680, 685, 686, 688, 736, 751, 762, 763, 779, 780, 781, 815, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 862, 863, 877, 885, 892, 905, 906, 910, 911, 912, 914, 916, 982, 989, 996, 998, 1003, 1004, 1010, 1014, 1016, 1021, 1033, 1035, 1036, 1038, 1040, 1052], "l2014": 410, "l2_color": 216, "l2_contour": 216, "l2_regular": [143, 151, 154, 257, 309, 315, 317, 322, 410, 558, 559], "l2loss": [154, 156, 314, 352], "l_": [400, 610, 651, 742, 1000], "l_1": 1014, "l_2": [993, 1014], "l_i": 1010, "l_inf": 56, "l_m": 410, "l_p": [414, 446, 453, 688, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859], "l_x": 54, "la": [0, 309, 368, 393, 1024, 1032, 1033, 1034, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047], "lab": [0, 366, 464, 533, 903, 1018, 1024, 1042], "labb\u00e9": 1049, "label": [2, 31, 39, 44, 46, 47, 49, 51, 52, 53, 54, 59, 62, 63, 64, 65, 67, 69, 70, 74, 75, 77, 78, 80, 81, 82, 84, 85, 88, 89, 91, 93, 96, 97, 98, 99, 105, 107, 109, 110, 111, 112, 115, 116, 118, 122, 124, 127, 128, 129, 134, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 159, 161, 167, 168, 172, 173, 174, 175, 176, 178, 180, 183, 186, 188, 190, 191, 193, 194, 196, 198, 200, 201, 202, 204, 206, 207, 208, 209, 212, 213, 214, 215, 219, 220, 222, 223, 226, 227, 228, 232, 237, 238, 240, 242, 243, 250, 256, 257, 258, 261, 262, 264, 265, 266, 267, 269, 272, 273, 274, 275, 276, 277, 278, 282, 288, 290, 292, 295, 299, 301, 303, 304, 308, 312, 313, 314, 316, 319, 323, 327, 328, 329, 337, 339, 341, 342, 346, 347, 350, 351, 352, 360, 363, 364, 365, 370, 371, 373, 376, 380, 385, 386, 400, 401, 402, 413, 414, 420, 421, 425, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 455, 457, 458, 461, 465, 483, 484, 485, 490, 491, 492, 493, 499, 500, 505, 506, 509, 511, 512, 516, 519, 520, 546, 547, 548, 550, 551, 552, 553, 554, 555, 556, 557, 558, 560, 561, 562, 564, 566, 567, 590, 591, 592, 593, 594, 596, 597, 598, 602, 603, 604, 607, 609, 630, 657, 658, 665, 666, 667, 672, 673, 674, 675, 676, 677, 697, 698, 700, 702, 703, 704, 705, 707, 709, 710, 712, 713, 714, 715, 716, 717, 718, 720, 722, 723, 726, 727, 728, 730, 731, 732, 735, 736, 737, 738, 739, 740, 741, 742, 744, 755, 756, 757, 758, 783, 784, 785, 787, 788, 789, 790, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 807, 808, 810, 815, 816, 817, 819, 820, 821, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 851, 852, 854, 855, 862, 863, 865, 869, 872, 873, 876, 878, 879, 886, 889, 900, 901, 902, 905, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 919, 921, 925, 931, 936, 937, 964, 965, 970, 989, 996, 997, 1001, 1002, 1003, 1004, 1006, 1007, 1010, 1014, 1015, 1016, 1019, 1021, 1022, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "label1": 385, "label2": 385, "label_a": 272, "label_b": 272, "label_binar": [2, 270, 272, 872, 1035], "label_binarizer_": 834, "label_distributions_": [324, 325, 900, 901, 1042], "label_im": 99, "label_out": 78, "label_pr": [717, 737, 738, 756, 758, 796], "label_prop_model": [900, 901], "label_propag": 1032, "label_ranking_average_precision_scor": [2, 1000, 1035, 1039, 1040, 1046], "label_ranking_loss": [2, 1000, 1036], "label_spread": 326, "label_structur": 100, "label_tru": [704, 717, 738, 756, 758, 796], "label_unstructur": 100, "labelbinar": [2, 272, 385, 709, 722, 723, 742, 834, 869, 878, 886, 889, 1001, 1034, 1035, 1036, 1040, 1045], "labelbottom": [156, 263], "labeled_iter_": [327, 902], "labelencod": [2, 385, 399, 566, 879, 1011, 1031, 1039, 1046, 1047, 1050], "labeling1": 1000, "labeling2": 1000, "labelkfold": [1036, 1037], "labelleft": 248, "labelpad": 263, "labelpropag": [2, 316, 326, 901, 902, 1001, 1013, 1032, 1037, 1038, 1041, 1042, 1043, 1045, 1046, 1047], "labels": [55, 307], "labels_": [74, 75, 76, 77, 78, 79, 81, 82, 84, 85, 88, 91, 94, 95, 96, 98, 100, 316, 318, 347, 371, 373, 385, 403, 421, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 448, 451, 710, 1036], "labels_050": 98, "labels_200": 98, "labels_a": 73, "labels_b": 73, "labels_pr": [403, 704, 705, 714, 715, 717, 732, 737, 738, 756, 758, 787, 796], "labels_tru": [74, 82, 88, 97, 403, 704, 705, 714, 715, 717, 732, 737, 738, 756, 758, 787, 796], "labels_uniqu": 96, "labelshufflesplit": [1036, 1037], "labelspread": [2, 316, 324, 325, 326, 328, 329, 900, 902, 1001, 1013, 1032, 1037, 1038, 1041, 1042, 1045, 1046, 1047], "labelspreadingifit": 326, "labelsuntil": 314, "labex": 0, "laboratori": [366, 1019], "lacchia": 1038, "lack": [44, 65, 339, 371, 383, 407, 830, 920, 1015, 1045], "lacost": [657, 996], "lacouth": 1044, "lacrosse91": 1044, "lad": 1044, "lag": [43, 44, 146, 149, 180, 208, 262, 488, 559, 701, 743, 746, 747, 749, 791, 822, 827, 828, 831, 1021], "lagacheri": 1035, "lagard": 1034, "lagat": 1041, "lagged_count_": 53, "lagged_count_1d": 53, "lagged_count_1d_1h": 53, "lagged_count_7d": 53, "lagged_count_7d_1h": 53, "lagged_df": 53, "lagged_max_24h": 53, "lagged_max_7d": 53, "lagged_mean_24h": 53, "lagged_mean_7d": 53, "lagged_min_24h": 53, "lagged_min_7d": 53, "lai": [52, 308, 339, 1006], "laid": [0, 182, 371], "lakhotia": [1041, 1042], "lakshmi": [1041, 1052], "lakshmikanth": 1038, "lakshya": [1039, 1040, 1041], "lal": 901, "lalliacqua": [1041, 1044], "lam": [313, 314, 1042, 1049], "lama": 491, "lamb": [1036, 1044, 1050], "lambda": [44, 47, 48, 50, 58, 89, 145, 191, 223, 263, 264, 307, 397, 399, 403, 408, 410, 411, 643, 644, 645, 646, 869, 881, 992, 996, 1010, 1039, 1045], "lambda_": [191, 643, 644, 881, 996, 1038], "lambda_1": [643, 644, 996], "lambda_2": [643, 644, 996], "lambda_i": [996, 1010], "lambda_init": [190, 191, 644, 996, 1041], "lambdas_": [307, 881, 1044, 1047], "lami": 1039, "lamond": 1035, "lamp": 1024, "lamu": 1037, "lan": [657, 1046, 1047], "land": [51, 296, 375, 386, 410], "land_mask": 296, "land_refer": [51, 296], "landeau": 1048, "landmark": [184, 882, 894, 1010], "landscap": 168, "lane": [1037, 1051], "langford": [411, 688, 997], "langl": [992, 1000, 1014, 1015], "languag": [0, 348, 376, 408, 411, 1014, 1019, 1020, 1024], "language_level": 372, "lanigan": 1038, "lanl": 56, "lannuzel": 1043, "lanterni": 1045, "lanzani": 1037, "lapack": [104, 244, 262, 358, 359, 529, 532, 538, 688, 1046], "lapack_lit": 377, "lapack_svd_driv": 1046, "laplac": [2, 168, 264, 413, 609, 610, 840, 841, 842, 844, 1002, 1051], "laplacian": [2, 155, 225, 363, 400, 436, 448, 458, 619, 638, 642, 691, 695, 766, 767, 775, 901, 996, 997, 1013, 1026, 1032, 1037, 1052], "laplacian_kernel": [2, 399, 766, 998, 1036], "laptop": [53, 379, 464, 903, 1045, 1046, 1047], "lar": [0, 2, 52, 123, 163, 180, 189, 194, 195, 198, 199, 202, 368, 393, 467, 468, 474, 498, 528, 534, 536, 539, 540, 542, 543, 545, 650, 651, 652, 653, 654, 655, 662, 663, 664, 677, 680, 681, 682, 683, 684, 685, 1001, 1021, 1022, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1042, 1044, 1049, 1050], "laradji": [0, 1037], "larg": [0, 2, 39, 44, 52, 53, 54, 60, 64, 65, 73, 78, 81, 82, 83, 85, 86, 88, 100, 103, 104, 105, 107, 120, 124, 137, 139, 140, 146, 149, 150, 152, 154, 155, 156, 159, 172, 173, 183, 185, 186, 190, 191, 198, 199, 206, 208, 210, 211, 212, 223, 233, 234, 235, 237, 242, 243, 244, 246, 257, 260, 262, 266, 269, 270, 272, 277, 285, 292, 300, 301, 303, 305, 313, 315, 316, 319, 322, 335, 340, 342, 347, 348, 358, 366, 371, 373, 377, 380, 383, 384, 385, 389, 397, 399, 403, 405, 407, 408, 409, 410, 412, 414, 416, 438, 440, 442, 443, 446, 447, 448, 449, 454, 458, 469, 471, 496, 511, 531, 533, 535, 537, 538, 541, 544, 546, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 564, 565, 580, 587, 633, 640, 642, 645, 646, 649, 651, 652, 653, 656, 657, 658, 663, 670, 671, 673, 676, 678, 684, 686, 689, 691, 692, 693, 695, 747, 780, 781, 801, 809, 811, 815, 819, 830, 840, 841, 842, 843, 844, 845, 846, 851, 862, 863, 870, 874, 875, 883, 885, 897, 898, 905, 906, 910, 911, 913, 914, 915, 916, 948, 949, 970, 989, 992, 994, 996, 997, 999, 1002, 1003, 1004, 1008, 1010, 1013, 1014, 1015, 1016, 1019, 1020, 1024, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049], "larger": [44, 47, 65, 73, 77, 81, 88, 100, 104, 111, 113, 118, 129, 137, 143, 147, 149, 150, 151, 154, 155, 168, 173, 174, 179, 183, 184, 188, 191, 194, 220, 221, 222, 230, 236, 238, 244, 248, 254, 257, 262, 264, 266, 272, 273, 280, 283, 285, 298, 299, 301, 303, 309, 317, 322, 335, 339, 344, 347, 348, 364, 366, 371, 377, 385, 400, 401, 403, 404, 405, 407, 408, 410, 411, 413, 414, 436, 439, 445, 446, 448, 450, 452, 512, 524, 538, 541, 558, 559, 560, 564, 565, 580, 587, 642, 651, 671, 672, 673, 674, 678, 686, 692, 704, 719, 737, 798, 850, 851, 882, 884, 885, 886, 894, 899, 948, 949, 970, 973, 992, 993, 996, 997, 999, 1000, 1003, 1004, 1008, 1010, 1014, 1015, 1035, 1036, 1039, 1040, 1041, 1044, 1045, 1048, 1049, 1050], "largest": [64, 113, 122, 140, 141, 154, 156, 163, 185, 208, 244, 275, 314, 319, 352, 353, 368, 403, 405, 408, 439, 524, 538, 554, 555, 556, 557, 561, 562, 586, 798, 799, 820, 843, 875, 913, 914, 915, 916, 949, 997, 1000, 1010, 1015, 1016], "largest_clust": [403, 439], "largest_coef": [113, 524], "larrald": 1048, "lars_path": [2, 197, 380, 528, 534, 536, 539, 540, 542, 543, 545, 649, 650, 651, 652, 653, 654, 655, 662, 663, 664, 682, 683, 684, 685, 996, 1031, 1033, 1036, 1040, 1042], "lars_path_gram": [2, 681, 996, 1040], "larscv": [2, 394, 649, 664, 681, 682, 1038, 1044, 1048], "larson": [1036, 1040, 1041, 1043, 1045, 1050, 1051], "larsson": [1043, 1044, 1045], "lasagna": 1037, "laska": 1037, "lassifi": 244, "lasso": [2, 43, 52, 56, 99, 129, 154, 180, 183, 189, 192, 199, 204, 205, 213, 253, 315, 319, 342, 358, 383, 405, 406, 408, 410, 411, 412, 467, 468, 474, 498, 521, 528, 534, 536, 539, 540, 542, 543, 545, 595, 643, 645, 646, 648, 649, 650, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 669, 671, 677, 680, 681, 682, 683, 684, 685, 721, 724, 725, 826, 827, 828, 866, 885, 989, 1000, 1001, 1014, 1021, 1022, 1026, 1031, 1035, 1036, 1037, 1039, 1040, 1042, 1044, 1045, 1049, 1051, 1052], "lasso_cd": [528, 534, 539, 545], "lasso_lar": [129, 528, 534, 539, 545, 1041], "lasso_lars_": [196, 198], "lasso_path": [2, 197, 650, 651, 652, 653, 654, 655, 662, 681, 682, 996, 1031, 1033, 1035, 1044, 1052], "lasso_pipelin": 154, "lassocolumntransform": 154, "lassocv": [2, 54, 154, 183, 194, 198, 394, 410, 412, 650, 651, 653, 654, 655, 662, 683, 996, 1031, 1034, 1038, 1041, 1042, 1044, 1045, 1048, 1049, 1050, 1051, 1052], "lassolar": [2, 650, 651, 652, 654, 655, 662, 663, 664, 681, 682, 683, 996, 1001, 1031, 1032, 1034, 1038, 1041, 1042, 1044], "lassolars": [2, 196, 198, 412, 650, 653, 654, 996, 1031, 1038, 1040, 1044, 1045], "lassolarscv": [2, 198, 394, 412, 651, 652, 653, 655, 662, 664, 681, 682, 683, 996, 1031, 1038, 1044, 1048], "lassolarsic__criterion": [196, 198], "last": [44, 59, 67, 79, 91, 103, 139, 143, 146, 151, 154, 155, 160, 183, 184, 185, 190, 206, 207, 213, 218, 232, 233, 234, 243, 244, 246, 253, 254, 257, 264, 266, 270, 274, 275, 277, 308, 309, 313, 314, 316, 317, 322, 327, 350, 358, 366, 369, 375, 376, 379, 385, 389, 397, 403, 404, 411, 415, 434, 438, 443, 455, 460, 464, 512, 530, 556, 557, 558, 559, 581, 582, 585, 591, 592, 595, 609, 681, 682, 684, 685, 697, 698, 700, 701, 702, 707, 783, 798, 799, 804, 805, 820, 845, 846, 850, 865, 866, 870, 878, 884, 920, 952, 974, 988, 989, 995, 996, 997, 999, 1001, 1004, 1014, 1020, 1028, 1031, 1037, 1038, 1039, 1040, 1045, 1047, 1048, 1051], "last_hour": [44, 53], "last_mean": 974, "last_n": 974, "last_var": 974, "lastiter": 275, "lat": [51, 296, 495, 765], "late": [309, 360], "latenc": [43, 47, 48, 180, 357, 521, 562, 671, 677, 831, 885, 911, 966, 973, 1014, 1019, 1021, 1026, 1034], "latent": [2, 43, 46, 56, 130, 180, 301, 347, 406, 411, 413, 484, 529, 533, 535, 536, 537, 540, 541, 586, 589, 609, 861, 999, 1019, 1021, 1025, 1026, 1033, 1036, 1051], "latent_mean": 609, "latent_mean_and_vari": [413, 609, 1051], "latent_var": 609, "latentdirichletalloc": [2, 55, 360, 376, 408, 1019, 1036, 1038, 1045, 1046, 1050], "later": [0, 51, 86, 134, 139, 147, 167, 184, 188, 190, 242, 257, 280, 296, 348, 354, 369, 373, 377, 383, 384, 397, 410, 851, 874, 875, 883, 885, 992, 1010, 1034, 1037, 1039, 1043], "latest": [312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 369, 371, 375, 377, 379, 1016, 1045], "latestst": 375, "latex": 1031, "latexpdf": 371, "latin": [48, 411], "latitud": [296, 303, 366, 495, 699, 765], "lattarini": 1033, "latter": [44, 55, 155, 253, 263, 272, 273, 291, 308, 342, 360, 368, 385, 402, 407, 410, 411, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 743, 798, 799, 800, 801, 804, 805, 810, 815, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 968, 1003, 1008, 1040], "laughlin": 1038, "launch": [346, 347, 389, 1024], "laur": 1031, "lauren": [0, 355, 692, 696, 997, 1043, 1046], "laurent": [1034, 1035, 1038, 1039, 1046, 1047], "laurenz": 1043, "lauritzen": 1039, "laveen": 1044, "law": [0, 1024], "lawrenc": 257, "lawson": [1038, 1039, 1040], "lawton": 1039, "layer": [2, 44, 68, 142, 152, 169, 171, 180, 215, 218, 221, 243, 297, 300, 301, 305, 306, 329, 340, 343, 358, 379, 410, 511, 512, 519, 564, 831, 861, 862, 863, 866, 885, 1005, 1021, 1022, 1026, 1037], "layout": [134, 262, 303, 383, 905, 906, 907, 910, 932, 1015, 1034, 1036, 1048], "layton": [0, 393, 1031, 1032, 1033, 1034, 1036], "lazaru": 1049, "lazebnik": [759, 760, 998], "lazi": [53, 386, 411, 1014, 1035], "lazyfram": 105, "lazz": 1046, "lb": [872, 1011], "lbath": 1051, "lbfg": [103, 139, 155, 175, 176, 183, 233, 234, 243, 244, 246, 257, 262, 277, 298, 301, 313, 316, 322, 373, 647, 648, 657, 658, 668, 671, 673, 679, 686, 836, 839, 862, 863, 996, 1004, 1035, 1036, 1038, 1039, 1044, 1045, 1046, 1048, 1050, 1051], "lbfgsb": 657, "lbfin": 1041, "lc": [52, 228, 235], "lceil": [400, 1006], "lda": [55, 70, 119, 122, 124, 126, 130, 180, 292, 354, 368, 399, 501, 533, 538, 546, 547, 854, 1019, 1021, 1022, 1025, 1026, 1036], "lda_featur": 376, "lda_model": 376, "lda_np": 399, "ldavid": 1037, "ldflag": 369, "ldirer": 1038, "ldl": [163, 368], "ldot": [996, 1000, 1002, 1004, 1014], "ldwy4": [1048, 1049], "le": [172, 657, 873, 991, 996, 1003, 1011, 1013, 1039, 1043, 1044, 1048], "le_": 566, "lead": [0, 47, 63, 65, 67, 68, 73, 85, 88, 94, 104, 139, 140, 143, 144, 146, 150, 154, 156, 160, 162, 163, 183, 184, 185, 190, 192, 194, 198, 199, 200, 204, 206, 210, 237, 239, 242, 257, 263, 264, 266, 269, 270, 275, 276, 288, 289, 300, 303, 305, 308, 309, 314, 335, 342, 347, 350, 354, 358, 359, 365, 370, 373, 379, 380, 384, 385, 400, 401, 402, 403, 405, 407, 408, 409, 410, 412, 414, 440, 448, 458, 461, 464, 493, 512, 524, 532, 535, 536, 537, 540, 544, 548, 554, 555, 556, 557, 560, 561, 562, 563, 604, 629, 645, 646, 649, 651, 652, 653, 659, 660, 661, 662, 678, 691, 695, 712, 747, 798, 804, 805, 822, 833, 845, 846, 850, 869, 876, 886, 897, 898, 903, 905, 913, 914, 915, 916, 943, 944, 989, 994, 996, 997, 999, 1000, 1001, 1003, 1004, 1006, 1008, 1010, 1013, 1014, 1016, 1024, 1034, 1036, 1038, 1039, 1040, 1041, 1043, 1044, 1046, 1047, 1048, 1049, 1050, 1052], "leader": [371, 1024], "leadership": 0, "leadsto": [104, 160, 270], "leaf": [64, 76, 139, 141, 143, 150, 151, 152, 154, 156, 185, 244, 257, 275, 309, 314, 317, 319, 322, 350, 352, 353, 403, 410, 414, 437, 438, 439, 440, 441, 442, 446, 453, 459, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 845, 846, 847, 848, 849, 850, 851, 853, 855, 856, 857, 913, 914, 915, 916, 917, 918, 1003, 1016, 1034, 1036, 1038, 1042, 1045], "leaf_id": 353, "leaf_rot": 186, "leaf_siz": [414, 440, 442, 446, 451, 452, 453, 845, 846, 847, 848, 849, 850, 851, 853, 855, 856, 857, 1003], "leagu": 366, "leak": [139, 268, 346, 354, 404, 407, 865, 890, 891, 893, 894, 895, 896, 1010, 1031, 1038, 1041, 1047, 1048, 1049], "leakag": [143, 384, 385, 399, 404, 1026], "lean": 397, "leandro": [1040, 1044], "lear": 1024, "learn": [2, 15, 27, 30, 31, 33, 39, 44, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 119, 121, 122, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 181, 185, 186, 187, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 255, 256, 259, 260, 261, 262, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 294, 295, 296, 297, 298, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 323, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 359, 363, 364, 365, 366, 368, 370, 374, 377, 378, 379, 380, 384, 385, 388, 390, 391, 394, 397, 398, 399, 400, 401, 402, 403, 404, 405, 407, 409, 411, 412, 413, 417, 418, 420, 421, 422, 423, 425, 426, 427, 433, 434, 435, 438, 439, 442, 443, 445, 446, 453, 460, 461, 463, 464, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 501, 505, 506, 507, 509, 511, 512, 513, 514, 515, 517, 518, 519, 521, 522, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 546, 548, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 563, 564, 574, 579, 580, 581, 582, 585, 586, 587, 588, 589, 591, 592, 597, 600, 601, 608, 609, 610, 613, 618, 621, 625, 627, 629, 631, 633, 637, 639, 640, 642, 643, 644, 645, 647, 651, 656, 657, 667, 668, 675, 676, 677, 679, 687, 688, 689, 690, 691, 692, 696, 697, 698, 700, 701, 702, 708, 713, 717, 718, 721, 724, 725, 727, 733, 736, 742, 743, 744, 749, 757, 779, 780, 781, 785, 786, 788, 789, 796, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 839, 840, 841, 842, 843, 844, 847, 849, 852, 854, 861, 862, 863, 864, 865, 866, 868, 870, 872, 875, 877, 878, 879, 880, 883, 884, 885, 886, 889, 897, 898, 900, 901, 902, 903, 905, 906, 907, 910, 913, 914, 915, 916, 921, 923, 924, 932, 934, 942, 944, 954, 967, 968, 988, 989, 990, 992, 993, 994, 996, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1010, 1011, 1014, 1015, 1016, 1017, 1021, 1023, 1026, 1028, 1029, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "learn_rat": 1032, "learnalgorithm": 391, "learner": [2, 48, 135, 144, 154, 360, 551, 556, 557, 558, 559, 580, 587, 629, 847, 848, 853, 855, 856, 1002, 1005, 1016, 1018, 1019, 1047], "learning_curv": [2, 265, 317, 394, 807, 995, 1034, 1037, 1038, 1039, 1040, 1041, 1043, 1045, 1046, 1048, 1050], "learning_decai": 533, "learning_method": [55, 376, 533], "learning_offset": [55, 533], "learning_r": [47, 48, 134, 143, 144, 145, 146, 147, 148, 149, 151, 154, 156, 230, 243, 257, 283, 299, 301, 309, 313, 315, 317, 322, 410, 550, 551, 556, 557, 558, 559, 665, 666, 667, 675, 676, 677, 692, 861, 862, 863, 996, 997, 1007, 1014, 1032, 1040, 1044, 1052], "learning_rate_": [243, 692, 863], "learning_rate_init": [184, 243, 299, 300, 862, 863], "learning_ratei": 243, "learningcurvedisplai": [2, 238, 265, 317, 829, 995, 1046, 1047], "learnt": [149, 183, 310, 354, 385, 407, 886, 989, 1010], "least": [2, 38, 45, 53, 55, 64, 111, 112, 114, 115, 122, 123, 137, 141, 143, 147, 151, 154, 156, 161, 163, 167, 175, 180, 182, 183, 185, 189, 190, 192, 193, 194, 201, 206, 208, 210, 211, 213, 222, 223, 236, 242, 243, 244, 263, 275, 276, 280, 282, 308, 309, 310, 314, 315, 317, 319, 335, 347, 348, 352, 353, 358, 364, 366, 368, 370, 371, 375, 377, 379, 383, 385, 386, 394, 403, 405, 406, 407, 408, 410, 411, 412, 413, 414, 440, 444, 446, 452, 453, 454, 457, 470, 477, 478, 479, 480, 481, 491, 498, 513, 528, 534, 536, 538, 539, 540, 542, 543, 544, 545, 546, 554, 555, 556, 557, 559, 561, 562, 563, 591, 592, 600, 634, 642, 645, 647, 649, 650, 651, 652, 653, 654, 655, 656, 662, 663, 664, 665, 666, 667, 668, 670, 671, 673, 675, 677, 678, 679, 681, 682, 683, 684, 685, 686, 692, 697, 712, 716, 718, 751, 786, 802, 806, 807, 813, 815, 816, 817, 819, 820, 822, 826, 829, 830, 831, 862, 863, 866, 877, 885, 910, 913, 914, 915, 916, 940, 964, 990, 993, 997, 1000, 1003, 1012, 1014, 1015, 1016, 1020, 1021, 1022, 1024, 1026, 1031, 1033, 1034, 1037, 1038, 1042], "least_absolute_devi": [1041, 1043, 1044], "least_angl": 380, "least_squar": 1044, "leastangle_2002": [163, 368], "leastsquar": 183, "leastsquareserror": 1040, "leav": [2, 64, 86, 134, 139, 141, 143, 147, 151, 154, 156, 183, 184, 185, 186, 223, 244, 257, 270, 275, 308, 309, 314, 317, 319, 322, 352, 353, 354, 358, 368, 370, 371, 376, 385, 403, 410, 437, 438, 441, 442, 459, 500, 554, 555, 556, 557, 558, 559, 561, 562, 563, 672, 674, 803, 808, 809, 810, 811, 819, 820, 845, 846, 847, 855, 903, 913, 914, 915, 916, 989, 997, 1003, 1007, 1016, 1031, 1038, 1040, 1042, 1043, 1047], "leaveonegroupout": [2, 268, 407, 802, 809, 810, 1037], "leaveonelabelout": 1037, "leaveoneout": [2, 268, 407, 847, 855, 1049], "leavepgroupsout": [2, 407, 803, 1037], "leaveplabelout": 1037, "leaveplabelsout": 1037, "leavepout": [2, 407, 809], "leaves_parallel": 917, "lebedev": [1037, 1038], "lebel": 1046, "lebourgeoi": 1024, "lectur": [403, 643, 992, 1018], "lecture2": 643, "lecun": [1004, 1014], "led": 1031, "ledoit": [2, 50, 55, 66, 71, 108, 109, 112, 113, 127, 180, 236, 292, 469, 471, 475, 476, 509, 546, 994, 1021], "ledoit_wolf": [2, 113, 405, 468, 1044], "ledoit_wolf_shrinkag": [2, 1044], "ledoitwolf": [2, 70, 108, 110, 113, 127, 148, 180, 294, 405, 465, 466, 470, 471, 472, 473, 801, 1021, 1035], "lee": [408, 1031, 1032, 1035, 1037, 1038, 1039, 1040, 1042, 1043, 1046, 1050, 1051], "leepei": 1035, "leereev": 1038, "leeuw": [634, 997], "lefebvr": [1044, 1045], "lefevr": [408, 535], "left": [46, 47, 52, 54, 55, 62, 64, 70, 71, 77, 79, 84, 88, 95, 97, 100, 103, 104, 107, 112, 113, 118, 122, 123, 134, 137, 139, 140, 141, 143, 146, 149, 154, 155, 156, 170, 176, 179, 183, 184, 185, 186, 201, 206, 207, 208, 210, 216, 218, 219, 222, 223, 232, 234, 236, 240, 242, 243, 244, 248, 250, 251, 254, 259, 260, 261, 262, 264, 272, 273, 275, 286, 288, 296, 298, 301, 303, 313, 314, 316, 318, 319, 321, 325, 334, 335, 339, 352, 353, 366, 371, 373, 375, 400, 401, 403, 406, 407, 409, 410, 411, 413, 420, 426, 442, 468, 478, 479, 480, 481, 495, 546, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 563, 585, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 634, 638, 642, 650, 654, 798, 799, 801, 804, 805, 808, 815, 822, 878, 885, 913, 914, 915, 916, 917, 935, 949, 970, 973, 989, 992, 994, 996, 998, 1000, 1002, 1004, 1007, 1012, 1014, 1016, 1038, 1040, 1045, 1050], "left_h": 303, "left_impur": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353, 554, 555, 556, 557, 561, 562, 563, 913, 914, 915, 916], "leftarrow": [403, 1004, 1014], "leftmost": 1004, "legaci": [365, 375, 385, 942, 943, 944, 1031, 1038, 1043], "legarreta": [1042, 1044, 1045], "legend": [44, 47, 48, 49, 51, 53, 62, 64, 67, 70, 73, 75, 94, 104, 105, 107, 109, 110, 111, 112, 115, 116, 122, 124, 126, 127, 128, 129, 134, 135, 136, 137, 138, 140, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 156, 159, 167, 168, 172, 173, 174, 175, 176, 183, 184, 188, 190, 191, 193, 196, 197, 198, 200, 201, 202, 204, 206, 207, 208, 209, 211, 212, 213, 214, 215, 218, 219, 220, 222, 223, 228, 235, 236, 237, 238, 240, 243, 250, 257, 258, 260, 262, 263, 265, 266, 267, 268, 270, 273, 275, 276, 277, 278, 280, 286, 288, 289, 290, 295, 299, 304, 308, 313, 316, 319, 326, 334, 337, 339, 341, 346, 350, 351, 352, 702, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "legend1": 126, "legend_el": [126, 150, 200, 218, 266, 286, 339], "legend_handl": 290, "legend_lin": 49, "legend_titl": 212, "legitim": [257, 997], "legitimate_accept": 257, "legitimate_refus": 257, "lego": 1019, "lehoucq": 408, "leibler": [55, 225, 408, 535, 537, 544, 692, 997, 1038], "leibniz": 1000, "leig": 1037, "leightonzhang": 1037, "leinweb": [1039, 1040], "leisur": 44, "lejeun": 1038, "lekhwani": 1040, "leland": [1037, 1038, 1039, 1041, 1042, 1047], "lemaitr": [0, 392, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "lemir": 1042, "lemma": [38, 236, 363, 531, 538, 546, 897, 898, 899, 994, 1026, 1034], "lemmat": 411, "lemmatoken": 411, "lemo": [1047, 1048, 1050], "len": [47, 48, 50, 51, 56, 58, 67, 68, 69, 73, 74, 76, 78, 79, 82, 83, 84, 88, 93, 94, 95, 96, 97, 98, 102, 104, 123, 129, 130, 132, 137, 140, 142, 143, 149, 161, 167, 175, 179, 184, 186, 205, 206, 223, 228, 232, 235, 236, 237, 239, 241, 242, 248, 250, 251, 258, 261, 262, 263, 264, 271, 272, 273, 274, 278, 282, 283, 290, 292, 293, 298, 304, 305, 306, 309, 318, 320, 324, 325, 328, 335, 341, 344, 346, 347, 348, 353, 383, 385, 410, 413, 421, 425, 427, 433, 441, 446, 452, 460, 504, 512, 547, 566, 567, 580, 595, 632, 783, 801, 815, 827, 831, 833, 835, 836, 886, 900, 901, 1040, 1043], "lenail": [1039, 1043], "lend": 1024, "lene": 1047, "length": [2, 102, 118, 126, 128, 130, 142, 163, 167, 168, 169, 172, 173, 175, 188, 239, 240, 243, 246, 286, 314, 317, 332, 348, 364, 368, 371, 379, 380, 385, 404, 408, 410, 411, 413, 441, 486, 505, 506, 509, 512, 520, 548, 560, 579, 580, 587, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 630, 631, 645, 646, 649, 650, 651, 652, 653, 655, 656, 659, 660, 661, 662, 680, 683, 702, 782, 801, 804, 805, 815, 831, 833, 836, 837, 839, 847, 848, 849, 851, 853, 892, 918, 931, 933, 937, 955, 956, 970, 973, 999, 1006, 1010, 1031, 1034, 1035, 1037, 1038, 1039, 1040, 1042, 1043, 1047, 1051, 1052], "length_scal": [167, 168, 171, 172, 173, 174, 176, 413, 611, 614, 617, 618, 620, 621, 622, 623], "length_scale_bound": [167, 172, 173, 174, 176, 413, 610, 614, 618, 621, 622], "length_scale_grid": 173, "lengthi": [371, 383], "lenient": [879, 1020, 1048], "lenz": [1042, 1046], "leo": 1048, "leogrin": 1049, "leon": [675, 676, 677, 1031, 1049], "leonardo": 1044, "leonc": 1051, "leonenko": [605, 606], "leonieborn": 1037, "leopoldo": 1044, "leq": [170, 408, 410, 996, 1000, 1003, 1014, 1015, 1016], "lera": 1038, "leriqu": [1037, 1039], "lernen": 446, "lesne": 1045, "less": [44, 45, 48, 64, 65, 85, 86, 93, 104, 118, 120, 123, 130, 134, 139, 141, 143, 146, 147, 149, 150, 151, 154, 156, 167, 174, 183, 185, 193, 194, 206, 208, 210, 238, 242, 244, 249, 251, 257, 262, 263, 264, 274, 275, 277, 278, 304, 307, 308, 309, 314, 316, 317, 319, 320, 322, 339, 346, 347, 352, 353, 354, 358, 360, 366, 371, 373, 375, 383, 385, 397, 403, 407, 408, 410, 411, 415, 435, 437, 439, 441, 444, 446, 448, 453, 456, 458, 459, 478, 479, 480, 493, 512, 528, 532, 534, 535, 537, 538, 539, 540, 541, 542, 543, 544, 545, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 588, 594, 618, 626, 630, 633, 646, 660, 675, 677, 687, 692, 701, 721, 723, 724, 725, 726, 737, 753, 765, 780, 781, 786, 796, 798, 799, 803, 804, 805, 811, 829, 840, 841, 842, 844, 845, 846, 847, 848, 849, 851, 853, 854, 855, 856, 857, 868, 880, 882, 883, 885, 888, 894, 895, 905, 906, 913, 914, 915, 916, 937, 952, 989, 990, 992, 993, 994, 996, 997, 999, 1000, 1003, 1005, 1010, 1014, 1015, 1016, 1019, 1031, 1032, 1034, 1035, 1037, 1038, 1039, 1041, 1045, 1046, 1048, 1050, 1052], "lessen": [103, 139, 155, 212, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322, 657, 658], "lesser": [298, 385, 438, 538, 996], "lessthan": [143, 151, 154, 257, 309, 317, 322], "let": [44, 45, 53, 86, 88, 97, 103, 107, 120, 125, 126, 141, 143, 146, 147, 149, 151, 154, 165, 167, 173, 174, 183, 184, 185, 192, 198, 200, 206, 208, 223, 225, 229, 239, 246, 257, 258, 263, 266, 270, 276, 277, 320, 346, 348, 353, 354, 366, 371, 373, 377, 383, 397, 400, 402, 403, 407, 410, 411, 487, 497, 501, 507, 531, 645, 646, 649, 650, 651, 652, 653, 654, 655, 659, 660, 661, 662, 680, 683, 871, 878, 879, 996, 997, 998, 999, 1000, 1007, 1008, 1010, 1015, 1016, 1024, 1041, 1050, 1052], "letelli": 1037, "letter": [163, 175, 366, 368, 375, 411, 789, 790, 807, 824, 1000], "leu": 1045, "leung": 1042, "lev_metr": 383, "levarag": 319, "level": [44, 49, 51, 52, 65, 67, 71, 76, 86, 120, 121, 139, 142, 143, 151, 154, 163, 166, 168, 171, 174, 176, 180, 183, 184, 216, 217, 218, 219, 220, 223, 232, 236, 237, 252, 257, 263, 266, 272, 273, 289, 296, 309, 317, 322, 333, 334, 336, 337, 339, 342, 347, 353, 358, 366, 368, 371, 373, 377, 383, 385, 388, 389, 394, 401, 408, 411, 413, 417, 450, 464, 490, 491, 493, 500, 518, 528, 533, 534, 542, 543, 544, 558, 559, 564, 565, 610, 614, 621, 622, 624, 665, 666, 667, 675, 676, 677, 686, 690, 692, 694, 700, 702, 716, 724, 729, 786, 826, 827, 828, 830, 833, 834, 861, 862, 863, 903, 918, 989, 996, 1000, 1001, 1003, 1008, 1014, 1016, 1018, 1019, 1020, 1021, 1034, 1042, 1045, 1046, 1047, 1050, 1052], "levelnam": 120, "leven": 383, "levenshtein": [320, 383], "levenshtein_dist": 320, "levequ": [843, 885], "leverag": [44, 48, 73, 82, 116, 223, 320, 328, 346, 347, 358, 359, 369, 385, 399, 407, 410, 880, 989, 996, 1034, 1046, 1049], "levesqu": 1037, "levi": [531, 1038], "levinson": [1039, 1040], "levitski": [1044, 1046, 1047, 1048, 1050, 1051, 1052], "lewi": [366, 1038, 1042], "lex": [403, 448, 458], "lexicograph": [385, 564, 789, 795, 847, 855], "lexicon": 1010, "lexsort": 62, "le\u00e3o": 1051, "lf": 379, "lfw": [2, 46, 366, 490, 491, 1031], "lfw_home": 366, "lfw_pairs_train": [366, 490], "lfw_peopl": [46, 366, 491], "lg2012": 410, "lgtm": 1038, "li": [0, 327, 366, 392, 393, 638, 641, 696, 727, 757, 898, 989, 992, 1000, 1003, 1010, 1012, 1015, 1031, 1032, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "liabil": 223, "liac": [317, 365, 371, 493, 1046, 1047], "liam": [1039, 1040], "liang": [1037, 1042, 1043, 1048, 1049], "liau": 1034, "lib": [359, 369, 389, 1019], "liberti": 254, "libisel": 1049, "liblinear": [103, 104, 139, 155, 160, 201, 233, 234, 244, 246, 257, 262, 270, 277, 301, 313, 316, 322, 333, 377, 657, 658, 905, 906, 907, 910, 911, 996, 1015, 1031, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1047, 1051], "libomp": [369, 1043], "librari": [46, 103, 143, 154, 183, 184, 185, 234, 244, 257, 263, 309, 313, 315, 316, 317, 322, 354, 363, 365, 366, 369, 370, 371, 372, 377, 379, 383, 384, 385, 389, 397, 399, 460, 625, 657, 903, 905, 906, 907, 908, 910, 911, 996, 1000, 1015, 1016, 1019, 1020, 1024, 1029, 1034, 1038, 1039, 1040, 1041, 1042, 1044, 1048], "libsvm": [2, 188, 244, 245, 261, 263, 314, 333, 364, 377, 483, 505, 560, 905, 906, 907, 908, 909, 910, 911, 1015, 1026, 1031, 1033, 1039, 1042, 1045], "libsvmtool": [188, 365, 483, 505, 506], "licenc": 365, "licens": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 365, 383, 385, 1016, 1024], "lichman": 368, "liddel": 1039, "lidston": [264, 840, 841, 842, 844, 1002], "lie": [53, 93, 115, 162, 183, 237, 303, 326, 333, 335, 408, 410, 604, 709, 853, 855, 856, 857, 905, 906, 994, 997, 1000, 1010, 1015], "lieg": 410, "lieret": 1046, "lieu": [1037, 1038], "life": [53, 149, 256, 320, 379, 997], "lifecycl": [1019, 1020], "lifo": 920, "lift": 389, "light": [137, 366], "lightcor": 228, "lighter": [67, 358, 700, 702, 783, 1047], "lightfm": 1019, "lightgbm": [149, 410, 558, 559, 1019, 1040, 1047], "lightgreen": [212, 222], "lightgrei": 50, "lightweight": [103, 104, 244, 253, 257, 261, 262, 263, 372, 801, 815, 826, 827], "ligo": 1038, "lihaitao": 1049, "lik_max": 109, "lik_min": 109, "like": [0, 2, 44, 52, 53, 64, 67, 85, 88, 91, 93, 102, 103, 104, 118, 123, 127, 129, 132, 134, 136, 139, 141, 143, 146, 149, 150, 151, 154, 155, 156, 160, 167, 173, 183, 184, 185, 191, 192, 204, 206, 233, 234, 239, 243, 244, 246, 253, 254, 257, 262, 263, 264, 266, 267, 270, 271, 275, 277, 278, 292, 301, 303, 308, 309, 312, 313, 314, 316, 317, 319, 321, 322, 327, 328, 335, 339, 346, 347, 352, 353, 354, 358, 360, 363, 365, 366, 370, 371, 373, 375, 378, 379, 380, 383, 384, 385, 386, 394, 397, 399, 401, 402, 403, 404, 406, 407, 408, 410, 411, 412, 414, 415, 416, 418, 419, 420, 421, 422, 424, 425, 426, 427, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 454, 455, 456, 457, 458, 459, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 505, 506, 507, 509, 510, 512, 516, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 577, 579, 580, 581, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 735, 736, 737, 738, 739, 740, 741, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 771, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 868, 869, 870, 871, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 922, 927, 929, 936, 937, 948, 949, 951, 955, 958, 964, 965, 970, 971, 972, 984, 986, 988, 989, 992, 994, 995, 996, 997, 1000, 1002, 1003, 1004, 1006, 1007, 1010, 1015, 1016, 1018, 1020, 1024, 1031, 1034, 1035, 1038, 1039, 1041, 1042, 1043, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "likelihood": [2, 70, 90, 108, 110, 111, 112, 113, 127, 148, 167, 168, 169, 171, 172, 173, 174, 176, 180, 196, 223, 252, 255, 263, 269, 294, 301, 303, 373, 385, 401, 405, 408, 410, 413, 433, 465, 466, 467, 468, 469, 470, 471, 472, 473, 512, 529, 533, 538, 546, 547, 548, 609, 610, 630, 644, 657, 712, 742, 798, 799, 801, 828, 831, 850, 852, 861, 881, 893, 907, 908, 910, 911, 996, 999, 1002, 1010, 1015, 1021, 1034, 1035, 1040, 1046], "likewis": [240, 403, 520], "lil": [385, 550, 551, 872, 927, 955, 1003], "lil_matrix": 56, "lili": [1039, 1040], "lilian": [1036, 1037, 1048], "lim": [170, 531], "lima": [1044, 1045, 1051], "limit": [44, 48, 56, 65, 73, 77, 90, 99, 103, 113, 134, 139, 141, 147, 151, 154, 156, 178, 183, 184, 185, 190, 206, 207, 222, 234, 236, 244, 245, 257, 261, 263, 270, 305, 309, 313, 314, 315, 316, 317, 321, 322, 328, 342, 348, 354, 359, 372, 376, 383, 385, 386, 401, 402, 403, 406, 407, 408, 412, 442, 459, 464, 556, 557, 558, 559, 631, 649, 678, 681, 682, 688, 779, 822, 853, 855, 856, 857, 878, 879, 903, 907, 908, 909, 910, 911, 989, 996, 997, 999, 1000, 1007, 1008, 1010, 1020, 1026, 1039, 1041, 1044, 1045, 1048, 1050], "limits_": 1003, "lin": [0, 531, 657, 1015, 1036, 1037, 1038, 1039, 1051], "lin_clf": 1015, "linalg": [71, 87, 104, 109, 110, 113, 127, 129, 156, 183, 195, 235, 244, 248, 249, 250, 253, 254, 262, 319, 371, 377, 408, 447, 448, 449, 458, 518, 529, 532, 538, 541, 656, 671, 673, 686, 691, 695, 947, 1050], "linalgerror": 1041, "linalgwarn": 1050, "linar": 1051, "lincoln": 366, "lindenbaum": 531, "lindenstrauss": [38, 88, 180, 228, 231, 307, 363, 485, 499, 897, 898, 899, 1017, 1021, 1026], "lindgren": 1049, "lindquist": 1046, "line": [49, 51, 53, 56, 75, 78, 93, 102, 111, 120, 125, 134, 136, 140, 145, 166, 178, 179, 180, 183, 184, 196, 198, 200, 203, 204, 207, 209, 213, 214, 216, 217, 219, 232, 236, 237, 240, 242, 260, 262, 267, 269, 270, 276, 289, 293, 296, 304, 314, 334, 337, 339, 340, 343, 346, 365, 366, 369, 371, 372, 373, 375, 376, 377, 378, 379, 383, 408, 409, 410, 434, 483, 484, 485, 505, 506, 539, 550, 551, 552, 553, 609, 612, 613, 631, 669, 685, 700, 701, 702, 807, 824, 994, 1000, 1004, 1007, 1014, 1019, 1021, 1023, 1033, 1042, 1044, 1047, 1048, 1050], "line0": [52, 228], "line1": [47, 52, 228], "line2": [47, 52, 228, 343], "line2d": [49, 111, 219, 289, 334, 337, 807, 824], "line_": [378, 434, 698, 700, 701, 702, 807, 824], "line_bin": 304, "line_fig": 140, "line_i": 209, "line_kw": [149, 151, 243, 265, 313, 319, 631, 807, 824], "line_kwarg": [154, 701, 1051], "line_profil": 377, "line_trac": 140, "line_x": [209, 222], "line_y_ransac": 209, "linea": 391, "linear": [2, 12, 45, 49, 50, 52, 53, 54, 55, 65, 66, 67, 68, 73, 85, 90, 103, 104, 106, 107, 109, 110, 111, 112, 113, 116, 120, 125, 126, 127, 128, 137, 139, 143, 152, 154, 155, 156, 158, 163, 171, 173, 178, 181, 182, 184, 188, 191, 193, 194, 195, 196, 198, 200, 201, 203, 207, 208, 210, 211, 213, 217, 219, 221, 222, 223, 224, 227, 229, 234, 235, 236, 238, 240, 241, 243, 244, 245, 253, 256, 259, 260, 261, 263, 266, 268, 269, 270, 271, 272, 273, 276, 278, 288, 289, 291, 292, 293, 301, 303, 304, 305, 308, 310, 314, 315, 316, 321, 330, 332, 335, 336, 337, 340, 342, 343, 344, 346, 352, 359, 363, 367, 368, 373, 374, 376, 385, 388, 391, 401, 403, 406, 407, 408, 409, 410, 411, 412, 413, 415, 438, 440, 451, 461, 463, 471, 478, 479, 480, 493, 499, 509, 512, 518, 521, 529, 530, 531, 532, 533, 536, 538, 540, 541, 545, 546, 547, 551, 563, 580, 587, 591, 592, 604, 607, 613, 619, 630, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 683, 686, 687, 688, 689, 690, 691, 692, 693, 701, 707, 716, 719, 751, 754, 766, 768, 775, 801, 812, 816, 828, 831, 845, 846, 850, 854, 861, 862, 863, 866, 870, 871, 872, 874, 875, 878, 880, 882, 883, 884, 885, 894, 898, 905, 906, 907, 908, 909, 910, 911, 989, 991, 992, 993, 995, 1000, 1003, 1004, 1005, 1006, 1007, 1008, 1014, 1015, 1021, 1022, 1024, 1025, 1026, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1042, 1043, 1044, 1045, 1050, 1051], "linear_baselin": 314, "linear_kernel": [2, 399, 762, 766, 998, 1039, 1050], "linear_model": [2, 44, 47, 48, 50, 54, 63, 65, 67, 87, 103, 105, 107, 116, 139, 154, 155, 156, 161, 162, 163, 165, 167, 172, 178, 180, 182, 183, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 217, 218, 219, 220, 221, 222, 223, 232, 233, 234, 235, 239, 241, 244, 246, 257, 259, 262, 266, 271, 272, 276, 277, 278, 282, 301, 304, 305, 308, 310, 312, 313, 314, 315, 316, 318, 319, 320, 321, 322, 328, 346, 354, 358, 360, 370, 371, 373, 377, 379, 380, 384, 385, 394, 399, 402, 404, 410, 423, 428, 434, 461, 534, 536, 539, 540, 542, 543, 545, 564, 565, 566, 567, 595, 608, 630, 631, 633, 634, 637, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 700, 701, 789, 800, 815, 824, 826, 827, 828, 830, 832, 836, 837, 838, 839, 863, 880, 884, 905, 906, 909, 912, 940, 942, 944, 945, 983, 992, 996, 1000, 1001, 1006, 1008, 1010, 1014, 1021, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038], "linear_model_preprocessor": 206, "linear_pca": 404, "linear_preprocessor": 154, "linear_regress": [208, 278], "linear_sum_assign": [400, 719], "linear_svc": 1015, "linear_svm": 237, "linear_svm_scor": 237, "linear_svm_tim": 237, "lineardiscriminantanalysi": [2, 70, 71, 128, 226, 292, 354, 399, 533, 547, 854, 994, 1001, 1003, 1031, 1034, 1035, 1036, 1037, 1038, 1040, 1043, 1045, 1046, 1047], "linearli": [68, 125, 136, 163, 183, 190, 219, 226, 232, 272, 273, 305, 308, 339, 346, 358, 368, 383, 408, 410, 512, 550, 641, 707, 874, 875, 1000, 1003, 1006, 1015, 1038, 1047], "linearly_separ": [68, 298], "linearmodel": 1044, "linearoper": [319, 686], "linearregress": [2, 116, 156, 182, 183, 190, 192, 203, 204, 209, 212, 222, 235, 239, 241, 259, 278, 304, 354, 371, 383, 384, 404, 410, 461, 567, 631, 634, 645, 648, 651, 653, 670, 671, 686, 996, 1000, 1001, 1010, 1035, 1036, 1040, 1043, 1044, 1045, 1047, 1050, 1051], "linearregressionifit": 235, "linearsvc": [2, 63, 64, 65, 102, 104, 154, 159, 160, 180, 183, 188, 237, 260, 270, 305, 312, 330, 331, 332, 336, 337, 342, 346, 358, 377, 401, 411, 412, 433, 509, 564, 575, 630, 638, 642, 651, 671, 672, 673, 674, 675, 686, 731, 736, 743, 833, 906, 907, 910, 912, 996, 1000, 1001, 1015, 1021, 1031, 1032, 1033, 1037, 1039, 1042, 1047, 1051], "linearsvc__c": 305, "linearsvr": [2, 565, 911, 1015, 1035, 1037, 1042, 1047], "linecollect": [52, 228, 235, 631], "linen": [52, 228], "lineno": 377, "lineplot": [149, 263], "liner": [373, 831], "lines_": [378, 631, 807, 824], "linestyl": [50, 51, 70, 93, 105, 111, 127, 129, 134, 145, 167, 170, 172, 174, 176, 185, 186, 196, 197, 198, 206, 207, 208, 212, 215, 217, 218, 223, 240, 242, 257, 260, 262, 266, 267, 272, 276, 277, 288, 296, 299, 304, 333, 336, 337, 339, 340, 342, 1050], "linewidth": [62, 67, 70, 71, 73, 75, 91, 105, 109, 116, 118, 122, 135, 146, 149, 151, 155, 167, 171, 175, 198, 200, 202, 203, 204, 207, 209, 212, 219, 222, 232, 240, 242, 262, 272, 276, 289, 293, 304, 313, 319, 333, 334, 336, 352], "linger": 208, "linguist": [716, 902, 1013], "lingyi1110": 1046, "link": [52, 56, 134, 143, 151, 154, 183, 184, 190, 206, 210, 223, 243, 248, 257, 266, 293, 309, 317, 322, 350, 359, 365, 370, 371, 372, 373, 375, 379, 385, 401, 403, 405, 408, 410, 413, 558, 559, 609, 647, 668, 679, 688, 705, 863, 930, 932, 996, 1003, 1016, 1017, 1019, 1023, 1029, 1031, 1034, 1035, 1038, 1039, 1042, 1048, 1052], "link_thickness_i": 293, "linkag": [59, 72, 75, 76, 79, 81, 85, 88, 89, 90, 100, 180, 186, 436, 437, 441, 442, 459, 509, 511, 519, 885, 1019, 1021, 1034, 1039, 1042], "linkage_matrix": 76, "linkage_tre": 1035, "linkedin": 375, "linker": 372, "linkfunct": [257, 322], "linnerrud": [364, 1026], "linnerud": [2, 368, 502], "linprog": [669, 996], "linspac": [44, 48, 50, 51, 54, 62, 64, 73, 74, 75, 77, 82, 88, 111, 112, 121, 129, 135, 146, 167, 168, 170, 171, 172, 173, 174, 176, 184, 190, 191, 193, 194, 200, 202, 206, 207, 208, 212, 215, 216, 217, 218, 219, 230, 232, 235, 236, 238, 240, 252, 263, 265, 266, 270, 271, 272, 273, 278, 288, 289, 295, 296, 304, 306, 316, 317, 334, 335, 338, 339, 340, 342, 343, 630, 631, 807, 829, 845, 846], "lint": 371, "linter": 577, "linthresh": [190, 194], "linu": [1047, 1048, 1049], "linux": [371, 373, 374, 379, 1019, 1031], "lipoprotein": [163, 368], "lippert": 996, "lippmann": 366, "lipschitz": [38, 1012], "lisa": [1039, 1040, 1042, 1043, 1045, 1046], "lise": 1045, "list": [0, 2, 44, 48, 50, 52, 53, 54, 56, 58, 59, 63, 64, 69, 75, 79, 82, 95, 102, 103, 104, 129, 130, 138, 139, 141, 143, 145, 151, 154, 155, 156, 160, 183, 184, 185, 186, 210, 233, 234, 242, 243, 244, 246, 253, 257, 258, 261, 262, 263, 264, 266, 267, 270, 272, 275, 277, 292, 305, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 328, 338, 347, 348, 353, 360, 365, 366, 369, 370, 371, 373, 374, 376, 377, 378, 379, 380, 383, 384, 385, 386, 389, 390, 394, 401, 403, 404, 407, 409, 410, 411, 426, 428, 433, 446, 452, 453, 460, 461, 462, 463, 464, 467, 468, 474, 478, 479, 480, 484, 485, 486, 487, 489, 490, 493, 497, 498, 499, 500, 501, 502, 504, 505, 506, 507, 511, 512, 513, 514, 515, 516, 517, 520, 529, 547, 548, 550, 551, 552, 553, 554, 555, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 586, 587, 589, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 630, 631, 633, 634, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 677, 678, 680, 683, 685, 687, 692, 696, 697, 699, 702, 710, 711, 712, 713, 716, 718, 726, 734, 743, 747, 755, 779, 782, 784, 789, 795, 798, 799, 801, 804, 805, 807, 812, 813, 815, 824, 826, 827, 828, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 853, 855, 856, 857, 858, 859, 862, 863, 864, 865, 866, 867, 869, 873, 876, 878, 879, 884, 886, 902, 903, 906, 908, 911, 913, 914, 915, 916, 919, 926, 927, 931, 932, 933, 937, 939, 940, 941, 942, 944, 952, 953, 956, 967, 970, 973, 983, 989, 990, 996, 1000, 1002, 1003, 1004, 1007, 1008, 1011, 1016, 1019, 1020, 1024, 1027, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051], "list_param": 371, "listedcolormap": [68, 71, 142, 155, 291, 294, 298, 305], "listen": 346, "listinfo": 379, "lit": 262, "lite": 1031, "liter": [371, 942, 943, 1024], "literatur": [172, 263, 264, 280, 347, 368, 371, 377, 379, 383, 384, 403, 406, 408, 410, 439, 443, 445, 498, 533, 535, 537, 544, 552, 553, 586, 589, 708, 798, 989, 992, 996, 1000, 1041], "litsidi": [1046, 1047], "littl": [183, 184, 185, 186, 232, 366, 411, 458, 643, 801, 815, 949, 990, 997, 999, 1015, 1016, 1032, 1043, 1048], "lituiev": 1044, "liu": [0, 361, 382, 392, 560, 727, 757, 1000, 1006, 1034, 1037, 1038, 1039, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "liutong": 1039, "live": [51, 102, 183, 257, 296, 366, 371, 403, 495, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 1023], "livesei": 346, "livni": [403, 438], "lizao": 1039, "lizsz": 1037, "lj2017": 403, "lk": 1034, "lkjcalc": 1039, "lkubin": 1042, "ll": [51, 88, 258, 262, 276, 296, 371, 375, 383, 529, 538, 992, 1003, 1016], "llcrnrlat": [51, 296], "llcrnrlon": [51, 296], "lle": [225, 226, 227, 229, 527, 689, 693, 997, 1043], "lle_hessian": 225, "lle_ltsa": 225, "lle_method": 225, "lle_mod": 225, "lle_standard": 225, "llm": 371, "lloyd": [403, 439, 443, 445, 455, 1045, 1046], "llvm": 369, "lm": 192, "lmbda": 307, "lmbda_bc": 307, "lmbda_yj": 307, "lml": [168, 169, 173, 413], "ln": [375, 1004, 1010, 1050], "loa": [166, 173, 174, 180, 413, 493, 610, 614, 621, 622, 624, 1021], "load": [2, 10, 44, 46, 51, 52, 53, 55, 64, 69, 80, 86, 103, 104, 120, 130, 139, 141, 142, 144, 150, 151, 154, 155, 156, 160, 161, 172, 183, 184, 188, 192, 206, 213, 221, 234, 235, 239, 241, 242, 243, 244, 246, 253, 257, 259, 261, 263, 268, 270, 275, 277, 280, 283, 287, 292, 299, 300, 301, 313, 314, 316, 317, 319, 321, 322, 326, 327, 328, 351, 352, 353, 358, 363, 366, 368, 374, 377, 384, 397, 406, 407, 408, 410, 478, 479, 480, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 529, 531, 540, 845, 846, 949, 1000, 1010, 1020, 1026, 1031, 1036, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048], "load_ames_h": 154, "load_boston": [1037, 1039, 1044], "load_breast_canc": [2, 163, 186, 327, 350, 376, 590, 593, 594, 596, 673, 674, 789, 1000, 1036, 1037, 1042], "load_cont": 500, "load_dataset": 346, "load_diabet": [2, 47, 147, 156, 163, 179, 196, 197, 198, 204, 243, 259, 317, 410, 555, 559, 565, 672, 701, 826, 827, 828, 914, 916, 1008, 1037, 1042, 1045], "load_digit": [2, 69, 84, 85, 91, 104, 105, 161, 199, 226, 236, 237, 261, 262, 265, 271, 285, 287, 292, 299, 301, 318, 324, 325, 377, 404, 415, 441, 442, 529, 530, 531, 532, 597, 598, 637, 638, 667, 687, 688, 689, 690, 691, 693, 695, 1037, 1042], "load_fil": [2, 365, 366, 1033, 1045], "load_iri": [2, 67, 76, 106, 124, 126, 128, 130, 142, 159, 169, 201, 214, 246, 250, 256, 268, 269, 270, 272, 273, 286, 291, 294, 299, 312, 314, 317, 329, 331, 332, 335, 338, 351, 353, 384, 397, 403, 404, 407, 410, 412, 423, 558, 564, 599, 600, 609, 618, 619, 621, 622, 630, 657, 658, 711, 789, 801, 804, 805, 807, 815, 831, 833, 854, 900, 901, 902, 913, 915, 917, 918, 919, 990, 995, 1000, 1001, 1002, 1003, 1007, 1010, 1016, 1028, 1037, 1039, 1042], "load_lfw_pair": 1036, "load_linnerud": [2, 838, 1037, 1042], "load_mnist": [213, 283], "load_mtpl2": 223, "load_sample_imag": [2, 581, 582, 585, 1040], "load_svmlight_fil": [2, 365, 1031, 1032, 1037, 1038, 1039, 1046], "load_win": [2, 49, 245, 308, 849, 857, 1042], "loader": [2, 264, 346, 364, 365, 366, 495, 496, 505, 1031, 1036, 1038, 1039, 1042], "loan": [410, 531, 996, 1024], "loayza": 1045, "lobpcg": [80, 448, 458, 688, 691, 695, 1041, 1044, 1045, 1046], "loc": [44, 47, 48, 49, 62, 64, 70, 75, 104, 107, 110, 111, 112, 115, 122, 124, 126, 127, 128, 129, 134, 136, 137, 138, 145, 146, 147, 148, 149, 151, 154, 155, 156, 159, 167, 168, 174, 176, 183, 184, 193, 197, 202, 206, 207, 208, 209, 211, 212, 215, 218, 219, 222, 223, 228, 235, 236, 237, 238, 240, 242, 250, 251, 258, 261, 262, 263, 266, 267, 270, 273, 276, 277, 278, 286, 288, 289, 299, 304, 307, 308, 313, 316, 319, 326, 334, 337, 339, 341, 342, 346, 351, 352, 815, 882, 894], "loc_a": 307, "loc_b": 307, "local": [2, 44, 49, 52, 59, 85, 90, 94, 120, 123, 139, 140, 151, 163, 172, 173, 180, 184, 207, 219, 224, 227, 229, 232, 236, 242, 284, 293, 321, 334, 352, 359, 368, 369, 371, 375, 377, 379, 389, 403, 408, 410, 411, 413, 443, 448, 458, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 495, 499, 535, 537, 541, 544, 546, 556, 557, 560, 563, 609, 610, 687, 688, 689, 690, 691, 692, 693, 695, 696, 759, 760, 848, 851, 854, 856, 866, 875, 898, 901, 909, 967, 998, 999, 1003, 1004, 1016, 1021, 1023, 1025, 1026, 1035, 1039, 1043, 1046, 1049, 1050], "local_filenam": 488, "localcach": 389, "locally_linear_embed": [2, 229, 997, 1050], "locallylinearembed": [2, 52, 225, 226, 227, 316, 688, 690, 692, 997, 1003, 1036, 1037, 1045, 1046, 1047, 1050], "localoutlierfactor": [2, 232, 242, 289, 290, 316, 385, 560, 909, 1006, 1038, 1039, 1041, 1045, 1046, 1047, 1048, 1050], "localoutlierfactor__n_neighbor": 242, "locat": [49, 63, 86, 87, 104, 111, 112, 155, 202, 296, 314, 335, 364, 366, 369, 371, 373, 375, 376, 379, 380, 389, 390, 401, 403, 405, 409, 444, 456, 457, 465, 466, 467, 468, 469, 470, 471, 472, 484, 497, 498, 501, 502, 509, 512, 984, 990, 996, 1001, 1006, 1010, 1016, 1039], "location_": [111, 112, 465, 466, 467, 468, 469, 470, 471, 472], "location_reweight": [465, 470], "lock": [321, 374, 389, 396, 397, 967, 1049, 1050], "loev": 531, "lof": [2, 49, 180, 219, 232, 242, 284, 334, 560, 851, 909, 1006, 1021], "lof_kw": 242, "lofti": [1041, 1042], "log": [2, 44, 59, 63, 64, 65, 67, 109, 120, 134, 143, 144, 146, 151, 154, 159, 163, 168, 169, 171, 172, 173, 176, 196, 198, 201, 206, 211, 215, 223, 236, 238, 243, 252, 253, 257, 264, 293, 308, 309, 317, 346, 366, 368, 369, 371, 379, 380, 385, 400, 401, 403, 404, 405, 408, 410, 411, 413, 433, 444, 447, 456, 461, 466, 467, 468, 469, 470, 471, 472, 529, 533, 538, 546, 547, 548, 550, 552, 554, 556, 559, 561, 588, 589, 591, 592, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 641, 644, 647, 657, 658, 668, 670, 675, 679, 723, 742, 756, 798, 799, 801, 804, 805, 815, 840, 841, 842, 843, 844, 845, 846, 850, 852, 861, 862, 863, 869, 870, 899, 902, 907, 910, 912, 913, 915, 942, 947, 989, 992, 994, 996, 997, 1002, 1003, 1005, 1008, 1010, 1014, 1016, 1019, 1020, 1033, 1034, 1035, 1040, 1041, 1042, 1045, 1048, 1049, 1050], "log10": [143, 159, 173, 183, 264, 335], "log1p": [107, 235, 869, 1000, 1010], "log2": [64, 138, 141, 154, 156, 185, 215, 244, 275, 314, 319, 352, 353, 554, 555, 556, 557, 561, 562, 913, 914, 915, 916, 1001, 1050], "log_": 1000, "log_2": [400, 560, 1006], "log_bas": 727, "log_den": 288, "log_dens": 850, "log_likelihood": [109, 609, 610, 798, 799], "log_likelihood_gradi": [609, 610], "log_logist": 1048, "log_loss": [2, 63, 64, 67, 141, 145, 148, 168, 185, 244, 257, 275, 308, 319, 322, 328, 346, 353, 385, 401, 410, 554, 556, 558, 561, 645, 657, 675, 913, 915, 989, 996, 1000, 1014, 1016, 1033, 1035, 1037, 1045, 1046, 1047, 1048, 1051], "log_loss_test": 67, "log_marginal_likelihood": [168, 169, 171, 173, 176, 413, 609, 610, 1041], "log_marginal_likelihood_value_": [609, 610], "log_prob": [798, 799, 800, 823], "log_reg": [246, 316], "log_reg_input_featur": 316, "log_scal": 1047, "log_scale_transform": [206, 223], "log_scaled_numer": [206, 223], "log_y_prob": 862, "logaddexp": 1048, "logan": [1045, 1046, 1047], "logarithm": [2, 107, 154, 183, 210, 236, 264, 335, 385, 401, 412, 456, 588, 657, 658, 675, 704, 727, 742, 752, 756, 757, 758, 792, 800, 823, 836, 845, 846, 947, 1016, 1038], "logcosh": [415, 530], "logdet": 947, "logged_in": 366, "logger": 1042, "logic": [132, 359, 372, 373, 378, 386, 399, 410, 1016, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048], "logical_and": [54, 146], "logical_not": [58, 97, 129, 209], "logical_or": [208, 213, 272, 377], "logical_xor": [54, 155, 171, 339], "loginov": 1037, "logist": [2, 63, 64, 65, 67, 101, 103, 107, 139, 161, 180, 189, 197, 210, 216, 233, 235, 243, 246, 257, 262, 271, 274, 276, 277, 280, 282, 299, 300, 301, 308, 316, 322, 342, 346, 385, 386, 401, 404, 410, 412, 413, 433, 485, 493, 499, 501, 509, 538, 556, 558, 609, 630, 645, 657, 658, 665, 667, 675, 742, 801, 815, 831, 834, 861, 862, 863, 865, 866, 885, 912, 934, 936, 1000, 1001, 1004, 1005, 1014, 1015, 1021, 1022, 1024, 1026, 1028, 1035, 1038, 1039, 1041, 1042], "logistic__c": 105, "logistic_regress": [257, 824, 832], "logistic_regression_multinomi": 200, "logistic_regression_ovr": 200, "logistic_regression_path": [1039, 1040], "logisticregress": [2, 63, 67, 103, 105, 139, 154, 155, 161, 162, 163, 165, 183, 199, 200, 201, 220, 221, 233, 234, 244, 246, 257, 262, 266, 272, 277, 301, 305, 312, 313, 314, 315, 316, 318, 320, 322, 346, 358, 371, 373, 377, 379, 384, 394, 401, 402, 404, 410, 412, 423, 428, 434, 564, 566, 592, 595, 608, 630, 633, 642, 651, 658, 671, 672, 673, 674, 675, 686, 700, 789, 800, 815, 824, 830, 832, 836, 837, 839, 890, 891, 893, 894, 895, 896, 912, 942, 944, 945, 983, 996, 1000, 1001, 1010, 1014, 1015, 1028, 1031, 1032, 1035, 1036, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "logisticregression__c": [201, 257, 305], "logisticregressioncv": [2, 65, 308, 385, 394, 657, 996, 1000, 1001, 1035, 1036, 1037, 1039, 1040, 1041, 1045, 1046, 1048, 1049, 1050, 1051], "logisticregressionifit": 301, "logit": [2, 401, 413, 657, 658, 996], "loglik_lw": 109, "loglik_oa": 109, "loglik_r": 109, "loglike_": 529, "loglog": [109, 236], "logloss": 1042, "lognorm": [146, 173, 192, 252, 307, 1010], "logo": [407, 808], "logprob": 850, "logreg": 839, "logspac": [44, 52, 65, 105, 109, 127, 143, 163, 168, 173, 183, 201, 210, 211, 236, 238, 252, 257, 264, 276, 287, 298, 305, 308, 335, 342, 824, 832, 995, 996], "logsumexp": [293, 1038], "loguniform": [46, 167, 271, 989, 1041], "logx": [210, 342], "lohit": 1048, "loic": [1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "loki": [359, 1000, 1039, 1042], "lomp": 369, "lon": 765, "london": [404, 411, 462], "londschien": [1044, 1048], "lone": [1046, 1047], "long": [0, 31, 44, 51, 52, 79, 95, 146, 172, 179, 183, 185, 206, 239, 240, 242, 243, 266, 275, 296, 303, 313, 346, 347, 354, 359, 369, 371, 379, 383, 385, 386, 397, 403, 449, 495, 535, 675, 676, 677, 804, 805, 840, 841, 842, 843, 844, 862, 863, 873, 1000, 1006, 1010, 1011, 1013, 1014, 1023, 1033, 1037, 1043, 1045], "long_term_trend_kernel": 172, "long_titl": 339, "longer": [0, 44, 71, 86, 137, 150, 183, 184, 197, 300, 315, 322, 371, 373, 403, 407, 410, 411, 445, 533, 560, 630, 995, 999, 1000, 1002, 1005, 1015, 1023, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "longest": [283, 1000], "longitud": [296, 303, 366, 495, 699, 765], "longpathsen": 389, "longstand": [1032, 1038], "loo": [385, 809, 1042], "look": [44, 45, 64, 65, 67, 86, 88, 120, 123, 125, 141, 146, 147, 154, 156, 167, 172, 173, 183, 184, 185, 204, 208, 225, 229, 232, 239, 244, 254, 257, 258, 263, 265, 275, 277, 300, 314, 319, 346, 347, 352, 353, 354, 359, 360, 365, 366, 371, 372, 373, 375, 377, 379, 383, 384, 403, 406, 408, 409, 410, 411, 444, 484, 485, 554, 555, 556, 557, 561, 562, 600, 601, 630, 692, 885, 913, 914, 915, 916, 996, 997, 1000, 1010, 1014, 1015, 1017, 1018, 1031, 1039, 1041], "lookup": [380, 966, 1040], "loop": [47, 48, 137, 146, 154, 183, 192, 258, 268, 346, 353, 358, 371, 372, 377, 403, 407, 412, 446, 645, 646, 651, 652, 658, 659, 660, 661, 662, 989, 996, 1013, 1014, 1034, 1035, 1038, 1043, 1044, 1047, 1048, 1052], "loopym": 1041, "loos": [254, 260, 1015, 1039], "looser": 201, "lope": 1051, "lopusz": 1042, "lorain": 317, "lorek": 1038, "lorentzen": [0, 392, 1000, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "lorenz": [206, 223, 1036, 1048], "lorenz_curv": [206, 223], "lose": [210, 222, 348, 366, 385, 406, 411, 413, 948, 949, 990, 996], "losi": [0, 393, 1031], "loss": [2, 26, 47, 48, 53, 62, 63, 64, 65, 67, 103, 104, 129, 139, 140, 143, 145, 146, 147, 148, 151, 154, 155, 156, 160, 167, 168, 180, 189, 193, 200, 201, 208, 210, 211, 213, 217, 218, 223, 233, 234, 238, 243, 244, 246, 257, 262, 270, 271, 277, 299, 300, 301, 308, 309, 314, 315, 317, 319, 320, 322, 326, 328, 332, 333, 337, 339, 342, 346, 352, 383, 385, 401, 408, 413, 433, 460, 461, 493, 505, 506, 529, 535, 536, 537, 540, 544, 549, 550, 551, 555, 556, 557, 558, 559, 562, 642, 645, 648, 657, 658, 665, 666, 667, 668, 669, 670, 671, 675, 676, 677, 678, 703, 706, 709, 723, 724, 735, 736, 741, 742, 743, 746, 747, 748, 749, 750, 751, 752, 753, 754, 791, 792, 797, 801, 804, 805, 815, 827, 828, 831, 862, 863, 865, 866, 869, 870, 878, 879, 880, 885, 905, 906, 911, 912, 914, 916, 949, 953, 993, 996, 997, 1004, 1008, 1013, 1014, 1015, 1016, 1021, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1050, 1051], "loss_": [299, 862, 863, 1004, 1045], "loss_curve_": [299, 862, 863], "loss_func": 53, "loss_funct": 53, "loss_function_": 1048, "lossfit_timemapermsemaepinball_loss_05pinball_loss_50pinball_loss_95strstrstrstrstrstrstrstr": 53, "lossfunct": 1040, "lossi": 403, "lossili": 385, "lost": [59, 90, 113, 366, 372, 383, 397, 997], "lostanlen": 1041, "lostcoast": 1041, "lot": [44, 113, 149, 183, 210, 366, 371, 372, 379, 408, 410, 804, 805, 897, 898, 989, 1012, 1014, 1015, 1019, 1020, 1024, 1031, 1036, 1038, 1039, 1040, 1041, 1043], "lot_area": 242, "lotan": 1024, "lotconfig": 143, "lotfrontag": 107, "loui": [317, 1036, 1037, 1041, 1043, 1045, 1047, 1048], "louib": [1039, 1040], "loupp": [0, 393, 410, 552, 553, 1031, 1032, 1033, 1034, 1035, 1036, 1037], "lourida": 1037, "low": [2, 38, 44, 51, 52, 64, 73, 83, 112, 116, 122, 124, 127, 134, 137, 143, 150, 155, 163, 185, 201, 203, 206, 208, 210, 219, 225, 227, 232, 236, 242, 248, 249, 251, 254, 256, 257, 263, 265, 269, 270, 289, 290, 300, 307, 309, 310, 318, 327, 334, 335, 346, 353, 367, 368, 371, 376, 379, 383, 385, 389, 400, 401, 402, 407, 408, 411, 414, 433, 438, 440, 445, 464, 518, 521, 532, 580, 587, 601, 678, 692, 696, 705, 727, 743, 790, 850, 879, 886, 903, 949, 966, 989, 995, 996, 997, 999, 1000, 1003, 1005, 1006, 1007, 1008, 1010, 1012, 1015, 1016, 1022, 1026, 1032, 1035, 1036, 1037, 1039, 1040, 1045, 1046, 1051], "low_cardin": 309, "low_cardinality_featur": 309, "low_cardinalityindex": 309, "low_i": 203, "low_x": 203, "lower": [38, 45, 53, 64, 65, 67, 68, 70, 91, 104, 110, 116, 120, 122, 127, 134, 137, 140, 142, 143, 146, 149, 150, 151, 154, 156, 160, 161, 167, 169, 171, 173, 175, 183, 184, 185, 194, 195, 197, 206, 207, 208, 209, 218, 225, 229, 235, 236, 241, 244, 250, 254, 257, 260, 262, 263, 264, 265, 266, 270, 271, 273, 276, 277, 286, 287, 289, 290, 305, 308, 309, 316, 317, 320, 322, 327, 335, 346, 347, 348, 351, 366, 371, 385, 401, 402, 403, 406, 407, 408, 409, 410, 411, 414, 440, 444, 460, 463, 495, 506, 529, 531, 538, 541, 556, 557, 558, 559, 560, 586, 587, 589, 601, 610, 612, 613, 614, 616, 618, 619, 621, 622, 624, 631, 632, 634, 636, 676, 678, 712, 716, 726, 729, 735, 740, 798, 799, 851, 853, 855, 856, 857, 859, 886, 905, 906, 907, 908, 909, 912, 935, 995, 996, 997, 999, 1000, 1001, 1003, 1004, 1005, 1006, 1007, 1008, 1012, 1014, 1015, 1016, 1033, 1034, 1039, 1046, 1048, 1051], "lower_bound": 262, "lower_bound_": [798, 799, 1039], "lower_bounds_": [798, 799, 1051], "lowercas": [264, 411, 419, 438, 439, 441, 443, 445, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 586, 587, 589, 638, 639, 640, 641, 688, 689, 692, 849, 854, 857, 861, 866, 871, 897, 898, 1044], "lowest": [2, 107, 116, 184, 194, 253, 365, 403, 407, 634, 636, 804, 805, 808, 912, 913, 997, 1000, 1016, 1046], "loyal": 1036, "loyola": [0, 361, 1044, 1045], "lo\u00efc": [0, 392, 1039, 1042, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "lp_model": [324, 325], "lpgo": [407, 810], "lpo": 811, "lprun": 377, "lr": [63, 65, 139, 156, 209, 234, 235, 259, 266, 384, 394, 410, 565, 566, 567, 712, 983, 1000, 1051], "lr_": 1000, "lr__c": 410, "lr_base": 266, "lrap": [740, 1000], "lrjball": [1041, 1042], "lrlinearregress": 156, "ls100": 329, "ls2010": 992, "ls30": 329, "ls50": 329, "ls_pipelin": 328, "lsa": [2, 408, 541, 1033], "lsa_vector": 347, "lshforest": [1035, 1038], "lsi": 408, "lsqr": [70, 156, 183, 235, 310, 546, 656, 671, 673, 686, 994, 1032, 1038, 1045], "lstrip": [68, 79, 95, 232, 298, 305], "lstsq": [129, 371, 656, 669, 1050], "lsturtew": 1044, "lsvc": 412, "lsvm": 188, "lsvm_score": 188, "lsvm_time": 188, "lt": [103, 104, 139, 143, 154, 160, 183, 184, 185, 234, 244, 246, 253, 261, 262, 264, 275, 309, 313, 316, 371, 391], "ltd": [257, 366], "ltg": [163, 368, 498], "ltorgo": 366, "ltsa": [225, 226, 227, 689, 693, 997, 1050], "lu": [104, 244, 262, 538, 541, 948, 949, 1037, 1038, 1039, 1040, 1047, 1048, 1049], "luangkot": 1038, "luc": 1051, "luca": [1031, 1041, 1042, 1043, 1044, 1050, 1051], "lucca": 1044, "luce": 1034, "lucen": 411, "lucgiffon": 1042, "luci": [0, 361, 382, 392, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "luciano": [1039, 1046], "lucieclair": 1045, "lucija": 1039, "lucio": 1040, "lucki": 354, "lucyleeow": 1042, "ludwig": 1031, "luessi": 1033, "lui": [657, 1032, 1034, 1035, 1039, 1048, 1051, 1052], "luiz": 1045, "luk": 1040, "luka": [1035, 1042, 1048, 1049], "luke": 1039, "lukowski": 1046, "luk\u00e1\u0161": 1048, "luna": 1045, "lunovian": [1050, 1051], "lunt": 1034, "luo": 1035, "lupo": 1043, "luqi": 1040, "luqu": 1041, "lurk": 1031, "lustig": 996, "lutz": [1037, 1041, 1044, 1048], "luxburg": [403, 448, 458, 691], "luzgin": 1041, "lv_ep": 237, "lvdmaaten": [692, 1038], "lw": [93, 109, 110, 112, 124, 128, 129, 143, 202, 207, 209, 212, 215, 222, 228, 251, 258, 273, 288, 303, 326, 341], "lw_cov_": 113, "lw_mse": 110, "lw_prec_": 113, "lw_score": 127, "lw_shrinkag": 110, "lwda": 446, "lx": 1003, "ly": [237, 853, 855, 856, 857, 1035], "ly648499246": 1044, "lynch": [1032, 1038], "lyon": [1037, 1038], "lyra": [1032, 1035, 1036], "lyrl2004": [366, 494], "l\u00e9o": 1039, "l\u00e9on": [1014, 1045, 1046, 1047, 1050, 1051, 1052], "l\u00e9onard": [1041, 1046], "l\u00e9one": 1037, "l\u00e9oni": 1037, "l\u00f3pez": [1035, 1039, 1040, 1043], "l\u00f6fstedt": 1038, "l\u00f6ning": 1043, "m": [0, 44, 48, 51, 58, 64, 65, 79, 91, 92, 96, 97, 98, 111, 112, 120, 134, 156, 193, 206, 223, 263, 267, 270, 275, 296, 319, 328, 331, 341, 346, 358, 359, 365, 366, 368, 369, 371, 375, 377, 385, 389, 400, 401, 403, 405, 408, 410, 412, 414, 440, 441, 442, 446, 453, 469, 470, 497, 510, 525, 529, 531, 533, 538, 638, 644, 648, 663, 670, 684, 685, 689, 693, 708, 716, 727, 742, 757, 759, 760, 798, 799, 851, 876, 949, 978, 979, 990, 992, 994, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1008, 1010, 1014, 1016, 1024, 1039, 1040, 1041, 1042, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "m1": 399, "m11": 366, "m2": 399, "m2012": 993, "m2019": 1007, "m_max": 169, "m_state": 262, "ma": [113, 162, 309, 335, 996, 1037, 1042], "maascha": 1046, "maaten": [692, 696, 997], "mabel": [1039, 1043], "mabu": 1044, "mac": [58, 309, 328, 366, 371, 708, 1000], "macaulei": 309, "macbook": 1039, "macdonald": [1041, 1042], "mach": [268, 401, 407, 591, 592], "machado": [401, 724], "machin": [0, 2, 40, 44, 46, 49, 52, 53, 65, 67, 96, 103, 105, 139, 140, 155, 159, 160, 163, 167, 172, 181, 185, 200, 203, 217, 220, 233, 234, 244, 245, 246, 257, 262, 263, 266, 269, 277, 280, 297, 303, 308, 310, 313, 314, 316, 317, 320, 322, 331, 336, 339, 342, 346, 348, 358, 359, 364, 365, 366, 368, 371, 374, 378, 383, 384, 385, 388, 391, 397, 401, 403, 407, 408, 410, 411, 413, 433, 435, 444, 467, 468, 474, 499, 501, 507, 513, 514, 515, 527, 529, 531, 538, 541, 552, 553, 554, 555, 556, 557, 561, 562, 563, 591, 592, 609, 610, 613, 618, 621, 633, 637, 638, 640, 642, 643, 644, 649, 650, 653, 654, 655, 656, 657, 658, 675, 681, 682, 692, 708, 713, 726, 736, 742, 744, 786, 789, 798, 830, 831, 845, 846, 851, 854, 861, 862, 863, 865, 883, 885, 891, 905, 906, 907, 908, 910, 911, 915, 916, 989, 990, 992, 993, 996, 997, 998, 1000, 1001, 1003, 1006, 1007, 1008, 1010, 1014, 1016, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1028, 1031, 1033, 1043, 1044, 1045, 1046, 1048], "machineri": [373, 954], "maciej": 1042, "maci\u00e0": [1000, 1044, 1046], "mackai": [643, 644, 996], "mackenbach": 1042, "maco": [372, 373, 374, 389, 399, 1039, 1043, 1045], "macosx": 1031, "macro": [46, 69, 102, 160, 261, 301, 312, 324, 325, 366, 407, 707, 713, 730, 731, 739, 784, 785, 788, 789, 823, 1000, 1031, 1039, 1047], "macro_roc_auc_ovo": 272, "macro_roc_auc_ovr": 272, "macroscop": 403, "macsween": [1040, 1041], "mad": [670, 1037], "madan": 1043, "made": [0, 53, 65, 102, 103, 104, 112, 125, 126, 134, 140, 154, 156, 174, 183, 184, 185, 206, 223, 234, 242, 244, 253, 254, 257, 261, 262, 263, 264, 267, 275, 309, 313, 316, 322, 335, 351, 358, 366, 368, 371, 375, 385, 386, 394, 403, 410, 411, 415, 439, 442, 443, 445, 455, 493, 500, 586, 587, 589, 629, 630, 655, 664, 678, 684, 685, 736, 784, 801, 804, 805, 815, 819, 820, 821, 842, 845, 846, 1000, 1001, 1006, 1016, 1019, 1024, 1031, 1032, 1033, 1034, 1035, 1038, 1040, 1041, 1044, 1045, 1049], "madelon": 512, "madhura": [1040, 1042, 1043, 1046, 1047], "madinak": 1046, "madsen": [1037, 1039], "mae": [44, 53, 154, 156, 206, 208, 314, 352, 555, 562, 746, 914, 916, 1000, 1016, 1038, 1039, 1043, 1044], "mae_test": 183, "mae_train": 183, "maennel": 1046, "magali": 1045, "magazin": [112, 412], "magda": 1042, "magenta": [109, 148], "maggi": [1045, 1049, 1050, 1051], "maggiecheg": [1041, 1045], "maggio": [1042, 1043, 1044], "magic": [239, 372, 377, 413, 615, 620, 623], "magnesium": 368, "magnitud": [44, 129, 136, 168, 179, 183, 222, 242, 268, 303, 308, 315, 320, 358, 366, 377, 403, 407, 410, 413, 612, 651, 704, 885, 996, 1000, 1004, 1010, 1014, 1016, 1033, 1040, 1049], "mahajan": [1039, 1041, 1048], "mahal": 111, "mahal_emp_cov": 111, "mahal_robust_cov": 111, "mahalanobi": [108, 112, 127, 180, 209, 403, 405, 446, 453, 465, 466, 467, 468, 469, 470, 471, 472, 699, 779, 780, 781, 994, 1003, 1006, 1021, 1039, 1042, 1043], "mahalanobisdist": 699, "mahapatra": 1038, "mahdavi": 638, "maheshakya": [0, 1034, 1035, 1036], "mahieux": 1024, "mahimkar": 1049, "mahmood": 1049, "mahout": [264, 842], "mai": [0, 2, 26, 48, 58, 63, 64, 79, 80, 89, 100, 103, 104, 116, 120, 139, 141, 143, 144, 149, 151, 154, 155, 156, 160, 163, 171, 173, 175, 179, 183, 185, 186, 188, 191, 192, 194, 198, 200, 210, 212, 230, 233, 234, 235, 239, 242, 243, 244, 245, 246, 257, 261, 262, 263, 264, 266, 268, 270, 271, 275, 277, 298, 301, 308, 309, 313, 314, 316, 317, 319, 322, 325, 335, 339, 342, 346, 347, 348, 352, 353, 354, 358, 359, 360, 363, 365, 366, 367, 368, 370, 371, 373, 375, 376, 379, 383, 385, 386, 389, 394, 397, 400, 402, 403, 404, 405, 406, 407, 408, 410, 411, 412, 413, 414, 426, 435, 436, 437, 439, 440, 441, 442, 443, 445, 447, 448, 449, 450, 455, 458, 461, 465, 468, 478, 479, 480, 483, 484, 485, 493, 505, 506, 512, 531, 532, 535, 537, 538, 541, 544, 545, 551, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 567, 569, 571, 579, 592, 595, 600, 609, 610, 616, 619, 633, 634, 636, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 671, 672, 673, 675, 676, 677, 678, 680, 683, 685, 688, 689, 691, 692, 693, 695, 697, 705, 711, 712, 715, 716, 718, 719, 721, 723, 724, 725, 727, 739, 757, 764, 786, 787, 801, 803, 804, 805, 806, 815, 816, 817, 820, 821, 826, 830, 833, 838, 839, 840, 841, 842, 844, 847, 848, 849, 851, 853, 855, 856, 857, 863, 864, 865, 868, 870, 874, 875, 880, 882, 883, 884, 885, 886, 888, 894, 897, 898, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 918, 929, 931, 932, 952, 953, 989, 990, 992, 994, 996, 997, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1020, 1031, 1033, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "maikia": [1039, 1040, 1042, 1043], "mail": [366, 371, 375, 379, 383, 386, 1039, 1040], "mailhot": 1031, "mailman": 379, "main": [2, 38, 49, 69, 95, 116, 124, 180, 232, 272, 282, 311, 342, 346, 358, 359, 360, 364, 369, 371, 373, 375, 377, 379, 383, 384, 385, 388, 389, 401, 403, 408, 410, 411, 413, 500, 522, 527, 546, 547, 624, 713, 835, 905, 906, 989, 997, 999, 1000, 1007, 1012, 1020, 1023, 1031, 1034, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "mainak": 1038, "maingret": 1042, "mainli": [65, 86, 134, 137, 167, 172, 272, 280, 358, 373, 401, 610, 1002, 1007], "maint": 375, "maint_tool": 375, "maintain": [88, 211, 223, 225, 239, 262, 263, 359, 370, 374, 377, 378, 379, 383, 385, 386, 389, 399, 403, 410, 436, 438, 874, 875, 881, 882, 885, 890, 893, 894, 896, 996, 997, 1000, 1010, 1018, 1019, 1020, 1023, 1026, 1046, 1050, 1052], "mainten": [0, 371, 375, 379, 383, 386, 389, 396, 996, 1020, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "mainy": 1043, "mair": [634, 997], "mairal": [408, 528, 534], "mairal_icml09": [528, 534], "maisonneuv": 1043, "maithreyi": 1041, "maj": 566, "major": [2, 50, 55, 64, 71, 140, 155, 257, 270, 272, 303, 307, 312, 313, 314, 315, 316, 317, 318, 319, 339, 348, 352, 358, 366, 370, 371, 373, 375, 377, 383, 386, 397, 403, 407, 409, 411, 433, 548, 566, 567, 694, 917, 919, 1000, 1003, 1014, 1020, 1024, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "make": [0, 2, 44, 47, 48, 51, 53, 55, 56, 59, 60, 63, 64, 65, 75, 78, 79, 89, 94, 95, 100, 105, 125, 134, 140, 141, 143, 146, 149, 151, 152, 155, 160, 163, 167, 172, 175, 182, 183, 184, 185, 190, 194, 195, 198, 200, 201, 202, 206, 207, 208, 210, 212, 223, 226, 228, 234, 236, 238, 239, 240, 242, 248, 250, 253, 254, 257, 258, 260, 262, 263, 265, 266, 272, 273, 274, 277, 282, 292, 300, 303, 304, 309, 316, 317, 318, 320, 322, 335, 344, 346, 347, 348, 352, 354, 358, 359, 360, 365, 366, 369, 370, 372, 373, 374, 375, 376, 377, 379, 383, 385, 389, 394, 397, 399, 400, 401, 403, 404, 405, 407, 408, 410, 411, 412, 415, 436, 437, 438, 439, 441, 443, 445, 447, 448, 449, 454, 455, 456, 458, 484, 500, 511, 512, 519, 520, 524, 529, 531, 538, 548, 549, 552, 553, 558, 559, 581, 582, 605, 606, 630, 648, 654, 655, 670, 691, 695, 731, 738, 743, 769, 770, 782, 798, 799, 801, 803, 806, 812, 816, 817, 820, 821, 827, 828, 835, 836, 839, 872, 881, 884, 885, 889, 893, 895, 896, 897, 898, 911, 919, 931, 932, 942, 949, 956, 962, 985, 990, 992, 994, 996, 997, 999, 1000, 1001, 1002, 1003, 1005, 1006, 1007, 1008, 1010, 1013, 1014, 1015, 1016, 1018, 1019, 1020, 1024, 1028, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "make_": 1040, "make_biclust": [2, 60, 510, 1033], "make_blob": [2, 62, 64, 70, 74, 77, 78, 79, 82, 88, 89, 90, 92, 93, 95, 96, 97, 200, 217, 232, 251, 306, 313, 316, 333, 336, 337, 343, 367, 374, 410, 512, 696, 710, 793, 794, 921, 1039, 1042, 1045], "make_cbar": 274, "make_checkerboard": [2, 59, 508, 1033], "make_circl": [2, 68, 79, 95, 125, 152, 230, 298, 299, 305, 326, 367, 1032, 1039, 1042], "make_classif": [2, 63, 65, 68, 138, 139, 141, 160, 162, 165, 260, 266, 274, 275, 293, 298, 305, 312, 314, 318, 320, 321, 322, 342, 344, 354, 367, 374, 399, 402, 410, 433, 434, 483, 509, 550, 552, 554, 561, 603, 605, 608, 665, 697, 698, 700, 702, 800, 823, 824, 829, 830, 832, 835, 862, 865, 905, 912, 989, 1000, 1001, 1010, 1015, 1037, 1038, 1039, 1041, 1051], "make_column_selector": [2, 103, 143, 154, 183, 184, 185, 234, 242, 244, 309, 313, 316, 404, 460, 463, 1041], "make_column_transform": [2, 143, 154, 183, 234, 313, 404, 460, 462, 1039, 1051], "make_data": [71, 94], "make_dataset": 1040, "make_ellips": 250, "make_estim": 242, "make_friedman1": [2, 367, 410, 536, 540, 591, 592, 631], "make_friedman2": [2, 367, 610, 612, 613, 614, 615, 616, 620, 623, 624], "make_friedman3": [2, 367], "make_gaussian_quantil": [2, 134, 136, 367, 466, 470, 471, 472, 477, 517], "make_hastie_10_2": [2, 148, 267, 367, 410, 556, 1007], "make_heatmap": 274, "make_low_rank_matrix": [2, 318, 320, 521], "make_ml_clf": 118, "make_moon": [2, 68, 79, 95, 232, 263, 298, 299, 305, 367, 989, 1038, 1042], "make_multilabel_classif": [2, 118, 240, 367, 512, 533, 789, 836, 837, 1000, 1033, 1034, 1036, 1042], "make_pipelin": [2, 44, 67, 68, 91, 116, 139, 143, 154, 155, 159, 160, 163, 178, 179, 183, 184, 188, 190, 196, 198, 201, 206, 207, 212, 219, 223, 226, 232, 233, 234, 242, 243, 244, 246, 257, 260, 270, 277, 283, 292, 298, 305, 308, 309, 310, 312, 313, 314, 315, 316, 317, 322, 347, 354, 384, 394, 404, 407, 564, 675, 677, 857, 865, 890, 891, 893, 894, 895, 896, 905, 906, 907, 908, 910, 911, 990, 1003, 1010, 1014, 1015, 1034, 1041, 1044], "make_plot": 303, "make_regress": [2, 50, 107, 190, 192, 193, 195, 209, 210, 276, 313, 319, 354, 367, 374, 384, 404, 551, 553, 557, 562, 604, 606, 607, 634, 645, 646, 648, 650, 651, 652, 654, 659, 660, 661, 662, 663, 664, 666, 670, 678, 680, 681, 682, 684, 685, 686, 863, 906, 923, 1000, 1001, 1003], "make_s_curv": [2, 225, 230], "make_scor": [2, 53, 146, 149, 257, 267, 320, 394, 402, 407, 711, 731, 801, 827, 828, 1040, 1048, 1050], "make_sparse_coded_sign": [2, 205, 528, 534, 542, 543, 1045, 1047], "make_sparse_spd_matrix": [2, 113, 474, 526, 1048], "make_sparse_uncorrel": [2, 367], "make_spd_matrix": [2, 524], "make_subplot": 140, "make_swiss_rol": [2, 100, 229, 1045], "make_union": [2, 404, 864, 1034, 1038, 1051], "makedir": 1038, "maker": [182, 183], "makhija": 1046, "makoeppel": 1044, "maksym": 1046, "maladier": 1046, "maladi\u00e8r": [1046, 1047], "malcolm": 1039, "maldonado": [1041, 1044], "male": [103, 183, 317, 376, 878, 879, 1010], "malem": 1048, "malet": 1031, "malform": [56, 1035], "malic": [308, 368], "malic_acid": 49, "malici": 397, "malign": [163, 368, 497], "malik": [403, 448, 458, 691], "mallat": [663, 684, 685, 996], "mallatpursuit93": [663, 684, 685], "mallow": [732, 1037], "maloo": [1039, 1040], "malt": [1044, 1045, 1046, 1048], "maltimor": 1041, "malu": 223, "malzer": 442, "mal\u00e9zieux": 1044, "mamba": 397, "mamduh": 1051, "mame": 1048, "mammal": 51, "mammalian": 408, "man": [408, 588, 770, 840, 844, 998, 1000, 1002], "manag": [0, 2, 116, 246, 357, 365, 369, 372, 373, 375, 379, 383, 385, 386, 397, 410, 446, 464, 625, 903, 994, 1016, 1019, 1020, 1024, 1026, 1044, 1047, 1050], "manaileng": 1044, "manasimj": 1049, "mandal": 1041, "mandatori": [371, 411], "mandatorili": 1038, "mandera": 1034, "mandi": [1042, 1045], "mandjev": 1045, "mandyam": 1041, "mangasarian": [163, 368], "mangipudi": 1037, "manh": 1039, "manhattan": [403, 437, 440, 441, 446, 453, 699, 763, 772, 779, 780, 781, 852, 998, 1003, 1035, 1040, 1047], "manhattan_dist": [2, 414, 446, 453, 688, 763, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 1031, 1041, 1046, 1047], "manhattandist": 699, "mani": [44, 47, 50, 58, 88, 89, 104, 106, 109, 113, 134, 140, 141, 142, 147, 155, 159, 163, 185, 206, 225, 236, 243, 244, 249, 256, 257, 262, 263, 271, 275, 276, 283, 303, 308, 309, 312, 313, 314, 315, 316, 318, 319, 320, 321, 322, 346, 354, 358, 360, 366, 368, 370, 371, 373, 384, 385, 386, 389, 397, 400, 401, 403, 404, 405, 408, 410, 411, 412, 413, 415, 500, 538, 563, 604, 607, 626, 638, 649, 653, 657, 658, 665, 666, 667, 675, 676, 677, 692, 695, 775, 779, 801, 805, 815, 862, 863, 878, 883, 885, 905, 989, 990, 992, 996, 997, 999, 1000, 1001, 1002, 1003, 1006, 1007, 1010, 1013, 1015, 1017, 1019, 1020, 1024, 1031, 1033, 1034, 1036, 1037, 1038, 1039, 1040, 1041, 1045, 1046, 1047], "manideep": [1049, 1051], "manifest": [379, 997, 1003], "manifold": [2, 52, 85, 100, 139, 228, 229, 230, 236, 283, 293, 312, 316, 317, 326, 328, 364, 385, 403, 408, 410, 499, 522, 527, 541, 546, 563, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 854, 866, 875, 898, 934, 1003, 1021, 1025, 1026, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1048], "manimaran": [1040, 1042, 1043, 1044, 1045], "manipul": [2, 262, 365, 399, 504, 1019, 1037, 1051], "manish": 1042, "maniteja": [1037, 1038, 1039], "mankoo": 1046, "mann": 1041, "mannbi": 1039, "manner": [44, 107, 120, 160, 184, 188, 250, 316, 317, 359, 371, 377, 403, 408, 410, 411, 709, 722, 845, 846, 989, 1000, 1016, 1034, 1041], "mannila": 1012, "manning2008": 1000, "manoharan": [1038, 1039], "manoj": [0, 393, 1034, 1035, 1036, 1037, 1038], "manraj": 1038, "mansi": 1046, "mansingh": 1045, "mansouri": 1047, "mantovani": 1046, "manu": 366, "manual": [2, 44, 80, 88, 155, 183, 184, 186, 207, 216, 265, 283, 327, 333, 346, 348, 358, 359, 366, 371, 375, 376, 383, 384, 389, 397, 399, 403, 407, 408, 409, 433, 445, 564, 800, 823, 855, 878, 884, 989, 994, 995, 996, 999, 1000, 1003, 1010, 1020, 1039, 1041, 1047, 1049], "manuel": [1031, 1035, 1039, 1040, 1043, 1044, 1049], "manufactur": [183, 410], "manvendra": [1037, 1038], "maocx": 1041, "map": [2, 24, 38, 44, 45, 50, 51, 56, 58, 64, 86, 103, 116, 125, 138, 139, 143, 145, 148, 151, 152, 154, 155, 167, 180, 183, 184, 188, 206, 223, 225, 227, 231, 234, 239, 242, 244, 257, 264, 267, 272, 291, 294, 296, 302, 303, 309, 313, 316, 317, 322, 328, 335, 339, 344, 347, 348, 365, 366, 372, 383, 385, 394, 397, 401, 403, 404, 407, 408, 410, 411, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 493, 495, 499, 506, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 763, 766, 798, 799, 800, 801, 804, 805, 812, 813, 815, 823, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 893, 894, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 955, 958, 959, 989, 992, 997, 1000, 1002, 1012, 1015, 1016, 1021, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1048], "mapd": 1000, "mape": [2, 53, 747, 1000], "mapi": 53, "mar": 52, "marc": [1038, 1040, 1041, 1047, 1050, 1051], "march": [172, 727, 757, 1000, 1031, 1035, 1039, 1041, 1046], "marchand": 1045, "marchman": [1032, 1033], "marco": [1037, 1039, 1040, 1044, 1045, 1046, 1049, 1050, 1051], "marcofalk": 1038, "marcogorelli": [1039, 1040], "marcolini": 1044, "marcom": 1045, "marcu": [1039, 1048], "mare": 1048, "marek": [1031, 1048, 1051], "maren": [0, 361, 382, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "margeta": 1039, "margffoi": 1050, "margin": [31, 44, 52, 63, 65, 136, 168, 169, 170, 171, 172, 173, 180, 183, 184, 189, 215, 216, 218, 219, 240, 242, 263, 280, 303, 306, 309, 330, 331, 333, 334, 335, 337, 339, 343, 368, 401, 408, 410, 413, 509, 609, 610, 630, 644, 675, 736, 834, 882, 894, 907, 910, 996, 1000, 1002, 1006, 1007, 1010, 1014, 1015, 1021, 1038, 1040], "margoni": 1051, "marguli": 1041, "mari": [102, 1039, 1040, 1041, 1042, 1045, 1050, 1051], "maria": [403, 1042, 1043, 1044, 1045, 1046], "mariam": 1043, "mariana": 1042, "mariangela": 1044, "mariano": 263, "mariel": 1042, "marielaraj": 1044, "marija": [1042, 1043, 1049, 1051], "marijn": 1043, "marin": [525, 1049], "marina": 403, "marinelm": 1040, "mario": [401, 1035, 1037, 1045, 1046, 1047], "marit": [319, 493], "mari\u00e9": [0, 361, 1040, 1041, 1042, 1043, 1044, 1045, 1051], "mark": [2, 71, 91, 118, 158, 172, 262, 267, 274, 363, 371, 375, 379, 380, 385, 403, 414, 532, 605, 606, 610, 657, 858, 859, 900, 901, 918, 938, 943, 944, 949, 996, 1024, 1026, 1031, 1032, 1037, 1039, 1040, 1047, 1048, 1049, 1050], "markdown": 374, "marker": [50, 51, 56, 65, 67, 71, 73, 74, 77, 85, 88, 91, 92, 93, 96, 97, 115, 118, 122, 140, 143, 153, 174, 175, 188, 196, 201, 203, 204, 206, 208, 209, 220, 222, 226, 248, 250, 251, 257, 258, 263, 265, 266, 267, 290, 303, 308, 326, 350, 374, 375, 411, 1039, 1041, 1042, 1047], "markeredgecolor": [82, 88, 94, 96, 97], "markeredgewidth": [111, 267], "markerfacecolor": [82, 88, 94, 96, 97], "markers": [82, 88, 91, 94, 96, 97, 146, 170, 174, 235, 257, 316], "markerstyl": 257, "market": [43, 80, 85, 149, 180, 225, 226, 229, 403, 405, 450, 467, 468, 689, 997, 1021, 1024], "marketplac": 1024, "markham": [1035, 1042, 1043], "markiwanchyshyn": 1039, "marko": [1031, 1040, 1041, 1047], "markou": 1044, "markov": [413, 610, 1005, 1019, 1031], "markovtsev": 1039, "marktab": 1036, "marku": [403, 446, 453, 1039, 1041, 1042, 1043], "marmo": [0, 362, 1041, 1042, 1043, 1044, 1045, 1046, 1047], "maron": [403, 438], "marr": 183, "marr_unmarri": 183, "marreddi": 1045, "marri": 183, "marriott": 52, "marsgui": 1039, "marsh": 1042, "marshal": 368, "marsi": 1034, "marsland": 527, "marslast": 527, "marszalek": [759, 760, 998], "mart": [52, 1041], "martel": 1045, "martha": 309, "martian": 1041, "martin": [0, 361, 721, 724, 725, 996, 1000, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1048, 1049, 1050, 1051], "martin1997": 1000, "martina": [1041, 1043], "martinbpr": [1036, 1037], "martinez": 1038, "martino": 1036, "martinosorb": 1036, "martinsson": [56, 532, 538, 949], "martynov": 1044, "mart\u00edn": [1044, 1045], "marufo": 1046, "marufur": 1038, "marvin": [1046, 1047], "marwaha": 1039, "marx": 1010, "maryanmorel": [1036, 1037], "marzinotto": [1039, 1040], "mar\u00eda": [1045, 1046, 1047, 1050, 1051, 1052], "mas_vnr_typ": 242, "masafumi": 1036, "masanori": [1046, 1047], "masashi": [1041, 1043], "masecchia": 1031, "mash": 411, "mask": [2, 54, 77, 99, 143, 151, 154, 162, 206, 213, 242, 257, 261, 262, 309, 317, 322, 328, 380, 385, 404, 410, 460, 465, 470, 558, 559, 579, 583, 584, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 628, 629, 631, 632, 648, 670, 801, 804, 805, 815, 971, 990, 1007, 1031, 1034, 1036, 1037, 1039, 1041, 1049, 1052], "mask_al": 990, "mask_false_neg": 257, "mask_false_posit": 257, "mask_label": 67, "mask_missing_values_onli": 990, "mask_out": 54, "mask_test": 223, "mask_train": [184, 223], "mask_true_neg": 257, "mask_true_posit": 257, "mask_y_pr": 67, "maskani": [1039, 1041, 1042, 1043], "masked_arrai": [162, 335, 801, 815], "masked_equ": 113, "maskedarrai": [267, 1037], "mason": 1035, "mass": [163, 243, 368, 442, 798, 996, 1007], "massachusett": 366, "massia": [0, 1042, 1044, 1045], "massich": [1038, 1039, 1040, 1041], "massil": 1037, "massiv": [383, 1018], "masstran": 1040, "master": [52, 283, 317, 371, 1018, 1024], "masurel": 1032, "masvnrarea": [107, 154], "masvnrtyp": [143, 154], "mat": [365, 411], "match": [0, 2, 44, 59, 73, 87, 120, 121, 123, 129, 140, 180, 188, 189, 206, 227, 228, 235, 242, 264, 339, 348, 366, 373, 375, 399, 403, 408, 410, 411, 424, 445, 460, 462, 488, 505, 506, 512, 523, 528, 534, 539, 545, 548, 564, 565, 569, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 626, 627, 628, 629, 657, 663, 664, 684, 685, 699, 703, 704, 705, 713, 715, 719, 735, 779, 780, 781, 787, 845, 846, 850, 854, 868, 869, 870, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 905, 912, 918, 935, 997, 999, 1000, 1002, 1003, 1021, 1022, 1026, 1031, 1037, 1038, 1039, 1041, 1043, 1044, 1047, 1049, 1052], "matchingdist": 699, "matchmak": 1024, "matcovici": 1041, "mate": 346, "matem\u00e1tica": 996, "mateo": 1044, "materi": [54, 104, 183, 244, 262, 319, 384, 386, 538, 579, 895, 896, 1018], "matern": [2, 176, 413, 1042, 1046], "mateusz": [1035, 1042, 1043, 1048, 1049], "math": [102, 143, 149, 151, 154, 163, 183, 242, 263, 264, 309, 317, 368, 389, 765], "mathbb": [120, 137, 170, 406, 1000, 1007, 1015], "mathbf": [170, 339, 408, 996, 1000, 1004, 1005, 1014], "mathcal": [210, 342, 403, 408, 410, 626, 696, 992, 994, 996, 1000, 1044], "mathemat": [38, 134, 183, 192, 196, 222, 260, 266, 363, 368, 371, 385, 388, 403, 405, 408, 409, 413, 546, 547, 554, 561, 634, 645, 655, 793, 794, 799, 863, 907, 910, 913, 915, 996, 1000, 1004, 1010, 1012, 1022, 1024, 1026, 1045], "matheu": 1037, "mathew": [1046, 1050], "mathi": 1044, "mathia": 1045, "mathieu": [0, 393, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1044], "mathrm": [401, 403, 405, 408, 412, 996, 1016], "mathschi": 1043, "mathur": [1038, 1040, 1041, 1046, 1047, 1049], "mathurin": [0, 1042, 1044, 1045], "mathurinm": [1038, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050], "matjansen": 1045, "mato": 1043, "matplotlib": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 104, 105, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 161, 162, 163, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 186, 188, 190, 191, 193, 194, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 235, 236, 237, 238, 240, 241, 242, 243, 245, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 262, 263, 265, 266, 267, 268, 269, 270, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 316, 317, 319, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 365, 367, 371, 375, 378, 389, 396, 434, 499, 630, 631, 697, 698, 700, 701, 702, 807, 824, 919, 995, 1019, 1028, 1040, 1043, 1044, 1045, 1046, 1049, 1050], "matric": [2, 38, 71, 75, 100, 103, 111, 113, 120, 143, 154, 155, 183, 184, 185, 211, 233, 234, 243, 244, 245, 246, 249, 250, 252, 253, 254, 257, 261, 263, 270, 277, 283, 296, 309, 313, 314, 316, 319, 322, 346, 347, 363, 365, 373, 374, 383, 384, 385, 403, 404, 405, 406, 408, 411, 412, 418, 446, 447, 449, 460, 469, 477, 478, 479, 480, 523, 531, 532, 535, 537, 538, 541, 544, 546, 547, 552, 553, 560, 563, 579, 580, 587, 642, 645, 646, 651, 652, 657, 671, 673, 686, 755, 761, 769, 775, 779, 780, 781, 782, 793, 798, 799, 831, 849, 852, 857, 868, 872, 874, 877, 880, 882, 883, 885, 888, 890, 892, 894, 895, 896, 897, 898, 907, 908, 910, 911, 927, 949, 956, 965, 970, 972, 973, 990, 992, 994, 997, 998, 999, 1001, 1003, 1004, 1012, 1014, 1015, 1019, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050, 1052], "matrix": [2, 8, 11, 43, 46, 47, 49, 53, 54, 58, 59, 60, 69, 71, 76, 79, 87, 95, 100, 102, 103, 104, 110, 111, 112, 113, 115, 120, 121, 122, 130, 139, 143, 154, 155, 172, 174, 180, 183, 184, 185, 186, 189, 195, 207, 211, 228, 233, 234, 236, 237, 239, 243, 244, 245, 246, 253, 255, 257, 261, 262, 263, 264, 270, 277, 300, 301, 309, 313, 314, 316, 319, 322, 324, 325, 326, 339, 344, 346, 347, 348, 353, 358, 366, 367, 368, 371, 373, 377, 380, 383, 384, 385, 399, 400, 404, 405, 406, 411, 412, 413, 414, 415, 425, 426, 434, 436, 437, 438, 439, 440, 441, 442, 443, 445, 446, 448, 450, 453, 455, 456, 458, 459, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 478, 479, 480, 481, 483, 484, 485, 489, 493, 494, 497, 498, 499, 500, 501, 502, 505, 506, 507, 516, 518, 520, 521, 523, 524, 526, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 541, 542, 543, 544, 545, 546, 547, 550, 551, 552, 553, 554, 555, 556, 557, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 583, 584, 586, 587, 588, 589, 591, 592, 601, 602, 603, 604, 605, 606, 607, 610, 619, 628, 629, 630, 632, 634, 637, 638, 639, 640, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 699, 700, 701, 702, 703, 707, 712, 713, 714, 715, 716, 718, 723, 730, 731, 732, 735, 739, 740, 741, 742, 755, 756, 759, 760, 761, 762, 764, 765, 767, 768, 769, 771, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 784, 785, 788, 789, 793, 794, 797, 798, 799, 800, 801, 804, 805, 815, 823, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 868, 869, 870, 871, 872, 874, 876, 877, 878, 880, 882, 883, 884, 885, 887, 888, 889, 890, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 922, 927, 929, 930, 931, 932, 937, 946, 947, 948, 949, 950, 953, 955, 956, 964, 965, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 985, 988, 990, 992, 994, 996, 997, 1001, 1002, 1003, 1004, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1021, 1025, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "matrixorz": 1034, "matshow": [59, 60, 99, 161, 300, 499], "matsubara": 1000, "matt": [1034, 1035, 1036, 1041, 1042, 1046, 1047], "matteo": [1035, 1037, 1045], "matter": [129, 208, 254, 339, 354, 403, 404, 410, 564, 667, 675, 677, 996, 1035], "matthew": [2, 370, 376, 533, 744, 1031, 1034, 1038, 1040, 1044, 1045, 1049, 1050], "matthews_corrcoef": [2, 1000, 1031, 1037, 1038, 1045, 1052], "matthia": [1031, 1033, 1034, 1037, 1038, 1039, 1043, 1046], "matthieu": [0, 393, 1031, 1035, 1046], "matti": [1032, 1035, 1036], "matur": [371, 1019, 1020], "mat\u00e9rn": 618, "mat\u00eda": 1045, "maud": 1034, "mauna": 172, "maura": 1042, "mauroantonioserrano": 1046, "mav": 1049, "mavani": 1039, "mavroforaki": [1035, 1037], "max": [44, 48, 50, 51, 52, 53, 56, 58, 63, 64, 65, 67, 68, 70, 75, 79, 85, 91, 95, 100, 104, 105, 108, 110, 113, 120, 123, 127, 130, 134, 136, 141, 142, 148, 150, 152, 154, 155, 156, 158, 159, 163, 169, 171, 172, 179, 180, 183, 185, 193, 196, 198, 200, 203, 208, 209, 212, 219, 221, 223, 228, 236, 240, 243, 244, 261, 262, 263, 274, 275, 282, 283, 285, 289, 290, 294, 296, 298, 300, 303, 305, 306, 308, 314, 315, 319, 320, 327, 329, 343, 352, 353, 358, 403, 404, 405, 408, 465, 466, 467, 468, 469, 470, 471, 472, 473, 509, 533, 552, 553, 554, 555, 556, 557, 560, 561, 562, 604, 626, 630, 631, 647, 648, 668, 671, 673, 679, 691, 692, 696, 699, 704, 705, 758, 793, 794, 801, 862, 863, 874, 875, 877, 884, 891, 892, 913, 914, 915, 916, 996, 998, 1003, 1010, 1014, 1015, 1021, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047], "max_": [403, 1000], "max_abs_": 874, "max_abs_scal": 1010, "max_bin": [143, 151, 154, 257, 309, 315, 316, 317, 322, 410, 558, 559, 1048], "max_categori": [103, 139, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316, 318, 878, 879, 1010, 1045, 1047], "max_class_cmap": 67, "max_class_disp": 67, "max_cluster_s": 442, "max_column": 223, "max_degre": [155, 244, 880, 1044], "max_depth": [47, 64, 68, 135, 136, 139, 141, 142, 143, 144, 145, 146, 147, 148, 151, 152, 153, 154, 156, 178, 185, 226, 244, 257, 260, 275, 280, 309, 314, 315, 317, 319, 322, 350, 352, 353, 384, 385, 402, 410, 550, 551, 554, 555, 556, 557, 558, 559, 561, 562, 563, 711, 804, 805, 829, 913, 914, 915, 916, 917, 918, 919, 989, 1007, 1016, 1040, 1042], "max_df": [55, 264, 328, 346, 347, 586, 589, 1042, 1049], "max_dist": 236, "max_doc_update_it": 533, "max_ep": [403, 446, 451, 452, 453], "max_error": [2, 399, 1000, 1040, 1050], "max_estim": 138, "max_featur": [55, 64, 68, 138, 141, 143, 148, 150, 151, 154, 156, 185, 241, 244, 257, 260, 264, 275, 309, 314, 317, 319, 322, 352, 353, 410, 412, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 586, 589, 595, 913, 914, 915, 916, 989, 996, 1031, 1033, 1034, 1038, 1039, 1042, 1045, 1048], "max_features_": [556, 557, 595, 913, 914, 915, 916, 1045], "max_fpr": [789, 1000, 1039], "max_fun": [243, 862, 863, 1041], "max_i": [240, 1002], "max_idf": 1044, "max_it": [44, 48, 52, 53, 55, 56, 63, 65, 68, 103, 104, 105, 120, 123, 139, 140, 143, 149, 151, 154, 155, 160, 178, 183, 184, 190, 192, 195, 201, 213, 214, 217, 218, 220, 225, 226, 228, 230, 233, 234, 243, 244, 245, 246, 248, 249, 250, 251, 253, 254, 257, 261, 262, 263, 270, 276, 277, 293, 298, 299, 300, 301, 309, 313, 314, 315, 316, 317, 322, 324, 325, 326, 332, 346, 347, 377, 385, 410, 415, 436, 439, 443, 444, 445, 450, 455, 457, 467, 468, 474, 478, 479, 480, 528, 529, 530, 532, 533, 534, 535, 536, 537, 540, 542, 543, 544, 545, 558, 559, 626, 637, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 671, 673, 675, 676, 677, 678, 679, 681, 682, 686, 688, 689, 690, 692, 693, 694, 798, 799, 815, 854, 862, 863, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 990, 992, 996, 1003, 1004, 1013, 1014, 1032, 1035, 1038, 1039, 1040, 1041, 1043, 1045, 1046, 1047, 1048, 1049], "max_iter": 325, "max_iter_list": 149, "max_iter_predict": 609, "max_j": [645, 651], "max_leaf_nod": [64, 134, 139, 140, 141, 143, 148, 151, 154, 156, 185, 206, 244, 257, 275, 309, 314, 315, 317, 319, 322, 352, 353, 410, 554, 555, 556, 557, 558, 559, 561, 562, 563, 913, 914, 915, 916, 1034, 1040, 1042], "max_n": [264, 586, 587, 589, 1031], "max_n_alpha": [650, 654], "max_nbyt": 967, "max_no_improv": [77, 94, 97, 445, 534, 535, 536, 543, 1045, 1046], "max_nwil": 264, "max_patch": [83, 411, 581, 582, 1039], "max_resourc": [146, 275, 804, 805, 989], "max_resources_": [804, 805], "max_sampl": [64, 141, 150, 154, 156, 178, 185, 244, 275, 319, 410, 552, 553, 554, 555, 560, 561, 562, 633, 1041, 1044, 1047, 1052], "max_samples_": 560, "max_skip": 670, "max_subpopul": [222, 678, 1045], "max_thread": [359, 372], "max_train_s": [44, 53, 407, 822, 1038], "max_trial": [670, 996], "max_val": 935, "max_valu": [626, 1042, 1043, 1050], "max_x": 240, "maxabs_scal": [2, 385, 874, 1039], "maxabsscal": [2, 360, 399, 869, 890, 990, 1010, 1036, 1039, 1040, 1041, 1042, 1047, 1048, 1052], "maxent": [2, 657, 658, 996], "maxent_du": 657, "maxi": 1046, "maxim": [115, 116, 120, 126, 130, 146, 155, 172, 190, 244, 253, 254, 257, 264, 268, 272, 273, 276, 277, 293, 308, 314, 335, 339, 350, 353, 368, 385, 400, 402, 403, 406, 408, 410, 412, 413, 546, 592, 609, 610, 643, 644, 647, 668, 678, 679, 720, 801, 804, 805, 815, 874, 880, 890, 994, 996, 999, 1000, 1003, 1005, 1015, 1034, 1036, 1041, 1044, 1046, 1049], "maxima": 403, "maximesaur": [1046, 1047], "maximis": [249, 291, 994, 1003], "maximum": [2, 44, 48, 51, 64, 65, 70, 73, 90, 103, 104, 109, 110, 111, 112, 113, 122, 134, 136, 139, 140, 141, 142, 143, 149, 151, 154, 155, 156, 160, 168, 170, 173, 174, 180, 183, 185, 189, 192, 196, 242, 243, 244, 253, 257, 261, 262, 263, 270, 273, 275, 285, 289, 290, 296, 303, 309, 314, 317, 319, 322, 330, 331, 333, 334, 337, 347, 350, 352, 353, 358, 366, 376, 377, 384, 385, 400, 401, 403, 405, 406, 408, 410, 411, 413, 414, 415, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 450, 453, 455, 457, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 478, 479, 480, 495, 506, 508, 509, 510, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 549, 550, 551, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 581, 582, 595, 609, 626, 630, 631, 634, 636, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 670, 671, 673, 675, 676, 677, 678, 681, 682, 684, 685, 686, 688, 689, 690, 692, 693, 694, 716, 745, 782, 798, 801, 804, 805, 807, 815, 822, 829, 854, 861, 862, 863, 869, 870, 874, 875, 877, 880, 881, 882, 884, 893, 894, 899, 900, 901, 902, 905, 906, 910, 913, 914, 915, 916, 917, 919, 928, 935, 989, 995, 996, 997, 999, 1000, 1002, 1003, 1004, 1006, 1010, 1014, 1015, 1016, 1021, 1038, 1039, 1041, 1042, 1045, 1046, 1048, 1051], "maximumdepth": 156, "maximumpolynomi": [155, 244], "maxin": [1041, 1042], "maxsiz": 616, "maxval": [508, 510], "maxwel": [0, 361, 1041, 1044, 1045, 1046, 1047, 1050], "maxwelllzh": 1046, "may_share_memori": 1048, "mayank": 1051, "mayb": [106, 300, 375, 411, 1015, 1020], "maydiff": 184, "mayer": [410, 1000, 1043, 1045, 1048, 1049], "mayer2022": 410, "mayilvahanan": 403, "mayorov": [1034, 1035, 1036, 1037], "mayur": 1039, "mazari": 1039, "mb": [48, 236, 244, 245, 257, 261, 263, 314, 346, 348, 366, 377, 493, 907, 908, 909, 910, 911, 1015, 1021, 1027], "mbilling": 1036, "mbillingr": 1041, "mbk": [77, 97], "mbk_means_cluster_cent": 97, "mbk_means_label": 97, "mbk_means_labels_uniqu": 77, "mblondel": [365, 505], "mbnmf": 55, "mc4229": 1042, "mc_clf": 1007, "mcar": 149, "mcc": [2, 744, 1000, 1045], "mccall": 102, "mccallum": [840, 1002], "mccarthi": [0, 355, 1031, 1039], "mcclish": [272, 789], "mcconaghi": 1024, "mccullagh": 996, "mcculloh": [1036, 1037], "mcd": [2, 52, 111, 112, 405, 465, 470], "mcdermott": [1033, 1048], "mcdonald": 52, "mcdowel": 1039, "mcfadden": 1000, "mcfee": [1036, 1037], "mcgibbon": [1033, 1034, 1037], "mcgushion": 1040, "mcinn": [403, 1037, 1038, 1039, 1041, 1042, 1047], "mcivor": [1046, 1047], "mcm": [755, 1000], "mcm_": 755, "mcmahon": 1048, "mcsherri": [727, 757, 1000], "mctiernan": [1045, 1046], "mcve": [376, 383], "md": [2, 225, 226, 227, 228, 375, 379, 687, 688, 692, 694, 1025, 1026, 1031, 1043, 1046, 1051, 1052], "md5": 1043, "md5_checksum": 365, "md_scale": 225, "md_scaling_class": 225, "md_scaling_nonmetr": 225, "mdarii": 1047, "mdbecker": 1024, "mdi": [140, 141, 147, 180, 181, 186, 410, 412, 460, 493, 561, 629, 633, 831, 865, 879, 1008, 1021], "mdi_import": [185, 186], "mds_method": 225, "me": 346, "me1": 280, "me2": 280, "me3": 280, "mea": 91, "mean": [2, 44, 45, 48, 51, 52, 53, 54, 55, 56, 58, 62, 63, 64, 65, 71, 72, 73, 74, 75, 77, 79, 82, 83, 86, 87, 88, 93, 103, 104, 110, 111, 112, 113, 116, 118, 120, 123, 124, 125, 127, 134, 136, 137, 139, 140, 142, 143, 146, 147, 149, 150, 151, 154, 155, 156, 162, 163, 167, 172, 173, 174, 176, 178, 180, 183, 184, 191, 192, 193, 198, 199, 200, 201, 204, 206, 208, 212, 214, 220, 221, 222, 223, 228, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 242, 243, 244, 246, 248, 249, 250, 251, 253, 254, 257, 259, 260, 261, 262, 263, 264, 265, 266, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 294, 301, 303, 306, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 326, 327, 335, 338, 339, 342, 344, 345, 346, 348, 352, 354, 358, 363, 365, 366, 368, 369, 371, 372, 373, 375, 376, 377, 379, 380, 384, 385, 394, 399, 400, 401, 405, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 420, 426, 433, 434, 435, 436, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 454, 455, 456, 457, 458, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 484, 498, 499, 509, 516, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 581, 586, 587, 588, 589, 592, 595, 600, 604, 605, 606, 607, 609, 610, 612, 621, 626, 627, 629, 631, 632, 633, 634, 638, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 683, 688, 689, 690, 691, 692, 693, 694, 695, 702, 704, 705, 707, 709, 712, 713, 716, 717, 725, 727, 730, 731, 732, 737, 738, 739, 742, 743, 746, 747, 748, 749, 750, 751, 752, 753, 754, 758, 775, 779, 780, 782, 784, 785, 786, 788, 789, 791, 792, 793, 794, 796, 798, 799, 800, 801, 804, 805, 807, 815, 819, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 851, 852, 853, 855, 856, 858, 859, 861, 862, 863, 864, 866, 867, 869, 870, 874, 875, 877, 881, 883, 885, 886, 891, 893, 894, 896, 898, 900, 901, 905, 906, 907, 908, 910, 911, 913, 914, 915, 916, 922, 927, 931, 932, 934, 973, 974, 980, 984, 989, 990, 991, 994, 996, 997, 999, 1002, 1003, 1004, 1005, 1007, 1008, 1013, 1014, 1015, 1016, 1021, 1024, 1025, 1026, 1031, 1032, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050, 1051], "mean_": [121, 267, 529, 530, 531, 536, 538, 540, 885, 1010, 1039], "mean_absolute_error": [2, 53, 206, 208, 223, 399, 1000, 1032, 1034, 1050, 1051], "mean_absolute_percentage_error": [2, 53, 143, 399, 1000, 1043, 1045, 1050, 1051], "mean_auc": 273, "mean_change_tol": 533, "mean_fit_tim": [140, 143, 262, 285, 801, 815], "mean_fpr": 273, "mean_gamma_devi": [2, 399, 1000, 1041, 1050, 1051], "mean_l1_ratio": 1034, "mean_pinball_loss": [2, 53, 146, 149, 315, 399, 996, 1000, 1044, 1051], "mean_pinball_loss_95p": 1000, "mean_poisson_devi": [2, 206, 399, 1000, 1041, 1050, 1051], "mean_precis": 261, "mean_precision_": 798, "mean_precision_prior": [248, 254, 798], "mean_precision_prior_": 798, "mean_predict": [53, 174], "mean_predictions_gpr": 167, "mean_prior": 798, "mean_prior_": 798, "mean_recal": 261, "mean_scor": [104, 143, 272, 275, 347, 1044], "mean_score_tim": [140, 261, 264, 801, 815], "mean_shift": [2, 1036, 1039], "mean_square_error": 1032, "mean_squared_error": [2, 47, 144, 146, 147, 204, 206, 208, 210, 212, 223, 354, 399, 410, 753, 1000, 1032, 1034, 1041, 1042, 1048, 1050, 1051], "mean_squared_log_error": [2, 399, 711, 1000, 1038, 1044, 1048, 1050, 1051], "mean_test_": 267, "mean_test_precis": [261, 267], "mean_test_recal": 261, "mean_test_scor": [103, 104, 105, 113, 140, 162, 253, 262, 263, 264, 271, 274, 275, 285, 335, 468, 592, 801, 815, 989, 1037, 1044], "mean_tim": 1037, "mean_tpr": [272, 273], "mean_train_precis": [801, 815], "mean_train_scor": [262, 801, 815, 1037], "mean_tweedie_devi": [2, 223, 399, 1000, 1041, 1050, 1051], "mean_variance_axi": [2, 380, 1037, 1044], "mean_y_pr": 172, "meanand": 172, "meaning": [73, 143, 186, 200, 230, 292, 320, 348, 400, 402, 407, 411, 412, 545, 730, 731, 739, 784, 785, 788, 854, 1004, 1014, 1015, 1031, 1047], "meaningfulli": [206, 1000], "meaningless": [184, 411, 907, 910, 1034, 1038, 1051], "meanoutput": 264, "means_": [71, 248, 249, 250, 251, 253, 254, 546, 547, 798, 799], "means_init": [250, 251, 253, 799], "meanshift": [2, 79, 316, 403, 436, 1034, 1035, 1036, 1039, 1041, 1042, 1045, 1046, 1047, 1049], "meansonli": 264, "meansreplac": 326, "meansus": 154, "meant": [90, 149, 163, 242, 320, 366, 371, 380, 470, 490, 676, 851, 924, 967, 968, 988, 990, 1004, 1006, 1010, 1032], "meantim": [379, 1050], "meanwhil": [383, 1015], "measur": [2, 28, 44, 47, 48, 50, 51, 53, 58, 63, 64, 73, 74, 82, 91, 93, 94, 121, 137, 138, 141, 146, 150, 156, 163, 167, 172, 180, 182, 183, 184, 185, 188, 198, 202, 205, 206, 210, 212, 223, 244, 255, 261, 263, 269, 270, 275, 308, 314, 319, 328, 339, 346, 347, 352, 353, 358, 366, 368, 373, 377, 385, 400, 405, 407, 408, 409, 410, 411, 445, 448, 458, 495, 512, 535, 537, 544, 548, 554, 555, 556, 557, 560, 561, 562, 602, 605, 606, 610, 626, 630, 657, 690, 692, 698, 702, 704, 705, 707, 709, 712, 713, 716, 717, 720, 726, 727, 728, 730, 732, 737, 738, 740, 741, 744, 748, 756, 757, 758, 783, 784, 785, 787, 788, 789, 790, 793, 796, 826, 828, 831, 851, 882, 894, 913, 914, 915, 916, 922, 990, 996, 998, 1003, 1005, 1006, 1008, 1014, 1016, 1021, 1031, 1034, 1036, 1037, 1039, 1041], "mechan": [100, 239, 321, 343, 346, 359, 371, 373, 397, 401, 403, 411, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 800, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 998, 1016, 1024, 1050], "mecopur": 1048, "med": [58, 102, 272, 366, 1010], "meda": [107, 183, 1000], "media": [375, 403, 1024], "median": [2, 44, 53, 73, 103, 107, 111, 112, 146, 154, 156, 178, 179, 183, 185, 208, 212, 222, 234, 242, 244, 303, 313, 314, 315, 316, 352, 366, 405, 410, 412, 436, 450, 454, 457, 470, 549, 551, 555, 562, 595, 626, 629, 634, 669, 670, 678, 721, 754, 852, 883, 895, 914, 916, 990, 1010, 1016, 1034, 1035, 1052], "median_absolute_error": [2, 107, 183, 399, 1000, 1035, 1041, 1043, 1052], "median_predict": 53, "median_unbias": 870, "medic": [266, 407, 712, 996, 1024], "medicin": [266, 712, 1000], "medina": [1031, 1033], "medinc": [303, 314, 366, 486], "medium": [43, 180, 238, 310, 321, 335, 403, 642, 879, 993, 996], "medoid": 442, "medoids_": 442, "medri": 1034, "meekail": [0, 392, 1045, 1046, 1047, 1048, 1050, 1052], "meena": 1051, "meer": [96, 403, 444], "meet": [243, 371, 383, 386, 412, 569, 601, 862, 863, 902, 1013, 1024, 1039, 1040, 1041], "megabyt": 1045, "megasari": 1043, "meghann": [1039, 1041], "mehak": 1038, "mehdi": [1035, 1044], "mehgarg": 1046, "mehmet": [1038, 1044], "mehmetcanakbai": 1046, "mehrdad": 1045, "mehta": [1035, 1036, 1037, 1039, 1040, 1041, 1042, 1046, 1047], "mehul": 1038, "mei": [1036, 1041], "meier": 1038, "meila": 403, "mein": 411, "meinshausen": 194, "meirel": 1042, "meketon": 1038, "mekinda": 1051, "melani": [1024, 1038, 1039], "melderi": 1039, "melemo2": 1045, "meli": [1044, 1045, 1046], "melissa": 1039, "mellon": 900, "melnik": 1046, "melsyt": [1039, 1040], "mem": [87, 377, 505, 506, 1021], "member": [0, 346, 347, 366, 371, 374, 386, 403, 438, 442, 444, 489, 579, 657, 658, 665, 666, 667, 675, 676, 677, 704, 705, 715, 717, 732, 737, 738, 758, 787, 796, 801, 905, 996, 1003, 1018, 1031, 1043, 1046], "membership": [31, 89, 386, 400, 403, 414, 440, 508, 509, 510, 511, 512, 516, 519, 1015], "memit": 377, "memmap": [359, 366, 385, 408, 505, 531, 1039, 1048], "memoiz": [104, 366, 385], "memor": 185, "memori": [2, 48, 87, 103, 104, 124, 139, 143, 154, 155, 160, 183, 184, 185, 233, 234, 243, 244, 246, 253, 257, 261, 262, 263, 264, 270, 277, 285, 301, 309, 312, 313, 314, 316, 317, 320, 322, 346, 347, 348, 359, 360, 365, 371, 374, 380, 383, 385, 397, 403, 404, 407, 408, 411, 414, 415, 437, 438, 439, 440, 441, 442, 443, 445, 446, 450, 453, 455, 464, 469, 475, 493, 500, 505, 506, 530, 531, 532, 535, 538, 554, 555, 561, 562, 579, 580, 586, 587, 589, 645, 646, 647, 651, 652, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 675, 676, 677, 678, 679, 680, 683, 779, 780, 781, 782, 801, 807, 815, 824, 826, 827, 828, 829, 832, 833, 834, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 865, 866, 870, 883, 885, 895, 896, 898, 903, 905, 906, 913, 914, 915, 916, 932, 969, 984, 996, 1002, 1003, 1010, 1012, 1013, 1015, 1016, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "memory_profil": [377, 389, 396], "memoryerror": [1039, 1043], "memoryview": 372, "memorywis": 397, "men": 368, "menes": 1046, "meng": [1031, 1032, 1035, 1037, 1038], "menoci": 1049, "menon": 401, "mensch": [1036, 1037, 1038, 1039], "mention": [88, 116, 134, 223, 277, 313, 354, 358, 371, 373, 375, 376, 383, 403, 552, 696, 897, 898, 989, 994, 996, 1020, 1023, 1024, 1038, 1039, 1040], "menu": 389, "menuet": 1040, "mercer": 992, "mere": [44, 263, 385, 832, 1014], "merg": [76, 80, 84, 100, 315, 369, 371, 374, 379, 383, 386, 403, 436, 437, 438, 441, 442, 459, 821, 1031, 1038], "merit": [371, 375, 386], "meritocrat": 386, "merritt": 1037, "mersenn": 1042, "merz": 401, "mesfer": 1044, "mesh": [91, 142, 152, 169, 237, 291, 298, 305, 329, 331], "meshgrid": [51, 64, 77, 91, 111, 142, 152, 168, 169, 170, 171, 173, 184, 216, 217, 218, 219, 230, 232, 252, 289, 296, 298, 305, 306, 329, 334, 335, 339, 340, 343, 630], "meshulam": 1034, "meson": [369, 374, 389, 396, 1050], "mess": 1045, "messag": [74, 79, 95, 102, 103, 104, 120, 239, 243, 244, 253, 257, 261, 262, 275, 321, 346, 347, 366, 369, 370, 374, 375, 376, 379, 380, 403, 436, 450, 464, 536, 540, 545, 571, 626, 712, 801, 804, 805, 807, 815, 824, 829, 832, 834, 854, 862, 863, 903, 930, 931, 932, 935, 938, 964, 983, 986, 988, 1010, 1031, 1035, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "met": [239, 373, 412, 531, 538, 626, 670, 822, 996, 1000, 1039], "meta": [2, 7, 31, 32, 89, 102, 133, 156, 165, 180, 206, 268, 272, 277, 279, 282, 318, 319, 321, 350, 352, 354, 365, 369, 373, 375, 383, 385, 394, 401, 412, 413, 423, 433, 439, 440, 443, 445, 461, 478, 479, 480, 493, 530, 533, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 573, 588, 595, 601, 608, 609, 610, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 800, 801, 802, 803, 808, 810, 817, 819, 823, 828, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 865, 868, 870, 871, 872, 877, 884, 885, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 922, 954, 958, 961, 988, 989, 1001, 1020, 1021, 1022, 1026, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1042, 1043, 1045, 1046, 1048], "meta_clf_sample_weight": 239, "meta_est": 239, "meta_meta_est": 239, "metaclassifi": [239, 240], "metaclassifierifit": 239, "metadata": [2, 103, 132, 139, 143, 154, 160, 180, 183, 185, 192, 231, 233, 234, 243, 244, 246, 257, 264, 270, 277, 309, 313, 316, 320, 322, 347, 365, 366, 373, 397, 417, 420, 423, 426, 427, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 484, 485, 493, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 800, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 957, 958, 959, 960, 961, 983, 1019, 1020, 1021, 1026, 1047], "metadata_rout": [2, 239, 394, 433, 439, 440, 443, 445, 461, 478, 479, 480, 530, 533, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 588, 609, 610, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 800, 802, 803, 808, 810, 819, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 865, 868, 870, 871, 872, 877, 884, 885, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 957, 958, 959, 960, 961], "metadatarequest": [2, 239, 417, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 465, 466, 467, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 554, 555, 556, 557, 558, 559, 561, 562, 563, 579, 580, 581, 586, 587, 588, 589, 590, 593, 594, 596, 597, 598, 601, 608, 609, 610, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 648, 649, 651, 653, 655, 656, 657, 659, 661, 663, 665, 666, 667, 668, 669, 671, 673, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 802, 803, 806, 808, 809, 810, 811, 814, 816, 817, 818, 819, 820, 821, 822, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 958, 960, 1048], "metadatarout": [2, 239, 433, 460, 461, 468, 552, 553, 560, 564, 565, 566, 567, 591, 592, 595, 600, 626, 646, 650, 652, 654, 658, 660, 662, 664, 670, 672, 674, 800, 801, 804, 805, 815, 823, 833, 834, 835, 836, 837, 838, 839, 864, 865, 902, 960, 1048], "metaestim": [2, 89, 385, 902, 922, 962, 1035, 1044, 1045, 1048], "metaestimatormixin": [2, 239], "metaireau": [1031, 1034], "metal": 399, "metaregressor": 239, "metatransfom": 1036, "meteorologi": 401, "meth": [64, 103, 139, 141, 143, 150, 154, 155, 156, 172, 183, 184, 185, 234, 244, 257, 275, 309, 313, 316, 319], "meth_nam": 307, "method": [2, 5, 8, 14, 18, 31, 33, 37, 44, 48, 52, 53, 56, 58, 59, 62, 63, 64, 65, 67, 72, 73, 75, 76, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 92, 94, 98, 100, 101, 103, 104, 110, 111, 114, 116, 120, 123, 125, 128, 129, 130, 132, 134, 139, 141, 143, 147, 151, 154, 155, 156, 158, 159, 163, 178, 183, 184, 185, 188, 197, 198, 200, 207, 213, 222, 224, 226, 228, 229, 230, 232, 233, 234, 238, 239, 240, 242, 243, 244, 245, 246, 247, 250, 253, 257, 261, 262, 263, 264, 265, 268, 270, 271, 272, 275, 277, 280, 283, 289, 290, 292, 301, 303, 307, 309, 310, 312, 313, 314, 315, 316, 317, 319, 321, 322, 328, 338, 346, 347, 348, 353, 354, 358, 359, 360, 363, 368, 371, 372, 373, 377, 378, 380, 383, 384, 388, 394, 399, 400, 401, 402, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 417, 418, 420, 421, 422, 425, 426, 427, 428, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 453, 455, 458, 460, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 501, 509, 511, 519, 522, 525, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 608, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 699, 705, 710, 711, 723, 732, 733, 736, 737, 742, 743, 764, 769, 770, 775, 779, 784, 789, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 813, 815, 818, 819, 820, 821, 822, 823, 824, 825, 826, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 893, 894, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 920, 922, 925, 934, 938, 949, 957, 958, 959, 960, 961, 962, 967, 969, 983, 984, 987, 988, 989, 990, 994, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1008, 1010, 1012, 1013, 1014, 1015, 1016, 1017, 1019, 1021, 1024, 1025, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "method_map": [239, 958], "method_max_it": [542, 543, 1041], "method_nam": [239, 958, 961], "methodmap": [2, 239, 958], "methodmetadatarequest": 957, "methodol": [996, 1010], "methodolog": [407, 1023], "methodologi": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316, 538, 878, 990, 1000, 1024], "methodpair": 959, "metric": [2, 13, 44, 46, 47, 51, 53, 58, 59, 60, 62, 63, 64, 67, 69, 72, 74, 77, 79, 81, 82, 85, 91, 93, 97, 102, 103, 104, 107, 113, 134, 139, 141, 144, 145, 147, 148, 149, 154, 155, 156, 160, 163, 165, 168, 178, 180, 182, 183, 185, 194, 198, 203, 204, 206, 208, 210, 212, 223, 225, 226, 227, 228, 233, 236, 237, 242, 244, 245, 253, 255, 256, 259, 260, 261, 262, 263, 264, 266, 270, 272, 273, 275, 277, 282, 283, 285, 293, 296, 301, 303, 308, 312, 313, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 327, 328, 346, 347, 354, 358, 363, 366, 371, 373, 383, 384, 385, 388, 394, 398, 401, 402, 408, 409, 410, 413, 414, 420, 433, 437, 440, 441, 442, 446, 450, 451, 452, 453, 458, 465, 517, 532, 546, 547, 548, 550, 552, 554, 555, 556, 558, 561, 562, 564, 566, 576, 609, 619, 627, 630, 633, 637, 638, 639, 640, 641, 642, 657, 662, 665, 667, 673, 674, 675, 687, 688, 690, 692, 694, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 800, 801, 804, 805, 815, 822, 823, 826, 827, 828, 833, 834, 835, 836, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 862, 871, 877, 900, 901, 905, 907, 910, 913, 915, 922, 990, 992, 995, 997, 1001, 1003, 1006, 1008, 1019, 1021, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038], "metric_kwarg": [780, 781], "metric_obj": 699, "metric_param": [414, 440, 442, 446, 451, 452, 453, 687, 688, 692, 847, 848, 849, 850, 851, 853, 855, 856, 857, 858, 859, 1035, 1038, 1045], "metricevalu": [103, 104, 244, 253, 257, 261, 262, 263], "metsi": [840, 1002], "metzen": [0, 393, 1031, 1034, 1035, 1036, 1037], "mexican": 129, "meyer89": 1042, "mferrari3": [1039, 1040], "mgrid": 54, "mhadolkar": [1050, 1051], "mhg": 1036, "mi": [65, 73, 158, 403, 605, 606, 704, 756, 758, 990, 1000, 1014], "mia": 1046, "miao": 1044, "mib": [358, 464, 903], "mic": [886, 1010], "micah": 1041, "micci": [886, 1010], "mice": [365, 626, 990], "miceprotein": 365, "michael": [368, 401, 403, 446, 627, 636, 691, 798, 990, 996, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1042, 1043, 1045, 1046, 1048, 1049, 1050, 1051], "michal": [1035, 1038, 1044, 1045], "michali": 403, "michalkrawczyk": [1044, 1045], "micha\u0142": 1042, "micha\u0142owski": 1040, "michel": [0, 393, 1031, 1033, 1034, 1036, 1038, 1045, 1046], "michelbach": 1035, "michiaki": 1037, "micka\u00ebl": [1039, 1040], "micky774": [1045, 1046], "micro": [50, 296, 328, 375, 707, 713, 730, 731, 739, 784, 785, 788, 789, 1000, 1031, 1039, 1040, 1046, 1049], "micro_roc_auc_ovr": 272, "microarrai": [400, 447, 510, 627, 990], "microcontrol": 1019, "microphon": 121, "microryzomi": [51, 296, 366, 495], "microryzomys_minutu": 495, "microryzomys_minutus_0": 51, "microsecond": 358, "microsoft": [0, 52, 372, 389], "mid": [64, 335, 1000, 1002], "middl": [44, 62, 71, 93, 125, 194, 343, 368, 1007, 1010], "mideast": [58, 366], "midina": 1038, "midnight": 44, "midpoint": 335, "midpointnorm": 335, "midvidi": 1044, "midwest": [163, 368], "might": [44, 45, 53, 64, 68, 77, 79, 93, 95, 102, 103, 139, 142, 143, 149, 151, 152, 154, 155, 160, 165, 172, 173, 175, 176, 183, 184, 185, 188, 206, 223, 232, 233, 234, 244, 246, 257, 262, 263, 265, 269, 277, 286, 299, 301, 309, 313, 314, 316, 317, 320, 321, 322, 339, 344, 354, 358, 359, 365, 369, 371, 372, 373, 375, 376, 377, 383, 385, 386, 389, 397, 401, 402, 404, 407, 408, 409, 410, 411, 413, 428, 433, 439, 484, 493, 498, 500, 505, 512, 520, 533, 552, 553, 554, 558, 559, 561, 577, 578, 580, 609, 610, 626, 649, 653, 654, 655, 657, 658, 675, 677, 692, 758, 795, 803, 804, 805, 818, 821, 829, 854, 870, 885, 898, 917, 919, 921, 923, 927, 931, 932, 949, 969, 989, 990, 992, 994, 996, 997, 999, 1000, 1002, 1003, 1007, 1008, 1010, 1015, 1016, 1032, 1034, 1039, 1040, 1042, 1045, 1046, 1047, 1048, 1052], "mignon": [1031, 1034, 1035, 1038], "migrat": [371, 375, 1031, 1051], "miguel": [1041, 1049, 1050, 1051, 1052], "miguelbarao": 1041, "miguelcsilva": 1049, "mihael": [403, 446, 453], "mihevc": 1041, "mihir": 1051, "mike": 1038, "mikebenfield": 1038, "miketip": [531, 538], "mikhail": [1032, 1033, 1034, 1037, 1038, 1046, 1047], "miki": [1048, 1049], "mikulski": 1042, "milajev": 1035, "milan": 1043, "milana2": 1045, "mileag": 358, "milen": 1038, "mileston": 375, "militari": 102, "mill": 1041, "millawel": 1045, "miller": [366, 1039, 1040, 1044], "million": [77, 89, 172, 188, 411, 692, 997, 1015, 1024, 1045, 1046], "millisecond": 321, "millman": [0, 393, 1040, 1047, 1048], "milman": 1039, "miln": 366, "miltenberg": 1046, "milton": 1048, "milutinov": 1040, "mimic": [67, 178, 206, 346, 819], "mimicri": 346, "min": [44, 50, 51, 52, 53, 54, 63, 65, 68, 85, 91, 104, 107, 120, 123, 134, 136, 142, 145, 146, 150, 152, 155, 163, 169, 171, 172, 173, 179, 183, 193, 196, 198, 200, 203, 208, 209, 212, 226, 236, 237, 240, 243, 244, 262, 282, 289, 290, 296, 298, 300, 303, 305, 306, 308, 320, 329, 343, 380, 403, 404, 406, 408, 478, 479, 481, 509, 531, 532, 535, 537, 538, 546, 547, 560, 626, 630, 631, 653, 654, 655, 656, 675, 677, 681, 682, 704, 758, 781, 804, 805, 854, 862, 863, 875, 884, 891, 949, 966, 991, 996, 1000, 1003, 1010, 1037, 1040, 1042, 1043, 1046], "min_": [315, 403, 410, 875, 996, 1010, 1014, 1015, 1016], "min_arg": 53, "min_batch_s": 952, "min_bin_freq": [444, 457], "min_c": 1002, "min_categori": [841, 1043], "min_cluster_s": [79, 98, 318, 403, 442, 446, 452, 1040], "min_degre": [155, 244, 880, 1044], "min_df": [55, 58, 102, 264, 328, 346, 347, 411, 586, 589, 1031, 1033, 1042, 1049], "min_dist": 236, "min_estim": 138, "min_faces_per_person": [46, 366, 491], "min_features_to_select": [162, 592, 1039], "min_frequ": [103, 139, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316, 318, 878, 879, 1010, 1045, 1047], "min_grad_norm": [692, 1037], "min_i": 240, "min_idf": 1044, "min_impurity_decreas": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353, 554, 555, 556, 557, 561, 562, 563, 913, 914, 915, 916, 1016, 1038], "min_impurity_split": 1038, "min_max_axi": 1040, "min_max_scal": 1010, "min_n": [264, 586, 587, 589, 1031], "min_n_compon": 236, "min_po": [2, 380], "min_resourc": [146, 275, 804, 805, 989], "min_resources_": [804, 805], "min_sampl": [79, 82, 98, 383, 385, 403, 414, 440, 442, 446, 451, 452, 453, 670, 996, 1040, 1044], "min_sample_split": 1046, "min_samples_leaf": [64, 139, 140, 141, 143, 145, 146, 151, 154, 156, 185, 244, 257, 275, 309, 312, 314, 315, 317, 319, 322, 350, 352, 353, 410, 554, 555, 556, 557, 558, 559, 561, 562, 563, 913, 914, 915, 916, 1016, 1037], "min_samples_split": [64, 139, 141, 146, 147, 148, 154, 156, 185, 244, 267, 275, 304, 314, 319, 352, 353, 410, 554, 555, 556, 557, 561, 562, 563, 804, 805, 913, 914, 915, 916, 989, 1016, 1037], "min_val": [928, 935], "min_valu": [626, 1042, 1043, 1050], "min_w": 996, "min_weight_fraction_leaf": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353, 554, 555, 556, 557, 561, 562, 563, 913, 914, 915, 916, 1016, 1034, 1037, 1038], "min_x": 240, "mina": [1041, 1042], "mincovdet": [2, 111, 112, 405, 465, 466, 469, 471, 472, 1006, 1031, 1038, 1050, 1051], "mind": [125, 149, 182, 183, 184, 223, 307, 308, 346, 347, 354, 371, 397, 405, 407, 410, 645, 646, 704, 996, 1015, 1019], "minden": [403, 448, 458], "mine": [0, 263, 347, 366, 403, 414, 440, 508, 560, 720, 735, 741, 784, 852, 996, 1000, 1006, 1012], "ming": [560, 1006, 1035, 1039, 1040, 1041, 1045], "minghui": [1038, 1039], "mingw": 1034, "minh": 1039, "mini": [2, 48, 97, 120, 316, 360, 385, 411, 436, 438, 443, 445, 447, 449, 528, 530, 533, 534, 535, 536, 537, 539, 540, 542, 543, 1004, 1005, 1031, 1042, 1044], "mini_batch": [447, 449], "minibatch": [48, 79, 243, 403, 408, 445, 531, 675, 861, 862, 863, 1031], "minibatch_iter": 48, "minibatch_kmean": 347, "minibatch_s": [48, 360], "minibatchdictionarylearn": [2, 120, 123, 360, 408, 528, 535, 539, 542, 543, 1032, 1034, 1041, 1042, 1044, 1045, 1046, 1047, 1048, 1051], "minibatchkmean": [2, 58, 72, 74, 78, 79, 83, 91, 92, 94, 96, 180, 347, 360, 403, 408, 436, 438, 443, 509, 780, 1021, 1032, 1037, 1038, 1039, 1042, 1043, 1044, 1045, 1046, 1047, 1048], "minibatchnmf": [2, 55, 360, 408, 1045, 1047, 1048, 1049], "minibatchsparsepca": [2, 528, 530, 534, 537, 539, 540, 542, 543, 1031, 1032, 1042, 1044, 1045, 1046, 1047, 1048], "miniforg": 379, "miniforge3": 379, "minim": [2, 44, 52, 53, 64, 65, 90, 99, 103, 109, 110, 139, 141, 146, 154, 155, 156, 167, 172, 175, 183, 185, 190, 200, 204, 206, 208, 210, 213, 223, 225, 233, 234, 235, 236, 244, 246, 248, 253, 257, 262, 264, 272, 273, 275, 277, 301, 303, 312, 313, 314, 315, 316, 319, 322, 332, 339, 342, 350, 352, 353, 370, 371, 374, 379, 383, 385, 397, 401, 403, 405, 408, 410, 436, 437, 441, 442, 446, 459, 535, 537, 544, 554, 555, 556, 557, 561, 562, 607, 609, 610, 640, 645, 648, 656, 657, 658, 666, 670, 671, 673, 677, 678, 686, 692, 694, 695, 749, 781, 852, 854, 863, 881, 893, 899, 913, 914, 915, 916, 996, 997, 1000, 1003, 1004, 1010, 1012, 1013, 1014, 1015, 1019, 1022, 1026, 1035, 1040, 1041], "minima": [173, 196, 408, 443, 692, 997, 1039], "minimal_cost_complexity_prun": [64, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "minimal_reproduc": 379, "minimalist": [376, 411, 1023], "minimis": [53, 103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322, 403, 407, 657, 658, 1016], "minimizesth": [154, 156, 314, 352], "minimum": [2, 49, 64, 88, 90, 103, 104, 111, 139, 141, 143, 146, 147, 149, 151, 154, 155, 156, 162, 183, 184, 185, 198, 215, 234, 236, 242, 244, 257, 262, 273, 275, 289, 290, 309, 313, 314, 316, 317, 319, 322, 352, 353, 374, 380, 389, 396, 400, 403, 410, 411, 437, 441, 442, 446, 450, 452, 465, 466, 469, 470, 471, 472, 508, 510, 538, 549, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 592, 626, 630, 631, 634, 636, 667, 670, 675, 677, 678, 681, 682, 692, 705, 726, 780, 781, 804, 805, 826, 841, 862, 863, 874, 875, 878, 879, 880, 884, 898, 899, 912, 913, 914, 915, 916, 928, 931, 932, 935, 952, 996, 997, 1000, 1004, 1006, 1010, 1012, 1016, 1031, 1034, 1038, 1039, 1043, 1044, 1048, 1051], "minimum_cluster_s": 403, "minka": [104, 127, 244, 262, 538, 996], "minkowski": [414, 440, 446, 451, 452, 453, 688, 699, 779, 780, 781, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 1003, 1031, 1034, 1044, 1045, 1046, 1047], "minkowski_dist": [414, 446, 453, 688, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859], "minkowskidist": [699, 1044], "minmax_scal": [2, 301, 303, 875, 1036, 1039], "minmaxscal": [2, 44, 45, 104, 159, 161, 188, 226, 242, 299, 314, 360, 399, 404, 460, 891, 990, 1010, 1033, 1036, 1039, 1041, 1042, 1043, 1047, 1048, 1050], "minnesota": 403, "minor": [242, 257, 266, 270, 366, 375, 386, 493, 1000, 1031, 1033, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "minorticks_off": 143, "minu": [263, 761, 997, 1000], "minut": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 366, 371, 997, 1000], "minutu": [51, 296, 366, 495], "minval": [508, 510], "minwoo": 1031, "minyushkin": 1037, "miola": 1046, "miott": [1031, 1034], "miotto": 1042, "mir": 411, "miro": 1051, "miroslav": [1032, 1033, 1036], "mirror": [264, 842, 989], "mirza": 1044, "misa": 1046, "misc": [58, 86, 123, 264, 328, 346, 347, 348, 366], "misc_featur": 242, "miscalibr": 65, "miscellan": [364, 365, 1021, 1037, 1038, 1045, 1046, 1048, 1049, 1050, 1051, 1052], "miscfeatur": 154, "misclassif": [47, 134, 257, 339, 797, 1014, 1015, 1016, 1032], "misclassifi": [71, 134, 256, 257, 339, 346, 1000, 1015], "misclassification_error": 134, "misdetect": 1048, "mish": 411, "mishra": [1043, 1044], "mislabel": [256, 410, 1002], "mislead": [73, 141, 147, 183, 372, 388, 410, 1026, 1044], "mismatch": [79, 999, 1040], "misread": 230, "miss": [2, 21, 64, 103, 141, 143, 151, 154, 155, 156, 163, 184, 185, 234, 244, 257, 263, 275, 283, 309, 313, 314, 316, 317, 320, 322, 352, 353, 354, 358, 363, 366, 368, 370, 371, 376, 385, 399, 402, 403, 404, 405, 407, 442, 468, 486, 493, 495, 498, 554, 555, 558, 559, 561, 562, 563, 626, 627, 628, 629, 638, 644, 671, 690, 694, 728, 770, 827, 848, 866, 874, 875, 879, 881, 882, 883, 884, 885, 886, 890, 893, 894, 896, 913, 914, 915, 916, 922, 996, 997, 1000, 1019, 1020, 1021, 1022, 1024, 1026, 1033, 1035, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "missclassif": 134, "missforest": [178, 990], "missing": [103, 149, 154, 179, 185, 234, 244, 313, 316, 410, 626, 627, 629, 1040], "missing_featur": [178, 179], "missing_fract": 149, "missing_fraction_list": 149, "missing_r": 179, "missing_sampl": [178, 179], "missing_valu": [103, 154, 185, 234, 244, 313, 316, 385, 626, 627, 628, 629, 770, 990, 1039, 1040], "missingind": [2, 103, 154, 185, 234, 244, 313, 316, 626, 627, 629, 990, 1039, 1040, 1041, 1045, 1047], "mission": [347, 1024], "misspecifi": 65, "misspel": 411, "mistak": [134, 160, 277, 325, 354, 403, 407, 736, 876, 890, 891, 893, 894, 895, 896, 996, 1001], "misti": [44, 184], "mit": [280, 366, 377, 403, 413, 609, 610, 613, 618, 621, 642, 665, 666, 675, 677, 842, 993], "mitar": 1040, "mitig": [65, 88, 149, 185, 310, 359, 360, 407, 997, 1000, 1016, 1043], "mitra": [1041, 1042, 1046], "mitrov": 1040, "mitzi": [1044, 1045], "miwojc": 1045, "mix": [2, 44, 95, 101, 102, 121, 122, 139, 143, 154, 155, 180, 183, 184, 185, 192, 206, 233, 234, 244, 246, 257, 262, 264, 277, 301, 303, 309, 313, 316, 322, 365, 373, 383, 385, 399, 404, 408, 415, 460, 462, 463, 493, 530, 535, 537, 544, 598, 602, 629, 645, 646, 651, 657, 658, 659, 660, 661, 662, 667, 675, 677, 680, 801, 815, 831, 865, 878, 879, 885, 886, 965, 970, 973, 996, 1005, 1021, 1043, 1045, 1046, 1051], "mixed_encoded_preprocessor": 309, "mixed_pip": 309, "mixed_target": 309, "mixin": [2, 371, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 599, 942, 1033, 1042, 1046], "mixing_": [121, 122, 530], "mixtur": [2, 47, 49, 71, 79, 88, 90, 98, 118, 170, 179, 196, 250, 251, 293, 319, 366, 367, 385, 399, 403, 408, 409, 413, 622, 798, 799, 801, 1020, 1021, 1025, 1026, 1031, 1035, 1036, 1037, 1038, 1052], "mizil": [63, 65, 401, 433, 435], "mizuki": 1045, "mk": 1016, "mkdir": [48, 377, 379], "mkdtemp": [87, 404], "mkl": [358, 359, 379, 383, 1031], "mkl_num_thread": 359, "mksol": 102, "ml": [48, 163, 280, 365, 368, 376, 497, 499, 507, 996, 998, 1019, 1020, 1024], "ml_map": 391, "mlant": 1045, "mlb": [366, 876], "mlc": 368, "mlcomp": 1031, "mldata": [1031, 1039], "mle": [104, 111, 127, 244, 262, 538, 1039, 1042], "mlewis1729": 1038, "mlflow": 1019, "mlg": 1035, "mlinari\u0107": 1046, "mline": [49, 111, 219, 289, 334, 337], "mljar": 1019, "mlle": [689, 693, 997], "mlliou112": 1038, "mlo": 172, "mlondschien": 1044, "mlop": 1019, "mlp": [180, 184, 243, 297, 299, 493, 831, 862, 863, 1004, 1021], "mlp_disp": 243, "mlp_model": 184, "mlp_preprocessor": 184, "mlpclassifi": [2, 68, 148, 180, 297, 298, 300, 322, 360, 499, 501, 511, 519, 861, 863, 875, 1001, 1004, 1021, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1051], "mlpregressor": [2, 44, 184, 243, 322, 360, 861, 862, 1004, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1050, 1051], "mlxtend": 1019, "mm": 188, "mm_bunch": 51, "mmap_mod": [397, 967], "mmm": 52, "mmse": [110, 405, 416, 471], "mn193": 1048, "mnb": 1002, "mnist": [180, 189, 199, 201, 213, 220, 283, 297, 299, 342, 493, 657, 831, 862, 885, 934, 996, 1004, 1021], "mnist_10000": 283, "mnist_20000": 283, "mnist_784": [213, 221, 283, 300], "mo": [317, 1042], "mobil": 379, "mock": 1041, "mockdatafram": 1041, "mod": [64, 103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "modal": [2, 232, 470, 951], "mode": [2, 49, 50, 52, 64, 80, 81, 103, 104, 111, 139, 141, 154, 155, 160, 183, 185, 206, 232, 233, 234, 244, 245, 246, 257, 261, 262, 263, 270, 275, 277, 283, 285, 301, 312, 313, 314, 316, 319, 322, 353, 369, 371, 375, 379, 380, 383, 400, 406, 410, 414, 439, 440, 443, 445, 448, 455, 458, 467, 468, 474, 478, 483, 505, 506, 554, 558, 561, 590, 593, 594, 596, 597, 598, 609, 626, 643, 644, 657, 658, 665, 667, 672, 673, 674, 675, 678, 681, 682, 689, 693, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 861, 905, 907, 910, 913, 915, 937, 943, 944, 948, 949, 951, 1000, 1003, 1006, 1019, 1032, 1040, 1045, 1048, 1052], "model": [2, 7, 8, 22, 29, 35, 38, 41, 43, 45, 46, 49, 50, 52, 54, 55, 59, 60, 62, 63, 64, 65, 67, 71, 75, 76, 82, 87, 88, 89, 91, 94, 100, 101, 103, 104, 105, 109, 113, 116, 119, 120, 130, 133, 134, 135, 137, 139, 142, 145, 146, 148, 149, 151, 153, 154, 155, 156, 157, 159, 160, 170, 171, 173, 174, 175, 176, 179, 181, 182, 186, 191, 193, 195, 197, 199, 200, 201, 203, 207, 208, 210, 211, 212, 213, 217, 218, 220, 221, 222, 232, 234, 235, 240, 244, 245, 248, 250, 251, 252, 256, 258, 259, 261, 264, 266, 267, 268, 269, 271, 272, 275, 277, 278, 280, 283, 285, 286, 287, 289, 292, 296, 304, 307, 309, 310, 312, 314, 316, 317, 318, 320, 321, 322, 324, 325, 328, 332, 334, 335, 336, 337, 338, 340, 342, 344, 347, 348, 351, 353, 354, 363, 365, 366, 373, 377, 385, 388, 394, 399, 400, 401, 402, 403, 404, 406, 408, 409, 410, 411, 412, 413, 422, 426, 428, 433, 438, 440, 445, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 484, 485, 486, 493, 495, 497, 498, 499, 500, 506, 519, 521, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 545, 546, 547, 548, 549, 550, 551, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 567, 586, 587, 591, 592, 595, 600, 604, 607, 608, 609, 610, 614, 626, 631, 632, 634, 636, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 688, 691, 697, 698, 700, 701, 702, 706, 712, 721, 722, 723, 724, 725, 735, 736, 742, 751, 754, 786, 789, 790, 793, 798, 799, 801, 804, 805, 806, 807, 815, 816, 817, 818, 822, 823, 824, 827, 828, 829, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 848, 850, 851, 852, 854, 856, 861, 862, 863, 865, 866, 868, 870, 872, 874, 875, 877, 878, 880, 881, 882, 884, 885, 886, 890, 891, 893, 894, 895, 896, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 920, 983, 990, 992, 993, 994, 997, 998, 1001, 1003, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1018, 1019, 1020, 1021, 1022, 1024, 1025, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036], "model_1": 263, "model_1_scor": 263, "model_2": 263, "model_2_scor": 263, "model__estimator__max_depth": 989, "model_coef": 182, "model_color": 341, "model_detail": 142, "model_displai": 139, "model_fixed_threshold": 257, "model_from_previous_vers": 397, "model_i": 263, "model_i_scor": 263, "model_idx": 242, "model_k": 263, "model_k_scor": 263, "model_l1": 342, "model_l2": 342, "model_nam": [140, 242, 282], "model_no_cf": 310, "model_param": 220, "model_prop": 44, "model_scor": [263, 282], "model_select": [2, 44, 45, 46, 47, 50, 52, 53, 62, 63, 64, 65, 67, 68, 69, 87, 103, 104, 105, 106, 107, 109, 116, 125, 127, 134, 139, 140, 141, 143, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 159, 160, 162, 165, 167, 178, 179, 180, 182, 183, 185, 186, 188, 194, 203, 204, 206, 208, 213, 220, 221, 223, 233, 238, 239, 242, 244, 245, 246, 250, 253, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 285, 286, 287, 291, 292, 298, 300, 301, 305, 307, 308, 309, 310, 312, 313, 314, 317, 318, 319, 320, 321, 322, 327, 328, 335, 338, 342, 350, 353, 354, 371, 376, 384, 385, 394, 399, 402, 404, 407, 410, 433, 434, 555, 557, 564, 565, 577, 658, 697, 698, 700, 702, 731, 743, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 836, 854, 862, 863, 865, 913, 914, 915, 916, 989, 990, 995, 1000, 1002, 1003, 1008, 1010, 1015, 1021, 1028, 1035, 1037, 1038], "model_step": 44, "model_titl": 142, "model_typ": 262, "model_with_cf": 310, "modelcomplex": [103, 104, 244, 253, 257, 261, 262, 263, 275], "modelsplinetransform": 155, "modelstandardscal": 155, "moder": [263, 371, 413, 450, 1006], "modern": [44, 149, 401, 411, 433, 464, 500, 588, 687, 690, 694, 731, 903, 997, 1019, 1020, 1047], "modif": [371, 386, 406, 410, 411, 442, 1013, 1048, 1049, 1052], "modifi": [107, 194, 215, 225, 226, 227, 239, 242, 318, 344, 371, 373, 385, 400, 401, 403, 410, 413, 439, 443, 450, 455, 464, 478, 479, 480, 481, 492, 507, 579, 609, 610, 612, 618, 625, 675, 677, 689, 693, 719, 730, 731, 769, 784, 785, 788, 903, 929, 981, 982, 996, 1013, 1014, 1020, 1025, 1026, 1031, 1033, 1034, 1037, 1038, 1040, 1041, 1042, 1043, 1044, 1046, 1050], "modified_fil": 371, "modified_hub": [47, 675, 1014], "modified_huber_loss": 215, "modified_tol": [689, 693], "modifiedextern": 172, "modrak": [1046, 1047], "modroiu": 1000, "modul": [7, 11, 16, 31, 32, 72, 73, 82, 86, 108, 114, 117, 119, 120, 133, 157, 164, 166, 175, 176, 177, 180, 181, 187, 189, 220, 224, 225, 247, 255, 279, 280, 281, 284, 297, 299, 300, 302, 321, 322, 323, 330, 345, 349, 365, 366, 369, 370, 371, 372, 373, 375, 376, 377, 379, 380, 383, 385, 388, 389, 397, 401, 403, 406, 410, 411, 412, 414, 440, 500, 532, 577, 578, 658, 940, 989, 994, 996, 998, 1000, 1001, 1004, 1006, 1007, 1010, 1012, 1014, 1016, 1017, 1024, 1032, 1033, 1034, 1036, 1037, 1041, 1045], "modulo": [411, 1042], "moeller": 1037, "mogavero": 1041, "moham": [1037, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1048, 1049, 1051], "mohamedbsh": 1046, "mohammad": [1039, 1040], "mohit": [1045, 1048, 1051], "mohn": [1039, 1043], "mohr": 1037, "moin": 1043, "moisel": 1050, "mois\u00e9": 1012, "moitra": [1031, 1032, 1033], "mojca": 1042, "mojdeh": 1048, "mokeeva": [1050, 1051], "mola": [1042, 1048, 1050], "molden": 1033, "molecul": 997, "molin": 1046, "molla": [1032, 1033], "molnar": [184, 1007], "moment": [243, 358, 408, 413, 436, 614, 622, 862, 863, 965, 1004, 1005], "momentum": [243, 299, 862, 863, 1004], "mon": [44, 149, 184], "mona": [166, 173, 174, 180, 413, 493, 610, 614, 621, 622, 624, 1021], "monaf": 1046, "monei": [223, 1024], "monitor": [144, 194, 213, 374, 385, 550, 551, 556, 557, 558, 559, 1004, 1023, 1034, 1039, 1041, 1043], "mono": [645, 646, 651, 652, 659, 660, 661, 662, 680, 683], "monografia": 996, "monomi": 207, "monotoinc": 313, "monoton": [2, 23, 44, 63, 64, 133, 141, 143, 154, 156, 180, 184, 185, 223, 235, 243, 244, 257, 275, 309, 313, 314, 317, 322, 352, 353, 401, 554, 555, 556, 557, 558, 559, 561, 562, 631, 634, 635, 694, 706, 881, 893, 907, 910, 913, 914, 915, 916, 997, 1001, 1010, 1015, 1021, 1038, 1042, 1046, 1048], "monotonic_cst": [64, 141, 143, 149, 151, 154, 156, 185, 244, 257, 275, 309, 313, 314, 315, 317, 319, 322, 352, 353, 410, 554, 555, 558, 559, 561, 562, 913, 914, 915, 916, 1046, 1049], "monotonic_cst_features_nam": [143, 151, 154, 257, 309, 317, 322], "mont": [237, 413, 610, 640, 641, 992, 1005], "montecchio": 1035, "montesel": 1049, "month": [0, 44, 172, 184, 309, 366, 371, 375, 386, 1031], "month_co": 44, "month_sin": 44, "monthli": [172, 386, 1000], "montoya": 1038, "montreal": 317, "mooc": [383, 1026], "moodi": 1036, "moon": [263, 299, 305, 346, 347, 519], "moonkyung94": 1045, "moor": [0, 736, 1000, 1024, 1048], "moosmann": 563, "moradizadeh": 1045, "morai": [1049, 1050], "moral": [58, 346, 657, 1039, 1043, 1044, 1049], "morawiec": [1038, 1039], "more": [0, 2, 11, 37, 44, 46, 47, 48, 51, 52, 53, 54, 58, 63, 64, 65, 68, 73, 75, 78, 79, 80, 82, 85, 86, 88, 90, 93, 100, 103, 104, 107, 111, 118, 120, 123, 127, 134, 135, 137, 139, 140, 141, 143, 145, 146, 147, 148, 149, 150, 151, 154, 155, 156, 160, 161, 163, 167, 173, 176, 179, 180, 183, 184, 185, 186, 188, 190, 191, 194, 195, 198, 199, 200, 202, 204, 206, 207, 208, 210, 220, 221, 222, 223, 225, 229, 232, 233, 234, 235, 237, 238, 239, 240, 242, 243, 244, 245, 246, 248, 250, 251, 253, 254, 256, 257, 261, 262, 263, 264, 265, 266, 269, 270, 275, 277, 280, 282, 283, 285, 286, 293, 298, 299, 301, 303, 304, 305, 308, 309, 310, 312, 313, 314, 316, 317, 318, 319, 320, 321, 322, 325, 326, 332, 335, 339, 340, 342, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 360, 363, 364, 365, 366, 368, 370, 371, 372, 373, 375, 377, 378, 379, 384, 385, 386, 389, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 420, 426, 428, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 571, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 602, 603, 604, 605, 606, 607, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 699, 701, 703, 704, 705, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 867, 868, 869, 870, 871, 872, 873, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 919, 921, 923, 924, 945, 947, 949, 951, 964, 967, 983, 986, 988, 989, 990, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1018, 1019, 1020, 1022, 1024, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "moreaccur": 64, "moreau": [1037, 1038, 1039, 1040, 1041], "moreov": [173, 305, 316, 322, 354, 403, 407, 413, 898, 1000, 1008, 1024, 1039, 1045, 1046], "morethan": 257, "moreyra": 1044, "morgan": [1012, 1016], "mori": 1046, "morikko": 1038, "morina": 1044, "moritz": [1044, 1046], "morn": 44, "moroz": 1037, "morril": 1031, "mors": 1042, "mose": 1051, "moslei": 1000, "mosley2013": 1000, "mosold": 154, "most": [2, 11, 44, 46, 48, 52, 54, 58, 62, 65, 67, 85, 86, 88, 95, 103, 109, 115, 116, 126, 128, 134, 140, 141, 143, 147, 149, 151, 154, 155, 158, 159, 160, 162, 163, 172, 179, 182, 183, 184, 185, 186, 188, 194, 206, 207, 223, 234, 239, 243, 244, 248, 254, 257, 260, 261, 264, 266, 270, 271, 273, 275, 277, 280, 282, 292, 303, 309, 310, 312, 313, 315, 316, 317, 318, 320, 322, 325, 335, 339, 346, 347, 348, 354, 358, 359, 360, 366, 367, 369, 371, 372, 373, 375, 376, 377, 379, 383, 385, 386, 389, 394, 397, 399, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 414, 439, 440, 442, 446, 452, 453, 456, 464, 493, 500, 518, 521, 529, 531, 536, 540, 546, 548, 558, 559, 561, 562, 563, 564, 586, 587, 589, 591, 602, 610, 626, 629, 648, 657, 671, 673, 675, 677, 686, 688, 692, 695, 726, 729, 759, 760, 764, 786, 795, 798, 799, 804, 805, 820, 833, 834, 847, 848, 849, 851, 853, 854, 855, 856, 857, 880, 882, 890, 891, 893, 894, 895, 896, 903, 922, 943, 948, 949, 951, 964, 989, 990, 994, 995, 996, 997, 998, 999, 1000, 1001, 1003, 1006, 1007, 1008, 1013, 1014, 1015, 1016, 1018, 1019, 1020, 1023, 1024, 1033, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1046, 1048, 1050, 1051], "most_common": 58, "most_frequ": [103, 154, 185, 234, 244, 266, 313, 316, 548, 626, 629, 855, 990, 1000, 1039, 1041, 1043, 1051], "mostli": [2, 67, 80, 102, 206, 223, 308, 373, 379, 383, 385, 408, 410, 411, 518, 780, 781, 1015, 1019, 1024, 1039, 1040, 1041, 1047, 1051], "mother": 997, "motiv": [129, 371, 373, 385, 992, 1000, 1010, 1024, 1044], "motmoti": 1041, "motoda": 403, "motor": 223, "motorcycl": [58, 366], "mottl": [1039, 1040], "moudgalya": [1047, 1048], "moufad": 1046, "moulavi": [403, 442], "mounir": 1051, "mount": 379, "mountain": 1039, "mountford": [1047, 1048], "mourao": 1052, "mous": 365, "mouseid": 365, "moussa": 1037, "move": [64, 65, 142, 264, 301, 335, 370, 371, 377, 399, 401, 403, 546, 547, 568, 569, 570, 573, 575, 576, 942, 943, 944, 968, 1031, 1032, 1036, 1039, 1041, 1044, 1045, 1050], "moveabl": 404, "movelikeriv": 1040, "movement": 366, "movi": 411, "movie_entri": 411, "moya": 1043, "mp": 996, "mpce": 58, "mpl": [67, 71, 248, 249, 250, 254, 303], "mpl_toolkit": [51, 126, 184, 225, 227, 296], "mplot3d": [126, 184, 225, 227], "mpoemsl": 1045, "mppca": [531, 538], "mprun": 377, "mpy": 411, "mr": [317, 1032, 1035, 1045], "mrandrewandrad": 1037, "mrastgoo": [1046, 1048, 1050], "mrg": 379, "mridul": 1037, "mrinal": 1045, "mrinaltyagi": 1045, "mrl09": 408, "mrmjauh": 1038, "mro": [373, 420, 426, 1041, 1042, 1050], "mrs2008": 588, "msabati": 1045, "msc": 368, "mschaffenroth": 1041, "mse": [45, 47, 109, 110, 144, 146, 147, 178, 179, 206, 208, 210, 212, 278, 319, 646, 652, 1000, 1016, 1042, 1044], "mse_path_": [198, 646, 650, 652, 654, 660, 662], "mse_valu": 47, "mses_california": 179, "mses_diabet": 179, "msft": 52, "msg": [283, 983], "msle": 1000, "msm": [163, 368], "mssubclass": 154, "mst": 403, "msvc": 1034, "msvcp140": 1045, "mt19937": [270, 275, 934, 1042], "mthorrel": [1038, 1041], "mtrand": 354, "mtse": 678, "mu": [55, 111, 112, 263, 408, 416, 469, 471, 472, 475, 476, 477, 537, 544, 994, 996, 1038, 1041], "mu_i": 1002, "mu_j": 403, "mu_k": 994, "muayyad": 1039, "much": [38, 44, 46, 47, 49, 53, 58, 63, 75, 88, 111, 113, 118, 123, 129, 139, 143, 146, 147, 151, 154, 155, 167, 178, 179, 183, 184, 185, 186, 188, 204, 208, 236, 239, 242, 257, 263, 265, 266, 269, 274, 275, 276, 300, 304, 308, 309, 310, 314, 315, 317, 322, 335, 340, 346, 347, 354, 358, 359, 360, 366, 371, 372, 373, 376, 379, 383, 384, 389, 397, 401, 402, 405, 406, 407, 408, 409, 410, 411, 412, 443, 444, 493, 531, 532, 533, 535, 556, 557, 558, 559, 657, 658, 665, 666, 667, 675, 676, 677, 692, 780, 781, 804, 805, 819, 847, 855, 880, 898, 905, 989, 992, 995, 996, 997, 999, 1000, 1001, 1003, 1004, 1006, 1008, 1012, 1013, 1015, 1016, 1020, 1024, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "mudd": 1044, "mueller": [0, 392, 1024, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046], "muhammad": [1039, 1040, 1044], "mukherje": 1042, "mula": 1043, "multi": [2, 51, 64, 68, 104, 124, 126, 133, 141, 142, 152, 154, 156, 160, 169, 171, 180, 183, 185, 189, 194, 195, 197, 198, 200, 205, 215, 218, 221, 224, 227, 231, 232, 236, 240, 243, 244, 245, 255, 260, 261, 263, 272, 273, 275, 282, 297, 299, 305, 306, 312, 314, 317, 319, 321, 329, 340, 343, 346, 351, 353, 359, 366, 368, 374, 380, 385, 389, 401, 403, 410, 411, 413, 420, 433, 448, 458, 465, 470, 492, 493, 501, 502, 507, 511, 512, 516, 517, 519, 538, 546, 547, 548, 550, 552, 554, 555, 556, 558, 561, 562, 564, 566, 609, 630, 632, 642, 645, 646, 651, 652, 656, 657, 659, 660, 661, 662, 665, 667, 671, 672, 673, 674, 675, 680, 683, 687, 690, 702, 703, 713, 720, 735, 741, 743, 784, 800, 801, 815, 823, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 852, 853, 855, 861, 862, 863, 866, 872, 885, 889, 900, 901, 905, 907, 910, 913, 915, 917, 918, 919, 921, 925, 931, 934, 937, 989, 1001, 1003, 1007, 1010, 1014, 1019, 1021, 1022, 1025, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1044, 1045, 1047, 1048, 1049, 1050, 1051], "multi_class": [67, 103, 104, 139, 155, 160, 233, 234, 244, 246, 257, 262, 270, 272, 277, 301, 312, 313, 316, 322, 609, 657, 658, 789, 905, 921, 996, 1001, 1015, 1031, 1035, 1039, 1044, 1046, 1049, 1050], "multi_confus": 755, "multi_label": 921, "multi_layer_regressor": 410, "multi_output": [380, 925, 931, 988], "multi_target_forest": 1001, "multialign": 275, "multiarch": 379, "multiclass": [2, 32, 64, 103, 104, 139, 140, 141, 143, 154, 155, 183, 185, 189, 200, 221, 233, 234, 240, 242, 244, 245, 246, 253, 255, 257, 260, 261, 262, 263, 268, 270, 273, 275, 277, 282, 299, 301, 309, 313, 316, 319, 322, 332, 343, 350, 353, 366, 367, 373, 374, 376, 385, 394, 399, 403, 407, 410, 433, 448, 458, 485, 493, 501, 554, 556, 558, 561, 564, 565, 592, 600, 609, 630, 631, 632, 657, 658, 665, 667, 672, 673, 674, 675, 702, 706, 708, 709, 730, 731, 735, 736, 739, 744, 755, 784, 785, 788, 789, 790, 795, 801, 802, 804, 805, 806, 807, 815, 817, 819, 820, 821, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 872, 886, 905, 907, 910, 913, 915, 963, 964, 965, 994, 996, 1010, 1011, 1015, 1016, 1021, 1022, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1041, 1046, 1047, 1048, 1050], "multiclass_color": [630, 1051], "multiclass_colors_": [67, 630], "multiclassclassif": [257, 322], "multicollinear": [115, 141, 147, 180, 181, 185, 327, 406, 497, 561, 633, 654, 831, 996, 1008, 1021], "multicor": [1043, 1044], "multidimension": [2, 406, 687, 688, 690, 692, 694, 997, 1003], "multigrid": 458, "multiindex": 1045, "multilabel": [2, 31, 32, 64, 115, 117, 141, 180, 185, 231, 244, 270, 275, 280, 281, 319, 353, 366, 373, 374, 385, 398, 478, 483, 493, 494, 505, 506, 512, 520, 538, 554, 561, 564, 657, 673, 674, 703, 707, 712, 713, 727, 730, 731, 735, 736, 739, 740, 755, 757, 784, 785, 788, 789, 795, 797, 831, 834, 836, 838, 862, 869, 872, 876, 878, 889, 910, 913, 915, 937, 963, 964, 965, 1011, 1021, 1022, 1026, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1044, 1045, 1046, 1047, 1048, 1049], "multilabel_": [834, 1036], "multilabel_confusion_matrix": [2, 399, 713, 730, 731, 739, 785, 788, 1000, 1040, 1052], "multilabelbinar": [2, 385, 834, 869, 878, 1001, 1034, 1036, 1037, 1039, 1040], "multilay": [383, 998], "multilearn": 1019, "multimetr": [711, 989, 1041, 1046, 1050], "multimetric_": [801, 804, 805, 815], "multimetric_grid_search": [103, 104, 244, 253, 257, 261, 262, 263], "multimod": 232, "multinomi": [2, 48, 67, 103, 139, 155, 180, 189, 199, 201, 220, 233, 234, 240, 244, 246, 257, 258, 262, 272, 277, 280, 300, 301, 313, 316, 321, 322, 342, 366, 367, 371, 408, 410, 493, 509, 520, 548, 550, 556, 558, 630, 657, 658, 742, 831, 834, 840, 841, 842, 843, 844, 885, 934, 1000, 1001, 1016, 1021, 1022, 1026, 1031, 1035, 1037, 1038, 1039, 1044, 1045, 1049, 1050, 1051], "multinomialdevi": [257, 322, 1042], "multinomialhmm": 1031, "multinomialnb": [2, 48, 360, 366, 411, 840, 841, 842, 843, 1002, 1033, 1035, 1038, 1039, 1043, 1044, 1046], "multioutput": [2, 42, 64, 141, 153, 154, 156, 185, 244, 272, 275, 282, 314, 319, 352, 353, 385, 394, 399, 426, 461, 478, 479, 480, 548, 551, 553, 554, 555, 557, 559, 561, 562, 565, 567, 610, 631, 632, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 677, 678, 721, 724, 729, 746, 747, 749, 751, 752, 754, 786, 789, 791, 792, 826, 834, 836, 837, 838, 839, 848, 856, 863, 872, 906, 908, 911, 913, 914, 915, 916, 937, 964, 965, 1000, 1021, 1022, 1026, 1031, 1032, 1033, 1037, 1038, 1044, 1045, 1050], "multioutput_arrai": 371, "multioutputclassifi": [2, 394, 789, 834, 836, 838, 1000, 1038, 1040, 1041, 1042, 1043, 1047, 1048], "multioutputregressor": [2, 153, 394, 426, 461, 478, 479, 480, 551, 553, 555, 557, 559, 562, 565, 567, 610, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 677, 678, 837, 839, 848, 856, 863, 906, 908, 911, 914, 916, 1037, 1038, 1040, 1042, 1043, 1047, 1048], "multipl": [2, 26, 53, 80, 101, 103, 104, 118, 129, 134, 140, 142, 143, 144, 150, 151, 154, 155, 156, 159, 160, 172, 180, 183, 184, 185, 192, 202, 234, 237, 243, 245, 253, 257, 261, 262, 263, 268, 270, 271, 275, 280, 282, 285, 309, 312, 313, 314, 316, 317, 318, 321, 322, 338, 358, 359, 360, 365, 367, 368, 371, 373, 374, 375, 376, 383, 385, 397, 399, 403, 404, 405, 406, 408, 410, 411, 412, 413, 414, 415, 440, 456, 460, 462, 463, 465, 470, 484, 487, 489, 492, 493, 494, 500, 501, 505, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 532, 533, 534, 535, 536, 537, 538, 540, 541, 542, 543, 544, 548, 550, 551, 552, 553, 556, 557, 558, 559, 560, 579, 597, 605, 606, 609, 610, 626, 631, 633, 638, 639, 640, 641, 645, 646, 649, 651, 652, 653, 656, 659, 660, 661, 662, 665, 666, 667, 670, 672, 675, 677, 678, 689, 690, 692, 693, 694, 702, 711, 721, 724, 729, 746, 747, 749, 751, 752, 754, 786, 789, 791, 792, 794, 798, 799, 801, 802, 803, 804, 805, 806, 807, 813, 815, 816, 817, 818, 819, 820, 821, 827, 828, 829, 831, 835, 836, 837, 838, 839, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 867, 870, 882, 886, 894, 897, 898, 905, 906, 907, 910, 927, 942, 948, 949, 970, 973, 992, 995, 996, 997, 1001, 1002, 1003, 1007, 1008, 1013, 1014, 1016, 1019, 1021, 1031, 1032, 1034, 1037, 1038, 1041, 1042, 1043, 1044, 1046, 1047, 1048, 1051], "multiplefunct": 103, "multipleloc": [225, 288], "multiplex": 1016, "multipli": [64, 103, 139, 141, 143, 154, 155, 183, 184, 185, 192, 210, 223, 233, 234, 244, 246, 257, 262, 263, 275, 277, 301, 309, 313, 316, 319, 322, 353, 358, 380, 385, 408, 410, 411, 416, 460, 471, 512, 535, 537, 538, 544, 554, 558, 561, 645, 647, 651, 653, 657, 658, 659, 661, 667, 668, 669, 671, 675, 676, 677, 679, 685, 686, 689, 693, 765, 907, 910, 913, 915, 937, 975, 976, 977, 989, 992, 996, 1000, 1014, 1028, 1042, 1052], "multipliedbi": [104, 244, 262], "multiprocess": [383, 385, 967, 1003, 1031, 1039, 1045], "multirespons": 996, "multiscal": 458, "multisurfac": [163, 368], "multitarget": 380, "multitask": [282, 411, 1001], "multitaskelasticnet": [2, 645, 646, 651, 660, 661, 662, 680, 996, 1001, 1031, 1038, 1039, 1042, 1044, 1052], "multitaskelasticnetcv": [2, 394, 645, 646, 651, 659, 661, 662, 680, 996, 1001, 1034, 1041, 1042, 1044, 1048, 1051, 1052], "multitasklasso": [2, 202, 651, 659, 662, 996, 1001, 1031, 1039, 1042, 1044, 1052], "multitasklassocv": [2, 394, 660, 661, 1001, 1034, 1041, 1042, 1044, 1048, 1051, 1052], "multithread": [104, 160, 244, 245, 261, 263, 270, 314, 358, 403, 775, 779, 905, 906, 907, 908, 909, 910, 911], "multivari": [2, 120, 183, 363, 405, 408, 411, 469, 513, 514, 515, 626, 627, 628, 629, 648, 670, 677, 678, 840, 841, 842, 843, 844, 994, 996, 999, 1002, 1026], "multivariate_norm": [113, 116, 248, 416, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477], "multiwai": 1016, "muma": 112, "mungui": 1044, "munoz": [1037, 1043], "muoki": 1043, "murad": 1034, "murashkin": 1035, "murata": [1044, 1045], "murder": 346, "murezzda": 1047, "murmurhash": [380, 1052], "murmurhash3": [2, 411, 580, 587, 966], "murmurhash3_32": [2, 380, 1052], "murmurhash3_x86_32": [380, 966], "murphi": [401, 642, 993], "murrai": [1037, 1038], "music": 1024, "must": [88, 103, 104, 139, 143, 151, 154, 155, 156, 160, 183, 184, 185, 186, 192, 194, 222, 223, 232, 233, 234, 243, 244, 245, 246, 253, 257, 258, 261, 262, 263, 264, 270, 275, 277, 289, 301, 304, 309, 313, 314, 316, 317, 322, 346, 354, 366, 370, 371, 372, 373, 375, 377, 379, 385, 386, 394, 399, 401, 403, 404, 407, 408, 410, 411, 412, 413, 414, 424, 434, 437, 440, 441, 442, 443, 445, 446, 447, 451, 453, 455, 457, 458, 460, 462, 463, 465, 470, 483, 505, 506, 509, 520, 528, 534, 535, 536, 537, 538, 539, 540, 541, 544, 550, 551, 556, 557, 558, 559, 564, 565, 579, 580, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 609, 610, 616, 619, 626, 627, 628, 629, 631, 632, 637, 641, 642, 647, 648, 651, 657, 658, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 681, 684, 685, 686, 687, 688, 689, 692, 693, 694, 695, 696, 699, 703, 706, 716, 736, 747, 765, 772, 775, 779, 782, 789, 793, 794, 795, 797, 798, 799, 801, 802, 804, 805, 806, 808, 810, 811, 813, 815, 816, 817, 819, 820, 822, 826, 829, 831, 832, 840, 841, 842, 843, 844, 847, 848, 849, 851, 853, 854, 855, 856, 857, 860, 861, 862, 863, 865, 868, 869, 870, 872, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 889, 905, 906, 907, 908, 909, 910, 911, 912, 918, 922, 970, 974, 983, 985, 988, 989, 990, 996, 997, 998, 1000, 1003, 1004, 1006, 1007, 1014, 1015, 1016, 1031, 1034, 1038, 1042, 1044, 1045, 1048, 1052], "mustb": [143, 154, 184, 185, 309], "musthav": 172, "mutabl": 373, "mutat": [354, 988, 1039], "mutual": [2, 73, 74, 82, 88, 91, 157, 180, 385, 410, 412, 442, 590, 593, 594, 597, 598, 604, 605, 606, 607, 704, 705, 715, 756, 758, 787, 796, 803, 818, 821, 989, 996, 1000, 1001, 1021, 1031, 1037, 1047], "mutual_info_classif": [2, 104, 412, 590, 593, 594, 597, 598, 1037, 1043, 1046, 1049], "mutual_info_regress": [2, 158, 316, 412, 590, 593, 594, 597, 598, 607, 1037, 1038, 1043, 1045, 1046, 1047, 1049], "mutual_info_scor": [2, 73, 403, 704, 1000, 1039, 1042, 1043], "mu\u00f1oz": [1044, 1046], "mwestt": 1040, "my": [365, 371, 376, 379, 493, 942, 944, 1000], "my_custom_loss_func": 1000, "my_data": 376, "my_dataset": 483, "my_estim": [373, 404], "my_extra_param": 373, "my_featur": 371, "my_fil": 377, "my_func": [372, 377], "my_g": [415, 530], "my_group": [239, 394], "my_kernel": [331, 1015], "my_memb": [94, 96, 97], "my_other_weight": [239, 394], "my_pipelin": 1040, "my_script": 359, "my_tag": 373, "my_test_script": 379, "my_token": 411, "my_weight": [239, 394], "myatt": [1040, 1041], "mycach": [505, 506], "mycluster": 421, "myenugula": [1049, 1051], "myer": [1034, 1038], "myestim": [373, 417, 419, 420, 422, 423, 424, 425, 426], "myestimator0": 419, "myestimator1": 419, "mymultioutputestim": 373, "mypi": [371, 375, 389, 396, 1042], "myself": 371, "mysvmlightfil": 505, "mytag": 373, "mytransform": [373, 427], "m\u00e9hault": [1039, 1040], "m\u00f6rtberg": 1037, "m\u00fcller": [0, 386, 408, 532, 871, 1004, 1010, 1014, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1045], "n": [2, 44, 45, 47, 48, 50, 51, 55, 56, 58, 64, 67, 69, 70, 73, 75, 91, 100, 102, 107, 111, 115, 118, 120, 123, 125, 127, 129, 130, 134, 136, 137, 139, 141, 154, 156, 158, 161, 163, 165, 167, 171, 176, 184, 185, 186, 191, 194, 200, 206, 207, 208, 210, 220, 222, 223, 225, 235, 236, 237, 240, 244, 248, 250, 251, 261, 263, 264, 266, 268, 269, 270, 272, 273, 275, 276, 283, 286, 288, 301, 305, 307, 308, 314, 317, 319, 325, 328, 339, 342, 352, 353, 358, 365, 368, 369, 371, 375, 377, 379, 380, 385, 389, 390, 394, 400, 401, 403, 406, 407, 408, 409, 410, 411, 413, 414, 440, 441, 443, 444, 446, 465, 467, 470, 474, 485, 512, 513, 514, 515, 520, 525, 535, 537, 538, 544, 554, 555, 556, 557, 560, 561, 562, 563, 586, 587, 588, 589, 605, 606, 613, 626, 648, 670, 678, 692, 696, 699, 706, 707, 709, 756, 806, 809, 811, 816, 817, 820, 841, 845, 846, 850, 870, 897, 899, 913, 914, 915, 916, 928, 947, 952, 953, 974, 978, 979, 989, 992, 994, 996, 997, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1010, 1012, 1014, 1015, 1016, 1031, 1033, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1048, 1049], "n1": 123, "n2": 123, "n4": 123, "n_": [111, 112, 186, 263, 315, 403, 408, 410, 645, 651, 684, 696, 992, 996, 1000, 1002, 1003, 1007, 1010, 1012, 1015, 1016], "n_alpha": [52, 154, 183, 211, 468, 645, 646, 649, 650, 651, 652, 653, 654, 655, 659, 660, 661, 662, 672, 674, 680, 681, 682, 683, 1034, 1051], "n_atom": 1032, "n_averag": 70, "n_bar": 179, "n_batch_iter_": 533, "n_best": 447, "n_bin": [63, 65, 67, 86, 206, 223, 304, 306, 310, 434, 435, 870, 1010], "n_bins_": 870, "n_bootstrap": [266, 1032], "n_bulk_repeat": 50, "n_byte": 236, "n_c": [403, 658], "n_call": [845, 846], "n_candid": [275, 804, 805, 989], "n_candidates_": [275, 804, 805, 989], "n_candidates_0": 989, "n_candidates_i": 989, "n_categori": [310, 841, 879, 1010], "n_categorical_featur": [143, 151, 154, 257, 309, 317, 322, 558, 559, 631, 632], "n_categories_": 841, "n_center": [77, 509], "n_channel": [581, 582, 585], "n_class": [2, 46, 64, 73, 103, 104, 118, 134, 136, 139, 141, 142, 155, 160, 162, 185, 220, 226, 233, 234, 237, 240, 244, 245, 246, 250, 257, 261, 262, 263, 264, 270, 271, 272, 275, 277, 292, 293, 301, 312, 313, 314, 316, 319, 322, 351, 353, 354, 367, 371, 373, 385, 410, 433, 484, 485, 499, 512, 516, 520, 546, 547, 548, 550, 552, 554, 556, 558, 561, 564, 566, 591, 592, 602, 609, 630, 633, 638, 657, 658, 665, 666, 667, 673, 674, 675, 676, 697, 707, 709, 716, 718, 722, 723, 736, 739, 742, 755, 789, 795, 800, 801, 804, 805, 815, 823, 826, 833, 834, 835, 836, 837, 839, 840, 841, 842, 843, 844, 847, 852, 854, 855, 862, 865, 872, 873, 876, 879, 886, 889, 900, 901, 902, 905, 906, 907, 909, 910, 913, 915, 917, 918, 936, 937, 996, 1000, 1001, 1004, 1011, 1014, 1015, 1036, 1037, 1038, 1040, 1041, 1042, 1048], "n_classes_": [548, 550, 552, 554, 556, 561, 609, 833, 834, 913, 915, 1032, 1041, 1043], "n_classes_pr": [714, 756], "n_classes_tru": [714, 756], "n_classifi": [67, 155, 566, 567], "n_cluster": [2, 58, 59, 60, 73, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 90, 91, 92, 93, 94, 95, 97, 99, 100, 120, 316, 347, 371, 385, 403, 436, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 455, 456, 457, 458, 459, 508, 510, 710, 793, 794, 1031, 1035, 1037, 1039, 1040, 1042, 1045], "n_clusters_": [74, 82, 88, 96, 437, 441], "n_clusters_list": 78, "n_clusters_per_class": [68, 138, 160, 162, 260, 293, 298, 305, 344, 367, 376, 512, 603, 605], "n_clusters_rang": 73, "n_clusters_tru": 94, "n_col": [46, 58, 120, 241, 418, 447, 449, 508, 510, 631], "n_column": [400, 447, 449], "n_column_clust": [447, 449, 510], "n_comp": [130, 188], "n_comparison": 263, "n_compon": [44, 45, 46, 52, 55, 67, 79, 85, 90, 91, 92, 102, 104, 105, 106, 115, 116, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 152, 155, 188, 205, 225, 226, 227, 228, 229, 230, 232, 236, 237, 240, 244, 248, 249, 250, 251, 252, 253, 254, 262, 287, 292, 301, 308, 314, 316, 319, 320, 347, 373, 376, 377, 385, 404, 406, 408, 415, 447, 448, 458, 460, 478, 479, 480, 481, 523, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 638, 639, 640, 641, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 798, 799, 854, 861, 864, 897, 898, 899, 949, 992, 994, 997, 999, 1003, 1032, 1033, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1045, 1048, 1049, 1050], "n_components_": [105, 127, 385, 437, 441, 531, 535, 536, 537, 538, 539, 540, 897, 898, 1040, 1042], "n_components_fa": 127, "n_components_pca": 127, "n_components_pca_ml": 127, "n_components_rang": 236, "n_connected_compon": 459, "n_connected_components_": [437, 441, 1040], "n_core": 140, "n_core_sampl": [414, 440], "n_cpu": [359, 385], "n_cv": [64, 407, 433], "n_cv_alpha": [650, 654], "n_cv_fold": [309, 807, 824, 829, 832], "n_digit": 91, "n_dim": [474, 524, 526, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 1048], "n_dimens": [798, 799], "n_dimensions_of_x": [907, 908, 909, 910, 911], "n_dir": 54, "n_dof": 658, "n_e": 403, "n_element": [413, 616], "n_encoded_featur": [878, 879], "n_error": 290, "n_error_outli": [219, 289, 334], "n_error_outliers_sgd": 219, "n_error_test": [219, 289, 334], "n_error_test_sgd": 219, "n_error_train": [219, 334], "n_error_train_sgd": 219, "n_estim": [47, 50, 64, 68, 134, 135, 136, 137, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 156, 178, 185, 186, 226, 241, 244, 245, 250, 260, 275, 305, 312, 314, 319, 358, 384, 385, 410, 412, 550, 551, 552, 553, 554, 555, 556, 557, 560, 561, 562, 563, 564, 565, 566, 567, 631, 804, 805, 989, 1006, 1007, 1028, 1039, 1047], "n_estimators_": [144, 556, 557], "n_estimators_ful": 144, "n_exampl": 48, "n_face": 241, "n_featur": [46, 48, 55, 63, 64, 65, 68, 69, 70, 71, 75, 85, 91, 93, 94, 103, 104, 109, 110, 111, 112, 113, 118, 120, 127, 134, 136, 138, 139, 140, 141, 143, 151, 154, 155, 156, 160, 162, 163, 178, 179, 183, 184, 185, 188, 190, 192, 193, 194, 195, 202, 203, 205, 209, 210, 220, 222, 226, 232, 233, 234, 236, 237, 239, 244, 245, 246, 248, 253, 257, 260, 261, 262, 263, 264, 266, 270, 272, 273, 275, 276, 277, 293, 298, 301, 305, 309, 312, 313, 314, 316, 317, 318, 319, 320, 322, 326, 342, 344, 346, 347, 348, 352, 353, 354, 358, 364, 365, 367, 371, 373, 376, 383, 384, 385, 394, 403, 404, 405, 406, 408, 410, 411, 414, 415, 416, 418, 420, 421, 422, 425, 426, 427, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 454, 455, 456, 457, 459, 460, 461, 462, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 483, 485, 486, 487, 489, 491, 498, 501, 505, 506, 509, 512, 513, 516, 518, 520, 521, 523, 525, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 609, 610, 611, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 696, 697, 698, 700, 701, 702, 710, 726, 759, 760, 761, 762, 764, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 793, 794, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 865, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 923, 948, 949, 974, 975, 976, 977, 978, 979, 980, 981, 982, 988, 992, 996, 1001, 1003, 1004, 1010, 1014, 1015, 1016, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051, 1052], "n_feature_influ": 50, "n_features_": [162, 591, 592, 1044, 1046], "n_features_a": 854, "n_features_b": 854, "n_features_in_": [64, 141, 150, 154, 156, 185, 244, 275, 314, 319, 352, 353, 373, 385, 424, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 609, 610, 626, 627, 628, 629, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 800, 801, 804, 805, 815, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 988, 1042, 1044, 1046, 1049], "n_features_max": 70, "n_features_missing_ind": 629, "n_features_new": [427, 438, 441, 529, 531, 534, 536, 539, 540, 546, 564, 566, 567, 580, 581, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 627, 629, 634, 637, 638, 639, 640, 641, 854, 861, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 882, 883, 884, 885, 897, 898], "n_features_opt": 104, "n_features_out": 629, "n_features_out_": 884, "n_features_rang": 70, "n_features_to_comput": 1039, "n_features_to_select": [161, 163, 314, 412, 591, 600, 1043, 1045], "n_features_to_select_": 600, "n_features_with_miss": 628, "n_features_with_missing_": 626, "n_fold": [646, 650, 652, 654, 658, 660, 662, 1032, 1033, 1037], "n_gram_rang": 1031, "n_group": [407, 810, 1037], "n_i": [1002, 1010], "n_imag": 261, "n_index": [847, 848, 849, 851, 853, 855, 856], "n_inform": [63, 65, 68, 138, 141, 160, 162, 190, 194, 209, 210, 260, 266, 276, 293, 298, 305, 312, 342, 344, 367, 376, 512, 521, 550, 551, 552, 553, 561, 562, 603, 604, 605, 606, 607, 645, 646, 651, 659, 660, 661, 664, 680, 681, 682, 835, 923, 1001, 1039], "n_init": [58, 77, 78, 83, 90, 91, 94, 97, 225, 226, 227, 228, 253, 313, 316, 347, 403, 439, 443, 445, 447, 448, 449, 455, 458, 690, 694, 798, 799, 1031, 1039, 1045, 1046, 1047, 1051], "n_init_rang": 94, "n_inlier": 232, "n_input_features_": 1044, "n_instanc": [50, 632], "n_iter": [46, 56, 103, 149, 167, 213, 264, 271, 275, 283, 301, 337, 377, 384, 415, 450, 474, 529, 530, 541, 542, 543, 544, 645, 646, 651, 652, 659, 660, 661, 662, 680, 681, 682, 683, 684, 685, 686, 692, 694, 804, 805, 813, 815, 861, 863, 948, 949, 989, 1014, 1032, 1037, 1038, 1039, 1043, 1045, 1046, 1047, 1049], "n_iter_": [44, 123, 149, 213, 251, 385, 436, 443, 444, 445, 467, 468, 478, 479, 480, 528, 529, 530, 533, 534, 535, 536, 537, 540, 558, 559, 626, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 673, 675, 676, 677, 678, 679, 690, 692, 798, 799, 854, 862, 863, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 1035, 1038, 1039, 1041, 1044, 1045, 1047], "n_iter_no_chang": [47, 140, 143, 144, 149, 151, 154, 156, 213, 243, 257, 309, 315, 317, 322, 346, 376, 385, 410, 556, 557, 558, 559, 665, 666, 667, 675, 676, 677, 862, 863, 1014, 1039, 1042], "n_iter_search": 271, "n_iter_without_progress": [226, 692, 1036, 1037], "n_iterations_": [275, 804, 805], "n_iters_": 1037, "n_job": [52, 53, 64, 87, 103, 104, 105, 139, 140, 141, 143, 146, 147, 150, 154, 155, 156, 162, 163, 178, 183, 184, 185, 186, 226, 228, 233, 234, 235, 244, 246, 253, 257, 261, 262, 263, 264, 265, 267, 275, 276, 277, 280, 283, 301, 309, 312, 313, 314, 316, 317, 319, 322, 326, 342, 359, 371, 385, 407, 410, 414, 433, 440, 442, 444, 446, 448, 451, 452, 453, 454, 457, 460, 463, 468, 528, 532, 533, 534, 536, 539, 540, 542, 543, 545, 552, 553, 554, 555, 560, 561, 562, 563, 564, 565, 566, 567, 592, 600, 605, 606, 609, 631, 633, 638, 646, 650, 652, 654, 656, 657, 658, 660, 662, 664, 665, 667, 675, 678, 688, 689, 690, 691, 692, 693, 694, 775, 779, 782, 801, 804, 805, 807, 815, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 838, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 864, 867, 900, 901, 967, 989, 1000, 1001, 1003, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1046, 1049], "n_k": [403, 547], "n_kernel": 611, "n_kernel_param": [609, 610], "n_knot": [44, 67, 155, 207, 315, 884, 1010, 1044], "n_l1_ratio": [646, 658, 660, 1034], "n_l1_ratios_": 658, "n_label": [52, 118, 240, 385, 483, 520, 713, 720, 727, 740, 741, 755, 757, 793, 794, 821, 1000, 1037, 1039], "n_labeled_point": [324, 325], "n_layer": [243, 862, 863], "n_layers_": [862, 863], "n_leav": [459, 913, 914, 915, 916], "n_leaves_": [437, 441], "n_left": 560, "n_local_tri": 456, "n_m": 1016, "n_mask": 206, "n_missing_featur": 628, "n_missing_sampl": 179, "n_nearest_featur": 626, "n_neighbor": [52, 79, 95, 100, 178, 225, 226, 227, 229, 232, 242, 283, 285, 286, 289, 290, 291, 292, 295, 308, 312, 314, 326, 346, 410, 448, 600, 605, 606, 627, 688, 689, 691, 693, 695, 696, 847, 848, 849, 851, 853, 854, 858, 900, 901, 990, 997, 1003, 1006, 1013, 1038, 1045, 1047, 1048], "n_neighbors_": [691, 851], "n_neighbors_list": [242, 285], "n_neighbour": 1045, "n_node": [353, 437, 441, 459, 554, 555, 561, 562, 563, 913, 914, 915, 916, 955], "n_node_sampl": 353, "n_nodes_ptr": [554, 555, 561, 562, 563], "n_noise_": 82, "n_nonzero": 129, "n_nonzero_coef": [205, 523, 528, 534, 539, 542, 543, 545, 649, 663, 684, 685, 1049], "n_nonzero_coefs_": [663, 664, 1049], "n_nonzero_column": 348, "n_numerical_featur": 143, "n_order": 191, "n_original_featur": [590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601], "n_out": 563, "n_outlier": [111, 112, 150, 209, 232, 290], "n_output": [353, 385, 410, 420, 426, 427, 433, 438, 441, 461, 465, 478, 479, 480, 529, 531, 533, 534, 536, 539, 540, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 564, 565, 566, 567, 580, 581, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 609, 610, 627, 629, 632, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 671, 672, 673, 674, 675, 677, 678, 721, 724, 729, 746, 747, 749, 751, 752, 754, 755, 786, 789, 791, 792, 800, 801, 804, 805, 807, 815, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 852, 854, 855, 856, 861, 862, 863, 864, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 882, 883, 884, 885, 897, 898, 900, 901, 905, 906, 907, 908, 910, 911, 913, 914, 915, 916, 937, 970, 1000, 1001, 1016, 1038, 1041], "n_output_featur": 627, "n_output_features_": 880, "n_outputs_": [64, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353, 548, 549, 554, 555, 561, 562, 563, 862, 863, 913, 914, 915, 916], "n_oversampl": [104, 244, 262, 447, 449, 538, 541, 949, 1045], "n_pack": [2, 952, 953], "n_patch": [581, 582, 585], "n_permut": [269, 407, 830], "n_pixel": [241, 261], "n_point": [258, 845, 846], "n_points_per_clust": 98, "n_popul": [380, 969], "n_possible_iterations_": [804, 805], "n_predict": 50, "n_pt": 54, "n_q": 403, "n_quantil": [107, 184, 307, 882, 894, 1040], "n_quantiles_": 882, "n_queri": [688, 847, 848, 849, 851, 853, 855, 856, 857], "n_random_featur": 198, "n_redund": [63, 65, 68, 141, 160, 162, 260, 266, 293, 298, 305, 344, 367, 376, 433, 512, 550, 552, 561, 835], "n_refin": [52, 468], "n_region": 80, "n_regions_plu": 80, "n_regressor": [156, 567], "n_relevant_featur": 202, "n_remaining_candidates_": [804, 805], "n_repeat": [137, 141, 147, 162, 183, 185, 186, 263, 277, 280, 312, 407, 512, 633, 816, 817, 1008], "n_required_iterations_": [804, 805], "n_resourc": 989, "n_resources_": [275, 804, 805, 989], "n_resources_0": 989, "n_resources_i": 989, "n_restarts_optim": [172, 173, 174, 413, 609, 610], "n_retri": [484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 1045, 1049], "n_row": [46, 58, 120, 400, 418, 447, 449, 508, 510], "n_row_clust": [447, 449, 510], "n_run": [73, 94, 188, 347], "n_sampl": [46, 47, 50, 55, 62, 63, 64, 65, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 85, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 100, 102, 103, 104, 107, 109, 110, 111, 112, 113, 116, 118, 120, 121, 125, 127, 134, 136, 137, 138, 139, 140, 141, 143, 145, 146, 147, 148, 150, 151, 154, 155, 156, 160, 162, 163, 165, 172, 176, 178, 179, 182, 183, 184, 185, 190, 192, 193, 194, 195, 196, 200, 202, 203, 205, 206, 207, 209, 210, 213, 217, 220, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 236, 237, 239, 242, 243, 244, 245, 246, 249, 251, 252, 253, 254, 257, 260, 261, 262, 263, 266, 267, 270, 272, 273, 274, 275, 276, 277, 278, 283, 293, 301, 305, 306, 307, 309, 310, 313, 314, 316, 318, 319, 320, 321, 322, 326, 333, 336, 337, 342, 344, 346, 347, 352, 353, 354, 364, 368, 371, 373, 376, 380, 383, 384, 385, 394, 402, 403, 404, 405, 406, 407, 408, 410, 414, 415, 416, 418, 420, 421, 422, 425, 426, 427, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 465, 466, 467, 468, 469, 470, 471, 472, 473, 475, 476, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 491, 498, 501, 505, 509, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 609, 610, 612, 613, 614, 615, 616, 617, 620, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 735, 736, 737, 738, 739, 740, 741, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 771, 772, 773, 774, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 921, 923, 936, 937, 948, 949, 951, 953, 963, 969, 970, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 988, 989, 992, 996, 1000, 1001, 1003, 1004, 1010, 1011, 1012, 1014, 1015, 1016, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "n_samples1": 871, "n_samples2": 871, "n_samples_": 538, "n_samples_1": [337, 1015], "n_samples_2": [337, 1015], "n_samples_a": [793, 794], "n_samples_fit": [426, 461, 478, 479, 480, 551, 553, 555, 557, 559, 562, 565, 567, 610, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 677, 678, 688, 838, 839, 847, 848, 849, 851, 853, 855, 856, 857, 863, 906, 908, 911, 914, 916], "n_samples_fit_": [283, 847, 848, 849, 851, 853, 855, 856, 857], "n_samples_i": [611, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 775, 776, 777, 778, 779, 780, 781, 782], "n_samples_per_cent": 94, "n_samples_rang": [110, 236], "n_samples_seen": 885, "n_samples_seen_": [531, 874, 875, 885, 1039], "n_samples_test": [276, 907, 908, 909, 910, 911, 1003, 1010], "n_samples_train": [276, 907, 908, 909, 910, 911], "n_samples_transform": [283, 849, 857], "n_samples_x": [610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 775, 776, 777, 778, 779, 780, 781, 782], "n_samplesnumb": 184, "n_seed": 457, "n_selected_featur": [590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601], "n_skips_": 1038, "n_skips_invalid_data_": 670, "n_skips_invalid_model_": 670, "n_skips_no_inliers_": 670, "n_spline": [44, 884], "n_split": [44, 53, 140, 145, 149, 162, 178, 179, 183, 250, 258, 262, 263, 265, 268, 269, 273, 275, 277, 280, 319, 327, 335, 342, 354, 407, 802, 803, 804, 805, 806, 808, 809, 810, 811, 814, 816, 817, 818, 819, 820, 821, 822, 828, 1037, 1039, 1049], "n_splits_": [801, 804, 805, 815], "n_steps_": [123, 445, 534, 535, 1044], "n_subpopulation_": 678, "n_subsampl": [678, 937], "n_subsets_of_featur": 592, "n_support_": [907, 908, 909, 910, 911, 1015, 1041], "n_support_vector": 47, "n_sv": [907, 908, 909, 910, 911, 1015, 1041], "n_svd_vec": [447, 449], "n_t": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353, 554, 555, 556, 557, 561, 562, 563, 913, 914, 915, 916], "n_t_l": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353, 554, 555, 556, 557, 561, 562, 563, 913, 914, 915, 916], "n_t_r": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353, 554, 555, 556, 557, 561, 562, 563, 913, 914, 915, 916], "n_target": [156, 172, 183, 235, 385, 406, 478, 479, 480, 481, 521, 553, 610, 642, 645, 646, 649, 650, 651, 652, 653, 655, 656, 659, 660, 661, 662, 663, 664, 670, 671, 672, 673, 674, 680, 683, 684, 685, 686, 1001, 1043, 1045, 1047], "n_task": [202, 996], "n_test": [48, 50, 70, 137, 263, 1031, 1034], "n_test_docu": 48, "n_test_po": 48, "n_threshold": [634, 728, 783, 790], "n_tick": [807, 824, 829, 832], "n_top": 271, "n_top_word": 55, "n_topic": [376, 533, 1038], "n_tot": 699, "n_total_sampl": [324, 325], "n_train": [48, 50, 70, 137, 263, 1031, 1034], "n_train_po": 48, "n_transformed_featur": 865, "n_tree": 47, "n_trees_per_iter": 558, "n_trees_per_iteration_": [556, 557, 558, 559], "n_trials_": 670, "n_uncorrelated_featur": 269, "n_unequ": 699, "n_unique_categori": 309, "n_unique_label": [730, 731, 739, 784, 785, 788, 965], "n_unique_tick": [807, 829], "n_val": [558, 559], "n_valu": [824, 832, 1039], "n_values_": 1039, "n_values_feature_j": 632, "n_x": [87, 583], "n_y": [87, 583, 1002, 1010], "n_z": 583, "na": [103, 154, 185, 234, 244, 313, 316, 626, 627, 628, 629, 770, 779, 929, 931, 932, 1041, 1042, 1045, 1046, 1047, 1048], "nabarun": 1039, "nabla": 1004, "nabsolut": 212, "nacross": 277, "nada": 58, "nadeau": [263, 1039], "nadia": 1043, "nadim": 1044, "nadirhan": 1045, "nadya": 1037, "nagarajan": [644, 996], "nagarjuna": [1038, 1039], "nagasaka": 1044, "naghshhnejad": [1041, 1042], "naipawat": [1045, 1046], "naiv": [2, 33, 65, 68, 152, 263, 265, 282, 346, 348, 366, 401, 410, 411, 433, 541, 840, 841, 842, 843, 844, 994, 995, 1003, 1008, 1022, 1026, 1031, 1032, 1033, 1034, 1039, 1041, 1044, 1046], "naive_bay": [2, 48, 62, 63, 65, 68, 152, 264, 265, 346, 354, 360, 366, 410, 433, 566, 840, 841, 842, 843, 844, 866, 994, 1001, 1002, 1032, 1033, 1035, 1036, 1037, 1038], "naive_linear_pipelin": 44, "naive_linear_predict": 44, "naivebay": 360, "naivebayesna": 391, "naivelycalibratedlinearsvc": [63, 65], "najera": 1038, "najork": [727, 757, 1000], "naka": 1044, "nakamura": 1045, "nakano": [1038, 1039], "nalepa": 1038, "naman": 1048, "name": [2, 44, 46, 47, 49, 50, 51, 52, 56, 58, 63, 65, 67, 68, 73, 79, 91, 95, 103, 104, 105, 107, 113, 121, 126, 137, 138, 139, 140, 143, 146, 149, 154, 160, 178, 183, 184, 185, 198, 204, 206, 208, 210, 212, 220, 222, 223, 225, 226, 232, 233, 234, 238, 239, 241, 242, 243, 244, 246, 250, 253, 257, 258, 260, 261, 262, 263, 264, 266, 267, 270, 272, 273, 275, 277, 280, 283, 291, 292, 298, 299, 305, 307, 309, 313, 316, 317, 320, 321, 322, 340, 346, 347, 348, 359, 360, 365, 366, 369, 371, 373, 375, 376, 378, 379, 385, 389, 394, 400, 403, 407, 410, 411, 413, 417, 419, 424, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 460, 461, 462, 463, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 484, 485, 486, 487, 488, 489, 490, 491, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 507, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 572, 574, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 686, 687, 688, 689, 690, 691, 692, 697, 698, 699, 700, 702, 708, 709, 711, 713, 731, 733, 734, 743, 780, 781, 798, 799, 800, 801, 802, 803, 804, 805, 807, 808, 810, 813, 815, 819, 823, 824, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 930, 931, 932, 935, 939, 940, 941, 942, 944, 957, 958, 959, 961, 964, 983, 986, 987, 988, 989, 994, 996, 1001, 1007, 1008, 1010, 1016, 1031, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "name_to_color": 309, "named_estim": [178, 564, 565, 566, 567], "named_estimators_": [564, 565, 566, 567, 1039, 1041], "named_step": [103, 105, 116, 139, 143, 154, 160, 161, 183, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322, 404, 591, 592, 595, 865, 866, 905, 906, 996, 1038, 1040], "named_transform": [864, 1046], "named_transformers_": 460, "namedtupl": [2, 616, 1047], "namespac": 399, "namiya": 1038, "nan": [2, 103, 104, 107, 143, 149, 154, 155, 178, 179, 183, 184, 185, 223, 234, 242, 244, 246, 253, 257, 258, 261, 262, 263, 266, 275, 309, 312, 313, 316, 317, 318, 319, 320, 321, 358, 363, 380, 385, 410, 442, 464, 493, 552, 553, 554, 555, 558, 559, 561, 562, 591, 592, 595, 601, 604, 607, 626, 627, 628, 629, 634, 712, 713, 714, 721, 723, 724, 725, 729, 730, 731, 770, 779, 784, 785, 786, 788, 801, 804, 805, 807, 815, 824, 827, 828, 829, 832, 874, 875, 879, 881, 882, 884, 885, 886, 890, 893, 894, 896, 922, 929, 930, 931, 932, 974, 989, 1000, 1010, 1016, 1026, 1034, 1038, 1039, 1040, 1041, 1042, 1043, 1045, 1046, 1047, 1048, 1050, 1052], "nan_euclidean": [627, 763, 779, 780, 781, 1050], "nan_euclidean_dist": [2, 312, 763, 990, 1041], "nandana": [1037, 1038, 1039], "nandiyawar": 1050, "nanencod": [143, 154, 184, 185, 309], "nanshan": 1044, "nanta": 1034, "nanth": [103, 154, 185, 234, 244, 313, 316], "nanvalu": [103, 104, 244, 253, 257, 261, 262, 263], "nanxin": 1039, "nanyang": 368, "naois": [1046, 1048], "naoki": [1033, 1043], "naoya": [1037, 1038, 1039, 1040], "naozin555": 1044, "napa": 309, "narasimhan": 852, "nardelli": 1034, "narendra": [1042, 1048], "narendramukherje": 1042, "narendran": 1039, "narin": [1038, 1039], "narinek": [1038, 1039], "narr": [371, 385, 657, 905, 910, 1031, 1032], "narrai": 592, "narrow": [53, 137, 146, 303, 305, 376, 845, 846], "nartayxd": 1045, "nasa": [102, 346, 347, 368], "nasdaq": 52, "naser": 1041, "nasir": 1039, "nass": 1046, "nastegiano": 1045, "nat": [605, 606, 704, 756, 758, 1045], "natalia": [1050, 1051], "natasha": 1041, "natchiappan": [1044, 1045], "nate": [1037, 1038, 1044], "nath": [1039, 1050, 1051], "nathan": [532, 1039, 1043, 1046, 1049, 1050], "nathaniel": [1038, 1039, 1041], "nathansquan": 1045, "nati": 1046, "nation": [51, 111, 296, 366, 852], "nativ": [44, 64, 149, 153, 172, 178, 257, 359, 366, 371, 385, 397, 410, 433, 493, 554, 555, 558, 559, 561, 562, 837, 838, 996, 1000, 1001, 1019, 1041, 1043], "native_result": 143, "natl": [689, 693, 997], "natur": [44, 64, 65, 68, 140, 143, 146, 174, 183, 184, 188, 194, 206, 207, 222, 223, 229, 242, 248, 254, 272, 282, 346, 371, 373, 385, 401, 407, 408, 410, 411, 414, 433, 440, 446, 453, 548, 588, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 692, 704, 742, 756, 758, 847, 848, 849, 851, 853, 855, 856, 857, 884, 947, 996, 997, 999, 1000, 1003, 1005, 1010, 1014, 1019, 1031, 1039], "naul": [1036, 1037], "nav": 52, "navarret": [1039, 1040, 1041], "navarro": 1046, "navi": [70, 102, 110, 124, 128, 129, 153, 190, 209, 216, 228, 249, 250, 251, 254, 270, 272, 288, 295, 326], "navig": [379, 1033], "navin": 901, "navistar": 52, "navkal": 1039, "navratil": 1000, "navratil2007": 1000, "nawazish": [1046, 1047], "naziya": 1049, "nb": [48, 127, 152, 354, 842, 1002], "nbclaim": 223, "nber": 50, "nbr": [853, 1003], "nbrown": [1049, 1050], "nbrs_": [688, 689], "nbsp": [146, 198], "nbviewer": [52, 64, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 183, 184, 185, 192, 233, 234, 235, 239, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 326, 352, 353], "nbyte": [86, 236], "nca": [226, 291, 292, 293, 854, 1003], "nca_pip": 1003, "ncall": 377, "ncanip": 854, "nclass": 258, "ncluster": 79, "ncol": [44, 45, 53, 67, 69, 71, 86, 90, 99, 120, 125, 130, 144, 184, 204, 206, 207, 208, 213, 223, 225, 226, 235, 242, 257, 259, 265, 266, 274, 276, 277, 283, 286, 299, 304, 305, 307, 308, 317, 341, 342, 347, 367], "nconstant": 155, "ncorrect": 263, "ncsu": [163, 368], "ncv": [447, 449], "nd": [1044, 1048], "ndarrai": [86, 91, 172, 183, 206, 246, 261, 262, 263, 371, 372, 373, 377, 378, 399, 411, 414, 415, 418, 419, 421, 424, 425, 427, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 459, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 477, 478, 479, 480, 481, 484, 485, 486, 487, 489, 490, 491, 492, 494, 497, 498, 499, 500, 501, 502, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 700, 701, 702, 715, 718, 721, 723, 724, 728, 729, 739, 746, 747, 749, 752, 754, 755, 760, 761, 762, 764, 765, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 786, 790, 791, 792, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 928, 929, 930, 931, 936, 937, 946, 948, 949, 950, 951, 956, 963, 965, 966, 969, 971, 972, 974, 975, 976, 977, 980, 985, 986, 988, 1000, 1015, 1034, 1038, 1041, 1042, 1045, 1046, 1047, 1048], "ndataset": [220, 305], "ndbscan": 98, "ndcg": [727, 757, 1000, 1038], "ndcg_score": [2, 727, 1000, 1038, 1041, 1046, 1047], "ndenumer": 217, "ndepend": 184, "ndiay": 996, "ndim": [645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 931, 932], "ndimag": [54, 80, 81, 87, 301], "ndingwal": 1038, "ndirangu": [1041, 1045], "ndom_stat": 139, "ne": [1000, 1003], "neal": [996, 1044], "near_uniqu": 310, "nearbi": [403, 1003], "nearer": [2, 849, 857, 1003], "nearest": [2, 34, 52, 54, 68, 69, 75, 83, 84, 87, 91, 94, 99, 100, 104, 109, 113, 120, 123, 150, 171, 179, 192, 199, 217, 221, 227, 230, 241, 242, 256, 287, 289, 292, 293, 300, 301, 308, 331, 335, 340, 344, 363, 368, 380, 383, 385, 403, 409, 414, 417, 427, 440, 442, 444, 446, 448, 453, 457, 458, 493, 499, 501, 605, 606, 626, 627, 629, 630, 634, 688, 689, 691, 692, 696, 793, 794, 801, 831, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 858, 859, 865, 866, 870, 885, 973, 997, 1006, 1015, 1021, 1022, 1026, 1031, 1033, 1034, 1035, 1036, 1038, 1040, 1041, 1043], "nearest_neighbor": [79, 448, 691], "nearest_neighbor_algorithm": [847, 855, 856], "nearest_neighbors_algorithm": [848, 853], "nearestcentroid": [2, 294, 346, 1001, 1003, 1031, 1035, 1038, 1043, 1046, 1050], "nearestneighbor": [2, 283, 316, 389, 403, 414, 440, 442, 444, 457, 688, 689, 693, 847, 848, 849, 851, 855, 856, 857, 1003, 1031, 1035, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1050], "nearli": [38, 63, 266, 366, 385, 765, 1000, 1003, 1012], "neat": 1031, "necess": [997, 1003], "necessari": [47, 54, 138, 194, 206, 211, 248, 257, 263, 264, 270, 285, 321, 339, 358, 366, 369, 370, 371, 372, 374, 375, 379, 383, 399, 403, 405, 410, 448, 458, 484, 485, 487, 489, 490, 491, 492, 494, 531, 643, 644, 645, 651, 655, 656, 659, 660, 661, 662, 663, 664, 670, 672, 674, 675, 691, 695, 796, 868, 877, 888, 892, 898, 989, 992, 996, 999, 1002, 1010, 1016, 1031, 1039], "necessarili": [44, 64, 67, 68, 104, 123, 183, 206, 213, 223, 237, 238, 249, 270, 305, 346, 347, 365, 397, 399, 401, 403, 410, 626, 853, 855, 856, 857, 994, 997, 999, 1000], "need": [31, 44, 49, 52, 64, 69, 80, 86, 88, 90, 103, 104, 113, 122, 132, 140, 143, 145, 146, 147, 149, 154, 163, 167, 172, 178, 179, 183, 184, 185, 196, 201, 208, 222, 223, 226, 228, 232, 234, 235, 237, 239, 242, 243, 244, 248, 249, 253, 254, 257, 261, 262, 263, 264, 265, 266, 268, 275, 280, 282, 283, 285, 308, 309, 312, 313, 316, 319, 322, 327, 335, 346, 347, 352, 354, 358, 359, 360, 365, 366, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 384, 385, 386, 388, 389, 394, 397, 399, 400, 401, 402, 403, 404, 406, 407, 408, 410, 411, 412, 413, 419, 433, 437, 441, 445, 460, 461, 463, 500, 538, 548, 569, 580, 581, 586, 587, 588, 589, 602, 626, 634, 637, 638, 639, 641, 646, 648, 652, 660, 662, 665, 667, 670, 675, 678, 692, 711, 720, 721, 723, 724, 725, 731, 782, 786, 798, 799, 801, 804, 805, 815, 816, 817, 826, 834, 837, 845, 846, 862, 865, 868, 872, 877, 878, 882, 900, 907, 910, 922, 942, 958, 989, 990, 992, 994, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1010, 1011, 1013, 1014, 1015, 1016, 1018, 1020, 1024, 1028, 1031, 1034, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "neededfor": 253, "needl": [163, 368], "needs_proba": [1040, 1048], "needs_threshold": 1048, "neeraj": 1038, "neg": [2, 43, 44, 46, 62, 64, 93, 107, 109, 116, 140, 141, 143, 145, 146, 151, 154, 156, 173, 179, 180, 182, 183, 185, 189, 204, 206, 223, 244, 245, 252, 253, 257, 260, 261, 263, 266, 270, 272, 273, 275, 277, 283, 303, 307, 309, 314, 316, 317, 319, 320, 322, 346, 352, 353, 377, 385, 386, 403, 407, 410, 411, 412, 414, 415, 426, 436, 440, 448, 461, 465, 478, 479, 480, 484, 528, 530, 532, 533, 534, 535, 537, 539, 541, 544, 549, 550, 551, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 565, 567, 586, 589, 590, 593, 594, 596, 597, 598, 600, 602, 603, 604, 605, 606, 607, 610, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 668, 669, 671, 672, 674, 675, 676, 677, 678, 679, 686, 698, 699, 704, 705, 712, 713, 715, 716, 718, 719, 721, 722, 723, 724, 725, 728, 730, 731, 732, 736, 739, 742, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 760, 783, 784, 785, 786, 788, 790, 791, 792, 794, 798, 799, 807, 824, 826, 831, 838, 839, 848, 851, 856, 863, 872, 881, 883, 884, 889, 893, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 932, 947, 949, 998, 1000, 1001, 1003, 1004, 1005, 1006, 1014, 1015, 1021, 1025, 1026, 1031, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1047, 1048, 1050, 1051, 1052], "neg_": [807, 824, 1037], "neg_brier_scor": [1000, 1041], "neg_label": [257, 277, 872, 889], "neg_log_loss": [65, 257, 1000], "neg_lr": 266, "neg_lr_bas": 266, "neg_lr_base_std": 266, "neg_max_error": [1000, 1050], "neg_mean_absolute_error": [44, 154, 208, 1000], "neg_mean_absolute_percentage_error": [53, 143, 1000, 1008], "neg_mean_gamma_devi": 1000, "neg_mean_pinball_loss_05p_scor": 146, "neg_mean_pinball_loss_95p_scor": 146, "neg_mean_poisson_devi": 1000, "neg_mean_squared_error": [178, 179, 208, 238, 278, 319, 828, 1000, 1008, 1037], "neg_mean_squared_log_error": 1000, "neg_median_absolute_error": 1000, "neg_root_mean_squared_error": [44, 149, 309, 1000], "neg_root_mean_squared_log_error": 1000, "neg_root_mean_squared_log_error_scor": 1048, "negat": [385, 807, 824, 1000], "negate_scor": [238, 807, 824], "negative_class": 712, "negative_likelihood_ratio": [266, 712], "negative_linestyl": 232, "negative_loglik": 109, "negative_mahal_dist": 465, "negative_outlier_factor": 851, "negative_outlier_factor_": [242, 290, 851, 1006], "negativeinteg": 155, "neglig": [183, 1003, 1034, 1048], "neigh": [782, 847, 848, 849, 851, 853, 855, 856, 857], "neigh_dist": [847, 848, 849, 851, 853, 855, 856, 857], "neigh_ind": [847, 848, 849, 851, 853, 855, 856, 857], "neighbor": [2, 52, 68, 79, 81, 93, 99, 100, 104, 149, 150, 152, 178, 179, 192, 226, 227, 229, 230, 232, 241, 242, 256, 287, 288, 289, 290, 292, 293, 294, 296, 300, 314, 316, 317, 326, 344, 346, 363, 368, 380, 383, 385, 389, 403, 409, 410, 411, 414, 417, 427, 437, 440, 441, 442, 444, 446, 448, 453, 454, 457, 459, 493, 499, 501, 560, 567, 600, 605, 606, 626, 627, 630, 688, 689, 690, 691, 692, 693, 695, 696, 702, 782, 790, 801, 831, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 865, 866, 885, 901, 909, 973, 1001, 1006, 1021, 1022, 1025, 1026, 1031, 1033, 1034, 1035, 1036, 1037, 1038], "neighbor_feat_idx": 626, "neighborhood": [2, 88, 113, 128, 180, 225, 283, 284, 285, 286, 294, 295, 368, 385, 403, 408, 414, 440, 446, 453, 499, 501, 512, 538, 546, 627, 630, 696, 831, 847, 848, 851, 853, 854, 855, 856, 857, 859, 865, 866, 885, 997, 1006, 1021, 1022, 1026, 1040], "neighborhoodcomponentanalysi": 292, "neighborhoodcomponentsanalysi": [2, 226, 291, 292, 293, 1003, 1040, 1045, 1049], "neighbors_algorithm": [688, 689], "neighborsbas": [1043, 1046], "neighborsclassifi": [853, 855, 856, 857, 1031], "neighborsregressor": 1031, "neighbour": [442, 458, 692, 1005], "neighbourhood": [854, 1003], "neighbourhood_components_analysi": 854, "neil": 1043, "neill": 1043, "neither": [179, 183, 312, 346, 354, 383, 401, 433, 592, 627, 935, 1003, 1016, 1052], "nelder": 996, "nell": [0, 393, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1040, 1043], "nelson": [0, 1037, 1038, 1043, 1049], "nemour": 52, "neo": 1039, "nep": 1041, "neptun": 1019, "neq": [403, 1000, 1002, 1010], "nest": [125, 134, 180, 198, 239, 255, 257, 258, 280, 319, 359, 377, 385, 389, 403, 407, 413, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 458, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 501, 516, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 800, 801, 804, 805, 806, 815, 823, 827, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 989, 1000, 1003, 1021, 1031, 1032, 1035, 1037, 1038, 1039, 1045], "nested_lin": 268, "nested_scor": 268, "nesterov": [243, 299, 862, 863, 1004, 1047, 1048], "nesterovs_momentum": [243, 299, 862, 863], "nestor": 1046, "net": [2, 26, 52, 68, 103, 139, 155, 180, 189, 194, 195, 198, 199, 202, 216, 233, 234, 239, 244, 246, 257, 262, 276, 277, 301, 313, 316, 322, 344, 377, 407, 467, 468, 474, 498, 521, 554, 555, 556, 557, 561, 562, 563, 643, 645, 646, 651, 656, 657, 658, 659, 660, 661, 662, 667, 675, 677, 680, 681, 683, 861, 913, 914, 915, 916, 989, 1000, 1005, 1014, 1021, 1022, 1024, 1026, 1031, 1036, 1040, 1041, 1043], "netbsd": 1031, "neto": [588, 731, 1049], "nettei": 1044, "network": [35, 46, 242, 300, 321, 358, 359, 360, 365, 366, 375, 385, 386, 397, 401, 403, 408, 410, 415, 433, 493, 530, 532, 564, 565, 696, 742, 862, 863, 996, 998, 1000, 1014, 1016, 1019, 1022, 1025, 1026, 1031, 1045, 1049], "networkx": [56, 380], "neural": [35, 45, 46, 68, 263, 300, 385, 397, 401, 407, 408, 410, 415, 433, 530, 532, 535, 537, 544, 564, 565, 638, 644, 696, 742, 798, 854, 861, 862, 863, 871, 992, 996, 997, 998, 1000, 1003, 1006, 1010, 1014, 1015, 1016, 1019, 1022, 1024, 1025, 1026, 1031, 1043], "neural_network": [2, 68, 180, 184, 243, 297, 298, 299, 300, 301, 322, 360, 383, 861, 862, 863, 1001, 1004, 1021, 1033, 1048], "neuro": 1019, "neurodebian": 0, "neuroimag": [1018, 1024], "neuron": [243, 862, 863, 998, 1004], "neutral": 716, "nevalu": 154, "never": [103, 139, 140, 143, 154, 160, 183, 185, 233, 234, 240, 243, 244, 246, 264, 270, 277, 309, 313, 316, 320, 322, 354, 371, 373, 380, 383, 397, 402, 403, 404, 406, 407, 446, 453, 520, 552, 553, 554, 561, 865, 866, 988, 992, 1010, 1041, 1044, 1051], "nevertheless": [44, 186, 410], "new": [2, 44, 47, 48, 50, 83, 89, 91, 93, 102, 103, 126, 127, 134, 136, 138, 139, 140, 143, 144, 146, 149, 153, 154, 160, 162, 163, 167, 173, 179, 183, 184, 185, 186, 204, 206, 212, 219, 232, 234, 239, 244, 246, 257, 262, 265, 270, 282, 287, 289, 309, 313, 316, 319, 320, 321, 322, 325, 334, 339, 354, 359, 360, 365, 366, 368, 369, 370, 373, 374, 375, 377, 379, 380, 384, 385, 386, 389, 397, 401, 402, 403, 404, 407, 408, 409, 410, 411, 412, 413, 428, 433, 434, 436, 438, 439, 441, 443, 444, 445, 448, 458, 459, 460, 468, 478, 479, 480, 501, 505, 506, 531, 538, 541, 552, 553, 554, 555, 560, 561, 562, 563, 579, 600, 629, 630, 634, 639, 640, 641, 644, 645, 651, 688, 689, 690, 697, 698, 700, 701, 702, 789, 798, 799, 800, 801, 804, 805, 807, 815, 823, 824, 835, 851, 852, 874, 875, 880, 881, 882, 884, 885, 886, 893, 894, 902, 920, 929, 934, 974, 989, 990, 992, 996, 1000, 1001, 1003, 1004, 1005, 1006, 1010, 1012, 1013, 1014, 1015, 1020, 1024, 1026, 1029, 1033, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "new_data": [287, 373], "new_valu": [564, 565, 566, 567], "newaxi": [52, 54, 58, 62, 77, 113, 129, 135, 168, 192, 207, 208, 209, 211, 212, 222, 235, 237, 278, 288, 295, 352, 400, 533, 996], "newei": 1039, "newer": [167, 370, 389, 408], "newgroups20": 220, "newli": [369, 373, 375, 384, 410, 459, 1007, 1037, 1038, 1046], "newsgroup": [2, 47, 55, 58, 236, 264, 328, 347, 348, 364, 400, 411, 484, 485, 1026], "newsgroups_test": 366, "newsgroups_train": [366, 484], "newsgroups_vector": 485, "newsl": [886, 1010], "newslett": 365, "newswir": 366, "newton": [103, 139, 155, 206, 223, 233, 234, 243, 244, 246, 257, 262, 277, 301, 313, 316, 322, 609, 647, 657, 658, 668, 679, 789, 862, 863, 996, 1035, 1036, 1038, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "newton_cg": 1041, "next": [47, 63, 93, 111, 140, 142, 143, 147, 156, 174, 182, 186, 201, 204, 206, 233, 239, 241, 245, 246, 250, 253, 258, 263, 269, 282, 308, 309, 310, 314, 325, 346, 350, 353, 354, 369, 371, 373, 375, 391, 397, 399, 400, 403, 404, 407, 410, 505, 506, 609, 633, 692, 698, 700, 702, 782, 798, 799, 831, 967, 989, 993, 999, 1000, 1010, 1024, 1028, 1031, 1044, 1045], "nezar": 1041, "nff": 699, "nfit": 325, "nfkd": [264, 586, 587, 589, 1041], "nfor": 240, "nfrom": 172, "nft": 699, "ng": [403, 408, 691, 851, 1004, 1006, 1042], "ngiam": 1004, "ngo": 1043, "ngram_rang": [264, 328, 411, 586, 587, 589], "ngram_vector": 411, "ngroup": 258, "ngshya": 1042, "nguyen": [1041, 1042, 1045, 1046], "nguy\u1ec5n": 1046, "ni": [1037, 1042], "nic": 1044, "nice": [44, 207, 239, 303, 358, 408], "nicer": 630, "nichol": 1035, "nichola": [1039, 1040, 1042], "nicholson": [1037, 1038, 1039], "nick": [163, 368, 1031, 1037, 1038, 1039, 1040], "nicki": 1045, "nickledav": 1037, "nicknam": 366, "nico": [1037, 1044], "nicol": 1038, "nicola": [0, 393, 657, 996, 1013, 1031, 1033, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1051], "nicolashug": 1040, "nicolasservel": 1042, "nicolau": 1039, "nicula": [0, 393, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040], "niculescu": [63, 65, 401, 433, 435], "nidhin": 1041, "niederb\u00fchl": 1039, "niederhut": [1039, 1041], "nielsen": [744, 1039], "nielsenmarkus11": [1038, 1039], "nigam": [840, 1002], "nigel": 1044, "night": 53, "nightli": [0, 359, 374, 375], "nightwalkx": 1047, "nihal": 1046, "nihar": 1039, "niket": 1045, "nikhil": 1045, "nikita": [1038, 1039, 1041, 1044, 1045, 1046, 1050], "nikla": [1041, 1042], "nikolai": [1034, 1035, 1036, 1037, 1039, 1040, 1045, 1047], "nil": 1043, "nilearn": 1019, "nilesh": 1039, "nilotp": [634, 636], "nima": 1046, "nima10khodaveisi": 1046, "ninertia": 97, "ning": 1050, "ningchi": 1037, "ninh": 188, "ninja": [369, 1024], "nip": [127, 368, 512, 538, 563, 640, 1000], "nipal": [406, 479, 480], "nipy_spectr": [52, 80, 81, 84, 85, 93, 94, 100], "niri": 269, "nirvan": [1039, 1043], "nishan": 1041, "nishihara": 1043, "nishu": 1047, "nist": [368, 1000], "nistir": 368, "nit": 371, "nithish": [1049, 1050], "nitinramvelraj": 1046, "nitish": 1038, "nitya": 1041, "niuk": 1047, "niyogi": 997, "nizam": 1039, "nizhibitski": 1032, "nk": 696, "nkish": 1042, "nkmean": 79, "nl": 377, "nl1_ratio": 199, "nlasso": 194, "nlathia": 1037, "nlearn": 299, "nlog": 173, "nlogn": 692, "nlp": [366, 408, 411, 840, 844, 998, 1024], "nls_max_it": 1036, "nltk": [411, 1019], "nm": 358, "nmcd": 111, "nmd": 228, "nmean": 124, "nmf": [2, 11, 55, 104, 377, 411, 532, 535, 541, 544, 1025, 1026, 1031, 1034, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1049], "nmf_estim": 120, "nmi": [73, 403, 717, 737, 738, 758], "nmixtur": 79, "nmle": 111, "nmodel": [143, 262], "nmse": [45, 278], "nmslib": 283, "nmslib_": 283, "nmslibtransform": 283, "nn": [178, 241, 411, 695], "nn_candid": 275, "nn_compon": [236, 237], "nn_sampl": [236, 275], "nndsvd": [408, 535, 537, 544, 1040, 1043], "nndsvda": [55, 408, 535, 537, 544, 1040, 1043], "nndsvdar": [408, 535, 537, 544, 1040], "nneq": 699, "nnl": [203, 656], "nnlnr": [1046, 1047], "nnmf": [411, 1025, 1026, 1031], "nntp": [346, 366], "nnz": [195, 347, 366, 699], "no_chang": 902, "no_interact": [143, 151, 154, 257, 309, 317, 322, 558, 559, 1046], "no_mathjax": 371, "no_structur": [79, 95], "no_valid": [924, 988], "no_weight": 218, "no_weights_handl": 218, "noa": [1042, 1048], "noah": 996, "noam": 1050, "noc": 52, "nocach": [103, 139, 143, 154, 160, 183, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322], "noced": 657, "nodar": 1044, "node": [2, 52, 64, 76, 139, 141, 143, 147, 151, 154, 156, 185, 194, 244, 257, 275, 309, 312, 314, 317, 318, 319, 322, 350, 352, 353, 379, 380, 403, 405, 408, 410, 437, 438, 441, 459, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 649, 653, 655, 681, 682, 692, 845, 846, 913, 914, 915, 916, 917, 919, 955, 1003, 1005, 1006, 1007, 1016, 1034, 1035, 1036, 1037, 1038, 1040, 1043, 1044, 1045, 1046, 1048, 1050], "node_count": [312, 350, 353, 913, 914, 915, 916], "node_depth": 353, "node_id": [353, 917, 919], "node_idx": 353, "node_ind": 353, "node_index": 353, "node_position_model": 52, "noel": [0, 393, 1031, 1032, 1033, 1034, 1035, 1043], "noelano": 1043, "nof": 150, "nogil": [321, 372, 1050], "noinfo": 242, "noir": 309, "nois": [45, 50, 54, 59, 60, 65, 68, 70, 75, 79, 82, 85, 87, 88, 94, 95, 100, 107, 116, 120, 121, 123, 125, 127, 135, 137, 146, 151, 152, 155, 166, 167, 168, 172, 176, 180, 190, 192, 193, 194, 198, 203, 204, 205, 208, 209, 210, 211, 222, 228, 230, 232, 234, 235, 238, 263, 271, 276, 278, 295, 298, 299, 305, 310, 313, 319, 341, 352, 354, 367, 373, 376, 383, 384, 401, 403, 404, 408, 410, 412, 413, 414, 440, 442, 448, 508, 510, 511, 512, 513, 514, 515, 519, 521, 522, 527, 529, 531, 538, 604, 605, 606, 607, 610, 612, 613, 614, 615, 616, 620, 621, 623, 624, 643, 644, 645, 648, 649, 650, 651, 652, 653, 654, 655, 662, 663, 664, 670, 678, 684, 685, 692, 882, 894, 900, 923, 993, 995, 996, 997, 1000, 1003, 1013, 1021, 1032, 1037, 1042, 1044, 1045], "noise_coef": 87, "noise_kernel": 172, "noise_level": [167, 172, 173, 611, 624], "noise_level_bound": [172, 173, 624], "noise_level_grid": 173, "noise_std": 174, "noise_vari": [196, 529, 655, 996, 1045], "noise_variance_": [120, 196, 529, 531, 538, 655, 1038, 1045], "noise_variance_init": 529, "noiseless": [123, 998], "noisi": [45, 70, 82, 88, 95, 121, 134, 155, 159, 167, 173, 194, 204, 205, 208, 228, 235, 254, 264, 270, 272, 273, 276, 308, 352, 354, 403, 411, 413, 414, 440, 442, 446, 518, 521, 665, 666, 675, 677, 949, 995, 997, 1003, 1015], "noisier": 997, "noisili": 184, "noisy_circl": [79, 95], "noisy_moon": [79, 95], "noiz": 115, "nolan": 1048, "noll": [206, 223], "nomenclatur": [996, 1037], "nomin": [184, 365, 385, 386, 410, 411, 579, 580, 716, 1010, 1020], "nomiss": [103, 154, 185, 234, 244, 313, 316], "non": [0, 2, 26, 43, 45, 46, 49, 50, 53, 54, 62, 63, 64, 65, 67, 70, 71, 73, 82, 90, 95, 103, 107, 111, 113, 121, 122, 123, 125, 136, 139, 141, 143, 151, 152, 154, 155, 156, 159, 160, 162, 171, 173, 180, 182, 183, 184, 185, 186, 189, 190, 194, 195, 197, 201, 202, 204, 205, 207, 208, 212, 219, 220, 221, 223, 226, 227, 228, 229, 233, 234, 235, 236, 238, 242, 243, 244, 245, 246, 248, 250, 254, 255, 256, 257, 258, 261, 262, 263, 264, 270, 272, 275, 277, 280, 283, 287, 289, 301, 303, 305, 307, 308, 309, 313, 314, 315, 316, 317, 318, 319, 322, 330, 332, 337, 338, 339, 342, 343, 346, 347, 348, 352, 353, 354, 358, 359, 363, 366, 367, 371, 372, 373, 375, 376, 377, 379, 380, 383, 385, 386, 397, 399, 401, 403, 404, 407, 409, 410, 411, 412, 413, 414, 415, 433, 437, 440, 441, 442, 446, 448, 452, 458, 459, 460, 461, 463, 464, 484, 490, 493, 494, 500, 501, 505, 523, 529, 532, 533, 535, 537, 541, 544, 546, 548, 549, 550, 554, 555, 556, 557, 558, 559, 561, 562, 563, 569, 586, 587, 589, 590, 593, 594, 595, 596, 597, 598, 601, 602, 603, 604, 605, 606, 607, 609, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 629, 630, 634, 637, 642, 649, 651, 656, 657, 658, 659, 663, 664, 665, 666, 667, 668, 671, 675, 676, 677, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694, 698, 699, 702, 706, 707, 712, 715, 717, 719, 720, 727, 728, 729, 736, 738, 740, 741, 746, 747, 748, 749, 750, 751, 752, 753, 754, 756, 757, 759, 760, 779, 783, 786, 789, 790, 791, 792, 795, 798, 799, 801, 802, 806, 808, 809, 810, 811, 813, 819, 827, 831, 834, 853, 855, 856, 857, 860, 865, 866, 868, 869, 870, 873, 877, 878, 879, 880, 881, 882, 884, 885, 892, 893, 894, 895, 896, 898, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 930, 931, 932, 947, 949, 953, 956, 964, 970, 989, 990, 991, 992, 993, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1011, 1012, 1013, 1014, 1015, 1016, 1021, 1025, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051], "non_determinist": [373, 924, 1045], "non_neg": [580, 1038], "non_negative_factor": [2, 1040, 1042, 1043, 1044, 1048], "non_nest": 268, "non_nested_scor": 268, "non_nested_scores_lin": 268, "non_noisy_label": 318, "non_outliers_mask": 303, "non_zero": [47, 52], "nonblasdotwarn": 1043, "none": [44, 48, 49, 50, 52, 53, 56, 64, 67, 70, 76, 77, 79, 85, 87, 88, 89, 95, 100, 103, 104, 122, 125, 129, 138, 139, 141, 142, 143, 145, 148, 149, 150, 151, 154, 155, 156, 160, 163, 168, 172, 174, 175, 178, 179, 183, 184, 185, 186, 190, 192, 206, 207, 213, 216, 223, 225, 233, 234, 235, 238, 239, 240, 242, 243, 244, 245, 246, 253, 256, 257, 258, 260, 261, 262, 263, 264, 270, 275, 277, 288, 290, 294, 301, 307, 309, 310, 313, 314, 315, 316, 317, 319, 322, 325, 326, 333, 335, 336, 339, 340, 341, 346, 347, 352, 353, 366, 367, 368, 371, 373, 378, 380, 385, 394, 397, 403, 407, 410, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 500, 505, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 582, 583, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 700, 701, 702, 703, 707, 708, 709, 711, 712, 713, 714, 716, 718, 720, 721, 722, 723, 724, 725, 727, 728, 729, 730, 731, 733, 735, 736, 739, 740, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 788, 789, 790, 791, 792, 794, 795, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 894, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 920, 924, 928, 929, 930, 931, 932, 934, 935, 936, 937, 940, 942, 943, 944, 948, 949, 952, 953, 955, 956, 960, 961, 964, 967, 969, 970, 973, 974, 980, 983, 984, 986, 988, 989, 996, 1000, 1010, 1013, 1016, 1026, 1031, 1032, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "nonea": 154, "noneaddit": 155, "nonean": 156, "nonecheck": 372, "nonecontrol": [64, 104, 139, 141, 150, 154, 156, 160, 185, 244, 245, 253, 257, 261, 263, 270, 275, 314, 319, 352, 353], "nonedegre": 155, "nonedetermin": [52, 64, 103, 104, 139, 154, 172, 183, 184, 243, 244, 253, 257, 261, 262, 263], "nonedictionari": 139, "noneeith": 264, "noneestim": 183, "nonefunct": 183, "nonegamma": 155, "nonegrow": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "noneif": [64, 141, 143, 151, 154, 156, 185, 244, 264, 275, 309, 317, 319], "noneind": [64, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "nonemaximum": 183, "nonemonoton": [143, 151, 154, 257, 309, 317, 322], "nonemultipl": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "nonenumb": [52, 64, 103, 104, 139, 143, 154, 155, 183, 184, 185, 233, 234, 244, 246, 253, 257, 261, 262, 263, 275, 277, 301, 309, 313, 316, 322], "noneoverrid": 264, "noneprior": 264, "nonepseudo": [103, 143, 151, 154, 155, 257, 275, 309, 317, 322], "noneregressor": 183, "noneremov": 264, "nonescor": 275, "nonesequ": [155, 156], "noneset": [104, 160, 244, 245, 261, 263, 270, 314], "nonespecifi": [103, 139, 143, 151, 154, 183, 184, 185, 234, 244, 257, 309, 313, 316, 317, 322], "nonestrategi": [103, 104, 244, 253, 257, 261, 262, 263], "noneth": [64, 103, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 183, 185, 192, 233, 234, 235, 243, 244, 246, 253, 257, 262, 264, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 326, 352, 353], "nonetheless": [385, 1000], "noneus": [103, 104, 139, 143, 154, 155, 160, 183, 185, 233, 234, 243, 244, 246, 257, 262, 264, 270, 277, 301, 309, 313, 316, 322], "nonevalu": 154, "noneweight": [64, 103, 139, 141, 155, 185, 233, 234, 244, 246, 257, 262, 275, 277, 301, 313, 316, 319, 322, 353], "nonewhen": [103, 143, 154, 184, 185, 234, 244, 309, 313, 316], "nonexist": 631, "nonezero": 155, "nonflavanoid": 368, "nonlinear": [278, 315, 643, 688, 689, 693, 696, 871, 996, 997, 1005, 1010], "nonmetr": [690, 694, 997], "nonneg": [403, 408, 449, 535, 537, 544, 882], "nonner": 1042, "nono": 391, "nonoclusteringclusteringkmeanskmeansyesyesspectralclusteringspectr": 391, "nonoisomapisomapspectralembeddingspectr": 391, "nonojustlookingjust": 391, "nonolassolassoelasticnetelasticnetyesyesridgeregressionridgeregressionsvr": 391, "nonolinearsvclinear": 391, "nonononoyesyesmeanshiftmeanshiftvbgmmvbgmmyesyesminibatchkmeansminibatch": 391, "nonopredict": 391, "nonopredictingstructurepredict": 391, "nonosvcsvcensembleclassifiersensembl": 391, "nonosvr": 391, "nonotoughlucktough": 391, "nonoverlap": 368, "nonparametr": [412, 413, 605, 606], "nonzero": [51, 52, 56, 58, 88, 129, 136, 205, 214, 228, 236, 240, 267, 325, 326, 333, 344, 348, 351, 400, 414, 440, 520, 521, 528, 534, 539, 545, 586, 589, 684, 685, 699, 847, 848, 851, 853, 855, 856, 1000], "nonzero_coef": 996, "nopenguinsland": 1050, "noptic": 98, "noptimum": 173, "noqa": [126, 146, 163, 178, 179, 184, 225, 227, 274, 275, 314, 346, 375, 577, 578, 626, 804, 805, 989, 1040], "nor": [64, 146, 260, 266, 346, 354, 358, 376, 383, 401, 411, 433, 442, 592, 935, 1004, 1016, 1042, 1051, 1052], "norbert": [0, 361, 1033, 1043, 1044, 1045, 1050], "nordbi": 1048, "nore\u00f1a": 1044, "norm": [2, 52, 54, 55, 56, 67, 71, 75, 87, 103, 104, 123, 139, 155, 160, 170, 173, 183, 190, 194, 195, 199, 228, 233, 234, 244, 246, 248, 249, 250, 252, 254, 257, 260, 262, 264, 270, 277, 288, 301, 303, 313, 316, 322, 335, 347, 377, 380, 385, 403, 411, 412, 438, 439, 443, 455, 456, 460, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 485, 528, 531, 534, 535, 536, 537, 538, 539, 541, 542, 543, 544, 545, 587, 588, 589, 595, 642, 645, 646, 651, 652, 656, 657, 658, 659, 660, 661, 662, 663, 671, 673, 675, 677, 680, 683, 684, 685, 687, 692, 693, 771, 842, 877, 892, 905, 907, 910, 981, 982, 993, 996, 998, 1000, 1010, 1014, 1034, 1036, 1038, 1042], "norm1": 460, "norm2": 460, "norm_diag": 524, "norm_laplacian": 695, "norm_ord": [595, 1038], "norm_y_weight": 1043, "normal": [2, 26, 37, 45, 50, 52, 55, 56, 58, 59, 64, 66, 71, 73, 75, 79, 80, 90, 94, 95, 99, 104, 105, 107, 109, 110, 111, 115, 116, 121, 127, 134, 135, 137, 140, 145, 146, 149, 150, 151, 155, 158, 170, 172, 173, 174, 180, 182, 183, 184, 189, 190, 191, 192, 193, 194, 201, 203, 204, 208, 209, 210, 212, 219, 223, 228, 242, 244, 248, 253, 254, 256, 257, 260, 262, 263, 264, 269, 288, 289, 292, 302, 304, 308, 313, 316, 319, 320, 327, 335, 347, 348, 354, 363, 366, 367, 368, 371, 376, 380, 384, 385, 399, 400, 401, 403, 404, 406, 409, 410, 411, 415, 436, 445, 447, 448, 449, 458, 460, 461, 471, 478, 479, 480, 485, 493, 509, 512, 516, 523, 524, 530, 533, 538, 539, 541, 545, 546, 549, 559, 560, 577, 578, 580, 586, 587, 588, 589, 610, 624, 626, 638, 657, 658, 668, 671, 675, 679, 686, 690, 691, 694, 695, 697, 703, 704, 706, 718, 725, 727, 735, 737, 742, 746, 750, 751, 753, 756, 757, 758, 762, 771, 795, 796, 797, 804, 805, 831, 833, 842, 844, 850, 851, 854, 865, 866, 869, 870, 873, 875, 878, 879, 880, 881, 882, 883, 885, 890, 891, 893, 894, 895, 896, 900, 901, 948, 949, 953, 970, 975, 976, 981, 982, 992, 994, 996, 997, 998, 999, 1002, 1006, 1011, 1013, 1015, 1016, 1021, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050, 1051], "normal_unbias": 870, "normalis": [172, 183, 610, 789], "normalization_": [638, 992], "normalizationdur": 264, "normalize_compon": [1039, 1041], "normalize_i": [172, 176, 413, 610, 1045], "normalized_discounted_cumulative_gain": 757, "normalized_mutual_info_scor": [2, 73, 403, 737, 756, 796, 1000, 1039, 1045], "normalized_stress": [225, 690, 694, 997, 1046], "normalized_weight": 192, "norms_squar": 685, "north": [368, 403], "northern": 309, "northrop": 52, "northwestern": 657, "norvan": 1041, "nose": [368, 1034, 1038], "nosetest": 1033, "noshrinkag": [143, 151, 154, 257, 309, 317, 322], "not_memb": 183, "notabl": [200, 239, 303, 365, 385, 402, 493, 729, 878, 997, 999, 1003, 1035, 1038, 1045, 1051], "notarstefano": [1039, 1040], "notat": [150, 385, 404, 408, 411, 588, 712, 996, 1000, 1040, 1047], "notb": 104, "notch": 1024, "note": [0, 31, 44, 45, 47, 48, 51, 52, 54, 58, 59, 64, 65, 69, 73, 86, 99, 103, 104, 111, 113, 115, 116, 118, 123, 137, 138, 139, 140, 141, 142, 143, 146, 147, 150, 151, 154, 155, 156, 160, 163, 165, 167, 172, 174, 178, 182, 183, 184, 185, 186, 188, 192, 196, 198, 201, 204, 206, 207, 208, 210, 213, 219, 221, 223, 225, 226, 227, 229, 232, 233, 234, 235, 237, 238, 239, 240, 242, 243, 244, 245, 246, 249, 257, 258, 259, 261, 262, 263, 266, 269, 270, 271, 272, 275, 277, 282, 283, 285, 289, 290, 299, 301, 303, 304, 307, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 325, 327, 329, 335, 339, 346, 352, 353, 358, 359, 365, 368, 369, 371, 372, 373, 375, 377, 378, 383, 384, 385, 389, 394, 397, 398, 401, 403, 405, 406, 408, 410, 411, 412, 413, 414, 415, 416, 417, 418, 426, 428, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 453, 455, 456, 457, 458, 460, 461, 464, 465, 468, 469, 471, 472, 474, 475, 476, 477, 478, 479, 480, 483, 486, 493, 495, 506, 512, 516, 524, 527, 530, 531, 533, 535, 536, 537, 538, 540, 541, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 587, 588, 590, 591, 592, 595, 597, 598, 601, 602, 604, 605, 606, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 628, 629, 631, 632, 634, 635, 637, 640, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 688, 689, 690, 691, 692, 695, 696, 699, 700, 707, 708, 709, 713, 715, 716, 720, 721, 723, 724, 725, 729, 730, 731, 733, 735, 739, 742, 747, 755, 756, 759, 764, 765, 769, 771, 775, 779, 783, 784, 785, 786, 788, 789, 790, 793, 794, 795, 797, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 815, 816, 817, 818, 819, 820, 821, 822, 823, 826, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 918, 921, 922, 927, 937, 938, 942, 948, 949, 961, 964, 974, 983, 989, 990, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1003, 1004, 1006, 1007, 1008, 1010, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1023, 1026, 1028, 1029, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1047, 1048, 1049], "notebook": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 372, 373, 377, 404, 464, 903, 1016, 1019, 1020, 1042, 1045], "notes_neighbor": 1031, "notfittederror": [2, 132, 385, 854, 983, 1035, 1037, 1040, 1041, 1047, 1048], "notgiven": 264, "noth": [58, 102, 320, 346, 347, 376, 714, 868, 877, 932, 1010], "nothman": [0, 386, 392, 411, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1048, 1049, 1050, 1051], "notic": [47, 53, 63, 64, 71, 86, 90, 111, 137, 139, 140, 146, 149, 162, 190, 194, 232, 245, 260, 261, 263, 264, 266, 272, 273, 283, 308, 339, 346, 347, 348, 354, 373, 376, 386, 402, 407, 410, 493, 538, 560, 989, 999, 1000, 1006, 1028, 1044], "notif": [371, 375], "notifi": [2, 569, 570, 571, 1029, 1041, 1050], "notimplementederror": [550, 551, 892, 1038, 1048], "notimprov": 156, "notin": 403, "notion": [272, 339, 347, 360, 383, 403, 408, 410, 996, 1000], "notmatthancock": [1039, 1041], "noto": 1044, "notplancha": [1049, 1050], "noun": 385, "nouri": [358, 1032, 1034], "novak": 1034, "novarti": 52, "novaya": [1041, 1044], "novel": [219, 289, 334, 354, 401, 989], "novelti": [180, 219, 232, 242, 284, 290, 334, 851, 1021, 1022, 1025, 1026, 1031, 1039], "novemb": [163, 206, 223, 368, 375, 1036, 1037, 1039], "novic": 1033, "now": [44, 45, 47, 53, 56, 59, 86, 90, 103, 116, 125, 134, 135, 139, 141, 142, 143, 146, 147, 154, 156, 163, 165, 167, 172, 173, 174, 179, 182, 183, 184, 185, 188, 190, 192, 195, 196, 198, 201, 207, 208, 210, 228, 229, 237, 239, 253, 257, 259, 263, 266, 274, 275, 276, 277, 280, 286, 308, 313, 314, 316, 317, 318, 319, 320, 321, 322, 326, 335, 346, 347, 348, 354, 358, 360, 366, 371, 372, 377, 383, 384, 385, 389, 400, 403, 407, 408, 410, 411, 415, 423, 460, 505, 506, 509, 533, 546, 577, 578, 580, 626, 629, 648, 652, 657, 662, 683, 690, 694, 702, 727, 757, 798, 799, 804, 805, 837, 852, 864, 865, 974, 990, 996, 1000, 1006, 1009, 1010, 1015, 1016, 1020, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "nowadai": 371, "nozawa": [1046, 1047], "np": [2, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 111, 112, 113, 115, 116, 118, 121, 122, 123, 124, 127, 129, 130, 135, 136, 137, 139, 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 158, 159, 160, 162, 163, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 190, 191, 192, 193, 194, 196, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 226, 227, 228, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 282, 283, 287, 288, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 333, 334, 335, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 351, 352, 353, 354, 358, 365, 366, 371, 373, 376, 377, 380, 383, 385, 394, 400, 402, 403, 404, 407, 408, 409, 410, 411, 413, 416, 417, 418, 419, 420, 421, 424, 425, 426, 427, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 481, 490, 493, 494, 497, 501, 505, 506, 507, 511, 512, 513, 514, 515, 516, 517, 528, 529, 530, 531, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 554, 555, 556, 557, 558, 560, 561, 562, 563, 566, 567, 579, 580, 583, 584, 586, 587, 591, 592, 595, 599, 602, 604, 607, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 635, 640, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 686, 691, 692, 694, 695, 699, 702, 703, 706, 707, 709, 712, 713, 714, 715, 722, 727, 728, 730, 731, 733, 735, 736, 739, 740, 755, 757, 764, 770, 774, 779, 782, 783, 784, 785, 788, 789, 790, 795, 797, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 827, 828, 829, 831, 832, 833, 834, 837, 838, 840, 841, 842, 843, 844, 845, 846, 850, 851, 852, 853, 855, 856, 857, 861, 862, 869, 870, 872, 873, 878, 879, 880, 881, 882, 884, 885, 886, 893, 894, 897, 898, 899, 900, 901, 902, 905, 907, 908, 910, 911, 913, 914, 915, 916, 922, 927, 928, 929, 930, 931, 932, 934, 936, 937, 947, 948, 949, 955, 956, 963, 964, 966, 969, 970, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 985, 989, 990, 995, 996, 998, 1000, 1001, 1003, 1004, 1006, 1010, 1011, 1012, 1014, 1015, 1016, 1032, 1034, 1037, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "npach": [1046, 1047], "nperiod": 155, "npolynomi": 44, "npropag": 79, "nqy18": 411, "nrandom": 269, "nreceiv": 272, "nrow": [44, 45, 67, 69, 71, 90, 99, 105, 120, 149, 176, 184, 206, 208, 213, 223, 225, 226, 229, 242, 257, 265, 266, 283, 305, 307, 308, 317, 325, 341, 342, 367], "nsampl": [373, 798, 799], "nswdemand": 149, "nswprice": 149, "nt": 56, "nt_uri": 56, "ntest": 292, "ntf": 699, "nth": [270, 707, 1000], "nthe": [184, 261, 353], "ntick": 143, "ntime": [51, 274], "nto": [212, 272], "ntol": 163, "ntrain": 83, "ntree": 44, "ntrue": [46, 324, 325], "ntt": 699, "ntu": [188, 365, 483, 505, 506, 657], "ntwo": 367, "nu": [2, 47, 49, 51, 176, 219, 232, 334, 358, 410, 413, 618, 676, 907, 908, 909, 1006, 1014, 1015, 1042, 1046], "nuanc": [200, 385], "nuc": 280, "nuclear": [163, 368], "nuclei": [163, 368], "nudge_dataset": 301, "nuff": 1038, "nugmanov": [1039, 1040], "nuisanc": 413, "nukariya": [1043, 1044], "null": [79, 103, 183, 184, 185, 257, 263, 269, 403, 407, 493, 647, 668, 679, 704, 722, 732, 758, 796, 830, 996, 997, 1000, 1015, 1041], "null_count": 53, "nullabl": [626, 627, 628, 629, 1042, 1046], "nullformatt": [225, 227, 230, 283], "nullloc": 288, "num": [44, 52, 103, 163, 167, 172, 173, 174, 184, 185, 208, 270, 271, 316, 318, 319, 410, 493, 631], "num_col": 246, "num_cor": 377, "num_depend": 257, "num_featur": [998, 1046], "num_linear_processor": 154, "num_missing_cel": 149, "num_pip": 246, "num_preprocess": 460, "num_proc": [234, 313], "num_sampl": [801, 815, 1046], "num_selector": 154, "num_sent": 102, "num_thread": 283, "num_tree_processor": 154, "num_trial": 268, "numba": [283, 1020], "number": [2, 44, 45, 47, 48, 50, 52, 53, 54, 58, 59, 63, 64, 65, 69, 70, 72, 74, 75, 76, 78, 79, 80, 81, 82, 83, 86, 87, 88, 90, 94, 95, 96, 98, 100, 102, 103, 104, 105, 107, 113, 115, 116, 118, 120, 122, 124, 125, 127, 134, 135, 137, 139, 140, 141, 142, 144, 145, 146, 147, 150, 151, 154, 155, 156, 159, 160, 161, 163, 172, 175, 176, 179, 180, 183, 184, 185, 188, 192, 194, 198, 205, 206, 207, 208, 213, 219, 220, 221, 222, 223, 225, 232, 233, 234, 235, 236, 240, 242, 243, 244, 245, 246, 248, 249, 251, 253, 254, 256, 257, 258, 261, 262, 263, 264, 265, 268, 269, 270, 271, 272, 276, 277, 280, 283, 285, 289, 290, 301, 303, 305, 306, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 326, 328, 335, 340, 342, 347, 348, 350, 352, 353, 354, 359, 360, 363, 365, 366, 367, 368, 369, 371, 374, 375, 377, 378, 379, 380, 383, 384, 385, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 426, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 570, 579, 580, 581, 582, 586, 587, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 605, 606, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 699, 701, 702, 703, 704, 705, 707, 712, 713, 714, 716, 718, 720, 725, 729, 730, 731, 732, 735, 736, 739, 741, 753, 756, 775, 779, 782, 783, 784, 785, 786, 787, 788, 789, 790, 793, 794, 795, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 867, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 894, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 921, 931, 932, 935, 948, 949, 952, 953, 969, 970, 973, 974, 989, 992, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1012, 1014, 1015, 1016, 1017, 1019, 1020, 1021, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "number_norm": 58, "numbernormalizingvector": 58, "numberof": [172, 184, 243], "numer": [2, 44, 53, 58, 99, 103, 104, 107, 139, 143, 154, 163, 172, 175, 184, 185, 198, 206, 223, 234, 242, 243, 244, 246, 253, 257, 261, 262, 263, 270, 275, 293, 309, 313, 315, 316, 319, 348, 365, 366, 368, 374, 376, 377, 383, 384, 385, 399, 401, 403, 405, 410, 411, 412, 413, 415, 416, 436, 439, 443, 455, 467, 468, 471, 474, 485, 486, 487, 493, 497, 498, 499, 501, 502, 507, 528, 530, 532, 537, 538, 544, 558, 559, 564, 579, 588, 610, 616, 619, 626, 629, 631, 632, 645, 651, 653, 671, 686, 690, 694, 714, 779, 789, 795, 801, 804, 805, 807, 815, 824, 827, 828, 829, 832, 840, 841, 842, 843, 844, 862, 863, 868, 873, 878, 879, 886, 917, 918, 919, 931, 932, 948, 949, 989, 990, 996, 997, 1001, 1008, 1010, 1011, 1016, 1023, 1024, 1031, 1032, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "numeric_featur": [103, 316], "numeric_onli": 184, "numeric_preprocessor": 244, "numeric_transform": [103, 316], "numerical_column": [183, 185, 463], "numerical_columns_subset": 143, "numerical_featur": [184, 309], "numerical_pip": 185, "numerical_transform": 103, "numericaldata": [103, 154, 185, 234, 244, 313, 316], "numericallyst": 52, "numericalreason": [183, 192], "numericdtyp": [143, 151, 154, 257, 309, 317, 322], "numericvalu": 275, "numfocu": 0, "numpi": [2, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 127, 129, 130, 135, 136, 137, 139, 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 158, 159, 162, 163, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 190, 191, 192, 193, 194, 196, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 226, 227, 228, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 282, 283, 287, 288, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 333, 334, 335, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 351, 352, 353, 354, 358, 364, 365, 366, 369, 371, 372, 373, 374, 375, 377, 379, 380, 383, 384, 385, 389, 394, 396, 397, 399, 400, 403, 404, 407, 408, 409, 410, 411, 416, 417, 418, 419, 420, 421, 424, 425, 426, 427, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 481, 486, 490, 491, 493, 500, 503, 505, 506, 518, 524, 528, 531, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 566, 567, 579, 580, 583, 584, 586, 587, 589, 599, 602, 617, 626, 627, 628, 629, 630, 631, 632, 642, 645, 646, 648, 651, 652, 656, 657, 658, 659, 660, 661, 662, 665, 666, 667, 669, 671, 675, 676, 677, 683, 686, 688, 691, 692, 693, 694, 695, 699, 702, 703, 706, 707, 709, 712, 714, 727, 728, 730, 731, 733, 735, 736, 739, 740, 755, 757, 774, 780, 782, 783, 784, 785, 788, 789, 790, 795, 797, 798, 799, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 828, 831, 832, 833, 834, 837, 838, 840, 841, 842, 843, 844, 845, 846, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 868, 869, 872, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 890, 891, 892, 893, 894, 895, 896, 897, 898, 900, 901, 902, 905, 907, 908, 910, 911, 913, 927, 928, 929, 930, 934, 936, 946, 947, 948, 949, 953, 955, 956, 963, 964, 969, 970, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 985, 986, 989, 990, 995, 996, 998, 1000, 1001, 1003, 1006, 1010, 1012, 1015, 1016, 1018, 1020, 1031, 1034, 1035, 1037, 1038, 1039, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1052], "numpydoc": [371, 385, 389, 396], "nune": 1032, "nuniformli": 150, "nuniqu": 309, "nurseit": 1048, "nusvc": [2, 358, 433, 908, 1001, 1015, 1031, 1032, 1033, 1036, 1039, 1041, 1042, 1043, 1045], "nusvr": [2, 47, 358, 911, 1015, 1033, 1039, 1041, 1042, 1043, 1045, 1046], "nutshel": [998, 1000], "nv": 52, "nvidia": [0, 383], "nvirginica": 272, "nwanna": 1046, "nwith": [73, 90, 94, 162, 347], "nx": [51, 296, 366, 495], "nxorabl": 1041, "ny": [51, 53, 262, 296, 366, 368, 495, 990, 1012], "nyc": [399, 1024], "nymark": 1046, "nystroem": [2, 44, 67, 155, 178, 219, 232, 237, 363, 639, 640, 641, 676, 871, 910, 911, 1026, 1032, 1038, 1041, 1043, 1044, 1045], "nystroem_approx_svm": 237, "nystroem_scor": 237, "nystroem_tim": 237, "nystrom": [880, 1040, 1041], "nystr\u00f6m": [44, 992], "nyu": [0, 854], "nz": 527, "nzw": 1039, "n\u00e1jera": [1035, 1036, 1037, 1038], "n\u00e1pole": 1044, "o": [0, 56, 58, 65, 67, 74, 82, 88, 93, 94, 96, 97, 113, 115, 122, 143, 151, 163, 175, 196, 201, 204, 206, 220, 238, 248, 257, 263, 265, 272, 303, 304, 308, 313, 316, 319, 328, 339, 350, 358, 366, 368, 371, 379, 389, 403, 405, 408, 410, 414, 416, 440, 443, 444, 446, 469, 471, 496, 531, 602, 626, 665, 666, 675, 677, 692, 833, 861, 876, 917, 969, 992, 994, 996, 997, 1000, 1001, 1003, 1004, 1014, 1015, 1016, 1031, 1034, 1037, 1039, 1040, 1043, 1044, 1046, 1047, 1048], "oa": [2, 50, 55, 66, 71, 108, 112, 113, 127, 148, 180, 236, 292, 294, 405, 465, 466, 469, 470, 472, 473, 509, 546, 801, 994, 1021], "oa_ms": 110, "oa_shrinkag": 110, "oak": 309, "ob2019": 1000, "obaja": 1035, "obei": [385, 998], "obj": [52, 64, 103, 104, 139, 141, 143, 150, 154, 155, 156, 183, 184, 185, 233, 234, 235, 239, 244, 246, 253, 257, 261, 262, 263, 275, 277, 301, 309, 313, 316, 319, 322, 326, 397, 564, 565, 938, 958, 960, 961, 962, 967], "obj_func": [172, 609, 610], "object": [2, 44, 51, 52, 54, 55, 58, 64, 65, 79, 83, 95, 99, 102, 103, 104, 123, 126, 132, 139, 143, 149, 151, 154, 155, 156, 160, 162, 172, 180, 183, 184, 185, 192, 194, 206, 221, 223, 231, 234, 239, 243, 244, 245, 246, 257, 260, 261, 264, 270, 272, 275, 277, 296, 309, 313, 314, 315, 316, 317, 318, 319, 322, 324, 347, 348, 354, 364, 365, 366, 371, 372, 374, 376, 377, 378, 380, 384, 385, 386, 394, 397, 403, 404, 405, 408, 411, 412, 413, 417, 419, 424, 426, 428, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 460, 461, 462, 463, 465, 466, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 504, 505, 506, 507, 512, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 572, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 608, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 697, 698, 699, 700, 701, 702, 711, 718, 731, 733, 734, 743, 759, 760, 782, 783, 790, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 920, 931, 932, 933, 934, 935, 938, 942, 943, 945, 954, 956, 957, 958, 959, 960, 961, 962, 964, 966, 967, 984, 985, 986, 987, 996, 997, 998, 999, 1003, 1006, 1007, 1010, 1013, 1014, 1015, 1019, 1021, 1026, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "object_nam": [239, 958, 961], "objectan": [103, 314], "objectthi": [104, 244, 253, 257, 261, 262, 263, 275], "obozinski": 408, "obscur": [1007, 1047], "observ": [2, 44, 45, 47, 49, 51, 53, 54, 59, 62, 64, 65, 67, 71, 73, 75, 78, 86, 95, 103, 109, 111, 112, 113, 121, 122, 125, 126, 127, 134, 137, 138, 140, 141, 146, 149, 150, 153, 163, 167, 170, 172, 173, 174, 176, 183, 184, 185, 190, 191, 200, 203, 206, 207, 208, 210, 219, 223, 229, 230, 235, 236, 242, 257, 259, 263, 265, 266, 270, 276, 277, 283, 286, 289, 296, 308, 318, 320, 327, 334, 335, 339, 340, 346, 347, 348, 352, 366, 368, 385, 389, 401, 403, 405, 406, 407, 408, 409, 412, 413, 437, 439, 441, 442, 443, 445, 455, 456, 465, 466, 467, 468, 469, 470, 471, 472, 521, 529, 548, 549, 560, 609, 610, 645, 651, 656, 701, 709, 716, 718, 759, 843, 851, 884, 886, 996, 999, 1000, 1004, 1005, 1006, 1007, 1008, 1010, 1013, 1014, 1015, 1016, 1023, 1032, 1044, 1045, 1046, 1047], "observatori": 172, "obsolet": [1031, 1047], "obstruct": 1038, "obtain": [23, 44, 47, 49, 52, 53, 59, 65, 88, 90, 91, 103, 106, 107, 125, 127, 134, 143, 146, 147, 152, 156, 163, 169, 171, 183, 184, 194, 206, 208, 210, 219, 229, 242, 248, 249, 250, 257, 259, 263, 264, 265, 269, 272, 276, 286, 308, 314, 315, 333, 339, 347, 348, 352, 353, 354, 366, 368, 373, 385, 397, 401, 402, 403, 405, 406, 408, 410, 411, 412, 413, 433, 438, 465, 493, 529, 530, 552, 553, 554, 555, 556, 557, 560, 561, 562, 591, 604, 613, 644, 658, 660, 665, 667, 671, 673, 675, 676, 686, 708, 712, 727, 740, 757, 794, 807, 824, 830, 833, 834, 837, 851, 862, 882, 894, 907, 910, 913, 914, 949, 989, 990, 992, 994, 996, 999, 1000, 1001, 1003, 1004, 1006, 1007, 1010, 1014, 1015, 1037, 1039, 1042, 1044, 1045, 1046, 1047, 1048], "obviat": 992, "obviou": [183, 339, 354, 358, 371, 400, 408], "obvious": 358, "oc": 1046, "occas": 371, "occasion": [386, 728, 1040], "occup": [183, 303, 319, 493], "occupation_cler": 183, "occupation_manag": 183, "occupation_oth": 183, "occupation_profession": 183, "occupation_sal": 183, "occupation_servic": 183, "occupi": [403, 1000], "occur": [55, 102, 103, 104, 144, 206, 210, 223, 244, 253, 257, 261, 262, 263, 275, 342, 354, 371, 379, 386, 400, 403, 405, 407, 411, 440, 505, 506, 569, 579, 588, 626, 670, 712, 799, 801, 804, 805, 807, 815, 824, 827, 828, 829, 832, 875, 936, 1000, 1002, 1010, 1031, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1051], "occurr": [2, 103, 154, 155, 156, 185, 206, 234, 244, 309, 313, 316, 347, 348, 366, 371, 375, 403, 407, 411, 566, 567, 579, 587, 588, 616, 626, 627, 628, 629, 784, 840, 868, 1002, 1032, 1037], "ocean": 296, "ocsvm": [49, 219], "oct": [692, 770, 997, 1003], "octob": [110, 366, 1031, 1038, 1044, 1045, 1047], "od280": 368, "od315": 368, "odd": [266, 410, 511, 712, 1000, 1038, 1039], "ofboth": 243, "ofcategoriesknownnumb": 391, "ofdocu": 264, "ofedg": [143, 151, 154, 257, 309, 317, 322], "off": [45, 52, 54, 67, 73, 75, 81, 85, 86, 100, 103, 104, 109, 113, 115, 120, 140, 149, 156, 162, 163, 165, 180, 200, 210, 226, 237, 241, 244, 253, 255, 256, 261, 262, 263, 264, 265, 266, 275, 276, 280, 303, 320, 325, 327, 329, 335, 344, 346, 366, 371, 373, 385, 402, 403, 405, 412, 438, 493, 550, 551, 556, 557, 586, 589, 633, 655, 657, 692, 715, 798, 799, 801, 804, 805, 815, 817, 823, 828, 866, 885, 953, 999, 1005, 1015, 1020, 1021, 1031, 1035, 1036, 1038], "offeatur": 150, "offer": [44, 140, 197, 373, 379, 383, 384, 385, 389, 397, 407, 408, 410, 411, 989, 990, 1001, 1004, 1016, 1019, 1020, 1023, 1024, 1037, 1049, 1050], "offic": 1024, "offici": [0, 366, 373, 383, 385, 389, 490, 494, 1019, 1039, 1040, 1043, 1051], "offlin": [257, 358, 371, 1023], "offset": [137, 188, 383, 405, 408, 465, 505, 506, 560, 631, 632, 640, 641, 643, 644, 676, 729, 776, 778, 851, 909, 1000, 1014, 1039, 1050], "offset_": [465, 560, 676, 851, 909, 1039], "offset_init": 676, "offsetbox": 226, "offsetimag": 226, "ofgradi": 243, "ofiter": 156, "ofparamet": [104, 244, 253, 257, 261, 262, 263], "ofpredict": [155, 156], "ofregress": 156, "ofresourc": 275, "ofsampl": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "often": [44, 58, 62, 63, 65, 70, 102, 106, 140, 149, 152, 154, 155, 171, 178, 183, 184, 192, 204, 207, 223, 226, 242, 250, 262, 265, 268, 303, 308, 335, 344, 346, 347, 348, 358, 359, 365, 366, 368, 371, 373, 376, 379, 383, 384, 385, 388, 391, 397, 401, 403, 404, 405, 407, 408, 410, 411, 413, 415, 464, 518, 521, 530, 533, 645, 646, 651, 652, 659, 660, 661, 662, 671, 673, 686, 729, 875, 883, 891, 903, 989, 990, 992, 995, 996, 997, 998, 999, 1000, 1002, 1003, 1005, 1006, 1007, 1010, 1013, 1014, 1016, 1032, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048], "ofth": [143, 154, 155, 183, 184, 185, 309], "og": 411, "ogbonna": 1044, "ogordon100": 1044, "ogrid": 54, "ogu": 411, "ogura": 1046, "oh": [878, 1041], "ohad": 1045, "ohayon": [1039, 1040, 1047], "ohio": 366, "ohno": 401, "oj_lappi": 1043, "oja": [415, 530], "ojala": [269, 407, 830], "ojeda": 1045, "ok": [50, 371, 1006], "okal": 1035, "okbalefthand": 1037, "okhlopkov": [1037, 1038], "okon": 1045, "okroshiashvili": 1044, "ol": [190, 203, 204, 212, 222, 315, 655, 996], "ol2001": 990, "olatunji": 1046, "old": [223, 371, 375, 377, 403, 464, 533, 645, 651, 903, 997, 1020, 1023, 1031, 1036, 1037, 1039, 1044, 1045, 1046], "olden": 1039, "older": [239, 370, 375, 397, 1029, 1034, 1041, 1043], "oldest": [375, 493], "oldid": 1000, "oldja": 1043, "oleg": 1041, "oleggio": 1035, "olegovich": 1038, "oleh": [1043, 1045], "oleksandr": [1039, 1040, 1041, 1042, 1045], "oleksii": 1048, "olemiss": 678, "olga": [627, 990], "oli": 1038, "oliblum90": [1038, 1039], "olicairn": 1042, "olimpio": 1039, "oliph": 1031, "oliv": [1039, 1040, 1042, 1043, 1044], "olivar": 1051, "oliveira": [1037, 1039, 1041, 1045], "olivetti": [2, 120, 364, 408, 492, 1026, 1031, 1039], "olivetti_fac": 492, "olivi": [0, 386, 392, 901, 1013, 1020, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "oll": 1046, "olr": 190, "olsen": 1038, "olshen": [913, 914, 1016], "olson": 1037, "olszewski": 1044, "olvi": [163, 368], "om": 1038, "omah": 1051, "omar": [0, 392, 1041, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "omarmanzoor": 1047, "omega": [342, 406, 994], "omega_": 994, "omega_k": [406, 994], "omer": 1036, "omit": [141, 143, 182, 183, 329, 376, 416, 471, 531, 665, 667, 675, 808, 810, 833, 834, 837, 840, 841, 842, 843, 844, 862, 998, 1005], "omohundro": 1003, "omp": [2, 123, 129, 205, 408, 528, 534, 539, 545, 663, 664, 684, 685, 1022, 1026, 1031, 1039], "omp_cv": 205, "omp_get_max_thread": 372, "omp_num_thread": 359, "omtcyfz": 1038, "on_fail": [942, 1050], "on_skip": [942, 1050], "onc": [2, 44, 48, 83, 160, 163, 167, 172, 200, 226, 239, 242, 257, 261, 264, 276, 277, 280, 283, 309, 312, 316, 346, 348, 352, 353, 354, 358, 360, 365, 366, 369, 371, 373, 375, 376, 377, 378, 379, 384, 385, 386, 397, 402, 403, 404, 406, 407, 408, 410, 411, 412, 413, 445, 447, 449, 464, 468, 505, 506, 535, 541, 548, 556, 557, 588, 589, 595, 610, 618, 626, 646, 650, 652, 654, 660, 662, 664, 665, 666, 667, 675, 676, 677, 697, 712, 716, 718, 737, 782, 802, 806, 809, 819, 822, 823, 840, 841, 842, 843, 844, 917, 996, 997, 1000, 1003, 1010, 1014, 1015, 1016, 1028, 1031, 1039, 1041, 1042, 1043, 1044, 1048], "onceth": 257, "one": [0, 2, 31, 44, 48, 49, 50, 53, 55, 56, 63, 64, 65, 69, 70, 71, 73, 75, 81, 86, 88, 90, 91, 93, 94, 97, 99, 103, 104, 112, 120, 123, 125, 126, 129, 139, 140, 141, 144, 146, 149, 150, 151, 154, 155, 156, 160, 162, 163, 165, 167, 172, 174, 175, 178, 182, 183, 184, 185, 186, 188, 190, 191, 194, 198, 200, 201, 202, 204, 206, 208, 214, 215, 220, 223, 227, 232, 233, 234, 239, 240, 242, 244, 245, 246, 250, 253, 257, 259, 260, 261, 262, 263, 264, 266, 267, 270, 271, 272, 273, 275, 277, 280, 282, 283, 288, 301, 304, 305, 308, 309, 312, 313, 314, 315, 316, 317, 319, 320, 321, 322, 327, 334, 335, 343, 346, 347, 348, 350, 353, 354, 358, 359, 360, 365, 366, 367, 368, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 383, 385, 386, 388, 389, 391, 394, 397, 400, 401, 402, 403, 404, 405, 407, 408, 409, 410, 411, 412, 413, 414, 440, 441, 442, 443, 445, 446, 447, 448, 449, 451, 452, 453, 456, 458, 460, 465, 470, 483, 484, 486, 487, 489, 490, 491, 492, 493, 497, 498, 499, 500, 501, 502, 505, 506, 507, 509, 511, 531, 536, 537, 538, 540, 544, 548, 554, 555, 556, 557, 558, 559, 561, 562, 563, 564, 566, 579, 581, 582, 586, 587, 588, 589, 609, 610, 614, 615, 619, 626, 629, 630, 631, 632, 633, 634, 642, 646, 647, 648, 649, 653, 656, 657, 658, 660, 665, 667, 668, 670, 672, 673, 674, 675, 677, 679, 687, 688, 692, 695, 699, 703, 711, 716, 720, 730, 731, 735, 739, 751, 752, 755, 764, 772, 775, 779, 780, 781, 782, 784, 785, 788, 789, 791, 792, 793, 794, 797, 798, 799, 800, 801, 804, 805, 807, 808, 809, 811, 813, 815, 817, 819, 820, 821, 823, 824, 826, 828, 829, 831, 832, 833, 834, 835, 837, 838, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 861, 865, 868, 869, 870, 872, 873, 875, 876, 877, 878, 879, 884, 885, 886, 889, 891, 905, 907, 908, 909, 910, 911, 913, 914, 915, 916, 924, 927, 937, 940, 942, 951, 970, 989, 990, 992, 994, 995, 997, 998, 999, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1014, 1015, 1016, 1017, 1019, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "one_class": 240, "one_d_arrai": 922, "one_d_label": 925, "one_hot": [309, 320], "one_hot_encod": [44, 143], "one_hot_encoder_": 563, "one_hot_linear_pipelin": 44, "one_hot_linear_predict": 44, "one_hot_poly_pipelin": 44, "one_hot_poly_predict": 44, "one_hot_result": 143, "one_hot_tim": 44, "one_imag": [411, 582, 585], "one_vs_on": [413, 609, 1001], "one_vs_rest": [609, 1001], "oneclasssvm": [2, 49, 51, 219, 232, 315, 334, 560, 676, 851, 1006, 1014, 1015, 1033, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046], "oned": 389, "onehot": [244, 304, 305, 404, 870, 1010], "onehot_categor": [206, 223], "onehotencod": [2, 44, 103, 139, 143, 154, 183, 184, 206, 223, 234, 242, 244, 246, 309, 313, 315, 318, 319, 320, 365, 385, 404, 410, 462, 463, 563, 579, 580, 868, 872, 873, 876, 879, 886, 990, 1010, 1032, 1035, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050], "onerun": 172, "ones": [44, 51, 71, 78, 88, 103, 112, 139, 144, 150, 155, 162, 167, 172, 188, 194, 210, 211, 232, 233, 234, 235, 239, 244, 246, 257, 262, 263, 271, 274, 277, 290, 301, 307, 313, 316, 322, 325, 344, 358, 359, 371, 379, 385, 403, 405, 407, 410, 418, 421, 425, 446, 529, 563, 579, 609, 610, 617, 643, 644, 657, 658, 669, 675, 703, 797, 803, 808, 819, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 880, 884, 955, 996, 997, 1000, 1005, 1006, 1010, 1015, 1031, 1039, 1040, 1041], "onesplit": [314, 352, 353], "onetoonefeaturemixin": [2, 373, 427], "onevalid": [64, 141, 154, 156, 185, 244, 275, 314, 319, 352], "onevsoneclassifi": [2, 280, 394, 834, 835, 1032, 1034, 1035, 1037, 1038, 1040, 1043, 1045, 1048], "onevsrestclassifi": [2, 103, 139, 155, 200, 220, 233, 234, 240, 244, 246, 257, 262, 270, 272, 277, 280, 301, 313, 316, 322, 394, 401, 657, 658, 833, 835, 905, 1032, 1033, 1035, 1037, 1038, 1044, 1045, 1048, 1049, 1051, 1052], "ong": 708, "ongari": 1048, "onggo": 1047, "ongo": [318, 372, 386], "onli": [2, 26, 31, 44, 47, 51, 54, 55, 59, 62, 63, 64, 65, 67, 70, 71, 73, 75, 82, 86, 88, 91, 99, 100, 102, 103, 104, 106, 107, 112, 123, 124, 126, 130, 134, 136, 139, 141, 142, 143, 145, 151, 153, 154, 155, 156, 158, 159, 160, 163, 167, 169, 174, 176, 179, 182, 183, 184, 185, 188, 194, 198, 204, 206, 207, 209, 212, 213, 214, 223, 225, 226, 232, 233, 234, 235, 236, 238, 239, 243, 244, 245, 246, 248, 249, 250, 253, 254, 257, 259, 261, 262, 263, 264, 265, 266, 269, 270, 271, 272, 274, 275, 276, 277, 280, 282, 283, 289, 291, 294, 296, 300, 301, 303, 304, 308, 309, 313, 314, 315, 316, 317, 319, 322, 324, 325, 326, 327, 328, 331, 332, 335, 339, 340, 342, 343, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 360, 364, 365, 366, 368, 369, 371, 373, 375, 376, 377, 378, 379, 380, 383, 385, 386, 389, 394, 397, 399, 400, 401, 402, 403, 404, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 418, 419, 423, 427, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 455, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 485, 486, 487, 489, 491, 493, 494, 497, 498, 499, 500, 501, 502, 505, 506, 507, 509, 513, 516, 520, 521, 525, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 583, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 605, 606, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 699, 703, 707, 709, 712, 713, 727, 730, 731, 735, 737, 738, 739, 742, 744, 755, 757, 759, 761, 775, 779, 780, 781, 782, 784, 785, 788, 789, 793, 794, 795, 797, 798, 799, 800, 801, 802, 803, 804, 805, 807, 808, 810, 815, 819, 822, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 921, 922, 924, 925, 926, 927, 929, 930, 931, 932, 935, 936, 937, 940, 949, 951, 955, 957, 962, 967, 988, 989, 990, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1014, 1015, 1016, 1019, 1020, 1024, 1031, 1032, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1043, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "onlin": [0, 2, 45, 46, 48, 55, 72, 84, 120, 123, 180, 219, 241, 257, 321, 360, 366, 370, 376, 383, 385, 403, 408, 411, 413, 438, 442, 443, 445, 492, 528, 533, 534, 535, 536, 542, 543, 580, 582, 665, 666, 675, 677, 840, 841, 842, 843, 844, 847, 848, 853, 855, 856, 874, 875, 885, 905, 906, 992, 996, 1004, 1006, 1018, 1021, 1022, 1024, 1026, 1031, 1035, 1036, 1038, 1046, 1052], "onlineldavb": 533, "only_non_neg": 1044, "only_physical_cor": 140, "onlyunigram": 264, "onlyus": [52, 103, 139, 155, 233, 234, 243, 244, 246, 257, 262, 277, 301, 313, 316, 322], "onlywork": [103, 160, 246, 316], "onnx": [1019, 1020, 1026], "onnxruntim": 397, "onspars": [103, 154, 155, 183, 233, 234, 243, 244, 246, 257, 270, 277, 313, 316, 322], "onth": [103, 104, 143, 151, 154, 185, 234, 244, 253, 257, 261, 262, 263, 309, 313, 316, 317, 322], "onto": [103, 116, 154, 185, 226, 227, 234, 237, 244, 303, 313, 316, 383, 408, 411, 415, 442, 444, 457, 530, 536, 540, 626, 627, 629, 688, 994, 998, 1003], "onward": [879, 1035, 1049, 1050], "onx": 397, "oob": [64, 133, 141, 145, 154, 156, 180, 185, 244, 275, 319, 410, 512, 554, 555, 561, 562, 1021, 1033, 1044, 1048], "oob_best_it": 145, "oob_color": 145, "oob_decision_function_": [552, 554, 561], "oob_error": 138, "oob_improvement_": [145, 410, 556, 557, 1033], "oob_lin": 145, "oob_prediction_": [553, 555, 562], "oob_scor": [64, 138, 141, 154, 156, 185, 244, 275, 319, 410, 552, 553, 554, 555, 561, 562, 1036, 1038], "oob_score_": [138, 552, 553, 554, 555, 556, 557, 561, 562, 1033, 1047], "oob_scores_": [556, 557, 1047], "op": [243, 375, 422, 608, 657, 658, 665, 666, 667, 675, 676, 677, 862, 863, 905, 1010], "opaqu": 1008, "open": [0, 48, 52, 56, 227, 365, 366, 369, 370, 371, 375, 377, 383, 384, 386, 397, 404, 411, 483, 493, 505, 506, 990, 1018, 1019, 1023, 1024, 1034, 1038, 1039, 1041, 1047], "open_pric": 52, "openbla": [358, 359, 379, 383, 1044, 1048, 1049], "openblas_num_thread": 359, "opencv": 366, "opengraph": [371, 389, 396], "openml": [2, 44, 53, 103, 154, 172, 183, 206, 213, 221, 223, 233, 257, 277, 280, 282, 300, 364, 389, 493, 1026, 1039, 1041, 1044], "openml100": 365, "openmp": [313, 369, 374, 383, 385, 403, 410, 1042, 1044, 1047, 1049], "opentsn": 692, "oper": [2, 20, 54, 139, 163, 175, 180, 233, 238, 245, 255, 257, 258, 260, 270, 321, 348, 358, 359, 368, 369, 371, 374, 377, 383, 385, 386, 389, 397, 399, 402, 407, 408, 410, 411, 412, 416, 438, 444, 457, 464, 471, 478, 479, 480, 481, 501, 530, 531, 538, 548, 549, 563, 569, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 615, 620, 623, 629, 634, 642, 657, 689, 693, 702, 706, 707, 708, 728, 775, 782, 783, 789, 790, 820, 828, 831, 834, 845, 846, 868, 872, 877, 888, 889, 903, 910, 913, 951, 972, 996, 1003, 1010, 1015, 1019, 1021, 1024, 1035, 1037, 1038, 1039, 1041, 1042, 1047, 1050, 1051], "operand": 413, "operation": [223, 1024], "operatornam": [408, 742, 996, 1000, 1016], "opinion": 386, "opitz": 1000, "opportun": [531, 1014], "oppos": [239, 373, 399, 403, 901, 1003, 1015, 1031, 1049], "opposit": [63, 86, 125, 183, 184, 198, 257, 270, 385, 401, 405, 407, 412, 439, 443, 445, 465, 535, 537, 544, 560, 712, 731, 851, 909, 1031], "opposite_lof_scor": 851, "opt": 373, "opta": 898, "optic": [2, 72, 79, 180, 316, 364, 414, 440, 442, 451, 452, 453, 499, 1021, 1025, 1026, 1040, 1044, 1045, 1046, 1047, 1048, 1049], "optim": [47, 53, 54, 64, 65, 86, 87, 90, 93, 103, 104, 109, 110, 120, 139, 144, 145, 147, 149, 154, 155, 156, 160, 162, 163, 167, 168, 171, 172, 173, 174, 175, 183, 192, 194, 196, 198, 200, 201, 213, 221, 233, 234, 238, 242, 243, 244, 246, 257, 261, 262, 268, 270, 271, 276, 277, 280, 282, 287, 301, 303, 308, 313, 316, 320, 322, 327, 337, 342, 346, 347, 348, 354, 358, 365, 368, 371, 373, 374, 383, 385, 389, 398, 400, 402, 403, 405, 407, 408, 410, 412, 413, 414, 433, 440, 443, 444, 445, 446, 448, 453, 457, 458, 468, 469, 475, 528, 531, 532, 534, 536, 540, 554, 555, 556, 557, 571, 609, 610, 618, 619, 634, 637, 639, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 675, 676, 677, 679, 680, 681, 682, 683, 686, 690, 692, 694, 695, 701, 719, 722, 724, 731, 800, 801, 815, 823, 847, 848, 849, 851, 853, 854, 855, 856, 857, 862, 863, 870, 881, 893, 897, 898, 905, 906, 907, 908, 909, 910, 911, 992, 993, 994, 995, 996, 997, 1000, 1001, 1002, 1003, 1004, 1005, 1014, 1015, 1016, 1019, 1024, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1041, 1042, 1043, 1045, 1046, 1047, 1051], "optima": 413, "optimis": [373, 403, 1003, 1034, 1044, 1046], "optimist": [53, 198, 268, 346, 354, 707, 996, 1000], "optimizeth": 257, "optimizingth": 172, "optimum": [94, 173, 183, 188, 257, 276, 402, 408, 468, 996, 999], "option": [0, 2, 44, 64, 80, 85, 103, 104, 127, 139, 140, 143, 147, 151, 154, 155, 160, 172, 173, 179, 183, 184, 192, 194, 207, 233, 234, 242, 243, 244, 246, 257, 262, 264, 266, 270, 272, 275, 277, 301, 309, 313, 316, 317, 320, 322, 346, 350, 354, 360, 365, 366, 367, 369, 371, 372, 373, 375, 376, 377, 379, 380, 383, 385, 386, 389, 397, 403, 404, 406, 407, 408, 410, 411, 414, 427, 433, 437, 438, 439, 440, 441, 442, 443, 444, 445, 448, 455, 457, 458, 459, 460, 461, 464, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 583, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 609, 610, 611, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 686, 687, 688, 689, 690, 692, 694, 695, 709, 711, 713, 717, 730, 731, 736, 737, 738, 758, 759, 760, 765, 767, 768, 772, 775, 776, 777, 778, 779, 782, 784, 785, 788, 793, 794, 796, 800, 802, 803, 804, 805, 807, 808, 810, 819, 823, 824, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 894, 897, 898, 900, 901, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 919, 938, 943, 985, 989, 990, 996, 999, 1000, 1003, 1010, 1013, 1015, 1016, 1020, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "option_context": 223, "ora": 1044, "oracl": [2, 70, 206, 223, 416, 465, 466, 469, 470, 471, 472, 994, 1031], "orallo": 1000, "orang": [47, 49, 86, 111, 118, 121, 122, 127, 134, 146, 148, 149, 151, 174, 179, 196, 198, 204, 215, 240, 251, 257, 262, 294, 313, 319, 322, 391, 1001, 1048], "orazbayev": 1045, "orbit": [346, 347], "order": [2, 44, 54, 59, 62, 65, 81, 88, 97, 98, 103, 104, 109, 129, 139, 142, 143, 147, 149, 154, 155, 160, 172, 182, 183, 184, 185, 186, 188, 198, 201, 206, 207, 212, 219, 223, 227, 233, 234, 236, 239, 242, 243, 244, 246, 250, 257, 258, 261, 263, 264, 270, 277, 282, 301, 303, 308, 309, 310, 313, 314, 315, 316, 320, 322, 342, 346, 348, 354, 358, 359, 366, 371, 372, 373, 376, 377, 380, 385, 389, 390, 394, 397, 403, 404, 405, 407, 408, 409, 410, 411, 413, 415, 433, 436, 439, 442, 443, 445, 446, 451, 452, 453, 455, 460, 484, 485, 486, 492, 494, 512, 531, 532, 536, 537, 538, 540, 544, 548, 550, 552, 554, 556, 561, 564, 579, 586, 589, 591, 592, 595, 604, 605, 606, 609, 621, 626, 630, 639, 657, 658, 664, 675, 684, 685, 688, 689, 693, 697, 699, 700, 702, 704, 709, 712, 713, 716, 718, 722, 723, 727, 730, 731, 739, 741, 742, 743, 755, 757, 779, 783, 784, 785, 788, 789, 790, 795, 800, 801, 802, 804, 805, 806, 808, 812, 815, 819, 820, 822, 823, 826, 833, 834, 836, 837, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 852, 855, 862, 865, 876, 878, 879, 880, 884, 885, 886, 889, 890, 891, 893, 894, 895, 896, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 920, 931, 932, 937, 949, 965, 969, 990, 996, 997, 1000, 1001, 1003, 1004, 1010, 1013, 1014, 1015, 1016, 1020, 1023, 1031, 1033, 1034, 1035, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050], "order_": [836, 839], "order_centroid": 347, "ordereddict": 138, "ordering_": [98, 403, 446, 451, 452, 453], "ordin": [44, 86, 103, 154, 242, 306, 309, 310, 314, 317, 365, 385, 410, 493, 564, 870, 873, 878, 879, 886, 996, 997, 1010, 1020, 1039, 1045], "ordinal_encod": [143, 242], "ordinal_result": 143, "ordinalencod": [2, 143, 154, 184, 185, 206, 242, 309, 317, 365, 385, 579, 841, 873, 878, 886, 990, 1002, 1010, 1039, 1040, 1043, 1044, 1045, 1046, 1047, 1048], "ordinari": [2, 137, 167, 180, 183, 189, 190, 192, 193, 194, 203, 206, 208, 209, 211, 222, 310, 315, 498, 634, 645, 651, 653, 654, 655, 656, 671, 677, 681, 682, 686, 751, 786, 831, 1014, 1021, 1022, 1026], "ordinarili": [383, 385], "ordowski": 1000, "oregon": 309, "oren": 1039, "oresti": 1040, "orfano": [1044, 1045, 1046, 1047, 1048, 1051], "org": [44, 52, 53, 56, 62, 64, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 175, 176, 183, 184, 185, 188, 192, 206, 213, 221, 223, 233, 234, 235, 239, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 282, 300, 301, 309, 313, 314, 316, 317, 319, 322, 326, 352, 353, 359, 364, 369, 371, 374, 377, 379, 386, 394, 407, 593, 635, 667, 670, 675, 695, 705, 770, 847, 848, 853, 854, 855, 856, 883, 899, 913, 914, 942, 944, 996, 1000, 1016, 1026, 1039, 1043], "organ": [0, 51, 53, 102, 111, 346, 365, 370, 371, 386, 853, 958, 1019], "orgera": 1050, "ori": 1037, "orient": [67, 120, 183, 225, 228, 303, 385, 917, 997], "orig": [54, 290], "orig_coin": [80, 81], "orig_data_ax": 125, "origin": [44, 45, 54, 59, 60, 64, 67, 80, 81, 84, 89, 91, 104, 106, 107, 120, 122, 123, 126, 129, 139, 149, 150, 152, 155, 156, 159, 160, 163, 167, 169, 171, 172, 178, 179, 183, 184, 188, 196, 198, 210, 225, 226, 227, 228, 229, 230, 236, 237, 238, 242, 254, 257, 260, 266, 276, 286, 291, 301, 304, 308, 318, 321, 325, 339, 346, 348, 354, 359, 366, 368, 370, 371, 373, 375, 376, 383, 385, 397, 400, 403, 404, 408, 410, 411, 413, 414, 415, 416, 428, 433, 437, 439, 440, 441, 442, 443, 445, 446, 455, 459, 460, 461, 471, 478, 479, 480, 490, 491, 492, 498, 516, 528, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 570, 574, 579, 582, 588, 592, 605, 606, 608, 609, 610, 613, 629, 631, 634, 637, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 692, 696, 701, 709, 729, 764, 770, 800, 802, 803, 808, 810, 819, 823, 830, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 851, 852, 855, 856, 862, 863, 865, 868, 869, 870, 871, 872, 873, 874, 875, 877, 878, 879, 881, 882, 883, 884, 885, 894, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 929, 931, 932, 936, 937, 960, 970, 973, 993, 994, 996, 997, 999, 1000, 1003, 1006, 1011, 1012, 1013, 1014, 1017, 1019, 1024, 1034, 1035, 1037, 1039, 1041, 1043, 1045, 1047, 1051], "original_param": 148, "original_sklearn_vers": [397, 574], "original_space_centroid": 347, "originalon": [244, 245, 261, 263, 314], "originalrepresent": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316], "orii": 1033, "ornot": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "orphan": [444, 457, 1031], "orr": [1004, 1014], "orr\u00f9": 1034, "orthogon": [2, 38, 87, 121, 122, 123, 129, 180, 189, 408, 523, 528, 534, 536, 539, 540, 545, 663, 664, 684, 685, 1012, 1021, 1022, 1026, 1031], "orthogonal_mp": [2, 545, 663, 664, 685, 996], "orthogonal_mp_gram": [2, 663, 664, 684, 1045], "orthogonalmatchingpursuit": [2, 205, 664, 684, 685, 996, 1001, 1031, 1033, 1036, 1039, 1044, 1049], "orthogonalmatchingpursuitcv": [2, 205, 394, 663, 1033, 1044, 1048], "orthonorm": [2, 46, 380, 948, 992], "orthotrop": 1003, "ortiz": [1041, 1047], "os": 1049, "osa": 1039, "osaid": 1039, "osborn": [1034, 1035], "oscar": [1034, 1038], "oscil": [151, 184, 211, 403, 436], "oscillatori": [207, 1010], "osei": 1045, "osendorf": [1031, 1032], "oserror": [389, 484, 485, 486, 487, 489, 490, 491, 492, 494, 495], "osindero": [861, 1005], "osman": [1040, 1046], "osx": 358, "other": [0, 2, 26, 44, 48, 52, 53, 62, 65, 67, 68, 70, 73, 75, 79, 85, 90, 99, 101, 103, 104, 116, 122, 123, 125, 127, 137, 139, 140, 142, 143, 146, 147, 149, 150, 151, 154, 155, 156, 158, 160, 178, 179, 180, 182, 183, 184, 185, 188, 190, 197, 200, 201, 206, 210, 223, 225, 226, 227, 229, 232, 233, 234, 236, 238, 239, 242, 243, 244, 245, 246, 250, 253, 257, 258, 260, 261, 262, 263, 264, 265, 270, 272, 273, 275, 277, 280, 288, 289, 290, 301, 302, 303, 307, 308, 310, 312, 313, 314, 315, 316, 317, 319, 320, 322, 324, 335, 339, 341, 344, 346, 347, 350, 352, 353, 354, 358, 363, 364, 366, 367, 368, 369, 371, 373, 375, 376, 377, 379, 380, 384, 385, 386, 389, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 411, 412, 413, 414, 433, 436, 437, 438, 439, 440, 442, 443, 444, 445, 446, 448, 453, 460, 461, 465, 478, 479, 480, 484, 493, 494, 500, 530, 531, 532, 533, 535, 538, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 586, 587, 588, 589, 595, 600, 608, 609, 610, 611, 612, 619, 626, 627, 629, 630, 634, 638, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 686, 690, 692, 696, 699, 704, 712, 718, 764, 775, 779, 786, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 815, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 860, 862, 863, 865, 866, 868, 870, 871, 872, 874, 875, 877, 878, 879, 881, 882, 883, 884, 885, 886, 893, 900, 901, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 942, 944, 958, 988, 989, 990, 992, 993, 994, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1013, 1014, 1015, 1016, 1020, 1021, 1022, 1023, 1024, 1026, 1032, 1034, 1035, 1037, 1038, 1039, 1040, 1044, 1045, 1046, 1047, 1048, 1050, 1052], "other_parti": 257, "other_payment_plan": 257, "other_scor": 376, "othervalu": 264, "otherwis": [51, 64, 89, 95, 103, 104, 136, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 176, 179, 183, 184, 185, 192, 208, 213, 233, 234, 243, 244, 245, 246, 257, 261, 262, 263, 264, 270, 275, 277, 296, 301, 309, 313, 314, 316, 317, 319, 322, 339, 342, 354, 360, 371, 373, 375, 377, 385, 394, 403, 405, 407, 411, 413, 428, 429, 430, 431, 432, 433, 434, 436, 437, 438, 441, 442, 447, 449, 450, 460, 463, 478, 479, 480, 481, 493, 524, 532, 533, 535, 537, 538, 544, 550, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 586, 588, 589, 595, 600, 609, 610, 613, 630, 631, 632, 643, 644, 645, 651, 657, 658, 659, 661, 664, 665, 666, 667, 672, 674, 675, 676, 677, 684, 685, 690, 692, 696, 697, 698, 700, 702, 703, 707, 709, 713, 714, 716, 722, 725, 727, 728, 729, 730, 731, 739, 742, 753, 755, 756, 757, 767, 775, 779, 782, 783, 784, 785, 786, 788, 789, 790, 793, 794, 795, 797, 798, 799, 800, 801, 802, 804, 805, 806, 807, 815, 819, 820, 823, 824, 829, 834, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 860, 862, 863, 869, 870, 872, 876, 885, 886, 887, 890, 891, 892, 894, 895, 896, 905, 906, 907, 908, 909, 910, 911, 918, 920, 931, 932, 934, 948, 949, 960, 962, 983, 985, 988, 995, 996, 997, 1000, 1003, 1004, 1006, 1007, 1010, 1012, 1014, 1015, 1019, 1024, 1033, 1039, 1040, 1041, 1044, 1047], "ott": 1035, "oudshoorn": [626, 990], "ought": 358, "our": [0, 44, 45, 47, 51, 52, 53, 77, 86, 89, 102, 103, 111, 112, 116, 120, 121, 134, 135, 141, 143, 144, 146, 147, 158, 163, 167, 172, 173, 174, 178, 180, 182, 183, 184, 185, 186, 206, 210, 223, 227, 229, 239, 256, 257, 262, 263, 266, 269, 270, 276, 286, 300, 303, 309, 313, 315, 320, 321, 329, 332, 338, 340, 342, 346, 347, 348, 354, 359, 370, 373, 374, 376, 379, 383, 384, 385, 386, 394, 399, 403, 407, 410, 411, 413, 414, 440, 446, 560, 643, 692, 708, 720, 727, 739, 757, 847, 848, 849, 851, 853, 855, 856, 857, 989, 990, 996, 997, 1000, 1006, 1010, 1013, 1014, 1015, 1020, 1023, 1024, 1038, 1039, 1041, 1042, 1045, 1046, 1048, 1050, 1051], "our_rand_r": 1040, "oura": [1044, 1045, 1046], "ourselv": 1024, "ouss1508": [1046, 1047], "oussama": 1051, "out": [0, 2, 43, 44, 47, 49, 50, 52, 53, 55, 56, 64, 75, 83, 88, 102, 103, 104, 127, 133, 138, 140, 141, 143, 147, 148, 154, 156, 180, 182, 183, 184, 185, 194, 206, 208, 210, 213, 223, 242, 244, 248, 250, 257, 261, 263, 266, 271, 275, 276, 280, 282, 308, 309, 315, 319, 321, 327, 329, 331, 332, 335, 342, 346, 357, 366, 368, 369, 371, 373, 374, 375, 377, 383, 385, 391, 397, 401, 403, 406, 408, 410, 411, 413, 419, 429, 430, 431, 432, 438, 439, 441, 442, 443, 445, 450, 468, 478, 479, 480, 481, 496, 512, 513, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 586, 587, 589, 602, 605, 606, 633, 638, 639, 640, 641, 650, 654, 667, 672, 674, 675, 688, 689, 692, 701, 728, 742, 801, 803, 804, 805, 806, 808, 809, 810, 811, 815, 831, 840, 841, 842, 843, 844, 847, 849, 854, 855, 857, 861, 862, 863, 871, 874, 875, 882, 894, 897, 898, 920, 963, 965, 969, 988, 990, 994, 995, 999, 1000, 1001, 1003, 1008, 1010, 1020, 1021, 1022, 1024, 1026, 1031, 1033, 1035, 1037, 1039, 1040, 1043, 1044, 1047, 1049, 1052], "out_activation_": [862, 863], "out_bounds_predict": 208, "out_fil": [917, 1016], "out_of_bound": [235, 634], "out_of_cluster_doc": 58, "outcom": [44, 140, 183, 272, 276, 385, 391, 410, 566, 657, 709, 743, 795, 833, 900, 901, 902, 907, 910, 996, 1000, 1016, 1023, 1035, 1039, 1041], "outdat": 374, "outer": [59, 125, 268, 326, 447, 511, 639, 649, 650, 653, 992, 1032], "outer_cv": [268, 319], "outer_numb": 326, "outermost": 339, "outli": [49, 111, 385, 465, 470, 996, 1006], "outlier": [2, 43, 71, 79, 87, 111, 112, 146, 150, 167, 180, 189, 204, 208, 209, 210, 211, 212, 219, 231, 284, 302, 307, 310, 334, 366, 385, 403, 405, 410, 414, 425, 431, 440, 442, 460, 462, 465, 466, 467, 468, 469, 470, 471, 472, 486, 487, 489, 493, 507, 509, 519, 521, 560, 630, 638, 648, 669, 670, 671, 675, 676, 677, 678, 692, 702, 831, 851, 855, 866, 874, 875, 877, 878, 879, 881, 882, 883, 884, 885, 890, 891, 892, 893, 894, 895, 896, 908, 909, 911, 1000, 1014, 1015, 1019, 1021, 1022, 1025, 1026, 1031, 1036, 1037, 1039, 1050], "outlier_detector": [242, 425, 924], "outlier_label": [855, 1041], "outlier_label_": 855, "outlier_mask": 209, "outlier_plot": 111, "outliermixin": [2, 1048, 1050], "outliers_": 648, "outliers_cov": 111, "outliers_fract": 232, "outliers_index": 112, "outliers_offset": 112, "outlin": [99, 142, 371, 373, 385, 386, 388, 403, 989, 1026], "outlying": 1006, "outperform": [109, 116, 149, 154, 204, 280, 308, 383, 407, 410, 448, 458, 1002, 1010], "output": [2, 31, 32, 52, 55, 63, 64, 65, 73, 86, 92, 103, 104, 123, 133, 134, 137, 139, 141, 142, 143, 151, 154, 155, 156, 160, 167, 172, 175, 178, 180, 183, 184, 185, 192, 231, 234, 239, 243, 244, 245, 246, 251, 253, 256, 257, 261, 262, 263, 264, 266, 270, 272, 273, 275, 277, 280, 283, 304, 307, 309, 310, 312, 313, 314, 315, 316, 318, 320, 322, 347, 348, 353, 364, 365, 366, 368, 371, 373, 377, 379, 381, 383, 384, 385, 401, 402, 403, 404, 406, 407, 410, 411, 412, 413, 419, 424, 427, 433, 437, 438, 439, 441, 442, 443, 445, 446, 448, 455, 456, 458, 459, 460, 461, 462, 463, 464, 478, 479, 480, 481, 484, 487, 489, 490, 491, 492, 493, 494, 500, 502, 505, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 545, 546, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 610, 626, 627, 628, 629, 630, 631, 632, 634, 637, 638, 639, 640, 641, 645, 646, 649, 651, 652, 653, 656, 657, 659, 660, 661, 662, 665, 666, 667, 670, 672, 673, 675, 677, 678, 680, 681, 682, 683, 688, 689, 690, 692, 694, 696, 699, 700, 713, 714, 721, 724, 725, 727, 729, 736, 746, 747, 749, 751, 752, 753, 754, 755, 757, 762, 768, 773, 786, 789, 791, 792, 798, 799, 800, 802, 803, 804, 805, 806, 807, 813, 815, 816, 817, 818, 819, 820, 821, 823, 826, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 848, 849, 850, 854, 855, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 889, 893, 894, 897, 898, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 920, 921, 925, 926, 931, 932, 934, 937, 949, 950, 957, 960, 968, 986, 989, 990, 992, 994, 996, 997, 1000, 1001, 1002, 1003, 1004, 1007, 1010, 1015, 1021, 1022, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "output_dict": [713, 1039, 1043], "output_distribut": [107, 184, 303, 307, 404, 881, 882, 893, 894, 1010], "output_fil": 483, "output_indices_": [460, 1044], "output_label": 326, "output_label_arrai": 326, "outputcodeclassifi": [2, 280, 394, 833, 834, 1038, 1043, 1047, 1048], "outputfeatur": 139, "outputof": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "outputs_2d_": [847, 855, 1041], "outputset": [154, 183], "outreach": 386, "outsid": [46, 49, 58, 142, 155, 207, 208, 235, 246, 397, 411, 442, 634, 884, 1006, 1039], "outward": 303, "outweigh": 1035, "ouvert": [759, 760, 998], "ova": [214, 665, 667, 675, 1014], "ovb": [182, 183], "over": [0, 2, 31, 44, 47, 48, 49, 59, 62, 64, 65, 68, 73, 83, 88, 89, 103, 104, 105, 106, 120, 137, 139, 140, 141, 143, 144, 149, 150, 154, 155, 156, 158, 160, 162, 167, 175, 178, 182, 184, 185, 192, 193, 200, 202, 206, 213, 223, 232, 233, 234, 242, 246, 253, 257, 261, 262, 263, 264, 266, 268, 270, 271, 272, 275, 277, 288, 296, 298, 299, 301, 305, 313, 315, 316, 318, 319, 322, 324, 328, 346, 347, 353, 358, 359, 360, 366, 367, 370, 371, 373, 377, 384, 385, 399, 401, 403, 404, 407, 408, 409, 410, 411, 413, 415, 442, 445, 460, 468, 506, 530, 531, 533, 534, 535, 536, 543, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 579, 580, 586, 587, 589, 592, 600, 629, 631, 632, 633, 643, 644, 645, 646, 651, 652, 657, 659, 660, 661, 662, 664, 665, 666, 667, 675, 676, 677, 684, 685, 697, 716, 718, 740, 764, 789, 794, 798, 801, 804, 805, 807, 812, 813, 815, 824, 826, 827, 828, 829, 830, 832, 861, 862, 863, 864, 880, 884, 905, 913, 915, 922, 928, 937, 942, 943, 944, 989, 996, 997, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1013, 1014, 1015, 1016, 1019, 1020, 1024, 1031, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1051], "overal": [44, 52, 78, 103, 134, 137, 140, 143, 144, 154, 172, 183, 184, 185, 200, 223, 234, 244, 257, 260, 272, 283, 308, 309, 313, 316, 328, 347, 358, 370, 371, 377, 400, 401, 410, 443, 445, 460, 467, 468, 474, 546, 852, 886, 997, 1000, 1016, 1024, 1041], "overallqu": 154, "overcom": [141, 210, 358, 411], "overcomplet": 408, "overconstrain": 149, "overestim": [127, 354, 407], "overfit": [44, 64, 65, 103, 104, 139, 143, 144, 146, 149, 151, 154, 180, 184, 185, 186, 190, 204, 207, 210, 232, 244, 250, 253, 255, 257, 258, 261, 262, 263, 264, 268, 275, 276, 277, 298, 304, 305, 307, 308, 309, 310, 317, 322, 335, 342, 350, 352, 366, 385, 401, 402, 407, 410, 433, 484, 485, 558, 559, 564, 565, 656, 801, 804, 805, 815, 823, 827, 828, 862, 863, 865, 880, 884, 995, 1004, 1006, 1008, 1010, 1016, 1021, 1024, 1034], "overflow": [370, 379, 383, 399, 1023, 1034, 1038, 1039, 1040, 1041, 1042, 1044, 1051], "overflowerror": 1041, "overhead": [48, 283, 359, 360, 371, 377, 380, 383, 385, 410, 437, 441, 445, 531, 699, 837, 838, 840, 841, 842, 843, 844, 845, 846, 1002, 1003, 1034, 1039, 1040, 1043], "overlai": [379, 631], "overlaid": 1007, "overlap": [2, 52, 53, 73, 88, 126, 147, 162, 200, 250, 347, 400, 403, 407, 410, 411, 585, 793, 794, 802, 803, 806, 808, 809, 810, 811, 818, 819, 821, 997, 1010, 1037], "overli": [53, 63, 64, 198, 268, 354, 408, 1000], "overlin": [263, 400], "overparameter": 996, "overrid": [184, 321, 373, 411, 442, 446, 453, 539, 545, 586, 587, 589, 591, 592, 595, 631, 632, 655, 663, 684, 685, 807, 824, 847, 848, 849, 851, 853, 855, 856, 857, 1031, 1039, 1041, 1045, 1047], "overridden": [373, 385, 413, 539, 545, 615, 620, 623, 631, 632, 694, 1039, 1040, 1047], "oversampl": [541, 1031], "oversc": 1046, "overset": [408, 1007], "overst": 183, "oversubscript": [779, 1045], "overview": [107, 180, 268, 279, 282, 350, 372, 374, 384, 385, 398, 399, 493, 735, 744, 801, 817, 828, 833, 834, 835, 913, 1002, 1014, 1021, 1025, 1026], "overwhelm": 371, "overwrit": [149, 442, 493, 630, 1031, 1042, 1047, 1048], "overwrite_": 1031, "overwritten": [104, 154, 156, 183, 192, 235, 244, 262, 438, 529, 530, 531, 533, 538, 545, 605, 606, 643, 644, 645, 646, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 671, 673, 678, 680, 681, 682, 683, 685, 1044, 1051], "ovo": [244, 245, 261, 263, 280, 312, 314, 789, 833, 907, 910, 1000, 1001, 1015], "ovo_tpr": 272, "ovo_tre": 280, "ovr": [2, 64, 67, 103, 104, 139, 155, 160, 220, 233, 234, 244, 245, 246, 257, 261, 262, 263, 270, 277, 280, 282, 301, 312, 313, 314, 316, 322, 343, 433, 657, 658, 789, 834, 905, 907, 910, 1000, 1001, 1015, 1031, 1036, 1037, 1039, 1040, 1041, 1045, 1046], "ovr_jaccard_scor": 282, "ovr_tre": 280, "ow": 93, "owen": [648, 1040, 1041], "own": [2, 16, 53, 64, 71, 140, 141, 185, 223, 239, 244, 253, 275, 283, 285, 319, 326, 347, 353, 359, 365, 374, 376, 379, 380, 389, 402, 403, 415, 419, 436, 450, 530, 554, 561, 645, 798, 799, 847, 848, 849, 851, 853, 855, 856, 857, 879, 913, 915, 937, 942, 957, 996, 1000, 1002, 1003, 1006, 1010, 1015, 1019, 1024, 1038, 1039, 1041, 1048, 1050, 1051], "own_telephon": 257, "owner": [239, 366, 368, 957, 958], "ownership": 373, "oyamada": 1036, "oyindamola": 1046, "oywa": 1041, "ozga": 1039, "ozsvald": 1033, "p": [0, 2, 51, 54, 62, 64, 65, 76, 94, 111, 112, 115, 118, 127, 145, 159, 163, 170, 188, 217, 222, 223, 225, 227, 236, 263, 269, 270, 296, 365, 366, 368, 376, 379, 400, 401, 402, 403, 405, 406, 408, 410, 412, 413, 414, 416, 438, 440, 442, 443, 446, 451, 452, 453, 465, 467, 470, 471, 474, 495, 525, 531, 535, 537, 538, 544, 546, 547, 548, 550, 552, 553, 554, 555, 556, 558, 561, 562, 563, 588, 590, 591, 592, 593, 594, 596, 597, 598, 602, 603, 604, 605, 606, 607, 614, 615, 626, 639, 642, 648, 687, 688, 690, 692, 694, 699, 705, 709, 715, 725, 742, 753, 787, 789, 803, 809, 810, 811, 814, 830, 837, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 855, 856, 857, 858, 859, 861, 865, 866, 881, 893, 899, 915, 916, 917, 993, 994, 996, 997, 998, 1000, 1002, 1003, 1004, 1005, 1006, 1007, 1010, 1014, 1015, 1031, 1032, 1034, 1037, 1039, 1046, 1047, 1048, 1050, 1051], "p0": 64, "p1": 64, "p1d": 64, "p2": [64, 223], "p5": 949, "p592": 138, "p_": [159, 1003, 1016], "p_c": [118, 520], "p_e": 716, "p_grid": 268, "p_i": 1003, "p_k": [270, 1000], "p_n": [270, 707, 1000], "p_o": 716, "p_val": 263, "p_val_uncorrect": 263, "p_valu": [602, 603, 604], "p_w": 118, "p_w_c": [118, 520], "pa": [665, 666, 675, 677, 902, 996, 1000, 1013], "pa1": [48, 665, 666, 675, 677, 996, 1052], "pa2": [665, 666, 675, 677, 996, 1052], "pab": [1046, 1047], "pablo": [1041, 1044, 1045], "pabloduque0": 1044, "pace": 366, "pacha": 1039, "pacif": 263, "pack": [380, 414, 1039], "packag": [0, 80, 86, 178, 239, 283, 322, 359, 364, 365, 368, 369, 371, 372, 373, 375, 379, 380, 383, 385, 389, 390, 397, 405, 410, 411, 448, 474, 645, 646, 990, 996, 999, 1003, 1010, 1016, 1024, 1031, 1037, 1039, 1040, 1041], "packet": 358, "pacman": 389, "paczuski": [1039, 1040], "pad": [120, 142, 178, 184, 225, 242, 264, 346, 351, 411, 586, 587, 589], "page": [0, 52, 56, 64, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 160, 163, 172, 183, 184, 185, 192, 225, 233, 234, 235, 239, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 321, 322, 326, 352, 353, 358, 366, 368, 371, 373, 375, 377, 379, 383, 386, 403, 405, 469, 513, 514, 515, 627, 643, 835, 900, 949, 990, 996, 1000, 1001, 1029, 1031, 1035, 1036], "page_links_en": 56, "page_links_filenam": 56, "page_links_url": 56, "pagerank": [56, 949], "pagh": [188, 992], "pai": [183, 223, 371], "paid": [257, 996], "pain": 383, "paint": [917, 919], "pair": [2, 50, 53, 64, 73, 79, 91, 97, 103, 125, 136, 138, 142, 146, 160, 171, 175, 191, 214, 217, 223, 236, 246, 258, 263, 270, 272, 316, 329, 331, 333, 335, 336, 337, 339, 347, 351, 366, 383, 385, 400, 401, 404, 407, 411, 413, 433, 436, 437, 441, 446, 453, 459, 467, 468, 474, 490, 505, 506, 580, 590, 593, 594, 596, 597, 598, 609, 612, 613, 614, 616, 618, 619, 621, 622, 624, 626, 631, 632, 642, 644, 692, 699, 700, 705, 706, 707, 715, 732, 741, 759, 760, 764, 767, 770, 771, 772, 773, 774, 775, 777, 779, 780, 781, 782, 783, 787, 833, 845, 846, 920, 1000, 1001, 1002, 1003, 1010, 1016, 1031, 1043, 1044, 1046, 1047, 1048], "pair_confusion_matrix": [2, 403, 1043], "pair_list": 272, "pair_scor": 272, "paired_cosine_dist": [2, 399, 1050], "paired_dist": [2, 764, 770, 779, 1035], "paired_euclidean_dist": [2, 399, 1050], "paired_manhattan_dist": 2, "pairidx": 351, "pairplot": [126, 182, 183], "pairwis": [2, 38, 97, 143, 151, 154, 155, 182, 183, 228, 236, 242, 257, 272, 309, 312, 316, 317, 322, 346, 358, 363, 385, 399, 403, 408, 413, 437, 442, 450, 454, 457, 458, 464, 483, 505, 506, 532, 558, 559, 619, 637, 638, 639, 640, 641, 642, 687, 688, 690, 692, 694, 696, 699, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 789, 793, 794, 833, 849, 853, 857, 871, 903, 922, 992, 997, 1000, 1003, 1012, 1015, 1026, 1031, 1032, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "pairwise_bayesian": 263, "pairwise_bayesian_df": 263, "pairwise_comp_df": 263, "pairwise_dist": [2, 75, 320, 385, 399, 403, 414, 440, 442, 446, 453, 688, 696, 763, 772, 780, 781, 793, 794, 849, 851, 853, 857, 998, 1031, 1035, 1037, 1039, 1040, 1042, 1043, 1048, 1049, 1050, 1052], "pairwise_dist_chunk_s": [464, 903], "pairwise_distance_funct": [692, 696, 779, 782, 1003], "pairwise_distances_argmin": [2, 97, 316, 781, 1039, 1045, 1046, 1047, 1048], "pairwise_distances_argmin_min": [2, 316, 780, 1034, 1039, 1045, 1046, 1047, 1048], "pairwise_distances_chunk": [2, 358, 779, 1039, 1042, 1048], "pairwise_indices_": 833, "pairwise_kernel": [2, 385, 399, 413, 448, 458, 642, 766, 871, 998, 1031, 1038, 1048, 1052], "pairwise_kernel_funct": [399, 619, 642, 775], "pairwise_kernels_kwarg": 619, "pairwise_t_test": 263, "pairwisedistancesreduct": 359, "pairwisekernel": [2, 413], "paislei": [408, 533], "pakdd": 403, "pal": [1039, 1045], "palacio": 1044, "palafox": 1031, "palett": [0, 183, 201, 263], "palevioletr": [219, 289, 334], "palioura": [840, 1002], "paliw": 1039, "palladium": 1024, "palmol": 52, "pami": [368, 403, 726], "pamnani": 1039, "pan": [391, 1050], "panchal": 1043, "pancholi": 1038, "panda": [2, 44, 52, 63, 67, 102, 103, 104, 134, 140, 141, 143, 146, 149, 151, 154, 155, 162, 172, 178, 182, 183, 184, 185, 186, 190, 194, 198, 206, 210, 213, 223, 234, 242, 243, 244, 246, 253, 257, 261, 263, 264, 266, 274, 275, 277, 280, 308, 309, 310, 312, 313, 315, 316, 321, 322, 342, 346, 347, 365, 366, 370, 371, 373, 374, 375, 379, 383, 385, 389, 396, 404, 427, 438, 439, 441, 443, 445, 460, 462, 464, 478, 479, 480, 481, 485, 486, 487, 489, 493, 497, 498, 499, 501, 502, 507, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 558, 559, 563, 564, 565, 566, 567, 579, 580, 581, 587, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 626, 627, 628, 629, 631, 632, 634, 637, 638, 639, 640, 641, 688, 689, 692, 801, 804, 805, 815, 831, 849, 854, 857, 861, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 903, 927, 989, 990, 1010, 1019, 1020, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051], "pandata": [1046, 1047], "pandei": [1038, 1043], "panel": [254, 288, 303, 409, 1019], "panga": [1046, 1047], "panico": [1039, 1043], "pankaj": 1043, "pano": 1037, "panpiort8": [1041, 1043], "paolo": [0, 393, 1031, 1035, 1041, 1049], "papadopoulo": [1044, 1045, 1046, 1047, 1048, 1051], "papapanagiot": 1038, "paper": [0, 150, 163, 188, 257, 263, 368, 377, 383, 403, 405, 410, 438, 445, 474, 490, 501, 531, 538, 560, 640, 657, 665, 666, 670, 675, 677, 678, 692, 789, 842, 851, 854, 897, 898, 996, 1000, 1003, 1006, 1015, 1031, 1038, 1039, 1052], "paper355": 670, "papier": [663, 684, 685], "par": 1010, "paraboloid": 996, "paradi": 1046, "paradigm": 996, "paragraph": [411, 500], "parallel": [2, 52, 54, 64, 103, 104, 138, 139, 140, 141, 142, 143, 150, 154, 155, 156, 183, 184, 185, 208, 233, 234, 244, 246, 253, 257, 261, 262, 263, 264, 275, 277, 301, 309, 313, 314, 316, 319, 322, 326, 340, 353, 357, 363, 369, 371, 372, 374, 383, 385, 404, 407, 414, 415, 433, 440, 442, 444, 445, 446, 448, 453, 454, 457, 460, 463, 468, 528, 530, 531, 532, 534, 536, 538, 539, 540, 542, 543, 545, 552, 553, 554, 555, 560, 561, 562, 563, 564, 565, 566, 567, 587, 592, 600, 605, 606, 609, 631, 633, 638, 657, 688, 689, 690, 691, 692, 693, 694, 782, 801, 804, 805, 807, 812, 815, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 838, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 864, 867, 900, 901, 968, 1020, 1026, 1031, 1034, 1035, 1036, 1037, 1039, 1040, 1041, 1042, 1043, 1046, 1047, 1050], "parallel_backend": [52, 64, 103, 104, 139, 141, 143, 150, 154, 155, 156, 183, 184, 185, 233, 234, 235, 244, 246, 253, 257, 261, 262, 263, 275, 277, 301, 309, 313, 316, 319, 322, 326, 359, 414, 433, 440, 442, 444, 446, 448, 453, 454, 457, 460, 463, 468, 528, 532, 533, 534, 536, 539, 540, 542, 543, 545, 552, 553, 554, 555, 560, 561, 562, 563, 564, 565, 566, 567, 592, 600, 605, 606, 609, 631, 633, 638, 646, 650, 652, 654, 656, 657, 658, 660, 662, 664, 665, 667, 675, 678, 688, 689, 690, 691, 692, 693, 694, 775, 779, 782, 801, 804, 805, 807, 815, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 838, 847, 848, 851, 853, 855, 856, 858, 859, 864, 867, 900, 901, 1039, 1049], "parallel_batch_queri": 283, "parallel_coordin": 264, "parallel_help": 1041, "parallelexecut": [103, 104, 244, 253, 257, 261, 262, 263], "parallelis": [264, 464, 903, 1038], "param": [79, 88, 94, 95, 100, 103, 144, 145, 147, 148, 225, 238, 239, 261, 263, 266, 271, 275, 287, 299, 319, 367, 371, 373, 385, 394, 410, 413, 417, 420, 426, 427, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 683, 687, 688, 689, 690, 691, 692, 712, 798, 799, 800, 801, 804, 805, 813, 815, 823, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 957, 958, 988, 989, 1000, 1037, 1041, 1042, 1044, 1045, 1048, 1049, 1050, 1051], "param1": 373, "param2": 373, "param3": 373, "param_": 140, "param_c": [274, 801], "param_classifier__c": 103, "param_covariance_typ": 253, "param_degre": 801, "param_dist": [271, 275, 314], "param_distribut": [103, 167, 264, 271, 275, 314, 384, 805, 813, 815, 1047], "param_gamma": [274, 801, 815], "param_grid": [44, 46, 103, 104, 105, 106, 140, 146, 238, 244, 253, 257, 261, 262, 263, 267, 268, 271, 274, 280, 285, 305, 319, 321, 335, 385, 394, 404, 410, 731, 743, 801, 804, 812, 813, 989, 1000], "param_kernel": [801, 815], "param_list": 813, "param_min_samples_split": 267, "param_n_compon": 253, "param_nam": [140, 264, 276, 318, 342, 394, 824, 832, 995], "param_pca__n_compon": 105, "param_preprocessor__cat__selector__percentil": 103, "param_preprocessor__num__imputer__strategi": 103, "param_rang": [276, 318, 342, 824, 832, 995, 1047], "param_reduce_dim__n_compon": 262, "param_valu": 47, "paramet": [2, 26, 28, 44, 45, 49, 50, 51, 52, 54, 55, 64, 65, 71, 79, 87, 88, 91, 93, 94, 95, 103, 104, 105, 110, 112, 113, 118, 120, 126, 132, 134, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 154, 155, 156, 160, 163, 167, 168, 171, 172, 173, 174, 175, 176, 178, 180, 183, 184, 185, 190, 191, 192, 193, 194, 196, 197, 198, 199, 204, 206, 208, 210, 211, 213, 221, 222, 223, 229, 230, 232, 233, 234, 235, 237, 238, 239, 243, 244, 245, 246, 248, 249, 250, 251, 253, 254, 256, 257, 263, 264, 265, 267, 268, 270, 271, 274, 275, 277, 280, 283, 285, 286, 289, 290, 296, 298, 299, 301, 303, 304, 305, 307, 308, 309, 312, 313, 315, 316, 317, 318, 319, 321, 322, 326, 328, 330, 332, 337, 339, 340, 341, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 360, 363, 364, 366, 373, 374, 376, 378, 379, 380, 383, 394, 398, 401, 402, 403, 405, 406, 407, 408, 409, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 572, 574, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 940, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 990, 991, 992, 993, 994, 995, 997, 999, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1012, 1013, 1014, 1016, 1019, 1020, 1021, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "parameter": [350, 413, 613, 614, 621, 622, 798, 799, 996, 997, 1005, 1010, 1016], "parameter_grid": 264, "parameter_nam": [564, 565, 566, 567], "parameterfor": 156, "parametergrid": [2, 801, 1033, 1039], "parameters_str": 88, "parametersampl": [2, 815, 1033, 1039, 1043], "parameterwith": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "parametr": [2, 49, 62, 63, 64, 113, 235, 287, 307, 315, 401, 404, 409, 410, 433, 548, 550, 634, 684, 696, 881, 893, 942, 944, 996, 999, 1002, 1003, 1010, 1013, 1016, 1039, 1041, 1044], "parametrize_with_check": [2, 312, 321, 373, 385, 942, 943, 1041, 1042, 1050, 1052], "params_str": 275, "paraphras": 383, "parcel": [87, 403], "parch": [185, 317], "pardeep": 1043, "pardi": 1051, "parec": 1052, "parekh": 1052, "parent": [48, 182, 239, 353, 371, 375, 385, 403, 438, 459, 958, 959, 1031, 1048], "parent_hourly_wag": 182, "parenthes": 938, "parenthesi": [76, 371], "paresh": [1040, 1041], "pareto": 208, "pargent": 1010, "pari": [0, 368, 404, 462, 765, 873, 1011, 1045], "pariet": [1024, 1031], "parikh": [1040, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "parimi": [1049, 1050], "paris_in_radian": 765, "paristech": 0, "pariti": 1016, "parizi": 1046, "park": [1036, 1041, 1043, 1046, 1047, 1050, 1051], "parmet": 1048, "parmind": 1038, "parquet": 53, "parra": 1039, "parri": [1036, 1037, 1038], "parrot": 346, "pars": [48, 56, 358, 365, 366, 372, 505], "parse_vers": [147, 186, 312, 669], "parser": [48, 149, 257, 277, 312, 316, 493, 1046, 1047], "parsifalxu": [1049, 1050], "parsimoni": [408, 1010], "parsing_tim": 48, "parson": [1042, 1044], "part": [0, 45, 46, 68, 72, 84, 94, 103, 113, 120, 123, 126, 137, 140, 142, 143, 146, 152, 155, 160, 172, 180, 190, 239, 241, 251, 257, 258, 260, 278, 298, 305, 308, 310, 315, 321, 348, 360, 366, 368, 371, 373, 377, 379, 384, 385, 389, 391, 399, 401, 402, 403, 407, 408, 410, 411, 413, 442, 445, 490, 491, 492, 518, 528, 534, 539, 571, 582, 583, 584, 612, 624, 794, 870, 888, 890, 891, 892, 893, 894, 895, 896, 989, 990, 992, 997, 1001, 1019, 1020, 1021, 1022, 1024, 1026, 1031, 1039, 1040, 1042, 1044, 1046, 1050, 1051], "part3": 407, "part_of_speech": 411, "partev": [1045, 1046, 1047, 1048], "parthiv": 1043, "parti": [223, 280, 318, 359, 370, 373, 383, 397, 803, 810, 1031, 1042, 1047, 1048, 1050], "partial": [2, 44, 48, 52, 83, 114, 115, 122, 151, 180, 181, 223, 231, 314, 317, 368, 371, 385, 388, 399, 405, 406, 408, 410, 413, 460, 478, 479, 480, 481, 493, 498, 531, 533, 538, 559, 587, 631, 632, 656, 789, 831, 833, 834, 861, 862, 863, 866, 878, 879, 882, 885, 914, 997, 1004, 1014, 1021, 1026, 1028, 1032, 1039, 1040, 1044, 1048, 1051, 1052], "partial_correl": 52, "partial_depend": [2, 184, 631, 1007, 1032, 1040, 1041, 1042, 1043, 1046, 1047, 1051], "partial_fit": [48, 83, 120, 316, 360, 373, 385, 403, 408, 438, 445, 531, 533, 534, 535, 587, 595, 657, 658, 665, 666, 667, 675, 676, 677, 833, 834, 837, 838, 840, 841, 842, 843, 844, 861, 862, 863, 874, 875, 885, 905, 988, 996, 1002, 1004, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1042, 1044, 1045, 1046, 1047, 1048, 1050], "partial_fit_": 1044, "partial_fit_classifi": 48, "partial_fit_param": [595, 833, 834, 837, 838], "partialdependencedisplai": [2, 149, 151, 184, 243, 313, 314, 315, 317, 319, 378, 632, 1007, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050], "particip": [370, 371, 386, 1024], "particl": 1005, "particular": [44, 51, 54, 65, 67, 73, 75, 93, 100, 103, 109, 118, 125, 128, 143, 146, 149, 150, 171, 178, 183, 184, 206, 208, 213, 237, 257, 264, 266, 272, 283, 292, 296, 303, 312, 313, 316, 321, 347, 348, 354, 358, 359, 365, 366, 369, 370, 371, 373, 375, 376, 377, 379, 380, 384, 385, 386, 389, 403, 404, 407, 408, 410, 411, 412, 413, 442, 465, 469, 493, 541, 560, 607, 652, 657, 662, 671, 673, 683, 686, 712, 729, 786, 837, 930, 932, 990, 992, 994, 996, 1000, 1003, 1004, 1005, 1006, 1008, 1010, 1024, 1031, 1034, 1038, 1039, 1040, 1042, 1044, 1045, 1046, 1048, 1050], "particularli": [59, 68, 102, 103, 106, 129, 152, 183, 207, 234, 263, 272, 277, 305, 313, 320, 321, 322, 344, 354, 358, 371, 373, 380, 385, 403, 404, 406, 409, 411, 440, 493, 608, 807, 824, 842, 949, 969, 996, 997, 1000, 1002, 1008, 1020, 1024, 1031, 1036, 1038, 1039, 1045, 1052], "partit": [64, 80, 99, 102, 141, 143, 150, 152, 154, 156, 185, 244, 263, 275, 300, 314, 319, 352, 353, 385, 400, 401, 403, 407, 410, 445, 447, 449, 458, 508, 554, 555, 556, 557, 560, 561, 562, 704, 705, 715, 787, 853, 913, 914, 915, 916, 999, 1003, 1006, 1010, 1016], "partli": [80, 397, 770], "partnership": 1024, "parvu": 368, "pasbi": [1038, 1039], "pascal": 1000, "pascual": 1034, "paskov": 1038, "pass": [2, 44, 47, 48, 52, 59, 60, 64, 71, 74, 103, 104, 139, 140, 141, 143, 149, 150, 151, 154, 155, 156, 160, 165, 172, 183, 184, 185, 192, 194, 207, 233, 234, 235, 236, 239, 242, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 309, 310, 312, 313, 314, 315, 316, 317, 319, 320, 321, 322, 340, 348, 352, 353, 354, 358, 359, 360, 366, 371, 372, 373, 376, 377, 378, 379, 380, 383, 385, 394, 397, 399, 402, 403, 404, 407, 408, 410, 411, 413, 414, 415, 420, 421, 425, 426, 427, 433, 434, 436, 438, 439, 440, 441, 442, 443, 444, 445, 446, 448, 450, 453, 455, 456, 458, 460, 461, 463, 464, 465, 468, 470, 478, 479, 480, 484, 487, 489, 492, 493, 494, 500, 505, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 609, 610, 616, 619, 625, 627, 629, 630, 631, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 711, 731, 733, 734, 743, 764, 775, 779, 780, 781, 782, 789, 793, 794, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 874, 875, 876, 877, 878, 879, 880, 882, 883, 884, 885, 886, 894, 895, 896, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 925, 930, 931, 932, 938, 942, 943, 944, 948, 949, 951, 953, 956, 958, 961, 962, 970, 973, 983, 988, 989, 990, 996, 998, 1000, 1001, 1002, 1003, 1004, 1007, 1010, 1013, 1014, 1015, 1020, 1024, 1028, 1031, 1032, 1033, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "passeda": 155, "passedth": 139, "passedthrough": [64, 103, 139, 141, 155, 185, 233, 234, 244, 246, 257, 262, 275, 277, 301, 313, 316, 319, 322, 353], "passedto": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "passiv": [2, 48, 665, 666, 675, 677, 1032, 1052], "passiveaggressiveclassifi": [2, 1032, 1035, 1036, 1038, 1039, 1042, 1044, 1049, 1052], "passiveaggressiveregressor": [2, 1032, 1035, 1038, 1039, 1042, 1044, 1049, 1052], "passo": [0, 393, 1031, 1032], "passthrough": [44, 103, 104, 143, 154, 183, 184, 185, 206, 223, 234, 242, 244, 309, 313, 316, 317, 404, 460, 463, 564, 565, 864, 865, 1010, 1040, 1042, 1045, 1046, 1048], "passthrough_numer": [206, 223], "passthroughpassthrough": 184, "passthroughpassthroughhigh_cardinalityindex": 309, "passthroughpassthroughtransformedtargetregressor": 183, "past": [51, 53, 371, 375, 376, 379, 383, 386, 407, 408, 410, 535, 552, 553, 677, 822, 1024, 1047], "pat": [627, 990], "patch": [2, 71, 83, 242, 248, 249, 250, 253, 254, 258, 366, 383, 408, 410, 552, 553, 581, 582, 585, 1031, 1039], "patch_height": [581, 582, 585], "patch_siz": [83, 123, 411, 581, 582, 585], "patch_width": [581, 582, 585], "patchextractor": [2, 411, 1047], "patel": [1039, 1041, 1042, 1043, 1045, 1050, 1051], "path": [2, 48, 56, 103, 139, 143, 154, 160, 180, 183, 185, 189, 194, 195, 198, 199, 202, 210, 221, 233, 234, 243, 244, 246, 264, 270, 276, 277, 309, 313, 316, 322, 350, 365, 369, 371, 375, 379, 380, 385, 397, 437, 441, 446, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 500, 501, 502, 505, 506, 545, 554, 555, 560, 561, 562, 563, 591, 592, 595, 645, 646, 649, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 664, 680, 681, 682, 683, 684, 685, 688, 865, 866, 885, 912, 913, 914, 915, 916, 955, 989, 996, 997, 1006, 1021, 1031, 1032, 1035, 1037, 1038, 1040, 1041, 1043, 1044, 1046, 1047, 1051, 1052], "path_length": 955, "path_method": [688, 997], "pathak": [1046, 1047], "patheffect": 75, "pathlib": [48, 1046, 1047], "pathlik": [493, 1047], "patholog": [85, 999, 1037], "pathwai": 372, "pati": 1033, "patienc": [379, 385], "patient": [47, 156, 163, 179, 368, 379, 402, 407, 996], "patil": [1045, 1048], "paton": 1044, "patric": [1043, 1044], "patricio": 1045, "patrick": [1038, 1039, 1044, 1045, 1048, 1049], "patrini": [1036, 1037, 1038], "pattaniyil": 1041, "pattern": [44, 53, 59, 96, 113, 119, 120, 126, 127, 167, 178, 180, 184, 194, 210, 239, 242, 315, 339, 346, 347, 348, 354, 368, 371, 373, 386, 400, 403, 404, 407, 408, 410, 411, 444, 460, 462, 501, 529, 531, 538, 552, 553, 637, 708, 726, 742, 770, 789, 790, 798, 885, 992, 994, 996, 1000, 1001, 1007, 1015, 1017, 1020, 1021, 1024, 1043], "patterson": [491, 1036], "paugam": 1052, "paul": [366, 1034, 1037, 1038, 1039, 1040, 1044, 1045], "paula": [1041, 1042, 1049], "pauli": 1036, "paulo": [1038, 1044, 1046], "paus": 80, "pava": 634, "pavel": [1032, 1040], "pavlo": [1039, 1040], "pavlyk": [1039, 1040, 1041, 1042], "pawel": 1040, "pawe\u0142": [1034, 1038, 1043, 1044], "pawson": 1050, "payn": 1041, "pazzani": 65, "pb_q": [315, 996], "pbl": 146, "pc": [58, 228, 328, 348, 366], "pca": [2, 11, 43, 46, 56, 69, 70, 84, 99, 101, 102, 104, 106, 107, 116, 119, 122, 130, 180, 214, 226, 228, 235, 237, 240, 244, 250, 256, 262, 269, 271, 274, 278, 283, 286, 287, 292, 301, 315, 332, 351, 354, 363, 373, 385, 399, 403, 404, 409, 419, 469, 472, 480, 493, 499, 501, 511, 529, 530, 531, 532, 536, 537, 540, 541, 546, 642, 657, 687, 688, 690, 692, 696, 801, 827, 831, 854, 861, 864, 865, 867, 875, 883, 885, 920, 992, 994, 997, 1003, 1010, 1014, 1016, 1021, 1025, 1026, 1031, 1033, 1034, 1035, 1037, 1038, 1039, 1042, 1044, 1045, 1046, 1048, 1049, 1052], "pca0": 419, "pca1": [404, 419], "pca2": [404, 419], "pca_2": 116, "pca__n_compon": 105, "pca_back_proj_ax": 125, "pca_estim": 120, "pca_proj_ax": 125, "pca_scor": 127, "pcd": [861, 1005], "pchelintsev": 1043, "pclass": [103, 185, 246, 312, 316, 317], "pcoa": [687, 997], "pcolor": 168, "pcolormesh": [71, 152, 155, 286, 291, 331, 335, 339, 630], "pcr": [116, 406], "pd": [44, 52, 63, 67, 103, 104, 134, 140, 141, 146, 151, 154, 155, 162, 178, 182, 183, 184, 185, 186, 190, 194, 198, 206, 210, 213, 223, 234, 243, 244, 246, 253, 261, 263, 264, 266, 274, 275, 277, 280, 308, 309, 310, 313, 315, 316, 342, 346, 347, 376, 385, 404, 460, 462, 626, 627, 628, 629, 631, 779, 929, 931, 932, 989, 990, 1007, 1010, 1042, 1044, 1045, 1046, 1048], "pd2000": 1000, "pd_": 1007, "pd_line_kw": 631, "pd_result": 631, "pdb": 379, "pdbcl": 379, "pdf": [163, 263, 288, 303, 368, 371, 403, 412, 438, 445, 528, 531, 534, 538, 640, 643, 657, 663, 665, 666, 670, 675, 677, 678, 681, 682, 684, 685, 692, 842, 854, 861, 898, 900, 996, 1000, 1013, 1016, 1023, 1027, 1031], "pdist": [687, 692, 779, 782], "pdp": [2, 631, 1007, 1045], "pdp_lim": 631, "pdp_line_kw": 631, "pe": [192, 581], "pe_tran": 581, "peai": 1040, "peak": [44, 53, 65, 184, 401, 407, 1045], "pear": 1001, "pearson": [2, 604, 607, 1044], "pearu": 1031, "pedersen": [1035, 1047], "pedigo": [1043, 1044], "pedregosa": [0, 393, 1031, 1032, 1033, 1034, 1035, 1037], "pedro": [1032, 1034, 1035, 1039, 1051], "peek": [184, 371, 1007], "peer": 1024, "peev": [1039, 1042], "pegaso": 1014, "pei": [403, 1038], "peixinho": 1045, "pelennor": 1045, "penal": [2, 54, 103, 104, 113, 139, 143, 151, 154, 160, 183, 184, 194, 198, 201, 204, 206, 210, 221, 223, 234, 244, 257, 270, 276, 308, 309, 313, 316, 317, 322, 342, 403, 405, 408, 410, 412, 465, 466, 467, 468, 469, 470, 471, 472, 474, 558, 559, 646, 651, 652, 657, 660, 662, 675, 705, 715, 735, 787, 796, 878, 905, 906, 912, 996, 1000, 1002, 1004, 1014, 1015], "penalis": [220, 696], "penalti": [2, 26, 47, 48, 50, 103, 104, 113, 139, 155, 160, 180, 183, 189, 190, 192, 194, 197, 198, 201, 204, 206, 210, 220, 221, 233, 234, 244, 245, 246, 257, 261, 262, 263, 270, 271, 276, 277, 298, 301, 313, 314, 315, 316, 322, 328, 340, 346, 358, 379, 383, 405, 408, 412, 467, 468, 469, 470, 471, 472, 474, 499, 528, 534, 535, 536, 537, 539, 540, 544, 545, 595, 642, 645, 646, 647, 648, 651, 652, 653, 656, 657, 658, 659, 660, 661, 665, 666, 667, 668, 669, 671, 675, 677, 679, 680, 686, 815, 885, 905, 906, 908, 910, 911, 912, 989, 996, 999, 1004, 1010, 1014, 1015, 1021, 1033, 1036, 1038, 1040, 1041, 1043, 1044, 1046, 1047, 1051], "penaltyi": [244, 245, 261, 263, 314], "peng": [678, 996, 1037, 1038, 1039, 1041, 1043], "peopl": [2, 46, 102, 183, 241, 266, 346, 347, 359, 360, 366, 368, 370, 371, 375, 386, 409, 490, 491, 640, 842, 1019, 1050], "pep": [52, 1031], "pep073": 372, "pep257": 385, "pep440": 375, "pep8": [373, 375], "pepsi": 52, "per": [44, 50, 59, 67, 71, 86, 97, 103, 139, 140, 143, 151, 154, 172, 174, 183, 184, 185, 206, 220, 223, 234, 242, 244, 246, 249, 257, 259, 270, 272, 303, 309, 313, 314, 316, 317, 319, 320, 322, 342, 346, 348, 358, 366, 367, 371, 376, 377, 380, 383, 385, 401, 403, 407, 408, 409, 410, 411, 413, 442, 444, 446, 453, 457, 460, 464, 483, 493, 497, 499, 500, 501, 505, 507, 509, 512, 520, 529, 531, 532, 533, 536, 538, 540, 546, 547, 558, 559, 566, 581, 586, 589, 609, 610, 630, 631, 632, 640, 641, 657, 658, 665, 666, 667, 670, 672, 673, 674, 675, 677, 692, 696, 713, 716, 720, 722, 723, 742, 755, 759, 760, 782, 784, 798, 799, 826, 833, 834, 835, 837, 838, 841, 843, 852, 861, 864, 870, 872, 874, 875, 878, 879, 885, 886, 903, 905, 906, 907, 908, 909, 910, 911, 936, 937, 949, 974, 989, 992, 996, 999, 1000, 1001, 1004, 1007, 1014, 1015, 1016, 1020, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1043, 1044, 1045, 1047, 1048], "perboost": [257, 322], "perc": 258, "percal": 377, "percent": [134, 489, 598, 1013], "percent10": [242, 489], "percentag": [2, 53, 87, 104, 128, 143, 199, 223, 244, 258, 262, 266, 407, 412, 531, 538, 541, 546, 591, 592, 647, 668, 679, 703, 735, 747, 819, 820, 821, 835, 917, 919, 1001, 1016, 1033, 1037, 1043, 1044], "percentil": [2, 50, 53, 103, 146, 149, 184, 242, 246, 303, 358, 590, 593, 594, 596, 597, 598, 601, 604, 631, 632, 749, 870, 1010, 1036, 1044], "percentile_5_predict": 53, "percentile_95_predict": 53, "percentile_perf_in_u": 50, "percentiles_class": 258, "percept": [158, 184, 1007], "perceptron": [2, 48, 68, 142, 152, 169, 171, 180, 215, 218, 221, 243, 297, 305, 306, 329, 340, 343, 360, 383, 411, 511, 512, 519, 665, 675, 831, 861, 862, 863, 866, 885, 998, 1001, 1005, 1014, 1021, 1022, 1026, 1035, 1037, 1038, 1039, 1043], "percol": 100, "perdisci": [403, 438], "perdok": 1046, "pere": 1048, "peredachi": [605, 606], "pereira": [1036, 1039, 1040, 1050, 1051], "peretti": 1046, "perez": [1039, 1046], "perf_count": 242, "perfeatur": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316], "perfect": [59, 64, 73, 102, 112, 123, 125, 206, 346, 347, 371, 403, 407, 550, 551, 690, 694, 704, 705, 708, 717, 727, 729, 732, 738, 744, 757, 758, 786, 787, 796, 996, 1000, 1003, 1015, 1024, 1045], "perfectli": [64, 65, 73, 103, 139, 143, 154, 183, 184, 234, 244, 266, 278, 313, 316, 339, 388, 403, 410, 434, 564, 604, 704, 705, 715, 717, 737, 738, 758, 787, 796, 878, 995, 997, 1000, 1015, 1044, 1045], "perform": [2, 26, 28, 30, 31, 42, 44, 47, 53, 58, 62, 63, 64, 69, 72, 82, 86, 90, 91, 92, 93, 94, 95, 97, 99, 102, 103, 104, 106, 109, 116, 123, 129, 132, 134, 139, 140, 141, 143, 144, 145, 147, 148, 149, 150, 151, 153, 154, 156, 158, 160, 161, 162, 163, 168, 172, 176, 178, 179, 180, 183, 184, 185, 186, 188, 194, 198, 204, 206, 208, 210, 212, 213, 222, 223, 226, 227, 229, 232, 233, 234, 237, 240, 242, 243, 244, 246, 249, 250, 253, 255, 257, 258, 259, 260, 261, 263, 264, 265, 268, 269, 270, 271, 272, 274, 275, 276, 277, 280, 282, 283, 296, 301, 303, 305, 307, 309, 310, 312, 313, 317, 318, 319, 321, 322, 323, 325, 326, 328, 335, 338, 339, 342, 346, 348, 352, 353, 354, 357, 359, 360, 366, 368, 373, 374, 375, 377, 379, 380, 383, 384, 385, 388, 394, 397, 398, 399, 400, 401, 404, 405, 406, 408, 409, 410, 411, 412, 413, 414, 415, 421, 425, 436, 438, 439, 440, 442, 443, 444, 446, 448, 450, 451, 455, 457, 464, 465, 478, 479, 480, 481, 491, 499, 509, 512, 528, 529, 530, 532, 534, 539, 540, 541, 542, 543, 545, 547, 548, 549, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 579, 580, 581, 586, 587, 588, 589, 592, 599, 600, 601, 609, 610, 626, 629, 630, 637, 639, 644, 650, 653, 654, 655, 657, 663, 664, 665, 666, 667, 669, 672, 674, 675, 676, 677, 681, 682, 684, 686, 689, 690, 693, 694, 697, 703, 704, 705, 707, 708, 712, 713, 727, 730, 731, 739, 741, 743, 756, 757, 758, 779, 784, 785, 787, 788, 789, 795, 796, 797, 798, 799, 801, 804, 805, 812, 813, 815, 819, 826, 827, 828, 830, 831, 834, 837, 838, 840, 841, 842, 843, 844, 845, 846, 847, 852, 854, 855, 860, 861, 862, 863, 865, 866, 868, 871, 872, 874, 875, 877, 878, 879, 881, 882, 885, 886, 888, 890, 891, 892, 894, 895, 896, 900, 901, 903, 907, 908, 909, 910, 911, 913, 914, 915, 916, 931, 932, 972, 983, 988, 989, 990, 992, 994, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1013, 1014, 1015, 1016, 1019, 1020, 1021, 1024, 1025, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "performanceonc": 156, "performancetip": 377, "performbett": 243, "performingleav": [154, 183], "perhap": [102, 142, 368, 370, 379, 409], "perimet": [163, 368], "period": [2, 53, 149, 155, 167, 172, 176, 375, 385, 386, 401, 413, 614, 822, 884, 1039, 1044, 1046], "periodic_spline_transform": 44, "periodicity_bound": [167, 172, 176, 614], "peripheri": 403, "periter": [143, 151, 154, 257, 309, 317, 322], "perla": 1034, "perm_scores_iri": 269, "perm_scores_rand": 269, "perm_sorted_idx": 186, "permalink": 375, "perman": 379, "permiss": [370, 375, 386, 389, 390, 527, 1024, 1046], "permit": [103, 104, 244, 253, 257, 261, 262, 263, 264, 275, 404, 463, 586, 587, 589, 801, 804, 805, 815, 827, 866, 867, 1000, 1001, 1002, 1037], "permut": [2, 51, 59, 60, 73, 112, 115, 140, 147, 156, 158, 180, 181, 221, 255, 263, 310, 314, 327, 352, 353, 388, 398, 403, 410, 412, 460, 493, 497, 501, 556, 557, 561, 562, 626, 629, 633, 678, 704, 705, 717, 737, 738, 756, 758, 796, 818, 820, 830, 831, 865, 879, 910, 913, 914, 949, 969, 970, 973, 1000, 1014, 1021, 1026, 1031, 1037, 1044, 1046], "permutation_import": [2, 141, 147, 185, 186, 312, 410, 1008, 1041, 1043, 1044, 1048], "permutation_scor": 830, "permutation_test_scor": [2, 269, 394, 407, 1031, 1038, 1043, 1050], "permuted_categori": 310, "perp_tol": 533, "perpendicular": [71, 340], "perperogl": 1010, "perplex": [180, 224, 225, 227, 229, 283, 511, 522, 533, 692, 997, 1021, 1036, 1038, 1045], "perri": 1041, "perrin": 1037, "perrot": [0, 1031], "persian": 1019, "persist": [172, 379, 383, 408, 442, 609, 610, 861, 1005, 1019, 1026, 1037, 1040], "persola": 1039, "person": [46, 183, 257, 266, 366, 370, 407, 411, 490, 491, 492, 1010, 1039], "personal_statu": 257, "perspect": [88, 93, 206, 277, 358, 366, 383, 386, 527, 642, 905, 993], "perspectivea": [104, 160, 270], "pertin": 206, "perturb": [183, 222, 301, 408, 410, 999], "peru": [51, 296, 366, 495], "pervas": [354, 371], "pessimist": [145, 410], "pessoa": 1044, "pestrickland": 1037, "pet": [315, 319, 789, 1000], "pet_cat": 315, "pet_dog": 315, "pet_fish": 315, "petal": [126, 128, 130, 142, 246, 314, 317, 368, 404, 831, 918, 1016], "petal_col": 317, "petar": 1046, "pete": [1038, 1042, 1043], "peter": [0, 96, 393, 403, 444, 446, 453, 648, 793, 794, 996, 1000, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1044, 1046, 1047, 1048, 1051], "peterlongo": 1048, "peterson": [1031, 1033], "petfood": 1024, "petrov": [1038, 1039, 1047], "petrushev": 1040, "pe\u00f1a": 1035, "pfaffel": 1044, "pfahring": [836, 1001], "pfe": 52, "pfister": 1010, "pfizer": 52, "pft": 207, "pg": [52, 377, 1036], "pg_i": 648, "pgithub": 1043, "ph": 1043, "pham": [188, 992, 1038], "phan": 408, "pharmaceut": 368, "phase": [44, 194, 202, 358, 626, 992, 997, 1003, 1024, 1039, 1041], "phase_nois": 75, "phd": [0, 403, 410, 1020, 1024], "phenol": 368, "phenomena": 172, "phenomenon": [347, 1010], "phi": [75, 408, 410, 744, 871, 992, 1000, 1010, 1015], "phi_coeffici": 1000, "phil": [1036, 1047], "philipp": [1033, 1034, 1037, 1046], "phillip": [2, 51, 296, 366, 495], "phlypo": 1034, "phongpanagnam": 1044, "phongpanangam": 1044, "photogrammetr": 996, "php": 1000, "phrase": 411, "phy": [605, 606], "phyo": 1045, "physic": [2, 102, 140, 262, 359, 502, 966, 996, 1047], "physician": 402, "physiolog": [266, 368], "pi": [44, 54, 71, 75, 100, 121, 129, 151, 153, 158, 167, 191, 194, 196, 202, 207, 227, 248, 249, 250, 253, 254, 278, 296, 313, 319, 352, 389, 409, 413, 513, 514, 515, 614, 641, 994, 995, 996, 1002], "pianomania": 1036, "pick": [88, 93, 154, 183, 186, 240, 271, 316, 324, 366, 371, 375, 403, 410, 439, 456, 520, 672, 915, 916, 989, 996, 997, 999, 1014, 1042], "pickl": [375, 385, 411, 587, 845, 846, 1019, 1020, 1026, 1033, 1036, 1037, 1038, 1039, 1040, 1041, 1044, 1045, 1046, 1047, 1048], "pickleabl": [869, 1037], "pickup": 1039, "pico": [1034, 1035], "pict": [835, 1001], "pictur": [52, 56, 60, 72, 86, 99, 123, 180, 236, 254, 366, 386, 403, 408, 411, 458, 490, 491, 518, 1020, 1021], "piec": [71, 81, 165, 207, 359, 999], "piecewis": [129, 315, 400, 991, 996, 1010, 1016], "pierr": [1031, 1039, 1040, 1042, 1044, 1046, 1048, 1049], "pierreablin": 1039, "pierreattard": [1044, 1045], "pierretallott": [1039, 1040, 1041], "pierron": 1034, "piet": [1045, 1046], "pieter": [56, 1037, 1038, 1045], "pietro": [1031, 1034, 1048], "pietruh": 1039, "pig": 784, "pillow": [371, 375, 389, 396], "pim": 1040, "pin": [377, 397, 399], "pinaki": 1039, "pinbal": [2, 53, 143, 146, 149, 151, 154, 309, 315, 317, 410, 559, 669, 724, 749, 996, 1044, 1045], "pinball_loss_05": 53, "pinball_loss_50": 53, "pinball_loss_95": 53, "ping": [898, 1012, 1037, 1038], "pink": 191, "pinki": 1045, "pinot": 309, "pinto": 1031, "pintor": 1042, "pinvh": [1038, 1040], "piontek": 1047, "piotr": [1039, 1040, 1049, 1050], "pip": [283, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 359, 369, 371, 375, 377, 379, 389, 397, 399, 1016], "pip3": [369, 389], "pipe": [104, 105, 143, 161, 239, 244, 262, 309, 314, 315, 384, 394, 404, 411, 588, 865, 890, 891, 893, 894, 895, 896, 989, 1010], "pipe_sgd": 219, "pipegraph": 383, "pipelin": [2, 7, 44, 67, 68, 87, 91, 103, 106, 107, 116, 139, 140, 143, 155, 157, 159, 161, 162, 163, 178, 179, 184, 185, 188, 190, 196, 198, 201, 206, 207, 212, 219, 223, 226, 231, 232, 233, 235, 237, 242, 243, 246, 255, 257, 260, 270, 271, 274, 277, 278, 283, 285, 286, 291, 292, 298, 301, 305, 308, 310, 312, 313, 314, 315, 316, 317, 318, 322, 328, 346, 347, 354, 358, 363, 365, 366, 371, 373, 385, 394, 397, 399, 407, 411, 413, 414, 417, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 484, 499, 512, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 603, 605, 608, 609, 610, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 697, 698, 700, 701, 702, 713, 798, 799, 800, 801, 804, 805, 815, 823, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 890, 891, 892, 893, 894, 895, 896, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 989, 990, 992, 996, 1003, 1004, 1009, 1010, 1014, 1015, 1018, 1019, 1020, 1021, 1022, 1024, 1026, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1048, 1052], "pipelineifit": [103, 139, 160, 183, 185, 233, 243, 246, 270, 316, 322], "pipelineinot": [143, 154, 234, 244, 264, 277, 309, 313, 322], "pipelineminmaxscal": 104, "pipelinepca": 262, "pipelinepreprocessor": [103, 244], "pipelinestandardscal": 257, "pita": 1048, "pitfal": [163, 180, 181, 182, 185, 210, 211, 263, 314, 384, 385, 388, 407, 461, 463, 493, 652, 671, 672, 701, 754, 816, 828, 831, 866, 878, 885, 996, 1021, 1026], "pitkin": [184, 1007], "pitt": 58, "pitter": 1046, "pivot": [80, 274, 275], "pivot_t": 274, "pixel": [2, 45, 46, 54, 59, 69, 81, 86, 120, 161, 188, 236, 261, 300, 301, 368, 403, 408, 411, 412, 490, 491, 492, 583, 584, 605, 606, 1003, 1005, 1016], "pixelwis": 120, "pixi": 397, "piyg": 305, "pkdd": 0, "pkg": 369, "pkgsrc": 389, "pkl": 397, "pl": [2, 53, 105, 116, 172, 262, 319, 368, 406, 478, 479, 480, 481, 1036], "place": [2, 44, 93, 103, 154, 185, 233, 234, 243, 244, 287, 313, 316, 358, 371, 372, 373, 376, 378, 386, 401, 407, 411, 413, 437, 438, 441, 442, 478, 479, 480, 512, 579, 588, 627, 629, 630, 769, 775, 779, 782, 798, 888, 890, 891, 892, 893, 894, 895, 896, 978, 979, 1019, 1031, 1038, 1041, 1042, 1044, 1048, 1049, 1050], "placehold": [58, 103, 154, 185, 234, 244, 313, 316, 375, 626, 627, 628, 629, 816, 817, 820, 821, 988, 990], "plagre": 1038, "plai": [121, 147, 169, 214, 256, 294, 331, 332, 358], "plain": [204, 337, 413, 656, 1014], "plan": [52, 365, 369, 371, 372, 386, 397, 1010, 1034], "planar": 403, "plane": [52, 163, 217, 237, 260, 289, 337, 339, 340, 368, 448, 458, 994, 996, 1015], "plant": [269, 272, 273, 364, 1000, 1026], "plasma": 303, "plasma_r": 303, "plateau": [140, 144, 162, 257, 261, 265], "platform": [0, 321, 374, 375, 385, 386, 1018, 1019, 1023, 1024, 1036, 1039, 1040, 1042, 1044, 1045, 1048, 1049, 1050], "platt": [64, 401, 433, 907, 908, 910, 911, 1015], "platypu": 346, "playlist": 1018, "pldtc325": 1038, "pleas": [0, 2, 52, 56, 64, 103, 104, 139, 141, 143, 147, 150, 151, 154, 155, 156, 160, 165, 172, 183, 184, 185, 192, 210, 233, 234, 235, 237, 239, 242, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 283, 293, 301, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 326, 339, 352, 353, 359, 365, 366, 369, 371, 372, 373, 375, 379, 383, 384, 385, 389, 394, 397, 399, 403, 410, 411, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 493, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 626, 627, 628, 629, 630, 631, 632, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 697, 798, 799, 800, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 826, 828, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 894, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 943, 989, 1000, 1004, 1010, 1014, 1015, 1019, 1020, 1023, 1031, 1034, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "pleasant": [370, 1024], "pleiss": [401, 433], "plenti": 63, "plgreenliru": 1042, "plo": [365, 605, 606], "plot": [2, 44, 45, 46, 51, 52, 53, 55, 63, 64, 65, 66, 68, 69, 70, 72, 73, 75, 77, 78, 87, 88, 89, 91, 92, 93, 94, 95, 98, 104, 105, 106, 107, 110, 111, 112, 116, 117, 120, 123, 124, 127, 128, 129, 130, 133, 134, 136, 137, 138, 139, 141, 143, 144, 145, 146, 148, 149, 151, 152, 153, 155, 158, 159, 161, 167, 168, 169, 170, 171, 172, 173, 174, 176, 178, 180, 181, 182, 183, 185, 186, 188, 189, 193, 196, 197, 198, 200, 203, 205, 206, 207, 208, 209, 212, 213, 215, 217, 218, 220, 222, 223, 227, 228, 229, 230, 231, 232, 235, 236, 238, 240, 241, 246, 248, 249, 250, 252, 254, 255, 256, 257, 258, 260, 262, 263, 264, 266, 268, 269, 273, 274, 275, 276, 277, 278, 280, 283, 285, 286, 287, 288, 289, 291, 292, 293, 294, 295, 296, 298, 299, 300, 303, 304, 305, 306, 307, 308, 310, 313, 316, 317, 318, 319, 325, 326, 329, 330, 331, 335, 336, 337, 340, 341, 342, 343, 344, 347, 348, 349, 350, 353, 371, 374, 380, 383, 385, 388, 389, 398, 401, 403, 405, 407, 409, 410, 434, 435, 437, 446, 452, 460, 467, 493, 498, 499, 501, 509, 520, 550, 554, 557, 558, 559, 561, 562, 567, 609, 621, 630, 631, 632, 638, 656, 657, 671, 675, 697, 698, 700, 701, 702, 703, 707, 718, 728, 736, 742, 762, 783, 785, 788, 789, 790, 801, 807, 818, 824, 826, 827, 828, 829, 831, 832, 843, 863, 866, 870, 878, 879, 880, 882, 884, 885, 905, 907, 910, 913, 914, 919, 993, 994, 996, 997, 999, 1000, 1001, 1003, 1004, 1006, 1014, 1015, 1016, 1019, 1020, 1021, 1026, 1032, 1034, 1035, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "plot_": [315, 389], "plot_2d": [118, 225], "plot_3d": 225, "plot_accuraci": 48, "plot_adaboost_multiclass": [134, 1021], "plot_adaboost_regress": [135, 1021], "plot_adaboost_twoclass": [136, 1021], "plot_adjusted_for_chance_measur": [73, 1021], "plot_affinity_propag": [74, 1021], "plot_agglomerative_clustering_metr": [75, 1021], "plot_agglomerative_dendrogram": [76, 1021], "plot_all_sc": [303, 1021], "plot_anomaly_comparison": [232, 1021], "plot_ard": [190, 1021], "plot_arg": 299, "plot_bayesian_ridge_curvefit": [191, 1021], "plot_benchmark_throughput": 50, "plot_bias_vari": [137, 1021], "plot_bicluster_newsgroup": [58, 1021], "plot_birch_vs_minibatchkmean": [77, 1021], "plot_bisect_kmean": [78, 1021], "plot_caching_nearest_neighbor": [285, 1021], "plot_calibr": [62, 371, 1021], "plot_calibration_curv": [63, 1021], "plot_calibration_multiclass": [64, 1021], "plot_causal_interpret": [182, 1021], "plot_chance_level": [242, 257, 270, 272, 273, 700, 702, 1047], "plot_classif": [286, 1021], "plot_classification_prob": [67, 1021], "plot_classifier_chain_yeast": [282, 1021], "plot_classifier_comparison": [68, 1021], "plot_clust": 85, "plot_cluster_comparison": [79, 1021], "plot_coin_segment": [80, 1021], "plot_coin_ward_segment": [81, 1021], "plot_color": [136, 351], "plot_column_transform": [102, 1021], "plot_column_transformer_mixed_typ": [103, 1021], "plot_compare_calibr": [65, 1021], "plot_compare_cross_decomposit": [115, 1021], "plot_compare_gpr_krr": [167, 1021], "plot_compare_method": [225, 1021], "plot_compare_reduct": [104, 1021], "plot_concentration_prior": [248, 1021], "plot_confusion_matrix": [256, 312, 1021, 1041, 1042, 1043, 1044], "plot_cost_complexity_prun": [350, 1021], "plot_cost_sensitive_learn": [257, 1021], "plot_covariance_estim": [109, 1021], "plot_custom_kernel": [331, 1021], "plot_cv_indic": [258, 1021], "plot_cv_predict": [259, 1021], "plot_cyclical_feature_engin": [44, 1021], "plot_dbscan": [82, 1021], "plot_decision_funct": 344, "plot_dendrogram": 76, "plot_det": [260, 1021], "plot_det_curv": [1043, 1044], "plot_dict_face_patch": [83, 1021], "plot_digit": 45, "plot_digits_agglomer": [84, 1021], "plot_digits_classif": [69, 1021], "plot_digits_denois": [45, 1021], "plot_digits_kde_sampl": [287, 1021], "plot_digits_linkag": [85, 1021], "plot_digits_pip": [105, 1021], "plot_discret": [304, 1021], "plot_discretization_classif": [305, 1021], "plot_discretization_strategi": [306, 1021], "plot_display_object_visu": [233, 1021], "plot_distribut": 303, "plot_document_classification_20newsgroup": [346, 1021], "plot_document_clust": [347, 1021], "plot_elastic_net_precomputed_gram_matrix_with_weighted_sampl": [192, 1021], "plot_ellips": [71, 248], "plot_embed": 226, "plot_ensemble_oob": [138, 1021], "plot_estimator_represent": [234, 1021], "plot_f_test_vs_mi": [158, 1021], "plot_face_compress": [86, 1021], "plot_face_recognit": [46, 1021], "plot_faces_decomposit": [120, 1021], "plot_feature_agglomeration_vs_univariate_select": [87, 1021], "plot_feature_effect": 346, "plot_feature_select": [159, 1021], "plot_feature_selection_pipelin": [160, 1021], "plot_feature_transform": [139, 1021], "plot_feature_union": [106, 1021], "plot_forest_hist_grad_boosting_comparison": [140, 1021], "plot_forest_import": [141, 1021], "plot_forest_iri": [142, 1021], "plot_frozen_exampl": [165, 1021], "plot_galleri": [46, 120], "plot_gmm": [249, 1021], "plot_gmm_covari": [250, 1021], "plot_gmm_init": [251, 1021], "plot_gmm_pdf": [252, 1021], "plot_gmm_select": [253, 1021], "plot_gmm_sin": [254, 1021], "plot_gpc": [168, 1021], "plot_gpc_iri": [169, 1021], "plot_gpc_isoprob": [170, 1021], "plot_gpc_xor": [171, 1021], "plot_gpr_co2": [172, 1021], "plot_gpr_noisi": [173, 1021], "plot_gpr_noisy_target": [174, 1021], "plot_gpr_on_structured_data": [175, 1021], "plot_gpr_prior_posterior": [176, 1021], "plot_gpr_sampl": 176, "plot_gradient_boosting_categor": [143, 1021], "plot_gradient_boosting_early_stop": [144, 1021], "plot_gradient_boosting_oob": [145, 1021], "plot_gradient_boosting_quantil": [146, 1021], "plot_gradient_boosting_regress": [147, 1021], "plot_gradient_boosting_regular": [148, 1021], "plot_grid_search_digit": [261, 1021], "plot_grid_search_refit_cal": [262, 1021], "plot_grid_search_stat": [263, 1021], "plot_grid_search_text_feature_extract": [264, 1021], "plot_hashing_vs_dict_vector": [348, 1021], "plot_hdbscan": [88, 1021], "plot_hgbt_regress": [149, 1021], "plot_huber_vs_ridg": [193, 1021], "plot_hyperplan": [200, 214, 240], "plot_ica_blind_source_separ": [121, 1021], "plot_ica_vs_pca": [122, 1021], "plot_idx": 142, "plot_image_denois": [123, 1021], "plot_incremental_pca": [124, 1021], "plot_indic": [266, 344], "plot_inductive_clust": [89, 1021], "plot_influ": 47, "plot_iris_dtc": [351, 1021], "plot_iris_svc": [332, 1021], "plot_isolation_forest": [150, 1021], "plot_isotonic_regress": [235, 1021], "plot_iterative_imputer_variants_comparison": [178, 1021], "plot_johnson_lindenstrauss_bound": [236, 1021], "plot_kde_1d": [288, 1021], "plot_kernel_approxim": [237, 1021], "plot_kernel_pca": [125, 1021], "plot_kernel_ridge_regress": [238, 1021], "plot_kind": 44, "plot_kmeans_assumpt": [90, 1021], "plot_kmeans_digit": [91, 1021], "plot_kmeans_plusplu": [92, 1021], "plot_kmeans_silhouette_analysi": [93, 1021], "plot_kmeans_stability_low_dim_dens": [94, 1021], "plot_label_propagation_digit": [324, 1021], "plot_label_propagation_digits_active_learn": [325, 1021], "plot_label_propagation_structur": [326, 1021], "plot_lasso_and_elasticnet": [194, 1021], "plot_lasso_dense_vs_sparse_data": [195, 1021], "plot_lasso_lars_": [196, 1021], "plot_lasso_lasso_lars_elasticnet_path": [197, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 1021], "plot_lasso_model_select": [198, 646, 652, 1021], "plot_lda": [70, 1021], "plot_lda_qda": [71, 1021], "plot_learning_curv": [265, 1021], "plot_likelihood_ratio": [266, 1021], "plot_linear_model_coefficient_interpret": [183, 1021], "plot_linearsvc_support_vector": [333, 1021], "plot_linkage_comparison": [95, 1021], "plot_lle_digit": [226, 1021], "plot_lof_novelty_detect": [289, 1021], "plot_lof_outlier_detect": [290, 1021], "plot_logistic_l1_l2_spars": [199, 1021], "plot_logistic_multinomi": [200, 1021], "plot_logistic_path": [201, 1021], "plot_lw_vs_oa": [110, 1021], "plot_mahalanobis_dist": [111, 1021], "plot_manifold_spher": [227, 1021], "plot_map_data_to_norm": [307, 1021], "plot_md": [228, 1021], "plot_mean_shift": [96, 1021], "plot_metadata_rout": [239, 1021], "plot_method": [49, 71, 155, 219, 286, 291, 331, 333, 334, 336, 337, 339, 630], "plot_mini_batch_kmean": [97, 1021], "plot_missing_valu": [179, 1021], "plot_mlp_alpha": [298, 1021], "plot_mlp_training_curv": [299, 1021], "plot_mnist_filt": [300, 1021], "plot_model_complexity_influ": [47, 1021], "plot_monotonic_constraint": [151, 1021], "plot_multi_metric_evalu": [267, 1021], "plot_multi_task_lasso_support": [202, 1021], "plot_multiclass_overview": [280, 1021], "plot_multilabel": [240, 1021], "plot_multioutput_face_complet": [241, 1021], "plot_n_features_influ": 50, "plot_nca_classif": [291, 1021], "plot_nca_dim_reduct": [292, 1021], "plot_nca_illustr": [293, 1021], "plot_nearest_centroid": [294, 1021], "plot_nested_cross_validation_iri": [268, 1021], "plot_nnl": [203, 1021], "plot_num": [79, 95, 232], "plot_obs_pr": 223, "plot_ols_ridg": [204, 1021], "plot_omp": [205, 1021], "plot_on_dataset": 299, "plot_oneclass": [334, 1021], "plot_opt": [98, 1021], "plot_out_of_core_classif": [48, 1021], "plot_outlier_detection_bench": [242, 1021], "plot_outlier_detection_win": [49, 1021], "plot_partial_depend": [184, 312, 313, 314, 1021, 1036, 1040, 1041, 1042, 1043, 1044, 1045], "plot_partial_dependence_visualization_api": [243, 1021], "plot_pca_iri": [126, 1021], "plot_pca_vs_fa_model_select": [127, 1021], "plot_pca_vs_lda": [128, 1021], "plot_pcr_vs_pl": [116, 1021], "plot_performance_tradeoff": 143, "plot_permutation_import": [185, 186, 1021], "plot_permutation_importance_multicollinear": [186, 1021], "plot_permutation_tests_for_classif": [269, 1021], "plot_pipeline_displai": [244, 1021], "plot_poisson_regression_non_normal_loss": [206, 1021], "plot_polynomial_interpol": [207, 880, 884, 1021], "plot_precision_recal": [270, 1021], "plot_precision_recall_curv": [312, 1041, 1043, 1044], "plot_prediction_lat": [50, 1021], "plot_quantile_regress": [208, 1021], "plot_random_forest_embed": [152, 1021], "plot_random_forest_regression_multioutput": [153, 1021], "plot_random_multilabel_dataset": [118, 1021], "plot_randomized_search": [271, 1021], "plot_rang": 136, "plot_ransac": [209, 1021], "plot_rbf_paramet": [335, 1021], "plot_rbm_logistic_classif": [301, 1021], "plot_regress": [295, 1021], "plot_release_highlights_0_22_0": [312, 1021], "plot_release_highlights_0_23_0": [313, 1021], "plot_release_highlights_0_24_0": [314, 1021], "plot_release_highlights_1_0_0": [315, 1021], "plot_release_highlights_1_1_0": [316, 1021], "plot_release_highlights_1_2_0": [317, 1021], "plot_release_highlights_1_3_0": [318, 1021], "plot_release_highlights_1_4_0": [319, 1021], "plot_release_highlights_1_5_0": [320, 1021], "plot_release_highlights_1_6_0": [321, 1021], "plot_release_highlights_1_7_0": [322, 1021], "plot_result": [71, 248, 249, 254], "plot_rfe_digit": [161, 1021], "plot_rfe_with_cross_valid": [162, 1021], "plot_ridge_coeff": [210, 1021], "plot_ridge_path": [211, 1021], "plot_robust_fit": [212, 1021], "plot_robust_vs_empirical_covari": [112, 1021], "plot_roc": [272, 1021], "plot_roc_crossv": [273, 1021], "plot_roc_curv": [312, 1041, 1043], "plot_roc_curve_visualization_api": [245, 1021], "plot_roc_pr_curv": 257, "plot_sampl": [122, 254], "plot_scalable_poly_kernel": [188, 1021], "plot_scaling_import": [308, 1021], "plot_scatt": 89, "plot_segmentation_toi": [99, 1021], "plot_select_from_model_diabet": [163, 1021], "plot_self_training_varying_threshold": [327, 1021], "plot_semi_supervised_newsgroup": [328, 1021], "plot_semi_supervised_versus_svm_iri": [329, 1021], "plot_separating_hyperplan": [336, 1021], "plot_separating_hyperplane_unbalanc": [337, 1021], "plot_set_output": [246, 1021], "plot_sgd_early_stop": [213, 1021], "plot_sgd_iri": [214, 1021], "plot_sgd_loss_funct": [215, 1021], "plot_sgd_penalti": [216, 1021], "plot_sgd_separating_hyperplan": [217, 1021], "plot_sgd_weighted_sampl": [218, 1021], "plot_sgdocsvm_vs_ocsvm": [219, 1021], "plot_sparse_cod": [129, 1021], "plot_sparse_cov": [113, 1021], "plot_sparse_logistic_regression_20newsgroup": [220, 1021], "plot_sparse_logistic_regression_mnist": [221, 1021], "plot_species_distribut": 51, "plot_species_distribution_model": [51, 1021], "plot_species_kd": [296, 1021], "plot_spectral_biclust": [59, 1021], "plot_spectral_coclust": [60, 1021], "plot_stack_predictor": [154, 1021], "plot_step": [136, 142, 351], "plot_step_coars": 142, "plot_stock_market": [52, 1021], "plot_subfigur": 240, "plot_successive_halving_heatmap": [274, 1021], "plot_successive_halving_iter": [275, 1021], "plot_surfac": 184, "plot_svm_anova": [338, 1021], "plot_svm_kernel": [339, 1021], "plot_svm_margin": [340, 1021], "plot_svm_regress": [341, 1021], "plot_svm_scale_c": [342, 1021], "plot_svm_tie_break": [343, 1021], "plot_swissrol": [229, 1021], "plot_t_sne_perplex": [230, 1021], "plot_target_encod": [309, 1021], "plot_target_encoder_cross_v": [310, 1021], "plot_theilsen": [222, 1021], "plot_time_series_lagged_featur": [53, 1021], "plot_titl": 248, "plot_tomography_l1_reconstruct": [54, 1021], "plot_top_word": 55, "plot_topics_extraction_with_nmf_lda": [55, 1021], "plot_train_error_vs_test_error": [276, 1021], "plot_training_data_with_decision_boundari": 339, "plot_transformed_target": [107, 1021], "plot_tre": [2, 351, 353, 1016, 1040, 1042, 1043, 1044, 1046, 1047, 1049], "plot_tree_regress": [352, 1021], "plot_tuned_decision_threshold": [277, 1021], "plot_tweedie_regression_insurance_claim": [223, 1021], "plot_underfitting_overfit": [278, 1021], "plot_unveil_tree_structur": [353, 1021], "plot_varimax_fa": [130, 1021], "plot_voting_decision_region": [155, 1021], "plot_voting_regressor": [156, 1021], "plot_ward_structured_vs_unstructur": [100, 1021], "plot_weighted_sampl": [344, 1021], "plotli": [140, 264, 371, 389, 396], "pls1": [406, 480], "pls2": [406, 480], "plsca": [115, 479], "plscanon": [2, 115, 478, 480, 481, 1001, 1022, 1026, 1035, 1039, 1041, 1043, 1045, 1049], "plsregress": [2, 115, 116, 1001, 1022, 1026, 1038, 1041, 1043, 1045, 1047, 1049, 1050], "plssvd": [2, 478, 479, 1022, 1026, 1043, 1045, 1049], "plsw2a": 406, "plt": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 104, 105, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 161, 162, 163, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 186, 188, 190, 191, 193, 194, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 235, 236, 237, 238, 240, 241, 242, 243, 245, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 262, 263, 265, 266, 267, 268, 269, 270, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 316, 317, 319, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 367, 378, 434, 499, 630, 631, 697, 698, 700, 701, 702, 807, 824, 919, 1007, 1028], "plu": [270, 368, 376, 678, 836, 839, 1001, 1014], "plug": [408, 996, 1024], "plugin": 389, "plural": 1037, "pm": [176, 184, 273, 410, 1000], "pmlr": [433, 696], "pmml": 1019, "png": [0, 69, 917], "pnucci": 1047, "po": [147, 411], "podshumok": [1037, 1038], "poesio": 716, "poetri": 397, "poh": [1039, 1040], "point": [2, 8, 38, 44, 49, 51, 52, 53, 54, 64, 67, 68, 73, 74, 75, 76, 82, 85, 88, 91, 93, 97, 100, 103, 111, 112, 115, 118, 119, 121, 123, 125, 126, 134, 136, 139, 140, 141, 142, 143, 144, 149, 151, 152, 154, 155, 156, 162, 163, 165, 169, 174, 175, 180, 183, 185, 190, 198, 202, 204, 206, 207, 208, 210, 212, 214, 217, 218, 222, 223, 225, 226, 227, 228, 229, 232, 235, 237, 243, 244, 250, 253, 254, 255, 256, 260, 262, 264, 265, 266, 270, 272, 273, 275, 280, 282, 283, 286, 287, 288, 289, 290, 291, 292, 294, 295, 296, 298, 304, 305, 307, 309, 314, 317, 319, 320, 322, 324, 325, 327, 329, 331, 335, 336, 337, 339, 340, 343, 344, 346, 347, 348, 351, 352, 353, 354, 358, 359, 360, 365, 366, 367, 368, 369, 370, 371, 373, 375, 376, 377, 379, 383, 385, 386, 399, 402, 403, 408, 409, 410, 411, 414, 415, 436, 437, 438, 439, 440, 442, 443, 444, 445, 446, 448, 450, 451, 452, 453, 454, 456, 457, 465, 468, 470, 493, 495, 501, 509, 511, 512, 516, 519, 522, 527, 530, 532, 538, 549, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 609, 610, 627, 630, 631, 632, 636, 637, 638, 643, 644, 646, 650, 652, 654, 656, 657, 660, 662, 669, 670, 672, 674, 675, 677, 678, 681, 682, 687, 688, 689, 690, 691, 692, 693, 694, 698, 701, 702, 706, 707, 710, 713, 717, 724, 726, 728, 732, 737, 738, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 765, 780, 781, 790, 791, 792, 798, 799, 801, 815, 817, 823, 826, 828, 835, 845, 846, 847, 848, 849, 850, 851, 853, 855, 856, 857, 858, 859, 862, 863, 866, 870, 875, 884, 885, 899, 900, 901, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 919, 921, 929, 970, 992, 994, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1010, 1012, 1013, 1015, 1016, 1019, 1020, 1021, 1026, 1031, 1032, 1033, 1035, 1037, 1038, 1039, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "pointer": [371, 379, 438, 1040], "pointplot": 149, "points_color": 225, "pointwis": [137, 174, 414, 440], "poisson": [2, 44, 53, 143, 151, 154, 156, 180, 189, 240, 243, 309, 317, 322, 352, 367, 410, 460, 461, 493, 520, 549, 555, 559, 562, 647, 668, 671, 679, 706, 725, 746, 750, 751, 753, 831, 863, 865, 866, 869, 870, 878, 879, 880, 885, 914, 916, 953, 996, 1016, 1021, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1051], "poisson_gbrt": 206, "poisson_glm": 206, "poissondevi": [143, 151, 154, 309, 317], "poissonregressor": [2, 206, 223, 313, 316, 321, 647, 679, 996, 1042, 1045, 1046, 1050], "pokorni": 1046, "pokropi\u0144ski": 1051, "pola": 53, "polar": [105, 143, 151, 154, 172, 257, 262, 309, 317, 322, 371, 373, 383, 389, 396, 427, 438, 439, 441, 443, 445, 460, 464, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 558, 559, 563, 564, 565, 566, 567, 579, 580, 581, 587, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 688, 689, 692, 849, 854, 857, 861, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 903, 1048, 1049], "pole": 227, "poli": [44, 188, 244, 245, 261, 263, 314, 332, 339, 341, 448, 532, 619, 766, 775, 801, 880, 907, 908, 909, 910, 911, 996, 1010], "polici": [104, 149, 182, 183, 206, 223, 244, 257, 262, 374, 385, 532, 538, 996, 1046], "policyhold": [206, 223, 996], "polit": [58, 346, 366, 370, 996, 1001], "pollak": [1049, 1050], "polli": 346, "pollut": [346, 729, 786, 1000, 1006], "polmauri": 1038, "poloso": 1045, "polycollect": [807, 824], "polynomi": [2, 55, 155, 178, 180, 187, 189, 206, 212, 237, 244, 245, 261, 263, 278, 314, 315, 332, 341, 363, 367, 448, 487, 619, 638, 639, 640, 642, 644, 671, 766, 775, 776, 831, 866, 875, 877, 880, 884, 905, 907, 908, 909, 910, 911, 995, 1015, 1021, 1022, 1026, 1043, 1044], "polynomial_featur": 278, "polynomial_kernel": [2, 399, 766, 998, 1048, 1050], "polynomialcountsketch": [2, 188, 638, 640, 992, 1043, 1045, 1048], "polynomialfeatur": [2, 44, 67, 155, 190, 206, 207, 212, 244, 278, 314, 339, 399, 884, 996, 1010, 1035, 1039, 1040, 1041, 1044, 1045, 1047, 1048, 1052], "polysemi": 408, "polytop": 512, "pomegran": 1019, "ponc": [408, 528, 534], "poncho": 1024, "pone": 365, "ponnuthurai": 368, "ponzi": 309, "pooch": [86, 371, 389, 396], "pooja": [1046, 1047, 1048], "pool": [383, 441, 634, 852, 969, 1020, 1042], "pooling_func": [441, 1039], "poolqc": 143, "poolsawat": [1045, 1046], "poor": [184, 188, 269, 327, 401, 407, 408, 690, 694, 739, 842, 845, 846, 994, 995, 997, 1002, 1038, 1039, 1040, 1042, 1044], "poor_scor": [921, 923], "poorer": [143, 354, 408], "poorest": 1002, "poorli": [63, 65, 95, 109, 116, 137, 148, 204, 229, 359, 403, 410, 525, 629, 996, 997, 1037], "poorna": [1041, 1043], "pop": [353, 383, 920, 1039], "popa": [1041, 1042], "popitem": 920, "popo": 1034, "popul": [104, 109, 111, 149, 183, 206, 242, 266, 272, 303, 366, 380, 385, 405, 436, 486, 712, 718, 847, 848, 849, 851, 853, 855, 856, 857, 969, 1000, 1006, 1010, 1016], "popular": [6, 10, 178, 229, 366, 369, 376, 379, 383, 385, 409, 410, 411, 413, 448, 458, 990, 992, 996, 998, 1005, 1014, 1020], "port": [369, 389, 1041], "portabl": [397, 1019], "portfolio": [206, 223, 994], "portion": [0, 46, 48, 112, 144, 163, 272, 328, 358, 366, 368, 371, 377, 385, 789, 826, 843, 989, 999, 1003], "portland": [403, 414, 440], "portnoi": [996, 1048], "portrait": [46, 408], "pos_class": 48, "pos_label": [233, 242, 257, 277, 385, 402, 434, 435, 698, 700, 702, 706, 707, 709, 722, 728, 730, 731, 739, 783, 784, 785, 788, 790, 800, 872, 889, 1000, 1028, 1039, 1043, 1045, 1049], "pos_lr": 266, "pos_lr_bas": 266, "pos_lr_base_std": 266, "pos_tagg": 411, "pos_vector": 411, "pos_window": 411, "pose": [210, 271, 996], "posit": [0, 2, 44, 46, 48, 51, 52, 62, 63, 64, 65, 100, 103, 104, 130, 139, 141, 143, 149, 151, 154, 155, 156, 160, 161, 172, 182, 183, 184, 185, 192, 194, 197, 203, 206, 207, 208, 210, 223, 228, 233, 234, 235, 236, 242, 244, 245, 246, 253, 257, 260, 261, 262, 263, 266, 270, 272, 273, 275, 276, 277, 301, 303, 309, 313, 314, 316, 317, 318, 319, 320, 322, 326, 344, 346, 353, 358, 366, 370, 371, 373, 378, 380, 385, 386, 401, 402, 403, 404, 405, 407, 408, 409, 410, 411, 412, 414, 415, 434, 435, 438, 442, 443, 445, 460, 463, 491, 495, 497, 501, 505, 506, 507, 522, 524, 526, 527, 528, 530, 532, 533, 534, 539, 542, 543, 545, 546, 547, 554, 558, 559, 560, 561, 590, 591, 592, 593, 594, 596, 597, 598, 600, 604, 608, 609, 610, 619, 630, 631, 642, 645, 646, 647, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 668, 671, 672, 673, 674, 676, 679, 680, 681, 682, 683, 686, 687, 690, 698, 700, 702, 707, 709, 712, 713, 715, 716, 718, 720, 722, 723, 725, 728, 730, 731, 732, 736, 737, 739, 740, 741, 742, 744, 745, 753, 755, 759, 767, 783, 784, 785, 788, 789, 790, 798, 799, 800, 804, 805, 828, 845, 846, 847, 849, 851, 852, 853, 855, 857, 858, 868, 869, 872, 878, 881, 884, 889, 893, 897, 898, 900, 901, 905, 906, 909, 910, 911, 913, 915, 922, 925, 928, 947, 949, 966, 968, 991, 992, 996, 998, 1000, 1001, 1003, 1004, 1005, 1007, 1010, 1015, 1028, 1032, 1034, 1035, 1036, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051], "position": 385, "positive_class": [48, 712], "positive_class_indic": 344, "positive_cod": [120, 528, 534, 539, 542, 543], "positive_dict": [120, 528, 534, 542, 543], "positive_featur": 376, "positive_likelihood_ratio": [266, 712], "positive_onli": [922, 925], "positivenumb": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "posix": [359, 383], "posixpath": 53, "possa": 1038, "possibl": [31, 44, 52, 53, 56, 64, 65, 73, 82, 88, 103, 104, 109, 120, 137, 139, 140, 143, 149, 151, 154, 155, 167, 183, 184, 185, 186, 200, 206, 222, 223, 234, 237, 239, 244, 253, 257, 261, 262, 263, 264, 265, 266, 268, 269, 270, 272, 273, 275, 282, 312, 313, 316, 328, 335, 342, 346, 347, 354, 358, 359, 360, 364, 365, 366, 371, 372, 373, 374, 375, 377, 379, 383, 384, 385, 389, 394, 397, 400, 401, 402, 403, 404, 406, 407, 408, 410, 411, 413, 415, 417, 426, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 458, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 493, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 686, 687, 688, 689, 690, 691, 692, 709, 712, 721, 722, 723, 724, 725, 729, 743, 757, 779, 784, 786, 789, 798, 799, 800, 801, 803, 804, 805, 807, 813, 814, 815, 819, 820, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 889, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 929, 931, 932, 935, 940, 970, 973, 989, 992, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1008, 1010, 1015, 1016, 1020, 1024, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1041, 1042, 1044, 1045, 1046, 1047, 1051, 1052], "possibli": [90, 116, 163, 206, 220, 339, 347, 368, 370, 397, 403, 410, 411, 447, 449, 587, 840, 841, 842, 843, 844, 910, 911, 913, 914, 915, 916, 989, 992, 997, 1003, 1010, 1046, 1050], "post": [2, 47, 55, 58, 64, 102, 162, 163, 165, 180, 233, 255, 267, 270, 280, 316, 320, 327, 346, 347, 348, 349, 353, 358, 366, 370, 371, 376, 384, 398, 403, 433, 444, 484, 485, 493, 497, 548, 554, 555, 556, 557, 558, 561, 562, 608, 657, 700, 702, 712, 718, 743, 785, 788, 800, 801, 817, 823, 828, 831, 866, 885, 903, 913, 914, 915, 916, 1000, 1016, 1021, 1023, 1024, 1026, 1042], "post1": [369, 389, 395, 396, 1029], "poster": [346, 370, 371], "posterior": [166, 167, 168, 173, 180, 190, 257, 263, 277, 408, 413, 546, 547, 549, 609, 610, 612, 613, 614, 618, 621, 622, 626, 643, 644, 708, 798, 800, 823, 994, 1019, 1021, 1037, 1040, 1051], "posteriori": [996, 1002], "postfit_hook": 47, "postpon": [373, 375], "postprocess": [62, 104, 244, 262, 401, 532, 538], "postprocessor": 1042, "postscript": 917, "potenti": [2, 44, 65, 88, 109, 149, 172, 179, 182, 184, 190, 200, 257, 262, 289, 290, 298, 318, 319, 321, 339, 348, 358, 359, 369, 371, 385, 389, 394, 402, 403, 407, 410, 411, 464, 478, 479, 480, 481, 493, 521, 546, 554, 555, 558, 559, 561, 562, 570, 604, 610, 633, 764, 823, 895, 896, 903, 913, 914, 915, 916, 1006, 1014, 1016, 1019, 1034, 1041, 1042, 1045, 1048, 1049], "potentialsplit": [154, 156, 314, 352], "poughon": 1038, "poundal": 102, "pour": 1000, "pourbozorg": [1039, 1040, 1041], "pow": [243, 675, 676, 677, 862, 863], "powel": [46, 366, 1051], "power": [2, 44, 47, 56, 104, 140, 144, 155, 182, 207, 223, 244, 254, 262, 266, 271, 287, 303, 304, 307, 324, 332, 358, 359, 384, 401, 403, 406, 409, 410, 411, 414, 440, 478, 479, 480, 529, 532, 538, 541, 629, 679, 694, 725, 748, 750, 753, 847, 848, 855, 856, 858, 859, 880, 881, 882, 893, 894, 948, 949, 996, 997, 1000, 1008, 1010, 1014, 1015, 1024, 1034, 1037, 1039, 1041, 1042, 1044, 1048], "power_iteration_norm": [104, 244, 262, 399, 538, 541, 948, 949, 1045], "power_t": [243, 675, 676, 677, 862, 863, 1014, 1052], "power_transform": [2, 881, 894, 1039], "powers_": 880, "powertransform": [2, 307, 882, 893, 990, 1010, 1039, 1042, 1045, 1047, 1050, 1051, 1052], "pox": 280, "poznik": [1044, 1045, 1046], "pp": [0, 96, 163, 262, 368, 403, 405, 411, 414, 415, 440, 444, 448, 458, 508, 530, 531, 538, 588, 634, 642, 663, 684, 685, 720, 727, 731, 741, 757, 770, 784, 840, 842, 844, 861, 881, 893, 993, 1000, 1002, 1003, 1013], "pp2013": 992, "pp84": 413, "ppc64le": 379, "ppf": 263, "ppm": 172, "pprint": [56, 146, 239, 264, 366, 944], "pq": [53, 317], "pr": [0, 359, 371, 374, 375, 379, 383, 411, 742, 1000, 1023, 1041, 1043, 1051], "pr_displai": 233, "pr_number": 379, "prabakaran": [1039, 1040, 1043, 1045, 1046], "prabhakar": 408, "practic": [65, 86, 103, 104, 111, 116, 123, 140, 143, 144, 149, 160, 167, 182, 183, 188, 194, 200, 208, 211, 232, 238, 264, 270, 271, 289, 290, 314, 320, 335, 339, 359, 371, 373, 374, 375, 377, 379, 384, 385, 403, 405, 407, 408, 409, 410, 411, 413, 443, 448, 458, 518, 521, 587, 631, 632, 669, 798, 844, 898, 905, 989, 990, 994, 996, 999, 1000, 1001, 1002, 1003, 1006, 1007, 1010, 1019, 1020, 1022, 1024, 1025, 1026, 1033, 1037, 1039, 1041, 1043], "practicalswift": 1037, "practition": [138, 210], "pradeep": [1039, 1040], "pragmat": 371, "prakash": [1036, 1038, 1044], "pramod": 1045, "pranayanchuri": 1044, "prang": 372, "prasanth": 1046, "prashant": 1051, "pratama": 1042, "pratap": [1035, 1038, 1045], "prathmesh": 1040, "pratik": 1038, "pratiqu": 368, "pravar": 1039, "pravarmahajan": [1038, 1039], "pre": [45, 103, 183, 198, 276, 303, 321, 348, 369, 371, 385, 389, 402, 405, 407, 408, 410, 411, 412, 414, 415, 439, 440, 443, 455, 530, 532, 608, 690, 712, 764, 868, 910, 1000, 1005, 1010, 1015, 1016, 1019, 1026, 1034, 1039, 1045, 1049], "pre_dispatch": [103, 104, 244, 253, 257, 261, 262, 263, 801, 807, 815, 824, 826, 827, 828, 829, 832, 967, 1034], "preambl": 88, "prec": [113, 233, 524, 1000], "prec_": 113, "prec_macro": 407, "preced": [359, 371, 375, 483, 1000, 1031], "precipit": 401, "precis": [2, 8, 46, 52, 53, 63, 69, 102, 107, 113, 120, 156, 160, 173, 174, 180, 183, 188, 233, 235, 253, 255, 256, 257, 261, 301, 303, 324, 325, 371, 385, 399, 400, 401, 402, 403, 405, 408, 410, 439, 465, 466, 467, 468, 469, 470, 471, 472, 474, 501, 520, 529, 531, 538, 541, 643, 644, 645, 647, 649, 650, 651, 653, 654, 655, 656, 668, 671, 673, 679, 681, 682, 686, 699, 700, 706, 707, 708, 713, 728, 730, 731, 732, 740, 742, 764, 783, 784, 785, 788, 789, 798, 799, 823, 831, 834, 845, 846, 851, 866, 885, 889, 905, 910, 917, 919, 949, 994, 996, 1003, 1004, 1015, 1021, 1031, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1051], "precision_": [52, 113, 465, 466, 467, 468, 469, 470, 471, 472], "precision_macro": 407, "precision_recall_curv": [2, 233, 270, 700, 706, 707, 728, 1000, 1032, 1033, 1037, 1044, 1045, 1047, 1049], "precision_recall_fscore_support": [2, 399, 713, 730, 731, 785, 788, 1000, 1035, 1039, 1041, 1047, 1052], "precision_scor": [2, 63, 257, 270, 399, 708, 788, 1000, 1031, 1033, 1034, 1035, 1036, 1041, 1047, 1051, 1052], "precision_threshold": 261, "precisionrecalldisplai": [2, 257, 270, 315, 707, 783, 785, 788, 1000, 1041, 1044, 1047, 1048, 1049, 1050, 1052], "precisions_": [798, 799], "precisions_cholesky_": [798, 799, 1045], "precisions_init": [253, 799, 1045, 1047], "precompil": 369, "precomput": [104, 119, 120, 154, 180, 189, 228, 239, 244, 245, 261, 262, 263, 283, 285, 314, 344, 373, 380, 383, 385, 403, 411, 414, 426, 436, 437, 440, 441, 442, 446, 448, 453, 461, 467, 478, 479, 480, 521, 528, 532, 534, 537, 538, 539, 545, 551, 553, 555, 557, 559, 562, 565, 567, 609, 610, 619, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 677, 678, 680, 681, 683, 684, 687, 688, 690, 691, 692, 696, 775, 779, 782, 793, 794, 801, 815, 838, 839, 847, 848, 849, 851, 852, 853, 855, 856, 857, 863, 906, 907, 908, 909, 910, 911, 914, 916, 922, 975, 976, 977, 992, 996, 998, 1003, 1015, 1021, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1041, 1042, 1044, 1045, 1046, 1047, 1048, 1049, 1052], "precompute_dist": [1035, 1042], "precompute_gram": 1033, "precomputed_nearest_neighbor": [448, 691], "precondit": [403, 448, 458, 695, 1016, 1047], "pred": [44, 47, 51, 53, 69, 343, 346, 366, 647, 668, 679, 697, 718, 730, 731, 739, 784, 785, 788, 1000], "pred1": 156, "pred2": 156, "pred3": 156, "pred4": 156, "pred_background": 51, "pred_decis": [736, 1000, 1044], "pred_entropi": [324, 325], "pred_nam": 46, "pred_ort": 397, "pred_scor": 47, "pred_test": 51, "pred_typ": 50, "predecessor": [134, 446, 451, 452, 453, 1048], "predecessor_": [446, 453], "predecessor_correct": [446, 452], "predefin": [2, 267, 814, 989, 1003, 1046, 1048], "predefinedsplit": [2, 407, 1035], "predetermin": [403, 997], "predict": [2, 5, 13, 28, 43, 46, 47, 48, 51, 61, 63, 64, 65, 67, 69, 71, 73, 79, 89, 90, 91, 95, 102, 103, 104, 105, 107, 115, 130, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 152, 153, 154, 160, 161, 163, 165, 166, 167, 169, 170, 172, 173, 174, 175, 176, 178, 179, 180, 183, 184, 185, 186, 188, 190, 193, 194, 200, 203, 204, 207, 208, 209, 210, 212, 213, 214, 219, 220, 222, 223, 232, 233, 234, 235, 237, 239, 241, 244, 245, 249, 250, 251, 252, 253, 254, 255, 256, 260, 261, 262, 263, 265, 266, 269, 272, 273, 275, 277, 278, 280, 282, 286, 289, 290, 291, 294, 295, 301, 303, 304, 308, 309, 312, 313, 314, 315, 316, 318, 319, 320, 321, 322, 325, 327, 328, 329, 331, 332, 334, 335, 339, 341, 342, 343, 346, 347, 351, 353, 354, 357, 359, 363, 366, 368, 371, 373, 378, 380, 385, 388, 394, 397, 398, 399, 401, 403, 404, 406, 408, 410, 411, 412, 417, 420, 425, 426, 433, 434, 435, 436, 438, 439, 440, 443, 444, 445, 461, 465, 478, 479, 480, 483, 498, 505, 521, 531, 538, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 575, 580, 591, 592, 604, 608, 609, 610, 612, 613, 614, 615, 621, 624, 626, 627, 629, 630, 631, 632, 633, 634, 636, 638, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 697, 698, 700, 701, 702, 703, 705, 706, 707, 708, 709, 710, 712, 714, 715, 718, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 735, 736, 739, 742, 743, 744, 747, 749, 751, 753, 757, 783, 784, 785, 786, 787, 788, 789, 790, 794, 795, 797, 798, 799, 800, 801, 804, 805, 807, 815, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 851, 852, 855, 856, 862, 863, 865, 866, 872, 880, 884, 885, 886, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 921, 924, 973, 989, 990, 991, 992, 993, 994, 995, 996, 998, 999, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1010, 1013, 1014, 1015, 1016, 1018, 1019, 1020, 1021, 1024, 1026, 1028, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "predict_ecoc": 1035, "predict_joint_log_proba": [840, 841, 842, 843, 844, 1046], "predict_log_proba": [373, 385, 546, 547, 548, 550, 552, 554, 556, 561, 591, 592, 657, 658, 675, 800, 801, 804, 805, 815, 823, 826, 836, 840, 841, 842, 843, 844, 852, 862, 865, 902, 907, 910, 913, 915, 1015, 1031, 1044, 1048, 1050, 1051], "predict_ovo": 1035, "predict_ovr": 1035, "predict_param": [239, 461, 564, 565, 591, 592, 1044], "predict_proba": [31, 62, 63, 64, 65, 67, 71, 152, 155, 163, 165, 168, 169, 170, 171, 244, 245, 257, 261, 263, 272, 277, 282, 298, 305, 308, 312, 314, 320, 346, 373, 378, 385, 401, 402, 407, 410, 433, 434, 546, 547, 548, 550, 552, 554, 556, 558, 561, 564, 566, 591, 592, 609, 618, 619, 621, 622, 630, 631, 632, 657, 658, 675, 698, 700, 702, 723, 728, 742, 743, 789, 798, 799, 800, 801, 804, 805, 815, 823, 826, 833, 834, 835, 836, 837, 840, 841, 842, 843, 844, 847, 852, 855, 862, 865, 872, 900, 901, 902, 907, 910, 913, 915, 924, 996, 1000, 1002, 1004, 1007, 1013, 1014, 1015, 1016, 1028, 1031, 1032, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1049, 1050, 1051], "predict_proba_ovr": 1035, "predicted_label": [324, 325], "prediction_df": 149, "prediction_perform": 47, "prediction_performance_comput": 47, "prediction_performance_label": 47, "prediction_pow": 47, "prediction_tim": [47, 48], "prediction_titl": 46, "predictionerrordisplai": [2, 44, 53, 107, 154, 183, 259, 317, 1000, 1046, 1048, 1050], "predictionprob": 314, "predictions_kr": 167, "predictionsar": 172, "predictive_analyt": 1016, "predictive_word": 346, "predictor": [2, 107, 133, 135, 143, 156, 178, 179, 180, 206, 223, 234, 373, 384, 385, 404, 406, 407, 410, 413, 462, 463, 478, 479, 480, 493, 513, 514, 515, 552, 553, 559, 562, 565, 600, 609, 629, 631, 632, 647, 652, 656, 668, 672, 679, 701, 826, 828, 837, 838, 865, 866, 878, 879, 885, 973, 996, 1001, 1021, 1032, 1038, 1041], "predispatch": [807, 824, 829, 832], "predit": 116, "predomin": [373, 1032], "prefer": [52, 64, 74, 79, 88, 103, 104, 139, 149, 155, 160, 233, 234, 244, 246, 254, 257, 262, 270, 272, 277, 301, 303, 313, 316, 322, 354, 358, 359, 360, 371, 372, 373, 385, 403, 407, 408, 410, 411, 414, 433, 436, 450, 467, 468, 474, 483, 505, 506, 626, 631, 632, 653, 657, 658, 701, 727, 729, 743, 758, 759, 836, 854, 880, 905, 906, 955, 967, 989, 992, 994, 996, 1000, 1005, 1015, 1016, 1019, 1023, 1032, 1038, 1040, 1044, 1045, 1048, 1051], "prefetch": 967, "prefit": [64, 154, 257, 385, 402, 412, 433, 564, 565, 595, 823, 1043, 1044, 1045, 1050, 1051], "prefix": [2, 56, 102, 103, 143, 154, 183, 184, 185, 234, 244, 264, 285, 309, 312, 313, 316, 371, 375, 377, 379, 413, 419, 438, 439, 441, 443, 445, 460, 463, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 638, 639, 640, 641, 688, 689, 692, 807, 829, 849, 854, 857, 861, 864, 865, 867, 871, 897, 898, 1037, 1038, 1044, 1046, 1049], "prein": [0, 361, 1043, 1044, 1045, 1050], "preiss": 1044, "preliminari": [321, 458, 1050], "prematur": 1044, "prepar": [207, 239, 322, 346, 358, 375, 377, 379, 383, 1016, 1024, 1039, 1047], "prepend": [183, 1031], "preprint": 368, "preprocess": [2, 44, 45, 46, 50, 65, 67, 68, 77, 79, 82, 86, 88, 91, 95, 102, 103, 104, 105, 107, 116, 120, 130, 139, 143, 155, 159, 161, 163, 172, 175, 176, 178, 179, 185, 188, 190, 192, 196, 198, 199, 201, 206, 207, 212, 221, 223, 226, 233, 234, 243, 246, 257, 260, 262, 264, 270, 272, 277, 278, 286, 291, 292, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 322, 335, 338, 347, 360, 363, 365, 368, 371, 376, 384, 385, 397, 399, 400, 403, 404, 407, 410, 411, 412, 460, 461, 462, 463, 485, 564, 579, 580, 586, 587, 589, 629, 657, 658, 671, 673, 675, 677, 686, 834, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 905, 906, 907, 908, 910, 911, 990, 996, 1001, 1004, 1011, 1014, 1015, 1017, 1019, 1021, 1023, 1024, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038], "preprocessor": [103, 154, 183, 206, 234, 242, 244, 264, 309, 313, 315, 316, 317, 319, 404, 411, 586, 587, 589, 1019, 1031, 1034, 1039, 1041], "preprocessor__cat__selector__percentil": 103, "preprocessor__num__imputer__strategi": 103, "preprocessor_list": 242, "prescrib": 385, "presenc": [2, 49, 93, 95, 111, 112, 132, 143, 182, 186, 194, 210, 242, 303, 328, 369, 372, 385, 405, 407, 408, 643, 645, 651, 712, 727, 757, 770, 834, 868, 876, 878, 885, 983, 990, 996, 1000, 1001, 1014, 1023, 1034, 1035, 1037, 1041, 1043, 1045], "present": [0, 2, 44, 45, 53, 78, 82, 103, 118, 120, 127, 139, 140, 143, 146, 149, 150, 151, 154, 155, 162, 163, 173, 176, 183, 184, 185, 190, 193, 194, 198, 206, 232, 234, 235, 239, 244, 253, 257, 261, 266, 269, 272, 273, 283, 303, 306, 308, 309, 313, 316, 317, 322, 347, 368, 369, 376, 383, 385, 394, 401, 403, 405, 408, 410, 411, 421, 422, 425, 436, 437, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 460, 464, 465, 466, 467, 468, 469, 470, 471, 472, 485, 486, 487, 488, 489, 493, 497, 498, 499, 500, 501, 502, 507, 528, 530, 531, 532, 533, 534, 535, 536, 537, 539, 540, 541, 546, 547, 558, 559, 560, 563, 566, 567, 579, 580, 581, 586, 587, 589, 608, 616, 626, 627, 628, 629, 649, 653, 676, 687, 688, 689, 690, 691, 712, 716, 730, 731, 739, 770, 784, 785, 788, 798, 799, 801, 804, 805, 813, 815, 829, 847, 848, 849, 851, 853, 855, 856, 857, 864, 869, 877, 878, 879, 880, 881, 883, 884, 886, 897, 898, 909, 917, 919, 920, 949, 983, 999, 1000, 1001, 1002, 1007, 1010, 1020, 1034, 1039, 1041, 1042, 1043, 1045, 1046, 1048, 1050, 1051], "preserv": [38, 44, 103, 125, 154, 185, 192, 229, 234, 236, 244, 258, 264, 313, 316, 374, 407, 408, 410, 411, 579, 586, 587, 589, 629, 645, 651, 696, 775, 779, 819, 820, 821, 889, 926, 931, 932, 970, 990, 996, 997, 1010, 1012, 1019, 1031, 1034, 1035, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1047, 1049, 1050, 1051], "preserves_dtyp": 926, "preset": [665, 667, 675, 1004], "presort": [1036, 1041], "press": [366, 403, 408, 413, 414, 440, 588, 609, 610, 613, 618, 621, 642, 840, 844, 993, 996, 998, 1002], "pressur": [163, 368], "preston": [1036, 1037, 1038], "presum": [183, 282, 403, 411, 840], "prettenhof": [0, 393, 1031, 1032, 1033, 1034, 1035, 1036], "pretti": [184, 229, 243, 261, 346, 358, 371, 383, 862, 863, 1004, 1040], "preuss": 1047, "prev_scor": 56, "preval": [134, 312, 385, 700, 712, 1000], "prevalence_pos_label": [270, 700], "prevent": [2, 44, 88, 104, 143, 144, 146, 151, 154, 160, 172, 182, 207, 210, 257, 262, 264, 303, 309, 310, 317, 322, 335, 346, 350, 354, 371, 373, 375, 383, 384, 397, 399, 403, 408, 411, 438, 445, 484, 485, 558, 559, 588, 589, 608, 610, 729, 786, 862, 863, 874, 875, 890, 891, 893, 894, 895, 896, 1000, 1002, 1005, 1006, 1010, 1016, 1033, 1034, 1036, 1038, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1049, 1051], "previou": [44, 64, 67, 78, 86, 103, 120, 137, 139, 141, 143, 144, 146, 150, 151, 154, 155, 156, 167, 172, 173, 182, 183, 184, 185, 192, 194, 195, 207, 233, 234, 236, 238, 239, 244, 246, 257, 262, 263, 266, 270, 275, 277, 301, 303, 308, 309, 313, 316, 317, 319, 322, 346, 347, 348, 354, 358, 366, 371, 373, 375, 376, 377, 379, 383, 385, 386, 389, 402, 403, 410, 411, 464, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 629, 645, 647, 651, 652, 657, 659, 661, 665, 666, 667, 668, 675, 676, 677, 679, 698, 707, 728, 820, 822, 836, 839, 854, 862, 863, 902, 919, 996, 1004, 1010, 1020, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "previous": [47, 86, 90, 103, 134, 173, 183, 257, 261, 270, 277, 316, 321, 366, 379, 383, 389, 403, 408, 411, 436, 439, 450, 521, 531, 538, 648, 657, 658, 665, 666, 667, 675, 676, 677, 905, 996, 1010, 1019, 1028, 1031, 1032, 1033, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "previous_loss": [665, 666, 667, 676], "previouscal": 243, "previs": 233, "preya": 1051, "price": [52, 107, 143, 144, 149, 154, 242, 309, 990, 996, 997, 1024], "priceless": 371, "prieur": 1044, "primal": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322, 657, 658, 676, 905, 906, 996, 1014, 1015], "primaloptim": [104, 160, 270], "primari": [385, 408, 512, 922, 1007, 1023, 1024], "primarili": [254, 268, 371, 385, 399, 403, 959, 1024, 1040, 1041], "primat": 346, "primdal": 1039, "primit": 1046, "princ": 1044, "princip": [2, 43, 114, 115, 119, 122, 124, 125, 128, 130, 152, 180, 214, 225, 237, 240, 250, 256, 269, 286, 292, 308, 314, 332, 351, 363, 403, 406, 415, 480, 501, 528, 529, 530, 531, 532, 534, 536, 537, 538, 539, 540, 541, 542, 543, 547, 656, 687, 688, 689, 690, 692, 693, 831, 854, 866, 885, 920, 948, 949, 997, 1003, 1021, 1025, 1026, 1031], "principl": [134, 174, 288, 348, 371, 383, 385, 386, 399, 407, 410, 949, 989, 999, 1003, 1014, 1038], "print": [2, 44, 46, 47, 48, 50, 51, 52, 53, 55, 56, 58, 59, 60, 62, 64, 69, 74, 77, 78, 80, 81, 82, 83, 85, 86, 91, 93, 94, 96, 100, 102, 103, 105, 106, 107, 111, 115, 116, 118, 120, 123, 126, 127, 128, 130, 134, 137, 139, 140, 141, 142, 143, 145, 147, 149, 151, 154, 155, 156, 159, 160, 162, 163, 165, 167, 168, 170, 172, 176, 182, 183, 184, 185, 186, 188, 194, 195, 197, 199, 203, 204, 206, 208, 209, 210, 213, 220, 221, 223, 226, 227, 230, 233, 234, 236, 238, 239, 242, 243, 244, 246, 251, 253, 256, 257, 261, 263, 264, 266, 268, 270, 271, 272, 276, 277, 283, 287, 294, 296, 299, 300, 301, 305, 308, 309, 310, 312, 313, 314, 316, 317, 318, 319, 320, 321, 322, 324, 325, 328, 335, 346, 347, 348, 350, 353, 354, 358, 365, 366, 372, 373, 379, 385, 394, 397, 404, 407, 410, 411, 413, 460, 463, 464, 468, 474, 486, 491, 499, 509, 510, 538, 541, 546, 547, 556, 557, 558, 559, 561, 562, 566, 567, 575, 581, 582, 583, 585, 586, 587, 589, 611, 616, 617, 629, 645, 646, 648, 649, 651, 652, 653, 655, 659, 660, 661, 662, 665, 666, 675, 676, 683, 696, 713, 717, 738, 796, 798, 799, 800, 802, 803, 806, 808, 809, 810, 811, 814, 816, 817, 818, 819, 820, 821, 822, 823, 827, 828, 829, 830, 832, 834, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 862, 863, 864, 865, 866, 867, 875, 881, 885, 893, 903, 904, 905, 906, 907, 910, 912, 918, 930, 935, 962, 983, 990, 1000, 1001, 1002, 1003, 1008, 1016, 1031, 1033, 1039, 1040, 1042, 1046, 1050], "print_changed_onli": [464, 903, 1040, 1042, 1043], "print_datafram": 261, "print_progress": 967, "print_rout": 239, "prior": [2, 43, 47, 56, 80, 81, 90, 98, 99, 118, 166, 167, 172, 173, 179, 180, 183, 190, 192, 194, 247, 249, 253, 254, 257, 260, 263, 293, 371, 373, 385, 389, 394, 403, 406, 408, 410, 412, 413, 461, 520, 533, 545, 546, 547, 548, 556, 610, 612, 613, 614, 618, 621, 622, 629, 643, 644, 645, 646, 650, 651, 653, 654, 655, 659, 660, 661, 671, 677, 680, 716, 798, 840, 841, 842, 843, 844, 852, 865, 866, 880, 907, 910, 968, 989, 992, 994, 996, 999, 1000, 1002, 1008, 1016, 1017, 1021, 1034, 1036, 1037, 1038, 1039, 1040, 1041, 1044, 1047], "prior_k": 546, "priori": [206, 222, 272, 282, 303, 385, 403, 410, 586, 592, 999, 1047], "priorit": [402, 1020, 1038], "prioriti": [370, 631, 833, 834, 1020, 1034], "prioritis": 371, "priors_": [546, 547], "priorto": [244, 245, 261, 263, 314], "privaci": 1019, "privat": [0, 321, 373, 375, 385, 386, 927, 1024, 1031, 1039, 1041, 1042, 1044, 1045, 1050, 1051], "privileg": [242, 379], "priyam": 1046, "priyank": [1049, 1050], "priyansh": [1049, 1050], "priyash": 1049, "prng": 113, "pro": [397, 999], "proanthocyanin": 368, "prob_pos_calibr": 165, "prob_pos_clf": [62, 165], "prob_pos_isoton": 62, "prob_pos_sigmoid": 62, "prob_pr": [434, 435], "prob_tru": [434, 435], "proba": [63, 65, 433, 552, 913, 915], "proba_": [907, 910, 1042], "proba_map": 88, "proba_neg_class": [63, 65], "proba_pos_class": [63, 65], "probabilist": [55, 64, 65, 113, 119, 130, 133, 166, 167, 170, 173, 174, 180, 207, 238, 257, 278, 346, 385, 401, 409, 410, 433, 469, 472, 529, 531, 532, 538, 556, 566, 586, 587, 609, 621, 630, 638, 642, 644, 657, 675, 703, 742, 800, 801, 827, 866, 872, 880, 884, 885, 907, 908, 910, 911, 993, 994, 996, 999, 1000, 1005, 1010, 1015, 1016, 1019, 1021, 1024, 1031, 1034, 1038, 1051], "probabilisticpca": [1031, 1034], "probabilities_": [88, 442], "probabilities_or_label": 566, "probabilitiesbefor": 155, "probabl": [0, 2, 5, 31, 53, 61, 65, 66, 71, 88, 103, 107, 118, 136, 139, 141, 147, 149, 155, 158, 165, 166, 167, 168, 169, 180, 183, 185, 186, 200, 217, 225, 229, 233, 234, 235, 236, 244, 245, 246, 253, 257, 261, 262, 263, 264, 265, 266, 269, 270, 273, 275, 277, 301, 303, 307, 312, 313, 314, 316, 319, 320, 322, 327, 329, 341, 353, 358, 366, 367, 373, 377, 383, 385, 402, 403, 407, 408, 411, 412, 413, 429, 430, 431, 432, 433, 434, 435, 442, 443, 445, 501, 509, 512, 520, 524, 546, 547, 548, 550, 552, 553, 554, 556, 558, 561, 564, 566, 567, 591, 592, 608, 609, 612, 613, 621, 626, 630, 631, 632, 638, 657, 658, 670, 675, 692, 698, 700, 702, 703, 706, 707, 709, 712, 716, 720, 722, 723, 727, 728, 730, 740, 741, 742, 757, 783, 785, 788, 789, 790, 795, 798, 799, 800, 801, 804, 805, 815, 823, 830, 831, 834, 836, 837, 840, 841, 842, 843, 844, 847, 850, 852, 855, 861, 862, 866, 870, 880, 884, 886, 898, 899, 900, 901, 902, 905, 907, 910, 913, 915, 970, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1010, 1012, 1013, 1014, 1016, 1020, 1021, 1022, 1023, 1026, 1028, 1031, 1033, 1035, 1037, 1039, 1040, 1041, 1042, 1043, 1045], "probable_clust": 89, "probas_pr": 1049, "probb_": [907, 910, 1042], "probe": 1008, "probinette4": 1043, "probl": [605, 606], "problem": [2, 11, 26, 43, 44, 45, 46, 51, 53, 54, 55, 64, 67, 73, 87, 88, 90, 99, 103, 104, 120, 134, 137, 139, 140, 141, 143, 146, 147, 154, 155, 156, 160, 167, 180, 184, 185, 188, 190, 194, 195, 198, 200, 201, 202, 204, 206, 208, 210, 222, 223, 227, 232, 233, 234, 235, 240, 242, 244, 245, 246, 253, 261, 262, 263, 268, 270, 272, 273, 275, 277, 278, 280, 282, 283, 288, 295, 301, 307, 309, 313, 315, 316, 319, 320, 322, 332, 335, 339, 342, 343, 346, 347, 353, 354, 358, 366, 367, 368, 369, 370, 372, 373, 376, 377, 379, 380, 383, 385, 391, 399, 401, 402, 403, 405, 407, 409, 410, 411, 412, 413, 414, 415, 440, 443, 445, 446, 448, 453, 458, 461, 474, 500, 505, 506, 512, 513, 514, 515, 520, 521, 525, 528, 530, 534, 536, 539, 540, 541, 542, 543, 544, 545, 548, 549, 554, 558, 561, 564, 568, 570, 587, 609, 630, 642, 647, 649, 651, 653, 654, 655, 656, 657, 658, 663, 664, 665, 667, 668, 671, 672, 673, 674, 675, 676, 678, 679, 684, 685, 686, 688, 689, 691, 693, 695, 708, 716, 719, 730, 731, 736, 739, 740, 784, 785, 788, 789, 798, 799, 802, 803, 804, 805, 806, 808, 809, 810, 811, 816, 817, 818, 819, 820, 821, 825, 833, 834, 835, 845, 846, 847, 848, 849, 850, 851, 853, 855, 856, 857, 871, 872, 878, 886, 889, 895, 896, 905, 906, 913, 915, 937, 949, 990, 991, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1008, 1010, 1014, 1017, 1020, 1022, 1024, 1025, 1026, 1031, 1032, 1034, 1036, 1037, 1038, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1051], "problemat": [44, 183, 257, 259, 404, 990, 1039], "proc": [65, 110, 401, 411, 446, 689, 693, 840, 989, 997, 1002, 1006], "proce": [0, 83, 103, 139, 143, 154, 160, 183, 184, 192, 234, 244, 313, 316, 369, 375, 406, 407, 410, 436, 878, 996], "procedur": [26, 80, 89, 140, 146, 163, 183, 184, 191, 196, 253, 265, 306, 310, 335, 346, 354, 371, 383, 384, 385, 386, 401, 405, 407, 408, 410, 412, 528, 534, 535, 537, 542, 543, 544, 550, 551, 552, 553, 556, 557, 591, 593, 600, 607, 643, 671, 673, 686, 729, 786, 847, 855, 862, 863, 882, 894, 922, 970, 989, 996, 1002, 1010, 1013, 1014, 1015, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048], "proceed": [111, 163, 366, 368, 403, 414, 433, 435, 440, 508, 696, 708, 727, 757, 852, 902, 996, 1000, 1012, 1013, 1014], "process": [0, 2, 20, 38, 44, 45, 58, 64, 67, 68, 71, 80, 81, 83, 99, 102, 103, 104, 106, 110, 112, 121, 122, 124, 134, 136, 142, 143, 144, 146, 150, 151, 152, 154, 160, 182, 190, 193, 204, 208, 210, 215, 216, 217, 218, 238, 239, 240, 242, 244, 245, 248, 249, 252, 253, 254, 257, 261, 262, 263, 265, 266, 270, 275, 280, 298, 303, 306, 309, 314, 317, 318, 322, 325, 329, 339, 340, 347, 348, 350, 358, 359, 360, 366, 370, 371, 373, 375, 377, 380, 383, 384, 385, 397, 399, 403, 404, 405, 407, 408, 409, 410, 411, 412, 416, 444, 445, 471, 493, 501, 520, 531, 532, 533, 534, 535, 558, 559, 560, 586, 587, 589, 609, 610, 612, 613, 614, 616, 617, 618, 621, 622, 624, 626, 631, 632, 638, 642, 663, 671, 684, 685, 703, 724, 742, 782, 798, 800, 801, 804, 805, 815, 823, 826, 827, 828, 837, 838, 854, 868, 872, 874, 875, 876, 885, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 967, 989, 992, 996, 1000, 1003, 1010, 1012, 1014, 1016, 1019, 1020, 1021, 1022, 1024, 1026, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1047, 1048, 1050, 1051], "process_rout": [2, 239, 1048], "processor": [52, 64, 103, 104, 139, 141, 143, 150, 154, 155, 156, 183, 184, 185, 233, 234, 244, 246, 253, 257, 261, 262, 263, 275, 277, 301, 309, 313, 316, 319, 322, 326, 414, 433, 440, 442, 444, 446, 448, 453, 454, 457, 460, 463, 468, 528, 532, 533, 534, 536, 539, 540, 542, 543, 545, 552, 553, 554, 555, 560, 561, 562, 563, 564, 565, 566, 567, 592, 600, 605, 606, 609, 631, 633, 638, 646, 650, 652, 654, 656, 657, 658, 660, 662, 664, 665, 667, 675, 678, 688, 689, 690, 691, 692, 693, 694, 775, 779, 782, 801, 804, 805, 807, 815, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 847, 848, 851, 853, 855, 856, 858, 859, 864, 867, 900, 901], "procter": 52, "prod": [347, 620], "prod_": 1002, "prod_i": 992, "proding": 1047, "produc": [53, 54, 63, 64, 79, 90, 102, 123, 146, 147, 148, 150, 155, 194, 200, 244, 269, 275, 301, 327, 354, 359, 366, 367, 371, 373, 376, 385, 386, 401, 403, 404, 407, 408, 410, 436, 439, 442, 448, 516, 533, 556, 560, 579, 586, 591, 592, 631, 632, 803, 804, 805, 813, 818, 821, 826, 870, 880, 907, 910, 991, 992, 996, 998, 999, 1000, 1003, 1006, 1007, 1011, 1013, 1014, 1015, 1033, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1051], "product": [2, 59, 103, 120, 155, 167, 172, 184, 264, 339, 354, 358, 373, 374, 377, 380, 400, 408, 447, 535, 537, 544, 580, 587, 588, 589, 612, 613, 632, 639, 663, 664, 684, 685, 762, 764, 776, 778, 877, 880, 897, 898, 950, 989, 992, 996, 997, 998, 1010, 1012, 1014, 1015, 1019, 1024, 1026, 1039], "production": 1024, "prof": 377, "profession": 183, "professor": 1024, "profil": [206, 358, 371, 374, 518, 521, 996, 1024], "profile_default": 377, "profit": [0, 257, 320, 1048], "prog": [163, 368], "prognosi": [163, 368], "program": [0, 83, 163, 347, 354, 359, 360, 368, 369, 371, 373, 377, 383, 505, 634, 669, 895, 896, 996, 1015, 1016, 1019, 1020, 1023, 1031, 1033], "programmat": [373, 496, 1040], "progress": [44, 47, 48, 120, 156, 163, 179, 201, 243, 288, 316, 321, 368, 375, 376, 386, 394, 399, 403, 556, 557, 692, 834, 836, 839, 854, 862, 863, 1024, 1031, 1033, 1040, 1045], "prohibit": [182, 242, 407, 410, 626, 1005, 1013, 1038], "proj": [54, 648], "proj_gradi": 377, "proj_oper": 54, "project": [2, 38, 46, 48, 51, 54, 56, 70, 73, 88, 91, 100, 119, 120, 122, 124, 126, 130, 171, 173, 175, 176, 180, 183, 184, 225, 226, 227, 228, 229, 231, 237, 240, 249, 266, 287, 292, 296, 301, 307, 332, 347, 358, 363, 365, 369, 370, 371, 376, 377, 380, 385, 386, 389, 400, 406, 408, 409, 415, 436, 442, 447, 448, 458, 470, 478, 479, 480, 481, 485, 499, 501, 528, 530, 531, 532, 534, 536, 538, 539, 540, 541, 545, 546, 570, 580, 587, 640, 641, 648, 671, 673, 688, 691, 695, 696, 835, 854, 882, 897, 898, 899, 948, 949, 994, 996, 997, 998, 1001, 1003, 1004, 1006, 1013, 1016, 1021, 1023, 1024, 1026, 1031, 1032, 1034, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "projected_data": 236, "projected_dist": 236, "projectedgradientnmf": 1036, "prokopi": [1036, 1039], "prolin": [58, 308, 368], "promin": [123, 385], "promis": [385, 1000, 1020], "promot": [183, 438, 708, 1019, 1042, 1044, 1048], "prompt": [369, 371, 375, 389, 396, 411], "prone": [65, 206, 250, 307, 383, 401], "pronounc": [75, 85, 100, 172, 1052], "proof": [383, 410, 899, 1012], "proofread": 371, "prop": [105, 112, 212, 250, 289, 334, 353], "prop_cycl": 273, "propag": [2, 69, 72, 82, 96, 97, 161, 180, 323, 328, 366, 436, 450, 499, 509, 511, 697, 704, 705, 713, 714, 717, 718, 738, 794, 796, 865, 879, 900, 901, 902, 967, 968, 1004, 1021, 1022, 1025, 1026, 1031, 1043, 1046, 1051], "proper": [65, 88, 104, 198, 200, 223, 244, 257, 262, 360, 371, 373, 377, 401, 410, 445, 538, 550, 675, 709, 949, 974, 995, 996, 997, 1000, 1015, 1031, 1041, 1042, 1043, 1044, 1045, 1046, 1048], "properli": [44, 53, 63, 88, 151, 172, 258, 276, 312, 360, 369, 371, 375, 379, 409, 905, 906, 907, 908, 909, 910, 911, 989, 1034, 1036, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "properti": [52, 63, 174, 175, 208, 222, 249, 262, 285, 308, 321, 353, 358, 364, 371, 373, 389, 400, 401, 403, 405, 408, 410, 412, 413, 418, 438, 441, 448, 564, 565, 566, 567, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 631, 654, 699, 704, 705, 708, 865, 905, 906, 989, 992, 995, 996, 997, 1000, 1001, 1003, 1006, 1010, 1013, 1015, 1016, 1017, 1020, 1036, 1040, 1041, 1044, 1045, 1048, 1049, 1050, 1051], "property_magnitud": 257, "propon": 102, "proport": [55, 64, 75, 103, 104, 139, 141, 149, 155, 156, 160, 162, 185, 195, 206, 218, 223, 232, 233, 234, 242, 243, 244, 245, 246, 257, 261, 262, 263, 264, 266, 269, 270, 275, 277, 286, 290, 293, 301, 313, 314, 316, 319, 322, 342, 344, 353, 358, 366, 401, 403, 405, 407, 408, 410, 411, 434, 435, 442, 465, 470, 512, 546, 547, 552, 554, 556, 557, 558, 559, 560, 561, 581, 582, 586, 589, 626, 631, 657, 658, 665, 666, 667, 673, 674, 675, 677, 696, 701, 712, 722, 723, 802, 803, 804, 805, 818, 821, 831, 851, 852, 862, 863, 879, 905, 906, 907, 910, 911, 913, 915, 917, 919, 937, 989, 999, 1000, 1003, 1006, 1014, 1015, 1016, 1036, 1048], "proportionof": [150, 264], "propos": [90, 109, 110, 243, 283, 366, 371, 373, 383, 385, 403, 405, 410, 415, 446, 532, 605, 606, 675, 676, 677, 862, 863, 996, 999, 1003, 1014, 1038], "proprietari": 1016, "propto": [409, 1002], "prorokovi\u0107": 1049, "protect": [372, 375, 967], "protein": 365, "protocol": [397, 1019, 1034, 1047, 1048], "protocol_typ": 242, "prototyp": 1024, "prove": [121, 1024], "proven": [263, 994, 998, 1023, 1024], "provenc": 309, "provid": [0, 2, 31, 32, 45, 48, 51, 53, 62, 64, 65, 67, 71, 73, 77, 88, 93, 103, 104, 112, 120, 139, 141, 149, 150, 152, 154, 155, 156, 167, 173, 183, 184, 185, 190, 195, 196, 198, 200, 207, 210, 226, 230, 233, 234, 239, 244, 253, 257, 261, 262, 263, 264, 265, 269, 275, 293, 296, 300, 303, 307, 312, 313, 314, 315, 317, 319, 321, 333, 339, 342, 346, 347, 350, 352, 353, 354, 358, 360, 363, 364, 365, 366, 367, 369, 370, 371, 372, 373, 374, 377, 379, 380, 383, 384, 385, 388, 389, 394, 397, 399, 400, 401, 402, 403, 404, 405, 407, 408, 410, 411, 412, 413, 414, 415, 417, 420, 424, 433, 436, 438, 439, 440, 442, 443, 445, 446, 448, 455, 456, 460, 461, 478, 479, 480, 488, 490, 491, 493, 495, 498, 529, 530, 531, 532, 533, 535, 537, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 586, 588, 589, 591, 592, 599, 603, 609, 610, 626, 631, 632, 633, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 690, 694, 699, 702, 709, 722, 723, 736, 742, 743, 765, 775, 779, 789, 793, 795, 799, 800, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 813, 814, 815, 817, 819, 820, 821, 822, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 862, 863, 865, 868, 870, 871, 872, 875, 876, 877, 880, 882, 884, 885, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 920, 921, 923, 936, 937, 942, 954, 958, 960, 975, 976, 977, 988, 989, 990, 992, 995, 996, 997, 999, 1000, 1001, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1013, 1014, 1015, 1016, 1017, 1019, 1020, 1023, 1024, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051, 1052], "providespeedup": [156, 235], "provinc": 309, "provost": [789, 1000], "proxi": [182, 183, 408, 412, 861, 1036], "prun": 377, "prune": [64, 141, 154, 156, 180, 185, 244, 275, 314, 319, 349, 352, 353, 412, 497, 554, 555, 556, 557, 561, 562, 591, 643, 831, 913, 914, 915, 916, 1003, 1021, 1022, 1026, 1031, 1034, 1041, 1042], "przybocki": 1000, "ps_lsvm_score": 188, "ps_lsvm_time": 188, "pseudo": [104, 150, 154, 160, 192, 207, 244, 245, 261, 263, 270, 301, 314, 373, 407, 415, 436, 448, 450, 458, 465, 466, 467, 469, 470, 471, 472, 530, 558, 559, 560, 626, 633, 638, 640, 641, 645, 646, 651, 652, 659, 660, 661, 662, 676, 691, 695, 804, 805, 813, 815, 854, 861, 897, 898, 902, 905, 906, 907, 910, 948, 949, 996, 1012, 1036, 1045], "pseudo_likelihood": 861, "pseudocount": [533, 1039], "psf": 371, "psi": 408, "psi_1": 408, "psi_2": 408, "psi_n": 408, "pspachtholz": [1041, 1042, 1043], "psycholog": [403, 705, 716], "psychometrica": 634, "psychometrika": [690, 694, 997], "pt": [51, 366, 412, 881, 1010], "pt_i": 293, "pt_j": 293, "ptocca": 1041, "ptp": 52, "pts_": 51, "pts_test": 51, "pts_train": 51, "pub": [230, 900], "public": [0, 110, 321, 365, 371, 373, 375, 376, 383, 384, 385, 386, 407, 410, 464, 663, 670, 684, 685, 692, 903, 996, 1004, 1031, 1036, 1037, 1042, 1043, 1044, 1047], "publicli": [371, 1041], "publish": [365, 366, 373, 375, 379, 385, 1012, 1020, 1043], "pubu": [219, 236, 289, 334], "pubu_r": 111, "puerta": 1046, "puggioni": 1035, "puhuk": [1045, 1046], "pujalt": 1045, "pulapakura": [1048, 1049], "pulchritud": 346, "pulido": 1044, "pulkit": [1039, 1040, 1042], "pull": [102, 315, 321, 359, 369, 374, 385, 386, 399, 1023], "puls": 368, "punctuat": [264, 411, 586, 587, 589], "puneet": 1038, "puneeth": [1048, 1049], "puor": 123, "puor_r": 171, "purchas": 0, "pure": [64, 100, 111, 112, 116, 139, 141, 154, 156, 185, 194, 204, 206, 244, 275, 314, 319, 352, 353, 375, 385, 403, 469, 475, 493, 554, 555, 556, 557, 561, 562, 563, 705, 715, 787, 796, 913, 914, 915, 916, 1010], "pure_emp_cov": 112, "pure_loc": 112, "pure_x": 112, "purepremium": 223, "puri": 1052, "puriti": [136, 917, 919], "purna": 1045, "purpl": [109, 118, 229, 262], "purport": 1038, "purpos": [49, 52, 67, 73, 116, 143, 144, 149, 178, 219, 220, 221, 225, 227, 240, 251, 253, 257, 259, 260, 328, 335, 336, 342, 346, 347, 354, 366, 371, 384, 385, 386, 389, 396, 400, 403, 404, 408, 410, 411, 412, 413, 827, 828, 865, 922, 997, 1000, 1001, 1003, 1006, 1019, 1043, 1045, 1049, 1051], "pursu": 183, "pursuit": [2, 87, 121, 123, 129, 180, 189, 408, 470, 523, 528, 534, 539, 545, 663, 664, 684, 685, 1021, 1022, 1026, 1031], "push": [64, 65, 371, 375, 401, 1023], "pushd": 379, "put": [75, 91, 167, 169, 237, 244, 248, 277, 298, 305, 316, 329, 340, 344, 360, 373, 375, 376, 379, 397, 413, 439, 443, 455, 512, 613, 646, 660, 798, 882, 886, 894, 907, 908, 909, 910, 911, 938, 990, 997, 999, 1000, 1001, 1007, 1010], "putmor": [143, 309], "putnam": 1037, "putschblo": 1044, "pvalu": [2, 103, 160, 246, 316, 590, 593, 594, 596, 597, 598, 830], "pvalue_iri": 269, "pvalue_rand": 269, "pvalues_": [159, 590, 593, 594, 596, 597, 598, 1031], "pvnguyen": 1035, "pwalchessen": 1043, "pwd": 379, "px": [140, 264], "pxd": [371, 372], "py": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 359, 371, 372, 375, 377, 379, 385, 389, 411, 527, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 880, 884, 944, 1000, 1021, 1031, 1033, 1037, 1041, 1045, 1050], "py3": 389, "py312": 389, "pyamg": [80, 375, 389, 396, 403, 448, 458, 691, 695], "pyarrow": [389, 396, 1051], "pybrain": 1031, "pycon": 397, "pydata": [44, 371, 379, 389, 396, 397, 399, 1024], "pydata_2013": 1024, "pydebug": 377, "pyflak": 373, "pyfunc": [699, 1003], "pyfuncdist": 699, "pymc": 1019, "pynndesc": 283, "pynndescenttransform": 283, "pyodid": 371, "pyoxid": 1044, "pypi": [359, 369, 373, 375, 377, 389, 1016, 1039, 1043, 1045, 1046, 1048], "pyplot": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 104, 105, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 161, 162, 163, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 186, 188, 190, 191, 193, 194, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 235, 236, 237, 238, 240, 241, 242, 243, 245, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 262, 263, 265, 266, 267, 268, 269, 270, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 316, 317, 319, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 365, 367, 371, 378, 434, 499, 630, 631, 697, 698, 700, 701, 702, 807, 824, 1028, 1045], "pyproject": 375, "pypy3": 1039, "pysniak": 1034, "pystruct": 383, "pytabl": 365, "pytb": 379, "pytest": [2, 312, 359, 369, 371, 373, 374, 389, 396, 399, 942, 943, 944, 1041, 1044], "python": [0, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 358, 360, 365, 369, 371, 372, 373, 374, 375, 376, 379, 380, 383, 385, 389, 390, 396, 397, 399, 404, 411, 493, 505, 506, 579, 699, 812, 879, 1000, 1010, 1015, 1016, 1020, 1023, 1024, 1026, 1031, 1033, 1034, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1048, 1050, 1051], "python2": 1039, "python3": [369, 389], "python37": 389, "pythonsoftwarefound": 389, "pythonx": 369, "pytorch": [46, 320, 321, 322, 383, 1019, 1020, 1047, 1048, 1050], "pytorch_enable_mps_fallback": 399, "pyx": [371, 372, 377, 379], "p\u00e9rez": 1039, "p\u00f6lsterl": [1038, 1041, 1044], "q": [52, 103, 115, 146, 206, 315, 400, 401, 403, 408, 433, 948, 996, 1015], "q1": 506, "q327": 368, "q_": 1015, "q_m": 1016, "q_max": [883, 895], "q_min": [883, 895], "qaiser": 1048, "qda": [68, 368, 546, 547, 1022, 1026, 1036], "qdeffens": [1041, 1044], "qemu": 379, "qi": [506, 1043], "qian": [1037, 1042], "qiang": 1035, "qianm": 1043, "qid": [483, 505, 506, 1032, 1037], "qimu": 1037, "qin": [0, 368, 393, 411, 1038, 1039, 1040, 1041, 1042, 1050], "qingi": 1039, "qizhi": 1042, "qmarcou": 1048, "qn": 506, "qodari": [1049, 1050], "qp": 1015, "qr": [80, 104, 208, 244, 262, 399, 531, 538, 541, 948, 949, 997, 1037, 1048], "qt": [307, 882], "qtconsol": 377, "quad": [413, 645, 1003, 1014], "quadcontourset": 630, "quadmesh": 630, "quadrant": 303, "quadrat": [2, 12, 44, 49, 66, 70, 103, 111, 112, 113, 139, 155, 172, 180, 219, 233, 234, 242, 244, 246, 253, 257, 262, 265, 277, 301, 313, 315, 316, 322, 436, 454, 457, 546, 547, 622, 630, 647, 657, 658, 668, 675, 679, 716, 910, 911, 996, 997, 1000, 1003, 1006, 1010, 1014, 1015, 1021, 1022, 1026, 1032], "quadraticdiscriminantanalysi": [2, 68, 71, 546, 994, 1001, 1003, 1031, 1036, 1038, 1046, 1050], "quadro": 1044, "quadv": 1045, "qualifi": [322, 376], "qualit": [45, 46, 86, 88, 94, 140, 146, 206, 317, 366, 403, 435, 701, 1046], "qualiti": [0, 13, 28, 46, 59, 62, 64, 73, 80, 82, 91, 103, 123, 141, 142, 149, 154, 156, 183, 185, 212, 244, 256, 261, 270, 271, 272, 275, 314, 319, 339, 352, 353, 371, 379, 383, 385, 398, 403, 405, 408, 448, 458, 465, 470, 554, 555, 556, 557, 561, 562, 744, 815, 897, 898, 913, 914, 915, 916, 949, 995, 997, 1005, 1012, 1016, 1019, 1020, 1024, 1026], "quang": 1042, "quansight": [0, 1023], "quantifi": [13, 28, 44, 73, 82, 109, 172, 223, 257, 270, 320, 373, 385, 398, 570, 868, 995, 1008, 1010, 1026], "quantil": [2, 79, 86, 96, 134, 136, 143, 151, 154, 155, 156, 180, 184, 189, 303, 306, 307, 309, 317, 367, 383, 410, 434, 435, 454, 516, 549, 550, 557, 559, 656, 669, 724, 746, 749, 751, 828, 870, 882, 883, 884, 894, 895, 1000, 1010, 1021, 1022, 1026, 1031, 1035, 1038, 1040, 1044, 1045, 1047, 1049, 1051, 1052], "quantile_list": 53, "quantile_method": [67, 206, 223, 304, 305, 306, 317, 870, 1051], "quantile_rang": [303, 883, 895, 1037], "quantile_regress": 208, "quantile_transform": [2, 107, 882, 893, 1010, 1038, 1039, 1040, 1049], "quantileloss": 156, "quantileregressor": [2, 315, 996, 1000, 1044, 1045, 1046], "quantiles_": [882, 1010, 1041], "quantiletransform": [2, 107, 184, 307, 404, 461, 881, 894, 990, 1010, 1038, 1039, 1040, 1041, 1042, 1047, 1049], "quantit": [44, 45, 46, 53, 63, 94, 146, 149, 156, 163, 259, 278, 368], "quantiti": [52, 143, 200, 263, 314, 358, 385, 403, 410, 413, 721, 723, 724, 725, 786, 861, 989, 991, 994, 996, 1036], "quantiz": [72, 80, 123, 180, 366, 439, 443, 445, 870, 1010, 1021], "quantum": 998, "quartil": 883, "quartimax": [529, 1043], "quasi": [243, 373, 862, 863, 996], "quazi": [1038, 1039], "queensland": 368, "quentin": [1038, 1039, 1040, 1047, 1048, 1050], "queqichao": 1035, "queri": [190, 286, 296, 358, 409, 414, 440, 442, 446, 453, 549, 609, 610, 627, 643, 644, 727, 757, 845, 846, 847, 848, 849, 850, 851, 853, 855, 856, 857, 1000, 1003, 1016, 1019, 1023, 1033, 1035, 1036, 1039], "query_id": [483, 505, 506], "query_radiu": [845, 846], "question": [0, 182, 257, 263, 342, 370, 371, 376, 379, 397, 407, 410, 834, 907, 910, 996, 999, 1000, 1006, 1024], "queue": [48, 1003, 1034], "quick": [44, 125, 245, 371, 373, 377, 389, 414, 604, 831, 1000, 1001, 1010, 1024, 1028], "quicker": 999, "quickest": 369, "quickli": [100, 243, 299, 312, 368, 371, 372, 407, 410, 692, 779, 996, 1003, 1004, 1024, 1042], "quinlan": 1016, "quinonez": 1039, "quintana": 1000, "quit": [44, 53, 65, 67, 86, 90, 116, 137, 163, 183, 184, 200, 223, 257, 271, 280, 315, 346, 358, 376, 384, 403, 411, 995, 997, 1002, 1023, 1024, 1039], "quiver": 122, "quot": [38, 52, 53, 55, 102, 264, 346, 347, 359, 365, 366, 369, 371, 375, 389, 390, 399, 484, 485, 493, 1000, 1012, 1015, 1046, 1050], "quota": [1044, 1045], "quotat": 366, "quotient": 1000, "r": [0, 2, 48, 50, 51, 52, 53, 54, 62, 63, 64, 65, 78, 98, 100, 103, 104, 107, 109, 110, 111, 112, 116, 120, 127, 130, 134, 137, 138, 142, 143, 146, 147, 148, 151, 154, 156, 159, 168, 169, 170, 174, 175, 176, 178, 179, 183, 193, 194, 197, 198, 204, 206, 215, 223, 230, 235, 238, 244, 248, 251, 253, 254, 257, 261, 262, 263, 264, 266, 268, 269, 270, 273, 276, 282, 285, 286, 290, 294, 296, 309, 316, 317, 322, 337, 339, 348, 354, 366, 368, 372, 375, 383, 385, 397, 400, 401, 403, 405, 406, 407, 408, 410, 411, 420, 426, 433, 442, 447, 449, 461, 465, 470, 474, 478, 479, 480, 495, 501, 510, 517, 531, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 564, 565, 566, 567, 586, 587, 588, 589, 592, 604, 607, 609, 610, 626, 634, 638, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 684, 685, 692, 696, 716, 721, 723, 724, 725, 729, 731, 782, 786, 789, 800, 801, 815, 818, 823, 833, 834, 835, 836, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 851, 852, 854, 855, 856, 862, 863, 876, 881, 893, 900, 901, 905, 906, 907, 908, 910, 911, 913, 914, 915, 916, 918, 967, 990, 992, 994, 996, 997, 1000, 1001, 1002, 1003, 1004, 1007, 1008, 1010, 1014, 1015, 1016, 1019, 1031, 1035, 1038, 1041, 1042, 1043, 1044, 1046, 1048, 1051], "r0": [275, 804, 805], "r1": 567, "r11": [206, 223], "r2": [107, 135, 140, 154, 182, 184, 203, 238, 276, 404, 410, 551, 567, 828, 863, 923, 1000, 1008, 1040], "r2007": 410, "r22": 206, "r25": 223, "r26": 206, "r2_score": [2, 107, 154, 156, 182, 194, 203, 204, 373, 399, 410, 426, 461, 478, 479, 480, 551, 553, 555, 557, 559, 562, 565, 567, 610, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 677, 678, 725, 729, 838, 839, 848, 856, 863, 906, 908, 911, 914, 916, 989, 1000, 1032, 1034, 1040, 1044, 1045, 1049, 1051], "r2_score_ard": 194, "r2_score_enet": 194, "r2_score_lasso": 194, "r2_score_nnl": 203, "r2_score_ol": 203, "r2_with_abl": 182, "r2_without_": 182, "r3": 567, "r72": 206, "r73": 223, "r82": 206, "r93": 206, "r_": [51, 129, 218, 219, 249, 270, 289, 290, 334, 340, 403, 707, 1000, 1016], "r_0": 989, "r_k": 270, "r_multi": 1008, "r_n": [270, 707, 1000], "r_regress": [2, 412, 604, 1044, 1045, 1048], "r_squar": 384, "raamana": [1039, 1040], "rabbit": [316, 318, 1010], "rabi": 1051, "raccoon": [86, 123, 408], "raccoon_fac": [86, 123], "race": [183, 319, 366, 493, 1034], "race_hispan": 183, "race_oth": 183, "race_whit": 183, "rachel": [1043, 1046], "rachelcjordan": 1042, "rachez": [1036, 1037], "rachit": [1037, 1043, 1046], "rachit23110261": 1050, "rachum": 1043, "radar": 1024, "radford": 996, "radhakrishnan": 1039, "radial": [2, 45, 125, 167, 172, 174, 335, 339, 363, 448, 621, 691, 998, 1015, 1026], "radian": [296, 699, 765], "radii": [845, 846], "radiu": [2, 163, 290, 335, 368, 403, 438, 446, 688, 765, 782, 845, 846, 847, 848, 849, 853, 855, 856, 857, 859, 1003, 1033, 1035, 1045, 1048], "radius1": 99, "radius2": 99, "radius3": 99, "radius4": 99, "radius_neighbor": [316, 853, 855, 856, 857, 1035, 1040, 1041, 1043, 1044, 1045, 1046], "radius_neighbors_graph": [2, 403, 414, 440, 847, 848, 849, 851, 853, 855, 856, 857, 858, 1003, 1035, 1040, 1043], "radiusneighborsclassifi": [2, 316, 847, 848, 853, 856, 1001, 1003, 1031, 1033, 1037, 1039, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1050], "radiusneighborsregressor": [2, 316, 847, 848, 853, 855, 1001, 1003, 1031, 1033, 1039, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1050], "radiusneighborstransform": [2, 312, 849, 1003, 1041, 1043, 1045, 1046, 1050], "radostin": [1039, 1040], "radovenchyk": 1051, "raduspaimoc": 1042, "raf": 1040, "rafael": [1024, 1032, 1033, 1035, 1038, 1052], "rafal": [1046, 1047], "rafei": 1043, "raff": 1034, "raffaello": 1040, "rafiqu": [1039, 1040], "rafteri": 1000, "raghav": [0, 393, 1035, 1036, 1037, 1038, 1039, 1043], "raghavan": [408, 588, 840, 844, 998, 1000, 1002], "raghu": [403, 438], "raghunathan": [1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1049], "raghuv": [1046, 1047], "raghuwanshi": 1045, "rah": 640, "rahiel": 1035, "rahil": [1045, 1046, 1047, 1048, 1049, 1050, 1051], "rahimi": [640, 992], "rahmaan": 1041, "rahman": [1038, 1039, 1043], "rahn": [1038, 1041], "rahul": [1043, 1048], "rai": [0, 393, 1000, 1031, 1041, 1043, 1044], "raimundo": 1039, "rain": [44, 53, 184, 402, 996, 1000], "rainbow": [62, 227], "rainfal": 996, "rais": [2, 103, 104, 132, 139, 143, 154, 155, 183, 184, 185, 207, 233, 234, 239, 240, 243, 244, 246, 253, 257, 261, 262, 263, 264, 266, 270, 275, 277, 301, 307, 309, 313, 315, 316, 321, 322, 371, 373, 375, 376, 377, 380, 383, 385, 394, 397, 404, 407, 433, 434, 439, 440, 443, 445, 461, 478, 479, 480, 484, 485, 486, 487, 489, 490, 491, 492, 494, 495, 506, 530, 533, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 570, 572, 574, 575, 586, 587, 588, 589, 601, 609, 610, 616, 628, 631, 634, 635, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 696, 698, 700, 702, 709, 711, 712, 713, 714, 722, 728, 730, 731, 739, 779, 783, 784, 785, 788, 789, 790, 798, 799, 800, 801, 802, 803, 804, 805, 807, 808, 810, 815, 819, 823, 824, 827, 828, 829, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 854, 855, 856, 860, 862, 863, 864, 865, 868, 869, 870, 871, 872, 877, 878, 879, 883, 884, 885, 892, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 920, 929, 931, 932, 934, 935, 942, 943, 953, 958, 962, 964, 983, 984, 985, 986, 988, 989, 1000, 1010, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "raisadz": [1049, 1050], "raise_exc": [711, 1050], "raise_except": 985, "raise_unknown": 964, "raise_warn": [712, 985, 1000, 1051], "raj": [1048, 1049, 1051], "rajagopalan": [0, 393, 1039, 1043], "rajaona": [1037, 1038], "rajat": [1034, 1041], "rajath": 1050, "rajdeep": 1040, "rajendra": 1039, "raji": [1046, 1047], "rakotoarison": [1038, 1039, 1041], "ralf": [1034, 1037, 1038, 1046, 1047, 1049, 1050], "ralph": 1049, "ram": [56, 86, 360, 397, 410, 897, 898, 1002, 1015, 1037, 1043, 1046, 1047], "ramakrishnan": [403, 438], "ramana": [1037, 1038], "ramanath": 1036, "ramesh": [366, 1024, 1034, 1037, 1041], "rameshwar": [1038, 1039], "ramil": [1039, 1040], "rammig": [1024, 1037], "ramo": 1046, "ramot": 1051, "rampin": 1038, "ramyanp": [1043, 1044], "ramzi": 1043, "ram\u00edrez": 1000, "rand": [2, 54, 62, 73, 74, 75, 79, 82, 91, 95, 100, 127, 137, 151, 153, 158, 190, 194, 227, 228, 232, 238, 239, 278, 295, 313, 314, 319, 329, 341, 347, 352, 380, 394, 541, 704, 705, 715, 758, 782, 787, 897, 898, 900, 901, 902, 1012, 1031, 1042, 1043], "rand_index": 705, "rand_scor": [2, 73, 403, 715, 1000, 1043], "randal": [885, 1035, 1045], "randi": 1037, "randint": [51, 73, 112, 118, 145, 179, 185, 228, 235, 239, 241, 275, 314, 319, 373, 376, 384, 394, 805, 822, 840, 841, 842, 844, 989, 990], "randn": [54, 70, 71, 87, 98, 99, 100, 111, 112, 123, 127, 150, 158, 167, 171, 182, 185, 198, 202, 203, 205, 218, 219, 222, 249, 252, 253, 258, 270, 272, 273, 278, 289, 290, 310, 313, 314, 319, 334, 339, 340, 344, 373, 376, 642, 669, 671, 677, 686, 822, 908, 911], "randolf": 1049, "random": [2, 14, 38, 44, 45, 46, 47, 51, 52, 53, 54, 59, 60, 62, 63, 64, 65, 68, 70, 71, 73, 75, 79, 83, 85, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 121, 122, 123, 127, 133, 135, 137, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 154, 155, 156, 158, 159, 160, 162, 167, 168, 171, 172, 173, 174, 176, 178, 179, 180, 181, 182, 184, 190, 191, 192, 193, 194, 198, 202, 203, 204, 205, 206, 207, 208, 209, 212, 214, 218, 219, 222, 223, 225, 226, 228, 229, 230, 231, 232, 237, 238, 239, 241, 242, 243, 244, 248, 249, 251, 252, 253, 254, 255, 257, 258, 260, 261, 262, 263, 264, 266, 268, 270, 272, 273, 274, 275, 278, 282, 283, 288, 289, 290, 295, 298, 304, 306, 307, 309, 310, 313, 314, 316, 317, 318, 320, 322, 324, 325, 328, 329, 334, 335, 337, 338, 339, 340, 341, 344, 346, 347, 353, 358, 359, 363, 367, 374, 376, 383, 384, 385, 394, 398, 399, 401, 403, 411, 412, 416, 428, 436, 439, 443, 445, 447, 448, 449, 450, 454, 455, 456, 458, 460, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 484, 485, 486, 487, 489, 492, 493, 494, 499, 500, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 529, 532, 533, 535, 536, 537, 538, 541, 544, 548, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 570, 580, 581, 582, 587, 605, 606, 609, 610, 626, 629, 631, 633, 638, 639, 640, 641, 642, 645, 646, 648, 649, 651, 652, 653, 657, 659, 660, 661, 662, 669, 670, 671, 675, 676, 677, 678, 686, 689, 690, 691, 692, 693, 694, 695, 701, 704, 705, 708, 732, 744, 782, 789, 794, 798, 799, 801, 802, 803, 804, 805, 806, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 830, 831, 836, 838, 839, 840, 841, 842, 844, 845, 846, 850, 854, 861, 862, 863, 865, 868, 870, 879, 882, 886, 894, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 910, 911, 913, 914, 915, 916, 934, 946, 948, 949, 969, 970, 973, 990, 992, 995, 997, 999, 1000, 1004, 1005, 1006, 1008, 1010, 1015, 1016, 1021, 1022, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1052], "random_": 198, "random_02": 198, "random_05": 198, "random_08": 198, "random_11": 198, "random_cat": [185, 1008], "random_choice_csc": 1041, "random_forest": 139, "random_from_data": [251, 253, 399, 798, 799, 999, 1052], "random_label": 73, "random_num": [185, 1008], "random_offset_": [640, 641], "random_project": [2, 226, 236, 897, 898, 899, 1012, 1017, 1032, 1037, 1047, 1048], "random_sampl": [194, 845, 846, 850], "random_se": [50, 118, 142], "random_search": [264, 271], "random_st": [44, 45, 46, 47, 50, 52, 53, 55, 58, 59, 60, 62, 63, 64, 65, 67, 68, 74, 77, 78, 79, 80, 82, 83, 86, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 104, 107, 113, 116, 118, 120, 122, 125, 134, 135, 136, 138, 139, 140, 141, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 159, 160, 162, 165, 167, 172, 173, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 192, 193, 195, 200, 205, 206, 209, 210, 212, 213, 217, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 237, 240, 241, 242, 243, 244, 245, 246, 248, 250, 251, 253, 254, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 272, 273, 274, 275, 276, 277, 280, 282, 283, 286, 287, 291, 292, 293, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 327, 333, 335, 336, 337, 342, 343, 344, 346, 347, 350, 352, 353, 354, 367, 373, 376, 380, 384, 385, 399, 402, 403, 404, 407, 408, 410, 411, 415, 428, 433, 434, 436, 439, 443, 445, 447, 448, 449, 450, 454, 455, 456, 458, 465, 470, 474, 483, 484, 487, 489, 492, 494, 500, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 532, 533, 534, 535, 536, 537, 538, 540, 541, 542, 543, 544, 548, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 581, 582, 591, 592, 603, 604, 605, 606, 607, 608, 609, 610, 612, 613, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 626, 631, 632, 633, 634, 637, 638, 639, 640, 641, 645, 646, 648, 649, 650, 651, 652, 653, 654, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 670, 671, 673, 675, 676, 677, 678, 680, 681, 682, 684, 685, 686, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 700, 701, 702, 710, 736, 789, 793, 794, 798, 799, 800, 802, 803, 804, 805, 806, 807, 813, 815, 816, 817, 818, 819, 820, 821, 823, 824, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 850, 854, 861, 862, 863, 865, 870, 882, 886, 894, 897, 898, 905, 906, 907, 910, 912, 913, 914, 915, 916, 918, 919, 921, 923, 924, 946, 948, 949, 969, 970, 973, 989, 990, 992, 995, 1000, 1001, 1002, 1003, 1004, 1007, 1008, 1010, 1015, 1016, 1028, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044], "random_state_": [373, 533, 626, 854, 1045], "random_tre": 563, "random_tree_embed": 139, "random_unlabeled_point": [314, 900, 901, 902], "random_weights_": [640, 641], "randomfeatur": [154, 192], "randomforest": [50, 142, 358, 410, 913, 914, 1036], "randomforestc": [139, 275], "randomforestclassifi": [2, 64, 65, 68, 89, 138, 139, 140, 141, 142, 185, 186, 244, 245, 260, 275, 312, 314, 319, 346, 354, 371, 373, 384, 385, 401, 410, 412, 554, 555, 556, 558, 563, 564, 566, 804, 805, 823, 835, 915, 989, 990, 1001, 1008, 1024, 1028, 1035, 1036, 1039, 1040, 1041, 1044, 1045, 1046, 1047, 1048], "randomforestclassifierifit": [64, 141, 319], "randomforestclassifierinot": 319, "randomforestclassifierrandomforestclassifi": [64, 275], "randomforestregressor": [2, 50, 140, 153, 154, 156, 178, 179, 314, 319, 384, 410, 554, 555, 557, 559, 563, 565, 567, 631, 632, 915, 990, 1001, 1036, 1037, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1047, 1048], "randomgeek78": 1045, "randomized_range_find": [2, 380, 1032, 1037, 1051], "randomized_svd": [2, 56, 104, 244, 262, 380, 447, 449, 529, 538, 541, 543, 1031, 1032, 1037, 1044, 1045, 1046, 1051], "randomized_svd_low_rank": 1038, "randomizedlasso": 1038, "randomizedlogisticregress": 1038, "randomizedpca": [1024, 1031, 1033, 1034, 1036, 1037, 1038], "randomizedsearchcv": [2, 46, 103, 167, 264, 271, 314, 354, 384, 394, 399, 573, 989, 1000, 1014, 1033, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1046, 1048, 1049, 1050], "randomizedsearchcvinot": 103, "randomli": [2, 53, 73, 83, 94, 103, 117, 137, 143, 149, 150, 151, 154, 178, 180, 184, 222, 236, 240, 253, 257, 258, 269, 280, 282, 309, 317, 322, 324, 354, 359, 380, 383, 384, 403, 407, 410, 413, 445, 454, 512, 520, 528, 534, 542, 543, 548, 554, 555, 556, 557, 558, 559, 560, 561, 562, 609, 610, 670, 678, 690, 694, 716, 798, 799, 861, 899, 913, 914, 915, 916, 996, 999, 1001, 1003, 1006, 1008, 1012, 1016, 1021, 1042, 1046, 1048, 1050], "randomlyfrom": 172, "randomst": [2, 45, 54, 59, 60, 62, 64, 68, 71, 73, 79, 83, 94, 95, 103, 104, 112, 113, 116, 120, 122, 127, 135, 139, 141, 143, 145, 146, 149, 150, 151, 153, 154, 155, 156, 159, 160, 167, 168, 171, 172, 173, 174, 176, 178, 179, 182, 183, 184, 185, 190, 191, 192, 193, 194, 198, 202, 207, 208, 219, 228, 232, 233, 234, 238, 239, 243, 244, 245, 246, 248, 251, 253, 257, 258, 261, 262, 263, 266, 269, 270, 272, 273, 274, 275, 277, 295, 298, 301, 304, 306, 307, 309, 310, 313, 314, 316, 317, 318, 319, 322, 324, 325, 329, 338, 344, 352, 353, 373, 376, 380, 385, 394, 408, 415, 416, 436, 439, 443, 445, 447, 448, 449, 450, 454, 455, 456, 458, 465, 466, 470, 471, 472, 474, 475, 476, 477, 484, 487, 489, 492, 494, 500, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 532, 533, 534, 535, 536, 537, 538, 540, 541, 542, 543, 544, 548, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 581, 582, 605, 606, 609, 610, 626, 631, 633, 638, 639, 640, 641, 642, 645, 646, 648, 649, 651, 652, 653, 657, 658, 659, 660, 661, 662, 665, 666, 667, 669, 670, 671, 673, 675, 676, 677, 678, 686, 689, 690, 691, 692, 693, 694, 695, 701, 782, 794, 798, 799, 802, 803, 804, 805, 806, 807, 813, 815, 816, 817, 818, 819, 820, 821, 823, 829, 830, 831, 835, 836, 839, 840, 841, 842, 844, 845, 846, 850, 854, 861, 862, 863, 870, 882, 886, 894, 897, 898, 900, 901, 902, 905, 906, 907, 910, 911, 913, 914, 915, 916, 934, 948, 949, 969, 970, 973, 1010, 1026], "randomtreesembed": [2, 139, 152, 226, 410, 915, 990, 1032, 1039, 1040, 1044, 1045, 1046], "randomtreesembedding_": 563, "rang": [2, 44, 45, 46, 47, 48, 50, 52, 56, 58, 59, 63, 64, 65, 69, 70, 73, 74, 75, 77, 80, 81, 83, 84, 88, 93, 94, 96, 97, 104, 109, 110, 112, 113, 134, 136, 137, 138, 141, 146, 149, 150, 153, 156, 158, 161, 162, 168, 183, 184, 188, 194, 198, 200, 201, 202, 204, 206, 207, 210, 211, 213, 221, 223, 226, 228, 235, 236, 241, 242, 244, 248, 250, 253, 254, 257, 258, 262, 263, 264, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 278, 282, 287, 293, 295, 296, 301, 303, 308, 309, 312, 316, 317, 321, 325, 335, 342, 346, 347, 351, 353, 359, 365, 366, 368, 371, 373, 377, 380, 385, 397, 403, 407, 410, 413, 436, 457, 465, 467, 468, 469, 470, 471, 472, 474, 477, 487, 491, 492, 511, 524, 538, 550, 551, 556, 557, 560, 586, 587, 589, 628, 631, 632, 637, 639, 647, 648, 668, 670, 675, 676, 677, 679, 692, 709, 712, 732, 747, 789, 831, 837, 851, 853, 855, 856, 861, 874, 875, 882, 883, 884, 890, 891, 894, 895, 898, 899, 948, 949, 989, 996, 1000, 1004, 1014, 1020, 1024, 1036, 1037, 1038, 1039, 1041, 1044, 1047, 1052], "range_n_clust": 93, "range_n_outli": 112, "rangeindex": [183, 257, 493], "rangeof": 155, "rangl": [992, 1000, 1014, 1015], "ranjanikrishnan": 1044, "rank": [2, 44, 56, 63, 111, 124, 127, 141, 161, 185, 186, 223, 261, 262, 263, 271, 367, 398, 400, 401, 405, 406, 408, 410, 411, 505, 506, 518, 521, 546, 547, 591, 592, 604, 647, 656, 668, 679, 696, 720, 727, 728, 740, 741, 757, 789, 795, 804, 805, 949, 989, 991, 992, 997, 1008, 1010, 1024, 1026, 1032, 1037, 1040, 1041, 1045, 1046, 1049, 1050, 1051], "rank_": 656, "rank_t": 801, "rank_test_": 267, "rank_test_precis": [261, 267], "rank_test_recal": 261, "rank_test_scor": [262, 263, 271, 801, 815, 1037], "rankdata": 1038, "ranked_exposur": [206, 223], "ranked_frequ": 206, "ranked_pure_premium": 223, "ranking_": [161, 591, 592], "rankylau": 1039, "ransac": [2, 180, 189, 212, 222, 521, 648, 656, 670, 677, 678, 1021], "ransacregressor": [2, 209, 212, 222, 394, 648, 677, 678, 996, 1001, 1034, 1036, 1037, 1038, 1039, 1042, 1044, 1045, 1049], "rao": [407, 1043, 1046], "raphael": 1048, "rapha\u00ebl": 1041, "raphson": [647, 668, 679], "rapid": 1024, "rapidli": [210, 265, 1015, 1024], "rare": [65, 103, 104, 139, 155, 160, 184, 233, 234, 244, 246, 257, 262, 270, 277, 301, 309, 313, 316, 322, 354, 375, 383, 385, 388, 401, 403, 407, 587, 647, 657, 658, 668, 679, 905, 936, 996, 1010, 1024, 1038, 1039, 1040, 1044, 1046, 1049, 1052], "rarer": [346, 348, 411], "raschka": [1036, 1037, 1038, 1039, 1040, 1043], "rashchedrin": 1038, "rasmu": [188, 1038], "rasmussen": [172, 413, 609, 610, 613, 618, 621], "raspberri": 389, "raster": 102, "rastgoo": 1048, "rastogi": 1039, "rastrojo": [403, 705], "rasul": [1036, 1038, 1039], "rat": [51, 296, 366, 495], "rate": [2, 44, 134, 138, 143, 149, 151, 154, 156, 158, 184, 206, 223, 236, 242, 243, 257, 260, 263, 272, 273, 299, 300, 301, 309, 317, 322, 360, 371, 402, 403, 404, 408, 412, 442, 462, 533, 550, 551, 556, 557, 558, 559, 590, 593, 594, 596, 597, 598, 604, 643, 644, 667, 675, 676, 677, 692, 698, 702, 728, 783, 790, 861, 862, 863, 899, 989, 996, 997, 1000, 1003, 1004, 1014, 1016, 1024, 1035, 1039, 1040], "rather": [52, 65, 86, 113, 134, 137, 149, 178, 183, 206, 207, 219, 242, 277, 307, 308, 346, 347, 354, 359, 367, 369, 371, 373, 376, 377, 379, 383, 384, 385, 386, 403, 407, 408, 410, 411, 413, 444, 457, 459, 562, 579, 586, 587, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 628, 645, 646, 651, 652, 659, 660, 661, 662, 782, 815, 817, 819, 820, 821, 836, 838, 839, 868, 905, 906, 917, 922, 949, 994, 996, 997, 1000, 1002, 1003, 1007, 1020, 1031, 1032, 1033, 1034, 1038, 1039, 1040, 1041, 1046, 1047, 1049, 1050], "rati": 172, "ratio": [2, 47, 86, 99, 105, 128, 180, 236, 238, 251, 255, 358, 371, 403, 405, 407, 410, 446, 452, 490, 491, 512, 538, 546, 547, 548, 630, 645, 657, 710, 712, 716, 726, 731, 737, 740, 783, 784, 785, 788, 796, 828, 831, 851, 852, 898, 969, 994, 1006, 1016, 1021, 1046, 1048], "ration": [2, 172, 257, 622, 998], "rational": 371, "rationalquadr": 172, "rationalquadrat": [2, 172, 176, 413, 615], "raton": 996, "raul": [1033, 1034], "rausch": [1039, 1040, 1043], "rauwuckl": 1043, "ravel": [2, 45, 54, 56, 58, 64, 77, 86, 87, 91, 111, 129, 135, 137, 142, 146, 152, 153, 154, 155, 167, 169, 171, 172, 173, 174, 183, 190, 199, 201, 206, 218, 219, 226, 230, 232, 236, 238, 242, 246, 250, 252, 257, 266, 270, 272, 277, 283, 288, 289, 295, 296, 298, 299, 300, 301, 305, 306, 316, 320, 329, 335, 340, 341, 343, 346, 352, 461, 490, 491, 492, 630, 718, 986, 1000, 1047], "ravi": [1043, 1046], "raw": [2, 17, 44, 52, 53, 55, 67, 73, 112, 122, 154, 156, 172, 183, 188, 264, 301, 310, 326, 348, 358, 366, 373, 379, 385, 401, 403, 405, 408, 411, 465, 470, 498, 499, 500, 556, 557, 558, 560, 580, 586, 587, 588, 589, 633, 676, 690, 694, 705, 787, 851, 909, 997, 1000, 1004, 1006, 1007, 1010, 1013, 1028, 1032, 1036, 1039, 1042, 1048], "raw_coef_": [905, 906], "raw_covariance_": [405, 465, 470], "raw_data": 348, "raw_docu": [586, 589], "raw_location_": [405, 465, 470], "raw_model": 310, "raw_pixel_classifi": 301, "raw_support_": [465, 470], "raw_target_regr": 404, "raw_valu": [721, 724, 729, 746, 747, 749, 751, 752, 754, 786, 791, 792, 1000, 1039, 1042], "raw_x": [411, 580], "raytheon": 52, "raz": 1045, "ra\u00fal": 1040, "rb": [48, 397], "rbf": [2, 45, 46, 47, 50, 51, 67, 68, 125, 155, 167, 168, 169, 171, 172, 173, 174, 175, 176, 180, 188, 219, 231, 232, 238, 244, 245, 261, 263, 265, 268, 274, 289, 314, 326, 329, 330, 332, 341, 363, 391, 404, 408, 448, 458, 499, 501, 532, 538, 609, 610, 611, 612, 615, 617, 618, 619, 620, 622, 623, 630, 638, 639, 640, 641, 642, 675, 691, 766, 775, 777, 801, 812, 815, 821, 865, 885, 900, 901, 905, 907, 908, 909, 910, 911, 989, 992, 993, 997, 1000, 1006, 1010, 1013, 1021, 1026, 1037, 1042], "rbf_featur": [640, 992], "rbf_kernel": [2, 399, 766, 998, 1035, 1050], "rbf_svc": [329, 1015], "rbfsampler": [2, 237, 638, 639, 641, 992, 1035, 1045, 1046], "rbm": [2, 301, 861, 862, 863, 1005], "rbm_features_classifi": 301, "rc": [219, 375], "rceil": [400, 1006], "rcond": 129, "rcparam": [48, 67, 232, 237, 273, 310], "rcv1": [2, 364, 494, 1026, 1036], "rcwoolston": 1042, "rd": 411, "rd9e56ef97513": 2, "rda": 368, "rdbu": [68, 71, 120, 155, 221, 298, 335, 340], "rdbu_r": [87, 113, 130, 335], "rdownload": 48, "rdylbu": [142, 351], "re": [2, 44, 48, 54, 64, 65, 89, 102, 103, 134, 143, 151, 154, 170, 179, 182, 183, 223, 239, 249, 253, 257, 266, 268, 272, 309, 313, 317, 322, 346, 348, 359, 371, 372, 373, 379, 384, 386, 394, 401, 407, 411, 465, 466, 467, 468, 469, 470, 471, 472, 488, 558, 559, 608, 645, 651, 659, 661, 803, 818, 821, 913, 914, 915, 916, 996, 1001, 1010, 1015, 1020, 1024, 1031, 1035, 1036, 1038, 1040, 1051], "reach": [94, 140, 143, 144, 163, 173, 206, 208, 221, 223, 243, 257, 265, 316, 335, 353, 376, 386, 389, 403, 408, 412, 446, 453, 505, 506, 591, 592, 626, 643, 644, 645, 646, 651, 652, 653, 654, 655, 659, 660, 661, 662, 665, 666, 667, 675, 676, 677, 678, 680, 681, 682, 683, 728, 730, 731, 784, 798, 799, 862, 863, 902, 989, 996, 1000, 1004, 1014, 1016, 1024, 1042, 1046, 1047, 1048, 1051], "reachability_": [98, 403, 446, 451, 452, 453], "reachabl": [2, 88, 98, 442, 446, 451, 452, 453, 851, 955], "react": 295, "reactiv": 377, "read": [48, 53, 56, 64, 103, 120, 139, 141, 143, 151, 154, 156, 183, 184, 185, 225, 234, 244, 245, 257, 261, 263, 264, 270, 275, 309, 312, 313, 314, 316, 317, 318, 319, 322, 352, 353, 358, 365, 372, 373, 374, 375, 376, 378, 379, 383, 384, 385, 391, 397, 403, 414, 415, 416, 417, 420, 426, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 453, 455, 457, 458, 459, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 602, 603, 604, 605, 606, 609, 610, 612, 613, 614, 615, 618, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 701, 703, 704, 705, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 728, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 861, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 919, 945, 989, 996, 1000, 1001, 1019, 1024, 1032, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1048, 1049], "read_byt": 48, "read_csv": [52, 321, 376, 493, 1046], "read_csv_kwarg": [493, 1047], "read_parquet": [53, 321], "readabl": [113, 264, 315, 376, 377, 379, 531, 1040, 1043, 1044, 1045, 1046], "reader": [46, 77, 315, 360, 371], "readi": [44, 47, 103, 143, 154, 172, 183, 184, 185, 207, 234, 244, 257, 309, 313, 316, 366, 371, 375, 379, 460], "readili": [316, 408, 1016, 1024], "readm": [371, 379, 411], "readonli": [905, 906, 1044, 1046, 1047], "readonly_memmap": 1048, "readthedoc": 385, "real": [53, 68, 71, 88, 90, 102, 106, 109, 111, 112, 134, 149, 170, 183, 204, 210, 229, 232, 242, 256, 257, 269, 278, 287, 290, 304, 305, 334, 339, 348, 352, 358, 364, 365, 368, 375, 377, 380, 383, 384, 385, 400, 401, 403, 405, 407, 408, 410, 411, 465, 485, 486, 490, 491, 492, 493, 494, 497, 498, 501, 507, 548, 549, 552, 553, 554, 555, 556, 557, 561, 562, 590, 592, 593, 594, 595, 596, 597, 598, 630, 699, 704, 725, 729, 753, 756, 758, 786, 796, 830, 862, 863, 907, 908, 909, 910, 911, 914, 916, 990, 991, 992, 1000, 1002, 1004, 1005, 1006, 1016, 1021, 1026, 1031, 1044, 1048], "real_cov": [109, 110, 416, 466, 469, 470, 471, 472, 475, 476, 477], "real_data": 287, "realist": [44, 48, 265, 272, 273, 332, 366, 1000], "realiti": 367, "realiz": [206, 1024], "realli": [109, 185, 198, 375, 376, 377, 1000, 1006, 1024, 1045], "reappli": 410, "rearrang": [59, 60, 400], "reason": [44, 48, 52, 65, 77, 86, 102, 146, 149, 163, 183, 184, 188, 206, 207, 213, 223, 232, 236, 237, 239, 242, 257, 263, 264, 269, 276, 280, 283, 304, 308, 339, 347, 348, 354, 358, 359, 360, 366, 370, 371, 372, 373, 375, 379, 383, 384, 385, 386, 399, 402, 403, 404, 405, 408, 410, 411, 505, 529, 571, 572, 637, 645, 651, 653, 671, 686, 692, 764, 801, 815, 849, 854, 861, 880, 902, 921, 923, 924, 942, 943, 944, 989, 990, 995, 996, 997, 1000, 1002, 1003, 1004, 1006, 1010, 1014, 1015, 1016, 1024, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "reassign": [83, 371, 443, 445, 1032, 1036], "reassignment_ratio": 445, "rebalanc": 385, "rebas": [371, 375], "rebecca": 1038, "rebekah": [1039, 1040, 1041], "reboul": 1041, "rebuild": [358, 369, 397, 411, 438], "rebuilt": [69, 369, 845, 846], "rec": [58, 348, 366, 640], "rec_l1": 54, "rec_l2": 54, "rec_macro": 407, "recal": [2, 46, 63, 69, 102, 113, 125, 160, 180, 233, 242, 255, 257, 260, 261, 280, 301, 324, 325, 371, 385, 399, 402, 403, 501, 602, 700, 706, 707, 708, 712, 713, 728, 730, 731, 732, 783, 784, 785, 788, 789, 823, 831, 834, 866, 885, 889, 905, 996, 1016, 1021, 1034, 1035, 1038, 1040, 1041, 1043, 1044, 1045, 1047, 1048], "recalcul": [243, 245, 403, 1028, 1031], "recall_macro": [407, 1000], "recall_scor": [2, 63, 257, 270, 399, 407, 708, 785, 1000, 1031, 1033, 1034, 1035, 1036, 1041, 1047, 1051, 1052], "recant": 386, "receiv": [0, 2, 58, 180, 233, 239, 245, 255, 257, 258, 260, 348, 354, 371, 373, 379, 383, 385, 402, 407, 410, 501, 657, 702, 706, 708, 728, 783, 789, 790, 820, 828, 831, 833, 834, 872, 910, 1001, 1004, 1005, 1014, 1021, 1041, 1042], "recent": [53, 239, 369, 375, 376, 379, 383, 385, 403, 464, 535, 562, 1014, 1023, 1024, 1034, 1043], "recht": [640, 992], "recip": [375, 397, 997, 1024], "reciproc": [367, 1000], "reckon": 366, "recogn": [44, 45, 66, 84, 86, 116, 123, 161, 180, 207, 256, 287, 315, 324, 325, 377, 394, 403, 411, 499, 697, 713, 831, 910, 1000, 1021, 1048, 1052], "recognit": [43, 49, 55, 120, 180, 241, 301, 308, 364, 376, 408, 491, 499, 529, 531, 538, 697, 708, 713, 742, 770, 789, 790, 798, 815, 831, 885, 910, 992, 996, 1000, 1001, 1005, 1015, 1017, 1021, 1026, 1031], "recommend": [64, 103, 116, 139, 143, 151, 154, 155, 172, 178, 200, 222, 233, 234, 239, 244, 245, 246, 257, 259, 261, 262, 263, 272, 277, 301, 307, 309, 313, 314, 316, 317, 321, 322, 339, 358, 359, 365, 366, 369, 371, 373, 377, 379, 383, 389, 397, 399, 406, 408, 410, 412, 433, 434, 443, 445, 447, 456, 493, 505, 532, 535, 541, 546, 552, 553, 558, 559, 566, 580, 581, 587, 604, 610, 630, 631, 637, 657, 658, 669, 675, 692, 697, 698, 700, 702, 807, 813, 815, 824, 861, 868, 870, 877, 884, 885, 890, 891, 893, 894, 895, 896, 898, 907, 910, 949, 988, 989, 997, 1000, 1002, 1004, 1007, 1010, 1012, 1014, 1015, 1016, 1018, 1024, 1026, 1028, 1033, 1034, 1040, 1041, 1042, 1043, 1045, 1047], "recompil": [372, 377, 389], "recomput": [88, 89, 243, 245, 285, 312, 465, 470, 996, 1012, 1028, 1036, 1047], "reconstruct": [2, 43, 56, 59, 99, 120, 121, 125, 180, 205, 228, 229, 316, 397, 408, 411, 412, 478, 479, 480, 528, 530, 532, 534, 535, 536, 537, 539, 540, 542, 543, 545, 581, 585, 651, 671, 688, 689, 693, 897, 898, 996, 997, 1021, 1045], "reconstruct_from_patches_2d": [2, 123, 411, 581], "reconstruction_err_": [535, 537], "reconstruction_error": 688, "reconstruction_error_": 689, "record": [2, 51, 121, 138, 149, 185, 239, 257, 309, 348, 358, 371, 397, 403, 405, 446, 453, 495, 619, 642, 692, 772, 775, 779, 780, 781, 782, 828, 851, 1023, 1044, 1045], "recov": [75, 98, 113, 121, 122, 127, 143, 167, 182, 194, 205, 206, 210, 225, 276, 348, 405, 409, 412, 415, 456, 530, 556, 996, 997, 999, 1020, 1037], "recoveri": [52, 113, 194, 205, 405, 412, 645, 651], "recreat": 243, "rect": [48, 85, 190], "rect_colorbar": 303, "rect_histi": 303, "rect_histx": 303, "rect_scatt": 303, "rectangl": 48, "rectangular": [366, 385, 949, 1020], "rectifi": [243, 862, 863], "recurs": [2, 18, 53, 150, 157, 160, 163, 180, 258, 261, 262, 287, 324, 350, 403, 407, 436, 437, 438, 441, 459, 499, 512, 560, 591, 592, 595, 600, 631, 632, 657, 820, 865, 875, 1000, 1003, 1006, 1007, 1016, 1021, 1022, 1026, 1031, 1041, 1042], "recursionerror": 1049, "red": [49, 50, 51, 64, 70, 71, 93, 111, 118, 120, 121, 122, 137, 154, 155, 156, 176, 188, 190, 191, 204, 230, 243, 258, 269, 296, 299, 304, 308, 309, 326, 335, 352, 369, 385, 403, 408, 1001], "reda": 1037, "redden": 1042, "reddi": [1038, 1039, 1040, 1045, 1048, 1050], "redefin": [59, 146, 183], "redesign": [383, 1031], "redirects_en": 56, "redirects_filenam": 56, "redirects_url": 56, "redistribut": 438, "redo": 347, "reduc": [2, 38, 44, 47, 77, 80, 81, 86, 103, 104, 109, 137, 146, 148, 149, 152, 154, 160, 183, 190, 191, 194, 204, 210, 211, 213, 234, 236, 239, 242, 244, 253, 257, 261, 262, 263, 264, 270, 280, 292, 305, 308, 309, 317, 347, 348, 354, 363, 365, 368, 371, 377, 383, 385, 397, 401, 402, 403, 405, 407, 408, 410, 411, 412, 414, 440, 441, 446, 453, 456, 490, 531, 541, 546, 552, 553, 554, 555, 561, 562, 570, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 609, 626, 642, 651, 671, 672, 673, 674, 686, 692, 695, 702, 782, 790, 801, 804, 805, 807, 815, 824, 826, 827, 828, 829, 832, 874, 875, 882, 894, 897, 898, 905, 906, 913, 914, 915, 916, 989, 992, 994, 995, 996, 997, 1000, 1003, 1012, 1013, 1015, 1017, 1031, 1033, 1034, 1035, 1036, 1037, 1040, 1041, 1042, 1043, 1045, 1047, 1049], "reduce_dim": [104, 244, 262, 404], "reduce_dim__k": 104, "reduce_dim__n_compon": [104, 262, 404], "reduce_func": [782, 1042], "reduced_data": 91, "reducer_label": 104, "reduct": [2, 11, 46, 58, 64, 87, 90, 101, 105, 116, 120, 128, 137, 139, 141, 152, 154, 156, 180, 185, 224, 226, 227, 230, 236, 240, 262, 275, 284, 291, 293, 314, 316, 319, 332, 352, 353, 354, 358, 363, 403, 404, 406, 408, 410, 412, 464, 478, 479, 480, 481, 499, 527, 529, 531, 532, 535, 536, 537, 538, 541, 544, 546, 554, 555, 556, 557, 561, 562, 563, 597, 605, 688, 689, 690, 691, 692, 693, 782, 801, 831, 847, 854, 861, 865, 866, 875, 885, 903, 905, 913, 914, 915, 916, 992, 997, 1012, 1016, 1019, 1020, 1021, 1022, 1024, 1026, 1032, 1033, 1034, 1037, 1045, 1046, 1047], "redund": [63, 65, 130, 162, 249, 254, 319, 354, 367, 370, 371, 376, 385, 401, 512, 633, 1043, 1051], "redundantli": 385, "ref": [52, 64, 103, 104, 139, 141, 143, 151, 154, 155, 156, 160, 172, 183, 184, 185, 192, 233, 234, 235, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 352, 353, 371, 379, 990, 1037], "ref_lin": 434, "refactor": [316, 423, 1031, 1033, 1034, 1035, 1041, 1044, 1045, 1046, 1052], "refer": [44, 45, 52, 64, 73, 74, 93, 96, 103, 104, 111, 126, 134, 139, 141, 143, 147, 149, 151, 154, 155, 156, 163, 165, 172, 176, 183, 184, 185, 196, 223, 233, 234, 239, 242, 243, 244, 246, 253, 257, 261, 262, 263, 268, 269, 270, 275, 277, 286, 293, 301, 303, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 347, 352, 353, 359, 365, 366, 368, 369, 371, 372, 373, 374, 376, 377, 378, 379, 383, 384, 385, 386, 389, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 410, 411, 412, 414, 415, 416, 433, 434, 435, 436, 438, 439, 440, 441, 442, 443, 444, 446, 447, 448, 449, 450, 453, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 470, 471, 495, 500, 508, 510, 512, 513, 514, 515, 516, 517, 525, 527, 528, 529, 530, 531, 532, 533, 534, 535, 537, 538, 541, 544, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 567, 588, 591, 592, 593, 600, 605, 606, 609, 610, 613, 618, 621, 622, 626, 627, 630, 631, 633, 634, 635, 636, 637, 638, 641, 642, 643, 644, 646, 648, 650, 652, 654, 655, 657, 660, 662, 664, 665, 666, 667, 670, 672, 674, 675, 677, 678, 681, 682, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 700, 701, 702, 704, 705, 707, 708, 709, 710, 712, 714, 715, 716, 717, 718, 719, 720, 721, 722, 724, 725, 726, 727, 728, 730, 731, 732, 735, 736, 737, 738, 739, 741, 742, 744, 757, 759, 760, 770, 784, 786, 787, 789, 790, 793, 794, 796, 798, 799, 801, 802, 803, 804, 805, 806, 807, 815, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 835, 836, 840, 841, 842, 844, 847, 850, 851, 852, 854, 861, 862, 863, 865, 870, 871, 872, 874, 875, 877, 878, 879, 881, 882, 883, 885, 886, 893, 898, 899, 900, 901, 902, 903, 905, 907, 908, 910, 911, 913, 914, 915, 916, 936, 942, 943, 944, 949, 967, 989, 990, 992, 993, 994, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1020, 1023, 1031, 1035, 1036, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "referenc": [368, 371, 373, 379, 385, 897, 898, 1003, 1038, 1044], "references_": 882, "refin": [52, 63, 113, 468, 1000], "refit": [103, 104, 154, 160, 162, 165, 180, 204, 244, 253, 255, 262, 263, 264, 267, 270, 271, 275, 385, 402, 407, 413, 499, 564, 565, 626, 658, 664, 713, 801, 804, 805, 815, 823, 831, 910, 989, 996, 1000, 1021, 1038, 1039, 1040, 1049], "refit_strategi": 261, "refit_time_": [801, 804, 805, 815, 1039], "refitstep": [103, 104, 244, 253, 257, 261, 262, 263, 275], "refittingth": [103, 104, 244, 253, 257, 261, 262, 263], "reflect": [52, 75, 80, 81, 111, 118, 121, 143, 184, 185, 204, 206, 223, 287, 347, 367, 370, 371, 375, 385, 388, 400, 407, 446, 452, 625, 922, 997, 1000, 1006, 1008, 1032, 1040, 1049, 1051], "reformul": 370, "refrain": [207, 371, 383], "refurbish": 7, "refus": [257, 383, 895, 896], "reg": [147, 183, 191, 239, 304, 313, 340, 410, 555, 557, 565, 649, 650, 652, 653, 654, 655, 656, 662, 663, 664, 666, 669, 670, 677, 678, 689, 693, 916, 996, 1036], "reg1": [156, 410], "reg2": [156, 410], "reg3": [156, 410], "reg_covar": [248, 253, 798, 799], "reg_nnl": 203, "reg_ol": 203, "reg_param": [547, 1050], "regard": [11, 45, 47, 51, 53, 86, 88, 103, 125, 126, 139, 155, 167, 172, 184, 185, 198, 208, 227, 233, 234, 238, 242, 244, 246, 262, 265, 272, 273, 277, 286, 301, 313, 316, 322, 347, 366, 371, 372, 376, 383, 385, 391, 397, 403, 408, 410, 411, 413, 439, 443, 448, 455, 458, 498, 613, 618, 631, 655, 657, 697, 698, 700, 701, 702, 744, 799, 807, 823, 824, 829, 847, 848, 993, 996, 1000, 1002, 1003, 1005, 1007, 1014, 1015, 1016, 1038, 1041], "regardless": [103, 139, 155, 223, 233, 234, 244, 246, 257, 262, 264, 265, 266, 272, 277, 301, 313, 316, 322, 359, 371, 403, 532, 631, 632, 657, 704, 715, 1000, 1012, 1039, 1046, 1047], "regedit": 389, "regener": 870, "regex": [263, 348, 460, 462], "regexp": [264, 586, 587, 589], "regim": [44, 385, 905, 906, 999], "region": [52, 56, 60, 63, 67, 72, 81, 82, 86, 89, 99, 123, 155, 174, 180, 183, 206, 223, 232, 236, 237, 254, 295, 306, 335, 342, 368, 378, 385, 403, 410, 413, 414, 444, 446, 452, 458, 585, 997, 1000, 1003, 1006, 1010, 1014, 1016, 1021], "region_1": 309, "region_2": 309, "regist": [194, 346, 377], "register_parallel_backend": [1039, 1049], "registri": [369, 389, 1019], "regr": [404, 551, 553, 562, 645, 646, 666, 838, 863, 906, 908, 911, 1015], "regr_1": [135, 352], "regr_2": [135, 352], "regr_3": 352, "regr_multirf": 153, "regr_rf": 153, "regress": [2, 14, 20, 23, 25, 32, 41, 47, 50, 54, 63, 64, 65, 67, 73, 87, 101, 103, 111, 112, 114, 121, 122, 123, 133, 134, 137, 139, 140, 141, 143, 144, 145, 148, 149, 150, 153, 154, 161, 163, 166, 168, 176, 178, 179, 180, 182, 183, 184, 185, 186, 189, 192, 193, 194, 195, 197, 202, 203, 207, 209, 210, 211, 212, 216, 221, 231, 233, 234, 241, 242, 244, 246, 257, 259, 262, 271, 274, 275, 276, 277, 278, 280, 282, 284, 286, 299, 300, 301, 303, 304, 308, 309, 310, 313, 314, 315, 316, 317, 319, 321, 330, 342, 344, 346, 349, 350, 353, 359, 360, 363, 364, 366, 368, 371, 373, 376, 379, 380, 383, 384, 385, 398, 401, 405, 406, 407, 408, 410, 412, 426, 433, 460, 461, 470, 480, 485, 486, 489, 493, 498, 499, 501, 502, 509, 513, 514, 515, 521, 525, 528, 532, 534, 536, 538, 539, 540, 542, 543, 545, 549, 550, 551, 552, 553, 554, 555, 556, 557, 559, 561, 562, 563, 564, 567, 590, 591, 592, 593, 594, 595, 596, 597, 598, 602, 603, 604, 607, 609, 610, 613, 614, 621, 622, 624, 630, 631, 632, 633, 634, 636, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 694, 701, 706, 721, 724, 725, 729, 742, 743, 746, 747, 748, 749, 750, 751, 752, 753, 754, 786, 791, 792, 801, 804, 805, 807, 815, 824, 828, 829, 831, 832, 834, 836, 838, 839, 847, 848, 853, 855, 856, 862, 863, 865, 866, 869, 870, 872, 878, 879, 880, 882, 885, 886, 889, 894, 906, 907, 908, 910, 911, 912, 913, 914, 915, 916, 917, 919, 923, 925, 931, 934, 936, 953, 989, 990, 992, 995, 997, 1007, 1008, 1010, 1011, 1019, 1020, 1021, 1022, 1023, 1024, 1026, 1028, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "regression_data": 47, "regression_model": 1038, "regression_test": 379, "regressioncriterion": 1039, "regressionregressionrandomizedpcarandom": 391, "regressor": [2, 31, 44, 107, 116, 147, 153, 154, 156, 167, 172, 179, 180, 183, 189, 191, 193, 194, 203, 204, 206, 207, 209, 212, 222, 223, 239, 243, 278, 288, 308, 313, 314, 344, 358, 371, 373, 383, 385, 401, 404, 413, 426, 429, 430, 432, 461, 478, 479, 480, 481, 521, 548, 549, 550, 551, 552, 553, 554, 555, 557, 559, 562, 563, 564, 565, 566, 567, 603, 604, 607, 610, 631, 632, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 668, 669, 671, 672, 677, 678, 701, 833, 834, 837, 838, 839, 848, 856, 861, 862, 863, 866, 872, 880, 885, 886, 906, 908, 911, 913, 914, 915, 916, 919, 923, 924, 925, 940, 942, 989, 990, 996, 1000, 1001, 1003, 1008, 1014, 1019, 1021, 1022, 1026, 1031, 1032, 1036, 1037, 1038, 1040, 1041, 1044, 1045, 1046, 1048, 1050, 1051], "regressor_": [183, 461, 591, 592, 595], "regressor__sample_weight": 206, "regressor_tag": 924, "regressor_with_": 182, "regressor_without_": 182, "regressorchain": [2, 394, 836, 838, 1039, 1042, 1046, 1051], "regressormixin": [2, 183, 239, 373, 385, 461, 925, 1042, 1050], "regressortag": [2, 924], "regular": [2, 52, 63, 65, 67, 68, 72, 90, 92, 93, 94, 103, 104, 105, 110, 125, 133, 139, 142, 143, 144, 145, 147, 151, 152, 154, 155, 160, 167, 168, 169, 171, 174, 176, 178, 180, 182, 189, 190, 191, 193, 194, 196, 197, 198, 199, 203, 204, 206, 215, 218, 219, 221, 223, 233, 234, 238, 243, 244, 245, 246, 249, 253, 255, 256, 257, 259, 261, 262, 263, 264, 265, 267, 270, 277, 288, 289, 297, 299, 300, 301, 305, 306, 307, 308, 309, 313, 314, 316, 317, 322, 329, 330, 332, 334, 335, 336, 339, 340, 343, 346, 348, 350, 358, 371, 383, 384, 401, 403, 405, 406, 408, 409, 410, 413, 433, 439, 443, 467, 468, 472, 474, 475, 476, 477, 501, 509, 511, 512, 517, 519, 521, 525, 535, 536, 537, 540, 544, 545, 547, 556, 558, 559, 586, 587, 589, 637, 642, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 686, 689, 693, 736, 742, 751, 798, 799, 818, 824, 831, 832, 862, 863, 866, 885, 905, 906, 907, 908, 910, 911, 912, 989, 990, 992, 993, 994, 995, 997, 999, 1005, 1006, 1010, 1013, 1014, 1015, 1021, 1022, 1024, 1026, 1031, 1032, 1033, 1035, 1036, 1040, 1041, 1043, 1044, 1049, 1051, 1052], "regularis": [210, 416, 469, 471], "regularizationimprov": [154, 183], "regularizationstrength": 183, "regularli": [142, 280, 383, 1002], "regulatori": 149, "rehan": 1046, "rehberg": 1051, "rehman": 1039, "reiichiro": [1038, 1039], "reilli": 1048, "reimburs": 257, "reimplement": [377, 383, 385, 1037, 1041], "reinforc": 1020, "reinit": 379, "reiniti": 383, "reinstal": 389, "reintroduc": 1047, "reitsam": 1043, "reject": [240, 257, 269, 385, 386, 520, 670, 728, 931, 932, 996, 1000, 1039], "rel": [44, 46, 48, 56, 59, 64, 65, 88, 94, 104, 125, 139, 141, 154, 156, 172, 183, 185, 186, 188, 191, 206, 223, 244, 251, 262, 275, 276, 289, 290, 304, 313, 314, 316, 319, 326, 335, 339, 346, 347, 352, 353, 366, 370, 373, 379, 385, 401, 403, 407, 410, 411, 413, 436, 439, 443, 445, 455, 518, 521, 528, 531, 534, 538, 542, 543, 554, 555, 556, 557, 561, 562, 563, 602, 648, 657, 658, 670, 671, 673, 730, 747, 748, 801, 804, 805, 807, 815, 824, 829, 832, 845, 846, 850, 862, 863, 874, 875, 885, 901, 905, 906, 907, 910, 912, 913, 914, 915, 916, 996, 997, 1000, 1002, 1003, 1004, 1006], "relabel": [370, 819, 820, 902], "relat": [8, 43, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 181, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 365, 366, 367, 370, 371, 373, 375, 376, 378, 379, 380, 383, 385, 386, 388, 394, 397, 399, 402, 403, 404, 405, 406, 407, 408, 410, 413, 446, 460, 465, 493, 546, 547, 559, 560, 638, 672, 676, 692, 701, 724, 744, 822, 828, 852, 863, 864, 866, 869, 870, 875, 878, 880, 881, 884, 893, 909, 958, 989, 992, 994, 1000, 1001, 1003, 1004, 1007, 1010, 1015, 1016, 1017, 1020, 1021, 1023, 1026, 1031, 1035, 1036, 1037, 1039, 1040, 1043, 1044, 1047], "relate_point": 293, "relationship": [2, 44, 53, 59, 134, 135, 149, 173, 182, 183, 190, 194, 197, 200, 206, 208, 209, 269, 270, 277, 282, 304, 310, 319, 403, 405, 407, 458, 493, 635, 714, 997, 1000, 1002, 1003, 1007, 1008, 1036], "relative_tim": 251, "relativelylarg": 243, "relatonship": 402, "relax": [47, 403, 411, 449, 1013, 1038], "releas": [0, 55, 88, 103, 132, 138, 139, 141, 151, 163, 165, 178, 179, 184, 185, 186, 188, 196, 206, 208, 234, 239, 243, 244, 245, 246, 257, 258, 259, 275, 277, 285, 309, 327, 359, 369, 371, 372, 374, 379, 383, 385, 411, 439, 442, 443, 460, 463, 486, 487, 493, 498, 499, 501, 509, 512, 518, 521, 535, 538, 554, 558, 559, 561, 562, 564, 597, 600, 608, 627, 629, 631, 633, 639, 645, 647, 651, 657, 668, 675, 679, 688, 697, 701, 702, 717, 718, 733, 743, 749, 779, 789, 796, 800, 801, 802, 804, 805, 807, 815, 823, 824, 827, 828, 831, 847, 849, 865, 866, 870, 875, 878, 879, 880, 884, 885, 886, 902, 903, 905, 910, 913, 914, 924, 932, 942, 944, 988, 1016, 1021, 1023, 1031, 1032, 1033, 1034, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "release_highlight": 1021, "relev": [47, 49, 58, 104, 108, 112, 127, 163, 180, 190, 202, 209, 244, 262, 263, 264, 270, 275, 354, 358, 360, 366, 368, 370, 371, 373, 376, 377, 385, 386, 394, 405, 406, 412, 413, 433, 439, 440, 443, 445, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 530, 531, 533, 535, 538, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 588, 609, 610, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 727, 741, 757, 800, 802, 803, 804, 805, 808, 810, 819, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 865, 868, 870, 871, 872, 877, 883, 884, 885, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 1000, 1001, 1006, 1017, 1020, 1021, 1034, 1039, 1045], "reli": [125, 140, 143, 163, 186, 196, 198, 280, 283, 313, 317, 346, 358, 359, 373, 376, 379, 380, 383, 385, 399, 400, 403, 408, 410, 411, 546, 591, 595, 605, 606, 779, 829, 832, 870, 954, 967, 989, 992, 994, 996, 1000, 1003, 1008, 1010, 1015, 1024, 1039, 1040, 1041, 1045, 1047, 1048, 1051], "reliabl": [2, 63, 65, 321, 401, 407, 434, 435, 645, 1000, 1016, 1024], "relianc": [125, 210], "religion": [58, 264, 346, 347, 348, 366, 1001], "reloc": 1040, "relova": 1044, "relu": [243, 862, 863], "remain": [48, 63, 65, 103, 134, 141, 143, 145, 147, 154, 162, 172, 183, 184, 185, 204, 206, 210, 221, 234, 244, 248, 261, 264, 265, 269, 272, 275, 309, 313, 316, 321, 328, 400, 403, 404, 405, 407, 411, 442, 460, 463, 512, 513, 518, 525, 531, 567, 609, 610, 764, 770, 804, 805, 806, 809, 811, 840, 841, 842, 844, 953, 989, 990, 992, 999, 1000, 1004, 1010, 1016, 1020, 1033, 1039, 1045, 1048], "remaind": [44, 103, 143, 154, 183, 184, 185, 198, 206, 208, 223, 234, 242, 244, 309, 313, 316, 317, 350, 404, 460, 463, 1031, 1038, 1039, 1040, 1043, 1044, 1047, 1049], "remainderpassthroughpassthroughhistgradientboostingregressor": 143, "remaining_column": 460, "remainingnon": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "remark": [88, 116, 163, 257, 360, 371, 1010], "remedi": 222, "rememb": [88, 321, 373, 375, 376, 389, 411, 1003, 1007, 1016], "remi": 1038, "remind": [239, 386], "reminisc": 123, "remot": [188, 325, 371, 374], "remov": [1, 2, 45, 55, 56, 87, 88, 102, 103, 104, 107, 139, 143, 154, 155, 156, 161, 163, 172, 178, 179, 183, 184, 185, 186, 201, 233, 234, 244, 246, 257, 262, 264, 277, 301, 303, 309, 310, 312, 313, 314, 316, 319, 321, 322, 346, 347, 350, 354, 363, 366, 370, 371, 372, 373, 375, 376, 380, 385, 389, 396, 403, 404, 407, 410, 411, 413, 414, 423, 438, 440, 446, 453, 460, 463, 484, 485, 531, 532, 538, 550, 564, 565, 566, 567, 577, 586, 587, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 610, 629, 643, 646, 652, 653, 654, 655, 657, 658, 660, 662, 665, 666, 678, 698, 700, 702, 712, 732, 743, 779, 780, 781, 807, 824, 829, 830, 832, 836, 839, 852, 864, 865, 869, 870, 882, 883, 885, 894, 902, 920, 929, 931, 932, 942, 943, 944, 966, 990, 997, 1003, 1016, 1022, 1026, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "remove_zero_eig": [532, 1033, 1040], "rempfler": 1042, "renaissance0n": [1049, 1050], "renam": [103, 126, 139, 143, 147, 154, 183, 184, 185, 186, 234, 244, 253, 264, 309, 312, 313, 316, 371, 375, 403, 443, 455, 460, 467, 468, 474, 524, 533, 550, 551, 552, 553, 554, 555, 560, 561, 562, 563, 698, 700, 702, 779, 878, 929, 931, 932, 1031, 1032, 1033, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050, 1051], "rename_axi": 263, "render": [52, 64, 86, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 183, 184, 185, 192, 203, 210, 233, 234, 235, 239, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 326, 352, 353, 371, 373, 375, 376, 377, 385, 548, 587, 630, 700, 702, 882, 894, 917, 919, 999, 1016, 1044, 1048, 1050], "rene": 1044, "renni": [2, 840, 842, 1002, 1039], "renorm": [64, 433], "rent": 44, "rental": [44, 53, 184, 1007], "reorder": [59, 385, 697, 718, 1039], "reordered_data": 59, "reordered_row": 59, "reorgan": 1037, "rep": 368, "reparameter": 1015, "reparametr": 342, "repartit": 44, "repeat": [2, 50, 70, 99, 110, 112, 145, 163, 167, 173, 174, 184, 188, 208, 257, 258, 263, 264, 275, 280, 325, 347, 348, 373, 380, 385, 386, 400, 401, 403, 408, 411, 412, 554, 555, 586, 591, 605, 606, 614, 626, 633, 658, 806, 816, 817, 820, 937, 990, 999, 1016, 1026, 1039, 1041, 1050], "repeatedkfold": [2, 183, 407, 806, 817, 1038], "repeatedli": [134, 204, 316, 354, 385, 403, 410, 413, 505, 543, 665, 666, 675, 676, 677, 782, 990, 997, 1004], "repeatedstrat": 263, "repeatedstratifiedkfold": [2, 263, 277, 280, 407, 816, 820, 1038, 1050], "repercuss": 308, "repetit": [263, 277, 280, 376, 407, 816, 817, 1008, 1045], "replac": [2, 44, 63, 67, 103, 111, 124, 134, 149, 150, 154, 167, 172, 174, 178, 184, 185, 195, 207, 234, 244, 246, 264, 266, 283, 305, 310, 313, 314, 316, 321, 337, 344, 369, 371, 375, 377, 380, 385, 397, 404, 407, 410, 411, 437, 441, 460, 500, 512, 552, 553, 560, 580, 586, 587, 588, 589, 605, 606, 626, 629, 633, 638, 640, 712, 729, 786, 807, 813, 815, 824, 864, 865, 868, 888, 901, 902, 908, 921, 923, 969, 970, 973, 989, 990, 992, 996, 997, 1000, 1010, 1015, 1016, 1019, 1031, 1032, 1033, 1035, 1036, 1037, 1038, 1039, 1041, 1042, 1043, 1044, 1046, 1047, 1048, 1050], "replace_undefined_bi": [266, 712, 1000, 1051], "replacementi": 150, "replai": [275, 804, 805], "repli": [55, 346, 370, 371, 374], "replic": [263, 370, 1026], "repo": [371, 375, 1020, 1023], "report": [0, 2, 44, 48, 53, 69, 102, 107, 160, 172, 175, 196, 257, 261, 271, 277, 280, 312, 321, 324, 354, 366, 370, 372, 373, 374, 377, 379, 383, 385, 389, 397, 403, 407, 610, 648, 657, 663, 684, 685, 700, 713, 730, 731, 739, 784, 785, 788, 834, 843, 862, 863, 900, 918, 996, 1003, 1008, 1019, 1020, 1023, 1032, 1035, 1038, 1039, 1041, 1042, 1044, 1046, 1047, 1050], "reporthook": 48, "repositori": [44, 48, 53, 188, 257, 318, 364, 366, 368, 369, 371, 373, 375, 379, 383, 386, 389, 501, 1019, 1023, 1026], "repr": [575, 1042, 1043, 1045, 1052], "repreat": 263, "repres": [44, 48, 50, 52, 53, 55, 59, 64, 67, 69, 71, 73, 79, 82, 83, 86, 103, 104, 120, 122, 128, 129, 139, 141, 143, 150, 154, 183, 184, 185, 190, 200, 208, 210, 211, 214, 227, 229, 234, 237, 242, 243, 244, 251, 253, 256, 257, 260, 261, 262, 263, 264, 266, 270, 272, 288, 305, 309, 313, 316, 328, 339, 346, 348, 353, 360, 363, 366, 368, 373, 383, 384, 385, 386, 397, 401, 403, 407, 408, 409, 410, 411, 412, 434, 438, 442, 448, 459, 466, 467, 468, 469, 470, 471, 472, 484, 486, 487, 489, 491, 493, 495, 497, 498, 499, 501, 502, 507, 524, 531, 533, 535, 537, 538, 544, 547, 552, 560, 579, 586, 589, 592, 628, 630, 631, 633, 639, 675, 677, 687, 697, 699, 701, 711, 728, 731, 744, 790, 801, 803, 814, 815, 818, 821, 823, 828, 830, 831, 834, 835, 841, 847, 848, 849, 851, 852, 853, 855, 856, 857, 862, 863, 872, 878, 879, 902, 905, 906, 931, 932, 953, 990, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1008, 1010, 1011, 1013, 1014, 1016, 1037, 1039, 1042, 1043, 1046, 1049], "represent": [2, 44, 52, 56, 59, 64, 86, 103, 104, 120, 123, 139, 141, 143, 150, 151, 152, 154, 155, 156, 160, 172, 183, 185, 188, 192, 194, 225, 226, 227, 233, 235, 239, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 280, 293, 301, 309, 314, 316, 317, 319, 326, 347, 348, 352, 353, 354, 363, 365, 374, 385, 397, 403, 404, 408, 409, 410, 417, 459, 528, 532, 534, 537, 539, 545, 563, 586, 588, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 629, 642, 645, 651, 657, 658, 659, 661, 665, 666, 667, 675, 676, 677, 770, 798, 799, 807, 824, 861, 874, 878, 879, 883, 885, 898, 905, 917, 919, 922, 928, 945, 967, 992, 997, 999, 1001, 1003, 1004, 1005, 1007, 1010, 1015, 1020, 1031, 1032, 1035, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "representth": [104, 160, 270], "reproduc": [45, 52, 93, 103, 104, 134, 143, 150, 151, 154, 155, 156, 160, 172, 183, 184, 188, 192, 196, 243, 244, 245, 253, 257, 261, 262, 263, 270, 272, 275, 280, 301, 309, 314, 317, 322, 359, 370, 371, 373, 374, 379, 383, 385, 403, 407, 408, 411, 415, 436, 450, 456, 465, 470, 484, 487, 489, 492, 494, 500, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 532, 533, 534, 535, 536, 537, 538, 540, 541, 542, 543, 544, 548, 550, 551, 552, 553, 556, 557, 558, 559, 560, 605, 606, 609, 610, 633, 638, 639, 640, 641, 645, 646, 649, 651, 652, 653, 659, 660, 661, 662, 665, 666, 667, 670, 675, 677, 678, 689, 690, 692, 693, 694, 794, 798, 799, 802, 803, 804, 805, 806, 807, 813, 815, 816, 817, 818, 819, 820, 821, 829, 830, 831, 835, 836, 839, 850, 854, 861, 862, 863, 870, 882, 886, 894, 897, 898, 905, 906, 907, 910, 948, 949, 970, 973, 992, 1019, 1023, 1031, 1039, 1044, 1045], "reproduct": [383, 996], "request": [2, 48, 56, 80, 206, 223, 239, 315, 321, 359, 365, 369, 370, 374, 385, 386, 394, 397, 399, 408, 411, 412, 433, 439, 440, 443, 445, 461, 478, 479, 480, 530, 533, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 588, 597, 598, 609, 610, 631, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 699, 800, 802, 803, 808, 810, 819, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 865, 868, 870, 871, 872, 877, 884, 885, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 957, 958, 960, 1003, 1023, 1037, 1038, 1039, 1048, 1049, 1050], "request_rout": 239, "requir": [31, 32, 44, 47, 54, 63, 64, 80, 86, 88, 90, 91, 102, 103, 104, 124, 126, 139, 140, 141, 143, 144, 147, 149, 150, 151, 154, 156, 160, 163, 183, 184, 185, 194, 198, 206, 225, 227, 233, 234, 236, 239, 242, 243, 244, 246, 253, 257, 261, 262, 263, 264, 270, 272, 274, 275, 277, 283, 285, 303, 308, 309, 313, 314, 315, 316, 317, 319, 321, 322, 346, 347, 348, 352, 353, 365, 368, 369, 371, 372, 373, 377, 379, 383, 385, 386, 389, 390, 394, 397, 399, 403, 404, 405, 408, 410, 411, 412, 414, 420, 426, 433, 434, 435, 440, 442, 446, 448, 453, 458, 460, 463, 465, 478, 479, 480, 493, 505, 518, 521, 532, 538, 546, 547, 548, 550, 552, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 566, 569, 577, 578, 579, 600, 609, 610, 618, 626, 631, 632, 633, 642, 645, 646, 651, 652, 657, 658, 665, 666, 667, 670, 673, 674, 675, 676, 677, 685, 689, 691, 692, 693, 695, 699, 725, 730, 731, 748, 750, 753, 764, 784, 785, 788, 800, 801, 804, 805, 808, 810, 815, 823, 828, 833, 834, 835, 836, 837, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 855, 856, 857, 862, 863, 865, 866, 867, 869, 879, 880, 881, 885, 893, 897, 898, 900, 901, 905, 906, 907, 910, 913, 914, 915, 916, 922, 924, 925, 931, 932, 942, 944, 958, 961, 967, 985, 988, 989, 994, 995, 996, 997, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1010, 1014, 1015, 1016, 1020, 1028, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "requires_fit": [924, 983, 1050, 1051], "requires_i": [420, 426, 988, 1042], "requires_positive_x": [1041, 1046], "requires_vector_input": [611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624], "requiresthem": [103, 139, 143, 154, 160, 183, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322], "rerais": 1048, "rerun": [52, 64, 77, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 183, 184, 185, 192, 233, 234, 235, 239, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 326, 352, 353, 379], "resampl": [2, 85, 146, 183, 223, 287, 380, 383, 385, 552, 553, 973, 1020, 1040, 1044, 1051], "resampled_arrai": 970, "rescal": [44, 80, 81, 88, 125, 192, 196, 228, 242, 303, 344, 405, 410, 415, 465, 466, 467, 468, 469, 470, 471, 472, 530, 535, 645, 648, 651, 709, 877, 883, 907, 908, 909, 910, 911, 1000, 1010, 1035, 1036, 1050], "rescaled_coin": [80, 81], "rescu": [397, 411], "research": [0, 163, 182, 257, 263, 269, 280, 366, 368, 383, 403, 498, 510, 634, 644, 692, 736, 830, 835, 989, 996, 997, 1001, 1003, 1015, 1020, 1024], "resembl": [100, 210, 239], "reserv": [143, 151, 154, 257, 309, 317, 322, 371, 558, 559, 1024], "reserva": 309, "reservoir": 969, "reservoir_sampl": 969, "reset": [246, 354, 373, 379, 531, 675, 676, 677, 845, 846, 874, 875, 885, 988, 1033], "reset_n_cal": [845, 846], "reshama": [0, 356, 361, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1049, 1050, 1051], "reshap": [2, 44, 45, 46, 54, 62, 69, 80, 81, 83, 84, 86, 87, 91, 104, 111, 115, 120, 123, 129, 137, 142, 152, 161, 167, 169, 170, 171, 172, 173, 174, 176, 190, 199, 218, 219, 221, 222, 226, 228, 230, 232, 237, 241, 252, 261, 287, 289, 296, 298, 300, 301, 304, 305, 306, 310, 312, 315, 316, 318, 319, 321, 329, 334, 335, 340, 343, 383, 400, 408, 410, 411, 441, 461, 582, 630, 733, 831, 880, 884, 996, 1010, 1016, 1036], "resid": 366, "residence_sinc": 257, "residenti": 154, "residu": [2, 107, 183, 208, 259, 426, 461, 478, 479, 480, 549, 551, 553, 555, 557, 559, 562, 565, 567, 610, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 670, 671, 672, 673, 677, 678, 684, 685, 701, 745, 786, 838, 839, 848, 856, 863, 906, 908, 911, 914, 916, 996, 1000, 1043, 1044, 1046, 1051], "residual_metr": 1037, "residual_threshold": [222, 670, 996, 1044], "residual_vs_predict": [44, 53, 107, 259, 317, 701], "residues_": 1036, "resign": 386, "resili": 411, "resist": [111, 112, 371], "resiz": [46, 80, 81, 243, 366, 490, 491], "resolut": [44, 51, 56, 129, 184, 295, 296, 335, 386, 401, 1041], "resolv": [56, 370, 374, 375, 379, 386, 411, 442, 448, 458, 691, 695, 949, 990, 1000, 1038, 1040, 1041, 1044, 1049], "resort": [265, 366, 397, 552, 1041], "resourc": [0, 56, 77, 146, 149, 178, 206, 300, 314, 357, 374, 383, 384, 385, 402, 410, 804, 805, 989, 1001, 1020, 1024, 1026, 1039, 1044, 1045, 1050], "resourcewarn": 1034, "resp": [366, 410, 595, 798, 799, 1039], "respect": [65, 88, 100, 103, 104, 125, 126, 134, 138, 140, 142, 143, 151, 154, 165, 175, 183, 184, 185, 188, 190, 194, 198, 208, 219, 222, 225, 227, 233, 234, 236, 238, 242, 244, 253, 257, 262, 272, 289, 290, 301, 308, 309, 313, 316, 317, 321, 322, 332, 339, 353, 358, 359, 366, 367, 371, 401, 403, 406, 408, 410, 411, 413, 442, 460, 463, 466, 467, 468, 469, 470, 471, 472, 531, 537, 538, 544, 550, 558, 559, 595, 609, 610, 611, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 627, 635, 642, 670, 690, 694, 712, 729, 783, 786, 798, 799, 841, 851, 862, 863, 917, 919, 988, 989, 993, 994, 996, 1000, 1003, 1004, 1005, 1006, 1010, 1014, 1015, 1019, 1023, 1024, 1034, 1036, 1037, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050], "respond": [183, 371, 403], "respons": [0, 26, 163, 184, 206, 209, 239, 253, 273, 276, 346, 368, 371, 373, 385, 403, 404, 410, 442, 460, 478, 479, 480, 564, 565, 630, 631, 632, 673, 674, 698, 700, 702, 743, 798, 799, 1000, 1001, 1007, 1048], "response_method": [49, 67, 71, 89, 136, 150, 155, 200, 214, 219, 257, 266, 286, 291, 294, 308, 320, 331, 332, 334, 339, 344, 351, 630, 631, 632, 698, 700, 702, 743, 800, 823, 1000, 1048, 1050, 1051], "rest": [2, 31, 63, 64, 67, 103, 104, 139, 147, 155, 160, 180, 189, 194, 220, 233, 234, 239, 242, 244, 245, 246, 251, 257, 261, 262, 263, 270, 277, 280, 301, 312, 313, 314, 316, 322, 332, 377, 385, 401, 413, 433, 509, 609, 630, 643, 657, 658, 675, 755, 789, 833, 834, 835, 854, 905, 907, 910, 996, 1000, 1001, 1004, 1007, 1015, 1021, 1024, 1035, 1036, 1045, 1046, 1047, 1049, 1051], "restart": [90, 172, 173, 374, 379, 443, 528, 534, 535, 540, 542, 543, 609, 610, 997, 1044], "restor": [104, 464, 874, 875, 1034, 1039, 1040, 1041, 1042, 1046, 1051], "restrict": [2, 65, 67, 99, 105, 154, 178, 180, 183, 200, 220, 222, 297, 373, 377, 401, 403, 410, 411, 461, 490, 499, 529, 579, 609, 652, 653, 654, 655, 657, 681, 682, 713, 775, 779, 783, 789, 790, 831, 853, 855, 856, 857, 859, 861, 862, 863, 865, 891, 1000, 1016, 1021, 1025, 1026, 1031, 1033, 1041, 1043, 1048, 1050], "restructuredtext": 371, "result": [0, 2, 28, 38, 44, 45, 46, 49, 53, 54, 58, 62, 63, 64, 67, 69, 71, 73, 75, 77, 78, 79, 80, 86, 87, 88, 93, 95, 99, 100, 103, 104, 105, 107, 112, 116, 120, 123, 125, 130, 137, 138, 139, 141, 143, 144, 146, 147, 150, 151, 152, 153, 155, 160, 162, 163, 167, 169, 171, 172, 173, 175, 178, 183, 184, 185, 186, 191, 195, 197, 198, 200, 203, 207, 208, 210, 213, 219, 220, 223, 225, 226, 229, 232, 234, 235, 237, 243, 244, 248, 253, 254, 256, 257, 258, 261, 263, 264, 266, 269, 270, 271, 272, 273, 274, 275, 277, 280, 283, 285, 289, 298, 299, 300, 303, 304, 305, 308, 312, 313, 314, 316, 317, 318, 319, 320, 321, 324, 327, 329, 335, 339, 340, 342, 346, 348, 353, 358, 359, 360, 365, 366, 368, 371, 375, 376, 377, 379, 383, 384, 385, 386, 397, 399, 400, 401, 403, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 428, 436, 437, 439, 441, 442, 443, 446, 447, 448, 449, 450, 451, 453, 455, 458, 460, 463, 465, 466, 467, 468, 469, 470, 471, 472, 475, 485, 505, 506, 508, 510, 528, 529, 530, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 548, 549, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 566, 577, 578, 579, 580, 582, 586, 587, 589, 605, 606, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 629, 630, 631, 633, 635, 639, 642, 651, 652, 657, 663, 664, 665, 666, 674, 675, 676, 677, 685, 689, 690, 691, 692, 693, 694, 695, 702, 708, 710, 711, 712, 717, 726, 727, 729, 730, 731, 732, 733, 737, 738, 739, 755, 757, 758, 765, 772, 775, 779, 780, 781, 782, 784, 785, 786, 788, 790, 794, 795, 798, 799, 801, 803, 804, 805, 806, 811, 815, 816, 817, 820, 821, 826, 832, 833, 834, 836, 837, 838, 839, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 867, 869, 870, 878, 879, 882, 883, 886, 894, 898, 902, 905, 907, 910, 913, 914, 915, 916, 917, 918, 931, 932, 942, 948, 949, 951, 956, 966, 967, 970, 973, 990, 992, 994, 995, 996, 997, 999, 1000, 1001, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1012, 1014, 1015, 1016, 1019, 1020, 1023, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "results_df": [213, 262, 263, 309], "results_for_preval": 266, "results_sc": 342, "results_underfit": 143, "retail": 1024, "retain": [2, 103, 139, 143, 154, 183, 184, 190, 234, 244, 313, 316, 385, 403, 406, 407, 411, 433, 439, 440, 443, 445, 461, 478, 479, 480, 491, 530, 533, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 609, 610, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 695, 696, 800, 802, 803, 808, 810, 819, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 865, 868, 870, 871, 872, 877, 878, 884, 885, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 989, 1013, 1031], "retbin": 1010, "retent": [590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601], "retrac": 239, "retract": 371, "retrain": [397, 1020, 1047, 1049], "retri": [185, 321, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 1039, 1045, 1049, 1050], "retriev": [2, 116, 183, 210, 270, 347, 353, 375, 385, 408, 411, 412, 464, 493, 588, 591, 592, 625, 652, 662, 683, 699, 727, 731, 733, 734, 757, 782, 840, 844, 877, 903, 996, 998, 1000, 1002, 1019, 1020, 1036, 1041, 1043, 1045, 1048], "return": [2, 31, 44, 46, 47, 48, 50, 51, 53, 54, 56, 58, 62, 63, 65, 70, 71, 73, 75, 86, 89, 94, 102, 103, 104, 107, 118, 126, 127, 129, 132, 134, 137, 139, 143, 145, 146, 149, 150, 154, 155, 160, 163, 165, 170, 172, 173, 175, 178, 179, 183, 184, 185, 186, 190, 191, 196, 198, 200, 206, 207, 213, 214, 215, 223, 234, 239, 242, 243, 244, 245, 246, 251, 253, 257, 258, 259, 260, 261, 262, 263, 264, 266, 267, 270, 275, 278, 283, 288, 293, 296, 301, 303, 305, 308, 309, 312, 313, 314, 316, 320, 326, 328, 331, 335, 346, 348, 350, 353, 358, 364, 365, 366, 371, 372, 373, 377, 378, 380, 383, 385, 399, 401, 402, 403, 404, 407, 408, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 927, 928, 929, 931, 932, 934, 935, 936, 937, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 967, 968, 969, 970, 971, 972, 973, 974, 980, 983, 984, 985, 986, 987, 988, 990, 997, 1000, 1003, 1007, 1008, 1015, 1016, 1028, 1031, 1032, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "return_a": [583, 584, 967, 1034], "return_cent": [509, 1042], "return_cod": 543, "return_cost": [467, 468, 474], "return_count": [327, 347, 857], "return_cov": [385, 564, 565, 610, 865, 1052], "return_dist": [87, 459, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 1003, 1035], "return_distribut": [118, 520], "return_estim": [44, 183, 273, 277, 319, 322, 407, 702, 828, 1039], "return_ind": 520, "return_indic": [273, 322, 407, 702, 828, 1047], "return_inner_stat": 1045, "return_intercept": [686, 1040], "return_invers": [148, 373], "return_log": [845, 846], "return_model": [1033, 1035], "return_n_it": [415, 450, 455, 474, 542, 543, 645, 646, 651, 652, 659, 660, 661, 662, 680, 681, 682, 683, 684, 685, 686, 694, 1045], "return_norm": [892, 1038], "return_path": [681, 682, 684, 685], "return_std": [167, 172, 173, 174, 176, 190, 191, 385, 549, 564, 565, 610, 612, 613, 614, 615, 624, 626, 643, 644, 865, 1038, 1039, 1043, 1048, 1052], "return_sum_weight": 980, "return_tim": [265, 829, 1041], "return_train_scor": [103, 104, 140, 244, 253, 257, 261, 262, 263, 267, 275, 277, 309, 407, 801, 804, 805, 815, 828, 1037, 1038, 1040], "return_x_i": [45, 47, 55, 91, 102, 103, 104, 105, 120, 140, 143, 156, 159, 178, 179, 185, 186, 188, 196, 197, 198, 199, 204, 220, 221, 233, 241, 242, 245, 246, 259, 262, 265, 270, 271, 280, 282, 285, 292, 299, 300, 301, 308, 312, 314, 316, 317, 318, 319, 327, 338, 348, 350, 364, 376, 377, 384, 397, 403, 404, 407, 410, 412, 415, 423, 442, 484, 485, 486, 487, 489, 491, 492, 493, 494, 497, 498, 499, 501, 502, 507, 512, 529, 530, 531, 532, 555, 558, 559, 564, 565, 590, 593, 594, 596, 597, 598, 599, 600, 609, 618, 619, 621, 622, 637, 638, 657, 658, 667, 672, 673, 674, 687, 688, 689, 690, 691, 693, 695, 701, 711, 789, 804, 805, 807, 833, 838, 849, 854, 857, 914, 915, 916, 990, 995, 1000, 1001, 1002, 1003, 1010, 1028, 1037, 1039, 1041, 1044, 1051], "return_x_mean": 415, "returndens": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "returnpredict": 183, "returnsmatrix": 155, "reuben": 1031, "reus": [53, 64, 103, 139, 141, 143, 150, 151, 154, 155, 156, 167, 185, 192, 201, 233, 234, 243, 244, 246, 257, 262, 264, 275, 277, 301, 309, 312, 313, 316, 317, 319, 322, 348, 373, 385, 403, 404, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 633, 645, 647, 648, 651, 657, 659, 661, 665, 666, 667, 668, 675, 676, 677, 679, 862, 863, 1003, 1008, 1012, 1024, 1038, 1048], "reuter": [358, 366], "reuters21578": 48, "reuterspars": 48, "rev": [371, 605, 606], "revamp": [321, 373, 1041], "reveal": [44, 53, 183, 185, 346, 377, 399, 400, 997, 1047], "revers": [107, 163, 172, 211, 263, 407, 531, 538, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 610, 790, 865, 1000, 1031, 1032, 1041, 1043, 1047], "revert": [121, 399, 629, 631, 632, 1028, 1038, 1043, 1048], "review": [280, 309, 358, 366, 373, 374, 376, 377, 383, 386, 407, 408, 532, 538, 1000, 1010], "revillet": 1031, "revis": [386, 669], "revisit": [403, 414, 440], "revolv": 997, "reward": 371, "reweight": [134, 264, 347, 385, 405, 410, 588, 589, 647, 668, 679, 1050], "reweight_covari": [465, 470], "rewrit": [377, 383, 1016, 1031], "rewritten": [371, 648, 1033, 1035], "rey": 1046, "reza": 1041, "rezazadeh": 1044, "rf": [139, 140, 153, 156, 185, 312, 354, 410, 564, 566, 567], "rf_": 139, "rf_123": 354, "rf__n_estim": 410, "rf_appli": 139, "rf_applyfunctiontransform": 139, "rf_cst": 319, "rf_inst": 354, "rf_leaves_yield": 139, "rf_model": 139, "rf_no_cst": 319, "rf_pipelin": 154, "rfc": [65, 245, 312, 1028], "rfc_disp": [245, 312, 1028], "rfe": [2, 161, 162, 394, 412, 592, 595, 600, 1031, 1035, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1050], "rfecv": [2, 162, 394, 412, 591, 595, 600, 1035, 1037, 1039, 1041, 1042, 1043, 1044, 1047, 1048, 1049, 1050, 1051], "rfrandomforestregressor": 156, "rgb": [366, 411, 490, 491, 581, 582, 585], "rgr_lasso": 54, "rgr_ridg": 54, "rhinehart": 1038, "rho": [216, 408, 676, 996, 1014, 1032], "rho_k": 409, "ri": [403, 705, 787], "ribeiro": [588, 731, 1044], "ricardo": [1034, 1044, 1045, 1048], "ricardojnf": 1044, "riccadonna": 744, "riccardo": [1042, 1048], "rice": [51, 296, 366, 495, 1044], "rich": [85, 149, 379, 383, 403, 435, 1024, 1042, 1045], "richard": [366, 412, 657, 1032, 1041, 1043, 1045, 1046, 1049, 1051], "richardscottoz": 1044, "richer": [85, 129, 403], "richi": 1039, "rick": 1042, "ricker": 129, "ricker_funct": 129, "ricker_matrix": 129, "rickiepark": 1038, "rid": [49, 1014], "riddel": [1034, 1036, 1038], "ridg": [2, 25, 45, 50, 54, 87, 107, 121, 137, 154, 163, 166, 172, 174, 178, 180, 182, 183, 184, 189, 190, 194, 201, 203, 206, 207, 212, 222, 231, 241, 276, 304, 341, 342, 346, 358, 383, 399, 408, 410, 413, 498, 521, 532, 536, 540, 610, 614, 621, 624, 642, 643, 644, 646, 648, 651, 656, 660, 672, 673, 674, 677, 686, 701, 751, 786, 801, 807, 815, 831, 838, 911, 1000, 1001, 1008, 1010, 1014, 1015, 1021, 1022, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1040, 1041, 1044, 1045, 1046, 1047, 1049, 1050], "ridge_alpha": [536, 540, 1038], "ridge_cv": 107, "ridge_cv_with_trans_target": 107, "ridge_glm": 206, "ridge_regress": [2, 1039, 1040, 1046], "ridgeclassifi": [2, 346, 358, 671, 672, 674, 996, 1001, 1036, 1040, 1044, 1045, 1046, 1049], "ridgeclassifiercv": [2, 394, 672, 673, 789, 996, 1000, 1001, 1039, 1041, 1042, 1044, 1045, 1049, 1050], "ridgecv": [2, 44, 107, 154, 163, 183, 241, 385, 394, 410, 565, 642, 671, 674, 996, 1001, 1031, 1033, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1049, 1050], "ridgecvridgecv": 183, "ridgeridg": 183, "ridgewai": [145, 410], "riedmann": 1043, "ries": 1045, "rifkin": 996, "right": [46, 47, 51, 52, 54, 55, 64, 68, 71, 77, 78, 79, 84, 86, 93, 95, 97, 100, 110, 111, 113, 118, 122, 123, 125, 126, 127, 129, 134, 136, 137, 138, 139, 141, 146, 147, 148, 149, 154, 156, 159, 167, 170, 179, 185, 186, 197, 207, 208, 209, 210, 212, 215, 216, 222, 232, 235, 236, 244, 248, 250, 251, 253, 254, 257, 258, 259, 260, 263, 266, 270, 273, 274, 275, 276, 277, 288, 296, 298, 301, 303, 305, 308, 314, 318, 319, 325, 335, 337, 339, 342, 344, 346, 351, 352, 353, 354, 371, 373, 379, 383, 384, 386, 400, 401, 402, 403, 406, 408, 409, 410, 413, 460, 478, 479, 480, 481, 531, 538, 541, 554, 555, 556, 557, 558, 559, 561, 562, 563, 585, 611, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 634, 675, 677, 700, 702, 870, 913, 914, 915, 916, 917, 935, 949, 989, 992, 994, 996, 998, 1000, 1002, 1003, 1004, 1007, 1012, 1014, 1015, 1016, 1024, 1026, 1033, 1039, 1045, 1047, 1048, 1050], "right_impur": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353, 554, 555, 556, 557, 561, 562, 563, 913, 914, 915, 916], "rightarrow": [413, 618, 1004], "rijn": [365, 1039], "rileran": 1045, "rio": [1041, 1043, 1044, 1045], "riou": 1050, "ripe": 309, "rise": 172, "rishab": 1051, "rishabh": 1045, "rishi": 1043, "rishikesh": 1038, "risk": [16, 49, 88, 149, 154, 206, 210, 223, 304, 342, 354, 370, 371, 385, 397, 402, 407, 410, 564, 565, 890, 891, 893, 894, 895, 896, 996, 1000, 1024, 1038], "riski": 223, "riskiest": [206, 223], "ritchi": 1042, "rithvik": 1043, "ritter": [1045, 1046], "ritual": 346, "ritvi": 1052, "rival": [44, 902, 1013], "rk": 98, "rkf": [407, 816], "rl2007": 996, "rlm": 1041, "rm": [111, 170, 375, 379, 405, 645], "rmse": [44, 53, 112, 149, 309, 1000, 1042], "rmse_": 309, "rmse_test_mean": 309, "rmse_test_scor": 309, "rmse_test_std": 309, "rmse_train_mean": 309, "rmse_train_scor": 309, "rmse_train_std": 309, "rmsle": 1000, "rmtree": [87, 104, 404], "rna": 383, "rnd": 304, "rng": [45, 59, 60, 68, 71, 73, 79, 83, 95, 112, 116, 120, 122, 127, 135, 146, 149, 150, 151, 153, 155, 167, 168, 171, 173, 174, 176, 178, 179, 182, 185, 190, 191, 192, 193, 194, 198, 202, 207, 208, 219, 228, 232, 238, 239, 241, 248, 258, 266, 269, 274, 275, 295, 298, 307, 310, 313, 314, 316, 318, 319, 324, 325, 328, 329, 338, 344, 352, 354, 359, 373, 376, 394, 416, 466, 470, 471, 472, 474, 475, 476, 477, 642, 648, 669, 671, 677, 686, 813, 840, 841, 842, 844, 845, 846, 850, 853, 855, 856, 857, 882, 894, 897, 898, 900, 901, 902, 911], "ro": 64, "road": 383, "rob": [1031, 1032, 1033, 1035, 1036, 1037, 1038, 1039, 1043, 1046], "robert": [0, 163, 196, 280, 368, 393, 408, 525, 532, 627, 655, 721, 724, 725, 736, 871, 990, 996, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1041, 1046, 1049, 1050], "roberto": [403, 438, 1049, 1050, 1052], "robertson": 1044, "robin": [178, 179, 626, 990, 1037, 1040, 1045, 1046], "robinson": 1044, "robl": 1038, "robson": 1041, "robust": [2, 49, 71, 94, 96, 108, 110, 127, 144, 146, 156, 163, 179, 180, 183, 184, 189, 208, 210, 222, 232, 242, 278, 303, 318, 360, 368, 379, 403, 410, 411, 442, 444, 465, 466, 467, 468, 469, 470, 471, 472, 521, 531, 556, 557, 648, 656, 669, 670, 677, 678, 751, 835, 866, 880, 882, 883, 894, 900, 947, 1000, 1004, 1006, 1010, 1013, 1014, 1019, 1021, 1022, 1024, 1025, 1026, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1047, 1050, 1051], "robust_contour": 111, "robust_cov": 111, "robust_mah": 111, "robust_scal": [2, 883, 894, 1039], "robustli": [8, 209], "robustscal": [2, 178, 179, 242, 882, 895, 990, 1010, 1036, 1037, 1039, 1041, 1042, 1043, 1047], "roc": [2, 51, 63, 67, 139, 163, 180, 231, 233, 242, 243, 255, 257, 258, 265, 319, 320, 378, 401, 402, 407, 501, 507, 561, 657, 702, 706, 707, 708, 728, 783, 789, 790, 820, 828, 831, 834, 872, 910, 1006, 1021, 1028, 1033, 1034, 1036, 1037, 1041, 1043, 1047, 1051], "roc_auc": [51, 67, 163, 263, 267, 272, 273, 378, 633, 702, 734, 1000, 1028], "roc_auc_ovo": [1000, 1041], "roc_auc_ovo_weight": [1000, 1041], "roc_auc_ovr": [1000, 1041], "roc_auc_ovr_weight": [1000, 1041], "roc_auc_scor": [2, 63, 67, 163, 263, 272, 312, 319, 702, 706, 707, 708, 790, 1000, 1033, 1034, 1039, 1041, 1045, 1046, 1050], "roc_auc_test": 67, "roc_curv": [2, 51, 233, 260, 272, 399, 702, 706, 728, 783, 789, 1000, 1031, 1032, 1033, 1036, 1037, 1039, 1044, 1047, 1049, 1052], "roc_displai": 233, "rocchio": [346, 852], "rocco": [1044, 1045, 1046], "roccurvedisplai": [2, 139, 242, 245, 257, 260, 272, 273, 312, 322, 378, 789, 790, 1006, 1028, 1041, 1047, 1048, 1049, 1050, 1051], "rocher": 1051, "rock": 112, "rocklin": [370, 376], "roddi": [1040, 1041], "rodent": [51, 296, 366, 495], "roderick": 990, "rodion": 1044, "rodrigo": [1039, 1049], "rodrigu": [1038, 1039, 1044], "rodr\u00edguez": 309, "roeder": 1041, "roehr": [1047, 1048], "roei": 1043, "roeschk": 1040, "roger": [724, 1038, 1039, 1043], "rogerstanimoto": [446, 453, 699, 779, 780, 781, 1003], "rogerstanimotodist": 699, "rohan": [1036, 1037, 1039, 1040, 1044], "rohit": [1034, 1035, 1039, 1040], "roi": [1031, 1045], "roi_siz": 87, "roic": 1046, "rok": 1041, "rokem": [1031, 1037], "rokhlin": [532, 538, 949], "roland": [1033, 1034], "rolando": [1032, 1033], "rolandrmgservic": 1051, "role": [0, 272, 358, 370, 408], "roll": [2, 180, 224, 225, 230, 374, 403, 527, 692, 693, 942, 997, 1021, 1024, 1041, 1046], "rolling_max": 53, "rolling_mean": 53, "rolling_min": 53, "romain": [1038, 1043], "roman": [0, 393, 626, 919, 1033, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1048], "roman4oo": 1046, "romaniuk": 1035, "romero": 1049, "romijnd": 1043, "romuald": 1040, "ron": [0, 393, 1031], "ronald": [366, 1004, 1034, 1044], "ronan": [1031, 1034, 1039], "ronchetti": [648, 996], "rong": 1015, "ronrubin": [663, 684, 685, 996], "ronsin": [1039, 1040, 1048], "room": [303, 366, 376, 403, 1023], "roopam": [1039, 1040], "root": [2, 44, 104, 111, 143, 149, 151, 154, 163, 192, 244, 257, 262, 309, 317, 322, 353, 368, 371, 379, 403, 438, 498, 538, 558, 559, 560, 638, 791, 792, 913, 914, 915, 916, 917, 919, 1000, 1006, 1016, 1033, 1039, 1040, 1041, 1042, 1045, 1046, 1050], "root_": 438, "root_mean_squared_error": [2, 53, 149, 399, 1000, 1048, 1050, 1051], "root_mean_squared_log_error": [2, 399, 1000, 1048, 1050, 1051], "rope": 263, "rope_interv": 263, "rope_prob": 263, "rori": 1042, "rosa": 1046, "rosal": 407, "rosati": [1049, 1050], "rose": 366, "rosenberg": [403, 717, 738, 796], "rosenfeld": 1039, "ross": [531, 605, 606, 1016, 1045, 1046], "rosset": [134, 410, 516, 550], "rossi": 1034, "rosslimlinyang_ijcv": 531, "rostamizadeh": 989, "rostomyan": 1039, "rotat": [48, 75, 119, 120, 122, 125, 127, 145, 180, 186, 228, 274, 275, 282, 335, 341, 406, 408, 413, 415, 501, 529, 538, 547, 613, 697, 885, 917, 996, 1021, 1042, 1043], "rotation_mod": 274, "rotations_": 547, "roth": [1036, 1039, 1046], "rough": [26, 391, 1006], "roughli": [134, 146, 198, 254, 273, 283, 308, 358, 385, 408, 411, 516, 997, 1031], "rouli": 1034, "round": [47, 49, 63, 64, 67, 115, 140, 141, 149, 154, 156, 165, 178, 179, 185, 223, 244, 262, 263, 269, 275, 305, 307, 319, 346, 385, 446, 452, 453, 561, 562, 591, 592, 595, 626, 692, 694, 713, 803, 813, 870, 902, 917, 919, 990, 1004, 1016, 1033, 1035, 1037, 1039, 1040, 1042, 1044, 1045, 1047, 1048], "rounded_list": 813, "rouseeuw1984": 470, "rousseeuw": [111, 112, 403, 405, 465, 470, 793, 794, 1006], "rousseuw": [111, 112], "rout": [2, 103, 132, 139, 143, 154, 160, 180, 183, 185, 192, 231, 233, 234, 243, 244, 246, 257, 264, 270, 277, 309, 313, 316, 320, 322, 373, 417, 420, 423, 426, 427, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 800, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 958, 959, 960, 961, 983, 1021, 1026, 1045, 1047], "route_param": [239, 958], "routed_param": [239, 961], "router": [2, 239, 385, 394, 958, 959, 960, 961], "routerconsumerclassifi": 239, "routerconsumerclassifierifit": 239, "routermappingpair": 958, "routin": [183, 319, 360, 365, 368, 371, 372, 373, 374, 379, 383, 385, 412, 671, 673, 686, 848, 907, 908, 909, 910, 911, 997, 1003, 1010, 1011, 1014, 1024, 1031, 1045, 1046, 1047, 1052], "routlei": 1037, "rouvinen": 1036, "roux": [657, 996, 1013], "row": [2, 44, 58, 59, 60, 63, 65, 71, 79, 93, 103, 104, 107, 118, 139, 140, 142, 143, 152, 154, 155, 178, 183, 184, 206, 207, 208, 233, 234, 236, 242, 243, 244, 257, 264, 305, 313, 316, 353, 358, 366, 373, 380, 384, 385, 400, 403, 406, 411, 418, 438, 439, 443, 445, 446, 447, 449, 452, 453, 455, 460, 464, 484, 486, 487, 489, 490, 491, 492, 497, 498, 499, 501, 502, 507, 508, 510, 523, 531, 539, 545, 548, 588, 589, 619, 627, 631, 642, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 692, 696, 697, 710, 718, 719, 726, 759, 760, 764, 767, 769, 770, 771, 772, 774, 775, 777, 779, 780, 781, 782, 798, 799, 834, 840, 841, 842, 843, 844, 850, 853, 854, 855, 856, 857, 860, 871, 875, 877, 878, 880, 890, 891, 892, 895, 896, 899, 903, 922, 927, 931, 932, 949, 970, 973, 977, 979, 981, 982, 985, 986, 989, 990, 992, 994, 996, 998, 1000, 1001, 1003, 1010, 1011, 1014, 1015, 1020, 1038, 1039, 1040, 1041, 1046], "row_compl": 58, "row_id_attribut": 365, "row_idx": [60, 206], "row_idx_shuffl": 59, "row_ind": [418, 447, 449], "row_indic": 149, "row_labels_": [58, 59, 60, 400, 447, 449], "row_norm": 251, "rowan": 1046, "rowei": [689, 693, 854, 997, 1003], "rows_": [58, 400, 418, 447, 449], "royal": [538, 626, 881, 893, 1014], "royalblu": 328, "rp": 236, "rpath": 369, "rr2007": 992, "rragundez": 1039, "rsalakhu": 643, "rsh": [275, 314], "rskf": 817, "rsnegrin": 1045, "rsplit": [46, 56, 264], "rst": [359, 371, 375, 379, 1031], "rstride": 184, "rt": 139, "rt_model": 139, "rtn": 52, "rtol": [373, 845, 846, 850], "ruben": 1046, "rubi": 1043, "rubia": 1034, "rubial": 1044, "rubin": 990, "rubinstein": [663, 684, 685], "rubric": [371, 997], "ruchitagard": 1041, "rudi": 1037, "rudresh": 1046, "ruff": [371, 389, 396], "ruifeng": [1037, 1038, 1043], "ruin": 371, "ruiter": 1046, "rule": [2, 13, 28, 44, 65, 140, 155, 188, 200, 257, 262, 351, 353, 354, 358, 368, 371, 372, 373, 375, 383, 385, 386, 398, 399, 401, 402, 403, 407, 408, 410, 412, 533, 546, 547, 548, 549, 550, 566, 567, 644, 645, 646, 651, 652, 657, 658, 659, 660, 661, 662, 665, 666, 667, 675, 676, 677, 680, 683, 706, 707, 709, 854, 905, 918, 989, 994, 1002, 1003, 1014, 1016, 1026, 1033, 1036, 1043, 1048, 1052], "ruleset": 1016, "rumelhart": 1004, "rumsfeld": [46, 366], "run": [44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 369, 371, 372, 373, 375, 376, 377, 378, 379, 383, 385, 386, 389, 390, 397, 399, 403, 405, 410, 413, 414, 415, 433, 439, 440, 442, 443, 445, 446, 447, 448, 449, 450, 451, 453, 454, 455, 458, 460, 463, 464, 467, 468, 528, 529, 530, 531, 532, 534, 536, 538, 539, 540, 542, 543, 545, 552, 553, 554, 555, 560, 561, 562, 563, 564, 565, 566, 567, 580, 590, 592, 593, 594, 596, 597, 598, 600, 609, 610, 629, 633, 639, 645, 646, 648, 650, 651, 652, 654, 655, 659, 660, 661, 662, 681, 682, 688, 689, 690, 691, 692, 693, 694, 782, 801, 804, 805, 807, 815, 823, 824, 826, 827, 828, 829, 830, 832, 837, 838, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 862, 863, 864, 867, 900, 901, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 922, 942, 943, 944, 970, 973, 989, 999, 1001, 1004, 1013, 1015, 1016, 1019, 1020, 1024, 1031, 1034, 1036, 1038, 1039, 1040, 1041, 1045, 1046, 1047, 1050], "run_histori": 48, "run_id": 94, "run_tim": [220, 221], "runabl": 371, "rung": 1010, "runnabl": [55, 375, 376], "runner": 1050, "runningfit": [104, 244, 262], "runof": 172, "runtim": [31, 48, 50, 91, 103, 104, 134, 150, 160, 195, 220, 222, 237, 244, 245, 261, 263, 270, 301, 305, 314, 359, 369, 373, 383, 385, 397, 403, 410, 446, 560, 678, 815, 903, 905, 906, 907, 908, 909, 910, 911, 1014, 1015, 1034, 1038, 1039, 1045, 1046, 1048, 1049, 1050], "runtime_histori": 48, "runxfail": 379, "rupesh": 1034, "rush": [44, 53, 371], "rushabh": 1042, "rushil": [1046, 1047], "russ": [627, 990], "russel": [1037, 1038], "russellrao": [446, 453, 699, 779, 780, 781, 1003], "russellraodist": 699, "russian": 411, "ruth": 1041, "rutter": 1044, "ruusmann": 1037, "rv": [0, 103, 275, 805, 813, 815, 989, 1031, 1032, 1035, 1036, 1037, 1038, 1039], "rv_discrete_frozen": 275, "rvd": [465, 470], "rvdriessen": [465, 470], "rw2006": [413, 609, 610], "rwelsch427": [1049, 1050], "ryad": 1037, "ryan": [1034, 1037, 1039, 1040], "ryb": 351, "ryder": 52, "ryotaro": 1043, "r\u00e9mi": 1051, "r\u00e9my": 1037, "r\u00fcdiger": [1039, 1040, 1042], "s1": [121, 163, 175, 196, 198, 368], "s2": [121, 163, 175, 196, 198, 368, 547], "s22": 495, "s3": [58, 121, 163, 196, 198, 368], "s4": [163, 196, 198, 368], "s5": [163, 196, 198, 368, 1008], "s6": [163, 196, 198, 368], "s_": [121, 267, 996, 1008, 1010], "s__p": 865, "s_color": 225, "s_hessian": 225, "s_i": [403, 996, 1010], "s_ica_": 122, "s_isomap": 225, "s_j": 403, "s_ltsa": 225, "s_mod": 225, "s_pca_": 122, "s_point": 225, "s_scaling_class": 225, "s_scaling_metr": 225, "s_scaling_nonmetr": 225, "s_spectral": 225, "s_standard": 225, "s_t_sne": 225, "sa": [366, 489], "saaba": 1036, "saad": 1049, "sabharw": 1041, "sabri": 1046, "sach": 52, "sachdev": 1046, "sachdeva": 1038, "sachin": [1038, 1039, 1045], "sackei": 1041, "sacksick": 1051, "saclai": 0, "sacr": 1019, "sad": [819, 820], "sadak": 1043, "sadhana": 1039, "sadli": 146, "sadra": 1047, "sad\u0142ocha": 1044, "saeed": 1000, "saeger": [1036, 1037, 1038], "safari": 1010, "safe": [2, 73, 183, 198, 201, 257, 347, 371, 373, 403, 404, 428, 461, 505, 506, 564, 565, 591, 595, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 775, 779, 829, 830, 832, 864, 899, 967, 971, 1003, 1037, 1038, 1039, 1044, 1045, 1052], "safe_copi": 1038, "safe_index": [380, 1041], "safe_mask": [2, 380], "safe_realloc": 1034, "safe_sparse_dot": [2, 380, 1041, 1052], "safe_sqr": [2, 380], "safeguard": 397, "safer": [347, 354, 369, 403, 407, 996, 1031], "safest": [206, 223, 354, 365], "safeti": [102, 383, 404, 967, 1020, 1041], "safikh": 1046, "safiuddin": 1046, "sag": [103, 139, 155, 183, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322, 657, 658, 671, 673, 686, 996, 1014, 1036, 1037, 1038, 1040, 1041], "sag_solv": 1040, "saga": [103, 139, 155, 183, 199, 220, 221, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322, 657, 658, 671, 673, 686, 815, 996, 1038, 1040], "sagar": 1041, "sagnik": 1039, "saha": [1045, 1050, 1051], "sahil": 1047, "sahin": 1041, "sahu": 1043, "sai": [195, 232, 342, 346, 347, 371, 401, 403, 404, 408, 410, 411, 442, 443, 497, 501, 507, 676, 989, 1000, 1006, 1013, 1024, 1048, 1049], "said": [149, 183, 232, 264, 347, 366, 371, 793, 998, 1006], "saihttam": 1037, "sailesh": [1038, 1039], "saini": 1051, "saint": 1037, "saito": [408, 535, 537, 544, 1038], "saiw": 1037, "sake": [44, 65, 146, 149, 179, 183, 206, 308, 339, 346, 348, 379, 383, 669], "saket": [1035, 1036, 1043], "sakinaouisrani": 1045, "salahuddin": 1046, "salakhutdinov": [643, 854, 1003], "salamin": 1035, "saldanha": [1050, 1051], "sale": [0, 143, 242, 263, 1000, 1024], "saleem": 1041, "salerno": 368, "salim": [1048, 1049], "sallisaw": [404, 462], "salman": [0, 392, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "salmon": 996, "salt": [68, 237, 305, 1045], "salvator": [1031, 1045, 1046, 1048, 1049], "salz": 1038, "salzmann": [206, 223], "sam": [1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1045, 1046], "sambhav": 1042, "same": [2, 26, 44, 47, 48, 53, 59, 64, 71, 73, 75, 79, 86, 88, 90, 91, 97, 102, 103, 104, 118, 120, 122, 125, 127, 129, 135, 137, 139, 141, 143, 146, 147, 149, 151, 152, 154, 155, 163, 165, 167, 172, 183, 184, 185, 186, 195, 196, 198, 202, 206, 207, 208, 213, 223, 233, 234, 239, 243, 244, 246, 253, 257, 258, 259, 260, 261, 262, 263, 264, 266, 268, 269, 271, 275, 276, 277, 283, 286, 288, 300, 301, 303, 304, 306, 308, 309, 312, 313, 314, 316, 317, 319, 321, 322, 327, 328, 335, 346, 347, 348, 353, 354, 358, 359, 360, 365, 366, 368, 370, 371, 373, 375, 377, 379, 380, 383, 384, 385, 386, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 424, 428, 434, 435, 442, 446, 452, 461, 465, 466, 467, 468, 469, 470, 471, 472, 474, 490, 492, 493, 495, 501, 505, 506, 528, 529, 532, 533, 534, 535, 536, 537, 539, 540, 544, 546, 548, 549, 550, 551, 554, 556, 557, 558, 559, 561, 562, 564, 565, 587, 588, 600, 601, 604, 609, 610, 612, 621, 626, 627, 628, 631, 632, 645, 648, 651, 652, 654, 657, 658, 662, 665, 666, 667, 671, 672, 673, 674, 675, 676, 677, 683, 686, 698, 699, 702, 704, 705, 712, 713, 715, 717, 727, 728, 732, 733, 737, 756, 757, 758, 779, 780, 781, 787, 789, 793, 795, 796, 798, 799, 801, 802, 804, 805, 807, 809, 810, 815, 819, 820, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 847, 848, 849, 853, 855, 856, 857, 868, 869, 870, 874, 875, 877, 879, 880, 881, 882, 883, 884, 885, 887, 894, 905, 906, 913, 915, 926, 933, 937, 949, 967, 970, 973, 974, 984, 989, 990, 992, 994, 996, 997, 998, 999, 1000, 1001, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1014, 1015, 1016, 1019, 1020, 1028, 1031, 1032, 1033, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "same_kind": 1048, "samedata": 154, "sameord": [64, 141, 185, 244, 275, 319, 353], "samesh": [1041, 1042], "samm": [134, 410, 550, 1047, 1048], "samoocha": 1039, "sampl": [2, 28, 31, 38, 44, 45, 48, 51, 52, 54, 62, 63, 64, 65, 69, 70, 71, 73, 76, 77, 78, 80, 82, 86, 89, 90, 91, 92, 93, 98, 103, 104, 111, 112, 113, 116, 118, 120, 124, 125, 128, 129, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 149, 150, 151, 154, 155, 156, 160, 162, 163, 165, 167, 171, 172, 173, 174, 176, 178, 180, 183, 184, 185, 188, 189, 190, 194, 195, 196, 198, 200, 204, 206, 208, 210, 213, 215, 216, 217, 219, 221, 222, 223, 225, 232, 236, 237, 239, 240, 242, 243, 244, 248, 249, 251, 252, 253, 254, 255, 257, 258, 262, 263, 265, 266, 267, 269, 271, 275, 277, 278, 282, 283, 287, 288, 289, 290, 292, 293, 294, 296, 300, 301, 303, 305, 306, 307, 308, 309, 310, 312, 314, 315, 317, 319, 320, 322, 324, 326, 327, 328, 329, 330, 331, 333, 335, 337, 339, 340, 342, 346, 347, 351, 352, 353, 358, 364, 366, 367, 370, 371, 373, 374, 383, 384, 394, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 411, 412, 413, 414, 415, 420, 421, 422, 425, 426, 427, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 450, 452, 453, 454, 457, 458, 459, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 492, 494, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 582, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 605, 606, 609, 610, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 686, 688, 691, 692, 693, 695, 696, 697, 698, 699, 700, 701, 702, 703, 705, 707, 708, 709, 710, 712, 713, 714, 715, 716, 718, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 735, 736, 737, 738, 739, 740, 741, 742, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 761, 762, 764, 765, 769, 770, 771, 772, 774, 775, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 865, 868, 869, 870, 871, 874, 875, 876, 877, 878, 879, 880, 882, 883, 884, 885, 886, 890, 891, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 922, 927, 931, 932, 936, 937, 949, 953, 969, 970, 973, 974, 977, 980, 988, 989, 990, 992, 993, 994, 995, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1019, 1020, 1021, 1023, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "sample_i": [172, 176, 413, 610, 1045], "sample_id": [353, 366, 494], "sample_interv": 637, "sample_interval_": 1047, "sample_posterior": [626, 990], "sample_s": [91, 237, 347, 794], "sample_score_mean": 267, "sample_score_std": 267, "sample_silhouette_valu": 93, "sample_step": 637, "sample_weight": [62, 64, 103, 139, 141, 154, 155, 156, 185, 192, 206, 218, 223, 233, 234, 239, 244, 246, 257, 262, 275, 277, 301, 313, 314, 316, 318, 319, 322, 344, 352, 353, 371, 373, 385, 394, 399, 403, 410, 414, 420, 426, 433, 439, 440, 443, 445, 455, 456, 461, 465, 478, 479, 480, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 609, 610, 631, 632, 633, 634, 636, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 686, 697, 698, 700, 702, 703, 707, 708, 709, 712, 713, 716, 718, 720, 721, 722, 723, 724, 725, 727, 728, 729, 730, 731, 735, 736, 739, 740, 741, 742, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 757, 783, 784, 785, 786, 788, 789, 790, 791, 792, 795, 797, 800, 801, 815, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 865, 870, 884, 885, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 919, 936, 961, 970, 987, 996, 1000, 1014, 1015, 1016, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1049, 1051, 1052], "sample_weight1": 239, "sample_weight2": 239, "sample_weight_const": 344, "sample_weight_modifi": 344, "sample_weight_v": [322, 558, 559, 1051], "sample_weight_vect": 937, "sample_without_replac": [2, 380, 1037], "samples_weight": 218, "samplesi": 64, "samplewis": [755, 1000], "samplingfrom": 103, "samson": 1038, "samuel": [696, 1024, 1034, 1035, 1037, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1048], "samuela": 1034, "samu\u00ebl": 1038, "san": [163, 368, 411, 1012], "sanchez": [1039, 1040], "sanchitd": 1051, "sandbox": 397, "sandeep": 1043, "sander": [403, 414, 440, 442, 446, 453, 851, 1006, 1040, 1041], "sandi": 1044, "sandip": [1048, 1049], "sandra": [1040, 1046], "sandro": [1039, 1046], "sandrocasagrand": [1039, 1040], "sandrovskii": 1038, "sane": 373, "sangam": 1046, "sangamswadik": 1046, "sangeeth": 1040, "saniti": [139, 155, 374, 869, 1000, 1031, 1032], "sanjabi": 1041, "sanjai": 1045, "sanjai_3": [1046, 1047], "sanjoi": [899, 1012], "sano": 1045, "sanofi": 52, "santa": [175, 1046], "santana": [1042, 1045], "santhanam": 1039, "santhosh": 1042, "santhoshbala18": 1042, "santi": [1036, 1038, 1039], "santiago": [1042, 1050, 1051], "sap": 52, "sapiro": [408, 528, 534], "saqib": 1039, "sara": 1044, "sarah": [1038, 1040, 1043], "sarahremu": [1046, 1049], "sarajpoor": 1046, "sarat": 1042, "sarawagi": 784, "sarra": 1041, "sartaj": 1037, "sarthak": 1052, "sasank": 1037, "sascha": 1051, "sashka": [1046, 1047], "saskra": 1051, "sass": [371, 389, 396], "sassenhagen": [1043, 1048], "sat": [44, 149, 184, 411], "satellit": 1003, "satisfi": [403, 649, 653, 699, 717, 737, 738, 845, 846, 1000], "satish": 1039, "sato": 1034, "satrajit": [0, 393, 1031, 1032], "satur": [73, 183, 303], "saucedo": 1051, "sauerbrei": 1010, "sauerkraut": 411, "saul": [689, 693, 997, 1038, 1039, 1041], "saurabh": [1035, 1036, 1037, 1038, 1039, 1043], "sauvignon": 309, "saval": 1040, "savard": 1031, "save": [86, 102, 104, 242, 301, 370, 371, 375, 377, 378, 379, 385, 397, 407, 415, 464, 488, 531, 532, 626, 845, 846, 903, 996, 1000, 1010, 1016, 1024, 1028, 1031, 1034, 1038, 1041, 1049, 1051], "savefig": 67, "savings_statu": 257, "savkomax": 1046, "saw": [121, 207, 210], "sawadwuthikul": 1050, "sawtooth": 121, "say_hello": 962, "sc": [322, 365, 403], "scaja": 1048, "scala": 1020, "scalabl": [77, 79, 95, 180, 187, 237, 255, 317, 347, 371, 403, 410, 411, 444, 487, 499, 587, 639, 807, 818, 829, 831, 843, 866, 875, 877, 905, 907, 910, 911, 992, 995, 997, 1000, 1013, 1015, 1021, 1024, 1031, 1034, 1035, 1041, 1042, 1045, 1046], "scalar": [2, 103, 120, 143, 154, 183, 184, 185, 234, 244, 309, 313, 315, 316, 320, 377, 385, 399, 404, 413, 415, 460, 463, 521, 530, 614, 615, 616, 621, 622, 626, 627, 629, 739, 743, 927, 935, 992, 997, 1004, 1006, 1010, 1014, 1019, 1041, 1042, 1045, 1047, 1050, 1051, 1052], "scalarmapp": 67, "scale": [0, 2, 37, 44, 45, 52, 63, 64, 65, 73, 75, 78, 80, 81, 89, 91, 94, 103, 104, 110, 113, 116, 122, 125, 139, 144, 151, 154, 155, 160, 163, 167, 168, 169, 172, 173, 174, 175, 176, 178, 179, 180, 184, 188, 191, 192, 196, 199, 206, 208, 210, 219, 220, 221, 223, 224, 227, 232, 233, 234, 236, 238, 242, 243, 244, 245, 246, 253, 257, 260, 261, 262, 263, 264, 265, 266, 270, 277, 286, 288, 299, 300, 301, 302, 303, 307, 313, 314, 316, 318, 319, 322, 329, 330, 332, 335, 339, 354, 357, 358, 363, 364, 365, 368, 371, 376, 380, 383, 384, 385, 403, 404, 408, 410, 411, 412, 413, 433, 442, 443, 446, 447, 453, 460, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 498, 507, 511, 512, 521, 531, 535, 537, 538, 544, 546, 547, 558, 559, 580, 588, 589, 595, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 630, 631, 640, 643, 644, 645, 646, 648, 651, 657, 658, 659, 660, 661, 671, 673, 675, 676, 677, 680, 686, 687, 688, 689, 690, 692, 694, 699, 703, 709, 716, 742, 748, 758, 760, 770, 776, 778, 815, 818, 831, 832, 833, 845, 846, 847, 862, 863, 866, 869, 874, 875, 877, 880, 882, 883, 885, 890, 891, 892, 894, 895, 897, 898, 905, 906, 907, 908, 909, 910, 911, 974, 975, 976, 977, 980, 989, 992, 993, 996, 1000, 1001, 1002, 1003, 1004, 1008, 1014, 1015, 1020, 1021, 1024, 1025, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "scale_": [648, 874, 875, 883, 885, 895, 1010, 1036], "scale_by_half": [709, 1000, 1051], "scaled_clf": 308, "scaled_pca": 308, "scaled_x_train": 308, "scaler": [46, 103, 105, 139, 155, 161, 180, 183, 221, 222, 233, 234, 237, 242, 244, 246, 257, 262, 277, 286, 291, 301, 302, 307, 308, 313, 316, 317, 322, 335, 338, 354, 376, 404, 407, 486, 657, 658, 671, 673, 686, 865, 874, 875, 877, 881, 882, 883, 885, 890, 891, 892, 893, 894, 895, 896, 1004, 1010, 1014, 1021, 1031, 1036, 1039, 1044], "scaler2": 246, "scalewai": 379, "scaling_": 547, "scalings_": [546, 547], "scalingth": [104, 160, 270], "scanpi": 1048, "scarc": 328, "scatter": [44, 49, 51, 52, 62, 67, 68, 71, 74, 77, 78, 79, 82, 85, 89, 90, 91, 92, 93, 95, 100, 111, 116, 118, 122, 124, 125, 126, 128, 135, 136, 140, 142, 143, 150, 152, 153, 155, 158, 167, 168, 169, 171, 173, 174, 175, 176, 182, 183, 188, 191, 200, 204, 207, 208, 209, 214, 217, 218, 219, 222, 225, 226, 227, 228, 229, 230, 232, 237, 238, 240, 248, 249, 250, 251, 252, 253, 254, 258, 262, 264, 266, 278, 283, 286, 289, 290, 291, 292, 293, 294, 295, 298, 303, 305, 306, 308, 316, 326, 329, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 343, 344, 346, 351, 352, 367, 405, 630, 701, 994, 996], "scatter_": 701, "scatter_fig": 140, "scatter_handl": 200, "scatter_kwarg": [44, 53, 67, 107, 154, 183, 701], "scatter_label": 200, "scatter_trac": 140, "scatterplot": [115, 190, 263], "scatterpoint": [124, 128, 228, 250, 326], "scenario": [90, 102, 149, 167, 188, 210, 262, 266, 328, 354, 378, 389, 402, 407, 410, 413, 534, 540, 542, 543, 994, 1000, 1010, 1041], "scene": [368, 379, 1003, 1005, 1044], "schapir": [51, 280, 296, 366, 410, 495, 550, 551], "schedul": [149, 243, 299, 359, 375, 675, 676, 677, 862, 863, 1014, 1024, 1038], "scheidegg": 1031, "scheme": [103, 139, 155, 233, 234, 244, 246, 257, 262, 272, 277, 288, 301, 309, 310, 313, 316, 322, 366, 375, 385, 401, 403, 407, 409, 411, 563, 588, 657, 658, 705, 814, 848, 872, 873, 876, 878, 882, 886, 889, 894, 905, 910, 989, 1010, 1014, 1031, 1039, 1042, 1043, 1048, 1049, 1051], "scherer": 1037, "scheubrein": 1043, "schloss": 1000, "schl\u00fcter": [1031, 1039], "schmerler": 1046, "schmid": [759, 760, 998], "schmidt": [657, 996, 1034], "schmitt": [1041, 1042], "schmitz": 1048, "schneider": [346, 1044, 1049, 1050], "schoelkopf": 901, "schoentgen": [1039, 1040], "schofield": 1031, "schole": 1043, "scholkopf1997": 408, "scholkopf1998": 1010, "scholz": 1049, "school": [102, 172, 183, 368, 403, 789, 1000], "schreiber": [0, 393, 1036, 1037, 1038], "schroeder": [46, 366], "schubert": [403, 414, 440, 446, 1035, 1036, 1039, 1040, 1042, 1043, 1044, 1045, 1049], "schucker": 1037, "schuder": [1039, 1040, 1041], "schuetz": [840, 844], "schuldt": 1035, "schult": [56, 1051], "schulz": 1031, "schumach": [1034, 1035, 1036, 1050, 1051], "schut": 1031, "schwardt": 1031, "schwartz": [1031, 1033, 1045], "schwetlick": [1042, 1043], "sch\u00f6lkopf": [45, 408, 532, 871, 1006, 1010, 1015], "sch\u00f6nberger": [1033, 1034], "sch\u00fctze": [408, 588, 998, 1000, 1002], "sci": [58, 102, 346, 347, 348, 366, 383, 484, 689, 693, 876, 997, 1010], "scibol": 1042, "scienc": [0, 74, 111, 163, 175, 183, 280, 365, 368, 383, 403, 436, 450, 535, 537, 544, 688, 689, 693, 852, 990, 992, 996, 997, 1000, 1003, 1012, 1020, 1024, 1039], "scientif": [0, 69, 237, 365, 369, 383, 389, 403, 448, 458, 498, 1024, 1026, 1050], "scientist": [990, 1024], "scikera": 1019, "scikit": [2, 15, 31, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 359, 360, 363, 365, 366, 367, 368, 370, 371, 374, 377, 378, 379, 380, 384, 385, 390, 391, 394, 396, 397, 399, 400, 401, 402, 403, 404, 405, 407, 408, 409, 410, 411, 412, 413, 417, 418, 420, 421, 422, 423, 425, 426, 427, 434, 439, 442, 443, 446, 453, 460, 461, 463, 464, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 501, 509, 512, 518, 521, 535, 538, 539, 554, 558, 559, 561, 562, 564, 574, 579, 580, 581, 587, 597, 600, 608, 610, 625, 627, 629, 631, 633, 637, 639, 645, 647, 651, 657, 668, 675, 679, 688, 697, 698, 700, 701, 702, 717, 718, 733, 743, 749, 779, 780, 781, 789, 796, 800, 801, 802, 803, 804, 805, 806, 807, 815, 818, 819, 820, 821, 822, 823, 824, 827, 828, 831, 833, 834, 847, 849, 865, 866, 868, 870, 872, 875, 877, 878, 879, 880, 884, 885, 886, 889, 902, 903, 905, 910, 913, 914, 921, 923, 924, 932, 942, 944, 954, 967, 968, 988, 989, 990, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1010, 1013, 1014, 1015, 1016, 1021, 1023, 1026, 1028, 1029, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "scikit_learn": 1019, "scikit_learn_data": [53, 366, 482, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496], "scipi": [0, 2, 46, 54, 56, 58, 76, 80, 81, 86, 87, 103, 104, 109, 110, 113, 121, 123, 127, 139, 143, 145, 154, 155, 156, 167, 172, 183, 184, 186, 195, 233, 234, 235, 243, 244, 246, 249, 253, 254, 257, 260, 262, 263, 270, 271, 275, 277, 283, 288, 293, 301, 313, 314, 316, 319, 320, 322, 324, 325, 358, 365, 366, 369, 371, 373, 375, 377, 379, 380, 383, 384, 385, 389, 396, 397, 399, 400, 403, 408, 411, 414, 446, 447, 448, 449, 453, 458, 459, 493, 500, 505, 529, 531, 532, 538, 541, 579, 580, 583, 584, 586, 587, 609, 610, 647, 648, 652, 656, 657, 658, 662, 665, 666, 667, 668, 669, 671, 673, 675, 676, 677, 679, 683, 686, 687, 691, 692, 695, 719, 761, 764, 779, 780, 781, 782, 793, 794, 805, 813, 815, 831, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 858, 859, 860, 862, 868, 877, 878, 883, 884, 885, 888, 892, 895, 896, 905, 907, 908, 910, 911, 946, 950, 951, 956, 970, 971, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 985, 989, 990, 996, 998, 1001, 1003, 1004, 1010, 1014, 1015, 1020, 1033, 1035, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1050, 1051], "scipy_array_api": 399, "scls19fr": 1036, "scognamiglio": 410, "scope": [46, 58, 257, 358, 360, 371, 383, 411, 464, 1019, 1020], "score": [0, 2, 13, 28, 44, 46, 48, 51, 53, 59, 60, 62, 63, 64, 65, 68, 69, 70, 73, 91, 93, 102, 103, 104, 105, 106, 107, 109, 113, 116, 127, 132, 134, 136, 141, 142, 143, 144, 145, 146, 149, 150, 151, 153, 154, 156, 158, 159, 160, 163, 178, 180, 182, 183, 184, 185, 186, 188, 194, 199, 200, 203, 204, 206, 208, 212, 213, 221, 223, 232, 237, 238, 239, 242, 243, 244, 246, 252, 255, 257, 261, 263, 264, 265, 266, 267, 268, 271, 272, 274, 275, 276, 277, 278, 280, 282, 290, 291, 292, 298, 299, 300, 301, 305, 308, 309, 310, 312, 313, 314, 315, 316, 317, 319, 320, 322, 324, 325, 327, 328, 335, 342, 346, 347, 350, 352, 354, 366, 371, 373, 376, 384, 385, 397, 398, 400, 401, 402, 404, 406, 408, 410, 412, 420, 422, 426, 433, 439, 443, 445, 448, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 499, 501, 529, 533, 538, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 564, 565, 566, 567, 590, 591, 592, 593, 594, 596, 597, 598, 600, 601, 602, 604, 607, 609, 610, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 698, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 735, 737, 738, 739, 740, 741, 743, 756, 757, 758, 783, 784, 785, 786, 787, 788, 789, 790, 795, 796, 797, 798, 799, 800, 801, 804, 805, 807, 815, 818, 820, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 851, 852, 854, 855, 856, 861, 862, 863, 865, 885, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 921, 923, 951, 989, 992, 996, 998, 1003, 1006, 1008, 1010, 1014, 1021, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "score_clf1": 70, "score_clf2": 70, "score_clf3": 70, "score_df": 63, "score_differ": 268, "score_estim": [206, 223], "score_full_data": 178, "score_func": [73, 103, 104, 160, 246, 316, 412, 590, 593, 594, 596, 597, 598, 743, 1031, 1033, 1048, 1052], "score_iri": 269, "score_iterative_imput": 178, "score_label": [223, 269], "score_mean": 338, "score_nam": [63, 73, 238, 265, 318, 347, 807, 824], "score_param": [591, 592, 658, 1048], "score_rand": 269, "score_sampl": [252, 288, 289, 290, 296, 385, 409, 465, 529, 538, 560, 676, 798, 799, 801, 804, 805, 815, 850, 851, 861, 865, 909, 1006, 1034, 1039, 1041, 1043], "score_simple_imput": 178, "score_std": 338, "score_tim": [265, 407, 828, 829], "score_times_nb": 265, "score_times_svm": 265, "score_typ": [238, 265, 276, 318, 807, 824, 1047], "score_valu": 347, "scorer": [2, 143, 149, 151, 154, 183, 223, 239, 257, 267, 275, 309, 317, 319, 322, 385, 394, 402, 407, 410, 412, 558, 559, 592, 600, 633, 658, 672, 674, 711, 731, 733, 734, 743, 801, 804, 805, 807, 815, 823, 824, 827, 828, 829, 830, 832, 959, 989, 996, 1008, 1035, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "scorer1_nam": 407, "scorer2_nam": 407, "scorer_": [801, 804, 805, 815], "scorer_nam": [267, 801, 815], "scores_": [190, 191, 590, 593, 594, 596, 597, 598, 643, 644, 658, 1031, 1041], "scores_df": 53, "scores_glm_pure_premium": 223, "scores_matrix": 274, "scores_max": 56, "scores_product_model": 223, "scoring_cal": [103, 104, 143, 151, 154, 183, 244, 253, 257, 261, 262, 263, 275, 309, 317, 322, 711], "scoring_inner_cv": 319, "scoring_on_bootstrap": 266, "scoring_string_nam": [103, 104, 143, 151, 154, 183, 244, 253, 257, 261, 262, 263, 275, 309, 317, 322], "scoring_weight": 394, "scott": [409, 850, 1031, 1032, 1037, 1039, 1040, 1041, 1046, 1047, 1051], "scottlog": [1049, 1050], "scratch": [372, 438, 1033], "screen": [49, 407, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 1044, 1052], "screenporch": 143, "screenshot": 369, "script": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 359, 371, 372, 373, 374, 375, 377, 383, 385, 389, 397, 411, 1020, 1023], "scroll": 391, "scrollbar": 376, "scrutin": 272, "scsi": 58, "scullei": 403, "sdenton4": 1034, "sdg_param": 328, "se": [163, 227, 368, 389], "se_level": 172, "seabold": [1034, 1036, 1037], "seaborn": [73, 126, 135, 149, 182, 183, 190, 194, 253, 263, 371, 389, 396, 1019], "seagreen": 202, "seal": 1037, "seamu": 1033, "sean": [1043, 1044, 1046, 1050], "seanpwilliam": 1038, "sear": 1037, "search": [2, 46, 52, 53, 64, 65, 80, 87, 103, 104, 105, 106, 141, 143, 146, 154, 156, 160, 162, 163, 167, 180, 183, 184, 185, 223, 234, 238, 239, 253, 255, 257, 264, 267, 268, 270, 275, 282, 283, 285, 287, 301, 305, 309, 313, 314, 316, 317, 319, 322, 335, 341, 346, 352, 353, 354, 368, 369, 371, 373, 383, 385, 398, 403, 404, 407, 410, 411, 412, 414, 439, 444, 446, 448, 453, 454, 457, 460, 467, 468, 474, 499, 512, 519, 554, 555, 556, 557, 561, 562, 563, 577, 597, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 627, 652, 675, 688, 689, 692, 693, 713, 729, 786, 789, 801, 804, 805, 812, 813, 815, 817, 831, 832, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 865, 910, 913, 914, 915, 916, 955, 987, 993, 995, 997, 1000, 1003, 1004, 1014, 1016, 1020, 1021, 1026, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1043, 1045, 1046, 1048, 1050], "search_05p": 146, "search_95p": 146, "search_cv": 103, "searchcv": [384, 1046], "searchforpass": 1047, "searchgrid": 1020, "searchsort": 51, "season": [44, 53, 172, 184, 207, 370], "seasonal_kernel": 172, "seasoncountcatu32": 53, "sebastian": [1032, 1034, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1048], "sebastien": 1039, "sebastin": [1038, 1039], "sebasti\u00e1n": 1037, "seberg": 1032, "sec": [50, 213, 227, 230, 283], "sec65": 1046, "secant": 641, "second": [44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 366, 373, 377, 385, 400, 402, 403, 407, 408, 410, 411, 413, 460, 463, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 499, 501, 507, 550, 581, 586, 587, 588, 589, 620, 623, 630, 631, 699, 712, 716, 759, 760, 764, 765, 767, 768, 775, 776, 777, 778, 779, 782, 801, 804, 805, 815, 829, 835, 836, 839, 842, 853, 855, 856, 857, 862, 863, 989, 990, 994, 995, 996, 997, 1000, 1001, 1002, 1003, 1004, 1007, 1010, 1011, 1016, 1046], "secondari": [634, 1035], "secondli": [156, 235, 383, 403, 410, 656, 996], "sect": 45, "section": [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 73, 120, 125, 137, 144, 149, 154, 172, 176, 182, 183, 184, 186, 190, 194, 196, 198, 208, 229, 233, 239, 242, 244, 257, 261, 263, 266, 272, 308, 309, 310, 314, 322, 346, 347, 348, 354, 364, 366, 369, 371, 372, 373, 375, 376, 377, 378, 379, 384, 386, 394, 401, 402, 404, 406, 407, 408, 410, 411, 412, 413, 435, 439, 455, 531, 613, 618, 621, 636, 644, 789, 799, 907, 910, 989, 994, 996, 1000, 1001, 1003, 1004, 1006, 1007, 1014, 1015, 1016, 1017, 1031, 1033, 1034, 1035, 1038], "sector": 183, "sector_construct": 183, "sector_manufactur": 183, "sector_oth": 183, "secur": [375, 385, 1019, 1020, 1024, 1026], "sed": [375, 1031], "sedamaki": 1045, "sedykh": 1046, "see": [0, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 47, 52, 53, 59, 62, 63, 64, 65, 73, 79, 82, 83, 86, 88, 90, 91, 95, 97, 98, 100, 101, 103, 104, 111, 116, 120, 125, 126, 130, 134, 135, 136, 137, 139, 140, 141, 142, 143, 145, 146, 147, 149, 150, 151, 154, 155, 156, 159, 160, 161, 163, 165, 167, 172, 173, 174, 178, 180, 183, 184, 185, 186, 188, 190, 191, 192, 194, 199, 200, 204, 207, 208, 209, 210, 212, 222, 223, 225, 227, 233, 234, 235, 236, 239, 242, 243, 244, 245, 246, 249, 250, 251, 253, 256, 257, 258, 260, 261, 262, 263, 264, 265, 266, 268, 270, 272, 273, 274, 275, 277, 278, 280, 283, 289, 290, 292, 296, 301, 303, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 321, 322, 326, 335, 339, 342, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 360, 363, 364, 365, 366, 368, 369, 370, 371, 373, 375, 377, 378, 379, 383, 384, 385, 391, 394, 397, 399, 401, 402, 403, 404, 405, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 427, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 453, 454, 455, 456, 457, 458, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 483, 484, 487, 489, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 582, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 607, 609, 610, 613, 618, 621, 622, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 705, 706, 708, 711, 713, 731, 744, 764, 775, 779, 780, 781, 782, 789, 793, 794, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 890, 891, 892, 893, 894, 895, 896, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 921, 924, 925, 948, 949, 969, 970, 973, 983, 986, 989, 990, 992, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1020, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "seealso": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "seebelow": [154, 183], "seed": [2, 47, 51, 64, 65, 71, 75, 79, 85, 87, 90, 92, 93, 97, 98, 100, 103, 109, 110, 111, 118, 121, 137, 142, 154, 156, 158, 185, 192, 203, 204, 209, 212, 214, 218, 222, 228, 249, 251, 252, 253, 254, 266, 269, 278, 288, 289, 290, 339, 340, 347, 354, 359, 373, 380, 383, 385, 403, 407, 408, 439, 443, 444, 446, 448, 453, 455, 456, 457, 458, 467, 468, 469, 533, 541, 550, 551, 552, 553, 556, 557, 626, 645, 646, 651, 652, 659, 660, 661, 662, 676, 689, 691, 693, 695, 798, 799, 805, 836, 839, 854, 908, 934, 948, 949, 966, 969, 989, 990, 995, 997, 1035, 1036, 1040, 1041, 1047], "seeger": [638, 992], "seek": [225, 227, 229, 370, 371, 383, 386, 505, 506, 997], "seel": 1045, "seem": [44, 49, 53, 64, 67, 80, 88, 146, 149, 173, 184, 206, 229, 232, 264, 280, 299, 307, 342, 346, 347, 370, 371, 376, 402, 407, 498, 996, 1000], "seemingli": [223, 354, 383], "seen": [56, 63, 75, 88, 99, 103, 113, 123, 129, 141, 143, 146, 149, 154, 183, 184, 185, 229, 234, 235, 239, 244, 262, 264, 299, 303, 309, 313, 316, 321, 335, 346, 366, 373, 375, 384, 385, 401, 403, 404, 405, 407, 408, 409, 410, 411, 412, 413, 419, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 518, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 609, 610, 622, 626, 627, 628, 629, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 800, 801, 804, 805, 815, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 974, 980, 989, 995, 1000, 1003, 1004, 1010, 1016, 1024, 1043, 1044, 1045, 1046, 1047, 1048, 1050], "segfault": [359, 372, 1031, 1039, 1044], "segment": [52, 54, 56, 60, 72, 81, 86, 123, 180, 228, 235, 366, 379, 403, 411, 448, 458, 505, 506, 691, 861, 1000, 1021, 1024, 1039, 1041, 1043, 1051], "seguin": 1036, "sei": 411, "seismic_r": [190, 194], "sejourn": 1040, "sel": [394, 412], "seladu": 1047, "seldom": [104, 160, 270, 905], "sele": [1045, 1046], "selecci\u00f3n": 309, "select": [2, 18, 30, 44, 47, 49, 50, 53, 59, 71, 72, 73, 75, 79, 84, 88, 90, 95, 98, 101, 103, 106, 113, 118, 119, 130, 134, 136, 139, 143, 146, 149, 150, 154, 155, 156, 158, 160, 172, 174, 183, 184, 185, 186, 188, 189, 191, 192, 193, 194, 195, 197, 205, 210, 213, 220, 223, 226, 232, 233, 234, 236, 238, 242, 244, 246, 247, 248, 249, 257, 261, 262, 263, 264, 268, 270, 272, 275, 276, 277, 278, 287, 301, 303, 308, 309, 313, 314, 316, 318, 320, 322, 324, 325, 330, 335, 342, 346, 347, 348, 352, 353, 354, 358, 366, 368, 369, 371, 373, 375, 379, 384, 385, 400, 403, 404, 405, 408, 410, 411, 413, 439, 441, 442, 443, 445, 447, 449, 454, 455, 456, 460, 462, 463, 468, 469, 472, 484, 485, 489, 490, 493, 494, 497, 498, 499, 501, 509, 512, 529, 531, 532, 537, 538, 541, 546, 548, 554, 555, 556, 557, 560, 562, 579, 586, 587, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 610, 626, 631, 644, 645, 646, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 670, 672, 675, 677, 681, 682, 687, 691, 692, 697, 712, 716, 718, 755, 789, 793, 794, 798, 799, 801, 804, 805, 806, 807, 815, 827, 828, 829, 831, 833, 847, 848, 849, 851, 853, 855, 856, 857, 865, 866, 870, 875, 881, 885, 902, 903, 905, 906, 910, 913, 914, 915, 916, 927, 969, 994, 995, 997, 999, 1000, 1001, 1003, 1004, 1006, 1010, 1013, 1014, 1015, 1016, 1017, 1019, 1020, 1021, 1022, 1024, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1045, 1046, 1047, 1048, 1049, 1051], "select__k": 989, "select_dtyp": [107, 143, 317, 462], "selected_featur": 186, "selected_features_nam": 186, "selectfdr": [2, 412, 590, 594, 596, 597, 598, 604, 1035, 1037, 1038, 1047], "selectfpr": [2, 371, 412, 590, 593, 596, 597, 598, 604, 1047], "selectfrommodel": [2, 163, 385, 394, 591, 600, 601, 1022, 1026, 1036, 1037, 1038, 1039, 1041, 1043, 1044, 1045, 1047, 1048, 1051], "selectfw": [2, 412, 590, 593, 594, 597, 598, 604, 1047], "selectkbest": [2, 104, 106, 159, 160, 316, 354, 371, 394, 404, 412, 579, 590, 593, 594, 596, 598, 604, 989, 1032, 1037, 1047, 1048], "selector": [2, 53, 103, 159, 160, 242, 342, 379, 411, 412, 462, 579, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 1033, 1041, 1043, 1047], "selectormixin": [2, 1042], "selectpercentil": [2, 87, 103, 246, 338, 412, 590, 593, 594, 596, 597, 601, 604, 1032, 1037, 1047, 1048], "self": [2, 48, 58, 63, 65, 89, 98, 103, 118, 132, 139, 155, 156, 175, 180, 233, 234, 239, 244, 246, 257, 262, 277, 283, 301, 313, 316, 322, 323, 328, 329, 335, 346, 365, 371, 372, 373, 376, 378, 379, 383, 403, 411, 413, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 497, 505, 506, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 703, 798, 799, 800, 801, 802, 803, 804, 805, 808, 810, 815, 819, 820, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 954, 958, 959, 961, 962, 967, 973, 988, 1003, 1020, 1021, 1022, 1024, 1026, 1033, 1038, 1045], "self_request": 239, "self_training_clf": 327, "self_training_model": [314, 902], "selftrain": 328, "selftrainingclassifi": [2, 314, 327, 328, 329, 394, 1013, 1043, 1048, 1050], "selftrainingclassifierifit": 314, "seljak": 1046, "sell": 107, "selvan": 1043, "semant": [55, 346, 347, 385, 541, 552, 553, 1025, 1026, 1033], "semi": [2, 39, 68, 142, 152, 169, 237, 240, 298, 305, 314, 326, 327, 332, 335, 339, 366, 371, 385, 484, 501, 532, 586, 588, 675, 730, 831, 865, 900, 901, 902, 910, 998, 1003, 1006, 1021, 1022, 1026, 1031, 1043, 1046], "semi_supervis": [2, 180, 314, 316, 323, 324, 325, 326, 327, 328, 329, 394, 900, 901, 902, 1001, 1013, 1021, 1032, 1037, 1038, 1045, 1046], "semiconductor": 1024, "semidefinit": [1010, 1015], "semilogi": [197, 236], "semilogx": [197, 198, 201], "semin": 410, "seminar": 1000, "semisupervis": [324, 385], "sen": [2, 150, 180, 189, 209, 212, 303, 648, 656, 670, 677, 678, 1021], "send": [371, 375, 386, 403, 415, 530], "sender": [346, 366], "sendyk": 1040, "seng": 1043, "senger": [0, 361, 1047, 1048, 1049, 1050, 1051, 1052], "senior": [1010, 1024], "sens": [43, 44, 53, 56, 63, 88, 99, 173, 180, 183, 188, 236, 303, 309, 325, 335, 346, 354, 358, 371, 372, 385, 403, 405, 407, 412, 458, 465, 466, 467, 468, 469, 470, 471, 472, 608, 651, 654, 655, 671, 802, 812, 902, 994, 996, 1000, 1003, 1004, 1006, 1010, 1013, 1021, 1051], "sensibl": [85, 276, 280, 347, 996, 1010], "sensit": [44, 79, 88, 104, 111, 112, 137, 146, 165, 178, 180, 184, 208, 209, 210, 232, 233, 242, 255, 267, 270, 277, 303, 320, 335, 359, 360, 386, 402, 405, 410, 448, 458, 493, 548, 558, 608, 657, 692, 700, 702, 712, 713, 718, 743, 785, 788, 789, 800, 801, 823, 831, 866, 874, 875, 885, 903, 995, 996, 997, 999, 1000, 1004, 1006, 1014, 1015, 1021, 1035, 1049], "sensor": 194, "sent": [149, 403, 554, 555, 834, 1016], "sentenc": [102, 346, 348, 366, 386, 411], "sentri": 1051, "seoeun": 1047, "sep": [118, 272], "sepal": [126, 128, 130, 142, 169, 246, 286, 314, 317, 332, 368, 831, 1010], "sepal_col": 317, "separ": [53, 54, 62, 63, 68, 75, 88, 93, 95, 99, 105, 111, 119, 120, 122, 125, 134, 136, 139, 152, 154, 155, 163, 170, 180, 183, 184, 185, 188, 189, 200, 205, 207, 226, 240, 250, 263, 264, 266, 272, 273, 303, 305, 308, 314, 327, 330, 331, 333, 334, 335, 339, 340, 346, 354, 358, 367, 368, 373, 376, 379, 383, 385, 397, 401, 403, 404, 405, 408, 410, 411, 413, 460, 509, 516, 530, 535, 537, 538, 544, 546, 550, 579, 586, 587, 589, 609, 630, 637, 645, 646, 672, 675, 676, 726, 733, 746, 747, 749, 754, 793, 820, 837, 838, 864, 865, 907, 909, 910, 915, 916, 989, 990, 992, 994, 996, 997, 999, 1006, 1007, 1010, 1014, 1015, 1021, 1031, 1034, 1036, 1037, 1041, 1043, 1044, 1047, 1048], "septemb": [735, 1000, 1031, 1034, 1037, 1039, 1044, 1047, 1049, 1051, 1052], "seq": 632, "seq_dataset": [1031, 1041], "seqlearn": 383, "sequenc": [2, 52, 134, 142, 143, 151, 154, 196, 228, 257, 264, 309, 317, 322, 373, 385, 404, 407, 408, 410, 411, 500, 509, 550, 551, 558, 559, 566, 567, 579, 580, 586, 587, 589, 645, 801, 804, 812, 831, 865, 889, 952, 953, 964, 970, 973, 1031, 1034, 1036, 1037], "sequencekernel": 175, "sequenceof": [104, 244, 253, 257, 261, 262, 263], "sequenti": [2, 53, 142, 154, 157, 160, 180, 192, 202, 264, 314, 369, 408, 410, 411, 497, 498, 531, 591, 595, 600, 601, 603, 604, 645, 646, 651, 652, 657, 659, 660, 661, 662, 672, 702, 789, 865, 866, 885, 990, 1008, 1014, 1021, 1022, 1026, 1031, 1040, 1043], "sequentialfeatureselector": [2, 163, 394, 412, 591, 595, 601, 1043, 1044, 1045, 1046, 1047, 1050], "ser": 996, "sergei": [403, 1033, 1037, 1038, 1039, 1040, 1041], "sergeyf": 1033, "sergio": [1031, 1033, 1034, 1043, 1046], "sergiodsr": 1042, "sergul": [1038, 1039, 1042], "seri": [2, 43, 44, 52, 59, 113, 141, 146, 149, 180, 182, 185, 186, 193, 206, 208, 210, 225, 246, 262, 268, 277, 310, 316, 324, 363, 366, 376, 385, 403, 485, 486, 487, 488, 489, 493, 497, 498, 499, 501, 502, 507, 538, 559, 687, 690, 694, 701, 743, 746, 747, 749, 791, 822, 827, 828, 831, 927, 991, 996, 997, 1001, 1003, 1014, 1019, 1021, 1034, 1037, 1038, 1039, 1043, 1046, 1048, 1049, 1051], "serial": [385, 397, 417, 957, 1019, 1020, 1031, 1039, 1043, 1048], "serializetostr": 397, "serious": 1002, "serum": [163, 368, 1000], "serv": [102, 124, 134, 173, 257, 260, 266, 328, 339, 404, 548, 992, 1026, 1045], "server": [0, 163, 358, 368, 369, 371, 493, 1023, 1039], "servic": [0, 44, 233, 242, 371, 375, 397, 1023, 1024, 1039], "sess": 397, "session": [373, 377, 383, 389, 903, 1024], "set": [2, 3, 8, 20, 28, 38, 43, 44, 45, 46, 47, 48, 51, 53, 54, 59, 63, 64, 65, 67, 68, 71, 73, 76, 77, 79, 80, 82, 83, 86, 87, 88, 90, 91, 93, 95, 97, 98, 99, 102, 103, 104, 105, 111, 112, 113, 116, 120, 125, 126, 132, 134, 137, 138, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 155, 156, 159, 160, 163, 167, 173, 174, 175, 180, 182, 183, 184, 185, 186, 190, 192, 194, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 211, 213, 218, 219, 223, 225, 226, 227, 232, 233, 234, 235, 237, 238, 239, 242, 243, 244, 245, 246, 248, 250, 252, 253, 256, 258, 261, 263, 264, 265, 266, 267, 268, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 285, 289, 290, 291, 292, 293, 296, 299, 300, 301, 303, 305, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 319, 321, 324, 325, 328, 329, 332, 334, 337, 339, 342, 346, 347, 348, 352, 353, 354, 358, 359, 360, 363, 364, 366, 368, 369, 371, 373, 375, 376, 378, 379, 384, 385, 386, 389, 394, 397, 399, 400, 401, 403, 404, 405, 406, 408, 409, 410, 411, 412, 413, 414, 415, 417, 420, 421, 422, 425, 426, 427, 428, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 453, 454, 455, 456, 457, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 484, 485, 490, 492, 493, 494, 496, 499, 500, 505, 506, 507, 512, 520, 521, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 577, 578, 579, 580, 581, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 603, 604, 605, 606, 608, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694, 697, 698, 699, 700, 701, 702, 703, 711, 712, 713, 714, 719, 721, 724, 727, 728, 729, 730, 731, 732, 735, 739, 741, 746, 747, 749, 751, 752, 754, 757, 780, 781, 783, 784, 785, 786, 788, 790, 791, 792, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 889, 890, 891, 893, 894, 895, 896, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 919, 920, 921, 922, 923, 931, 932, 942, 944, 949, 953, 957, 958, 969, 970, 973, 974, 980, 983, 988, 989, 990, 991, 992, 993, 994, 995, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1019, 1020, 1021, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "set1": [263, 292, 293], "set_": [239, 394, 1049, 1050], "set_alpha": [71, 248, 249, 250, 253, 254], "set_arrai": [52, 228, 235], "set_aspect": [44, 100, 122, 170, 216, 250, 343], "set_autoscaley_on": 77, "set_axis_bgcolor": 113, "set_axis_off": 69, "set_axisbelow": 50, "set_box_aspect": 71, "set_clim": 287, "set_clip_box": [71, 248, 249, 250, 253, 254], "set_color": [47, 216], "set_config": [2, 103, 139, 143, 154, 160, 183, 185, 233, 234, 239, 243, 244, 246, 257, 264, 270, 277, 309, 310, 313, 316, 319, 322, 358, 359, 394, 399, 404, 433, 439, 440, 443, 445, 460, 461, 464, 468, 478, 479, 480, 530, 533, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 588, 591, 592, 595, 600, 609, 610, 625, 626, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 800, 802, 803, 808, 810, 819, 823, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 865, 866, 868, 870, 871, 872, 877, 884, 885, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 1040, 1042, 1045, 1047], "set_constrained_layout_pad": 120, "set_edgecolor": 120, "set_facecolor": [113, 248], "set_fit_request": [239, 319, 321, 322, 394, 433, 439, 440, 443, 445, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 634, 642, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 690, 837, 838, 840, 841, 842, 843, 844, 850, 862, 863, 870, 884, 885, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916], "set_fmt_str_length": 53, "set_i": 90, "set_index": [63, 134, 146, 198, 223, 263, 309, 347], "set_inverse_transform_request": [530, 872, 885], "set_label": [75, 170, 236], "set_label_posit": 47, "set_linewidth": [52, 228, 235], "set_major_formatt": [143, 225, 227, 230, 283, 288], "set_major_loc": [225, 288], "set_output": [180, 184, 231, 244, 308, 309, 374, 383, 427, 438, 439, 441, 443, 445, 460, 464, 478, 479, 480, 481, 493, 501, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 563, 564, 565, 566, 567, 579, 580, 581, 587, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 657, 688, 689, 692, 831, 849, 854, 857, 861, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 903, 1021, 1046, 1047, 1048, 1050], "set_param": [103, 123, 130, 138, 143, 146, 154, 155, 156, 183, 184, 185, 191, 196, 198, 201, 210, 213, 234, 237, 242, 244, 246, 257, 276, 286, 309, 312, 313, 316, 338, 347, 374, 385, 403, 404, 410, 413, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 800, 801, 804, 805, 815, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 990, 1006, 1031, 1037, 1038, 1039, 1044, 1045], "set_partial_fit_request": [445, 535, 665, 666, 667, 675, 676, 677, 833, 834, 837, 838, 840, 841, 842, 843, 844, 862, 863, 885], "set_path_effect": 75, "set_posit": [100, 216, 303], "set_predict_request": [239, 478, 479, 480, 549, 610, 643, 644], "set_printopt": 256, "set_prop_cycl": 207, "set_score_request": [239, 257, 319, 394, 433, 439, 443, 445, 461, 478, 479, 480, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 564, 565, 566, 567, 609, 610, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 677, 678, 679, 800, 823, 833, 834, 835, 836, 838, 839, 840, 841, 842, 843, 844, 847, 848, 852, 855, 856, 862, 863, 865, 900, 901, 905, 906, 907, 908, 910, 911, 913, 914, 915, 916], "set_siz": 290, "set_size_inch": [93, 243], "set_split_request": [802, 803, 808, 810, 819], "set_start_method": 383, "set_stat": 989, "set_tick_param": 248, "set_ticklabel": [126, 346], "set_titl": [48, 50, 55, 63, 65, 67, 68, 69, 71, 77, 78, 86, 88, 90, 93, 97, 98, 100, 104, 107, 111, 118, 125, 130, 134, 139, 141, 143, 144, 150, 152, 154, 155, 176, 178, 179, 182, 183, 184, 185, 186, 190, 191, 198, 199, 200, 204, 206, 207, 208, 213, 225, 226, 229, 230, 235, 237, 238, 242, 243, 248, 256, 257, 258, 259, 260, 263, 265, 266, 270, 274, 275, 277, 280, 282, 283, 286, 287, 288, 293, 298, 299, 303, 304, 305, 306, 307, 308, 312, 316, 324, 325, 332, 339, 342, 343, 344, 346, 350, 367], "set_transform_request": [239, 478, 479, 480, 530, 533, 588, 868, 871, 877, 885], "set_vis": [55, 71, 287, 293, 303], "set_xlabel": [47, 50, 86, 93, 104, 105, 107, 118, 125, 143, 144, 176, 178, 179, 182, 184, 185, 186, 188, 198, 203, 204, 206, 208, 220, 221, 237, 257, 263, 265, 269, 274, 275, 277, 280, 288, 303, 304, 308, 327, 347, 348, 350], "set_xlim": [68, 77, 93, 107, 111, 118, 139, 152, 179, 184, 204, 206, 211, 237, 248, 267, 269, 280, 288, 298, 303, 305, 306, 307, 308, 313, 319, 343], "set_xscal": [143, 198, 211], "set_xtick": [44, 48, 50, 68, 78, 93, 97, 130, 143, 152, 184, 186, 199, 221, 237, 248, 274, 275, 282, 298, 300, 305, 306, 332], "set_xticklabel": [48, 50, 111, 130, 170, 184, 186, 274, 275, 282], "set_ylabel": [47, 48, 50, 67, 71, 86, 93, 98, 104, 105, 107, 111, 118, 125, 130, 134, 141, 143, 144, 176, 184, 188, 198, 199, 203, 204, 206, 208, 210, 220, 237, 248, 257, 263, 265, 269, 274, 275, 277, 282, 288, 303, 304, 308, 312, 327, 342, 347, 350], "set_ylim": [48, 50, 68, 77, 93, 104, 118, 139, 151, 152, 176, 184, 191, 204, 206, 207, 237, 248, 267, 282, 288, 298, 303, 305, 306, 308, 313, 319, 327, 343], "set_yscal": [144, 206], "set_ytick": [44, 68, 78, 93, 97, 130, 152, 178, 179, 186, 199, 221, 248, 274, 298, 300, 305, 306, 332, 348], "set_yticklabel": [130, 170, 178, 179, 186, 274, 348], "set_zord": 122, "setaccord": [103, 104, 244, 253, 257, 261, 262, 263, 275], "setasid": 243, "setat": 183, "setdefault": [56, 920], "setdiff1d": 341, "seth": 1037, "sethdandridg": 1035, "setminu": 1016, "setosa": [126, 128, 272, 273, 368, 501], "setp": [48, 50, 274, 278], "settabl": [1000, 1051], "settingwithcopywarn": 184, "settl": 1000, "setto": [154, 156, 183, 184, 235], "setup": [270, 272, 358, 369, 373, 377, 379, 1003], "setuptool": 1049, "seuclidean": [446, 453, 699, 779, 780, 781, 1003, 1039, 1042, 1043], "seuclideandist": 699, "seung": 408, "seven": [366, 993], "seventh": [508, 1012], "sever": [0, 44, 49, 52, 53, 63, 65, 67, 68, 71, 73, 88, 89, 90, 94, 106, 137, 149, 152, 154, 156, 160, 163, 167, 172, 173, 180, 183, 188, 194, 198, 206, 210, 224, 225, 228, 230, 236, 250, 253, 258, 263, 264, 268, 277, 283, 285, 299, 303, 314, 315, 322, 342, 346, 347, 352, 353, 358, 365, 366, 368, 371, 373, 376, 379, 383, 385, 400, 403, 404, 407, 409, 410, 411, 413, 443, 445, 460, 483, 496, 505, 506, 535, 552, 553, 556, 557, 560, 561, 562, 567, 586, 587, 589, 609, 644, 645, 651, 687, 688, 689, 690, 691, 692, 693, 798, 799, 801, 804, 805, 815, 833, 834, 840, 841, 842, 843, 844, 864, 865, 872, 889, 913, 914, 915, 916, 934, 970, 989, 992, 997, 1000, 1001, 1003, 1008, 1010, 1014, 1016, 1017, 1018, 1019, 1021, 1023, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040, 1044, 1047, 1048, 1052], "sevin": 1039, "sewook": 1041, "sex": [103, 163, 183, 185, 196, 198, 246, 317, 319, 368, 493, 1008], "sex_mal": 183, "seyedsaman": 1045, "sf": [163, 263, 314, 366, 412, 489, 600], "sfm": 163, "sfs_backward": 163, "sfs_forward": 163, "sfu": [403, 438], "sgd": [2, 47, 48, 51, 124, 126, 129, 136, 145, 146, 170, 171, 180, 189, 192, 199, 200, 205, 219, 232, 239, 243, 252, 271, 273, 296, 299, 300, 315, 326, 336, 337, 340, 344, 346, 351, 354, 360, 501, 509, 630, 648, 665, 666, 667, 670, 675, 676, 677, 678, 862, 863, 989, 1004, 1021, 1022, 1026, 1031, 1034, 1035, 1036, 1038, 1042, 1044], "sgdclassifi": [2, 26, 47, 48, 213, 214, 215, 216, 217, 218, 237, 271, 321, 328, 337, 346, 354, 358, 360, 373, 377, 385, 401, 411, 637, 639, 640, 641, 645, 657, 665, 667, 905, 910, 992, 996, 1001, 1014, 1015, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1042, 1044, 1045, 1046, 1047, 1048, 1049, 1051, 1052], "sgdoneclasssvm": [2, 219, 232, 315, 909, 1006, 1014, 1044, 1046, 1047, 1048, 1049, 1050, 1052], "sgdregressor": [2, 26, 50, 216, 358, 360, 383, 645, 648, 666, 670, 675, 678, 863, 906, 911, 996, 1014, 1033, 1035, 1037, 1038, 1039, 1042, 1044, 1045, 1046, 1047, 1049, 1051, 1052], "sgi": 346, "sgkf": [407, 819], "sgm": 48, "sgml": [48, 358], "sh": [274, 379, 989], "sh_color": 229, "sh_err": 229, "sh_lle": 229, "sh_point": 229, "sh_tsne": 229, "sha256": [48, 53, 321, 488, 1046, 1050], "shack": [1041, 1042, 1043], "shade": [59, 86, 161, 286, 291, 331, 408], "shader": 399, "shadi": [1046, 1047], "shadow": [124, 128, 129, 228, 326, 341, 348, 411], "shafer": 102, "shagun": 1037, "shah": [1035, 1036, 1037, 1043, 1049, 1051], "shaharyar": 1049, "shahebaz": 1039, "shahriar": 1033, "shaikh": [0, 356, 361, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1049, 1050, 1051], "shail": 1043, "shakerimoff": 1045, "shalev": [665, 666, 675, 677, 996, 1014], "shalil": 1039, "shall": 172, "shallow": [143, 151, 154, 257, 309, 317, 322, 371, 377, 410, 558, 559, 920], "shamsi": 1039, "shandeng123": 1045, "shane": [1040, 1043, 1046], "shanghai": [689, 693, 997], "shangwu": [1039, 1040], "shankar": 1041, "shanmuga": 1037, "shanno": 996, "shannon": [554, 561, 913, 915, 997, 1016], "shantanu": 784, "shao": [1043, 1044, 1045], "shape": [2, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 59, 60, 62, 63, 64, 65, 68, 69, 70, 76, 80, 81, 84, 85, 86, 87, 88, 91, 93, 94, 99, 102, 103, 104, 106, 107, 111, 115, 120, 121, 123, 135, 139, 140, 141, 142, 143, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 159, 161, 168, 169, 171, 172, 173, 174, 178, 179, 180, 183, 184, 185, 192, 196, 198, 200, 201, 206, 208, 211, 214, 217, 218, 219, 220, 221, 224, 226, 227, 232, 234, 235, 236, 237, 238, 239, 241, 242, 243, 244, 245, 248, 250, 252, 253, 254, 257, 261, 262, 263, 264, 265, 266, 269, 270, 272, 273, 275, 283, 288, 289, 293, 296, 298, 300, 305, 306, 309, 312, 313, 314, 316, 317, 318, 319, 322, 326, 327, 329, 332, 335, 338, 339, 340, 343, 344, 346, 347, 352, 353, 358, 364, 365, 366, 371, 373, 385, 400, 401, 403, 404, 405, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 424, 425, 426, 427, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 492, 494, 495, 497, 498, 499, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 735, 736, 737, 738, 739, 740, 741, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 928, 933, 936, 937, 942, 947, 948, 949, 951, 955, 956, 963, 965, 969, 970, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 985, 988, 990, 995, 996, 1000, 1001, 1002, 1003, 1004, 1006, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1021, 1031, 1033, 1034, 1036, 1037, 1038, 1039, 1040, 1041, 1045, 1047, 1048, 1050, 1052], "shape_fit_": [907, 908, 909, 910, 911], "shape_img": 583, "sharad": 1039, "sharan": [1038, 1039], "share": [71, 115, 152, 183, 253, 346, 353, 354, 358, 359, 373, 379, 397, 403, 408, 411, 546, 667, 704, 708, 798, 799, 804, 805, 994, 1007, 1023, 1031, 1033, 1039, 1041, 1043, 1046], "shared_yax": 140, "sharedmem": 1039, "sharei": [44, 53, 71, 100, 107, 118, 125, 130, 155, 176, 184, 200, 204, 206, 208, 213, 265, 274, 276, 277, 288, 304, 309, 341, 342, 347, 367], "sharex": [44, 47, 55, 71, 105, 118, 125, 155, 176, 184, 200, 204, 208, 265, 276, 277, 288, 327, 367], "sharma": [1035, 1037, 1039, 1040, 1042, 1043, 1045, 1048, 1049, 1050], "sharmadharmp": 1045, "sharon": [46, 366], "sharova": 1038, "sharp": [44, 67, 184, 1007, 1010, 1051], "sharper": 727, "shashank": [1037, 1043, 1051], "shaun": 1032, "shaurya": 1051, "shawpan": 1037, "shaymernaturalint": 1045, "she": [371, 895, 896, 1041], "shea": [1039, 1040], "shebanov": [1039, 1040], "sheep": 1024, "sheer": [371, 1024], "sheerman": 1031, "sheet": 1033, "sheetscikit": 391, "shekhar": 1037, "shell": [372, 379, 383], "shellyfung": 1046, "shen": [1044, 1050], "sheng": 1041, "shengxiduan": 1037, "shenhanc78": 1039, "sheni": 1043, "shenk": 1039, "shenoi": 1038, "sherlock": [627, 990], "sheth": 1039, "shetti": 1044, "shevchenko": [1050, 1051], "shi": [403, 448, 458, 691], "shibata": 1041, "shiebler": 1037, "shield": 385, "shift": [2, 53, 64, 72, 74, 79, 82, 97, 104, 180, 190, 253, 288, 301, 303, 339, 405, 409, 433, 436, 444, 454, 457, 465, 509, 512, 689, 693, 851, 874, 875, 1010, 1021, 1025, 1026, 1031, 1035, 1039], "shifted_gaussian": 252, "shifted_opposite_lof_scor": 851, "shih": [842, 1002], "shiki": 1042, "shilt": 1034, "shimoni": 1051, "shinehid": 1044, "shinitski": 1048, "shinnar": 1044, "shinsuk": 1046, "ship": [58, 154, 179, 351, 359, 369, 389, 411, 996, 1031, 1040], "shiqiao": [0, 393, 1031, 1032], "shirsat": 1046, "shiva": [1046, 1047], "shivam": [1039, 1040, 1041, 1051], "shivamgargsya": [1038, 1042, 1044], "shivan": 1036, "shivram": 1039, "shiyu": 1040, "shleifer": [1037, 1038], "shmelkov": 1036, "shoaib": 1046, "shoemak": 1042, "shogo": [1046, 1047], "shooter23": [1043, 1044], "shop": 1024, "short": [45, 126, 150, 199, 208, 261, 300, 321, 346, 371, 379, 407, 411, 415, 996, 997, 1003, 1023, 1036, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "short_nam": 56, "shortcom": 996, "shortcut": [379, 397, 413], "shorten": [371, 1015, 1044], "shorten_param": 264, "shorter": [44, 173, 251, 383, 403, 408, 446, 453, 560, 697, 1002, 1006, 1042], "shortest": [2, 100, 376, 380, 688, 955, 997, 1044], "shortest_path": 1044, "shorthand": [91, 143, 151, 154, 257, 309, 317, 322, 385, 404, 463, 558, 559, 866, 867, 1034], "shortli": 373, "shortlog": 375, "shortname_slic": 56, "shota": 1037, "should": [44, 45, 46, 48, 49, 53, 55, 56, 63, 64, 65, 68, 73, 86, 103, 132, 134, 137, 139, 140, 141, 143, 146, 149, 150, 151, 154, 155, 156, 160, 163, 178, 183, 184, 185, 188, 190, 191, 192, 194, 200, 206, 223, 232, 233, 234, 237, 238, 239, 242, 243, 244, 245, 246, 257, 261, 262, 263, 264, 266, 270, 272, 275, 277, 280, 283, 301, 304, 305, 309, 310, 313, 314, 316, 317, 319, 321, 322, 326, 335, 342, 347, 353, 354, 358, 359, 360, 366, 369, 370, 371, 373, 375, 376, 378, 379, 380, 384, 385, 389, 394, 397, 398, 399, 401, 402, 403, 405, 407, 408, 410, 411, 412, 413, 414, 415, 417, 420, 426, 433, 436, 438, 439, 440, 441, 443, 445, 446, 448, 450, 453, 454, 455, 458, 459, 460, 461, 463, 470, 478, 479, 480, 481, 483, 490, 493, 500, 505, 506, 513, 518, 520, 521, 524, 529, 530, 533, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 586, 587, 588, 589, 591, 592, 595, 605, 606, 609, 610, 619, 626, 627, 628, 630, 631, 632, 634, 637, 638, 639, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 683, 686, 687, 689, 690, 691, 692, 693, 695, 696, 701, 702, 707, 709, 720, 722, 728, 729, 740, 741, 743, 767, 772, 775, 779, 780, 781, 782, 783, 786, 789, 790, 793, 800, 802, 803, 808, 809, 810, 811, 818, 819, 820, 821, 823, 827, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 856, 862, 863, 865, 868, 869, 870, 871, 872, 873, 874, 876, 877, 878, 879, 884, 885, 886, 888, 892, 895, 896, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 931, 935, 937, 940, 943, 949, 954, 958, 962, 967, 969, 970, 973, 974, 975, 976, 977, 978, 979, 980, 988, 989, 990, 994, 995, 996, 997, 1001, 1003, 1005, 1006, 1007, 1010, 1013, 1014, 1015, 1016, 1020, 1023, 1024, 1026, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "shouldconsid": 264, "shouldn": [249, 254, 371, 1050], "show": [2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 168, 169, 170, 171, 172, 173, 175, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 319, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 350, 351, 352, 353, 359, 360, 367, 371, 377, 383, 384, 389, 390, 394, 400, 401, 402, 405, 407, 408, 409, 410, 412, 413, 434, 499, 556, 591, 592, 630, 631, 697, 698, 700, 701, 702, 713, 807, 824, 847, 865, 917, 918, 919, 989, 992, 994, 995, 997, 999, 1000, 1002, 1003, 1004, 1006, 1007, 1008, 1010, 1014, 1015, 1033, 1035, 1036, 1038, 1040, 1041, 1042, 1043, 1045, 1047, 1048, 1049, 1050, 1051], "show_top10": 366, "show_vers": [2, 358, 369, 371, 379, 389, 390, 1039], "show_weight": 918, "show_with_diff": 123, "showcas": [132, 135, 140, 143, 146, 147, 149, 165, 180, 373, 643, 645, 1018], "shown": [63, 90, 132, 136, 140, 146, 175, 176, 182, 184, 194, 223, 230, 232, 237, 242, 250, 263, 266, 269, 272, 280, 288, 299, 300, 303, 304, 305, 321, 324, 342, 346, 347, 371, 376, 386, 401, 403, 404, 407, 408, 409, 411, 413, 434, 456, 631, 698, 700, 701, 702, 713, 801, 815, 917, 919, 996, 997, 1000, 1003, 1010, 1014, 1015, 1016, 1035, 1040, 1041, 1042, 1045], "shown_imag": 226, "shrankhla": 1046, "shreekant": 1050, "shreesha": [1047, 1048], "shreya": 1041, "shrink": [64, 113, 120, 147, 156, 184, 194, 203, 204, 210, 225, 244, 245, 252, 261, 263, 276, 303, 314, 342, 407, 408, 556, 557, 675, 677, 852, 862, 863, 907, 908, 909, 910, 911, 1003, 1015], "shrink_threshold": [294, 852, 1003, 1031, 1043], "shrinkag": [2, 70, 108, 110, 113, 127, 143, 148, 151, 154, 180, 257, 294, 309, 317, 322, 416, 465, 466, 468, 469, 470, 471, 472, 473, 475, 476, 477, 536, 540, 546, 558, 559, 801, 852, 996, 1010, 1021, 1022, 1026, 1031, 1035, 1036, 1038], "shrinkage_": [109, 110, 469, 471], "shrinkage_coeffici": 476, "shrinking_threshold": 1050, "shroff": [1049, 1050], "shrunk": [2, 109, 127, 303, 310, 318, 416, 469, 471, 472, 475, 476, 477, 546, 886, 994, 1014, 1025, 1026], "shrunk_cov": [416, 475, 477], "shrunk_cov_scor": 127, "shrunk_covari": [2, 405, 1048], "shrunkcovari": [2, 109, 127, 405, 465, 466, 469, 470, 471], "shrunken": [852, 1031], "shruti": [1050, 1051], "shu": [1032, 1035, 1039, 1051], "shuangchi": [1045, 1046], "shubernetskii": 1033, "shubh": 1042, "shubhal": 1048, "shubham": [1038, 1041, 1049], "shubhanshu": 1043, "shubhraneel": 1045, "shuckle16": 1037, "shuffl": [2, 50, 53, 55, 59, 60, 62, 65, 69, 93, 94, 103, 104, 120, 139, 140, 141, 142, 143, 149, 154, 155, 160, 179, 183, 194, 204, 213, 214, 219, 232, 233, 234, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 268, 269, 270, 275, 276, 277, 283, 301, 309, 310, 313, 314, 316, 322, 324, 325, 326, 327, 337, 346, 347, 354, 366, 380, 385, 398, 465, 470, 484, 485, 487, 489, 492, 494, 500, 508, 509, 510, 511, 512, 516, 519, 521, 528, 534, 536, 537, 543, 544, 550, 551, 552, 553, 561, 562, 564, 565, 600, 603, 605, 657, 658, 665, 666, 667, 671, 673, 675, 676, 677, 686, 801, 802, 803, 804, 805, 806, 807, 815, 818, 819, 820, 821, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 835, 862, 863, 886, 905, 906, 907, 910, 948, 949, 969, 970, 995, 996, 1001, 1008, 1014, 1015, 1026, 1031, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1050, 1051], "shuffle_param": 342, "shuffled_arrai": 973, "shufflesplit": [2, 258, 262, 265, 342, 407, 803, 809, 811, 821, 831, 1031, 1032, 1034, 1036, 1037], "shuhei": 1044, "shuhua": 1043, "shumwai": 1051, "shutil": [87, 104, 404], "shuttl": 347, "shuzh": 1041, "shwartz": [665, 666, 675, 677, 996, 1014], "shwed": 1039, "shyam": 1044, "si": 102, "siam": [403, 407, 448, 456, 458, 532, 538], "siang": 1034, "siavash": 1044, "siavrez": 1045, "sibsp": [185, 317], "sid": 1038, "siddharth": [1038, 1042, 1051], "siddiqui": 1049, "side": [44, 65, 92, 146, 201, 210, 223, 227, 235, 257, 303, 339, 346, 354, 366, 383, 401, 404, 407, 408, 411, 420, 426, 512, 801, 815, 996, 997, 1000, 1002, 1015, 1040], "sidhpura": 1046, "sidhu": 1051, "siebert": 1039, "sievert": 1041, "siftikha": 1039, "sig": 121, "sigh": 346, "sigkdd": [365, 366, 508, 675, 886, 1010, 1012], "sigma": [54, 80, 81, 87, 111, 127, 146, 261, 263, 400, 405, 408, 410, 613, 648, 994, 996, 998, 1002, 1005], "sigma2": [531, 538], "sigma_": [405, 643, 644, 1044, 1048, 1051], "sigma_0": [170, 171, 176, 413, 613], "sigma_0_bound": [176, 613], "sigma_i": [1002, 1010], "sigma_k": [408, 994], "sigmod": [403, 446, 453, 851, 1006], "sigmoid": [2, 62, 63, 64, 65, 155, 243, 244, 245, 257, 261, 263, 314, 322, 363, 410, 433, 448, 532, 558, 619, 638, 642, 766, 775, 778, 862, 863, 907, 908, 909, 910, 911, 1005, 1015, 1026, 1044, 1048, 1051], "sigmoid_kernel": [2, 399, 766, 998, 1050], "sigmoidcalibr": 64, "sign": [75, 110, 116, 121, 124, 136, 194, 228, 253, 298, 342, 371, 403, 408, 411, 541, 580, 587, 604, 634, 635, 657, 658, 665, 667, 673, 674, 675, 676, 736, 743, 905, 909, 947, 949, 966, 996, 1000, 1005, 1010, 1014, 1015, 1031, 1035, 1040, 1044, 1046, 1049], "signal": [2, 11, 54, 104, 112, 120, 121, 122, 129, 144, 146, 167, 172, 173, 180, 189, 190, 195, 197, 198, 202, 205, 207, 244, 254, 262, 276, 315, 403, 405, 412, 413, 416, 471, 500, 518, 523, 528, 531, 534, 538, 542, 543, 624, 643, 644, 645, 646, 651, 652, 662, 663, 671, 683, 684, 685, 786, 822, 831, 879, 996, 1000, 1017, 1021, 1024, 1025, 1026], "signatur": [64, 103, 139, 141, 143, 151, 154, 156, 172, 183, 184, 185, 234, 239, 244, 257, 275, 309, 313, 316, 317, 319, 322, 346, 347, 366, 484, 485, 554, 555, 558, 559, 561, 562, 592, 600, 609, 610, 633, 658, 672, 674, 711, 743, 804, 805, 807, 823, 824, 827, 829, 830, 832, 878, 942, 961, 989, 1038, 1044, 1048], "signif": 46, "signifi": [403, 579, 812, 1005], "signific": [2, 44, 51, 88, 140, 146, 158, 159, 161, 180, 210, 223, 244, 245, 255, 261, 263, 282, 283, 314, 346, 354, 365, 366, 383, 403, 406, 407, 410, 501, 529, 531, 546, 626, 657, 658, 665, 666, 667, 675, 676, 677, 820, 830, 905, 907, 908, 909, 910, 911, 989, 992, 999, 1000, 1003, 1021, 1031, 1033, 1034, 1035, 1039], "significantli": [44, 62, 63, 65, 73, 109, 110, 134, 140, 144, 146, 149, 154, 156, 163, 183, 184, 185, 192, 206, 210, 213, 221, 223, 257, 263, 283, 313, 314, 347, 348, 354, 359, 371, 375, 403, 408, 410, 411, 416, 465, 470, 475, 476, 535, 537, 544, 555, 562, 645, 646, 651, 652, 659, 660, 661, 662, 683, 692, 845, 846, 992, 996, 997, 1003, 1008, 1015, 1031, 1033, 1034, 1038, 1039, 1044, 1045, 1046], "sijaranamu": 1037, "sikai": 1051, "silenc": [239, 1050], "silent": [239, 411, 579, 861, 1010, 1036, 1037, 1039, 1040, 1044, 1045, 1051], "silhouett": [2, 59, 72, 73, 74, 75, 82, 90, 91, 98, 180, 347, 443, 509, 793, 794, 1021, 1031, 1035], "silhouette_avg": 93, "silhouette_sampl": [2, 93, 794, 1035, 1037, 1039, 1047], "silhouette_scor": [2, 74, 82, 91, 93, 347, 371, 403, 1031, 1035, 1037, 1039, 1041, 1045], "silk": 1045, "sillanp\u00e4\u00e4": 1031, "silva": [401, 688, 997, 1042, 1044, 1049], "silverman": [409, 850, 1046], "silverthorn": 1031, "silvestrin": 1048, "sim": 408, "sim4n6": 1046, "simarjot": 1051, "simd": [385, 1046], "similar": [2, 44, 45, 47, 52, 56, 59, 63, 64, 67, 71, 73, 82, 84, 90, 93, 100, 107, 116, 120, 124, 134, 146, 162, 167, 174, 178, 182, 183, 184, 185, 194, 200, 206, 208, 219, 225, 227, 229, 232, 238, 239, 253, 254, 257, 260, 263, 264, 266, 269, 270, 271, 280, 282, 283, 303, 315, 334, 339, 342, 347, 348, 354, 358, 363, 365, 367, 370, 371, 373, 376, 377, 379, 380, 383, 385, 397, 400, 401, 403, 406, 407, 408, 410, 411, 412, 413, 414, 436, 439, 440, 446, 448, 450, 451, 500, 505, 506, 533, 580, 587, 588, 589, 608, 609, 676, 692, 695, 703, 705, 715, 719, 726, 729, 730, 732, 735, 739, 741, 756, 761, 762, 787, 793, 794, 797, 798, 799, 827, 832, 877, 898, 901, 905, 906, 907, 908, 922, 932, 989, 992, 993, 995, 996, 997, 999, 1001, 1003, 1004, 1006, 1007, 1010, 1012, 1013, 1014, 1015, 1016, 1019, 1020, 1026, 1031, 1035, 1036, 1037, 1039, 1043, 1044], "similarli": [44, 52, 73, 88, 118, 150, 184, 186, 194, 198, 206, 233, 242, 257, 260, 263, 298, 303, 318, 320, 335, 354, 359, 367, 369, 373, 376, 383, 385, 397, 400, 406, 407, 411, 730, 731, 739, 784, 785, 788, 823, 995, 997, 998, 1000, 1007, 1010, 1014, 1015, 1017, 1039, 1045, 1047, 1050], "simmon": 1024, "simon": [996, 1024, 1034, 1035, 1044, 1045, 1046, 1047, 1050], "simona": [1042, 1043, 1044], "simonamaggio": [1042, 1043, 1044], "simoncw": 1041, "simonpl": 1036, "simpl": [2, 13, 38, 44, 65, 88, 103, 107, 109, 115, 116, 120, 140, 144, 174, 180, 184, 194, 207, 222, 244, 245, 261, 263, 264, 280, 284, 287, 296, 314, 316, 331, 346, 348, 351, 354, 369, 371, 373, 374, 375, 376, 378, 383, 384, 385, 386, 394, 400, 403, 404, 405, 407, 408, 409, 410, 411, 412, 417, 424, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 458, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 511, 519, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 787, 789, 798, 799, 800, 801, 804, 805, 815, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 889, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 957, 992, 994, 995, 996, 997, 999, 1000, 1003, 1010, 1012, 1014, 1016, 1020, 1021, 1024, 1028, 1031], "simplefilt": 397, "simpleimput": [2, 103, 154, 178, 179, 185, 234, 244, 246, 313, 316, 354, 385, 626, 627, 628, 990, 1010, 1039, 1040, 1042, 1043, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "simplepipelin": 239, "simpler": [147, 186, 200, 223, 262, 312, 335, 358, 370, 403, 408, 996, 1001, 1036], "simplest": [86, 262, 407, 997], "simplex": [64, 669, 798, 880], "simpli": [116, 152, 155, 167, 175, 229, 240, 242, 272, 296, 314, 315, 358, 366, 371, 373, 376, 383, 385, 405, 406, 407, 408, 410, 411, 481, 695, 763, 766, 872, 884, 951, 992, 997, 1000, 1001, 1002, 1003, 1014, 1038, 1039, 1040], "simplic": [44, 54, 68, 194, 204, 339, 346, 348, 385, 409, 1003, 1004, 1005, 1015], "simplif": [367, 370, 376, 1031, 1037], "simplifi": [44, 103, 143, 151, 154, 196, 239, 243, 309, 317, 335, 370, 372, 376, 403, 406, 512, 559, 863, 864, 865, 1000, 1002, 1010, 1051], "simplist": [206, 411], "simul": [110, 122, 149, 183, 202, 240, 263, 399, 1024], "simultan": [59, 64, 88, 121, 200, 267, 271, 318, 342, 352, 363, 383, 400, 403, 989, 1000, 1001, 1016, 1024, 1038], "sin": [44, 54, 58, 100, 121, 135, 145, 146, 151, 153, 158, 167, 173, 174, 176, 190, 191, 194, 202, 207, 212, 227, 238, 254, 295, 304, 313, 319, 341, 352, 413, 513, 614, 699, 765], "sin_transform": 44, "sina": 1044, "sinayev": 1033, "sinc": [0, 44, 45, 51, 53, 63, 64, 71, 73, 82, 86, 88, 99, 102, 103, 104, 121, 143, 160, 163, 165, 167, 172, 183, 184, 186, 188, 193, 200, 201, 206, 208, 210, 222, 233, 237, 238, 239, 250, 253, 257, 259, 263, 264, 265, 266, 272, 273, 276, 277, 280, 282, 283, 285, 286, 309, 315, 316, 321, 322, 329, 332, 335, 342, 346, 347, 348, 354, 359, 366, 369, 371, 372, 373, 375, 376, 379, 383, 384, 385, 389, 394, 397, 401, 403, 404, 405, 406, 407, 408, 410, 411, 413, 420, 423, 433, 438, 442, 446, 449, 452, 460, 463, 465, 493, 533, 535, 537, 544, 546, 547, 548, 549, 550, 552, 554, 556, 558, 559, 560, 561, 564, 566, 586, 587, 589, 609, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 631, 632, 637, 646, 650, 652, 654, 657, 658, 660, 662, 665, 666, 667, 673, 674, 675, 676, 677, 678, 698, 700, 702, 707, 712, 732, 736, 743, 779, 790, 800, 804, 805, 823, 829, 830, 832, 833, 834, 835, 836, 839, 840, 841, 842, 843, 844, 847, 852, 855, 862, 863, 870, 874, 875, 895, 896, 900, 901, 902, 905, 907, 910, 913, 915, 929, 931, 932, 942, 949, 958, 966, 989, 992, 993, 994, 996, 997, 1001, 1002, 1003, 1004, 1006, 1008, 1010, 1014, 1015, 1016, 1024, 1031, 1032, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "sinclert": 1039, "sind": 411, "sine": [2, 44, 167, 172, 173, 180, 202, 212, 247, 248, 249, 250, 252, 253, 352, 367, 614, 798, 799, 999, 1016, 1021], "singer": [280, 665, 666, 675, 677, 736, 996, 1000, 1014, 1015], "singh": [1037, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1051], "singl": [2, 31, 32, 67, 71, 85, 86, 88, 91, 94, 95, 100, 103, 104, 122, 133, 134, 135, 139, 142, 143, 153, 155, 160, 163, 167, 173, 178, 180, 183, 184, 186, 188, 194, 204, 206, 208, 210, 234, 243, 244, 245, 246, 253, 257, 259, 260, 261, 262, 263, 264, 272, 280, 300, 309, 313, 316, 318, 328, 335, 346, 347, 348, 351, 352, 354, 358, 359, 365, 366, 371, 376, 378, 379, 380, 383, 384, 385, 394, 401, 402, 404, 406, 407, 408, 410, 411, 412, 428, 433, 436, 437, 440, 441, 442, 443, 445, 450, 460, 462, 463, 490, 491, 493, 503, 506, 531, 550, 553, 554, 555, 556, 557, 561, 562, 563, 580, 590, 597, 598, 600, 604, 626, 630, 631, 633, 642, 665, 666, 672, 675, 676, 677, 690, 692, 694, 702, 710, 711, 721, 723, 724, 725, 726, 737, 738, 739, 742, 775, 786, 798, 799, 801, 815, 822, 823, 827, 828, 830, 831, 834, 842, 845, 846, 850, 862, 863, 864, 874, 875, 878, 879, 880, 885, 886, 900, 901, 913, 914, 915, 916, 925, 927, 965, 986, 989, 995, 996, 997, 1000, 1001, 1003, 1005, 1007, 1008, 1010, 1014, 1015, 1016, 1019, 1021, 1024, 1031, 1032, 1033, 1035, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048], "single_output": [373, 925], "single_prior": 176, "single_source_shortest_path_length": [2, 380], "singleton": [359, 809, 934, 1044, 1047], "singular": [2, 104, 120, 154, 183, 244, 262, 380, 400, 403, 406, 447, 449, 478, 479, 480, 481, 518, 521, 531, 535, 537, 538, 541, 544, 546, 547, 656, 671, 672, 673, 686, 949, 996, 997, 999, 1025, 1026, 1037, 1038, 1049], "singular_": 656, "singular_values_": [531, 538, 541, 1038], "sinha": [1039, 1048, 1049], "sinhrk": [1035, 1036], "sink": [640, 992], "sinoisoid": 146, "sinusoid": [121, 135, 146, 194, 238, 644, 993], "sio": 397, "siola": [1046, 1047], "sip\u0151cz": [1041, 1042, 1043, 1047, 1049, 1050], "siqi": 1045, "siqueira": 1041, "sir": 368, "sisird864": 1051, "sister": 1019, "site": [369, 371, 379, 389, 410, 484, 485, 486, 487, 489, 490, 491, 492, 494, 495, 1024, 1039], "situat": [63, 79, 90, 103, 104, 139, 143, 154, 182, 183, 184, 212, 232, 234, 244, 266, 313, 316, 371, 379, 397, 405, 407, 408, 410, 464, 525, 531, 580, 878, 881, 893, 903, 994, 996, 1002, 1003, 1013, 1016, 1039], "situp": 368, "sivamani": 1041, "sivaprasad": [1034, 1035], "six": [163, 207, 226, 307, 368, 1040], "sixteenth": 1012, "sixth": 366, "siyujin": 1051, "size": [38, 43, 44, 45, 46, 48, 51, 52, 53, 54, 62, 65, 68, 70, 73, 75, 77, 79, 80, 81, 85, 87, 88, 90, 91, 93, 94, 95, 99, 100, 105, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 127, 129, 137, 143, 145, 146, 149, 150, 151, 154, 155, 156, 159, 167, 169, 170, 173, 174, 180, 182, 184, 185, 190, 191, 192, 193, 195, 203, 204, 207, 208, 209, 212, 218, 219, 225, 230, 232, 235, 236, 237, 238, 239, 241, 242, 243, 244, 245, 250, 256, 257, 259, 261, 263, 265, 266, 268, 269, 270, 280, 289, 290, 291, 298, 301, 304, 305, 306, 307, 309, 310, 313, 314, 316, 317, 318, 319, 321, 322, 325, 329, 331, 333, 334, 335, 342, 344, 346, 347, 348, 350, 358, 359, 360, 366, 367, 371, 376, 380, 383, 384, 385, 389, 394, 400, 401, 403, 405, 407, 408, 411, 413, 414, 416, 440, 441, 442, 444, 445, 446, 453, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 490, 491, 492, 512, 524, 531, 533, 535, 537, 544, 554, 555, 556, 557, 558, 559, 561, 562, 581, 585, 586, 592, 631, 632, 642, 656, 658, 665, 666, 675, 677, 678, 682, 692, 695, 705, 719, 739, 741, 744, 782, 794, 803, 806, 807, 811, 818, 821, 822, 823, 826, 829, 831, 840, 841, 842, 844, 847, 848, 849, 850, 851, 853, 855, 856, 857, 862, 863, 870, 880, 882, 894, 899, 903, 907, 908, 909, 910, 911, 913, 914, 915, 916, 919, 948, 952, 953, 964, 965, 967, 969, 974, 990, 992, 993, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1007, 1010, 1012, 1014, 1015, 1016, 1023, 1024, 1034, 1035, 1036, 1037, 1038, 1039, 1041, 1046, 1047, 1049, 1050, 1052], "size_cluster_i": 93, "size_mb": 346, "sizeabl": [803, 818, 821], "sizein": 243, "sk": [547, 945], "skaft": 1045, "skeleton": 1034, "sketch": [2, 24, 188, 360, 363, 380, 638, 639, 640, 966, 1026, 1043], "skew": [2, 49, 146, 209, 236, 242, 303, 318, 363, 401, 407, 638, 639, 640, 641, 881, 893, 996, 1010, 1026, 1034, 1038, 1047, 1052], "skewed": [641, 1038], "skewedchi2sampl": [2, 637, 638, 639, 640, 992, 1038, 1045, 1046], "skf": [250, 407, 820], "skfold": 327, "skforecast": 1019, "skill": [722, 1000], "skimag": [80, 81, 365], "skip": [321, 359, 371, 380, 399, 411, 464, 645, 646, 651, 659, 660, 661, 670, 680, 903, 924, 942, 943, 1035, 1038, 1041, 1043, 1045, 1047, 1050], "skip_check_arrai": 988, "skip_complet": 626, "skip_comput": 1041, "skip_parameter_valid": [464, 903, 1047], "skipper": [1034, 1036, 1037], "skiptest": 943, "skiptestwarn": 942, "skl2onnx": 397, "sklearn": [2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 358, 359, 360, 364, 365, 366, 367, 369, 370, 371, 372, 373, 375, 376, 377, 379, 380, 383, 384, 385, 388, 389, 390, 394, 397, 399, 401, 402, 403, 404, 405, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 992, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1019, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038], "sklearn2pmml": 1019, "sklearn_api": 0, "sklearn_assume_finit": 358, "sklearn_cache_": 312, "sklearn_enable_debug_cython_direct": 372, "sklearn_fail_no_openmp": 369, "sklearn_graph_cache_": 285, "sklearn_is_fit": [132, 1021], "sklearn_run_float32_test": 371, "sklearn_site_joblib": 1039, "sklearn_warning_as_error": 359, "sklearnex": 389, "skop": [1019, 1026], "skorch": 1019, "skrub": 1019, "sktime": [53, 1019], "sl": 206, "slack": 1014, "slai": 346, "slama": [1041, 1043], "slep": [371, 385], "slep000": 386, "slep007": [315, 316, 373], "slep009": [1042, 1044, 1045], "slep010": [373, 1042], "slep018": [246, 373, 1046], "slep020": 386, "slice": [2, 44, 53, 56, 103, 142, 143, 149, 154, 155, 183, 184, 185, 214, 227, 234, 237, 244, 291, 294, 309, 313, 315, 316, 331, 366, 372, 380, 404, 460, 463, 490, 491, 505, 543, 638, 775, 779, 782, 922, 927, 952, 953, 970, 1043, 1045, 1049], "slice_": [490, 491, 1046], "sliceabl": 956, "slide": [264, 643, 996], "slight": [143, 211, 314, 397, 410, 445, 1041], "slightli": [44, 63, 65, 67, 97, 113, 137, 140, 143, 146, 150, 154, 163, 167, 168, 169, 184, 185, 190, 206, 223, 230, 239, 242, 264, 271, 275, 277, 283, 312, 332, 348, 370, 371, 401, 403, 410, 411, 413, 415, 442, 586, 587, 589, 637, 657, 804, 805, 905, 907, 910, 948, 949, 989, 996, 1010, 1014, 1015, 1016, 1040, 1044, 1045, 1047, 1049, 1050], "slishak": 1045, "sloan": 0, "slogdet": 947, "slope": [184, 208, 222, 403, 487, 724, 749, 998, 1000], "sloppili": 411, "sloth": [51, 296, 366, 495], "slow": [155, 244, 245, 261, 263, 285, 303, 314, 346, 358, 365, 369, 371, 408, 411, 443, 699, 879, 880, 884, 907, 910, 949, 997, 1003, 1038], "slower": [104, 123, 140, 143, 178, 183, 238, 264, 272, 348, 385, 410, 411, 412, 414, 442, 447, 449, 535, 537, 544, 555, 562, 586, 587, 589, 630, 631, 632, 642, 658, 671, 673, 686, 692, 704, 833, 837, 838, 993, 997, 998, 999, 1001, 1003, 1016, 1035, 1042], "slowerthan": [154, 156], "slowest": [143, 948, 949], "slowli": [383, 385, 541, 949], "slug": 102, "smacof": [2, 690, 997, 1046], "small": [38, 39, 42, 45, 51, 53, 60, 65, 82, 86, 88, 100, 102, 103, 104, 109, 113, 116, 125, 135, 137, 139, 143, 145, 146, 151, 154, 155, 172, 174, 183, 184, 191, 195, 199, 204, 207, 210, 211, 212, 220, 222, 223, 228, 233, 234, 243, 244, 246, 250, 257, 262, 263, 270, 275, 277, 285, 296, 299, 301, 303, 305, 307, 309, 313, 314, 316, 317, 321, 322, 324, 329, 335, 340, 342, 346, 347, 360, 364, 366, 368, 371, 374, 380, 383, 385, 386, 397, 400, 401, 403, 405, 406, 407, 408, 409, 410, 411, 412, 416, 437, 439, 441, 442, 443, 445, 454, 455, 459, 471, 493, 495, 535, 537, 538, 544, 552, 553, 554, 558, 559, 560, 561, 580, 587, 588, 600, 605, 606, 649, 653, 654, 655, 657, 658, 665, 666, 675, 677, 678, 681, 682, 804, 805, 819, 830, 833, 862, 863, 870, 898, 907, 910, 949, 989, 994, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1007, 1008, 1010, 1012, 1013, 1016, 1019, 1020, 1024, 1031, 1032, 1034, 1036, 1037, 1038, 1039, 1040, 1042, 1043, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "smaller": [2, 38, 48, 62, 64, 75, 80, 88, 103, 113, 134, 139, 141, 143, 149, 151, 154, 155, 156, 163, 172, 173, 178, 183, 184, 185, 192, 197, 198, 199, 210, 233, 234, 236, 244, 246, 257, 262, 275, 277, 280, 289, 290, 298, 301, 303, 309, 313, 314, 316, 317, 319, 320, 322, 335, 342, 347, 352, 353, 371, 386, 400, 403, 405, 407, 408, 410, 412, 414, 435, 436, 440, 442, 446, 450, 452, 511, 531, 532, 554, 555, 556, 557, 558, 559, 561, 562, 591, 609, 618, 632, 645, 646, 648, 649, 651, 652, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 671, 673, 675, 677, 681, 682, 692, 709, 798, 804, 805, 851, 854, 878, 879, 897, 898, 905, 913, 914, 915, 916, 949, 994, 996, 997, 999, 1000, 1001, 1003, 1004, 1006, 1010, 1012, 1014, 1015, 1016, 1020, 1039, 1044, 1048], "smallest": [103, 104, 111, 112, 154, 185, 206, 234, 244, 262, 275, 283, 313, 316, 320, 350, 366, 403, 405, 412, 524, 538, 629, 653, 654, 655, 681, 682, 690, 694, 695, 801, 804, 805, 815, 820, 875, 928, 1016, 1044], "smallest_ab": 320, "smallest_coef": [113, 524], "smari": [1040, 1041, 1042], "smart": [239, 439, 455, 456, 588], "smartphon": 1024, "smedbergm": 1037, "smedemark": 1041, "smile": [107, 366, 1045], "sminchisescu": [641, 992], "smirnov": 1043, "smith": [1037, 1038, 1039, 1040, 1041, 1043], "sml": [861, 1005], "smle": [104, 244, 262], "smo": [905, 906], "smola": [408, 411, 532, 871, 1010, 1015], "smolskii": 1046, "smooth": [44, 64, 80, 81, 87, 139, 141, 143, 154, 156, 163, 172, 185, 201, 207, 221, 244, 264, 275, 309, 314, 319, 335, 352, 353, 368, 386, 403, 409, 410, 413, 444, 445, 534, 535, 536, 543, 554, 555, 556, 557, 561, 562, 563, 588, 589, 618, 621, 675, 840, 841, 842, 844, 882, 886, 894, 913, 914, 915, 916, 996, 1002, 1010, 1014, 1015, 1016], "smooth_idf": [264, 411, 588, 589], "smoothened_coin": [80, 81], "smoother": [44, 45, 67, 146, 184, 300, 409], "smoothingnois": 184, "smoothli": 365, "smt": 1047, "smtp": [366, 489], "smujjiga": 1041, "sn": [73, 126, 135, 149, 182, 183, 190, 194, 253, 263], "snake": [316, 318, 580, 886, 1010], "snapshot": [397, 556, 557, 1020], "sne": [52, 180, 224, 225, 226, 227, 229, 283, 511, 522, 692, 1021, 1025, 1026], "snippet": [132, 354, 371, 376, 379, 383, 399, 410, 411, 412, 990, 1010, 1023, 1044], "snowhit": 1042, "snr": 87, "snuderl": 1035, "sny": 52, "snyder": [692, 997], "so": [31, 38, 44, 49, 52, 53, 56, 65, 77, 88, 89, 94, 98, 103, 104, 112, 140, 142, 143, 144, 145, 149, 153, 154, 156, 167, 172, 179, 183, 184, 185, 188, 191, 206, 207, 232, 239, 242, 244, 253, 257, 261, 262, 263, 275, 276, 280, 283, 289, 290, 293, 299, 300, 304, 309, 310, 313, 327, 335, 346, 348, 353, 354, 358, 359, 360, 365, 366, 369, 370, 371, 373, 375, 376, 377, 379, 380, 385, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 410, 411, 412, 413, 416, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 452, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 493, 505, 506, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 602, 605, 606, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 695, 705, 708, 716, 727, 731, 757, 779, 789, 798, 799, 800, 801, 804, 805, 807, 808, 815, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 889, 895, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 949, 967, 974, 989, 990, 992, 994, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1010, 1012, 1013, 1014, 1015, 1019, 1020, 1024, 1031, 1033, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1045, 1047, 1048], "soar": 1046, "sobkevich": 1043, "sobolev": 1035, "soc": [58, 366, 996], "socastro": [1041, 1047], "socg2006": 443, "social": [0, 183, 375, 386, 403, 1024], "societi": [163, 368, 403, 405, 465, 470, 538, 626, 881, 893, 996, 1014], "sodhani": 1037, "soft": [2, 129, 155, 371, 385, 566, 567, 901, 909, 996, 1014, 1024, 1036], "softmax": [64, 257, 322, 401, 410, 433, 558, 657, 658, 996, 1003, 1004], "softw": 996, "softwar": [0, 163, 358, 368, 371, 379, 383, 385, 397, 411, 626, 634, 657, 990, 997, 1024], "soil_typ": 242, "sokalmichen": [446, 453, 699, 779, 780, 781, 1003], "sokalmichenerdist": 699, "sokalsneath": [446, 453, 699, 779, 780, 781, 1003], "sokalsneathdist": 699, "sok\u00f3\u0142": [1048, 1049], "sole": [371, 383, 403], "soledad": 1043, "soler": [0, 393], "solid": [51, 68, 70, 145, 170, 217, 218, 232, 242, 296, 305, 1024], "solntz": 346, "solosil": 1044, "solut": [64, 80, 103, 139, 141, 143, 150, 151, 154, 155, 156, 183, 185, 190, 192, 194, 198, 199, 211, 219, 228, 232, 233, 234, 235, 238, 243, 244, 246, 253, 257, 262, 275, 276, 277, 301, 309, 313, 315, 316, 317, 319, 322, 335, 369, 385, 397, 400, 402, 403, 405, 407, 408, 411, 412, 445, 447, 449, 528, 534, 535, 536, 537, 539, 540, 542, 543, 544, 545, 546, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 609, 645, 647, 649, 651, 653, 654, 655, 656, 657, 659, 661, 663, 664, 665, 666, 667, 668, 671, 673, 675, 676, 677, 678, 679, 681, 682, 684, 685, 686, 687, 798, 799, 815, 854, 862, 863, 993, 994, 996, 997, 999, 1004, 1006, 1014, 1015, 1024, 1031, 1034, 1044, 1045, 1046, 1051], "solutu": 1039, "solutusimmensu": 1039, "solv": [2, 45, 46, 99, 104, 160, 167, 183, 192, 198, 237, 263, 270, 282, 370, 371, 372, 373, 376, 383, 391, 403, 405, 407, 408, 413, 443, 449, 458, 474, 528, 534, 535, 536, 540, 542, 543, 544, 545, 634, 636, 645, 651, 653, 654, 663, 664, 669, 671, 673, 676, 684, 685, 686, 719, 817, 819, 820, 821, 835, 905, 906, 909, 949, 991, 994, 996, 997, 1000, 1001, 1014, 1015, 1016, 1019, 1024, 1037, 1041, 1044], "solvabl": 403, "solver": [52, 55, 70, 71, 80, 99, 103, 104, 139, 155, 156, 183, 198, 199, 201, 206, 220, 221, 223, 233, 234, 235, 243, 244, 245, 246, 257, 261, 262, 263, 277, 298, 299, 300, 301, 310, 313, 314, 316, 319, 320, 322, 346, 377, 383, 385, 389, 399, 403, 415, 448, 458, 467, 468, 474, 530, 532, 537, 538, 541, 544, 546, 645, 646, 647, 651, 652, 656, 657, 658, 659, 660, 661, 662, 668, 669, 671, 673, 679, 680, 683, 686, 688, 689, 691, 693, 695, 789, 815, 836, 839, 862, 863, 907, 908, 909, 910, 911, 994, 997, 1001, 1004, 1014, 1015, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "solver_": [671, 673], "solver_opt": 669, "somani": 1043, "somdutta": 1051, "some": [43, 44, 45, 48, 49, 53, 58, 62, 63, 64, 65, 67, 73, 79, 83, 86, 88, 89, 91, 95, 103, 104, 106, 109, 111, 112, 116, 120, 135, 136, 139, 140, 143, 146, 147, 149, 150, 151, 154, 155, 156, 159, 160, 165, 167, 169, 172, 173, 174, 175, 176, 178, 179, 180, 183, 184, 185, 186, 188, 190, 192, 194, 196, 197, 198, 200, 202, 203, 206, 207, 210, 213, 214, 219, 222, 223, 225, 227, 232, 233, 234, 236, 239, 242, 243, 244, 246, 249, 250, 251, 256, 257, 258, 262, 263, 264, 265, 266, 269, 270, 271, 277, 280, 282, 286, 289, 294, 299, 300, 301, 303, 308, 309, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 331, 332, 334, 335, 342, 346, 347, 348, 353, 354, 358, 359, 360, 364, 365, 366, 368, 369, 371, 372, 373, 375, 376, 377, 378, 379, 380, 383, 384, 385, 389, 394, 397, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 426, 433, 439, 440, 443, 445, 447, 449, 455, 459, 461, 464, 478, 479, 480, 493, 496, 505, 506, 512, 520, 521, 530, 531, 533, 535, 538, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 571, 586, 588, 602, 604, 607, 609, 610, 631, 632, 634, 638, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 687, 689, 690, 692, 693, 697, 698, 700, 701, 702, 707, 708, 715, 720, 727, 728, 739, 740, 741, 747, 755, 757, 758, 764, 783, 785, 788, 789, 790, 795, 798, 800, 802, 803, 808, 810, 819, 820, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 865, 866, 868, 870, 871, 872, 877, 884, 885, 900, 901, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 931, 932, 958, 989, 990, 992, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1010, 1013, 1014, 1015, 1016, 1018, 1019, 1020, 1023, 1024, 1031, 1032, 1033, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050], "some_funct": [371, 938], "some_integ": 407, "some_iter": 371, "some_param": 371, "somebodi": [371, 386], "someestim": 370, "somehow": 184, "someon": [371, 375, 385, 1031], "someth": [183, 226, 280, 346, 371, 374, 375, 379, 411, 921, 923, 1000, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "sometim": [104, 154, 182, 257, 263, 300, 347, 354, 359, 360, 371, 373, 377, 384, 385, 403, 405, 408, 410, 411, 445, 531, 532, 535, 537, 538, 870, 871, 872, 920, 995, 996, 997, 1000, 1005, 1010, 1011, 1015, 1032, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1047], "sometimeimprov": [104, 244, 262], "sometoler": [143, 151, 154, 257, 309, 317, 322], "somewhat": [342, 354, 360, 408, 410, 907, 910, 996, 1015, 1016], "somewher": [377, 1000], "sommer": 1049, "somya": 1039, "son": [368, 990], "song": 997, "soni": [52, 1041, 1043], "sonni": 1036, "sonniv": [1046, 1047], "sonoiya": 1041, "sonoma": 309, "soon": [112, 385, 1050], "sooner": 1048, "sophist": [990, 1002], "sorbaro": 1036, "sorensen": 408, "soriano": 1040, "sornarajah": 1036, "sorri": 1039, "sorro": 1040, "sorski": [1045, 1046], "sort": [2, 44, 48, 50, 52, 59, 62, 93, 102, 103, 105, 132, 137, 139, 143, 146, 153, 154, 155, 163, 172, 183, 184, 185, 190, 194, 206, 207, 223, 234, 241, 244, 262, 263, 264, 267, 278, 295, 309, 313, 316, 341, 346, 352, 375, 379, 380, 385, 407, 410, 411, 413, 531, 538, 552, 563, 579, 592, 609, 616, 697, 712, 718, 730, 731, 739, 755, 784, 785, 788, 790, 801, 828, 840, 841, 842, 843, 844, 845, 846, 853, 855, 856, 857, 860, 870, 876, 878, 879, 882, 884, 886, 894, 907, 910, 949, 955, 996, 1003, 1006, 1010, 1024, 1031, 1035, 1041, 1042, 1043, 1045, 1046, 1049], "sort_graph_by_row_valu": [2, 380, 1046], "sort_index": 280, "sort_result": [845, 846, 853, 855, 856, 857, 1043], "sort_valu": [103, 185, 186, 246, 253, 263, 274, 309, 310], "sorted_idx": [147, 312], "sorted_importances_idx": 185, "sortofamudkip": [1046, 1047, 1051], "sotagg": 1051, "sought": 782, "soumirai": 1041, "sound": [163, 354], "sounder": 1037, "sourabh": 1051, "sourav": [1038, 1041], "sourc": [0, 2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 365, 368, 370, 371, 372, 374, 375, 377, 379, 380, 383, 384, 389, 397, 400, 404, 408, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 967, 968, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 983, 984, 985, 986, 987, 988, 997, 1010, 1016, 1019, 1021, 1023, 1024, 1041, 1045, 1049, 1050, 1051], "south": [51, 149, 183, 296, 366, 409], "south_y": 183, "sp": [44, 183, 319, 990], "sp_version": 669, "space": [2, 38, 44, 48, 50, 58, 67, 68, 80, 86, 90, 91, 93, 94, 96, 98, 102, 103, 106, 116, 120, 122, 126, 128, 130, 139, 142, 146, 152, 160, 163, 167, 172, 173, 183, 188, 194, 207, 225, 226, 227, 228, 229, 236, 237, 238, 242, 243, 249, 254, 264, 271, 274, 275, 283, 292, 293, 305, 314, 339, 346, 347, 348, 353, 354, 358, 363, 366, 367, 368, 371, 378, 383, 384, 385, 400, 403, 406, 408, 409, 410, 411, 413, 439, 443, 444, 445, 448, 458, 460, 461, 462, 463, 478, 479, 480, 484, 495, 528, 529, 531, 532, 534, 535, 536, 537, 538, 539, 540, 541, 546, 570, 580, 586, 587, 589, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 631, 632, 637, 639, 640, 641, 642, 687, 688, 689, 690, 692, 693, 694, 696, 699, 702, 790, 801, 804, 805, 807, 815, 822, 824, 835, 845, 846, 853, 854, 855, 856, 865, 870, 871, 877, 882, 897, 898, 899, 918, 953, 992, 993, 994, 995, 996, 998, 1000, 1001, 1003, 1004, 1005, 1006, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1019, 1020, 1025, 1026, 1031, 1032, 1034, 1039, 1040, 1041, 1045, 1046, 1047], "spacek": 1036, "spain": 309, "spam": [579, 709, 742, 840, 1000, 1002, 1024], "span": [53, 88, 104, 109, 146, 237, 244, 253, 257, 260, 261, 262, 263, 366, 403, 411, 546, 635, 801, 804, 1000], "spanish": 1019, "spannbauer": 1043, "sparamet": 172, "sparciti": 347, "spare": [365, 673, 674], "spark": [366, 1020], "sparrai": [1048, 1051], "spars": [2, 26, 46, 47, 48, 52, 54, 56, 58, 75, 87, 88, 90, 100, 102, 103, 104, 108, 109, 110, 119, 139, 143, 152, 154, 155, 156, 160, 180, 184, 185, 189, 190, 192, 197, 198, 200, 202, 203, 204, 205, 221, 233, 234, 235, 236, 238, 243, 244, 246, 257, 262, 264, 270, 276, 277, 283, 299, 301, 309, 313, 316, 317, 320, 345, 348, 353, 358, 363, 365, 366, 367, 371, 373, 374, 375, 376, 383, 384, 385, 397, 403, 404, 410, 411, 413, 414, 418, 425, 434, 436, 437, 438, 439, 440, 441, 442, 443, 445, 446, 447, 448, 449, 453, 455, 456, 458, 459, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 483, 484, 485, 493, 494, 500, 505, 520, 521, 523, 524, 525, 526, 528, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 548, 550, 551, 552, 553, 554, 555, 556, 557, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 583, 584, 586, 587, 588, 589, 591, 592, 601, 602, 603, 604, 605, 606, 607, 628, 629, 630, 632, 637, 639, 640, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 695, 696, 697, 698, 700, 701, 702, 703, 712, 713, 714, 730, 731, 732, 735, 739, 740, 741, 755, 756, 761, 762, 764, 765, 767, 768, 769, 771, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 784, 785, 786, 788, 793, 794, 797, 800, 801, 804, 805, 815, 822, 823, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 847, 848, 849, 851, 852, 853, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 868, 869, 870, 872, 874, 875, 876, 877, 878, 880, 882, 883, 884, 885, 887, 888, 889, 890, 892, 894, 895, 896, 897, 898, 899, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 922, 927, 929, 930, 931, 932, 937, 946, 948, 949, 950, 953, 955, 956, 964, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 985, 988, 990, 993, 996, 997, 998, 1000, 1001, 1003, 1013, 1015, 1016, 1021, 1022, 1025, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1050, 1051, 1052], "sparse_cg": [183, 346, 671, 673, 686, 996, 1032, 1038, 1040, 1041, 1045, 1047], "sparse_coef_": [645, 651, 659, 661, 1031], "sparse_encod": [2, 539, 649, 650, 651, 652, 653, 654, 655, 662, 663, 664, 681, 682, 683, 684, 685, 1031, 1038, 1039, 1041, 1045], "sparse_encode_parallel": 1031, "sparse_format": [524, 1048], "sparse_func": [1037, 1043], "sparse_input_": 872, "sparse_lasso": 195, "sparse_output": [44, 103, 139, 143, 154, 155, 183, 184, 234, 244, 246, 309, 313, 316, 319, 563, 872, 876, 878, 884, 889, 1010, 1046, 1047], "sparse_output_": [460, 548], "sparse_symmetric_arrai": 985, "sparse_threshold": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316, 460, 463, 1039], "sparsearrai": 1042, "sparsecod": [2, 129, 408, 528, 534, 537, 545, 1038, 1039, 1041, 1043, 1045, 1051, 1052], "sparsecodingmixin": 1031, "sparsefunc": [2, 380, 974, 975, 976, 977, 978, 979, 980, 1044], "sparsefuncs_fast": [2, 380, 981, 982], "sparsepca": [2, 120, 528, 530, 531, 532, 534, 536, 537, 538, 539, 542, 543, 1031, 1038, 1039, 1041, 1042, 1044, 1045, 1046, 1049], "sparser": [88, 190, 199, 276, 408, 414, 467, 474, 536, 540, 996, 1003, 1014], "sparserandomproject": [2, 226, 236, 897, 1012, 1032, 1037, 1045, 1047, 1048], "sparsetool": 1038, "sparsifi": [47, 194, 358, 657, 658, 665, 666, 667, 675, 676, 677, 905, 983, 1033], "sparsiti": [2, 54, 113, 180, 189, 192, 194, 197, 201, 216, 220, 221, 238, 342, 347, 358, 385, 405, 408, 410, 412, 499, 524, 528, 534, 535, 536, 537, 540, 542, 543, 544, 645, 651, 657, 675, 677, 721, 724, 725, 874, 880, 885, 890, 993, 996, 1003, 1010, 1021, 1033], "sparsity_en_lr": 199, "sparsity_l1_lr": 199, "sparsity_l2_lr": 199, "sparsity_ratio": 358, "spatial": [81, 82, 88, 186, 194, 222, 300, 366, 385, 403, 414, 440, 442, 446, 448, 453, 678, 687, 692, 761, 764, 779, 780, 781, 782, 793, 794, 845, 846, 847, 848, 849, 850, 851, 853, 855, 856, 857, 858, 859, 996, 1003, 1010, 1033, 1037, 1044, 1047], "spawn": [103, 104, 244, 253, 257, 261, 262, 263, 358, 383, 801, 815, 826, 827, 828, 1042], "spdx": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353], "speak": [347, 358, 371, 1014], "speaker": 371, "spearman": [186, 634, 635, 991], "spearmanr": 186, "spec": [1046, 1047], "speci": [2, 43, 126, 180, 242, 269, 284, 346, 364, 409, 495, 706, 790, 850, 909, 920, 1000, 1006, 1021, 1026, 1031], "special": [103, 143, 145, 154, 183, 184, 185, 223, 234, 244, 280, 293, 309, 313, 316, 335, 365, 367, 373, 377, 383, 385, 403, 406, 408, 460, 463, 550, 552, 556, 826, 917, 989, 994, 996, 998, 999, 1000, 1001, 1003, 1016, 1038, 1041, 1043, 1045, 1050], "special_charact": [917, 1016], "species_nam": [51, 296], "specif": [2, 44, 51, 52, 59, 64, 65, 71, 79, 88, 95, 98, 102, 103, 104, 139, 140, 141, 149, 154, 155, 172, 175, 180, 183, 184, 185, 188, 210, 223, 233, 234, 244, 246, 257, 258, 262, 263, 275, 277, 280, 301, 303, 312, 313, 316, 317, 319, 320, 321, 322, 339, 346, 347, 348, 354, 358, 359, 366, 371, 373, 374, 376, 377, 379, 383, 385, 389, 397, 399, 403, 404, 407, 408, 410, 411, 412, 413, 427, 493, 500, 531, 548, 554, 561, 564, 565, 566, 567, 571, 586, 589, 591, 611, 612, 613, 614, 616, 617, 618, 619, 621, 622, 624, 639, 642, 645, 646, 657, 671, 686, 697, 699, 712, 713, 801, 802, 803, 808, 809, 810, 815, 828, 841, 922, 940, 942, 943, 944, 964, 975, 976, 977, 994, 996, 997, 999, 1000, 1002, 1003, 1005, 1007, 1008, 1010, 1014, 1016, 1017, 1018, 1020, 1023, 1031, 1035, 1039, 1040, 1041, 1042, 1045, 1046, 1048], "specifi": [2, 44, 52, 59, 64, 65, 88, 103, 104, 120, 139, 141, 143, 144, 149, 154, 155, 156, 160, 168, 171, 172, 173, 174, 175, 183, 184, 185, 198, 207, 208, 213, 233, 234, 244, 245, 246, 248, 253, 257, 261, 262, 263, 270, 271, 275, 277, 301, 309, 313, 314, 316, 317, 319, 321, 322, 326, 353, 358, 359, 365, 371, 379, 380, 384, 385, 394, 397, 401, 403, 404, 407, 408, 410, 412, 413, 415, 417, 433, 437, 440, 441, 446, 448, 459, 460, 463, 465, 466, 468, 469, 470, 471, 472, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 500, 512, 524, 528, 530, 534, 535, 537, 538, 543, 544, 549, 554, 556, 557, 558, 559, 561, 564, 565, 581, 582, 591, 592, 595, 600, 609, 610, 619, 630, 631, 632, 637, 642, 645, 646, 647, 650, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 667, 668, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 686, 691, 698, 700, 702, 709, 711, 722, 730, 731, 739, 743, 755, 772, 780, 781, 784, 785, 788, 801, 804, 805, 807, 808, 810, 814, 815, 818, 823, 824, 825, 826, 827, 828, 829, 830, 832, 836, 839, 840, 841, 843, 844, 845, 846, 850, 855, 878, 879, 880, 883, 884, 886, 901, 905, 906, 907, 908, 909, 910, 911, 912, 913, 915, 944, 951, 957, 958, 983, 990, 996, 997, 999, 1000, 1003, 1007, 1008, 1010, 1013, 1014, 1015, 1031, 1037, 1038, 1039, 1040, 1042, 1043, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "specificscor": [103, 104, 244, 253, 257, 261, 262, 263], "specificstop": 264, "specifiedcolumn": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "spector": 407, "spectral": [2, 54, 57, 72, 79, 80, 82, 88, 102, 180, 226, 227, 326, 346, 347, 348, 371, 411, 445, 447, 448, 449, 458, 465, 466, 467, 468, 469, 470, 471, 472, 484, 508, 510, 589, 688, 689, 690, 691, 692, 695, 719, 796, 1003, 1013, 1021, 1025, 1026, 1031, 1032], "spectral_clust": [2, 80, 99, 1039, 1041, 1043, 1044, 1045, 1046, 1048], "spectral_embed": [2, 385, 997, 1032, 1035, 1037, 1039, 1041, 1044, 1045, 1046, 1048], "spectralbiclust": [2, 400, 449, 1033, 1037, 1038, 1042], "spectralclust": [2, 79, 316, 403, 436, 1003, 1031, 1032, 1041, 1043, 1044, 1045, 1046, 1047, 1048], "spectralcoclust": [2, 58, 60, 400, 447, 1033, 1038, 1042], "spectralembed": [2, 85, 225, 226, 227, 688, 689, 690, 692, 997, 1032, 1037, 1041, 1045, 1046, 1048], "spectrum": [105, 521, 541, 695, 949, 1024, 1039], "speech": [411, 1000], "speed": [80, 81, 90, 102, 123, 132, 140, 154, 179, 184, 192, 195, 198, 201, 242, 253, 283, 314, 325, 346, 348, 360, 371, 374, 380, 383, 385, 399, 401, 403, 407, 408, 410, 411, 414, 439, 440, 443, 444, 445, 446, 448, 453, 455, 456, 457, 458, 528, 529, 609, 626, 631, 632, 633, 638, 645, 646, 649, 650, 651, 652, 653, 654, 655, 659, 660, 661, 662, 663, 680, 683, 692, 798, 799, 807, 829, 845, 846, 847, 848, 849, 851, 853, 855, 856, 857, 880, 949, 989, 992, 997, 999, 1001, 1014, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051], "speedi": 358, "speedup": [319, 358, 408, 410, 645, 646, 649, 651, 652, 653, 656, 659, 660, 661, 662, 680, 683, 996, 1031, 1032, 1033, 1034, 1046, 1050, 1052], "speer": 1033, "spell": 411, "spend": 411, "spent": [283, 309, 372, 377, 829, 1046], "sperret6": 1049, "sphere": [134, 180, 224, 225, 228, 230, 283, 347, 409, 516, 587, 687, 688, 689, 690, 691, 692, 765, 934, 994, 997, 998, 1003, 1021], "sphere_data": 227, "spheric": [71, 90, 115, 150, 227, 250, 252, 253, 296, 367, 765, 798, 799, 996, 997, 999, 1003, 1051], "sphinx": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 359, 375, 385, 389, 396, 1031, 1038], "sphinxcontrib": [371, 389, 396], "sphinxext": [371, 389, 396], "sphx_glr_auto_examples_ensemble_plot_ensemble_oob": [64, 141, 154, 156, 185, 244, 275, 319], "sphx_glr_auto_examples_ensemble_plot_gradient_boosting_categor": [143, 151, 154, 309, 317], "sphx_glr_auto_examples_ensemble_plot_gradient_boosting_early_stop": 156, "sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantil": 156, "sphx_glr_auto_examples_gaussian_process_plot_gpr_noisy_target": 172, "sphx_glr_auto_examples_linear_model_plot_logistic_path": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "sphx_glr_auto_examples_linear_model_plot_nnl": [156, 235], "sphx_glr_auto_examples_mixture_plot_gmm_select": 253, "sphx_glr_auto_examples_mlcomp_sparse_document_classif": 1031, "sphx_glr_auto_examples_model_selection_plot_grid_search_digit": [104, 244, 253, 257, 261, 262, 263], "sphx_glr_auto_examples_neighbors_plot_caching_nearest_neighbor": [103, 139, 143, 154, 160, 183, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322], "sphx_glr_auto_examples_neural_networks_plot_mlp_training_curv": 243, "sphx_glr_auto_examples_svm_plot_svm_kernel": [244, 245, 261, 263, 314], "sphx_glr_auto_examples_svm_plot_svm_scale_c": [104, 160, 244, 245, 261, 263, 270, 314], "sphx_glr_auto_examples_svm_plot_svm_tie_break": [244, 245, 261, 263, 314], "sphx_glr_auto_examples_tree_plot_cost_complexity_prun": [64, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "sphx_glr_auto_examples_tree_plot_tree_regress": [314, 352], "spidlen": [692, 997], "spie": [163, 368], "spielman": 1041, "spike": 184, "spikebh": 1045, "spikhalskii": 1036, "spiki": 44, "spin": 379, "spine": [47, 55, 71, 216, 303, 700, 702, 1050], "spirit": 408, "spite": 1002, "spline": [2, 67, 155, 180, 189, 190, 278, 513, 514, 515, 671, 866, 880, 884, 1021, 1044], "spline_": 44, "splines_df": 44, "splinetransform": [2, 44, 67, 155, 207, 242, 315, 880, 1010, 1044, 1046, 1047, 1052], "split": [2, 44, 45, 46, 51, 52, 53, 55, 56, 62, 64, 65, 68, 69, 102, 103, 104, 125, 134, 139, 140, 141, 142, 144, 145, 146, 147, 148, 149, 150, 151, 154, 156, 159, 162, 182, 183, 185, 186, 194, 203, 204, 206, 209, 213, 223, 233, 242, 243, 244, 249, 250, 253, 256, 257, 258, 261, 262, 263, 268, 270, 273, 275, 277, 280, 286, 292, 298, 300, 304, 305, 309, 310, 316, 317, 318, 319, 322, 327, 335, 346, 348, 352, 353, 366, 378, 384, 385, 389, 394, 401, 402, 403, 408, 410, 411, 412, 433, 438, 439, 468, 469, 475, 476, 494, 528, 534, 536, 539, 543, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 586, 587, 589, 592, 600, 646, 650, 652, 654, 660, 662, 664, 672, 674, 695, 704, 705, 717, 732, 738, 758, 796, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 836, 839, 845, 846, 862, 863, 886, 890, 891, 893, 894, 895, 896, 913, 914, 915, 916, 970, 989, 992, 996, 997, 1000, 1003, 1006, 1007, 1008, 1010, 1014, 1016, 1020, 1026, 1031, 1034, 1036, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050], "split0_test_precis": [801, 815], "split0_test_scor": [801, 815, 1037], "split0_train_scor": [801, 815, 1037], "split1_test_scor": [801, 815], "split1_train_scor": [801, 815], "split2_test_scor": 801, "split_cod": 408, "split_sign": [528, 534, 539], "spliti": 257, "spliton": [143, 151, 154, 257, 309, 317, 322], "splitswil": 154, "splitter": [44, 52, 64, 103, 104, 154, 183, 239, 244, 253, 257, 261, 262, 263, 275, 314, 318, 319, 352, 353, 385, 394, 407, 433, 468, 561, 562, 564, 565, 592, 600, 646, 650, 652, 654, 658, 660, 662, 664, 672, 674, 801, 803, 804, 805, 806, 807, 815, 816, 817, 820, 821, 824, 825, 826, 827, 828, 829, 830, 832, 836, 839, 913, 914, 915, 916, 1016, 1037, 1038, 1039, 1040, 1047, 1048, 1049, 1050], "splot": [249, 254], "splt": 207, "sply88": 1045, "spmatrix": [1048, 1051], "spolski": 411, "sport": [58, 366], "spot": [86, 234, 403], "spottabl": 377, "spread": [44, 75, 227, 228, 264, 303, 324, 325, 326, 329, 342, 358, 371, 403, 407, 448, 458, 512, 882, 894, 902, 1000], "spring": [44, 53, 184], "springboard": 1019, "springer": [137, 138, 148, 172, 262, 401, 403, 407, 408, 410, 517, 532, 556, 557, 687, 690, 694, 696, 705, 720, 727, 741, 742, 757, 798, 852, 913, 914, 997, 1000, 1001, 1007, 1016], "sprint": [370, 371, 1031], "spuriou": [335, 379, 1010, 1044, 1045, 1046, 1051], "spy": 202, "sq": 770, "sqeuclidean": [74, 446, 453, 779, 780, 781], "sqft": 242, "sql": 365, "sqr": 75, "sqrt": [52, 64, 111, 112, 113, 123, 129, 138, 141, 154, 156, 185, 186, 190, 192, 228, 230, 244, 248, 249, 250, 253, 254, 263, 275, 314, 319, 340, 342, 352, 353, 403, 410, 411, 413, 459, 465, 466, 467, 468, 469, 470, 471, 472, 535, 537, 544, 554, 555, 556, 557, 561, 562, 618, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 699, 732, 764, 765, 770, 885, 898, 913, 914, 915, 916, 992, 996, 997, 1000, 1002, 1012, 1045], "squar": [2, 44, 45, 53, 94, 103, 104, 110, 111, 112, 114, 115, 121, 122, 130, 137, 143, 147, 149, 150, 151, 154, 156, 163, 167, 172, 180, 182, 183, 189, 190, 192, 193, 194, 198, 206, 208, 211, 215, 222, 223, 235, 236, 238, 243, 244, 245, 251, 261, 262, 263, 264, 278, 307, 309, 310, 314, 315, 317, 332, 346, 352, 363, 368, 371, 377, 380, 385, 403, 405, 406, 408, 409, 410, 414, 415, 426, 436, 438, 439, 440, 442, 443, 445, 446, 450, 453, 455, 456, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 498, 528, 534, 536, 538, 540, 542, 543, 544, 546, 549, 551, 553, 555, 556, 557, 559, 562, 565, 567, 588, 589, 590, 593, 594, 596, 597, 598, 602, 603, 604, 607, 610, 614, 621, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 681, 682, 684, 685, 686, 687, 688, 690, 692, 694, 696, 709, 721, 723, 724, 725, 751, 752, 759, 760, 764, 770, 771, 786, 791, 792, 831, 838, 839, 847, 848, 851, 852, 853, 855, 856, 863, 866, 885, 905, 906, 908, 910, 911, 912, 914, 916, 947, 972, 985, 991, 993, 994, 997, 1003, 1004, 1008, 1014, 1016, 1021, 1022, 1026, 1031, 1034, 1036, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1050], "square_dist": 1043, "squared_epsilon_insensit": [666, 675, 677, 906, 1037], "squared_error": [47, 53, 129, 143, 146, 147, 151, 154, 156, 243, 309, 314, 315, 317, 322, 352, 410, 555, 556, 557, 559, 562, 670, 675, 677, 693, 863, 914, 916, 1014, 1016, 1044, 1047, 1048, 1051], "squared_hing": [104, 160, 270, 342, 665, 675, 905, 912, 1015], "squared_loss": [383, 1044], "squarederror": 156, "squareform": 186, "squash": [242, 375, 413, 528, 534, 539, 545], "squeez": [107, 173, 174, 242, 283, 303, 1050], "sr": 1024, "sr_color": 229, "sr_err": 229, "sr_lle": 229, "sr_point": 229, "sr_tsne": 229, "srajan": 1039, "sre": 1046, "srebro": 1014, "sreeja": 1051, "srep30750": 403, "sri": [670, 996, 1038, 1039], "sridharan": 1036, "sriharsha": [1039, 1040], "srikantan": 996, "srimukh": 1043, "srinath": [1045, 1046], "srinivasan": [1039, 1042], "sripada": 1043, "srir": 1051, "srivastava": [1034, 1046, 1049], "srivatsan": [1037, 1038, 1041], "srvanrel": 1037, "sr\u0161e\u0148": [1049, 1050], "ss": 407, "sse": 439, "sseg": 1036, "ssrn": [206, 223], "sss": 821, "ssvm": 383, "st": [81, 100, 263, 317, 1034, 1037, 1039], "st30": 329, "st50": 329, "st_pipelin": 328, "sta4273": 643, "stabil": [73, 138, 144, 183, 204, 226, 243, 268, 303, 342, 347, 385, 400, 442, 649, 653, 669, 843, 862, 863, 881, 893, 948, 990, 996, 999, 1010, 1020, 1031, 1035, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1051, 1052], "stabilis": 190, "stabl": [44, 65, 104, 162, 175, 176, 183, 202, 204, 208, 239, 244, 262, 283, 313, 342, 347, 369, 371, 373, 375, 380, 385, 389, 394, 407, 411, 415, 467, 468, 474, 530, 538, 654, 671, 673, 686, 692, 725, 753, 948, 949, 996, 1000, 1002, 1003, 1010, 1020, 1027, 1031, 1032, 1037, 1042, 1044, 1048], "stack": [2, 14, 103, 107, 133, 135, 143, 156, 178, 179, 180, 183, 184, 185, 234, 244, 288, 309, 313, 316, 353, 370, 379, 383, 385, 409, 460, 462, 463, 493, 512, 559, 562, 564, 565, 611, 626, 627, 629, 652, 672, 701, 826, 828, 866, 870, 878, 879, 885, 973, 990, 1021, 1022, 1023, 1026, 1031, 1034, 1038, 1039, 1040, 1041, 1042], "stack_method": [410, 564], "stack_method_": [410, 564, 565], "stacking_regressor": 154, "stackingclassifi": [2, 312, 354, 385, 394, 410, 565, 990, 1041, 1042, 1043, 1044, 1045, 1046, 1048, 1050], "stackingregressor": [2, 154, 312, 385, 394, 410, 564, 990, 1041, 1042, 1043, 1044, 1045, 1048, 1050], "stackingregressorinot": 154, "stackoverflow": [376, 379, 383], "stade": 1035, "stage": [0, 47, 64, 104, 134, 139, 143, 144, 147, 151, 154, 156, 257, 264, 309, 317, 322, 375, 385, 399, 403, 410, 444, 550, 551, 556, 557, 558, 559, 586, 587, 589, 600, 997, 1010, 1039, 1043], "staged_decision_funct": [550, 556, 558], "staged_predict": [134, 144, 147, 410, 550, 551, 556, 557, 558, 559, 1031, 1043], "staged_predict_proba": [145, 148, 550, 556, 558, 1031], "staged_scor": [550, 551], "stagewis": 134, "stagg": 1044, "stai": [44, 53, 64, 73, 129, 165, 183, 347, 370, 371, 375, 385, 386, 1005, 1023, 1037], "stairstep": 270, "stalei": [1040, 1041], "stall": [370, 374], "stallei": 1043, "stan": [843, 1048], "stand": [266, 348, 375, 383, 408, 528, 534, 542, 543, 594, 607, 677, 705, 717, 737, 738, 758, 787, 789, 796, 999, 1000, 1006], "standalon": [377, 414, 657, 905], "standard": [2, 51, 52, 53, 59, 64, 69, 71, 88, 94, 102, 103, 104, 105, 111, 112, 116, 121, 134, 137, 139, 140, 141, 142, 143, 150, 154, 155, 160, 163, 167, 172, 174, 176, 183, 184, 185, 190, 197, 198, 206, 214, 225, 226, 227, 233, 234, 237, 242, 243, 244, 246, 253, 257, 258, 261, 262, 263, 264, 266, 270, 277, 303, 308, 309, 313, 316, 322, 333, 346, 358, 359, 363, 364, 365, 367, 368, 369, 371, 373, 374, 376, 377, 380, 383, 385, 389, 397, 399, 403, 405, 406, 407, 411, 413, 442, 460, 464, 468, 484, 493, 498, 507, 508, 509, 510, 511, 513, 514, 515, 516, 517, 519, 521, 522, 527, 529, 532, 538, 549, 588, 592, 610, 633, 643, 644, 671, 672, 673, 674, 675, 677, 686, 689, 693, 789, 807, 822, 824, 842, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 858, 859, 869, 874, 875, 878, 881, 882, 883, 885, 893, 894, 895, 896, 903, 905, 906, 931, 989, 992, 996, 997, 1000, 1002, 1003, 1004, 1006, 1014, 1015, 1020, 1024, 1026, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1049, 1051], "standard_coef_": 1042, "standard_intercept_": 1042, "standard_norm": [354, 686], "standard_scal": 244, "standard_t": 122, "standardscal": [2, 46, 50, 68, 79, 82, 88, 91, 95, 103, 105, 116, 130, 154, 155, 163, 183, 190, 196, 198, 199, 201, 206, 221, 223, 233, 234, 242, 243, 244, 246, 257, 260, 270, 277, 286, 291, 292, 298, 305, 308, 312, 313, 315, 316, 317, 319, 320, 321, 322, 335, 338, 354, 360, 371, 373, 376, 380, 384, 399, 404, 407, 424, 462, 463, 564, 675, 677, 865, 866, 869, 882, 896, 905, 906, 907, 908, 910, 911, 990, 997, 1004, 1010, 1014, 1015, 1017, 1033, 1035, 1036, 1039, 1040, 1041, 1042, 1043, 1044, 1047, 1052], "standardscalerifit": 246, "standpoint": 83, "stanford": [163, 368, 681, 682, 840, 843, 844, 898, 998], "stanislav": [1046, 1047], "stanlei": [1045, 1046, 1047], "stap": 1039, "stapl": 1035, "star": [71, 118, 156, 371, 996], "stareh": 1042, "start": [0, 44, 47, 50, 52, 53, 59, 64, 86, 91, 97, 103, 104, 106, 116, 123, 139, 144, 146, 160, 163, 172, 174, 184, 188, 191, 192, 198, 206, 207, 208, 213, 223, 225, 228, 229, 237, 239, 244, 251, 253, 257, 261, 262, 263, 271, 283, 316, 318, 321, 325, 346, 353, 354, 358, 359, 360, 371, 372, 373, 375, 376, 377, 385, 389, 399, 400, 403, 407, 408, 412, 413, 436, 438, 446, 450, 452, 535, 609, 616, 631, 644, 652, 658, 665, 666, 667, 675, 676, 677, 690, 694, 782, 783, 798, 799, 801, 804, 805, 815, 847, 848, 849, 851, 853, 861, 955, 983, 989, 996, 999, 1000, 1004, 1005, 1014, 1024, 1034, 1036, 1039, 1041, 1043, 1044, 1045, 1046, 1047, 1051], "start_": 48, "start_bodi": 48, "start_d": 48, "start_idx": [52, 228], "start_reut": 48, "start_tim": [47, 50, 58, 141, 144, 154, 167, 198, 226], "start_titl": 48, "start_top": 48, "startstart": 391, "startswith": [53, 102, 226, 262, 296], "startup": 1024, "stat": [2, 46, 48, 50, 102, 103, 111, 163, 167, 186, 260, 263, 271, 275, 288, 314, 324, 325, 368, 380, 384, 405, 470, 590, 593, 594, 596, 597, 598, 602, 603, 604, 607, 681, 682, 805, 813, 815, 913, 914, 951, 989, 996, 1010, 1038, 1040, 1044, 1051], "state": [38, 86, 90, 102, 103, 104, 111, 149, 208, 236, 244, 249, 257, 269, 275, 314, 354, 359, 360, 371, 373, 377, 379, 383, 385, 386, 402, 410, 411, 416, 436, 439, 443, 445, 450, 455, 471, 541, 587, 678, 804, 805, 813, 815, 817, 845, 846, 852, 900, 901, 934, 989, 996, 1002, 1005, 1012, 1024, 1033, 1035, 1037, 1039, 1041, 1044, 1047], "state_to_print": 372, "stateless": [102, 347, 360, 385, 411, 580, 581, 587, 637, 868, 869, 877, 924, 983, 1010, 1047, 1050], "statement": [183, 373, 376, 379, 383, 385, 408, 464], "static": [371, 373, 377, 379, 645, 646, 651, 652, 659, 660, 661, 662], "station": 172, "stationari": [171, 413, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624], "statist": [2, 48, 53, 103, 112, 134, 137, 138, 143, 148, 154, 158, 162, 163, 180, 182, 183, 184, 185, 194, 196, 210, 234, 244, 255, 257, 260, 262, 265, 280, 282, 303, 309, 313, 314, 316, 354, 364, 366, 368, 377, 385, 401, 402, 403, 404, 405, 407, 408, 410, 412, 428, 465, 470, 490, 491, 513, 514, 515, 517, 519, 538, 550, 556, 557, 559, 602, 603, 604, 607, 626, 629, 633, 634, 643, 648, 655, 687, 690, 694, 696, 710, 716, 721, 724, 725, 732, 744, 789, 801, 817, 819, 820, 821, 835, 852, 862, 863, 881, 882, 883, 885, 890, 893, 894, 896, 910, 913, 914, 974, 989, 990, 994, 996, 997, 999, 1000, 1001, 1002, 1007, 1008, 1010, 1014, 1015, 1016, 1017, 1021, 1036, 1039, 1042, 1043, 1045, 1046, 1049, 1051], "statistician": [385, 885], "statisticmonthhourtempfeel_temphumiditywindspeedcountstrf64f64f64f64f64f64f64": 53, "statistics_": 629, "statlearnspars": [721, 724, 725], "statlib": 366, "statnikov": 1000, "statsdistribut": 275, "statsmodel": [996, 1019], "statu": [53, 132, 175, 176, 319, 365, 389, 493, 572, 845, 846, 942, 1026, 1049], "statweb": [681, 682], "staub": 1037, "staubda": 1034, "std": [44, 51, 52, 53, 73, 80, 83, 87, 94, 99, 110, 112, 113, 121, 122, 123, 141, 142, 143, 149, 154, 173, 176, 178, 179, 183, 191, 197, 214, 236, 261, 262, 263, 265, 266, 268, 271, 273, 277, 278, 309, 327, 338, 347, 354, 385, 403, 407, 410, 512, 604, 607, 830, 885, 896, 1010, 1039, 1043], "std_": [267, 1036], "std_auc": 273, "std_display_styl": [238, 265, 807, 824], "std_fit_tim": [140, 143, 285, 801, 815], "std_i": 183, "std_precis": 261, "std_predict": 174, "std_predictions_gpr": 167, "std_recal": 261, "std_scaler": 320, "std_score": [143, 347, 1044], "std_score_tim": [140, 264, 801, 815], "std_test_precis": 261, "std_test_recal": 261, "std_test_scor": [103, 105, 140, 162, 262, 263, 264, 271, 285, 468, 592, 801, 815, 1037, 1044], "std_time": 1037, "std_tpr": 273, "std_train_scor": [262, 801, 815, 1037], "std_y_pr": 172, "stderr": [52, 834], "stdin": 379, "stdout": [48, 120, 213, 243, 834, 854, 862, 863], "stds_california": 179, "stds_diabet": 179, "steadi": [900, 901], "steadyst": 326, "steelblu": [121, 122], "steep": [2, 168, 184, 272, 273, 403, 407, 413, 446, 452], "stef": [626, 990], "stefan": [1034, 1035, 1039, 1041, 1051], "stefani": [0, 361, 1044, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "stefanini": 1045, "stefano": [1033, 1050, 1051], "steffen": [1049, 1050, 1051], "stehl": [1045, 1046], "stein": 1037, "steinbach": [403, 1046, 1048], "steinfurt": [1041, 1043], "steingold": [1038, 1039], "steinlei": [403, 705], "steinley2004": 705, "stella": [403, 448, 458], "stellalin7": 1046, "stem": [137, 144, 185, 200, 205, 254, 276, 407, 411, 992, 1002], "step": [53, 59, 64, 70, 77, 87, 88, 91, 102, 103, 104, 105, 106, 112, 116, 123, 127, 134, 139, 142, 143, 144, 150, 154, 155, 160, 161, 162, 169, 172, 183, 185, 206, 213, 223, 233, 234, 237, 243, 246, 253, 254, 257, 261, 262, 264, 270, 272, 277, 283, 285, 286, 291, 298, 301, 305, 308, 309, 313, 316, 321, 322, 329, 331, 335, 347, 348, 350, 354, 358, 366, 369, 370, 371, 373, 374, 376, 379, 383, 385, 397, 399, 400, 401, 403, 405, 406, 408, 410, 411, 412, 438, 440, 443, 445, 533, 534, 535, 536, 543, 560, 586, 587, 589, 591, 592, 595, 604, 608, 626, 643, 647, 665, 666, 668, 675, 677, 678, 679, 694, 700, 798, 799, 801, 804, 805, 815, 836, 837, 838, 839, 861, 862, 863, 865, 866, 868, 870, 905, 906, 907, 908, 910, 911, 948, 949, 970, 974, 990, 996, 997, 999, 1000, 1004, 1005, 1010, 1014, 1016, 1017, 1019, 1023, 1031, 1035, 1036, 1038, 1039, 1040, 1042, 1043, 1044, 1047, 1049, 1050, 1051, 1052], "stephan": [708, 1034, 1040, 1041, 1043], "stephani": 1042, "stephen": [527, 1024, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1044, 1051], "stepsmust": [103, 139, 143, 154, 160, 183, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322], "stepwil": [103, 139, 143, 154, 160, 183, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322], "stepwis": [149, 634, 653, 654, 655, 681, 682, 996], "stern": [789, 1000], "steve": [1033, 1035, 1039, 1044, 1046], "steven": [1033, 1034, 1036, 1038, 1039, 1044, 1046, 1047, 1049, 1050], "steward": 1038, "stewart": [1036, 1041, 1044, 1046, 1049, 1050], "stick": [49, 798, 999], "stijn": 1038, "stikhin": 1041, "still": [44, 53, 65, 69, 79, 86, 88, 90, 95, 103, 113, 124, 126, 139, 143, 146, 149, 154, 155, 167, 173, 182, 183, 185, 186, 190, 194, 197, 206, 208, 223, 233, 234, 237, 243, 244, 246, 257, 262, 266, 270, 272, 276, 277, 301, 303, 313, 314, 315, 316, 318, 321, 322, 346, 347, 354, 360, 365, 370, 371, 375, 376, 377, 379, 383, 385, 403, 407, 410, 411, 414, 436, 440, 450, 470, 493, 626, 631, 634, 636, 657, 658, 702, 717, 757, 779, 782, 793, 794, 803, 804, 805, 818, 821, 883, 885, 905, 929, 954, 989, 990, 994, 996, 999, 1000, 1003, 1006, 1008, 1015, 1016, 1018, 1020, 1023, 1024, 1031, 1033, 1036, 1037, 1039, 1040, 1041, 1044, 1045, 1046, 1047, 1049, 1050], "stimat": 64, "stine": [1039, 1040], "stochast": [2, 47, 91, 103, 139, 144, 145, 148, 155, 156, 180, 183, 188, 189, 196, 227, 229, 232, 233, 234, 237, 243, 244, 246, 257, 262, 277, 289, 291, 292, 297, 300, 301, 313, 315, 316, 322, 334, 403, 408, 410, 458, 484, 493, 499, 500, 501, 511, 519, 533, 541, 556, 557, 602, 626, 630, 638, 657, 658, 667, 671, 673, 675, 676, 677, 678, 686, 688, 689, 690, 692, 831, 854, 861, 862, 863, 866, 875, 909, 948, 949, 973, 989, 1003, 1004, 1006, 1021, 1022, 1025, 1026, 1031, 1032, 1035, 1036, 1038, 1040, 1042], "stochastic_gradi": [1033, 1034, 1040], "stochasticsolv": 243, "stock": [43, 80, 85, 180, 225, 226, 229, 403, 405, 450, 467, 468, 689, 997, 1021], "stogbauer": [605, 606], "stojanov": [1045, 1046], "stolbunov": 1036, "stone": [371, 913, 914, 1016], "stop": [44, 47, 52, 56, 64, 79, 95, 103, 104, 133, 134, 139, 140, 141, 143, 151, 154, 155, 156, 160, 172, 174, 180, 184, 185, 189, 196, 208, 233, 234, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 301, 307, 309, 313, 314, 316, 317, 319, 322, 352, 353, 371, 373, 379, 380, 385, 403, 408, 410, 412, 436, 437, 439, 441, 443, 445, 448, 450, 458, 459, 467, 468, 474, 478, 479, 480, 486, 493, 505, 506, 529, 533, 534, 535, 536, 537, 540, 542, 543, 544, 550, 551, 554, 555, 556, 557, 558, 559, 561, 562, 586, 587, 589, 600, 616, 626, 643, 644, 645, 647, 648, 651, 655, 657, 658, 665, 666, 667, 668, 670, 675, 676, 677, 679, 691, 692, 695, 714, 751, 798, 799, 831, 862, 863, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 955, 973, 989, 996, 1004, 1005, 1015, 1016, 1020, 1021, 1022, 1024, 1026, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1045, 1046, 1047, 1048, 1051, 1052], "stop_n_inli": [670, 996], "stop_prob": 670, "stop_scor": [670, 996], "stop_word": [55, 58, 264, 346, 347, 411, 586, 587, 589], "stop_words_": 1049, "stopiter": 1043, "stoplist": 264, "stoppingi": [143, 151, 154, 257, 309, 317, 322], "stopword": 485, "storag": [0, 348, 385, 657, 658, 665, 666, 667, 675, 676, 677, 905, 1003, 1015, 1034, 1039], "storch": 1040, "store": [0, 2, 69, 86, 87, 102, 104, 112, 143, 154, 155, 156, 160, 172, 175, 183, 188, 195, 198, 210, 226, 233, 243, 253, 257, 268, 272, 309, 314, 324, 348, 353, 358, 365, 366, 371, 373, 378, 379, 380, 383, 385, 397, 399, 404, 406, 408, 410, 411, 413, 414, 434, 436, 440, 442, 446, 453, 460, 465, 466, 469, 470, 471, 472, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 500, 505, 512, 531, 532, 538, 546, 547, 566, 567, 583, 587, 609, 610, 626, 630, 631, 634, 648, 649, 653, 659, 660, 661, 662, 665, 666, 672, 674, 675, 676, 677, 687, 688, 689, 690, 692, 697, 698, 700, 701, 702, 782, 790, 798, 799, 801, 807, 815, 823, 824, 845, 846, 847, 848, 849, 851, 853, 854, 855, 856, 857, 860, 876, 883, 885, 886, 900, 901, 902, 931, 932, 958, 959, 970, 973, 985, 990, 992, 996, 1001, 1003, 1012, 1015, 1016, 1019, 1028, 1031, 1032, 1033, 1036, 1037, 1038, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050], "store_cent": [442, 1048], "store_covari": [71, 546, 547, 1036, 1038], "store_cv_result": [154, 183, 257, 672, 674, 823, 1049], "store_cv_valu": [154, 183, 672, 674, 1039, 1042, 1049], "store_precis": [70, 110, 465, 466, 469, 470, 471, 472], "stori": [182, 263, 280, 366, 999], "stork": 994, "stott": 1039, "stoyanov": [1039, 1040], "str": [48, 50, 53, 91, 93, 103, 104, 128, 130, 139, 142, 143, 151, 154, 155, 156, 160, 161, 183, 184, 185, 223, 233, 234, 242, 243, 244, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 283, 293, 309, 313, 316, 317, 322, 333, 346, 365, 366, 380, 411, 414, 415, 419, 424, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 445, 446, 448, 453, 460, 461, 462, 463, 464, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 504, 505, 506, 507, 512, 524, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 572, 574, 579, 580, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 609, 610, 616, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 692, 696, 697, 698, 699, 700, 702, 707, 709, 711, 713, 722, 728, 730, 731, 733, 734, 739, 743, 772, 775, 779, 780, 781, 782, 783, 784, 785, 788, 790, 793, 794, 800, 801, 802, 803, 804, 805, 807, 808, 810, 812, 813, 815, 819, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 924, 926, 927, 930, 931, 932, 935, 938, 940, 942, 943, 945, 957, 958, 959, 961, 964, 983, 984, 986, 987, 1046], "str_": [52, 272, 490, 497, 501, 507, 873, 1011], "strai": 1005, "straight": [125, 260, 339], "straightforward": [304, 358, 370, 402, 408, 1024], "strain": 997, "straka": 1043, "strateg": 386, "strategi": [2, 31, 44, 52, 53, 64, 85, 87, 91, 94, 103, 104, 143, 148, 149, 154, 160, 162, 178, 179, 180, 183, 185, 194, 198, 200, 206, 213, 223, 234, 242, 244, 253, 255, 257, 260, 262, 263, 264, 266, 267, 268, 270, 271, 272, 273, 275, 277, 282, 297, 300, 302, 304, 305, 309, 310, 312, 313, 314, 316, 343, 348, 352, 353, 357, 373, 377, 384, 385, 397, 402, 407, 410, 411, 412, 415, 433, 434, 435, 441, 443, 448, 458, 468, 499, 501, 509, 511, 519, 530, 535, 548, 549, 561, 562, 564, 565, 586, 587, 589, 590, 592, 600, 626, 627, 629, 644, 646, 650, 652, 654, 660, 662, 664, 672, 674, 691, 695, 704, 713, 733, 756, 758, 796, 801, 803, 804, 805, 807, 815, 818, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 837, 838, 862, 863, 870, 875, 886, 900, 905, 907, 910, 913, 914, 915, 916, 970, 989, 990, 996, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1008, 1010, 1014, 1015, 1016, 1021, 1026, 1034, 1035, 1036, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1049, 1050, 1051], "strategyto": [244, 245, 261, 263, 314], "stratif": [802, 803, 809, 810, 817, 819, 820, 821, 970, 1040], "stratifi": [2, 45, 103, 104, 125, 141, 150, 154, 159, 185, 220, 233, 242, 244, 246, 253, 257, 258, 261, 262, 263, 266, 272, 275, 286, 291, 292, 312, 385, 402, 548, 556, 564, 565, 600, 658, 665, 667, 675, 800, 801, 804, 805, 807, 815, 816, 817, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 836, 839, 854, 862, 970, 1000, 1003, 1036, 1037, 1038, 1040, 1041, 1044], "stratifiedgroupkfold": [2, 258, 1044], "stratifiedkfold": [2, 64, 103, 104, 143, 154, 162, 183, 244, 250, 253, 257, 258, 261, 262, 263, 269, 273, 275, 309, 327, 407, 433, 564, 565, 592, 600, 658, 672, 801, 802, 804, 805, 806, 807, 809, 811, 815, 819, 821, 824, 825, 826, 827, 828, 829, 830, 832, 886, 1032, 1033, 1034, 1037, 1038, 1039, 1040, 1041, 1044], "stratifiedshufflesplit": [2, 258, 335, 407, 1031, 1032, 1037, 1038, 1044], "stream": [48, 403, 408, 411, 458, 587, 874, 875, 885, 992, 1039, 1042], "stream_reuters_docu": 48, "streamhandl": 1042, "streamlin": [0, 996], "street": [154, 163, 368], "strehl": 403, "strength": [52, 103, 104, 139, 154, 155, 160, 174, 183, 197, 206, 210, 211, 233, 234, 244, 245, 246, 257, 261, 262, 263, 264, 270, 276, 277, 301, 312, 313, 314, 316, 322, 358, 406, 410, 442, 564, 565, 642, 647, 648, 651, 657, 658, 668, 671, 672, 673, 674, 675, 677, 679, 686, 784, 862, 863, 905, 906, 910, 911, 989, 996, 1003, 1006, 1014, 1015], "strengthen": [383, 1018], "stress": [690, 694, 997, 1046, 1051], "stress_": 690, "stretch": [229, 252], "stretched_gaussian": 252, "strickland": 1037, "strict": [264, 354, 369, 385, 399, 408, 500, 532, 586, 587, 589, 943, 944, 996, 1031, 1040, 1043, 1049, 1052], "stricter": 178, "strictli": [65, 103, 104, 143, 151, 154, 160, 183, 206, 223, 239, 244, 245, 253, 257, 261, 262, 263, 264, 270, 275, 303, 309, 314, 317, 318, 322, 326, 347, 376, 385, 401, 406, 408, 410, 411, 505, 506, 532, 538, 541, 558, 559, 586, 589, 600, 641, 669, 670, 672, 674, 695, 700, 709, 740, 767, 801, 804, 805, 811, 815, 828, 854, 881, 893, 897, 898, 900, 901, 905, 906, 910, 911, 947, 989, 991, 996, 1000, 1010, 1014, 1032, 1042, 1047], "striebel": [1037, 1038], "strife": 997, "strike": [144, 184, 210], "string": [2, 48, 103, 104, 139, 142, 143, 151, 154, 160, 172, 175, 183, 184, 185, 223, 233, 234, 243, 244, 246, 253, 257, 261, 262, 263, 264, 267, 270, 277, 309, 313, 315, 316, 317, 320, 322, 326, 348, 358, 365, 366, 371, 372, 373, 377, 385, 399, 404, 407, 410, 411, 412, 414, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 483, 485, 486, 493, 502, 524, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 579, 580, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 609, 610, 616, 619, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 699, 702, 709, 711, 719, 722, 733, 763, 766, 772, 775, 779, 780, 781, 782, 793, 794, 798, 799, 801, 804, 805, 807, 815, 823, 824, 827, 828, 829, 830, 832, 833, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 922, 929, 931, 932, 939, 940, 941, 965, 983, 984, 989, 990, 1013, 1015, 1019, 1031, 1032, 1033, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1050], "stringvalu": 264, "strip": [55, 223, 347, 358, 365, 366, 493], "strip_acc": [264, 586, 587, 589], "strip_accents_unicod": 1041, "stripe": 306, "stripplot": 183, "strive": [370, 386, 1024], "strong": [33, 44, 53, 87, 167, 180, 182, 183, 189, 201, 204, 210, 211, 212, 238, 269, 282, 310, 342, 401, 408, 410, 521, 648, 671, 993, 994, 996, 997, 999, 1007, 1015, 1021], "stronger": [154, 183, 264, 642, 651, 657, 658, 671, 672, 673, 674, 675, 677, 686], "strongerregular": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "strongest": [56, 201], "strongli": [63, 65, 67, 113, 116, 123, 143, 147, 183, 193, 220, 239, 346, 371, 388, 389, 401, 410, 552, 553, 657, 737, 796, 996, 997, 1026, 1040, 1047], "stroudsburg": [902, 1013], "strubel": 1044, "struct": [385, 1034], "structur": [0, 2, 43, 49, 53, 54, 55, 56, 59, 60, 72, 75, 76, 78, 79, 80, 85, 86, 87, 88, 89, 95, 113, 130, 150, 166, 180, 225, 226, 229, 234, 239, 254, 258, 269, 288, 308, 313, 316, 323, 335, 339, 349, 350, 351, 358, 366, 368, 371, 373, 376, 383, 385, 386, 389, 399, 400, 403, 405, 406, 407, 408, 410, 411, 412, 413, 437, 438, 441, 442, 446, 447, 448, 449, 450, 453, 458, 459, 467, 468, 493, 500, 501, 505, 508, 510, 511, 518, 527, 532, 538, 541, 560, 609, 610, 611, 615, 616, 617, 689, 696, 713, 831, 853, 858, 885, 897, 898, 901, 913, 914, 915, 916, 919, 948, 949, 958, 970, 973, 997, 999, 1000, 1003, 1005, 1006, 1010, 1013, 1016, 1019, 1020, 1021, 1031, 1032, 1034, 1035, 1037, 1041], "struggl": [370, 386, 403], "stuck": [94, 692, 997], "student": [0, 122, 263, 997, 1020, 1024], "studi": [44, 65, 93, 146, 206, 223, 266, 269, 270, 277, 346, 366, 368, 407, 412, 696, 708, 759, 760, 830, 998, 1000, 1014], "studio": [369, 1024], "study_135": 365, "study_14": 365, "study_34": 365, "study_98": 365, "study_99": 365, "stuff": 1024, "stump": [136, 410, 556, 1042], "stupp": [1037, 1038], "stupperich": 1043, "sturla": 1033, "style": [112, 146, 198, 213, 223, 267, 328, 371, 378, 403, 411, 439, 443, 455, 700, 807, 824, 931, 932, 945, 1031, 1034, 1045, 1050], "st\u00e9fan": 372, "st\u00e9phan": 1041, "st\u00e9phane": [1040, 1041, 1045, 1046], "su": [721, 724, 725], "sub": [48, 73, 86, 88, 90, 93, 102, 129, 239, 241, 248, 314, 324, 325, 332, 335, 343, 366, 371, 373, 377, 385, 402, 404, 410, 411, 433, 439, 440, 443, 445, 461, 478, 479, 480, 530, 533, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 588, 595, 609, 610, 626, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 800, 802, 803, 808, 810, 819, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 864, 865, 868, 870, 871, 872, 877, 884, 885, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 922, 958, 959, 996, 1000, 1014, 1041, 1045, 1047, 1048], "sub_sampl": 533, "subclass": [132, 373, 413, 571, 967, 1036, 1039, 1044, 1048], "subclust": [403, 438], "subcluster_centers_": [77, 438], "subcluster_labels_": 438, "subcompon": [120, 408], "subdirectori": 371, "subdivid": [366, 413], "subestim": 373, "subestimator__c": 373, "subestimator__class_weight": 373, "subestimator__du": 373, "subestimator__fit_intercept": 373, "subestimator__intercept_sc": 373, "subestimator__l1_ratio": 373, "subestimator__max_it": 373, "subestimator__multi_class": 373, "subestimator__n_job": 373, "subestimator__penalti": 373, "subestimator__random_st": 373, "subestimator__solv": 373, "subestimator__tol": 373, "subestimator__verbos": 373, "subestimator__warm_start": 373, "subexpress": 53, "subfig": 100, "subfigur": 100, "subfold": [2, 369, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 500, 1044], "subgraph": 400, "subhash": 1045, "subhodeep": [1031, 1032, 1033], "subi": [1040, 1041, 1046], "subject": [16, 102, 103, 139, 151, 155, 233, 234, 244, 246, 254, 257, 262, 266, 277, 301, 313, 316, 322, 346, 366, 371, 373, 375, 383, 385, 386, 401, 405, 407, 408, 492, 657, 658, 684, 823, 868, 991, 996, 1015, 1018, 1040, 1041, 1044, 1046], "subject_body_extractor": 102, "subject_body_transform": 102, "subjectbodi": 102, "subjectbodyextractor": 102, "sublinear": [264, 408, 588, 589], "sublinear_tf": [264, 346, 408, 411, 588, 589], "submatric": 400, "submatrix": [400, 418, 447, 449], "submiss": 371, "submit": [368, 369, 370, 373, 374, 375, 376, 379, 385, 386, 389], "submitt": 370, "submodel": 407, "submodul": [375, 992, 998, 1031], "subobject": [417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 800, 801, 804, 805, 815, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916], "suboptim": [407, 700, 702, 783, 1003, 1039, 1047], "subpackag": [371, 375, 1035, 1040], "subplot": [44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 67, 68, 69, 71, 78, 79, 83, 84, 86, 87, 88, 89, 90, 93, 95, 98, 99, 100, 105, 107, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 125, 129, 130, 134, 136, 137, 139, 140, 141, 142, 143, 144, 147, 149, 151, 152, 154, 155, 158, 169, 171, 176, 178, 179, 183, 184, 186, 188, 191, 199, 200, 202, 203, 204, 205, 206, 207, 208, 210, 213, 218, 219, 221, 223, 225, 226, 229, 230, 232, 233, 235, 237, 238, 240, 241, 242, 243, 248, 249, 250, 251, 253, 254, 257, 258, 259, 260, 262, 263, 265, 266, 268, 269, 270, 272, 273, 274, 276, 277, 278, 282, 283, 285, 286, 287, 288, 291, 292, 294, 295, 296, 298, 299, 300, 301, 304, 305, 306, 307, 308, 309, 312, 316, 317, 327, 329, 332, 333, 334, 335, 339, 341, 342, 343, 344, 346, 347, 348, 350, 351, 367, 378], "subplot_kw": [225, 287], "subplot_spec": 378, "subplot_titl": 140, "subplots_adjust": [46, 47, 54, 55, 77, 79, 83, 84, 87, 95, 97, 100, 111, 113, 118, 122, 123, 129, 136, 137, 154, 183, 205, 206, 220, 223, 232, 240, 248, 250, 251, 254, 258, 274, 288, 296, 298, 301, 305, 314, 325, 328, 332, 335], "subpopul": [222, 678, 996], "subproblem": 1036, "subrahmanyam": [1031, 1034], "subramaniam": [1046, 1047, 1048], "subramaniyan": 1043, "subramanyam": 1038, "subrat": 1043, "subrat93": 1043, "subsampl": [129, 143, 145, 148, 150, 151, 154, 156, 184, 222, 257, 259, 275, 309, 310, 314, 317, 322, 454, 556, 557, 558, 559, 560, 631, 678, 701, 804, 805, 831, 870, 882, 894, 927, 937, 992, 996, 1020, 1031, 1041, 1045, 1047, 1048, 1049, 1051], "subscrib": 1029, "subscript": [359, 1044], "subsect": [26, 359, 371], "subsequ": [47, 69, 91, 107, 123, 134, 155, 160, 196, 208, 244, 257, 265, 268, 275, 283, 285, 322, 335, 354, 371, 373, 375, 377, 385, 399, 403, 404, 410, 413, 433, 493, 505, 550, 551, 556, 558, 559, 665, 667, 675, 698, 728, 804, 805, 833, 834, 837, 840, 841, 842, 843, 844, 862, 880, 884, 990, 999, 1001, 1040, 1041, 1045, 1047, 1049, 1050, 1051], "subsequentiter": [143, 151, 154, 309, 317], "subset": [2, 47, 58, 59, 64, 65, 69, 102, 103, 111, 112, 141, 142, 143, 144, 150, 154, 160, 163, 183, 184, 185, 186, 198, 204, 207, 220, 221, 222, 223, 234, 235, 237, 241, 242, 244, 257, 261, 264, 266, 272, 273, 275, 280, 308, 309, 313, 314, 316, 324, 328, 346, 347, 348, 354, 366, 371, 379, 383, 385, 400, 401, 403, 404, 407, 410, 411, 413, 420, 433, 445, 460, 462, 463, 465, 484, 485, 489, 490, 494, 505, 546, 547, 548, 550, 552, 553, 554, 555, 556, 558, 559, 560, 561, 562, 563, 564, 566, 600, 609, 628, 638, 639, 640, 641, 650, 654, 657, 665, 666, 667, 670, 673, 674, 675, 676, 677, 678, 697, 703, 704, 711, 713, 716, 718, 732, 735, 756, 758, 794, 797, 800, 803, 823, 829, 831, 833, 834, 835, 836, 840, 841, 842, 843, 844, 847, 852, 855, 862, 871, 900, 901, 905, 907, 910, 913, 915, 927, 957, 958, 969, 989, 996, 1000, 1001, 1011, 1013, 1015, 1016, 1034, 1039, 1040, 1042, 1044, 1049, 1050], "subset_featur": 103, "subset_label": 223, "subsidi": 183, "subspac": [127, 406, 410, 448, 512, 552, 553, 691, 695, 949, 994, 1003, 1006, 1012, 1024], "substanti": [285, 289, 290, 304, 371, 851, 1006, 1035, 1038], "substitut": [394, 983, 1037], "subtl": [344, 354, 999, 1020], "subtleti": 1026, "subtract": [172, 183, 242, 406, 408, 439, 443, 455, 531, 643, 644, 1038, 1048], "subtre": [554, 555, 556, 557, 561, 562, 913, 914, 915, 916, 1016], "subwindow": 1016, "succe": [127, 149, 194, 277], "succeed": 371, "success": [2, 83, 180, 255, 267, 270, 271, 341, 354, 398, 403, 407, 408, 410, 512, 561, 577, 801, 804, 805, 822, 910, 1003, 1021, 1024, 1026, 1043, 1051], "successfulli": [44, 54, 307, 370, 375, 397, 403, 411, 1014], "successor": [446, 452, 1016, 1019], "suchak": 1044, "suchdictionari": [104, 244, 253, 257, 261, 262, 263], "sudo": [369, 389], "suen": 1004, "suffer": [116, 185, 283, 303, 347, 358, 403, 410, 541, 764, 995, 996, 1000, 1003, 1040], "suffic": [90, 91, 373], "suffici": [2, 65, 88, 154, 156, 213, 235, 278, 335, 358, 383, 385, 403, 412, 529, 656, 681, 682, 817, 820, 821, 1001, 1003, 1020, 1040, 1046, 1047], "suffix": [389, 828, 1000, 1041], "suganthan": 368, "sugar": [163, 368], "suggest": [111, 123, 137, 141, 183, 186, 263, 335, 358, 370, 371, 378, 385, 407, 408, 410, 465, 470, 562, 644, 830, 994, 996, 997, 1005, 1008, 1015, 1035, 1042, 1045, 1048, 1051], "suh": 1039, "suha": 1049, "suit": [59, 120, 152, 183, 206, 207, 232, 253, 315, 316, 318, 321, 346, 359, 371, 373, 376, 377, 379, 389, 391, 397, 406, 408, 410, 446, 448, 500, 676, 842, 886, 942, 989, 992, 997, 1000, 1002, 1003, 1014, 1019, 1020, 1024, 1038, 1045], "suitabl": [138, 146, 194, 195, 200, 210, 299, 348, 365, 366, 371, 377, 380, 397, 403, 408, 411, 414, 448, 458, 464, 483, 502, 505, 626, 634, 840, 841, 844, 879, 880, 903, 966, 969, 994, 996, 999, 1010, 1012, 1014, 1019, 1045, 1046], "sullivan": [1034, 1035, 1036], "sultan": 1045, "sum": [2, 31, 48, 56, 58, 64, 94, 112, 118, 123, 129, 139, 141, 145, 146, 154, 155, 156, 159, 163, 175, 183, 185, 192, 206, 210, 220, 223, 226, 228, 242, 244, 257, 262, 264, 272, 275, 283, 290, 293, 314, 316, 319, 320, 328, 339, 340, 342, 346, 347, 348, 352, 353, 368, 377, 385, 400, 401, 403, 405, 406, 408, 409, 410, 411, 413, 426, 433, 438, 439, 443, 445, 455, 460, 461, 478, 479, 480, 512, 517, 520, 528, 531, 533, 534, 538, 541, 542, 543, 546, 547, 549, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 563, 565, 566, 567, 588, 589, 610, 612, 622, 624, 634, 640, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 671, 672, 675, 676, 677, 678, 680, 683, 690, 694, 696, 699, 710, 712, 719, 727, 742, 757, 759, 760, 764, 789, 833, 834, 838, 839, 848, 852, 856, 863, 864, 884, 885, 905, 906, 908, 911, 913, 914, 915, 916, 951, 970, 974, 980, 985, 996, 1000, 1001, 1002, 1003, 1015, 1016, 1034, 1035, 1037, 1039, 1040, 1042, 1047, 1048, 1051, 1052], "sum_": [263, 272, 342, 400, 401, 403, 408, 409, 410, 535, 537, 544, 696, 709, 756, 994, 996, 997, 1000, 1002, 1004, 1005, 1007, 1008, 1010, 1014, 1015, 1016], "sum_gradi": 410, "sum_h": 1005, "sum_hessian": 410, "sum_i": [315, 410, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 991, 992, 996, 998, 1000, 1005], "sum_j": [645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 996, 1000, 1005], "sum_k": [410, 546, 1016], "sum_m": 410, "sum_n": [270, 707, 1000], "sum_n_compon": [460, 864], "sum_over_featur": [1031, 1046], "sum_weight": 980, "sumit": 1045, "summar": [103, 139, 155, 206, 233, 234, 244, 246, 254, 257, 262, 270, 272, 277, 301, 313, 316, 322, 348, 371, 373, 388, 410, 518, 657, 694, 706, 707, 996, 997, 1000, 1006, 1026], "summari": [53, 143, 151, 154, 163, 257, 262, 309, 316, 317, 322, 353, 354, 368, 383, 558, 559, 692, 713, 789, 918, 998, 1001, 1019, 1050], "summaris": [234, 313], "summary_df": 262, "summat": [1002, 1004], "summer": [0, 44, 53, 172, 1031], "sun": [44, 149, 184, 401, 433, 1039, 1044, 1045], "sundai": 44, "sundaramahalingam": 1048, "sung": 1042, "sunglok": 996, "sunita": 784, "sunitha": 1043, "sunmi": 1042, "super": [58, 63, 65, 373, 411, 1039], "superflu": 408, "superimpos": 408, "superior": 410, "superposit": 194, "supersed": [370, 1036], "superset": [407, 822, 1000], "supervis": [2, 28, 33, 35, 39, 63, 65, 68, 73, 82, 87, 91, 116, 128, 139, 142, 149, 152, 169, 226, 237, 240, 250, 263, 292, 298, 305, 314, 326, 327, 332, 335, 339, 347, 358, 366, 373, 384, 385, 401, 403, 406, 407, 408, 410, 411, 413, 433, 435, 460, 484, 500, 501, 550, 586, 588, 591, 592, 633, 675, 730, 802, 803, 806, 808, 809, 810, 811, 816, 817, 818, 819, 820, 821, 825, 826, 827, 828, 830, 831, 854, 864, 865, 879, 886, 900, 901, 902, 910, 994, 997, 1000, 1002, 1003, 1006, 1010, 1011, 1015, 1016, 1017, 1019, 1021, 1023, 1026, 1031, 1037, 1043], "supp": 379, "suppli": [149, 383, 403, 645, 931, 932, 1003, 1024, 1035, 1037, 1039, 1044], "support": [0, 2, 40, 44, 46, 47, 48, 49, 50, 62, 64, 69, 80, 102, 103, 104, 133, 138, 139, 141, 151, 153, 154, 155, 156, 159, 160, 172, 183, 184, 185, 207, 215, 216, 217, 223, 233, 234, 235, 237, 238, 239, 244, 245, 246, 253, 256, 257, 261, 262, 263, 264, 268, 270, 275, 277, 280, 283, 301, 303, 307, 310, 316, 320, 324, 325, 329, 331, 332, 335, 336, 337, 338, 339, 340, 342, 352, 353, 358, 359, 360, 365, 369, 371, 373, 375, 376, 377, 378, 380, 381, 384, 385, 386, 397, 403, 407, 408, 411, 412, 413, 433, 436, 446, 448, 449, 460, 462, 463, 465, 470, 483, 493, 509, 535, 537, 538, 541, 544, 546, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 566, 567, 579, 580, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 609, 610, 612, 613, 614, 616, 618, 619, 621, 622, 624, 626, 630, 631, 632, 642, 644, 656, 657, 658, 669, 670, 671, 673, 674, 675, 676, 677, 686, 690, 694, 697, 699, 703, 707, 712, 713, 730, 731, 735, 739, 744, 755, 779, 780, 781, 784, 785, 788, 789, 797, 801, 804, 805, 807, 815, 823, 828, 829, 837, 838, 843, 845, 846, 849, 851, 857, 865, 866, 870, 876, 878, 879, 881, 885, 886, 893, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 921, 922, 924, 925, 927, 937, 944, 987, 989, 990, 992, 993, 994, 996, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1010, 1011, 1014, 1019, 1020, 1021, 1022, 1024, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047], "support_": [238, 341, 465, 470, 591, 592, 600, 907, 908, 909, 910, 911, 1015], "support_fract": [49, 465, 470], "support_reweight": [465, 470], "support_vector": [333, 339], "support_vector_indic": 333, "support_vectors_": [47, 50, 336, 339, 340, 907, 908, 909, 910, 911, 1015], "supportedstrategi": [314, 352, 353], "supportschosen": [104, 160, 270], "suppos": [64, 103, 104, 139, 141, 155, 160, 185, 233, 234, 239, 244, 245, 246, 257, 261, 262, 263, 266, 270, 275, 277, 301, 313, 314, 316, 319, 322, 324, 353, 358, 359, 371, 375, 377, 410, 411, 412, 554, 558, 561, 657, 658, 665, 667, 673, 674, 675, 851, 905, 907, 910, 913, 915, 937, 1004, 1040, 1042, 1048], "suppress": [183, 358, 379, 692, 1003, 1038], "suptitl": [44, 45, 53, 55, 69, 70, 71, 75, 83, 86, 90, 93, 100, 107, 120, 123, 130, 134, 142, 151, 154, 176, 183, 184, 186, 202, 204, 205, 220, 221, 225, 226, 227, 241, 251, 257, 259, 276, 277, 301, 303, 305, 312, 314, 324, 325, 329, 341, 342, 351], "surac": 1041, "sure": [2, 64, 89, 201, 212, 228, 239, 240, 257, 262, 352, 354, 358, 359, 365, 369, 370, 371, 372, 373, 375, 376, 379, 383, 389, 401, 404, 411, 520, 648, 931, 932, 942, 954, 985, 990, 997, 1014, 1019, 1020, 1038, 1039, 1041, 1046, 1050, 1051], "suresh": 1045, "surf": 184, "surfac": [124, 126, 128, 133, 134, 135, 136, 138, 169, 180, 214, 269, 331, 332, 349, 350, 352, 353, 410, 501, 550, 554, 561, 630, 765, 913, 919, 994, 999, 1014, 1015, 1016, 1021], "surface_": [67, 155, 630], "surgan12": 1040, "surpass": [134, 339, 862, 863], "surplu": 407, "surpris": [86, 184, 369, 996, 1019, 1033], "surprisingli": [223, 366, 411], "surrend": 58, "surrog": 1024, "surround": [240, 371, 851, 1006], "survei": [183, 406], "surviv": [103, 185, 989, 1019], "surya": [1044, 1045], "suscept": 397, "susik": 1035, "suspect": 44, "suspici": 366, "sustain": 0, "sutherland": [1033, 1035, 1036, 1038, 1039, 1040, 1041], "sutiono": 1042, "suzuki": [1042, 1043], "sv": 1015, "sv_ind": 238, "sv_ratio": 238, "svc": [2, 46, 63, 65, 68, 69, 102, 104, 106, 144, 160, 168, 180, 188, 199, 221, 237, 240, 244, 256, 261, 263, 265, 268, 269, 270, 273, 274, 305, 307, 308, 312, 314, 327, 329, 330, 331, 332, 333, 335, 336, 337, 338, 340, 343, 344, 346, 358, 377, 385, 401, 404, 407, 429, 430, 432, 433, 464, 512, 552, 697, 698, 700, 702, 801, 818, 832, 834, 865, 902, 903, 905, 907, 908, 911, 987, 989, 995, 998, 1000, 1001, 1010, 1021, 1031, 1032, 1033, 1035, 1036, 1037, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1049, 1050], "svc__c": [305, 865], "svc_disp": [245, 312], "svc_isoton": 63, "svc_sigmoid": 63, "svcifit": 245, "svcsvc": [261, 263, 314], "svd": [2, 71, 104, 127, 152, 154, 183, 226, 244, 262, 347, 380, 399, 406, 415, 447, 449, 478, 479, 481, 518, 529, 530, 531, 532, 536, 537, 538, 541, 543, 546, 547, 663, 671, 672, 673, 684, 685, 686, 864, 949, 994, 1033, 1037, 1038, 1044, 1046, 1049, 1051], "svd__n_compon": 864, "svd_lapack_driv": 949, "svd_method": [58, 447, 449, 529, 1034], "svd_solver": [46, 102, 104, 120, 127, 244, 262, 319, 320, 399, 408, 532, 538, 1037, 1049], "sven": [1045, 1046], "svg": [0, 391], "svm": [2, 43, 47, 49, 50, 51, 55, 63, 64, 65, 68, 69, 102, 104, 106, 120, 132, 142, 152, 154, 157, 162, 163, 169, 171, 175, 180, 183, 189, 190, 192, 201, 214, 215, 216, 217, 218, 232, 238, 239, 240, 241, 244, 245, 256, 260, 261, 263, 265, 266, 268, 269, 270, 271, 273, 274, 288, 289, 294, 295, 298, 300, 305, 306, 312, 314, 323, 327, 328, 330, 333, 341, 342, 346, 358, 366, 377, 385, 404, 407, 408, 412, 429, 430, 432, 433, 491, 501, 509, 512, 538, 552, 553, 560, 564, 565, 575, 591, 592, 597, 598, 603, 630, 638, 642, 667, 675, 676, 677, 689, 697, 698, 700, 702, 713, 731, 736, 743, 762, 801, 815, 821, 827, 831, 833, 834, 851, 865, 866, 878, 880, 885, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 987, 989, 992, 995, 997, 998, 1000, 1001, 1005, 1013, 1015, 1017, 1021, 1022, 1026, 1031, 1032, 1033, 1035, 1036, 1037, 1038, 1050], "svm1": 404, "svm2": 404, "svm__c": 106, "svm_weight": 159, "svm_weights_select": 159, "svmlight": [2, 364, 483, 505, 506, 1026, 1031, 1032, 1038, 1040], "svmlight_file_test": 506, "svmlight_file_train": 506, "svmsgd": 1014, "svr": [2, 47, 50, 180, 231, 312, 330, 358, 391, 429, 430, 432, 553, 564, 565, 591, 592, 642, 677, 801, 807, 906, 908, 910, 993, 1021, 1031, 1033, 1035, 1036, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1049], "svr_fit": 238, "svr_lin": 341, "svr_poli": 341, "svr_predict": 238, "svr_rbf": 341, "sw": 283, "sw_test": [62, 313], "sw_train": [62, 313], "swap": [2, 403, 408, 716, 737, 978, 979, 1031], "swapnil": 1045, "swart": 56, "sweep": 861, "swier": [1042, 1043], "swiss": [2, 180, 224, 225, 230, 403, 527, 692, 693, 997, 1021, 1045], "switch": [357, 399, 677, 704, 717, 738, 756, 758, 796, 845, 846, 948, 949, 1000, 1003, 1026, 1031, 1051], "swpeas": 1044, "swu": 1035, "sy": [48, 52, 58, 213, 236, 283, 328, 348, 366, 383, 616], "syd": 1046, "sydnei": 0, "syhw": [1032, 1033], "sylvain": [0, 361, 1035, 1040, 1041, 1042, 1043, 1044, 1045, 1050, 1051], "sylvainlan": [1039, 1040, 1041, 1042, 1043], "symbol": [52, 348, 359, 373, 377, 405, 411, 496, 580, 586, 587, 589, 917, 919, 1019], "symbol_dict": 52, "symlink": 375, "symlognorm": [190, 194], "symmetr": [2, 64, 79, 146, 186, 208, 228, 385, 401, 403, 414, 448, 458, 459, 470, 516, 524, 526, 690, 694, 695, 704, 705, 715, 716, 717, 723, 725, 729, 737, 738, 756, 758, 764, 786, 796, 798, 799, 985, 989, 996, 1000, 1003, 1047], "symmetri": [103, 139, 143, 154, 163, 183, 184, 234, 244, 313, 316, 368, 699, 878, 881, 893, 998], "symmetric_arrai": 985, "symposium": [163, 368, 403, 456], "symptomat": 257, "sync": 373, "synchron": [371, 375, 411], "syndrom": 365, "synonym": [385, 847, 848, 849, 855, 856, 857], "synonymi": 408, "syntax": [359, 371, 376, 379, 404, 464, 864, 865, 903, 989, 1042, 1044], "synthet": [44, 54, 63, 65, 68, 71, 73, 77, 82, 103, 104, 139, 141, 146, 152, 155, 160, 167, 172, 174, 184, 200, 204, 208, 222, 233, 234, 244, 246, 257, 262, 270, 277, 298, 301, 305, 313, 316, 322, 342, 344, 354, 358, 364, 374, 384, 386, 403, 404, 405, 412, 657, 658, 905, 906, 912, 994, 1037], "synthetic_feature_weight": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322, 657, 658], "syonekura": 1039, "system": [45, 125, 194, 263, 270, 320, 326, 354, 358, 359, 360, 366, 368, 371, 372, 373, 374, 375, 379, 383, 389, 397, 403, 408, 410, 414, 440, 467, 468, 474, 532, 536, 540, 547, 638, 644, 649, 650, 653, 654, 655, 681, 682, 727, 757, 770, 798, 854, 900, 901, 996, 1000, 1003, 1012, 1019, 1020, 1024, 1031, 1039, 1040], "systemat": [44, 149, 263, 407, 712, 729, 921, 923, 1000, 1046], "sysuresh": 1045, "szabo": [1033, 1034], "szepieniec": 1037, "szlam": [408, 948, 949], "szpak": [1038, 1041], "szyma\u0144ski": [1039, 1040], "s\u00e1nchez": 1043, "s\u00e3o": 1049, "s\u00e4ger": [1034, 1037], "s\u00e9bastien": [1024, 1037, 1039], "s\u00e9rgio": 1050, "s\u00f6nke": 1041, "s\u00f8ren": [1048, 1050], "s\u0142apek": 1042, "t": [2, 16, 48, 51, 52, 56, 64, 65, 71, 75, 77, 78, 79, 85, 87, 91, 100, 102, 103, 104, 109, 110, 111, 113, 115, 118, 121, 122, 127, 129, 130, 134, 137, 138, 143, 145, 146, 147, 148, 149, 151, 153, 154, 163, 168, 170, 171, 172, 175, 176, 180, 183, 184, 185, 186, 190, 192, 194, 201, 202, 204, 205, 206, 207, 223, 224, 226, 227, 228, 229, 234, 239, 240, 243, 244, 249, 252, 253, 254, 257, 261, 262, 263, 264, 275, 276, 277, 282, 283, 296, 300, 309, 312, 313, 315, 316, 317, 318, 322, 324, 325, 327, 331, 332, 335, 336, 340, 346, 347, 348, 352, 353, 354, 358, 359, 365, 366, 368, 371, 373, 375, 377, 379, 384, 385, 389, 394, 397, 401, 402, 403, 404, 406, 407, 408, 410, 411, 412, 416, 420, 423, 426, 428, 433, 443, 444, 446, 452, 459, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 492, 493, 510, 511, 512, 516, 517, 522, 527, 529, 531, 538, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 564, 565, 566, 567, 588, 589, 592, 605, 606, 609, 610, 626, 627, 629, 630, 631, 632, 634, 638, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 688, 690, 692, 695, 696, 704, 710, 716, 717, 727, 737, 738, 756, 757, 758, 768, 789, 790, 795, 796, 800, 801, 804, 805, 815, 823, 829, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 851, 852, 855, 856, 861, 862, 863, 871, 874, 875, 876, 878, 879, 885, 886, 898, 900, 901, 905, 906, 907, 908, 910, 911, 913, 914, 915, 916, 924, 949, 950, 965, 989, 992, 994, 996, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1010, 1014, 1015, 1016, 1021, 1025, 1026, 1032, 1034, 1035, 1036, 1037, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "t0": [46, 48, 51, 55, 56, 77, 79, 80, 83, 85, 91, 95, 97, 100, 123, 194, 195, 220, 221, 222, 227, 230, 232, 236, 238, 264, 319, 346, 347, 348, 675, 676, 677], "t1": [79, 80, 95, 220, 227, 230, 232], "t15h": 1038, "t64": 257, "t_": [665, 666, 667, 675, 676, 677, 862, 863, 1014], "t_0": 1014, "t_batch": 97, "t_i": 1002, "t_k": [410, 1000, 1016], "t_m": 1016, "t_mini_batch": [77, 97], "t_p": 270, "t_post": 263, "t_sne": [225, 1039], "t_stat": 263, "t_stat_uncorrect": 263, "t_t": 1016, "taa": 175, "taac": 175, "tab": [47, 49, 71, 86, 111, 134, 146, 149, 151, 154, 155, 167, 172, 174, 196, 198, 204, 257, 313, 319, 404, 1038], "tab10": [237, 253, 630], "tab20b": 44, "taba": 1050, "tabea": [1046, 1047], "tabibian": 1037, "tabl": [91, 103, 139, 155, 223, 233, 234, 244, 246, 257, 262, 263, 264, 277, 301, 313, 316, 322, 371, 372, 380, 403, 411, 580, 657, 679, 801, 815, 842, 966, 996, 1000, 1001, 1006, 1019, 1032, 1051, 1052], "tabular": [44, 53, 184, 373, 410, 1008, 1019], "tacit": 385, "tacitli": 1033, "tackl": [147, 263, 359, 371, 403, 842, 1002, 1024], "tadej": [1032, 1033], "tae": 1043, "taehoon": [1038, 1039], "taemin": 996, "tag": [2, 48, 82, 103, 232, 321, 326, 365, 370, 374, 375, 379, 383, 385, 399, 411, 420, 421, 422, 425, 426, 493, 833, 921, 922, 923, 925, 926, 954, 983, 988, 1020, 1023, 1036, 1040, 1041, 1042, 1045, 1046, 1047, 1048, 1050, 1051], "tags_orig": 373, "tahar": [1038, 1051], "tahiri": 1043, "taifi": 1037, "tail": [53, 146, 179, 183, 206, 208, 263, 303, 518, 521, 996], "tail_strength": [320, 518, 521], "takanori": 1039, "take": [2, 45, 48, 53, 59, 67, 80, 86, 88, 90, 99, 103, 104, 107, 111, 118, 120, 134, 139, 142, 143, 154, 160, 167, 169, 172, 176, 183, 184, 185, 188, 210, 213, 214, 229, 239, 244, 245, 246, 250, 251, 257, 258, 261, 264, 268, 270, 272, 273, 282, 283, 286, 289, 290, 291, 293, 294, 303, 309, 314, 316, 320, 321, 326, 327, 331, 332, 335, 347, 348, 351, 358, 359, 360, 365, 366, 369, 371, 373, 375, 376, 377, 378, 379, 383, 385, 386, 394, 399, 401, 402, 403, 404, 406, 407, 408, 410, 411, 412, 413, 415, 433, 439, 442, 443, 445, 446, 448, 453, 454, 455, 457, 459, 464, 465, 516, 530, 535, 536, 537, 543, 544, 579, 590, 593, 594, 596, 597, 598, 608, 609, 610, 615, 619, 620, 623, 631, 642, 648, 670, 672, 673, 674, 675, 678, 687, 691, 692, 699, 705, 707, 712, 719, 730, 731, 739, 744, 757, 772, 775, 779, 780, 781, 782, 784, 785, 788, 789, 801, 802, 806, 807, 815, 819, 829, 847, 848, 849, 851, 853, 854, 855, 856, 857, 869, 879, 900, 901, 903, 905, 906, 907, 908, 909, 910, 911, 922, 935, 944, 989, 992, 996, 997, 999, 1000, 1001, 1003, 1005, 1006, 1007, 1010, 1015, 1016, 1024, 1028, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1048, 1049, 1050, 1051], "takeawai": [262, 282], "taken": [38, 44, 47, 68, 77, 86, 88, 103, 139, 143, 148, 151, 154, 155, 163, 172, 183, 233, 234, 236, 237, 244, 246, 251, 257, 262, 269, 277, 280, 301, 305, 309, 313, 316, 317, 322, 366, 368, 370, 371, 375, 385, 403, 407, 411, 415, 436, 530, 558, 559, 581, 582, 630, 645, 646, 649, 651, 652, 653, 657, 658, 659, 660, 661, 662, 676, 678, 680, 683, 695, 878, 879, 899, 902, 908, 909, 960, 1000, 1002, 1010, 1012, 1037, 1040, 1043, 1044], "takeshi": [1039, 1044, 1045, 1046], "takeuchi": 366, "takingitcasu": [1039, 1040], "talbot": 268, "talgatomarov": 1042, "talk": [58, 102, 264, 346, 347, 348, 366, 383, 384, 385, 397, 1024, 1026], "talli": 409, "tallott": 1039, "talwalkar": 989, "tamara": [366, 1048, 1050], "tamer": 1046, "tami": 91, "tamir": [1042, 1045], "tamirlan1": 1042, "tamper": 48, "tampermonkei": 379, "tan": [243, 862, 863, 1004, 1038], "tandfonlin": 403, "tang": [368, 1041, 1042, 1043], "tangent": [225, 339, 689, 693, 998, 1025, 1026], "tangibl": 1000, "tanh": [243, 339, 778, 862, 863, 998, 1015], "tanjina": 1048, "tann": [1039, 1044], "tao": [1047, 1048], "tar": [48, 375], "taranjeet": 1037, "tarashanski": 1048, "tarbal": [375, 1046], "tarcusx": 1039, "tarfil": 48, "target": [2, 44, 46, 53, 56, 58, 64, 67, 69, 70, 85, 101, 103, 105, 106, 116, 124, 126, 128, 135, 142, 144, 146, 147, 149, 151, 153, 154, 156, 158, 161, 163, 167, 169, 172, 173, 178, 179, 180, 182, 183, 184, 185, 190, 194, 201, 204, 206, 208, 210, 211, 213, 214, 226, 233, 235, 236, 237, 238, 241, 242, 243, 250, 256, 257, 259, 261, 264, 266, 268, 269, 272, 273, 277, 280, 282, 283, 286, 291, 294, 295, 299, 302, 303, 313, 314, 316, 318, 324, 325, 328, 329, 331, 332, 335, 339, 341, 346, 347, 351, 353, 354, 358, 360, 363, 364, 365, 366, 367, 368, 371, 373, 375, 376, 379, 380, 384, 388, 397, 399, 403, 406, 407, 410, 413, 427, 433, 434, 435, 438, 441, 460, 461, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 497, 498, 499, 500, 501, 502, 505, 507, 517, 521, 528, 529, 531, 533, 534, 536, 539, 540, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 564, 565, 566, 567, 570, 580, 581, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 609, 610, 626, 627, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 683, 684, 685, 686, 697, 698, 700, 701, 702, 707, 708, 709, 712, 713, 718, 720, 721, 722, 724, 725, 727, 728, 729, 730, 731, 735, 736, 739, 740, 741, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 757, 783, 784, 785, 786, 788, 789, 790, 791, 792, 795, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 852, 854, 855, 856, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 877, 878, 879, 880, 882, 883, 884, 885, 886, 889, 894, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 924, 925, 931, 963, 964, 965, 988, 991, 992, 993, 996, 997, 1000, 1004, 1007, 1008, 1014, 1015, 1016, 1020, 1021, 1023, 1024, 1026, 1031, 1032, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "target_class": 308, "target_column": [485, 486, 493], "target_encod": [143, 310], "target_filenam": [498, 502], "target_gener": 173, "target_idx": 631, "target_mean_": [886, 1010], "target_nam": [46, 58, 67, 85, 124, 126, 128, 182, 214, 226, 250, 256, 264, 272, 273, 286, 309, 346, 351, 364, 366, 484, 485, 487, 489, 490, 491, 493, 494, 497, 499, 500, 501, 502, 507, 713, 1000, 1016, 1041], "target_opset": 397, "target_result": 143, "target_tag": [373, 924], "target_test": [257, 506], "target_train": [257, 506], "target_typ": [143, 309, 886, 935, 964, 1048], "target_type_": [143, 309, 886], "target_xor": 155, "targetencod": [2, 143, 309, 310, 385, 399, 878, 879, 990, 1010, 1019, 1047, 1048], "targets_test": 237, "targets_train": 237, "targettag": [2, 924], "tari": 91, "tasfaout": 1051, "tashai": [1039, 1040], "task": [2, 39, 44, 47, 103, 123, 141, 147, 149, 155, 160, 162, 175, 180, 189, 194, 195, 197, 198, 205, 206, 221, 225, 242, 246, 257, 260, 277, 282, 316, 339, 348, 358, 360, 366, 368, 370, 371, 376, 377, 380, 383, 384, 385, 407, 408, 410, 411, 412, 413, 414, 444, 457, 490, 502, 512, 590, 593, 594, 596, 597, 598, 602, 603, 604, 607, 631, 632, 645, 646, 651, 652, 659, 660, 661, 662, 673, 680, 683, 709, 728, 730, 731, 755, 783, 785, 788, 790, 802, 806, 819, 825, 967, 968, 997, 1000, 1001, 1002, 1003, 1011, 1013, 1015, 1016, 1020, 1021, 1022, 1023, 1024, 1026, 1031, 1036, 1040, 1046], "tast": 1031, "tata": 1048, "tau": 1010, "tau_0": 533, "tavenard": 1043, "tax": 0, "taxonom": 368, "taylor": [410, 1039, 1041, 1042, 1045], "tb": 379, "tc": [163, 368, 386], "tcg": 175, "tch": [163, 368], "tcompl": 91, "tcpdump": 366, "tda": 1019, "teach": 371, "teacher": 102, "teal": [207, 215, 270], "team": [366, 374, 383, 385, 386, 1019, 1024, 1031], "teas": 183, "tech": [52, 368, 843], "technic": [175, 183, 207, 226, 316, 366, 368, 371, 373, 385, 410, 651, 663, 684, 685, 900, 989, 996, 997, 1003], "technion": [663, 684, 685, 996], "techniqu": [11, 27, 52, 57, 102, 104, 122, 126, 130, 135, 144, 162, 163, 179, 180, 182, 204, 213, 227, 229, 268, 280, 287, 315, 325, 339, 350, 360, 368, 383, 385, 397, 401, 403, 407, 408, 409, 410, 411, 412, 443, 444, 445, 446, 531, 551, 676, 689, 690, 693, 694, 727, 757, 992, 996, 997, 999, 1000, 1003, 1006, 1008, 1012, 1014, 1016, 1020, 1024, 1044], "technolog": 368, "technologi": [163, 368, 403, 1019, 1024], "technometr": [368, 405, 465, 470, 1006], "tediou": [154, 257], "teen": 1010, "teevan": [842, 1002], "teh": [861, 1005], "tejesh95": 1035, "telecom": 1024, "telenczuk": [1040, 1043, 1044, 1046], "tell": [167, 183, 184, 239, 263, 321, 335, 340, 359, 366, 403, 411, 560, 577, 989, 994, 996, 1000, 1007], "temp": [44, 184], "temp_fold": 967, "temperatur": [2, 64, 184, 411, 433, 1007, 1052], "tempfil": [87, 285, 312, 404, 1003], "templat": [371, 375, 376, 383, 385, 386, 554, 555, 560, 561, 562, 563, 1019], "templateclassifi": 373, "tempor": [53, 149, 194, 1019, 1020], "temporari": [87, 102, 104, 358, 399, 464, 686, 782, 903, 1003, 1034, 1035, 1038, 1044, 1045], "temporarili": [2, 403, 464, 1036], "temporarydirectori": [285, 312], "tempt": 183, "temptat": [354, 371], "ten": [55, 58, 134, 140, 149, 163, 226, 254, 366, 368, 410, 517, 910, 1040], "tenavi": 1045, "tend": [44, 52, 64, 65, 73, 78, 85, 88, 90, 100, 161, 163, 183, 184, 198, 206, 211, 223, 242, 248, 251, 260, 264, 276, 282, 301, 339, 348, 358, 360, 371, 373, 385, 401, 403, 405, 408, 410, 412, 433, 444, 652, 851, 882, 894, 949, 996, 997, 1003, 1016], "tendenc": [149, 230, 352, 996, 997, 999, 1002, 1005], "tenenbaum": [688, 997], "tenenhau": 368, "tensor": [2, 188, 363, 399, 408, 535, 537, 544, 638, 639, 640, 1026, 1043, 1049, 1050], "tensorflow": [46, 383], "tensorsketch": 992, "tent": 377, "tenur": 1024, "teon": 1043, "terenc": [1043, 1044], "term": [2, 44, 52, 54, 55, 63, 64, 69, 91, 103, 104, 125, 137, 139, 140, 141, 143, 146, 150, 151, 154, 155, 156, 160, 172, 182, 183, 184, 185, 192, 194, 196, 197, 198, 204, 206, 208, 210, 219, 222, 223, 233, 234, 235, 242, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 265, 270, 275, 277, 283, 298, 301, 309, 313, 314, 315, 316, 317, 319, 322, 326, 339, 342, 346, 348, 352, 353, 360, 371, 373, 375, 383, 401, 403, 405, 407, 408, 410, 439, 443, 445, 448, 455, 458, 521, 532, 535, 537, 541, 544, 546, 586, 587, 588, 589, 602, 605, 606, 631, 632, 639, 641, 643, 644, 645, 646, 647, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 667, 668, 669, 671, 672, 673, 674, 675, 677, 679, 686, 687, 695, 731, 739, 784, 785, 788, 862, 863, 880, 884, 887, 905, 906, 907, 908, 909, 910, 911, 989, 991, 992, 994, 995, 996, 997, 1000, 1001, 1002, 1004, 1005, 1010, 1014, 1015, 1023, 1039, 1045, 1046, 1047, 1051], "term1": 411, "term2": 411, "term3": 411, "termi": 243, "termin": [154, 156, 243, 314, 352, 359, 376, 377, 379, 389, 403, 417, 444, 457, 550, 551, 555, 556, 557, 560, 562, 665, 666, 667, 675, 677, 862, 863, 914, 916, 1006, 1016], "terminalipythonapp": 377, "terminalpdb": 379, "termination_condition_": 902, "terminologi": [385, 1039], "terraza": 1043, "terri": 1035, "terrycojon": 1035, "tesson": 403, "test": [2, 44, 46, 48, 50, 51, 52, 53, 62, 63, 64, 65, 67, 68, 69, 70, 102, 103, 104, 115, 125, 134, 137, 139, 140, 141, 145, 146, 147, 148, 149, 154, 157, 159, 162, 167, 168, 180, 182, 183, 184, 185, 186, 188, 194, 198, 201, 203, 204, 206, 207, 208, 210, 211, 213, 220, 221, 223, 229, 233, 234, 238, 239, 241, 243, 244, 250, 253, 255, 256, 257, 258, 261, 262, 263, 264, 265, 267, 268, 270, 271, 274, 275, 277, 282, 286, 291, 292, 298, 300, 305, 308, 309, 310, 313, 316, 319, 321, 328, 335, 342, 348, 352, 354, 358, 359, 365, 366, 368, 369, 374, 375, 376, 377, 383, 384, 385, 388, 389, 396, 398, 399, 401, 402, 404, 405, 408, 410, 411, 412, 413, 420, 422, 423, 426, 429, 430, 431, 432, 433, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 484, 485, 490, 494, 495, 499, 501, 521, 528, 534, 536, 540, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 564, 565, 566, 567, 572, 590, 592, 593, 594, 596, 597, 598, 600, 602, 603, 604, 606, 607, 609, 610, 626, 627, 629, 634, 635, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 712, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 852, 855, 856, 862, 863, 865, 874, 875, 890, 891, 893, 894, 895, 896, 900, 901, 903, 905, 906, 907, 908, 910, 911, 913, 914, 915, 916, 921, 922, 923, 924, 930, 940, 942, 943, 944, 957, 958, 995, 996, 999, 1000, 1003, 1004, 1008, 1010, 1014, 1015, 1016, 1019, 1020, 1021, 1023, 1024, 1026, 1031, 1032, 1033, 1034, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1050, 1051, 1052], "test_": [53, 154, 407], "test_0": 44, "test_4": 44, "test_accuraci": [250, 264, 277], "test_auc": 828, "test_ax": 125, "test_balanced_accuraci": 277, "test_best_it": 145, "test_check_estim": 944, "test_color": 145, "test_common": [371, 379], "test_dataset": 365, "test_devi": 148, "test_enable_hist_gradient_boost": 375, "test_error": 143, "test_fn": 1000, "test_fold": [407, 814], "test_fract": 1031, "test_idx": [53, 385], "test_import": 185, "test_index": [250, 327, 407, 802, 803, 806, 808, 809, 810, 811, 814, 816, 817, 818, 819, 820, 821, 822], "test_indx": 407, "test_lin": 145, "test_logist": [371, 379], "test_ms": 319, "test_neg_mean_absolute_error": [44, 208], "test_neg_mean_squared_error": [208, 828], "test_neg_root_mean_squared_error": 44, "test_negative_likelihood_ratio": 266, "test_positive_likelihood_ratio": 266, "test_prec_macro": 407, "test_precision_macro": 407, "test_r2": 828, "test_rec_macro": 407, "test_recall_macro": 407, "test_requiring_mpl_fixtur": 371, "test_result": [185, 942], "test_sampl": 155, "test_scor": [143, 145, 147, 149, 213, 262, 265, 276, 280, 309, 342, 350, 384, 407, 807, 824, 828, 829, 832], "test_scores_mean": 276, "test_scores_nb": 265, "test_scores_svm": 265, "test_set": 401, "test_siz": [44, 45, 46, 50, 53, 62, 63, 65, 67, 68, 69, 103, 139, 144, 145, 147, 148, 149, 153, 182, 188, 194, 203, 204, 206, 213, 220, 221, 257, 260, 261, 262, 265, 270, 272, 276, 282, 291, 292, 298, 300, 301, 305, 307, 308, 314, 322, 335, 342, 354, 376, 407, 698, 803, 818, 821, 822, 831, 833, 854, 990, 1002, 1003, 1028, 1031, 1032, 1037, 1038, 1043], "test_sklearn_compatible_estim": [312, 944], "test_sparsifi": 379, "test_stat": 48, "test_std": 262, "test_tim": [238, 346], "test_tp": 1000, "test_val": 372, "test_your_test_nam": 359, "tested_neg": 277, "tested_posit": 277, "testpypi": 375, "teunp": 1045, "texa": [0, 52, 102], "text": [2, 43, 46, 47, 50, 51, 52, 55, 56, 58, 68, 69, 73, 75, 79, 86, 90, 91, 93, 94, 95, 97, 102, 111, 112, 140, 144, 161, 186, 191, 202, 203, 232, 236, 240, 243, 244, 248, 250, 255, 260, 269, 270, 274, 288, 291, 293, 298, 305, 315, 323, 325, 326, 327, 341, 350, 358, 360, 363, 364, 365, 371, 376, 383, 385, 391, 401, 403, 404, 406, 407, 408, 410, 413, 443, 445, 460, 464, 483, 484, 485, 496, 500, 505, 518, 533, 541, 561, 586, 587, 588, 589, 614, 624, 645, 651, 657, 667, 673, 675, 697, 703, 705, 707, 713, 717, 730, 731, 738, 794, 796, 801, 815, 831, 840, 842, 844, 847, 852, 865, 866, 868, 877, 901, 902, 903, 905, 917, 918, 919, 946, 989, 992, 996, 998, 1000, 1001, 1002, 1004, 1007, 1010, 1012, 1013, 1014, 1015, 1020, 1021, 1024, 1026, 1031, 1032, 1033, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "text1": 411, "text2": 411, "text2d": 229, "text3": 411, "text_": 697, "text_kw": [697, 1046], "text_preprocess": 460, "text_stat": 102, "text_stats_transform": 102, "textbook": [411, 588], "textcoord": [49, 143, 188], "textrm": 1015, "texttt": 1000, "textual": [408, 417, 1016, 1040], "textur": [163, 368, 759, 760, 998], "tf": [2, 55, 58, 236, 264, 328, 346, 347, 348, 366, 408, 518, 541, 586, 587, 588, 589, 844, 852, 877, 989, 998, 1002, 1010, 1019], "tf_feature_nam": 55, "tf_vector": 55, "tfid": 588, "tfidf": [55, 102, 328, 411, 589], "tfidf_feature_nam": 55, "tfidf_vector": 55, "tfidftransform": [2, 328, 347, 348, 411, 485, 589, 1038, 1039, 1045, 1047, 1048, 1049], "tfidfvector": [2, 55, 58, 102, 264, 346, 366, 408, 411, 485, 586, 587, 588, 1031, 1033, 1039, 1040, 1041, 1044, 1045, 1049, 1050], "tfifi": 1044, "tfrac": 413, "tgct": 175, "th": [134, 143, 151, 154, 257, 309, 315, 317, 322, 353, 384, 403, 407, 410, 418, 437, 441, 442, 447, 449, 455, 459, 468, 547, 554, 555, 556, 557, 558, 559, 561, 562, 563, 591, 592, 631, 647, 648, 668, 670, 679, 696, 718, 781, 822, 886, 936, 990, 996, 1000, 1004, 1007, 1014, 1015, 1046], "th0rwa": [1041, 1042], "thakur": [1034, 1035, 1051], "thaler": 1037, "than": [2, 26, 44, 45, 47, 51, 52, 54, 58, 64, 65, 67, 68, 73, 75, 79, 81, 86, 88, 103, 104, 107, 111, 113, 116, 118, 120, 123, 125, 127, 134, 136, 137, 139, 140, 141, 142, 143, 146, 149, 150, 151, 154, 156, 160, 161, 163, 167, 172, 173, 178, 183, 184, 185, 188, 190, 192, 194, 195, 198, 200, 206, 208, 212, 221, 222, 223, 229, 232, 233, 234, 238, 239, 240, 242, 243, 244, 246, 249, 253, 257, 260, 261, 262, 263, 264, 265, 266, 269, 270, 272, 275, 277, 280, 282, 283, 289, 290, 301, 303, 307, 308, 309, 310, 313, 314, 316, 317, 318, 319, 320, 322, 325, 328, 339, 346, 347, 348, 352, 353, 354, 358, 359, 360, 365, 366, 367, 369, 370, 371, 373, 375, 376, 377, 379, 385, 386, 397, 399, 400, 401, 402, 403, 405, 406, 407, 408, 410, 411, 412, 413, 435, 436, 437, 438, 439, 441, 442, 443, 444, 445, 446, 448, 450, 453, 456, 459, 460, 463, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 490, 491, 493, 506, 511, 512, 520, 528, 531, 532, 533, 534, 535, 537, 538, 539, 541, 544, 545, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 570, 579, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 609, 610, 626, 627, 629, 630, 633, 639, 641, 642, 643, 645, 646, 651, 652, 654, 657, 658, 659, 660, 661, 662, 665, 666, 667, 670, 671, 673, 675, 676, 677, 678, 681, 686, 687, 692, 694, 696, 704, 705, 707, 712, 720, 721, 722, 723, 724, 725, 728, 736, 737, 740, 741, 765, 780, 781, 782, 783, 784, 786, 790, 796, 798, 799, 801, 804, 805, 811, 815, 817, 819, 820, 821, 823, 826, 827, 828, 829, 830, 833, 835, 836, 838, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 851, 853, 854, 855, 856, 857, 859, 862, 863, 865, 866, 868, 878, 879, 880, 882, 883, 885, 888, 894, 895, 899, 902, 905, 906, 907, 910, 911, 913, 914, 915, 916, 917, 922, 937, 949, 951, 952, 958, 964, 969, 970, 973, 989, 990, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1006, 1007, 1008, 1010, 1014, 1015, 1016, 1019, 1020, 1023, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "than10000": [143, 151, 154, 257, 309, 317, 322], "thanh": 1049, "thank": [0, 44, 56, 63, 88, 116, 185, 188, 204, 206, 272, 346, 347, 370, 379, 1019, 1024, 1031, 1035, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "thanmin_samples_split": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "thanspecifi": [143, 151, 154, 257, 309, 317, 322], "thantwo": [104, 160, 270], "tharak": 1048, "thatcas": [103, 104, 244, 253, 257, 261, 262, 263, 275], "thatcontain": 264, "thatintern": [244, 245, 261, 263, 314], "thatth": 172, "thatweight": [64, 141, 185, 244, 275, 319], "thatwer": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "thatyield": [103, 104, 244, 253, 257, 261, 262, 263, 275], "theaverag": 64, "thebabush": [1048, 1049], "thebasi": 155, "thebin": [143, 151, 154, 257, 309, 317, 322], "thebound": 172, "thecach": [103, 139, 143, 154, 160, 183, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322], "thecaptur": 264, "thecategori": [143, 309], "thecholeski": 52, "theclassifi": [64, 257], "thecomput": 243, "thedata": [103, 139, 155, 192, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "thedecis": 257, "thedefault": 264, "thedevpanda": 1046, "theestim": [103, 143, 151, 154, 183, 184, 185, 234, 244, 257, 309, 313, 316, 317, 322], "thefeatur": [64, 141, 154, 156, 185, 244, 275, 319], "thefirst": 275, "thefit": [143, 151, 154, 253, 257, 309, 317, 322], "thefollow": [143, 151, 154, 257, 309, 317, 322], "thegrid": 52, "thegroup": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316], "thei": [8, 26, 31, 32, 44, 53, 64, 73, 83, 90, 113, 122, 132, 135, 141, 143, 145, 147, 149, 150, 151, 154, 155, 159, 162, 163, 167, 168, 172, 183, 184, 194, 195, 198, 203, 206, 207, 223, 226, 229, 232, 238, 239, 242, 256, 257, 260, 263, 264, 266, 272, 277, 280, 283, 285, 299, 303, 308, 309, 314, 316, 317, 322, 339, 346, 347, 352, 354, 358, 359, 360, 364, 366, 367, 368, 369, 370, 371, 372, 373, 375, 379, 380, 383, 384, 385, 386, 394, 397, 399, 400, 402, 403, 404, 405, 406, 408, 410, 412, 413, 415, 433, 436, 438, 442, 449, 450, 463, 493, 505, 506, 530, 532, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 595, 609, 618, 628, 642, 645, 646, 651, 657, 658, 659, 660, 661, 669, 671, 675, 677, 680, 686, 687, 763, 764, 766, 769, 775, 790, 801, 815, 822, 834, 840, 841, 842, 843, 844, 852, 862, 865, 867, 873, 884, 885, 907, 910, 913, 914, 915, 916, 920, 989, 990, 992, 994, 996, 999, 1000, 1001, 1002, 1003, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1014, 1015, 1016, 1024, 1031, 1032, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1050, 1052], "theil": [2, 150, 180, 189, 209, 212, 303, 648, 656, 670, 677, 678, 1021], "theilsen": 212, "theilsenregressor": [2, 212, 222, 648, 670, 677, 996, 1035, 1043, 1045, 1050], "theimpact": [104, 160, 270], "theimprov": [314, 352, 353], "theindic": [143, 309], "theinfrequ": [103, 139, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "theiniti": 156, "theinput": 184, "theirs": [346, 371], "thelast": 275, "theleft": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "thelist": 154, "thelow": 253, "them": [16, 44, 45, 48, 69, 75, 82, 86, 88, 89, 93, 98, 99, 100, 102, 103, 104, 116, 120, 122, 125, 135, 143, 150, 154, 155, 158, 163, 167, 178, 179, 183, 184, 185, 188, 190, 194, 197, 203, 204, 207, 208, 210, 223, 233, 234, 236, 239, 242, 243, 244, 246, 253, 257, 261, 262, 263, 264, 266, 270, 272, 276, 277, 280, 285, 303, 308, 309, 310, 313, 314, 315, 316, 321, 322, 328, 335, 348, 352, 353, 358, 360, 366, 371, 372, 373, 374, 375, 377, 379, 383, 385, 386, 388, 394, 397, 399, 401, 402, 403, 404, 407, 408, 410, 411, 413, 440, 443, 445, 446, 453, 460, 463, 490, 491, 505, 564, 565, 566, 567, 602, 605, 606, 615, 619, 620, 623, 638, 692, 769, 772, 775, 779, 780, 781, 782, 790, 801, 815, 822, 830, 865, 866, 869, 874, 875, 879, 883, 885, 886, 895, 896, 902, 913, 914, 942, 943, 944, 958, 967, 989, 990, 996, 999, 1000, 1001, 1003, 1004, 1005, 1010, 1015, 1016, 1019, 1023, 1024, 1031, 1032, 1037, 1038, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "themat": 385, "thematrix": 184, "themaximum": [143, 151, 154, 257, 309, 317, 322], "theme": [366, 371, 389, 396, 1031], "themiss": 155, "themrmax": [1037, 1038], "themselv": [65, 183, 303, 367, 373, 379, 385, 394, 400, 403, 410, 411, 413, 442, 614, 793, 1016, 1041], "thenit": 253, "thenois": 172, "thenumb": [104, 244, 262], "thenus": 64, "theobject": 172, "theodor": 1036, "theofilo": 1038, "theoptip": [1041, 1042], "theorem": [33, 167, 342, 1002], "theoret": [38, 73, 90, 104, 160, 167, 257, 270, 403, 410, 550, 551, 638, 704, 727, 757, 905, 989, 996, 997, 999, 1000, 1002, 1012, 1014, 1015, 1024], "theori": [8, 143, 238, 253, 342, 368, 403, 407, 410, 687, 690, 694, 727, 757, 897, 898, 949, 989, 996, 997, 999, 1000, 1001, 1015, 1016], "theorigin": 154, "theotheo": 1041, "thepap": 264, "theparamet": 253, "thepipelin": [103, 139, 143, 154, 160, 183, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322], "thepolynomi": [155, 244], "theprecis": 253, "thepreprocess": 264, "theprevi": [156, 243], "therang": [104, 244, 262], "thereaft": [183, 190], "therebi": [44, 183, 316, 407, 410, 992, 1000, 1041, 1051], "therefor": [44, 49, 54, 59, 62, 64, 65, 71, 73, 85, 86, 103, 104, 107, 111, 116, 125, 129, 134, 137, 139, 143, 146, 149, 152, 154, 155, 160, 162, 182, 183, 184, 185, 200, 206, 210, 221, 222, 233, 234, 243, 244, 246, 248, 253, 254, 257, 262, 264, 266, 270, 276, 277, 280, 282, 286, 300, 301, 303, 308, 309, 313, 316, 322, 324, 335, 342, 343, 346, 347, 353, 358, 365, 373, 376, 383, 394, 397, 399, 401, 403, 404, 405, 407, 408, 410, 411, 433, 532, 538, 546, 548, 550, 551, 556, 557, 561, 562, 602, 604, 657, 658, 664, 667, 670, 675, 677, 678, 701, 712, 736, 758, 798, 865, 866, 878, 882, 886, 894, 921, 990, 994, 996, 997, 1000, 1002, 1003, 1004, 1005, 1008, 1010, 1015, 1016, 1020, 1040, 1041, 1044, 1045, 1046, 1047, 1048, 1052], "therein": 667, "thereof": 385, "theriley106": 1039, "thescor": [103, 104, 244, 253, 257, 261, 262, 263], "theshannon": [64, 141, 185, 244, 275, 319, 353], "thesi": [0, 368, 403, 410], "thesplin": 155, "thesquar": [104, 160, 270], "thestack": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316], "thesubtre": [64, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "theta": [168, 169, 171, 172, 173, 175, 176, 240, 408, 413, 520, 533, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 692, 1002, 1016], "theta0": 168, "theta1": 168, "theta_": [843, 1002], "theta_c": [240, 520], "theta_d": 408, "theta_i": 1002, "theta_l": 413, "theta_opt": [172, 609, 610], "thetarget": 183, "thetoler": [257, 322], "thetrain": 314, "thetransform": [103, 139, 143, 154, 160, 183, 184, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322], "thetre": [64, 139, 141, 154, 156, 185, 244, 275, 319], "theunderli": [104, 160, 270], "thewhol": [64, 141, 154, 156, 185, 244, 275, 319], "thi": [0, 2, 7, 11, 31, 32, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 360, 363, 365, 366, 367, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 383, 384, 385, 386, 388, 389, 391, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 422, 423, 424, 425, 426, 427, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 478, 479, 480, 481, 483, 485, 486, 491, 493, 494, 495, 496, 498, 499, 500, 502, 505, 506, 512, 513, 514, 515, 516, 517, 518, 520, 521, 523, 524, 525, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 570, 571, 573, 575, 577, 578, 579, 580, 581, 582, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 604, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 706, 707, 711, 712, 713, 714, 716, 717, 718, 720, 721, 723, 724, 725, 727, 728, 729, 730, 731, 733, 737, 738, 739, 740, 741, 742, 744, 749, 755, 756, 757, 758, 759, 760, 762, 763, 764, 766, 769, 770, 775, 779, 780, 781, 782, 783, 784, 785, 786, 788, 789, 790, 793, 794, 795, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 920, 921, 922, 924, 925, 926, 927, 931, 932, 937, 938, 940, 942, 943, 944, 949, 951, 954, 957, 958, 959, 960, 961, 962, 964, 967, 968, 970, 973, 974, 983, 988, 989, 990, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1023, 1024, 1028, 1029, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "thibault": 1040, "thibaut": 1045, "thibsej": 1040, "thick": [93, 293, 1003], "thierno": 1041, "thierri": [0, 1024, 1037, 1038, 1045], "thij": [1043, 1046, 1047], "thin": [227, 619], "thing": [49, 71, 226, 258, 346, 359, 360, 366, 370, 371, 373, 383, 386, 403, 405, 411, 556, 557, 996, 1010, 1024, 1028, 1037], "think": [45, 73, 183, 184, 346, 347, 371, 373, 379, 409, 999, 1020, 1024], "thinner": 100, "third": [71, 142, 147, 155, 158, 163, 175, 201, 223, 232, 254, 275, 280, 288, 305, 318, 359, 366, 370, 373, 383, 386, 397, 411, 531, 586, 587, 588, 589, 803, 804, 805, 810, 847, 848, 849, 851, 853, 883, 895, 989, 1011, 1031, 1042, 1047, 1048, 1050], "thirion": [0, 393, 1031, 1037, 1038, 1044], "thirteen": 368, "thiruvenkadam": 1045, "this_centroid": 77, "this_cov": 113, "this_cv": 258, "this_di": 52, "this_dx": 52, "this_i": [62, 212], "this_max_it": 220, "this_p": 64, "this_prec": 113, "this_scor": 338, "this_sw": 62, "this_x": [62, 204, 212], "thisimplement": 172, "thisopt": [156, 235], "thisparamet": [143, 154, 184, 185, 192, 309], "thoma": [0, 127, 359, 361, 386, 392, 399, 901, 996, 1010, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "thomas9292": 1043, "thomaz": 1042, "thomo": 91, "thompson": [1034, 1046, 1047], "thorben": 1043, "thorbenmaa": [1050, 1051], "thorough": 1024, "thoroughli": 1005, "thorsten": 1024, "those": [44, 47, 52, 56, 58, 88, 93, 103, 135, 143, 146, 149, 155, 156, 161, 163, 182, 183, 184, 185, 186, 206, 208, 210, 223, 230, 236, 239, 241, 242, 254, 256, 257, 263, 266, 269, 275, 280, 299, 303, 308, 320, 332, 335, 346, 347, 348, 358, 359, 365, 371, 373, 375, 376, 377, 378, 383, 385, 386, 389, 399, 400, 401, 402, 403, 407, 408, 410, 411, 413, 444, 446, 457, 460, 464, 491, 492, 493, 500, 554, 555, 561, 562, 566, 567, 579, 687, 692, 697, 712, 718, 737, 801, 804, 805, 813, 815, 822, 847, 848, 849, 851, 853, 854, 855, 856, 857, 905, 906, 907, 910, 913, 914, 915, 916, 958, 961, 989, 992, 996, 999, 1000, 1002, 1003, 1004, 1007, 1010, 1016, 1018, 1019, 1024, 1031, 1034, 1037, 1038, 1039, 1044, 1045, 1046, 1047, 1048, 1049], "though": [88, 140, 163, 188, 190, 242, 269, 288, 305, 307, 347, 348, 354, 358, 365, 368, 371, 375, 384, 385, 403, 408, 409, 410, 411, 412, 699, 716, 808, 810, 905, 989, 990, 992, 997, 1000, 1003, 1008, 1010, 1014, 1039], "thought": [225, 288, 371, 385, 403, 442, 997, 1001], "thoui": [0, 393, 1031], "thousand": [77, 140, 149, 236, 238, 243, 307, 347, 366, 403, 410, 862, 863, 910, 997, 1040, 1042], "thread": [283, 313, 316, 369, 371, 383, 385, 403, 410, 560, 837, 838, 967, 968, 1034, 1036, 1038, 1039, 1040, 1041, 1042, 1044, 1046, 1047, 1048, 1052], "threadpoolctl": [42, 359, 369, 375, 389, 396], "threadsaf": 1044, "three": [44, 47, 64, 67, 71, 75, 76, 80, 88, 91, 109, 126, 134, 139, 141, 143, 144, 145, 155, 156, 160, 163, 165, 175, 183, 194, 200, 206, 208, 214, 216, 238, 239, 248, 251, 282, 309, 310, 313, 359, 364, 367, 368, 375, 389, 397, 399, 400, 403, 407, 408, 409, 410, 411, 447, 458, 495, 951, 993, 995, 996, 997, 1000, 1003, 1010, 1014, 1015, 1031], "three_d_arrai": 922, "thresh": 1035, "threshold": [2, 51, 63, 77, 98, 118, 123, 129, 150, 155, 163, 180, 184, 186, 203, 233, 235, 253, 255, 260, 261, 262, 264, 267, 270, 282, 314, 318, 319, 321, 323, 326, 328, 351, 353, 385, 398, 403, 408, 410, 412, 437, 438, 441, 442, 465, 493, 497, 505, 506, 528, 534, 539, 545, 546, 547, 548, 554, 555, 558, 560, 586, 589, 591, 595, 600, 601, 608, 643, 657, 666, 670, 675, 677, 692, 698, 700, 702, 703, 706, 707, 718, 720, 727, 728, 740, 741, 743, 757, 783, 785, 788, 789, 790, 795, 798, 799, 800, 801, 820, 823, 831, 840, 851, 852, 866, 868, 870, 872, 885, 888, 900, 901, 902, 903, 910, 917, 919, 973, 996, 1000, 1003, 1004, 1006, 1010, 1013, 1015, 1016, 1021, 1026, 1031, 1035, 1036, 1038, 1039, 1040, 1041, 1043, 1044, 1045, 1047, 1048, 1049, 1050, 1051], "threshold_": [595, 1038], "threshold_classifi": [165, 321], "threshold_lambda": 643, "threshold_sign": 353, "thresholdon": 150, "thresholdsto": 257, "thriller": [411, 876], "thrive": [0, 371], "throat": [51, 296, 366, 495], "through": [0, 2, 47, 53, 71, 103, 139, 143, 154, 160, 163, 175, 183, 184, 185, 210, 225, 233, 234, 237, 243, 244, 246, 258, 263, 264, 266, 270, 277, 288, 307, 308, 309, 313, 316, 321, 322, 328, 333, 340, 348, 353, 368, 371, 373, 378, 380, 383, 385, 386, 389, 394, 399, 402, 403, 406, 408, 410, 412, 413, 420, 421, 422, 425, 426, 442, 446, 460, 463, 468, 532, 538, 554, 555, 558, 561, 562, 563, 579, 591, 592, 595, 646, 650, 652, 654, 657, 658, 660, 662, 664, 667, 675, 676, 688, 691, 720, 807, 824, 865, 866, 881, 893, 897, 898, 913, 914, 915, 916, 956, 958, 959, 989, 990, 1000, 1002, 1003, 1004, 1006, 1008, 1010, 1014, 1015, 1016, 1024, 1031, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1046, 1047, 1048, 1049, 1050, 1051], "throughout": [318, 354, 385, 626, 802, 862, 863, 1034, 1039], "throughput": [357, 1019, 1026, 1034], "throw": [2, 300, 380, 930, 1035, 1038, 1039, 1040, 1041, 1045], "thrown": [711, 1040, 1041], "thu": [44, 45, 62, 63, 64, 65, 75, 86, 88, 93, 109, 113, 123, 125, 137, 139, 140, 141, 149, 154, 156, 159, 167, 172, 173, 184, 185, 194, 196, 198, 200, 206, 208, 223, 232, 238, 243, 244, 250, 257, 260, 261, 263, 268, 269, 270, 275, 276, 277, 286, 310, 312, 315, 319, 350, 354, 358, 359, 366, 373, 377, 383, 385, 394, 399, 401, 402, 403, 407, 408, 410, 411, 413, 414, 433, 435, 459, 512, 524, 550, 551, 554, 555, 561, 562, 601, 604, 609, 621, 626, 631, 632, 642, 644, 657, 676, 698, 705, 718, 726, 728, 747, 775, 779, 789, 796, 801, 803, 808, 810, 815, 836, 839, 874, 905, 991, 992, 993, 994, 995, 996, 997, 1000, 1001, 1006, 1007, 1010, 1012, 1013, 1014, 1015, 1020, 1024, 1031, 1033, 1037, 1039, 1040, 1041, 1043, 1047, 1051], "thuan": 1042, "thukarama": 1046, "thumb": [13, 140, 188, 262, 358, 371, 372, 383, 403, 657, 658, 665, 666, 667, 675, 676, 677, 905, 1000], "thumbnail": 1031, "th\u00e9ophil": 1047, "ti": [102, 206, 244, 245, 250, 253, 261, 263, 314, 343, 358, 379, 401, 403, 597, 598, 634, 720, 727, 757, 798, 799, 907, 910, 913, 999, 1000, 1015, 1032, 1034, 1035, 1039, 1041, 1045, 1046, 1047], "tiago": [1032, 1036], "tialo": [1048, 1049, 1050], "tian": [403, 438, 1036, 1037, 1038], "tianqi": 410, "tiao": [1036, 1037], "tib": [681, 682], "tibshirani": [137, 138, 148, 163, 196, 262, 368, 407, 410, 517, 556, 557, 627, 655, 721, 724, 725, 835, 852, 913, 914, 990, 994, 996, 1001, 1007, 1016], "tic": [163, 184, 242, 274, 1002], "tic_bwd": 163, "tic_fwd": 163, "ticconi": 1037, "tick": [48, 78, 93, 143, 170, 243, 274, 829], "tick_bottom": 303, "tick_label": [147, 186, 312], "tick_labels_dict": [147, 186, 312], "tick_labels_parameter_nam": [147, 186, 312], "tick_left": 303, "tick_param": [47, 55, 156, 248, 263, 307, 327], "tick_right": 47, "ticker": [143, 225, 227, 230, 283], "ticket": [317, 371], "tidelift": 0, "tie": [180, 330, 383, 410, 509, 833, 907, 910, 1001, 1015, 1016, 1021, 1032, 1047, 1051, 1052], "tiedclass": [244, 245, 261, 263, 314], "tieleman": [861, 1005], "tien": 1036, "tiernei": [1039, 1040, 1041], "tight": [67, 75, 129, 136, 142, 159, 197, 201, 202, 211, 214, 217, 222, 227, 230, 252, 283, 289, 290, 294, 295, 331, 335, 338, 340, 351, 580, 692, 1043], "tight_layout": [46, 48, 63, 65, 68, 75, 85, 88, 98, 105, 107, 112, 116, 120, 121, 122, 130, 134, 136, 141, 142, 144, 147, 152, 154, 169, 171, 176, 178, 182, 183, 185, 186, 190, 191, 194, 204, 206, 213, 216, 220, 223, 225, 237, 242, 258, 259, 262, 275, 282, 283, 285, 289, 295, 304, 305, 306, 307, 308, 312, 316, 328, 333, 347, 350, 351, 367], "tijanajovanov": 1043, "tikhonov": [174, 413, 671], "tild": [871, 1008, 1010], "tilen": 1041, "till": [403, 438, 789, 1000], "tim": [0, 392, 1031, 1036, 1037, 1040, 1041, 1042, 1044, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "time": [0, 2, 38, 43, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 347, 348, 350, 351, 352, 353, 354, 358, 359, 360, 365, 366, 368, 370, 371, 372, 373, 375, 376, 377, 379, 383, 385, 386, 394, 397, 399, 400, 401, 403, 405, 406, 408, 410, 411, 414, 433, 437, 439, 440, 441, 442, 443, 446, 448, 451, 453, 454, 455, 457, 458, 459, 460, 461, 463, 464, 468, 488, 493, 496, 498, 516, 520, 531, 533, 535, 537, 538, 544, 559, 564, 565, 566, 567, 588, 609, 618, 626, 627, 628, 629, 633, 638, 639, 642, 645, 646, 649, 651, 652, 653, 659, 660, 661, 662, 663, 665, 666, 671, 672, 673, 675, 676, 677, 680, 683, 684, 685, 690, 692, 694, 701, 743, 746, 747, 749, 791, 795, 798, 799, 801, 803, 804, 805, 806, 808, 810, 815, 816, 817, 820, 822, 826, 827, 828, 829, 830, 831, 833, 835, 840, 841, 842, 843, 844, 845, 846, 853, 855, 856, 857, 861, 862, 863, 864, 865, 866, 867, 869, 870, 872, 875, 878, 880, 884, 889, 897, 898, 902, 903, 907, 910, 911, 919, 942, 943, 944, 951, 967, 970, 989, 990, 992, 993, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1007, 1008, 1010, 1012, 1013, 1014, 1015, 1016, 1019, 1024, 1031, 1033, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1052], "time_dens": 319, "time_spars": 319, "time_step": [194, 863], "timea": 183, "timeit": [220, 251, 377], "timeout": [493, 967, 1045], "timer": [251, 377], "times_init": 251, "timescal": 237, "timeseri": 44, "timeseriessplit": [2, 44, 53, 149, 194, 258, 407, 1037, 1038, 1043], "timo": 1043, "timofei": 1046, "timotheemathieu": 1044, "timothi": [1036, 1044], "timsaur": 1041, "tinertia": 91, "ting": [560, 1006, 1039, 1040], "tingshan": 1044, "tingwei": 1051, "tini": [204, 401, 996, 1033, 1046, 1049], "tinoco": 1048, "tinta": 309, "tip": [354, 357, 371, 374, 377, 398, 411, 531, 538, 644, 692, 996, 1022, 1023, 1025, 1026, 1034], "tiphain": 1042, "tirth": [1041, 1042], "titan": [103, 185, 246, 312, 316, 317, 1008], "titl": [0, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 59, 60, 62, 63, 64, 65, 67, 69, 73, 74, 76, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 109, 110, 112, 113, 115, 116, 120, 121, 122, 123, 124, 126, 127, 128, 129, 135, 136, 137, 140, 142, 143, 146, 147, 149, 150, 153, 155, 156, 158, 159, 161, 162, 163, 167, 168, 169, 171, 172, 173, 174, 175, 183, 190, 191, 193, 194, 196, 197, 198, 200, 201, 204, 205, 206, 208, 210, 211, 212, 213, 214, 219, 222, 223, 225, 226, 227, 232, 236, 237, 238, 240, 241, 242, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 262, 263, 264, 266, 267, 268, 272, 273, 276, 278, 285, 286, 289, 290, 291, 292, 294, 295, 296, 303, 307, 308, 309, 310, 326, 328, 329, 331, 332, 333, 334, 335, 338, 339, 343, 344, 346, 351, 352, 367, 370, 371, 375, 379, 383, 404, 1000, 1023], "title_bow": 404, "titles_opt": 256, "titov": [1039, 1041, 1044, 1045], "titu": 1042, "tiwari": 1043, "tiziano": [1031, 1052], "tj": 1051, "tjoa": 1035, "tkammi": 1037, "tkdd": 560, "tliu68": 1044, "tm": [52, 1003], "tmp": 375, "tmpdir": [285, 312], "tn": [257, 260, 320, 712, 718, 1000], "tn_c": 272, "tnr": 257, "tnwei": 1043, "to1e": 264, "to_british": 411, "to_fram": 107, "to_list": 186, "to_numpi": [172, 257], "to_onnx": 397, "to_replac": [44, 184], "toarrai": [47, 319, 353, 404, 411, 563, 580, 586, 588, 847, 848, 849, 851, 853, 855, 856, 857, 858, 859, 878, 895, 896, 950, 970, 971, 973, 981, 982, 990, 1003, 1010, 1048], "toastedcornflak": [1037, 1038], "toastedyeast": [1045, 1046], "tobia": [1039, 1044, 1046], "tobychees": [1038, 1039], "toc": [163, 242], "toc_bwd": 163, "toc_fwd": 163, "toccac": 1041, "tocomput": [155, 244], "tocsc": 195, "tocsr": 56, "toctre": [371, 389, 396], "tod": [403, 414, 440], "todai": 172, "todecod": 264, "todens": [974, 975, 976, 977, 978, 979, 980], "todo": [80, 236, 375, 379, 403, 1052], "toeach": [154, 183], "toeffect": [64, 141, 154, 156, 185, 244, 275, 314, 319, 352], "toeplitz": 110, "togeth": [44, 52, 84, 93, 103, 104, 142, 154, 167, 173, 183, 192, 226, 229, 242, 244, 253, 257, 259, 261, 262, 263, 309, 316, 338, 351, 354, 373, 383, 384, 385, 403, 410, 411, 412, 414, 447, 449, 564, 565, 592, 689, 715, 801, 815, 865, 866, 879, 942, 996, 997, 1000, 1001, 1007, 1010, 1016, 1017, 1024, 1037, 1048], "toi": [49, 59, 72, 75, 76, 77, 81, 82, 85, 86, 88, 89, 90, 100, 111, 116, 124, 137, 150, 155, 180, 193, 210, 219, 231, 242, 248, 289, 290, 299, 332, 341, 364, 377, 383, 403, 410, 411, 436, 437, 438, 440, 442, 444, 445, 446, 448, 454, 465, 509, 511, 519, 560, 638, 676, 727, 757, 799, 851, 858, 866, 885, 909, 997, 999, 1000, 1006, 1010, 1021, 1026], "tok": [348, 411], "token": [2, 58, 264, 348, 358, 366, 375, 411, 533, 586, 587, 588, 589, 1031, 1039, 1043, 1049], "token_featur": 411, "token_freq": 348, "token_pattern": [264, 348, 411, 586, 587, 589], "tokoroten": 1036, "tokyo": [873, 1011], "tol": [47, 50, 52, 56, 103, 104, 105, 120, 139, 143, 144, 149, 151, 154, 155, 156, 160, 163, 178, 183, 191, 192, 199, 201, 213, 219, 221, 232, 233, 234, 235, 243, 244, 245, 246, 249, 251, 253, 257, 261, 262, 263, 270, 277, 301, 309, 313, 314, 315, 316, 317, 322, 326, 342, 346, 373, 377, 410, 415, 439, 443, 445, 448, 455, 458, 467, 468, 474, 478, 479, 480, 528, 529, 530, 532, 534, 535, 536, 537, 538, 540, 541, 542, 543, 544, 546, 547, 556, 557, 558, 559, 600, 626, 637, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 668, 671, 673, 675, 676, 677, 678, 679, 681, 682, 684, 685, 686, 688, 689, 691, 693, 695, 798, 799, 815, 854, 862, 863, 900, 901, 905, 906, 907, 908, 909, 910, 911, 985, 996, 1014, 1015, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1044, 1045, 1046, 1048, 1049, 1051, 1052], "tola": 1041, "told": 411, "toledano": 1039, "toler": [52, 80, 105, 143, 149, 151, 154, 178, 192, 199, 201, 221, 222, 257, 309, 317, 322, 326, 339, 348, 366, 373, 380, 403, 415, 439, 443, 448, 455, 458, 467, 468, 474, 478, 479, 480, 528, 529, 530, 532, 533, 537, 538, 539, 540, 541, 542, 544, 545, 556, 557, 558, 559, 626, 645, 646, 649, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 675, 677, 678, 680, 681, 682, 683, 688, 689, 690, 691, 693, 694, 695, 845, 846, 850, 854, 862, 863, 900, 901, 905, 906, 907, 908, 909, 910, 911, 985, 996, 1000, 1014, 1015, 1040, 1043, 1044, 1045, 1046], "tolerancemean": [257, 322], "tolist": [44, 126, 145, 178, 314, 366, 442, 718, 1000], "tom": [0, 393, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047], "tom1092": 1044, "toma": 1035, "tomasz": 1044, "tomato": 207, "tomatti": 1046, "tomdlt": 1037, "tomiock": [1046, 1047], "toml": 375, "tommaso": 1044, "tommi": [1038, 1039, 1040], "tomographi": [43, 56, 99, 180, 412, 651, 671, 996, 1021], "tomohiro": 1044, "tomorrow": 402, "tom\u00e1": [1044, 1045], "tongyu": 1048, "toni": [46, 366, 560, 885, 1006, 1044, 1045], "tonk": 1038, "too": [44, 47, 52, 53, 56, 64, 65, 79, 83, 88, 90, 95, 102, 103, 106, 113, 124, 146, 149, 154, 155, 178, 183, 185, 194, 207, 210, 226, 233, 234, 236, 242, 243, 244, 246, 249, 256, 257, 261, 264, 270, 276, 277, 300, 309, 313, 316, 322, 335, 346, 352, 358, 368, 371, 375, 377, 379, 383, 385, 401, 403, 405, 407, 410, 411, 412, 415, 433, 445, 535, 678, 692, 707, 840, 841, 842, 843, 844, 870, 883, 885, 995, 997, 999, 1000, 1002, 1003, 1007, 1032, 1035, 1038, 1039, 1040, 1041, 1043, 1049, 1051], "took": [0, 44, 77, 271, 321], "tool": [22, 30, 42, 49, 51, 53, 144, 183, 239, 257, 261, 266, 354, 364, 365, 366, 369, 371, 373, 374, 375, 376, 377, 378, 379, 384, 385, 386, 388, 389, 394, 397, 403, 404, 405, 483, 631, 692, 697, 698, 700, 701, 702, 731, 989, 995, 996, 1000, 1006, 1010, 1015, 1017, 1019, 1020, 1024, 1038, 1041, 1044, 1045, 1046, 1051], "toolbox": [383, 1019, 1024], "toolchain": 369, "toolkit": [358, 1019, 1024], "toolset": 1024, "tooltip": 1052, "tooth": 121, "tootoonian": 1044, "top": [2, 46, 52, 54, 55, 56, 71, 73, 76, 77, 78, 79, 84, 95, 97, 100, 103, 122, 132, 139, 140, 142, 149, 154, 156, 160, 183, 206, 208, 216, 220, 232, 242, 243, 248, 250, 251, 254, 260, 264, 272, 273, 288, 303, 305, 309, 313, 316, 319, 324, 325, 335, 339, 346, 354, 371, 373, 377, 383, 400, 401, 403, 408, 409, 410, 483, 585, 586, 589, 597, 700, 702, 727, 757, 795, 917, 919, 989, 992, 996, 997, 998, 1008, 1019, 1024, 1045, 1050], "top10": 366, "top5": 346, "top_featur": 55, "top_features_ind": 55, "top_indic": 346, "top_k_accuraci": 1000, "top_k_accuracy_scor": [2, 1000, 1043, 1045], "tophat": [288, 409, 845, 846, 850], "topic": [43, 46, 47, 48, 102, 180, 346, 347, 348, 366, 367, 407, 408, 411, 484, 494, 533, 535, 537, 544, 586, 589, 996, 1001, 1018, 1019, 1020, 1021, 1036, 1038, 1050], "topic_d": 48, "topic_idx": 55, "topic_word_prior": [408, 533], "topic_word_prior_": 533, "topisan": 1041, "toplak": 1047, "topolog": [459, 1019], "topologi": [229, 230], "topr": [244, 245, 261, 263, 314], "toprovid": 104, "torch": [399, 1049], "toreduc": 275, "torgerson": [687, 997], "torgo": 365, "toro": 309, "toronto": [531, 643, 861], "torr": [1040, 1049, 1050], "torrella": [1040, 1041, 1047], "tortois": 996, "tosequ": 1049, "toshihiro": [1037, 1038, 1044], "toshniw": 1043, "tot": 52, "total": [2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 351, 352, 353, 359, 365, 366, 368, 377, 385, 400, 403, 409, 411, 414, 426, 440, 461, 478, 479, 480, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 497, 498, 499, 501, 502, 507, 509, 511, 512, 516, 519, 520, 533, 541, 549, 551, 553, 554, 555, 556, 557, 558, 559, 561, 562, 563, 565, 567, 581, 582, 588, 592, 594, 610, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 665, 666, 669, 670, 671, 672, 675, 676, 677, 678, 697, 704, 705, 713, 730, 731, 732, 735, 739, 740, 758, 770, 784, 785, 788, 795, 796, 797, 801, 815, 826, 827, 828, 838, 839, 840, 841, 848, 850, 856, 863, 880, 884, 906, 908, 911, 913, 914, 915, 916, 949, 989, 996, 997, 1000, 1001, 1002, 1003, 1010, 1014, 1016, 1021, 1032, 1037, 1039, 1047, 1048], "total_cel": 149, "total_fit_tim": 48, "total_sampl": [327, 533], "total_sz_mb": 48, "total_vect_tim": 48, "totalbsmtsf": 154, "toth": [139, 155, 243], "totrmsabvgrd": 143, "tottim": 377, "tour": [0, 393, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047], "tournament": 989, "tovari": [154, 156, 314, 352], "toward": [64, 65, 96, 113, 141, 146, 153, 167, 185, 190, 210, 211, 230, 242, 276, 342, 371, 385, 403, 433, 444, 448, 458, 675, 677, 695, 879, 999, 1014, 1016, 1018, 1020, 1051], "towncrier": [375, 389, 396], "toyota": 52, "tp": [260, 320, 403, 698, 712, 718, 728, 730, 731, 732, 783, 784, 785, 788, 917, 1000, 1051], "tp_c": 272, "tpng": 917, "tpot": 1019, "tpr": [51, 233, 242, 257, 260, 272, 273, 378, 702, 706, 790, 1000, 1028, 1031, 1047], "tpr_a": 272, "tpr_b": 272, "tpr_score": 257, "tprs_lower": 273, "tprs_upper": 273, "tr": [258, 368, 375, 403, 405, 465, 466, 467, 468, 469, 470, 471, 472, 996], "trace": [379, 403, 416, 469, 471, 472, 475, 476, 477, 689, 693, 997, 1042], "traceback": [371, 376, 379, 383, 464, 711, 1023, 1048], "traceord": 140, "tracer0tong": 1037, "trach": 1031, "track": [132, 138, 145, 321, 325, 371, 374, 375, 399, 531, 969, 1001, 1019, 1020, 1023, 1038, 1041, 1050], "tracker": [370, 374, 379, 383, 386, 389, 397, 1020], "tracking_select": 969, "tractabl": [44, 104, 244, 262, 407, 538, 633, 1019, 1044], "trade": [38, 94, 103, 104, 109, 140, 149, 156, 185, 200, 210, 244, 253, 257, 261, 262, 263, 264, 265, 275, 276, 335, 346, 385, 402, 403, 405, 550, 551, 556, 557, 633, 655, 692, 801, 804, 805, 815, 828, 997, 1004, 1012, 1014, 1015, 1020], "tradeoff": [2, 88, 137, 180, 237, 245, 255, 270, 271, 272, 273, 346, 358, 371, 379, 409, 512, 548, 561, 698, 702, 728, 790, 831, 866, 885, 905, 997, 1021, 1040, 1043], "tradesoff": 103, "tradit": [56, 88, 206, 220, 347, 360, 401, 410, 411, 631, 694, 996, 999, 1010, 1019, 1024], "tradition": 1016, "traffic": 1024, "trail": [373, 983], "train": [2, 44, 45, 46, 47, 48, 50, 51, 52, 53, 62, 64, 65, 67, 68, 69, 70, 89, 91, 97, 98, 102, 103, 104, 107, 115, 116, 118, 120, 123, 124, 125, 126, 128, 132, 136, 137, 138, 139, 140, 141, 142, 143, 145, 146, 149, 151, 154, 155, 160, 167, 168, 169, 172, 173, 174, 175, 176, 178, 180, 182, 183, 184, 185, 186, 188, 194, 195, 196, 198, 199, 201, 203, 204, 206, 207, 208, 211, 213, 214, 217, 219, 220, 223, 232, 234, 235, 237, 241, 244, 250, 252, 255, 256, 257, 258, 259, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 279, 282, 283, 286, 289, 290, 291, 292, 294, 295, 296, 298, 299, 300, 303, 305, 307, 308, 312, 313, 315, 316, 317, 319, 322, 323, 324, 325, 328, 329, 331, 334, 341, 342, 348, 349, 352, 354, 358, 359, 360, 363, 366, 368, 373, 376, 383, 384, 385, 399, 401, 402, 403, 404, 405, 406, 408, 410, 411, 412, 413, 415, 433, 436, 437, 439, 440, 443, 445, 447, 448, 449, 450, 455, 461, 465, 466, 468, 469, 470, 471, 472, 478, 479, 480, 481, 483, 484, 485, 490, 493, 494, 495, 497, 501, 521, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 626, 627, 629, 630, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 683, 686, 688, 689, 691, 692, 696, 703, 742, 789, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 865, 870, 871, 874, 875, 878, 879, 883, 884, 885, 886, 890, 891, 893, 894, 895, 896, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 919, 973, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1004, 1005, 1006, 1007, 1008, 1010, 1014, 1015, 1016, 1019, 1020, 1021, 1022, 1024, 1026, 1028, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "train_0": 44, "train_4": 44, "train_accuraci": [250, 277], "train_auc": 828, "train_ax": 125, "train_balanced_accuraci": 277, "train_cover_std": 51, "train_dataset": [183, 365], "train_errors_with": 144, "train_errors_without": 144, "train_fract": 1031, "train_idx": [53, 183, 385], "train_import": 185, "train_index": [250, 327, 407, 802, 803, 806, 808, 809, 810, 811, 814, 816, 817, 818, 819, 820, 821, 822], "train_indx": 407, "train_pr": 144, "train_prec_macro": 407, "train_r2": 828, "train_rec_macro": 407, "train_result": 185, "train_sampl": [65, 220, 221], "train_scor": [213, 262, 309, 342, 350, 807, 824, 828, 829, 832, 995], "train_score_": [147, 410, 556, 557, 558, 559], "train_set": 401, "train_siz": [45, 47, 50, 134, 153, 168, 188, 221, 238, 242, 262, 265, 276, 314, 317, 342, 803, 807, 818, 821, 829, 831, 995, 1031, 1032, 1037, 1038], "train_size_ab": 829, "train_size_idx": 342, "train_sizes_ab": 829, "train_std": 262, "train_test_s": 238, "train_test_split": [2, 45, 46, 47, 50, 53, 62, 63, 65, 67, 68, 69, 103, 107, 116, 125, 134, 139, 141, 144, 145, 146, 147, 148, 149, 150, 153, 159, 160, 165, 182, 183, 185, 186, 188, 194, 203, 204, 206, 213, 220, 221, 223, 233, 242, 245, 246, 256, 257, 260, 261, 266, 270, 272, 276, 282, 286, 291, 292, 298, 300, 301, 305, 307, 308, 310, 312, 313, 314, 319, 320, 322, 328, 350, 353, 354, 376, 384, 399, 404, 407, 410, 433, 434, 555, 557, 564, 565, 697, 698, 700, 702, 800, 801, 823, 833, 836, 854, 862, 863, 865, 915, 916, 989, 990, 1000, 1002, 1003, 1008, 1010, 1015, 1028, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1040, 1044, 1048, 1049], "train_tim": [220, 238, 346, 347], "trainabl": 373, "traine": 1024, "training_data": 167, "training_data_": 1041, "training_idx": 175, "training_indic": 174, "training_noisy_target": 167, "training_sample_indic": 167, "training_tim": [144, 346], "training_time_early_stop": 144, "training_time_ful": 144, "trainingdata": [150, 156], "trainingfeatur": 155, "trainingscor": [103, 104, 244, 253, 257, 261, 262, 263, 275], "trajectori": 138, "tran": 110, "trans_data": 227, "transact": [96, 257, 320, 368, 403, 405, 414, 416, 440, 444, 471, 531, 535, 537, 544, 560, 643, 663, 684, 685, 726, 727, 757, 770, 996, 1000], "transax": [79, 95, 229, 232, 250, 291, 305], "transcript": 371, "transcriptom": 692, "transduc": 325, "transduct": [385, 403, 900, 901, 1020], "transduction_": [324, 325, 326, 900, 901, 902], "transfer": [149, 394, 399, 996, 1020], "transform": [2, 7, 21, 24, 36, 38, 44, 45, 46, 48, 50, 54, 63, 79, 80, 81, 84, 87, 90, 95, 101, 105, 106, 116, 122, 123, 125, 126, 128, 129, 133, 138, 140, 143, 153, 154, 155, 160, 173, 180, 183, 184, 185, 188, 200, 206, 207, 213, 219, 221, 223, 226, 229, 232, 233, 234, 235, 237, 239, 240, 242, 243, 246, 250, 259, 260, 261, 262, 264, 270, 272, 277, 282, 283, 285, 291, 292, 293, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 317, 319, 320, 322, 335, 338, 339, 346, 348, 352, 354, 365, 366, 367, 368, 371, 373, 376, 380, 385, 394, 397, 399, 401, 403, 405, 406, 407, 408, 410, 411, 412, 413, 419, 424, 427, 433, 437, 438, 439, 441, 443, 445, 448, 460, 461, 462, 463, 464, 478, 479, 480, 481, 484, 485, 493, 500, 505, 506, 511, 512, 521, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 547, 554, 556, 558, 559, 561, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 608, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 635, 637, 638, 639, 640, 641, 652, 657, 662, 672, 675, 683, 688, 689, 690, 691, 692, 694, 701, 702, 713, 754, 755, 786, 801, 804, 805, 815, 831, 834, 840, 849, 854, 857, 861, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 903, 905, 907, 910, 911, 924, 926, 940, 942, 989, 990, 992, 994, 996, 997, 1000, 1001, 1004, 1014, 1015, 1017, 1019, 1021, 1022, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "transform_algorithm": [123, 129, 528, 534, 539, 1047], "transform_alpha": [123, 129, 528, 534, 539, 1044], "transform_dur": 283, "transform_func": 264, "transform_input": [103, 139, 143, 154, 160, 183, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 321, 322, 558, 559, 865, 866, 1050], "transform_list": 864, "transform_max_it": [528, 534, 535, 539, 1041], "transform_method": 408, "transform_n_nonzero_coef": [123, 129, 528, 534, 539], "transform_n_nozero_coef": 129, "transform_output": [246, 257, 310, 464, 903, 1046, 1047], "transformed_grid": 152, "transformedtargetregressor": [2, 107, 183, 206, 383, 394, 404, 591, 592, 595, 1001, 1039, 1041, 1044, 1049, 1050, 1051], "transformer_": [239, 461], "transformer_list": [106, 404, 864, 867, 990, 1042, 1043], "transformer_nam": [103, 143, 154, 183, 184, 185, 234, 244, 283, 309, 313, 316, 460], "transformer_tag": 924, "transformer_weight": [102, 103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316, 460, 463, 864, 1036, 1043], "transformermixin": [2, 183, 239, 283, 373, 385, 461, 1039, 1046, 1047, 1048, 1050], "transformers_": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316, 460, 463, 1048, 1049], "transformersbefor": [103, 139, 143, 154, 160, 183, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322], "transformertag": [2, 924], "transfus": 233, "transit": [56, 155, 342, 375, 397, 1042], "transitive_target": 56, "translat": [107, 413, 524, 613, 874, 875, 891, 997, 1000, 1024], "transpar": [68, 305, 984, 1024], "transpos": [63, 263, 415, 535, 537, 544, 659, 660, 661, 662, 789, 949, 985, 992, 1000, 1012, 1031, 1045], "transposit": 949, "trapezoid": [2, 270, 706, 707, 1000], "travel": 0, "travers": [353, 1003, 1007, 1049, 1050], "travi": [1031, 1039], "treat": [44, 46, 103, 104, 143, 151, 154, 160, 178, 183, 184, 206, 257, 264, 270, 272, 309, 314, 317, 319, 322, 327, 354, 371, 383, 385, 400, 410, 411, 438, 558, 559, 586, 587, 589, 605, 606, 631, 637, 644, 670, 673, 730, 731, 739, 755, 784, 785, 788, 789, 874, 875, 881, 882, 885, 886, 890, 893, 894, 896, 905, 906, 958, 990, 992, 996, 1000, 1001, 1007, 1010, 1014, 1016, 1035, 1043, 1047, 1048], "treatment": [112, 182, 365, 402, 408, 465, 470, 1016], "tree": [2, 44, 47, 53, 64, 65, 68, 76, 79, 88, 95, 124, 126, 128, 133, 136, 137, 138, 140, 143, 144, 145, 146, 147, 150, 151, 153, 154, 155, 156, 163, 169, 175, 178, 184, 186, 213, 214, 226, 239, 241, 242, 243, 244, 257, 267, 269, 275, 280, 282, 283, 288, 296, 303, 304, 308, 309, 313, 314, 316, 322, 354, 358, 366, 368, 373, 377, 384, 385, 388, 401, 402, 403, 409, 414, 433, 437, 438, 439, 440, 441, 442, 444, 446, 453, 459, 493, 497, 501, 511, 512, 516, 541, 548, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 630, 631, 632, 633, 657, 688, 692, 702, 703, 711, 743, 749, 789, 791, 807, 822, 828, 829, 831, 840, 845, 846, 847, 848, 849, 850, 851, 853, 855, 856, 857, 866, 869, 878, 913, 914, 915, 916, 917, 918, 919, 944, 990, 997, 1000, 1001, 1006, 1007, 1019, 1020, 1021, 1022, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038], "tree_": [312, 350, 353, 850, 913, 914, 915, 916, 1048], "tree_copi": [845, 846], "tree_disp": 243, "tree_ensemble_warm_start": [64, 139, 141, 154, 156, 185, 244, 275, 319], "tree_importance_sorted_idx": 186, "tree_mathematical_formul": [64, 141, 185, 244, 275, 319, 353], "tree_optim": 280, "tree_preprocessor": [154, 206], "tree_stat": [845, 846], "treegrown": [64, 141, 185, 244, 275, 319], "treelit": 1019, "treeper": [257, 322], "treesand": 139, "trein": 1034, "tremend": [309, 410], "trend": [151, 172, 184, 235, 299, 1024, 1038], "trent": [1024, 1037], "trevor": [163, 196, 317, 368, 627, 655, 721, 724, 725, 990, 996, 1012, 1035, 1036, 1039, 1040, 1041, 1043], "trevorstephen": [1035, 1037], "tri": [99, 128, 225, 276, 292, 339, 359, 373, 376, 383, 386, 401, 445, 447, 449, 552, 630, 631, 632, 669, 692, 698, 700, 702, 815, 1005, 1033, 1039, 1043, 1049, 1051], "triag": [0, 371, 374, 386], "trial": [44, 268, 443, 445, 456, 670, 798, 799, 996, 1037], "triangl": [385, 408, 439, 443, 455, 699, 998, 1003], "triangular": [403, 459, 610], "tribe": 366, "trick": [2, 167, 238, 293, 339, 348, 357, 360, 374, 383, 404, 580, 587, 642, 671, 992, 993, 1004, 1014, 1015, 1026, 1032, 1040, 1048], "tricki": [401, 997], "trickiest": 371, "trigg": 563, "trigger": [103, 104, 139, 143, 154, 160, 183, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322, 375, 385, 397, 399, 404, 862, 863, 865, 866, 931, 932, 949, 996, 1039, 1045, 1046], "triglycerid": [163, 368], "trim": [220, 403, 845, 846], "trimeta": 1042, "trinh": 1046, "tripl": 376, "triplet": 506, "tripramudya": 1047, "trishnendu": 1039, "tristan": 996, "triu": 52, "trivial": [49, 208, 257, 350, 371, 403, 819, 907, 910, 997, 1031], "troillard": [1047, 1048, 1050, 1051], "tropp": [532, 538], "troubl": 411, "troubleshoot": 411, "troyanskaya": [627, 990], "true": [2, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 64, 65, 67, 69, 71, 73, 79, 82, 83, 86, 87, 88, 90, 91, 93, 96, 100, 102, 103, 104, 105, 107, 109, 110, 111, 112, 113, 115, 118, 120, 121, 122, 123, 125, 126, 130, 132, 134, 138, 139, 140, 141, 143, 145, 146, 148, 149, 150, 151, 154, 155, 156, 159, 160, 162, 167, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 192, 194, 196, 197, 198, 199, 200, 201, 203, 204, 206, 208, 209, 210, 213, 219, 220, 221, 223, 225, 228, 229, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 251, 253, 256, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 288, 289, 292, 296, 298, 299, 300, 301, 304, 308, 309, 310, 312, 313, 314, 316, 317, 318, 319, 320, 321, 322, 325, 327, 329, 338, 339, 341, 342, 343, 344, 346, 347, 348, 350, 351, 353, 354, 358, 359, 364, 366, 367, 369, 371, 372, 373, 376, 377, 378, 380, 384, 385, 388, 394, 397, 399, 400, 401, 403, 404, 405, 407, 408, 410, 411, 412, 413, 415, 416, 417, 418, 420, 422, 423, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 455, 457, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 505, 506, 507, 508, 509, 510, 511, 512, 516, 519, 520, 521, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 583, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 705, 707, 708, 709, 711, 712, 713, 714, 715, 718, 719, 720, 722, 725, 727, 728, 729, 730, 731, 732, 734, 735, 736, 739, 740, 741, 742, 743, 744, 753, 755, 757, 762, 768, 770, 779, 783, 784, 785, 786, 787, 788, 789, 790, 795, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 815, 819, 820, 823, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 921, 922, 924, 925, 929, 930, 931, 932, 942, 943, 944, 949, 950, 962, 963, 964, 966, 967, 970, 971, 972, 980, 985, 987, 988, 989, 990, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1010, 1012, 1013, 1014, 1015, 1016, 1019, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "true_": [196, 410, 534, 635], "true_coef": [182, 194, 203, 276, 645, 646, 651, 659, 660, 661, 680, 681, 682], "true_cov": [465, 467, 468, 474], "true_den": 288, "true_fac": 241, "true_fun": 278, "true_h": 316, "true_k": 347, "true_label": [318, 324, 325], "true_nam": 46, "true_relev": [727, 757], "true_w": 316, "true_weight": 190, "trueaffect": 155, "trueconvert": 264, "trueenabl": 264, "trueif": [103, 104, 154, 155, 156, 172, 183, 185, 192, 233, 234, 235, 243, 244, 246, 257, 262, 264, 270, 277, 313, 316, 322], "trueonli": 264, "truerefit": [103, 104, 244, 253, 257, 261, 262, 263, 275], "trueset": [104, 184], "truesmooth": 264, "truespecifi": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "truewhen": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316], "truewheth": [64, 104, 139, 141, 143, 154, 156, 160, 183, 185, 192, 235, 243, 244, 245, 257, 261, 263, 270, 275, 309, 314, 319], "trujillo": [1045, 1046], "truli": [266, 360, 712, 1000], "truncat": [2, 104, 105, 152, 226, 244, 262, 380, 531, 532, 536, 537, 538, 541, 675, 677, 727, 757, 798, 854, 918, 949, 989, 999, 1000, 1014, 1025, 1026, 1037, 1039], "truncate_mod": 76, "truncatedsvd": [2, 152, 226, 347, 408, 531, 532, 536, 537, 538, 692, 864, 867, 1033, 1038, 1042, 1043, 1045, 1049], "truong": 1037, "trust": [0, 52, 64, 103, 104, 112, 134, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 183, 184, 185, 186, 192, 233, 234, 235, 239, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 326, 352, 353, 386, 397, 401, 1045], "trustworthi": [2, 316, 1039, 1040, 1045, 1046, 1047, 1048], "truth": [2, 28, 59, 69, 75, 82, 90, 91, 94, 109, 113, 116, 123, 127, 150, 175, 194, 202, 206, 207, 242, 254, 266, 347, 385, 403, 703, 704, 705, 708, 712, 713, 714, 715, 717, 718, 721, 724, 725, 727, 729, 730, 731, 735, 737, 738, 739, 740, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 784, 785, 786, 787, 788, 791, 792, 796, 797, 1000, 1039, 1045], "truthi": [2, 962], "try": [44, 46, 51, 52, 53, 55, 63, 64, 86, 100, 103, 104, 123, 134, 139, 140, 141, 142, 143, 149, 150, 151, 154, 155, 156, 160, 167, 172, 173, 179, 182, 183, 184, 185, 188, 190, 192, 198, 233, 234, 235, 239, 243, 244, 245, 246, 249, 250, 253, 257, 261, 262, 263, 264, 270, 275, 277, 280, 283, 296, 301, 309, 313, 314, 316, 317, 319, 321, 322, 326, 337, 342, 346, 347, 352, 353, 366, 369, 370, 371, 376, 377, 379, 383, 385, 389, 391, 394, 397, 403, 406, 407, 410, 411, 484, 485, 486, 487, 489, 490, 491, 492, 494, 495, 500, 564, 575, 587, 657, 672, 674, 689, 693, 800, 801, 804, 805, 813, 815, 823, 826, 827, 828, 830, 883, 885, 888, 890, 891, 892, 893, 894, 895, 896, 905, 930, 983, 989, 996, 997, 1006, 1015, 1016, 1020, 1023, 1024, 1033, 1034, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1048, 1050], "trynexttri": 391, "tr\u00e9segni": [0, 1033], "ts_cv": [44, 53, 149], "tscv": [407, 822], "tseng": 403, "tsetogl": 1046, "tsilhouett": 91, "tslearn": 1019, "tsne": [2, 180, 225, 226, 227, 229, 230, 284, 285, 316, 385, 417, 427, 493, 688, 689, 690, 849, 853, 866, 973, 997, 1003, 1021, 1034, 1036, 1037, 1038, 1039, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1049], "tsne_param": 283, "tsoumaka": [720, 735, 741, 1000], "tspeng": [1046, 1047], "tsuga": 1044, "tsujii": 1014, "tsukada": 1043, "tsuruoka": 1014, "tsutomu": 1042, "tt": [258, 461], "ttang131": 1041, "tthe": [154, 183], "ttime": 91, "tttthomasssss": 1035, "tuai": 1050, "tube": [911, 1015], "tue": [44, 149, 184, 1037], "tuft": 445, "tuhin": [1049, 1050], "tuk": [1049, 1050], "tulio": [1039, 1040], "tulken": 1041, "tulloch": [1034, 1035], "tumor": [163, 368, 402], "tune": [2, 44, 65, 79, 88, 103, 125, 134, 139, 140, 149, 155, 156, 162, 163, 165, 167, 178, 180, 184, 198, 204, 210, 211, 222, 229, 233, 234, 242, 244, 246, 255, 256, 262, 266, 267, 268, 270, 280, 285, 301, 304, 313, 316, 321, 322, 327, 335, 339, 342, 346, 354, 358, 359, 360, 384, 385, 398, 401, 403, 407, 410, 412, 413, 448, 458, 493, 548, 556, 557, 558, 592, 608, 612, 613, 614, 616, 618, 619, 621, 622, 624, 642, 657, 658, 700, 702, 718, 743, 785, 788, 800, 801, 817, 823, 828, 831, 861, 866, 885, 903, 910, 994, 995, 996, 997, 999, 1000, 1003, 1004, 1006, 1014, 1015, 1019, 1021, 1026, 1031, 1045, 1047, 1049, 1050], "tuned_classifi": 320, "tuned_model": [257, 277], "tuned_model_coef": 277, "tuned_param": 47, "tuned_paramet": [109, 261], "tunedthresholdclassifiercv": [2, 257, 277, 402, 800, 1049], "tunedthresholdclassifiercv_no_cv": 257, "tunedthresholdclassifiercvifit": 257, "tupl": [48, 82, 88, 103, 104, 129, 139, 143, 151, 154, 155, 160, 183, 184, 185, 223, 233, 234, 243, 244, 246, 253, 257, 261, 262, 263, 264, 270, 277, 309, 313, 316, 317, 322, 364, 365, 366, 385, 407, 415, 428, 447, 449, 460, 463, 478, 479, 480, 481, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 497, 498, 499, 501, 502, 505, 507, 508, 509, 510, 511, 512, 519, 530, 558, 559, 564, 565, 566, 567, 580, 581, 582, 585, 586, 587, 589, 608, 626, 631, 632, 633, 711, 712, 719, 743, 782, 784, 798, 801, 815, 828, 845, 846, 864, 865, 875, 876, 880, 883, 891, 895, 907, 908, 909, 910, 911, 920, 932, 933, 935, 939, 940, 941, 942, 943, 967, 968, 983, 988, 1007, 1037, 1038, 1042, 1043, 1044, 1049, 1051], "tuplesinvok": [155, 156], "tupleslist": [103, 139, 143, 154, 160, 183, 184, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322], "tur": 1049, "turn": [2, 31, 44, 69, 109, 178, 179, 183, 194, 220, 221, 237, 263, 287, 320, 348, 358, 359, 360, 366, 383, 385, 386, 403, 404, 406, 408, 411, 412, 413, 579, 580, 587, 605, 606, 834, 838, 907, 910, 934, 990, 994, 1000, 1002, 1005, 1010, 1024, 1036, 1038, 1039, 1044], "turquois": [124, 128, 129, 148, 212, 222, 228, 250, 251, 270], "tushar": [1049, 1050], "tutori": [112, 180, 198, 208, 223, 263, 371, 372, 377, 379, 397, 403, 448, 458, 691, 1015, 1026, 1034], "tuveri": 1046, "tuzova": 1039, "tv": [91, 996], "tw": [188, 365, 483, 505, 506, 657, 1015], "tweak": [2, 113, 239, 407, 967, 999, 1042], "tweedi": [2, 180, 189, 206, 460, 493, 549, 647, 668, 679, 706, 725, 746, 748, 750, 751, 753, 831, 866, 869, 870, 878, 885, 996, 1021, 1041, 1042, 1044], "tweedie_pow": 223, "tweedieregressor": [2, 44, 313, 316, 321, 647, 668, 996, 1042, 1045, 1046, 1050], "tweet": 1024, "twelfth": 696, "twenti": [58, 236, 368, 400, 403], "twice": [65, 155, 257, 275, 277, 346, 348, 373, 413, 618, 731, 733, 951, 1040, 1048, 1052], "twine": 375, "twinx": 327, "twister": 1042, "two": [2, 38, 44, 47, 49, 51, 55, 59, 62, 64, 67, 71, 73, 75, 78, 88, 93, 97, 100, 102, 103, 107, 111, 115, 116, 118, 120, 122, 123, 125, 126, 128, 133, 134, 135, 139, 142, 143, 144, 146, 149, 150, 151, 152, 154, 155, 156, 160, 163, 167, 168, 169, 170, 173, 174, 178, 179, 180, 183, 184, 185, 190, 194, 196, 198, 199, 200, 204, 206, 207, 208, 213, 214, 217, 222, 223, 227, 229, 230, 232, 234, 237, 239, 240, 242, 244, 246, 248, 249, 250, 252, 253, 254, 257, 258, 260, 262, 264, 270, 280, 286, 288, 291, 292, 294, 296, 303, 305, 308, 309, 312, 313, 315, 316, 320, 326, 331, 332, 335, 336, 337, 339, 343, 346, 347, 348, 351, 352, 354, 364, 365, 366, 367, 368, 369, 371, 373, 375, 377, 378, 379, 383, 385, 386, 397, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 437, 438, 439, 440, 441, 443, 446, 447, 448, 449, 453, 455, 460, 465, 466, 467, 468, 469, 470, 471, 472, 484, 486, 487, 489, 490, 491, 493, 495, 497, 498, 499, 500, 501, 502, 504, 507, 511, 516, 519, 533, 535, 537, 541, 544, 546, 547, 550, 557, 567, 579, 582, 588, 589, 590, 593, 594, 596, 597, 598, 599, 600, 601, 604, 605, 606, 609, 610, 619, 620, 623, 627, 630, 631, 638, 642, 644, 669, 670, 672, 687, 692, 699, 703, 704, 705, 709, 712, 715, 716, 719, 721, 723, 724, 725, 732, 733, 736, 737, 739, 742, 744, 755, 756, 758, 764, 765, 772, 775, 778, 779, 780, 781, 782, 786, 787, 795, 796, 797, 798, 834, 845, 846, 847, 848, 849, 851, 852, 853, 855, 856, 857, 862, 863, 869, 870, 877, 878, 879, 880, 899, 900, 901, 905, 906, 913, 915, 916, 964, 978, 979, 985, 989, 990, 992, 994, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1012, 1013, 1014, 1015, 1016, 1017, 1021, 1028, 1031, 1032, 1033, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051], "two_d_arrai": 922, "two_d_label": 925, "two_mean": 79, "two_point_correl": [845, 846], "twoclass_output": 136, "twosigmajab": 1039, "twx": 52, "tx": 406, "tx_k": [406, 994], "txn": 52, "txt": [346, 365, 371, 500], "ty": 406, "ty_k": 406, "tyagi": 1045, "tygert": [532, 538, 949], "tyler": [1038, 1044, 1045, 1046], "type": [2, 47, 53, 86, 98, 101, 102, 112, 118, 126, 129, 139, 142, 143, 145, 154, 172, 179, 180, 182, 183, 184, 185, 188, 194, 206, 208, 234, 239, 244, 245, 246, 247, 249, 250, 253, 254, 257, 258, 261, 263, 264, 270, 272, 273, 276, 277, 280, 293, 309, 313, 314, 316, 319, 339, 346, 348, 353, 354, 359, 364, 365, 366, 368, 371, 374, 375, 376, 377, 381, 384, 389, 391, 397, 400, 404, 411, 420, 421, 422, 425, 426, 427, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 493, 505, 506, 512, 564, 569, 579, 580, 586, 587, 589, 598, 602, 616, 626, 628, 629, 637, 655, 657, 671, 673, 678, 686, 689, 692, 693, 699, 701, 703, 707, 712, 713, 714, 716, 730, 731, 734, 735, 739, 755, 784, 785, 788, 789, 797, 798, 799, 801, 807, 815, 824, 829, 831, 832, 847, 848, 849, 851, 852, 853, 855, 856, 857, 858, 859, 865, 866, 867, 870, 872, 878, 879, 885, 886, 903, 907, 908, 909, 910, 911, 924, 926, 927, 929, 931, 932, 935, 939, 940, 964, 965, 986, 990, 992, 997, 999, 1000, 1001, 1002, 1003, 1004, 1010, 1012, 1016, 1021, 1023, 1024, 1026, 1031, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "type_check": 375, "type_filt": 940, "type_of_target": [2, 143, 309, 385, 872, 886, 1001, 1045, 1046, 1048, 1049, 1051], "type_of_target_": 886, "typed_ndarrai": 371, "typeerror": [239, 315, 376, 711, 935, 958, 983, 1038, 1039, 1042, 1044, 1048], "typic": [26, 63, 65, 104, 124, 132, 144, 188, 194, 206, 210, 223, 238, 244, 262, 265, 266, 270, 272, 273, 289, 290, 314, 335, 347, 358, 364, 365, 366, 369, 373, 374, 380, 384, 385, 397, 399, 401, 403, 404, 407, 408, 410, 411, 413, 439, 443, 445, 493, 538, 548, 552, 553, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 628, 637, 639, 642, 653, 654, 655, 670, 681, 682, 712, 847, 855, 872, 879, 883, 886, 948, 949, 954, 958, 961, 984, 989, 993, 996, 997, 999, 1000, 1001, 1002, 1006, 1008, 1024, 1040, 1044, 1047, 1048, 1052], "typo": [371, 386, 394, 1031], "tzu": 1035, "t\u00e9l\u00e9com": 0, "u": [44, 50, 51, 52, 53, 56, 67, 71, 83, 85, 89, 120, 126, 127, 143, 144, 149, 154, 167, 176, 182, 183, 184, 185, 207, 210, 213, 223, 226, 229, 236, 239, 245, 246, 249, 250, 254, 257, 258, 262, 263, 264, 266, 269, 270, 276, 277, 309, 339, 346, 353, 359, 366, 369, 371, 375, 377, 379, 383, 389, 394, 400, 403, 406, 408, 410, 411, 426, 459, 461, 478, 479, 480, 528, 534, 542, 543, 547, 549, 551, 553, 555, 557, 559, 562, 565, 567, 586, 587, 589, 610, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 677, 678, 680, 683, 689, 693, 704, 720, 741, 756, 838, 839, 848, 856, 863, 885, 899, 906, 908, 911, 914, 916, 949, 992, 994, 999, 1000, 1007, 1010, 1024, 1028, 1041], "u2uwz2": [163, 368], "u_": [400, 478, 479, 480], "u_1": [400, 992], "u_2": [400, 992], "u_i": [403, 478, 479, 480, 756], "u_init": 540, "u_k": [406, 408], "uai": 1012, "ubuntu": [358, 369, 377, 379], "uchida": 1041, "uci": [48, 163, 257, 308, 365, 368, 497, 499, 501, 507], "ucl": 1013, "udi": 1031, "udit": 1045, "ufmay": 1043, "ufunc": [183, 1048], "ugli": [214, 291, 294, 331], "ugo": 1045, "ugurcaliskan": 1035, "ugurthemast": [1034, 1035], "uhmann": 1044, "uieda": 1044, "uint": 1042, "uint32": [366, 494], "uint8": [86, 123, 365, 494, 503, 504, 1043], "uk": [670, 1013], "ulloa": 1037, "ulrik": [403, 448, 458, 691], "ulterior": 53, "ultim": [88, 229, 372, 1000], "umar": [1039, 1040], "umass": 58, "umberto": [1043, 1050, 1051], "umbrella": [402, 1000], "umpi": 411, "un": [52, 371, 401, 411, 415, 530, 587, 796, 868, 877, 888, 892, 1040], "unabl": [52, 64, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 182, 183, 184, 185, 192, 194, 206, 233, 234, 235, 239, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 326, 352, 353, 360, 885, 1010, 1040], "unadjust": [403, 1000, 1043], "unaffect": 1003, "unalt": 1000, "unambigu": [272, 1001, 1037], "unanim": 386, "unavail": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322, 385, 657, 658, 962, 1038, 1044], "unbalanc": [2, 180, 266, 330, 333, 336, 339, 407, 509, 630, 910, 936, 937, 989, 1014, 1021], "unbias": [64, 109, 183, 401, 405, 408, 433, 547, 655, 671, 673, 686, 996], "unbound": [73, 999, 1045, 1049], "uncalibr": [62, 63, 64, 433], "uncent": 192, "uncertain": [64, 263, 325, 370], "uncertainti": [63, 67, 149, 167, 174, 190, 265, 401, 403, 407, 564, 565, 642, 865, 990, 1012], "uncertainty_index": [324, 325], "unchang": [143, 173, 183, 223, 264, 270, 321, 410, 427, 433, 438, 439, 440, 441, 442, 443, 445, 460, 461, 464, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 587, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 609, 610, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 688, 689, 690, 692, 764, 800, 802, 803, 808, 810, 819, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 852, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 988, 1003, 1039, 1045, 1047, 1052], "unclaim": 374, "unclear": [370, 371, 498], "unclust": 442, "uncommon": [405, 657, 905, 1015], "uncompress": [48, 505, 506], "unconstrain": [149, 151, 184, 313, 319, 366, 1014], "uncorrect": [263, 593, 596], "uncorrel": [2, 104, 244, 262, 269, 367, 525, 531, 538, 1000], "uncorrupt": 45, "uncov": [130, 695], "undefin": [53, 266, 385, 407, 712, 730, 739, 784, 969, 1000, 1039, 1043, 1047, 1051], "undefinedmetricwarn": [2, 266, 301, 712, 730, 731, 784, 785, 788, 1000, 1040, 1051], "under": [2, 44, 47, 51, 62, 63, 65, 67, 76, 109, 110, 127, 143, 146, 184, 197, 206, 232, 242, 263, 270, 272, 273, 304, 318, 365, 371, 373, 375, 377, 379, 385, 389, 397, 401, 403, 405, 407, 408, 411, 412, 442, 447, 449, 466, 467, 468, 469, 470, 471, 472, 488, 529, 536, 538, 540, 653, 654, 655, 702, 706, 707, 708, 715, 755, 789, 790, 798, 799, 850, 957, 996, 997, 998, 1000, 1003, 1010, 1014, 1015, 1016, 1019, 1020, 1031, 1033, 1034, 1036, 1039, 1043], "underdetermin": 194, "underestim": [53, 146, 184, 206, 223, 263, 371], "underfit": [44, 71, 103, 104, 143, 146, 167, 180, 185, 207, 210, 244, 253, 255, 257, 261, 262, 263, 275, 276, 298, 309, 342, 407, 410, 656, 801, 804, 805, 815, 827, 828, 865, 880, 995, 996, 1021], "underflow": [1039, 1044], "undergo": 269, "undergrad": 1024, "underli": [52, 65, 89, 111, 153, 163, 165, 183, 186, 207, 209, 210, 239, 257, 268, 287, 288, 339, 352, 359, 371, 383, 385, 388, 394, 399, 401, 403, 405, 407, 408, 409, 410, 412, 413, 433, 447, 448, 449, 458, 460, 461, 467, 468, 474, 521, 552, 553, 561, 562, 564, 565, 566, 567, 591, 592, 595, 600, 645, 646, 651, 652, 657, 658, 659, 660, 661, 662, 664, 667, 672, 674, 679, 680, 683, 691, 695, 800, 801, 804, 805, 815, 823, 826, 827, 828, 833, 834, 835, 836, 837, 838, 839, 848, 850, 902, 905, 913, 914, 915, 916, 966, 988, 996, 997, 1001, 1006, 1013, 1015, 1033, 1035, 1037, 1038, 1039, 1040, 1041, 1043, 1044, 1047, 1048, 1049, 1050, 1051, 1052], "underrepres": 371, "underscor": [348, 373, 385, 983, 1031, 1041, 1044], "underset": [408, 996, 1003, 1016], "understand": [44, 49, 53, 76, 134, 172, 180, 184, 239, 257, 258, 260, 261, 277, 314, 315, 332, 339, 346, 349, 350, 354, 370, 371, 372, 377, 383, 388, 403, 410, 411, 501, 831, 862, 863, 913, 914, 915, 916, 919, 943, 989, 990, 997, 999, 1016, 1018, 1019, 1021, 1024, 1031, 1045], "understood": [264, 371, 403, 958], "undertak": 383, "undesir": [90, 168, 257, 413, 823], "undistinguish": 407, "undistort": 123, "undo": [264, 875, 1035], "undocu": 1038, "unequ": [90, 1039], "uneth": 182, "uneven": [85, 258, 403, 407], "unevenli": [90, 206, 258], "unexpect": [90, 239, 354, 371, 376, 379, 389, 397, 532, 696, 1000, 1015, 1033, 1039, 1040, 1043, 1045, 1047, 1049], "unexpectedli": [385, 943, 944, 1039, 1052], "unfair": 354, "unfinish": [370, 371], "unfit": [2, 89, 373, 404, 428, 460, 566, 567, 600, 610, 1039, 1041, 1048, 1050], "unfold": [125, 374, 997], "unfortun": [146, 182, 183, 223, 379, 383, 410, 505, 506], "unhandl": 1040, "unhelp": 371, "unicod": [264, 348, 411, 483, 500, 580, 586, 587, 589, 966, 1031, 1039, 1043], "unicodedata": [264, 586, 587, 589], "unicodedecodeerror": [264, 411, 586, 587, 589], "unifi": [280, 372, 380, 383, 384, 410, 636, 1019, 1020, 1031], "unifom": 286, "uniform": [2, 59, 68, 73, 86, 103, 145, 146, 150, 155, 156, 159, 168, 172, 173, 176, 184, 190, 191, 219, 230, 232, 235, 271, 286, 289, 290, 295, 298, 304, 306, 307, 310, 316, 318, 334, 376, 397, 403, 434, 435, 548, 566, 567, 609, 610, 627, 638, 648, 649, 653, 667, 675, 676, 677, 699, 721, 724, 729, 746, 747, 749, 751, 752, 754, 786, 791, 792, 805, 813, 815, 840, 841, 844, 847, 848, 852, 855, 856, 870, 882, 884, 894, 936, 951, 970, 989, 990, 999, 1000, 1003, 1037, 1039, 1041, 1045, 1047, 1050, 1051], "uniform_averag": [426, 461, 478, 479, 480, 551, 553, 555, 557, 559, 562, 565, 567, 610, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 677, 678, 721, 724, 729, 746, 747, 749, 751, 752, 754, 786, 791, 792, 838, 839, 848, 856, 863, 906, 908, 911, 914, 916, 1000, 1040, 1050], "uniform_labelings_scor": 73, "uniformli": [73, 103, 140, 146, 155, 158, 228, 232, 248, 275, 312, 373, 513, 514, 515, 548, 641, 805, 813, 815, 884, 989, 990, 1000, 1003, 1010, 1035, 1040, 1052], "uniformsampl": 275, "unigram": [264, 366, 411, 586, 587, 589, 1038], "unilev": 52, "unimod": [232, 470], "unimport": [412, 1008], "uninform": [63, 65, 310, 367, 376, 411, 989, 996, 1039], "uniniti": 379, "uninstal": 369, "unintend": [104, 874, 875], "unintention": 1010, "unintuit": 90, "union": [102, 183, 404, 739, 755, 864, 1038], "union_not_memb": 183, "uniqu": [2, 44, 62, 67, 73, 77, 81, 90, 91, 96, 100, 103, 104, 105, 139, 141, 143, 147, 148, 149, 151, 154, 183, 184, 185, 194, 220, 223, 234, 244, 250, 253, 257, 261, 262, 263, 272, 292, 309, 310, 313, 316, 317, 318, 322, 327, 346, 347, 348, 365, 373, 380, 385, 403, 404, 407, 410, 411, 436, 442, 446, 450, 452, 460, 463, 493, 546, 547, 548, 558, 559, 609, 632, 633, 634, 665, 667, 675, 697, 709, 711, 722, 755, 783, 801, 803, 815, 828, 833, 834, 837, 843, 852, 855, 857, 862, 864, 876, 878, 879, 886, 889, 905, 907, 936, 949, 964, 965, 996, 1001, 1010, 1024, 1039, 1042, 1043, 1045, 1046, 1047, 1048, 1049, 1051], "unique_label": [2, 82, 88, 347, 373, 380], "uniquecategori": [143, 151, 154, 257, 309, 317, 322], "unit": [2, 64, 102, 103, 104, 111, 154, 155, 172, 183, 188, 206, 223, 233, 234, 243, 244, 246, 257, 262, 264, 270, 277, 288, 300, 303, 313, 316, 320, 322, 347, 366, 371, 373, 377, 379, 380, 408, 411, 415, 460, 485, 486, 516, 521, 529, 530, 531, 538, 539, 587, 588, 589, 605, 606, 610, 657, 658, 675, 684, 699, 771, 852, 861, 862, 863, 869, 875, 877, 881, 883, 885, 891, 892, 893, 895, 896, 905, 906, 996, 998, 999, 1000, 1005, 1010, 1016, 1035, 1039, 1045, 1046], "unit_eig_vec": 248, "unit_vari": [883, 895, 1043], "unitari": 949, "uniti": 31, "univ": [689, 693, 997], "univ_select": 106, "univari": [2, 18, 49, 50, 72, 84, 104, 106, 157, 158, 160, 180, 188, 193, 205, 220, 330, 363, 403, 404, 411, 441, 501, 522, 527, 590, 593, 594, 596, 597, 598, 600, 603, 604, 605, 606, 607, 626, 627, 628, 629, 644, 801, 806, 827, 831, 865, 866, 875, 880, 884, 885, 905, 910, 996, 1015, 1017, 1021, 1022, 1026, 1031, 1037], "univers": [0, 175, 183, 346, 366, 368, 374, 403, 408, 411, 588, 789, 840, 844, 900, 996, 998, 1000, 1002], "unix": 411, "unknowingli": 371, "unknown": [53, 89, 103, 139, 143, 154, 183, 184, 185, 234, 239, 244, 263, 309, 313, 316, 324, 326, 360, 366, 385, 397, 400, 411, 872, 878, 879, 964, 999, 1010, 1035, 1039, 1043, 1044], "unknown_typ": 397, "unknown_v": 154, "unknown_valu": [143, 154, 184, 185, 242, 309, 879, 1010, 1043, 1045, 1046], "unknowncategor": [143, 154, 184, 185, 309], "unknowncategori": [143, 154, 184, 185, 309], "unlabel": [39, 46, 240, 314, 324, 325, 326, 328, 329, 385, 403, 900, 901, 902, 999, 1043], "unlabeled_indic": 325, "unlabeled_set": 324, "unless": [52, 64, 103, 104, 139, 141, 143, 154, 155, 156, 172, 182, 183, 184, 185, 233, 234, 235, 239, 243, 244, 246, 249, 253, 254, 257, 261, 262, 263, 275, 277, 301, 309, 313, 316, 319, 322, 326, 371, 374, 383, 385, 397, 401, 403, 406, 414, 433, 440, 442, 444, 446, 448, 453, 454, 457, 460, 463, 468, 485, 493, 505, 506, 528, 532, 533, 534, 536, 539, 540, 542, 543, 544, 545, 552, 553, 554, 555, 560, 561, 562, 563, 564, 565, 566, 567, 592, 600, 605, 606, 609, 610, 631, 633, 638, 645, 646, 650, 651, 652, 654, 656, 657, 658, 660, 662, 664, 665, 667, 675, 678, 688, 689, 690, 691, 692, 693, 694, 714, 728, 775, 779, 782, 801, 804, 805, 807, 815, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 838, 847, 848, 851, 853, 855, 856, 858, 859, 862, 863, 864, 867, 886, 890, 891, 893, 894, 895, 896, 900, 901, 913, 914, 915, 916, 924, 927, 931, 932, 943, 949, 996, 999, 1001, 1031, 1033, 1037, 1039, 1042, 1043, 1048, 1049], "unlik": [88, 89, 140, 143, 183, 184, 225, 227, 253, 303, 333, 371, 373, 377, 383, 385, 394, 397, 405, 407, 408, 411, 440, 442, 446, 532, 649, 650, 653, 654, 655, 681, 682, 786, 822, 845, 846, 885, 896, 908, 996, 999, 1000, 1007, 1015, 1031, 1037], "unlimit": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353, 554, 555, 556, 557, 561, 562, 563, 913, 914, 915, 916], "unlucki": 354, "unmaintain": 1031, "unmarri": 183, "unmix": [121, 415, 530], "unmixing_matrix": 530, "unmodifi": [373, 385], "unnecessari": [140, 248, 371, 376, 423, 439, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 705, 1003, 1010, 1024, 1034, 1036, 1041, 1042, 1044, 1047, 1051], "unnecessarili": [229, 1038, 1041], "unnorm": [385, 533, 997, 1037, 1038], "unobserv": [149, 182, 183, 408], "unord": [143, 403, 410, 1010], "unpack": 373, "unpen": [401, 647, 668, 679, 996, 1051], "unpickl": [2, 385, 574, 845, 846, 1037, 1043, 1047], "unpleas": 1033, "unpract": 999, "unprefix": 1037, "unprocess": [264, 446, 586, 587, 589], "unprotect": 967, "unprun": [554, 555, 561, 562, 913, 914, 915, 916], "unquot": 223, "unrealist": 366, "unreason": [223, 407], "unreg": 340, "unregular": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316, 878, 901, 1040], "unrel": [309, 359, 371, 376, 379, 383, 411, 512], "unreli": [257, 404], "unrepresent": 920, "unrol": 229, "unrot": 130, "unsaf": 531, "unsampl": 992, "unscal": [303, 308, 996, 1000, 1039, 1045], "unscaled_clf": 308, "unseen": [67, 109, 144, 160, 198, 210, 213, 289, 339, 360, 363, 373, 384, 385, 403, 407, 851, 882, 894, 991, 1000, 1006, 1008, 1010, 1016, 1034, 1039, 1043], "unseen_featur": [411, 579], "unset": [359, 385, 1039], "unsetmetadatapassederror": [394, 1050], "unshad": 408, "unshifft": 676, "unshift": 909, "unsign": [86, 124, 366, 580, 966], "unsmooth": 409, "unsort": [1003, 1032, 1035, 1039], "unspecifi": [597, 598, 997], "unstabl": [99, 100, 183, 399, 403, 405, 406, 689, 693, 948, 949, 1016, 1035, 1036, 1038, 1043, 1045, 1047, 1050], "unstack": [223, 266], "unstructur": [100, 300, 403, 437, 441, 459, 500, 1012, 1024, 1035], "unsuccess": 51, "unsupervis": [2, 6, 28, 35, 46, 52, 73, 82, 104, 105, 116, 120, 139, 152, 232, 240, 289, 290, 334, 346, 347, 354, 363, 366, 373, 384, 385, 403, 406, 408, 409, 410, 411, 412, 427, 438, 441, 529, 531, 533, 534, 536, 539, 540, 546, 560, 563, 564, 566, 567, 580, 581, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 627, 629, 633, 634, 637, 638, 639, 640, 641, 676, 801, 804, 805, 807, 815, 824, 829, 832, 847, 848, 851, 853, 854, 855, 856, 861, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 882, 883, 884, 885, 886, 897, 898, 902, 909, 997, 1006, 1013, 1022, 1026, 1031, 1034, 1044, 1048], "unsupport": [394, 397, 1039, 1044], "unsur": 906, "untangl": 125, "untar": 48, "unterthin": [1034, 1035, 1036], "until": [64, 88, 139, 141, 154, 156, 163, 185, 213, 243, 244, 275, 314, 316, 319, 352, 353, 376, 385, 386, 400, 403, 407, 412, 505, 506, 554, 555, 556, 557, 561, 562, 563, 591, 645, 646, 651, 652, 657, 658, 659, 660, 661, 662, 665, 666, 667, 670, 675, 676, 677, 694, 798, 799, 804, 805, 862, 863, 902, 905, 913, 914, 915, 916, 974, 989, 996, 997, 1005, 1013, 1016, 1034, 1038, 1039, 1045, 1050], "untilal": [64, 139, 141, 154, 156, 185, 244, 275, 314, 319, 352, 353], "untransform": [103, 143, 154, 183, 184, 185, 234, 244, 309, 313, 316, 339, 460, 463, 1011], "untru": 1000, "untrust": 397, "untun": [146, 320], "unus": [126, 184, 225, 227, 459, 577, 764, 772, 989, 997, 1031, 1039, 1041, 1042, 1044, 1046], "unusu": [65, 400, 1006, 1010, 1039], "unveil": 1037, "unvendor": 1039, "unwant": [207, 346], "unweight": [179, 218, 459, 552, 646, 652, 677, 707, 713, 730, 731, 739, 784, 785, 788, 789, 840, 841, 842, 843, 844, 990, 1026], "unwieldi": 876, "uoa": 898, "up": [2, 48, 51, 64, 73, 79, 80, 81, 85, 88, 90, 95, 102, 103, 111, 112, 118, 132, 139, 143, 149, 151, 154, 160, 179, 183, 184, 185, 190, 194, 201, 207, 221, 222, 233, 234, 243, 244, 246, 250, 257, 264, 265, 268, 270, 277, 283, 296, 301, 304, 309, 313, 316, 317, 320, 321, 322, 325, 332, 339, 342, 346, 348, 360, 365, 366, 371, 375, 377, 378, 379, 380, 383, 385, 386, 401, 403, 407, 408, 410, 411, 433, 439, 443, 444, 445, 446, 448, 452, 455, 456, 457, 505, 506, 533, 546, 547, 554, 555, 556, 557, 558, 559, 561, 562, 563, 609, 626, 631, 632, 638, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 659, 660, 661, 662, 663, 680, 681, 682, 683, 692, 705, 770, 798, 799, 803, 804, 805, 807, 829, 865, 866, 879, 880, 883, 895, 913, 914, 915, 916, 919, 949, 952, 953, 989, 992, 996, 997, 1000, 1003, 1010, 1014, 1015, 1020, 1023, 1024, 1031, 1032, 1034, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1045, 1046, 1047, 1048, 1049, 1050], "upadhyai": [1037, 1038, 1039, 1040], "upcalcul": [154, 192], "upcast": [1041, 1045], "upcom": [143, 172, 369], "upcoming_chang": 379, "upconverg": 253, "updat": [48, 52, 79, 95, 134, 140, 148, 154, 192, 237, 243, 312, 321, 322, 348, 370, 371, 374, 379, 385, 397, 403, 408, 410, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 459, 461, 465, 466, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 798, 799, 800, 801, 802, 803, 804, 805, 808, 810, 815, 819, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 920, 974, 996, 1003, 1004, 1005, 1014, 1023, 1024, 1032, 1038, 1039, 1040, 1042, 1044, 1046, 1047, 1049, 1050, 1051, 1052], "update_environments_and_lock_fil": 371, "update_from": 290, "update_func": 290, "update_h": 544, "update_layout": [140, 264], "update_legend_marker_s": 290, "update_terminal_region": 1040, "upgrad": [312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 369, 389, 1020, 1031, 1036, 1039], "upload": [365, 369, 375, 383, 670], "upload_d": 365, "upon": [143, 151, 154, 223, 230, 239, 253, 257, 296, 309, 317, 322, 366, 371, 383, 385, 397, 558, 559, 625, 626, 629, 670, 790, 798, 799, 845, 846, 989, 996, 1016, 1045], "upper": [44, 47, 49, 62, 103, 104, 107, 110, 111, 112, 122, 126, 136, 137, 138, 139, 143, 145, 146, 147, 148, 154, 159, 171, 173, 176, 183, 184, 185, 202, 206, 212, 215, 219, 222, 223, 234, 236, 240, 241, 244, 260, 262, 263, 264, 277, 288, 299, 308, 309, 313, 316, 327, 334, 337, 339, 341, 375, 403, 409, 459, 586, 587, 589, 593, 612, 613, 614, 616, 618, 619, 621, 622, 624, 631, 632, 634, 636, 649, 653, 676, 736, 789, 878, 879, 907, 908, 909, 935, 996, 999, 1000, 1003, 1010, 1014, 1015, 1016, 1039], "upperbound": 735, "uppercas": [385, 1044], "uppercase_initi": 411, "upperlimit": 704, "upright": 366, "upstream": [358, 371, 375, 379, 383, 1010, 1040], "upward": [446, 452], "ur": 1042, "urbanowicz": 1000, "urbanowicz2015": 1000, "urcrnrlat": [51, 296], "urcrnrlon": [51, 296], "uri": 56, "url": [52, 53, 56, 163, 321, 365, 368, 373, 375, 488], "urllib": [48, 56], "urlopen": 56, "urlretriev": 48, "urlu": 1049, "urvang": [1039, 1041], "us": [0, 2, 15, 16, 20, 26, 28, 31, 38, 43, 44, 47, 48, 49, 51, 53, 54, 55, 58, 59, 60, 62, 63, 64, 65, 67, 69, 71, 73, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96, 98, 99, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 116, 118, 119, 122, 124, 125, 126, 127, 128, 129, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 153, 155, 156, 159, 160, 161, 162, 164, 166, 167, 168, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 204, 205, 206, 207, 208, 210, 211, 212, 213, 214, 217, 220, 222, 223, 225, 226, 227, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 249, 250, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 264, 265, 266, 268, 269, 270, 271, 273, 274, 275, 276, 277, 278, 280, 281, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 299, 300, 301, 302, 303, 305, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 342, 345, 348, 350, 352, 357, 358, 359, 363, 364, 365, 366, 367, 368, 369, 370, 371, 373, 374, 375, 378, 380, 384, 385, 386, 388, 389, 390, 391, 394, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 409, 410, 413, 414, 415, 416, 417, 419, 421, 422, 423, 424, 425, 426, 427, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 483, 484, 485, 486, 490, 491, 493, 496, 500, 505, 506, 508, 511, 512, 513, 516, 517, 519, 520, 521, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 571, 573, 575, 576, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 604, 605, 606, 607, 608, 609, 610, 612, 614, 615, 616, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 709, 711, 712, 713, 714, 715, 716, 717, 718, 719, 721, 724, 725, 727, 728, 729, 730, 731, 733, 736, 737, 738, 739, 740, 742, 743, 744, 746, 747, 749, 751, 752, 754, 756, 757, 758, 759, 760, 764, 765, 767, 768, 769, 770, 772, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 922, 924, 927, 930, 931, 932, 934, 936, 937, 938, 942, 943, 944, 946, 948, 949, 953, 954, 957, 958, 959, 961, 964, 968, 969, 970, 971, 973, 975, 976, 977, 983, 986, 988, 989, 990, 992, 993, 995, 998, 999, 1001, 1002, 1003, 1005, 1006, 1007, 1008, 1010, 1011, 1012, 1013, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "usa": [0, 262, 366, 902, 990, 997, 1012, 1013], "usabl": [149, 365, 371, 385, 397, 411, 801, 1031, 1038, 1045, 1046], "usag": [42, 77, 86, 103, 106, 115, 124, 132, 139, 143, 151, 154, 155, 160, 183, 184, 233, 234, 237, 239, 244, 245, 246, 256, 257, 261, 262, 263, 277, 292, 294, 300, 301, 309, 313, 314, 316, 317, 322, 331, 348, 358, 366, 370, 371, 374, 378, 379, 381, 385, 386, 389, 397, 403, 407, 408, 413, 414, 436, 440, 442, 446, 450, 457, 460, 467, 485, 491, 493, 520, 531, 532, 538, 546, 558, 559, 589, 607, 639, 647, 657, 658, 659, 665, 666, 667, 668, 675, 676, 677, 678, 679, 690, 779, 782, 793, 794, 861, 862, 864, 870, 903, 905, 907, 910, 913, 914, 915, 916, 949, 989, 990, 992, 999, 1000, 1001, 1003, 1015, 1022, 1023, 1026, 1032, 1033, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1047, 1048, 1049], "usd": 242, "use_encoded_valu": [143, 154, 184, 185, 242, 309, 879, 1010, 1043], "use_group": 258, "use_idf": [264, 408, 411, 588, 589], "usecas": [313, 316, 318, 403, 559], "usedand": [103, 139, 143, 155, 233, 234, 244, 246, 257, 262, 277, 301, 309, 313, 316, 322], "usedif": 264, "usedto": 156, "usedwhen": [64, 141, 154, 156, 185, 244, 275, 319], "usefor": 275, "useless": [55, 103, 139, 142, 155, 233, 234, 244, 246, 257, 262, 266, 277, 301, 313, 316, 322, 377, 412, 512, 525, 657, 712, 996, 1010, 1040], "user": [2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 52, 53, 63, 64, 65, 88, 101, 103, 104, 120, 139, 140, 141, 143, 147, 151, 154, 155, 156, 176, 180, 183, 184, 185, 186, 196, 208, 225, 233, 234, 239, 244, 245, 246, 253, 257, 260, 261, 262, 263, 270, 272, 275, 277, 280, 283, 289, 290, 293, 301, 309, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 352, 353, 354, 358, 359, 365, 369, 370, 371, 373, 375, 377, 378, 379, 383, 384, 385, 389, 391, 394, 397, 401, 403, 404, 405, 407, 408, 410, 411, 412, 414, 415, 416, 417, 420, 426, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 453, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 571, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 613, 614, 615, 618, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 699, 703, 704, 705, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 728, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 758, 759, 760, 761, 762, 763, 764, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 919, 945, 949, 986, 989, 990, 996, 997, 999, 1000, 1001, 1003, 1010, 1014, 1019, 1020, 1024, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "user_guid": 44, "user_r": 404, "userguid": 1038, "usernam": 389, "userscript": 379, "userwarn": [73, 79, 95, 376, 1010, 1037, 1039, 1044, 1049, 1051], "uses5": [244, 245, 261, 263, 314], "usesa": 243, "usesmean": [154, 156, 314, 352], "ushtanit": [1043, 1044], "usingal": 150, "usingleav": [154, 183], "usp": 45, "usr": 369, "usual": [44, 53, 75, 109, 110, 112, 145, 146, 148, 154, 182, 184, 195, 206, 207, 256, 257, 260, 263, 272, 273, 277, 304, 315, 335, 354, 358, 359, 369, 371, 373, 375, 379, 383, 384, 385, 389, 394, 400, 403, 404, 407, 408, 410, 411, 412, 446, 452, 535, 537, 544, 556, 557, 605, 606, 629, 639, 657, 658, 665, 666, 667, 675, 676, 677, 692, 709, 712, 727, 759, 807, 829, 833, 905, 922, 949, 989, 990, 992, 995, 996, 997, 999, 1000, 1001, 1004, 1005, 1006, 1007, 1010, 1014, 1015, 1016, 1046], "usuallyresult": 156, "utc": 1000, "utf": [264, 346, 348, 411, 483, 500, 580, 586, 587, 589], "util": [2, 4, 10, 17, 36, 39, 48, 50, 51, 88, 89, 94, 104, 132, 134, 143, 147, 154, 165, 186, 200, 206, 213, 221, 227, 235, 239, 241, 244, 251, 262, 266, 269, 271, 283, 305, 309, 312, 321, 327, 328, 335, 339, 346, 359, 365, 366, 371, 372, 373, 374, 383, 384, 385, 399, 402, 403, 404, 407, 408, 411, 433, 439, 440, 443, 445, 449, 461, 464, 478, 479, 480, 530, 533, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 575, 588, 609, 610, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 800, 801, 802, 803, 808, 810, 819, 823, 825, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 850, 852, 855, 856, 862, 863, 865, 868, 870, 871, 872, 877, 884, 885, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 995, 998, 1000, 1001, 1010, 1011, 1019, 1024, 1026, 1031, 1032, 1034, 1035, 1037, 1038], "utilis": 1037, "utkarsh": [1037, 1038, 1039, 1040], "utl": 412, "utstat": 643, "uttam": 1044, "uv": [120, 408, 1050, 1051], "uw": [163, 368, 1043], "uwha": [1044, 1045], "v": [0, 2, 31, 44, 49, 53, 56, 58, 64, 65, 67, 70, 71, 72, 73, 74, 82, 84, 88, 91, 102, 103, 104, 107, 108, 111, 113, 114, 115, 120, 122, 123, 127, 138, 140, 141, 146, 147, 148, 159, 160, 167, 180, 181, 186, 189, 198, 204, 205, 206, 207, 210, 211, 212, 220, 236, 244, 245, 249, 250, 253, 254, 255, 259, 261, 263, 270, 280, 294, 301, 310, 312, 314, 332, 347, 354, 359, 363, 368, 371, 377, 379, 385, 399, 400, 401, 405, 406, 408, 411, 412, 426, 433, 441, 448, 458, 459, 460, 461, 466, 469, 470, 471, 472, 473, 478, 479, 480, 493, 509, 521, 528, 534, 538, 542, 543, 547, 549, 551, 553, 555, 557, 559, 561, 562, 565, 567, 579, 587, 591, 592, 598, 604, 610, 629, 630, 633, 634, 638, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 675, 677, 678, 688, 695, 699, 701, 704, 717, 737, 738, 740, 755, 756, 758, 789, 796, 801, 806, 813, 815, 827, 831, 833, 834, 835, 838, 839, 840, 848, 856, 861, 863, 865, 866, 869, 872, 878, 879, 880, 885, 886, 889, 899, 905, 906, 907, 908, 910, 911, 914, 916, 920, 994, 995, 996, 997, 1000, 1001, 1002, 1005, 1008, 1010, 1014, 1015, 1017, 1021, 1026, 1031, 1034, 1035, 1036, 1039, 1041, 1042, 1045, 1046, 1049], "v0": [52, 103, 104, 244, 253, 257, 261, 262, 263, 264, 467, 468, 474, 509, 586, 587, 589, 801, 815, 864, 867, 1032, 1039, 1040, 1041], "v1": [253, 257, 317, 365, 389, 798, 799, 1043, 1046, 1047, 1048, 1049, 1052], "v10": 257, "v11": 257, "v12": 257, "v13": 257, "v14": 257, "v15": 257, "v16": 257, "v17": 257, "v18": 257, "v19": 257, "v2": [257, 366, 494, 663, 684, 685, 996], "v20": 257, "v21": 257, "v22": 257, "v23": 257, "v24": 257, "v25": 257, "v26": 257, "v27": 257, "v28": 257, "v3": 257, "v4": 257, "v5": [257, 1039], "v6": 257, "v7": 257, "v8": 257, "v9": 257, "v_": [400, 411], "v_1": 400, "v_2": 400, "v_i": 1005, "v_ih_j": 1005, "v_init": 540, "v_j": [403, 756, 1005], "v_k": [406, 408, 528, 534, 542, 543], "v_measur": [737, 796], "v_measure_scor": [2, 58, 73, 74, 82, 91, 318, 347, 403, 717, 737, 738, 758, 1000, 1040], "v_new": 861, "va": [48, 144, 161, 274, 291, 293, 328, 341], "vac": 280, "vacaliuc": [1039, 1040], "vacat": 366, "vachan": 1042, "vadim": [1039, 1043, 1044], "vaerenbergh": [1046, 1047], "vaggi": [1033, 1034], "vaillant": 1043, "val": [105, 217, 263, 951], "val_errors_with": 144, "val_errors_without": 144, "val_pr": 144, "val_scor": 145, "vale": 1041, "valencia": [1045, 1047], "valentin": [1034, 1036, 1046, 1047], "valero": 52, "valgrind": 374, "valid": [2, 48, 52, 53, 54, 64, 65, 87, 88, 89, 90, 103, 104, 105, 106, 107, 109, 113, 127, 132, 138, 139, 140, 142, 143, 144, 145, 146, 149, 151, 154, 156, 157, 160, 161, 163, 175, 180, 183, 185, 189, 194, 195, 196, 197, 202, 206, 208, 213, 223, 233, 234, 239, 241, 243, 244, 245, 246, 250, 253, 255, 260, 263, 264, 265, 267, 269, 270, 271, 272, 275, 276, 277, 278, 280, 287, 301, 304, 309, 312, 313, 314, 316, 317, 319, 321, 326, 327, 335, 342, 350, 352, 353, 359, 366, 371, 374, 383, 384, 385, 397, 398, 401, 403, 404, 405, 408, 409, 410, 411, 412, 417, 419, 433, 437, 438, 439, 441, 442, 443, 445, 446, 453, 459, 460, 464, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 490, 498, 499, 501, 512, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 554, 555, 556, 557, 558, 559, 561, 562, 563, 564, 565, 566, 567, 569, 573, 575, 580, 581, 587, 591, 592, 595, 600, 608, 631, 633, 637, 638, 639, 640, 641, 642, 645, 646, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 688, 689, 692, 699, 701, 702, 706, 713, 729, 731, 763, 766, 775, 779, 780, 781, 786, 793, 794, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 836, 839, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 858, 859, 861, 862, 863, 864, 865, 866, 868, 869, 871, 877, 885, 897, 898, 900, 901, 903, 907, 910, 912, 913, 914, 915, 916, 922, 924, 931, 932, 933, 934, 935, 942, 956, 958, 961, 983, 984, 985, 986, 987, 988, 990, 999, 1000, 1001, 1003, 1004, 1008, 1010, 1012, 1014, 1015, 1016, 1020, 1021, 1024, 1026, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "valid_metr": [845, 846, 1003, 1047], "valid_scor": 995, "validate_data": [2, 321, 373, 1050], "validate_metadata": [239, 958], "validate_separ": 988, "validatedpredict": 154, "validation_curv": [2, 318, 342, 394, 824, 995, 1000, 1038, 1039, 1040, 1043, 1047, 1050], "validation_fract": [143, 144, 149, 151, 154, 156, 213, 243, 257, 309, 315, 317, 322, 410, 556, 557, 558, 559, 665, 666, 667, 675, 677, 862, 863, 1014, 1039, 1045], "validation_score_": [149, 558, 559], "validation_scores_": [862, 863, 1046], "validationcurvedisplai": [2, 276, 832, 995, 1047], "validationerror": 1045, "validationiter": 64, "validationprocess": 257, "validationscor": 243, "vallei": 309, "vall\u00e9": 1038, "valu": [2, 21, 28, 44, 45, 47, 51, 52, 53, 54, 56, 59, 60, 64, 65, 67, 69, 73, 75, 77, 79, 80, 86, 88, 93, 94, 95, 99, 103, 104, 105, 107, 109, 111, 113, 120, 123, 126, 130, 132, 134, 136, 138, 139, 140, 141, 143, 146, 147, 150, 151, 153, 154, 155, 156, 158, 159, 160, 161, 162, 165, 167, 170, 171, 172, 173, 175, 182, 183, 184, 185, 186, 188, 190, 191, 193, 194, 195, 196, 198, 199, 201, 206, 207, 208, 210, 212, 220, 223, 224, 227, 232, 233, 234, 235, 236, 237, 238, 242, 244, 245, 246, 248, 253, 254, 256, 257, 259, 261, 262, 263, 264, 266, 268, 269, 270, 272, 274, 275, 276, 277, 283, 286, 295, 296, 298, 299, 301, 303, 304, 305, 306, 307, 308, 309, 310, 313, 314, 316, 317, 320, 322, 326, 327, 328, 335, 339, 340, 342, 346, 347, 348, 350, 352, 354, 358, 359, 360, 363, 364, 365, 366, 368, 372, 373, 374, 376, 377, 378, 380, 383, 384, 385, 388, 389, 394, 399, 400, 401, 403, 404, 405, 406, 407, 411, 412, 413, 414, 415, 416, 417, 426, 427, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 452, 453, 454, 455, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 483, 486, 487, 490, 493, 494, 495, 498, 505, 506, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 520, 521, 522, 524, 525, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 583, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694, 695, 697, 698, 699, 700, 701, 702, 704, 705, 707, 708, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 736, 737, 738, 739, 740, 741, 742, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 770, 772, 775, 779, 780, 781, 782, 783, 784, 785, 786, 788, 789, 790, 791, 792, 793, 794, 795, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 810, 812, 813, 815, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 893, 894, 895, 896, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 919, 920, 921, 922, 923, 926, 928, 929, 930, 931, 932, 935, 936, 937, 938, 940, 949, 951, 958, 961, 962, 963, 964, 965, 970, 975, 976, 977, 989, 992, 993, 994, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1011, 1013, 1014, 1015, 1021, 1022, 1024, 1025, 1026, 1028, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "valuabl": [144, 257, 371, 990, 1024], "valuat": 410, "value_1": 712, "value_2": 712, "value_count": [44, 53, 184, 257, 277, 280], "value_kei": [383, 920], "value_typ": [413, 616], "valueerror": [2, 155, 239, 240, 373, 377, 394, 464, 575, 601, 616, 634, 670, 714, 837, 855, 864, 870, 884, 930, 932, 934, 935, 984, 985, 986, 1010, 1033, 1034, 1035, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1048, 1049, 1050, 1051], "values_format": [697, 1041], "valuesinc": [143, 151, 154, 257, 309, 317, 322], "valuesof": [143, 151, 154, 257, 309, 317, 322], "valuesto": [104, 244, 262], "valueswherea": 155, "valueswith": 155, "vamsi": 1046, "van": [0, 365, 393, 405, 465, 470, 531, 626, 692, 696, 990, 997, 1000, 1006, 1024, 1032, 1033, 1034, 1035, 1038, 1039, 1040, 1042, 1043, 1044, 1046, 1047, 1051], "vandana": 1042, "vander": 191, "vandermond": [207, 1010], "vanderpla": [0, 393, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039], "vang": 1044, "vanilla": [206, 399, 402, 403, 443, 445, 456, 628], "vanilla_model": 257, "vanilla_model_coef": 277, "vanrel": 1037, "vanschoren": [365, 1043], "vapnik": [591, 592], "var": [115, 116, 137, 163, 191, 244, 245, 261, 263, 314, 368, 372, 412, 413, 640, 644, 907, 908, 909, 910, 911, 1000, 1039], "var_": [531, 843, 885, 1044], "var_smooth": [843, 1039], "varanasi": [1031, 1034], "vardhan": 1035, "varepsilon": [403, 1014, 1015], "vari": [47, 53, 65, 67, 68, 71, 79, 80, 88, 95, 98, 107, 118, 140, 141, 142, 152, 162, 169, 171, 180, 183, 184, 197, 198, 199, 200, 202, 204, 215, 218, 230, 237, 242, 253, 259, 263, 266, 277, 297, 303, 305, 306, 308, 314, 318, 323, 328, 329, 335, 338, 340, 343, 352, 353, 354, 358, 360, 366, 385, 397, 437, 441, 442, 497, 505, 511, 512, 519, 556, 557, 561, 562, 645, 646, 649, 650, 651, 652, 653, 654, 659, 660, 661, 662, 680, 683, 703, 764, 820, 824, 829, 831, 832, 862, 866, 870, 885, 902, 910, 913, 914, 973, 992, 995, 996, 1000, 1003, 1004, 1013, 1016, 1021, 1024, 1038, 1039, 1047], "variabl": [2, 44, 49, 51, 52, 53, 73, 102, 137, 141, 143, 146, 147, 149, 156, 158, 163, 174, 175, 178, 179, 184, 185, 188, 194, 198, 206, 210, 211, 223, 227, 239, 242, 254, 257, 263, 266, 273, 280, 282, 308, 309, 310, 354, 358, 360, 366, 368, 369, 371, 373, 375, 376, 379, 385, 394, 399, 403, 404, 405, 406, 407, 408, 410, 411, 412, 446, 478, 479, 480, 483, 496, 498, 505, 512, 529, 531, 533, 538, 541, 550, 556, 557, 602, 604, 605, 606, 639, 649, 650, 653, 654, 660, 681, 682, 687, 695, 748, 802, 803, 806, 808, 809, 810, 811, 816, 817, 818, 819, 820, 821, 825, 826, 827, 828, 830, 833, 837, 838, 868, 879, 882, 886, 894, 906, 921, 989, 990, 992, 996, 999, 1000, 1001, 1002, 1003, 1005, 1007, 1008, 1010, 1014, 1016, 1019, 1020, 1031, 1036, 1039, 1041, 1044, 1046, 1050], "varianc": [2, 38, 44, 45, 53, 65, 79, 88, 90, 95, 103, 104, 105, 109, 111, 115, 116, 120, 121, 122, 125, 126, 127, 128, 130, 133, 148, 149, 154, 155, 172, 174, 180, 183, 191, 194, 198, 206, 208, 211, 223, 233, 234, 243, 244, 246, 253, 257, 260, 262, 263, 266, 270, 272, 273, 277, 292, 298, 303, 308, 313, 316, 320, 322, 347, 354, 363, 367, 380, 400, 401, 403, 405, 406, 407, 408, 409, 410, 413, 415, 437, 441, 445, 459, 518, 521, 529, 530, 531, 538, 541, 546, 547, 552, 553, 555, 556, 557, 562, 601, 605, 606, 609, 610, 624, 642, 643, 644, 651, 655, 659, 661, 671, 672, 673, 674, 675, 686, 710, 729, 786, 798, 799, 843, 854, 869, 875, 881, 883, 885, 891, 893, 895, 896, 914, 916, 974, 975, 976, 980, 994, 995, 996, 998, 1003, 1004, 1005, 1008, 1012, 1014, 1015, 1016, 1017, 1021, 1022, 1026, 1031, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1051], "variance_weight": [729, 786, 1000], "varianceand": 156, "variances_": 601, "variancethreshold": [2, 412, 870, 990, 1034, 1041, 1044, 1047], "variant": [2, 65, 78, 100, 120, 177, 179, 180, 263, 315, 316, 347, 348, 377, 403, 406, 408, 411, 413, 445, 456, 486, 490, 491, 509, 512, 540, 556, 557, 562, 614, 618, 621, 622, 626, 629, 637, 638, 640, 644, 671, 704, 802, 806, 808, 809, 810, 819, 827, 848, 866, 883, 902, 990, 996, 997, 998, 999, 1000, 1002, 1003, 1014, 1021, 1031, 1039, 1052], "variat": [2, 44, 47, 52, 73, 98, 118, 151, 163, 172, 173, 179, 180, 183, 211, 247, 249, 254, 260, 282, 293, 313, 335, 368, 397, 407, 408, 439, 443, 455, 533, 642, 671, 673, 674, 798, 799, 819, 820, 822, 989, 1000, 1010, 1013, 1016, 1019, 1021, 1025, 1026, 1034, 1036, 1037], "variegatu": [51, 296, 366, 495], "variet": 309, "varieti": [26, 63, 178, 250, 309, 335, 379, 403, 405, 411, 642, 1003, 1016, 1019, 1024, 1033, 1046, 1047], "varimax": [130, 408, 529, 1043], "variou": [4, 42, 44, 52, 67, 72, 73, 88, 89, 91, 93, 94, 95, 100, 112, 115, 123, 180, 183, 215, 224, 225, 226, 227, 236, 280, 283, 307, 313, 324, 325, 346, 348, 353, 354, 358, 365, 366, 367, 368, 371, 373, 376, 384, 386, 401, 403, 405, 433, 437, 468, 499, 511, 512, 522, 554, 555, 556, 557, 558, 559, 561, 562, 564, 565, 566, 567, 592, 600, 646, 650, 652, 654, 660, 662, 664, 672, 674, 691, 692, 699, 801, 804, 805, 807, 815, 823, 824, 825, 826, 827, 828, 829, 830, 832, 865, 905, 906, 989, 990, 996, 997, 1000, 1003, 1007, 1010, 1016, 1019, 1021, 1023, 1024, 1031, 1034, 1035, 1048], "variouscross": [52, 64, 103, 104, 154, 183, 244, 253, 257, 261, 262, 263, 275], "varma": [1040, 1050], "varona": 1051, "varoquaux": [0, 386, 392, 393, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "varun": [1037, 1038, 1039, 1045, 1046, 1051], "varunchaduvula": 1049, "vasani": 1042, "vasco": 1051, "vasilei": [1024, 1038], "vasileva": 1045, "vasiloudi": 1036, "vassard": 1045, "vassili": 1051, "vassilvitskii": [403, 443, 456], "vast": [257, 371], "vastli": [179, 308], "vathsala": [1038, 1039, 1040, 1041], "vatsan": 1037, "vavrova": 1038, "vazelh": [1039, 1040, 1041], "vazirgianni": 403, "vb": 533, "vbgmm": [1031, 1035, 1037], "vd": 1049, "ve": [262, 321, 347, 371, 411, 1024, 1038], "veal": 58, "vealei": 1050, "veb2009": 403, "veb2010": 403, "vec": [120, 411, 535, 537, 544], "veclib": [358, 383], "vect": [48, 102, 264, 328, 411], "vect__": 264, "vect__max_df": 264, "vect__min_df": 264, "vect__ngram_rang": 264, "vect__norm": 264, "vector": [2, 17, 40, 47, 48, 49, 50, 52, 55, 58, 59, 64, 69, 72, 75, 80, 103, 104, 120, 122, 123, 139, 143, 154, 155, 159, 160, 167, 175, 183, 184, 185, 192, 210, 211, 217, 221, 233, 234, 237, 238, 243, 244, 245, 246, 257, 261, 262, 263, 264, 268, 270, 277, 289, 301, 303, 309, 313, 316, 320, 322, 329, 331, 332, 335, 336, 337, 338, 339, 340, 342, 347, 358, 360, 366, 376, 377, 380, 383, 385, 400, 401, 403, 406, 407, 408, 410, 413, 414, 415, 433, 439, 440, 441, 443, 445, 446, 447, 449, 460, 461, 463, 464, 478, 479, 480, 481, 483, 485, 494, 506, 509, 518, 521, 528, 531, 532, 534, 535, 536, 537, 538, 539, 540, 541, 542, 546, 547, 548, 549, 564, 565, 566, 567, 579, 580, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 609, 610, 612, 613, 614, 616, 617, 618, 619, 621, 622, 624, 630, 637, 639, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 667, 671, 672, 673, 674, 675, 676, 677, 685, 686, 687, 688, 689, 691, 692, 693, 695, 697, 699, 719, 736, 764, 769, 770, 771, 772, 774, 775, 776, 778, 779, 800, 801, 804, 805, 815, 823, 829, 832, 833, 834, 840, 841, 842, 843, 844, 847, 848, 849, 851, 852, 853, 855, 856, 857, 862, 863, 870, 872, 877, 885, 889, 892, 903, 905, 906, 907, 908, 909, 910, 911, 912, 931, 946, 948, 949, 964, 969, 989, 992, 993, 994, 996, 997, 998, 1000, 1001, 1002, 1004, 1005, 1006, 1010, 1014, 1016, 1021, 1022, 1026, 1031, 1032, 1033, 1034, 1035, 1037, 1039, 1040, 1042, 1044, 1049], "vectori": [104, 160, 270, 385, 1041], "vectorizer2": 586, "vectorizer_param": 328, "vectorizermixin": 1041, "vectorizing_tim": 48, "vectors_test": 366, "ved": 1048, "vedaldi": [637, 992], "vedpawar2254": 1050, "veenhui": [1046, 1047, 1048, 1049, 1050, 1051], "veerkhar": 1046, "veerlosar": 1041, "veghit": 1047, "vehag": [206, 223], "vehbrand": [206, 223], "vehga": [206, 223], "vehicl": [206, 223], "vehpow": [206, 223], "vel": 368, "velislav": [1050, 1051], "velkov": 1033, "veloc": 371, "vembu": 401, "vempati": 992, "vendor": [239, 399, 1036, 1039, 1040, 1051], "venezuela": [51, 296, 366, 495], "venkat": [0, 393], "venkatachalam": [1041, 1042, 1043, 1044, 1045, 1048, 1049], "venkatesh": 1041, "venna": 696, "venthur": 1039, "venu": [0, 385], "venv": [369, 389], "vera": [1045, 1046], "verbos": [50, 52, 64, 77, 83, 87, 97, 102, 103, 104, 106, 139, 141, 143, 150, 151, 154, 155, 156, 160, 183, 184, 185, 233, 234, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 300, 301, 303, 309, 313, 314, 315, 316, 317, 319, 322, 346, 369, 375, 385, 436, 439, 443, 445, 448, 450, 455, 458, 460, 463, 467, 468, 474, 528, 533, 534, 535, 536, 537, 540, 542, 543, 544, 545, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 591, 592, 626, 631, 643, 644, 645, 646, 647, 649, 650, 651, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 675, 676, 677, 678, 679, 680, 681, 682, 683, 686, 690, 692, 694, 766, 779, 798, 799, 801, 804, 805, 807, 815, 824, 826, 827, 828, 829, 830, 832, 834, 836, 839, 854, 861, 862, 863, 864, 865, 866, 867, 902, 905, 906, 907, 908, 909, 910, 911, 967, 1020, 1033, 1034, 1036, 1038, 1039, 1040, 1042, 1043, 1045, 1046, 1049, 1050], "verbose_feature_names_out": [103, 143, 154, 183, 184, 185, 234, 244, 246, 309, 313, 315, 316, 317, 319, 404, 460, 463, 864, 867, 1044, 1048, 1049, 1050, 1051], "verbose_interv": [253, 798, 799], "veri": [44, 52, 53, 63, 64, 65, 75, 77, 79, 83, 85, 93, 95, 100, 104, 111, 112, 113, 115, 118, 123, 143, 146, 151, 152, 154, 172, 178, 183, 184, 185, 198, 204, 206, 207, 208, 211, 213, 223, 229, 232, 238, 239, 242, 244, 248, 257, 262, 265, 266, 269, 270, 272, 273, 283, 300, 303, 309, 315, 317, 322, 324, 327, 335, 339, 346, 348, 354, 358, 366, 370, 371, 373, 376, 377, 379, 383, 384, 385, 397, 399, 401, 402, 403, 405, 407, 408, 409, 410, 411, 412, 413, 433, 438, 443, 448, 458, 467, 468, 474, 497, 501, 507, 538, 554, 555, 558, 559, 561, 562, 564, 565, 587, 588, 621, 649, 650, 653, 654, 655, 663, 681, 682, 684, 691, 692, 695, 705, 744, 747, 793, 798, 801, 803, 809, 811, 815, 818, 821, 845, 846, 870, 874, 875, 876, 885, 897, 898, 907, 910, 913, 914, 915, 916, 924, 949, 970, 989, 992, 993, 995, 996, 997, 998, 999, 1000, 1003, 1004, 1006, 1007, 1008, 1010, 1012, 1013, 1014, 1015, 1016, 1017, 1019, 1020, 1024, 1031, 1036, 1037, 1039, 1042, 1044, 1046, 1047, 1048], "verif": [366, 1000, 1024], "verifi": [86, 93, 132, 149, 155, 183, 206, 371, 376, 397, 399, 488, 983, 1003], "verlag": 696, "vermeil": 1039, "veronda": 1032, "verrier": 1046, "versa": [183, 260, 346, 403, 413, 438, 605, 606, 834, 1035], "versatil": [413, 1015, 1024], "versicolor": [126, 272, 273, 501], "versicolour": [128, 368], "version": [2, 7, 44, 80, 86, 88, 103, 104, 120, 125, 134, 139, 143, 149, 154, 155, 160, 169, 179, 183, 184, 185, 188, 194, 207, 213, 219, 221, 233, 234, 239, 242, 244, 246, 257, 262, 270, 277, 282, 300, 301, 308, 309, 312, 313, 314, 315, 317, 318, 319, 320, 321, 322, 335, 346, 358, 366, 370, 372, 373, 374, 377, 379, 380, 383, 385, 386, 389, 390, 394, 396, 397, 403, 404, 406, 408, 410, 411, 413, 414, 415, 421, 423, 425, 426, 427, 428, 430, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 455, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 501, 502, 505, 506, 507, 509, 511, 512, 519, 520, 524, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 573, 574, 575, 576, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 604, 605, 606, 607, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 686, 687, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 700, 701, 702, 704, 707, 708, 709, 711, 712, 713, 714, 718, 721, 723, 724, 725, 726, 728, 729, 730, 731, 732, 735, 739, 740, 741, 742, 743, 744, 747, 754, 755, 758, 759, 760, 762, 767, 768, 770, 779, 783, 784, 785, 786, 788, 790, 791, 792, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 814, 815, 819, 820, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 891, 893, 894, 895, 897, 898, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 929, 931, 932, 942, 943, 944, 948, 949, 954, 957, 958, 959, 960, 961, 964, 966, 967, 968, 970, 974, 980, 985, 986, 988, 989, 992, 994, 997, 1000, 1002, 1004, 1006, 1008, 1013, 1014, 1016, 1019, 1020, 1023, 1027, 1029], "versionad": [52, 64, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 183, 184, 185, 233, 234, 235, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 352, 353], "versionchang": [52, 64, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 183, 184, 185, 233, 234, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 352, 353, 371], "versionwarn": 375, "versu": [68, 103, 122, 133, 139, 142, 152, 154, 155, 169, 180, 183, 189, 214, 220, 232, 233, 234, 237, 238, 244, 246, 251, 255, 257, 258, 262, 277, 280, 289, 291, 298, 301, 305, 313, 316, 322, 323, 328, 332, 334, 335, 339, 403, 407, 410, 413, 501, 531, 553, 609, 630, 638, 657, 658, 665, 667, 673, 674, 675, 676, 784, 801, 806, 827, 837, 866, 901, 902, 909, 910, 914, 989, 996, 1000, 1001, 1006, 1013, 1014, 1015, 1021, 1039, 1051], "vert": [147, 185, 186, 312, 1014], "vertex": [56, 64, 403, 449, 1044], "vertic": [46, 56, 93, 145, 186, 198, 228, 236, 237, 267, 282, 303, 306, 340, 341, 385, 400, 403, 408, 512, 697, 782], "verticalalign": [52, 64, 75, 100], "vese": 1043, "vesteghem": 1041, "veto": 386, "vettigli": 1040, "vga": 58, "vh": 949, "vi": [48, 699, 1039, 1042], "via": [0, 2, 44, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 363, 368, 369, 372, 373, 375, 379, 383, 384, 385, 386, 389, 394, 399, 400, 401, 403, 404, 406, 407, 408, 412, 413, 433, 498, 532, 536, 538, 540, 543, 552, 553, 556, 557, 564, 565, 595, 610, 615, 620, 623, 625, 626, 630, 637, 638, 639, 640, 655, 665, 667, 670, 672, 675, 686, 689, 692, 693, 801, 815, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 837, 843, 851, 862, 864, 865, 866, 885, 886, 943, 989, 994, 996, 997, 999, 1001, 1007, 1008, 1014, 1015, 1020, 1021, 1024, 1026, 1028, 1031, 1035, 1036, 1039, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "viacheslav": 1037, "viard": 1042, "vibrantabhi19": 1038, "vicdemand": 149, "vice": [183, 260, 346, 403, 413, 438, 605, 606, 834, 1035], "vicent": [1044, 1045, 1046], "vicpric": 149, "victoireloui": 1045, "victor": [403, 448, 458, 1038, 1041], "victoria": [149, 1050, 1051], "video": [317, 365, 374, 383, 384, 399, 500, 1001, 1024, 1026], "vie": 1037, "viega": 1000, "view": [44, 77, 80, 109, 122, 149, 184, 244, 358, 360, 371, 403, 411, 533, 644, 656, 845, 846, 920, 996, 997], "view_init": [184, 225, 227, 229], "viewabl": 371, "vighnesh": [1036, 1037, 1039], "vignesh": [1047, 1051], "vigni": 1048, "vijai": [1024, 1034], "vijalapuram": 1039, "vijeth": [1047, 1048], "vijitbenjaronk": [1038, 1039], "vika": [1043, 1045], "vikram": [1037, 1046, 1047], "vikrant": 1045, "viktor765": [1050, 1051], "vila": [1041, 1043], "vilenski": 1051, "vilhelm": [1038, 1039], "villalba": [1036, 1039, 1043], "villanova": [1043, 1044], "villaz\u00f3n": 1043, "villu": 1037, "vil\u00e9m": 1044, "vinayak": [1035, 1036, 1037, 1039, 1040, 1046, 1047], "vinc": 1050, "vincent": [0, 393, 1024, 1031, 1033, 1035, 1036, 1038, 1041, 1046, 1047, 1048], "vineet": 1049, "vineyard": 309, "vinh": [403, 704], "vinh10a": 403, "viniciu": [1043, 1044], "vinit": 1039, "vink": [1042, 1044], "vinod": 1039, "vin\u00edciu": 1039, "viola": [366, 1039], "violat": [63, 335, 383, 385, 634, 935, 1007, 1014, 1016], "violet": [127, 1047], "violeta": 1043, "vipin": 403, "vipsa": 1051, "viraj": 1039, "virchan": 1049, "virenpassi": 1051, "virgil": [0, 361, 393, 1031, 1032, 1034, 1050, 1051, 1052], "virgilefritsch": 1031, "virginica": [126, 128, 272, 273, 368, 501, 1000], "viridi": [74, 283, 630, 697], "viridis_r": 264, "virshup": 1048, "virtanen": 1036, "virtual": [372, 389, 407, 1024], "virtualenv": [369, 371], "visag": 1024, "visconti": 1035, "vishaal": [1039, 1040], "vishal": 1046, "vishwakarma": 1045, "visibl": [53, 183, 184, 208, 344, 365, 371, 403, 861, 1005, 1036, 1046], "vision": [531, 759, 760, 992, 996, 998, 1016, 1019, 1024, 1032], "visit": [353, 371, 1007, 1023], "visual": [2, 28, 43, 44, 49, 53, 59, 63, 64, 67, 69, 78, 80, 82, 85, 90, 93, 94, 103, 104, 111, 119, 120, 122, 124, 127, 129, 133, 139, 140, 147, 149, 150, 152, 156, 160, 161, 175, 179, 180, 184, 186, 194, 199, 204, 206, 207, 208, 223, 225, 226, 228, 229, 230, 231, 234, 237, 243, 244, 246, 253, 255, 256, 257, 259, 260, 261, 263, 264, 265, 268, 270, 272, 273, 277, 288, 292, 293, 295, 297, 299, 301, 303, 307, 308, 312, 314, 316, 322, 325, 328, 339, 363, 367, 369, 377, 378, 385, 400, 405, 407, 408, 409, 410, 434, 437, 441, 442, 450, 467, 468, 493, 499, 501, 504, 507, 511, 519, 529, 531, 538, 561, 563, 566, 630, 631, 632, 638, 644, 657, 689, 692, 697, 698, 700, 701, 702, 718, 728, 783, 790, 800, 802, 803, 806, 807, 818, 819, 820, 821, 822, 824, 826, 831, 862, 866, 870, 874, 875, 877, 880, 881, 882, 883, 884, 885, 905, 907, 908, 910, 911, 919, 945, 995, 997, 998, 1003, 1004, 1006, 1007, 1010, 1016, 1019, 1021, 1026, 1034, 1041, 1042, 1043, 1045, 1051], "visualis": [120, 123, 130, 240, 541, 675, 677, 802, 803, 806, 818, 819, 820, 821, 822, 1003, 1020], "visualize_group": 258, "vitor": 1046, "vitthal": 1050, "vivek": [1038, 1039, 1040, 1048], "viz": [273, 378], "vjacheslav": 1035, "vlad": [0, 393, 1031, 1032, 1033, 1034, 1035, 1036, 1038, 1039, 1040], "vladimir": [532, 949, 996, 1041, 1045, 1048], "vlahava": [720, 741, 1000], "vlajic": [1042, 1043, 1049, 1051], "vlasio": [1024, 1038], "vlasovet": 1044, "vlb": 58, "vliet": 1043, "vline": [109, 122, 196, 198, 207, 263, 276, 304], "vlines_": 631, "vlo": 52, "vmax": [67, 84, 113, 120, 123, 130, 170, 173, 190, 194, 199, 221, 237, 252, 258, 300, 335], "vmin": [67, 75, 113, 120, 123, 130, 170, 173, 190, 194, 199, 221, 237, 252, 258, 300, 335], "vnherdeiro": 1041, "vo": [1037, 1045], "voc": 1000, "vocabulari": [118, 220, 264, 346, 347, 373, 383, 411, 586, 587, 588, 589, 1002, 1031, 1033, 1036, 1039, 1042, 1044], "vocabulary_": [348, 411, 579, 586, 589, 1031], "void": 372, "vol": [65, 175, 194, 257, 269, 368, 403, 470, 556, 557, 627, 634, 644, 663, 684, 685, 798, 830, 842, 990, 1002, 1003], "volgen": [400, 719], "voltag": 58, "volum": [0, 99, 110, 163, 172, 366, 368, 403, 405, 469, 531, 770, 996, 1015, 1024], "volume11": 403, "volume2": 675, "volume7": [665, 666, 675, 677], "volunt": 379, "voluntari": 346, "von": [403, 448, 458, 691, 1038, 1039], "voronoi": [80, 99, 403], "voss": 1039, "vote": [2, 14, 133, 135, 140, 153, 154, 155, 180, 282, 339, 385, 386, 498, 552, 553, 554, 557, 561, 562, 566, 567, 656, 833, 847, 848, 853, 855, 1001, 1003, 1021, 1022, 1026, 1031, 1034, 1036, 1041], "votingclassifi": [2, 64, 67, 133, 180, 207, 394, 410, 567, 630, 638, 657, 800, 866, 880, 884, 885, 989, 990, 1021, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1044, 1045, 1048, 1049, 1051], "votingclassifierifit": 155, "votingregressor": [2, 156, 394, 410, 566, 990, 1040, 1041, 1042, 1045, 1048, 1049, 1051], "votingregressorifit": 156, "voxel": [80, 99, 583], "vp": 1024, "vpz": 1051, "vq": 91, "vqean3": [1039, 1040], "vredevoogd": [1033, 1034], "vrigazov": 1046, "vrishank": [1038, 1039], "vs_buildtool": 369, "vstack": [52, 64, 90, 98, 170, 171, 193, 248, 252, 283, 296, 340, 630, 1001, 1039], "vstolbunov": 1036, "vt": 547, "vufg": 1039, "vukolov": [1039, 1040], "vulner": 397, "vuw": 527, "vvz2010": 992, "vx": 73, "vya": [1039, 1040, 1041], "vyom": [1046, 1047], "vz2010": 992, "v\u00e1zquez": 1034, "v\u00edquez": 1051, "v\u0103n": 1046, "w": [2, 46, 52, 54, 67, 71, 75, 77, 91, 97, 103, 104, 129, 143, 151, 154, 163, 178, 200, 205, 210, 222, 239, 240, 244, 248, 249, 250, 253, 254, 257, 261, 262, 263, 264, 274, 301, 309, 315, 316, 317, 322, 339, 340, 342, 348, 354, 359, 366, 368, 377, 397, 403, 404, 408, 410, 411, 415, 420, 426, 433, 461, 465, 468, 470, 478, 479, 480, 520, 535, 537, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 562, 564, 565, 566, 567, 586, 587, 589, 592, 609, 610, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 693, 699, 726, 727, 757, 800, 801, 815, 823, 833, 834, 835, 836, 838, 839, 840, 841, 842, 843, 844, 847, 848, 851, 852, 855, 856, 862, 863, 898, 900, 901, 905, 906, 907, 908, 910, 911, 913, 914, 915, 916, 946, 951, 996, 1000, 1004, 1005, 1010, 1012, 1014, 1015, 1041, 1045, 1046, 1047, 1048], "w0": 118, "w1": [118, 410, 656], "w1992": 410, "w2": 410, "w3": 410, "w_": [408, 645, 646, 651, 652, 659, 660, 661, 662, 680, 683, 996, 1000, 1002, 1005], "w_0": 996, "w_1": [410, 996, 1004], "w_1x_1": 1004, "w_2": [410, 996, 1004], "w_2x_2": 1004, "w_3": 996, "w_4": 996, "w_5": 996, "w_i": [410, 991, 1000], "w_ij": 659, "w_init": [415, 530], "w_intercept": [104, 160, 270, 905, 906], "w_j": [645, 651, 996, 1000, 1014], "w_k": [403, 410, 996], "w_l": 996, "w_mx_m": 1004, "w_n": 410, "w_new": 408, "w_p": 996, "w_pad": [120, 142, 351], "w_x_1": [104, 160, 270, 905, 906], "w_x_n": [104, 160, 270, 905, 906], "wa": [0, 44, 48, 54, 65, 67, 75, 102, 103, 104, 111, 116, 118, 139, 143, 151, 154, 155, 156, 163, 176, 183, 184, 188, 204, 210, 229, 233, 234, 239, 242, 244, 246, 253, 254, 256, 257, 259, 261, 262, 263, 264, 269, 270, 277, 280, 300, 301, 308, 312, 313, 314, 316, 317, 321, 322, 326, 327, 346, 348, 353, 354, 358, 366, 368, 369, 371, 373, 375, 376, 383, 385, 389, 394, 397, 399, 400, 402, 403, 406, 407, 411, 415, 427, 436, 437, 438, 439, 441, 442, 443, 445, 446, 450, 453, 456, 460, 464, 465, 470, 478, 479, 480, 481, 512, 520, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 550, 551, 552, 553, 554, 555, 560, 561, 562, 563, 564, 565, 566, 567, 572, 579, 580, 581, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 646, 652, 657, 658, 660, 662, 663, 665, 666, 671, 673, 678, 684, 685, 688, 689, 692, 712, 713, 730, 731, 779, 784, 785, 788, 798, 799, 801, 804, 805, 815, 828, 830, 842, 849, 852, 854, 857, 861, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 894, 897, 898, 902, 903, 929, 931, 932, 944, 966, 968, 987, 988, 989, 990, 999, 1000, 1003, 1006, 1010, 1013, 1016, 1019, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "wadawson": 1035, "wadsworth": [913, 914, 1016], "waelbenamara": 1042, "wagner": 1045, "wai": [0, 2, 38, 44, 56, 65, 83, 93, 103, 106, 139, 143, 145, 150, 152, 154, 155, 163, 174, 183, 185, 186, 204, 207, 210, 211, 220, 223, 234, 235, 238, 239, 242, 243, 244, 258, 263, 270, 272, 303, 304, 313, 315, 316, 317, 318, 354, 358, 359, 360, 365, 367, 369, 370, 373, 374, 375, 379, 380, 385, 386, 389, 394, 397, 400, 401, 402, 403, 404, 406, 407, 408, 410, 411, 412, 413, 414, 439, 440, 447, 448, 449, 455, 456, 458, 459, 465, 493, 552, 553, 558, 559, 560, 569, 587, 597, 598, 610, 631, 665, 666, 675, 676, 677, 699, 704, 706, 717, 737, 738, 755, 756, 758, 764, 775, 779, 789, 796, 826, 834, 851, 872, 878, 883, 884, 889, 915, 916, 970, 973, 989, 990, 994, 995, 996, 997, 998, 999, 1000, 1001, 1003, 1005, 1006, 1007, 1008, 1010, 1012, 1014, 1015, 1016, 1019, 1020, 1023, 1024, 1031, 1033, 1039, 1044, 1045, 1049, 1050], "waijean": 1044, "wainwright": [721, 724, 725], "waist": 368, "wait": [56, 369, 371, 375, 383, 385, 665, 666, 667, 675, 677, 1043], "waithera": 1041, "wakni": 1051, "wal": 52, "waldo": 317, "wale": 149, "walk": [403, 409, 1034], "walker": 1035, "wall": 403, "wallach": [1035, 1036], "walli": 1039, "wallygauz": 1039, "walsh": [1043, 1045], "walt": [1034, 1035, 1039], "walter": 1037, "walton": 317, "wan": 1039, "wang": [408, 533, 678, 689, 693, 727, 757, 996, 997, 1000, 1034, 1036, 1037, 1038, 1039, 1043, 1046, 1047, 1049, 1050], "wangz10": 1036, "want": [0, 31, 44, 52, 59, 62, 63, 64, 88, 97, 103, 139, 155, 163, 165, 175, 176, 179, 183, 184, 206, 207, 208, 233, 234, 239, 242, 244, 246, 254, 257, 262, 263, 272, 277, 278, 280, 286, 300, 301, 313, 316, 322, 329, 332, 346, 354, 358, 359, 360, 369, 370, 371, 372, 373, 375, 376, 377, 383, 384, 385, 386, 389, 394, 397, 401, 402, 403, 404, 405, 410, 411, 412, 497, 500, 501, 507, 532, 546, 653, 654, 655, 657, 658, 665, 667, 673, 674, 675, 765, 800, 823, 851, 854, 870, 877, 898, 905, 989, 996, 999, 1000, 1001, 1004, 1006, 1010, 1011, 1015, 1019, 1031, 1045, 1049], "ward": [0, 2, 54, 60, 72, 75, 76, 79, 80, 85, 86, 87, 89, 95, 100, 180, 186, 393, 411, 437, 441, 459, 1021, 1031, 1034, 1036], "ward__n_clust": 87, "ward_structur": 100, "ward_tre": [2, 87, 437, 441, 1031, 1035], "ward_unstructur": 100, "wardagglom": 1036, "wardagglomer": 1034, "wardclust": 1034, "wareh": 735, "warm": [374, 385, 528, 534, 540, 542, 543, 609, 652, 658, 665, 666, 667, 675, 676, 677, 996, 1041, 1043, 1045, 1051], "warm_start": [64, 103, 138, 139, 141, 143, 150, 151, 154, 155, 156, 171, 185, 192, 201, 233, 234, 243, 244, 246, 253, 257, 262, 275, 277, 301, 309, 313, 315, 316, 317, 319, 322, 373, 377, 385, 399, 410, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 609, 645, 647, 648, 651, 657, 659, 661, 665, 666, 667, 668, 675, 676, 677, 679, 798, 799, 854, 862, 863, 1006, 1022, 1026, 1031, 1034, 1035, 1036, 1039, 1040, 1041, 1042, 1045, 1047, 1051, 1052], "warn": [2, 15, 79, 95, 103, 104, 139, 143, 154, 155, 173, 183, 184, 206, 220, 233, 234, 239, 244, 246, 257, 262, 266, 277, 283, 299, 300, 301, 307, 313, 316, 322, 358, 359, 371, 374, 375, 376, 385, 397, 411, 442, 493, 547, 568, 569, 570, 571, 572, 573, 574, 576, 600, 635, 646, 652, 660, 662, 690, 693, 694, 712, 713, 730, 731, 739, 784, 785, 788, 855, 869, 870, 878, 908, 909, 910, 911, 915, 916, 931, 932, 938, 942, 949, 985, 986, 1010, 1031, 1033, 1034, 1036, 1037, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "warn_for": 784, "warn_on_dtyp": 1040, "warn_when_not_sort": 860, "warner": [52, 1046, 1047], "warshal": [688, 997], "warshaw": 1037, "warut": [1038, 1039], "wase": [1048, 1049], "wasn": [102, 239, 1040], "waspa": 535, "wast": [140, 377, 407, 408, 989], "watanab": [1048, 1049], "watch": [53, 359], "watchtheblur": 1043, "water": 51, "waterburi": [1039, 1040], "waterland": 1034, "waterponei": [1037, 1038], "watson": [309, 404], "wattai": 1046, "wav": 365, "wave": [202, 371, 999], "waveform": 75, "wavelet": [54, 129, 408], "wavfil": 365, "waweru": 1048, "wa\u00ebl": 1049, "wb": [56, 397], "wchathura": 1046, "wclf": 337, "wconnel": 1042, "wdbc": [163, 368], "wderos": 1042, "wdevazelh": 1039, "wdisp": 337, "we": [0, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 59, 63, 64, 65, 67, 69, 71, 73, 75, 76, 77, 79, 81, 82, 83, 86, 88, 89, 90, 91, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 109, 111, 112, 113, 116, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 134, 135, 137, 139, 140, 141, 142, 143, 144, 146, 147, 149, 150, 151, 152, 154, 155, 156, 158, 159, 160, 162, 163, 165, 167, 169, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 194, 195, 196, 198, 199, 200, 201, 203, 204, 206, 207, 208, 209, 210, 212, 213, 214, 217, 218, 219, 220, 221, 223, 225, 226, 228, 229, 230, 232, 233, 235, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 250, 251, 253, 254, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 288, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 335, 336, 337, 338, 339, 340, 342, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 360, 365, 366, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 383, 384, 385, 386, 394, 397, 399, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 446, 465, 466, 467, 468, 469, 470, 471, 472, 498, 520, 528, 529, 531, 534, 542, 543, 546, 558, 559, 560, 566, 567, 580, 581, 587, 610, 616, 626, 631, 632, 637, 639, 650, 654, 657, 658, 665, 667, 672, 673, 674, 675, 676, 692, 718, 720, 727, 747, 757, 765, 782, 800, 807, 823, 824, 826, 847, 848, 849, 851, 853, 854, 855, 856, 857, 868, 877, 878, 879, 885, 890, 891, 893, 894, 895, 896, 898, 901, 905, 909, 942, 943, 944, 954, 965, 967, 989, 990, 992, 994, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1023, 1024, 1028, 1035, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1047, 1049, 1050, 1051], "wea": 401, "weak": [115, 144, 147, 210, 223, 269, 407, 551, 556, 557, 629, 1003, 1024, 1047], "weak_learn": 134, "weak_learners_info": 134, "weak_learners_misclassification_error": 134, "weaker": [107, 558, 559], "weakerlearn": [143, 151, 154, 257, 309, 317, 322], "weakest": [350, 1016], "weaklearn": 550, "weakli": [67, 99], "weather": [44, 53, 172, 184, 402, 996, 1000], "web": [2, 163, 365, 366, 368, 371, 379, 397, 403, 411, 488, 518, 898, 949, 1000, 1010, 1027, 1031, 1050], "weber": 1038, "weblog": 403, "webpag": [56, 188, 371], "websit": [365, 366, 368, 371, 374, 386, 389, 1004, 1014, 1018, 1024, 1032, 1033, 1034], "wed": [44, 149, 184], "weed": 602, "week": [44, 53, 149, 319, 370, 371, 386, 493, 1024, 1045], "weekdai": [44, 184], "weekday_co": 44, "weekday_sin": 44, "weekend": [44, 149], "weezel": [1046, 1047], "wegelin": 406, "wehenkel": [410, 554, 555, 562, 563, 915, 916], "wei": [0, 393, 1014, 1031, 1032, 1035, 1036, 1037, 1038, 1040, 1044, 1047], "weibul": [307, 870], "weidemann": 1045, "weigh": [407, 1038], "weight": [2, 46, 51, 54, 55, 58, 62, 64, 69, 87, 102, 103, 104, 130, 139, 141, 143, 146, 154, 155, 156, 159, 160, 171, 172, 179, 180, 183, 184, 185, 189, 194, 198, 199, 206, 210, 211, 215, 216, 217, 219, 220, 221, 223, 233, 234, 239, 243, 244, 246, 248, 252, 253, 257, 261, 262, 264, 266, 270, 272, 275, 277, 286, 288, 295, 296, 297, 298, 299, 301, 308, 309, 310, 312, 314, 315, 316, 319, 320, 322, 324, 325, 326, 330, 337, 339, 340, 342, 346, 347, 348, 352, 353, 354, 367, 368, 380, 383, 385, 402, 403, 405, 406, 408, 409, 412, 414, 420, 426, 433, 436, 439, 440, 442, 443, 445, 449, 455, 456, 459, 460, 461, 463, 465, 470, 478, 479, 480, 493, 512, 521, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 584, 587, 588, 589, 591, 595, 600, 601, 609, 610, 627, 630, 631, 632, 633, 634, 636, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 686, 689, 693, 697, 698, 700, 702, 703, 707, 708, 709, 712, 713, 716, 718, 720, 721, 722, 723, 724, 725, 727, 728, 729, 730, 731, 735, 736, 737, 739, 740, 741, 742, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 757, 759, 760, 770, 783, 784, 785, 786, 788, 789, 790, 791, 792, 795, 796, 797, 798, 799, 800, 823, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 858, 859, 861, 862, 863, 864, 867, 870, 884, 885, 886, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 918, 919, 936, 937, 951, 970, 974, 980, 990, 991, 996, 997, 999, 1000, 1002, 1003, 1004, 1005, 1007, 1010, 1013, 1014, 1015, 1016, 1021, 1026, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050, 1051, 1052], "weight_concentration_": 798, "weight_concentration_prior": [248, 254, 798, 999], "weight_concentration_prior_": 798, "weight_concentration_prior_typ": [248, 254, 798, 999, 1037], "weight_vector": [1031, 1041], "weighted_acc": 394, "weighted_mod": [2, 380], "weighted_n_node_sampl": 353, "weightedmetaregressor": 239, "weights_": [248, 798, 799, 1045], "weights_handl": 218, "weights_init": [253, 799], "weijiadu": 1045, "weinberg": [401, 411, 433], "weinsberg": 1031, "weinstein": 1032, "weisberg": 996, "weiss": [0, 393, 403, 691, 1031], "weitzenfeld": 1024, "weka": [264, 842], "welch": 1037, "welcom": [370, 371, 379, 386, 1020], "welind": 1031, "well": [8, 44, 49, 52, 59, 62, 63, 65, 71, 86, 90, 91, 95, 100, 102, 103, 109, 116, 126, 134, 135, 137, 140, 143, 144, 146, 152, 154, 155, 163, 172, 174, 182, 183, 184, 185, 188, 194, 196, 200, 204, 206, 207, 208, 210, 213, 225, 226, 227, 230, 232, 234, 236, 239, 242, 243, 244, 250, 257, 263, 269, 270, 272, 274, 280, 283, 286, 288, 289, 290, 309, 310, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 339, 342, 346, 347, 348, 352, 354, 366, 368, 370, 371, 375, 377, 379, 380, 383, 384, 385, 386, 397, 401, 403, 405, 407, 408, 410, 412, 414, 417, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 455, 456, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 521, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 694, 700, 721, 723, 724, 725, 786, 789, 793, 796, 798, 799, 800, 801, 804, 805, 815, 823, 830, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 947, 948, 989, 990, 992, 994, 995, 996, 997, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1010, 1013, 1014, 1016, 1017, 1019, 1020, 1024, 1031, 1032, 1035, 1037, 1038, 1039, 1042, 1049, 1052], "wellcom": 0, "wen": 1046, "wenbo": [1041, 1043], "wendi": 1041, "wendling": 1038, "weng": 1015, "wenhao": [1039, 1040], "wenhua": 1037, "wenjian": 1037, "wenliwyan": 1042, "went": [375, 1000], "were": [0, 44, 69, 102, 103, 106, 111, 112, 140, 146, 149, 160, 163, 172, 184, 206, 207, 210, 233, 242, 266, 270, 272, 274, 300, 301, 308, 313, 314, 316, 317, 318, 319, 320, 321, 322, 327, 339, 346, 348, 353, 354, 365, 366, 368, 371, 372, 375, 379, 383, 385, 394, 400, 404, 410, 411, 460, 463, 464, 493, 558, 559, 561, 562, 600, 804, 805, 820, 829, 852, 902, 903, 989, 992, 1000, 1001, 1016, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1048, 1049, 1050, 1051], "weren": [346, 879, 1040], "werespecifi": [143, 151, 154, 257, 309, 317, 322], "werman": 1043, "werneck": 1039, "werner": [1038, 1043], "werror": 379, "wersd\u00f6rfer": 1033, "weslei": [588, 731], "westermann": [0, 361, 382, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "western": 411, "weston": [45, 408, 532, 591, 592, 901], "westov": 1039, "wetter": 184, "weyb": 1049, "wfc": 52, "wget": 379, "wh": [408, 535, 537, 544], "wh_i": 408, "what": [0, 2, 44, 49, 52, 53, 64, 75, 85, 86, 116, 121, 125, 142, 182, 183, 198, 208, 212, 213, 221, 234, 239, 246, 264, 300, 346, 348, 350, 354, 359, 366, 369, 371, 372, 373, 375, 377, 379, 384, 385, 386, 388, 402, 403, 409, 410, 411, 500, 533, 586, 587, 589, 645, 651, 696, 890, 891, 893, 894, 895, 896, 913, 914, 915, 916, 942, 999, 1000, 1001, 1003, 1016, 1020, 1031, 1038, 1049], "whatnot": 346, "whats_new": [375, 379], "wheel": [321, 369, 371, 375, 389, 391, 1041, 1043, 1045, 1050], "wheeler": [1042, 1043], "wheelhouse_upload": 375, "when": [2, 44, 49, 50, 51, 52, 53, 59, 62, 63, 64, 65, 67, 71, 75, 78, 89, 93, 100, 102, 103, 104, 109, 111, 112, 116, 120, 123, 124, 125, 127, 137, 139, 140, 141, 142, 143, 144, 146, 149, 150, 151, 154, 155, 156, 160, 165, 167, 172, 178, 182, 183, 184, 185, 186, 190, 191, 192, 194, 198, 199, 200, 201, 204, 206, 208, 210, 211, 221, 232, 233, 234, 235, 238, 239, 243, 244, 245, 246, 249, 251, 253, 259, 261, 262, 263, 264, 265, 266, 270, 272, 273, 275, 276, 277, 280, 283, 285, 286, 289, 290, 291, 301, 303, 305, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 319, 320, 321, 322, 326, 327, 328, 329, 335, 338, 339, 342, 346, 347, 348, 350, 352, 353, 354, 358, 359, 360, 365, 366, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 383, 384, 385, 389, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 410, 411, 412, 413, 414, 415, 419, 426, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 453, 455, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 478, 479, 480, 481, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 505, 506, 507, 509, 512, 521, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 570, 572, 573, 574, 576, 579, 580, 581, 582, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 604, 607, 608, 609, 610, 611, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 698, 700, 701, 702, 703, 704, 705, 707, 708, 709, 712, 713, 716, 722, 728, 729, 730, 731, 733, 735, 736, 739, 747, 749, 752, 755, 756, 758, 762, 764, 768, 769, 770, 772, 775, 779, 782, 783, 784, 785, 786, 788, 789, 790, 792, 793, 794, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 815, 819, 820, 822, 823, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 891, 892, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 919, 926, 927, 930, 931, 932, 936, 938, 942, 943, 947, 948, 949, 950, 952, 953, 954, 959, 962, 964, 969, 988, 989, 990, 992, 994, 996, 997, 998, 999, 1000, 1001, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1012, 1013, 1014, 1015, 1016, 1020, 1023, 1024, 1029, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "whenev": [103, 154, 174, 182, 185, 234, 244, 257, 313, 316, 354, 365, 379, 385, 389, 401, 478, 479, 480, 493, 627, 629, 970, 991, 996, 999, 1041, 1050, 1052], "whenfit": [156, 235], "whenn_sampl": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322], "whensolv": 243, "where": [48, 52, 54, 56, 59, 62, 63, 64, 67, 69, 86, 90, 103, 104, 111, 116, 118, 120, 123, 130, 134, 138, 139, 140, 141, 143, 144, 146, 149, 151, 154, 156, 160, 161, 163, 167, 173, 176, 179, 183, 184, 185, 190, 194, 200, 207, 210, 215, 216, 218, 222, 223, 225, 227, 228, 232, 233, 234, 236, 239, 242, 244, 253, 254, 257, 259, 260, 261, 262, 263, 264, 265, 269, 270, 272, 274, 275, 277, 280, 282, 301, 303, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 326, 339, 342, 343, 344, 346, 350, 352, 353, 354, 358, 359, 360, 365, 367, 368, 370, 371, 373, 375, 377, 378, 379, 383, 384, 385, 386, 389, 394, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 426, 433, 440, 443, 444, 448, 457, 459, 460, 461, 463, 465, 466, 467, 468, 469, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 483, 490, 493, 523, 528, 530, 531, 532, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 546, 547, 548, 549, 550, 551, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 580, 581, 582, 586, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 604, 607, 609, 610, 612, 614, 618, 621, 622, 624, 626, 627, 628, 629, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 683, 688, 691, 692, 693, 696, 698, 702, 707, 709, 711, 712, 716, 726, 728, 730, 731, 732, 740, 742, 746, 756, 764, 769, 770, 771, 774, 782, 783, 784, 785, 788, 789, 790, 793, 795, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 828, 829, 830, 832, 833, 834, 837, 838, 839, 840, 841, 842, 843, 844, 848, 852, 853, 855, 856, 857, 858, 859, 860, 861, 862, 863, 865, 868, 870, 875, 878, 880, 881, 884, 885, 891, 893, 899, 900, 901, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 922, 939, 940, 941, 942, 944, 949, 954, 958, 961, 984, 989, 991, 992, 993, 994, 995, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1010, 1011, 1012, 1014, 1015, 1016, 1020, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051, 1052], "where1": [104, 160, 270], "wherea": [53, 71, 86, 103, 111, 139, 150, 155, 204, 219, 233, 234, 242, 244, 246, 257, 262, 264, 265, 266, 272, 277, 286, 301, 308, 313, 316, 322, 339, 342, 343, 360, 386, 407, 410, 440, 442, 562, 657, 658, 803, 819, 833, 884, 992, 999, 1001, 1003, 1010, 1016, 1044, 1049], "wherein": 385, "wherezero": 172, "whether": [2, 48, 50, 53, 103, 132, 139, 150, 154, 155, 170, 175, 183, 184, 206, 210, 223, 226, 233, 234, 239, 244, 245, 246, 257, 261, 262, 263, 264, 269, 277, 301, 303, 313, 314, 316, 322, 353, 354, 359, 366, 369, 370, 371, 373, 375, 376, 377, 385, 394, 402, 403, 404, 405, 407, 408, 410, 412, 415, 433, 436, 438, 439, 440, 443, 445, 447, 449, 450, 455, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 474, 478, 479, 480, 481, 483, 484, 487, 489, 493, 494, 500, 505, 506, 511, 519, 524, 528, 529, 530, 533, 534, 535, 536, 537, 539, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 572, 579, 586, 587, 588, 589, 595, 600, 604, 605, 606, 607, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 628, 630, 631, 632, 634, 635, 636, 637, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 690, 694, 695, 697, 698, 700, 702, 704, 711, 712, 728, 743, 762, 768, 775, 779, 783, 790, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 815, 819, 820, 823, 824, 825, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 855, 856, 857, 858, 859, 862, 863, 865, 868, 869, 870, 871, 872, 877, 884, 885, 886, 892, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 917, 919, 921, 922, 923, 924, 925, 929, 931, 932, 933, 935, 942, 943, 944, 948, 949, 972, 983, 987, 988, 989, 990, 995, 996, 1000, 1005, 1006, 1012, 1014, 1015, 1024, 1038, 1039, 1040, 1048, 1050], "whi": [183, 185], "which": [0, 2, 44, 47, 50, 52, 53, 54, 55, 56, 58, 59, 60, 63, 64, 65, 67, 71, 73, 75, 78, 79, 80, 82, 86, 88, 89, 90, 91, 98, 100, 102, 103, 104, 107, 109, 111, 112, 116, 118, 122, 124, 125, 126, 130, 134, 137, 138, 139, 140, 143, 145, 146, 149, 150, 151, 152, 153, 154, 155, 156, 158, 160, 162, 163, 165, 167, 168, 172, 173, 174, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 194, 198, 200, 201, 204, 206, 207, 208, 210, 212, 213, 219, 221, 222, 223, 225, 226, 227, 229, 232, 233, 234, 236, 237, 238, 239, 240, 242, 243, 244, 245, 246, 248, 249, 253, 254, 256, 257, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 282, 283, 288, 289, 290, 299, 303, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 326, 327, 328, 335, 339, 342, 344, 346, 347, 348, 350, 352, 353, 354, 358, 359, 360, 363, 365, 366, 368, 369, 371, 372, 373, 375, 376, 377, 378, 379, 380, 383, 384, 385, 386, 388, 389, 391, 394, 397, 398, 399, 400, 401, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 420, 426, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 455, 456, 458, 459, 460, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 483, 520, 528, 529, 530, 531, 534, 535, 537, 538, 539, 541, 542, 543, 544, 545, 546, 547, 548, 550, 551, 552, 553, 554, 555, 556, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 569, 570, 571, 572, 577, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 605, 606, 608, 609, 610, 611, 612, 613, 614, 616, 618, 621, 626, 627, 628, 629, 631, 632, 633, 639, 641, 642, 643, 646, 647, 648, 650, 651, 652, 653, 654, 655, 656, 657, 658, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 702, 707, 716, 717, 719, 720, 724, 726, 727, 735, 736, 737, 738, 743, 744, 757, 759, 779, 780, 781, 782, 783, 784, 790, 798, 799, 800, 801, 802, 804, 805, 806, 807, 809, 811, 815, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 836, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 855, 856, 857, 858, 859, 862, 865, 866, 869, 872, 874, 875, 876, 878, 879, 880, 883, 884, 885, 886, 887, 889, 897, 898, 900, 901, 902, 905, 907, 910, 911, 913, 914, 915, 916, 917, 921, 923, 926, 927, 931, 932, 940, 942, 943, 944, 948, 949, 951, 954, 957, 958, 959, 961, 969, 971, 974, 980, 983, 988, 989, 990, 991, 992, 993, 994, 997, 998, 999, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1010, 1012, 1013, 1014, 1015, 1016, 1018, 1019, 1020, 1023, 1024, 1026, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "whichal": [155, 244], "whichev": [403, 410, 442, 541, 558, 559, 561, 562, 632, 649, 653, 655, 663, 681, 682, 697], "whichreturn": [103, 104, 244, 253, 257, 261, 262, 263, 275], "whichspecifi": [156, 183, 235], "whichus": [154, 156, 314, 352], "whichwil": 264, "whidou": 1044, "while": [2, 26, 44, 47, 48, 50, 52, 56, 59, 62, 64, 65, 71, 73, 78, 79, 88, 95, 99, 100, 102, 103, 104, 105, 107, 118, 124, 125, 134, 137, 139, 140, 141, 143, 144, 149, 151, 154, 155, 156, 160, 163, 168, 173, 175, 176, 178, 182, 183, 184, 185, 188, 190, 192, 194, 197, 198, 200, 202, 206, 208, 210, 221, 232, 233, 234, 235, 236, 239, 240, 243, 244, 246, 249, 250, 253, 254, 256, 257, 258, 261, 262, 263, 264, 266, 270, 271, 272, 273, 274, 275, 276, 277, 285, 301, 303, 304, 305, 308, 309, 310, 312, 313, 315, 316, 318, 319, 321, 322, 332, 335, 346, 348, 353, 354, 359, 363, 364, 365, 366, 367, 370, 371, 373, 375, 376, 377, 379, 380, 383, 385, 386, 397, 401, 402, 403, 406, 407, 408, 410, 411, 412, 413, 414, 415, 440, 446, 460, 463, 464, 479, 481, 493, 518, 529, 549, 554, 555, 556, 557, 561, 562, 563, 564, 565, 566, 567, 573, 580, 586, 587, 588, 589, 592, 595, 600, 604, 633, 642, 645, 646, 648, 655, 656, 657, 658, 675, 676, 677, 678, 690, 694, 708, 731, 755, 775, 779, 789, 795, 798, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 815, 816, 817, 819, 822, 824, 826, 827, 828, 829, 830, 832, 840, 851, 853, 855, 856, 857, 864, 865, 866, 867, 868, 870, 881, 893, 898, 903, 905, 906, 913, 914, 915, 916, 927, 953, 989, 990, 992, 993, 994, 996, 997, 999, 1000, 1001, 1002, 1003, 1006, 1007, 1010, 1012, 1015, 1016, 1019, 1020, 1028, 1031, 1034, 1035, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1050], "whilepreserv": 264, "whilst": [138, 227], "whisker": 50, "white": [2, 91, 93, 120, 155, 172, 183, 219, 225, 289, 301, 305, 329, 334, 408, 411, 624, 1016, 1031, 1034, 1037, 1041, 1045], "whitekernel": [2, 167, 172, 173, 413, 610, 611, 613, 1042], "whiten": [46, 104, 120, 121, 122, 244, 262, 287, 408, 415, 530, 531, 538, 883, 885, 1010, 1035, 1037, 1045, 1046, 1049], "whiten_solv": [415, 530, 1046, 1049], "whitening_": 530, "whitespac": 411, "whl": 375, "who": [0, 102, 183, 321, 359, 366, 371, 378, 386, 389, 847, 848, 849, 851, 853, 855, 856, 857, 1019, 1033, 1036, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "whole": [50, 83, 106, 149, 155, 156, 179, 207, 242, 260, 267, 295, 335, 339, 350, 358, 371, 383, 384, 404, 406, 410, 413, 445, 479, 535, 552, 553, 554, 555, 560, 561, 562, 563, 567, 665, 666, 684, 685, 801, 804, 805, 815, 829, 840, 841, 842, 843, 844, 989, 1000, 1010, 1039, 1041], "wholedataset": [103, 104, 244, 253, 257, 261, 262, 263, 275], "wholenew": [64, 139, 141, 150, 154, 156, 185, 244, 275, 319], "whose": [2, 52, 64, 88, 110, 111, 112, 163, 172, 206, 262, 333, 366, 380, 385, 399, 401, 403, 405, 407, 410, 412, 413, 416, 433, 434, 435, 444, 457, 465, 466, 467, 468, 469, 470, 471, 472, 473, 475, 476, 512, 531, 535, 537, 538, 541, 544, 546, 569, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 639, 670, 695, 718, 801, 808, 815, 830, 851, 870, 897, 898, 948, 958, 978, 979, 994, 1001, 1005, 1006, 1007, 1015, 1034, 1039, 1040, 1042, 1045], "why": [65, 73, 85, 120, 134, 140, 149, 183, 185, 188, 198, 208, 257, 263, 280, 346, 347, 371, 373, 379, 385, 403, 405, 408, 414, 440, 443, 447, 942, 944, 1000, 1002, 1015, 1034], "wi": 1000, "wick": 1043, "wide": [0, 65, 93, 94, 126, 137, 236, 304, 383, 403, 408, 411, 989, 996, 1019, 1024, 1031, 1033, 1047], "widehat": 170, "wider": [53, 208, 411, 918, 996, 1050], "widetild": 1016, "width": [48, 50, 53, 86, 111, 122, 123, 126, 128, 129, 130, 137, 142, 146, 159, 169, 175, 246, 248, 286, 303, 305, 306, 309, 314, 317, 332, 368, 404, 434, 435, 448, 460, 490, 491, 503, 518, 584, 831, 870, 918, 1010, 1014, 1016, 1039], "wiesel": [405, 416, 471], "wignal": [1034, 1035, 1041, 1042], "wijewardena": [0, 1034, 1035, 1036], "wiki": [56, 62, 377, 379, 593, 635, 667, 670, 695, 705, 847, 848, 853, 854, 855, 856, 883, 899, 913, 914, 996, 1000, 1016], "wikic": 992, "wikipedia": [38, 43, 62, 180, 379, 403, 593, 605, 606, 635, 655, 667, 670, 681, 682, 695, 704, 705, 707, 709, 712, 716, 718, 722, 727, 730, 731, 732, 735, 736, 739, 744, 757, 784, 786, 787, 789, 790, 793, 794, 847, 848, 853, 854, 855, 856, 883, 899, 913, 914, 949, 992, 996, 1000, 1003, 1012, 1016, 1021, 1031, 1038], "wikipedia_principal_eigenvector": [56, 1021], "wikipediadet2017": 1000, "wikipediamcc2021": 1000, "wil": 1043, "wild": [2, 46, 364, 490, 491, 505, 506, 1026, 1031], "wilderness_area": 242, "wildli": [288, 999], "wilei": [368, 990], "wilhelm": [1035, 1037, 1041], "wilk": 401, "wilksch": 1046, "willamett": 309, "willard": 1043, "willautomat": 183, "willb": [103, 154, 185, 234, 244, 313, 316], "willdarnel": 1041, "willduan": 1038, "william": [163, 366, 368, 413, 609, 610, 613, 618, 621, 638, 992, 1000, 1004, 1038, 1039, 1040, 1041, 1046, 1047], "williamson": 1041, "willing": [182, 260, 402], "willocx": 1041, "willpeppo": 1043, "willselect": [314, 352, 353], "wilson": [111, 368, 1031, 1034], "wiman": 1031, "wimld": [1045, 1050], "win": 257, "winata": [1041, 1043], "wind": [184, 1001], "windber": 1042, "windiana42": 1047, "window": [58, 328, 366, 371, 373, 374, 379, 411, 1031, 1034, 1038, 1042, 1044, 1045, 1049], "windowsapp": 389, "windowserror": 1047, "windspe": [44, 184], "wine": [2, 49, 245, 308, 309, 364, 507, 1026], "wine_review": 309, "wineri": 309, "winn": 1000, "winter": [44, 53], "winterman": 1032, "wip": [379, 389], "wipf": [644, 996], "wire": [104, 244, 262, 377, 531, 538], "wiryadi": [1043, 1049, 1050], "wisc": [163, 368, 900], "wisconsin": [2, 163, 186, 364, 497, 1008, 1026, 1036], "wise": [2, 47, 64, 104, 175, 207, 232, 244, 262, 273, 303, 347, 358, 385, 401, 403, 407, 408, 412, 454, 528, 531, 534, 538, 542, 543, 546, 547, 550, 552, 553, 556, 557, 590, 593, 594, 596, 597, 598, 604, 639, 651, 700, 755, 817, 819, 820, 821, 833, 852, 882, 895, 896, 899, 972, 974, 975, 976, 977, 980, 992, 994, 996, 1000, 1001, 1014, 1031, 1036, 1039, 1040, 1041], "wish": [365, 371, 373, 378, 380, 389, 403, 949, 1038], "wishart": 798, "wissen": 446, "with_cent": [883, 895], "with_column": 262, "with_error": 701, "with_mean": [103, 154, 155, 183, 233, 234, 243, 244, 246, 257, 270, 277, 313, 316, 322, 376, 885, 896, 1010, 1039, 1044], "with_scal": [883, 895], "with_std": [103, 154, 155, 183, 233, 234, 243, 244, 246, 257, 270, 277, 313, 316, 322, 885, 896, 1010, 1039], "withheld": 407, "within": [2, 42, 44, 59, 93, 103, 139, 141, 143, 144, 149, 153, 154, 160, 162, 163, 183, 184, 185, 207, 208, 217, 223, 233, 234, 239, 243, 244, 245, 246, 261, 262, 263, 264, 266, 270, 277, 303, 304, 309, 313, 314, 316, 322, 333, 336, 339, 342, 348, 354, 358, 366, 371, 380, 383, 385, 386, 394, 399, 400, 401, 403, 404, 407, 409, 410, 414, 433, 439, 440, 443, 444, 445, 457, 459, 460, 461, 462, 464, 465, 470, 478, 479, 480, 512, 530, 533, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 588, 591, 592, 609, 610, 631, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 690, 692, 696, 699, 710, 726, 782, 798, 799, 800, 802, 803, 806, 807, 808, 810, 819, 820, 823, 829, 830, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 850, 852, 853, 855, 856, 857, 862, 863, 864, 865, 866, 868, 870, 871, 872, 877, 878, 884, 885, 886, 890, 891, 893, 894, 895, 896, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 989, 994, 996, 997, 1003, 1006, 1010, 1013, 1015, 1016, 1020, 1024, 1033, 1034, 1038, 1039, 1044, 1045, 1047, 1048, 1049, 1050, 1051], "within_class_std_dev_": 852, "withnul": [103, 154, 185, 234, 244, 313, 316], "without": [2, 44, 45, 53, 54, 62, 72, 75, 76, 77, 79, 81, 85, 88, 89, 95, 107, 125, 140, 143, 144, 145, 148, 149, 150, 151, 154, 156, 159, 163, 165, 174, 180, 182, 183, 184, 194, 198, 213, 229, 232, 235, 236, 239, 240, 242, 243, 245, 256, 257, 264, 268, 269, 270, 280, 283, 284, 285, 286, 292, 293, 294, 295, 303, 304, 308, 310, 312, 321, 322, 339, 342, 347, 360, 366, 367, 369, 371, 372, 373, 375, 376, 377, 380, 383, 384, 385, 386, 394, 397, 399, 403, 404, 407, 408, 410, 411, 412, 413, 428, 435, 437, 442, 454, 465, 470, 488, 493, 501, 512, 527, 529, 531, 552, 553, 560, 577, 578, 610, 626, 630, 633, 638, 656, 658, 692, 700, 782, 804, 805, 806, 813, 815, 830, 831, 847, 854, 858, 864, 865, 868, 871, 874, 875, 877, 881, 882, 883, 885, 890, 903, 905, 927, 969, 989, 990, 992, 994, 996, 997, 1000, 1003, 1006, 1010, 1014, 1015, 1016, 1018, 1019, 1020, 1021, 1028, 1031, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "withoutreplac": 155, "withpow": [155, 244], "withstrok": 75, "witten": 407, "wittenau": 1036, "wk": 705, "wl": 369, "wminkowski": [1043, 1045], "wmt": 52, "wnl": 411, "wo": 411, "wojdyla": [1046, 1047], "wolberg": [163, 368], "wolf": [2, 50, 55, 66, 71, 108, 109, 112, 113, 127, 180, 236, 292, 469, 471, 475, 476, 509, 546, 994, 1021, 1038], "wolframalpha": 1041, "wolodzko": 1044, "wolosonovich": 1039, "wolpert": [410, 564, 565], "wolsza": [1049, 1050], "wompner": 1039, "won": [103, 154, 185, 234, 244, 300, 313, 316, 347, 375, 379, 403, 464, 493, 626, 627, 629, 686, 704, 717, 737, 738, 756, 758, 796, 999, 1010, 1036, 1037, 1042], "wonder": [346, 369], "wonpil": 996, "wood": 1040, "woolam": 1031, "word": [48, 55, 58, 102, 167, 197, 236, 240, 264, 335, 347, 348, 358, 366, 367, 371, 373, 375, 376, 385, 400, 402, 403, 405, 406, 407, 408, 449, 508, 520, 531, 533, 538, 586, 587, 589, 696, 834, 844, 902, 994, 998, 1002, 1005, 1010, 1013, 1014, 1024, 1031, 1039], "word_col": 58, "word_scor": 58, "word_token": 411, "wordnetlemmat": 411, "work": [0, 3, 44, 49, 52, 53, 56, 69, 79, 85, 103, 109, 137, 139, 143, 154, 155, 156, 163, 173, 174, 182, 183, 184, 198, 210, 222, 233, 234, 239, 243, 244, 246, 257, 261, 262, 264, 270, 277, 280, 289, 290, 301, 309, 313, 315, 316, 318, 321, 322, 337, 339, 347, 348, 354, 359, 360, 365, 366, 369, 371, 372, 373, 374, 375, 376, 377, 379, 384, 385, 386, 397, 399, 400, 401, 403, 404, 405, 408, 410, 411, 412, 415, 416, 417, 418, 433, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 456, 460, 461, 465, 466, 467, 468, 469, 470, 471, 472, 473, 475, 476, 478, 479, 480, 481, 501, 505, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 608, 609, 610, 611, 612, 613, 614, 615, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 634, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 687, 688, 689, 690, 691, 692, 695, 708, 775, 779, 780, 781, 782, 789, 798, 799, 800, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 888, 890, 891, 892, 893, 894, 895, 896, 897, 898, 900, 901, 902, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 949, 953, 989, 990, 992, 994, 995, 996, 997, 999, 1000, 1002, 1003, 1006, 1007, 1010, 1013, 1014, 1019, 1020, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "workabl": 376, "workaround": [309, 371, 407, 801, 815, 1035], "workclass": [319, 493], "worker": [359, 385, 411, 967, 968, 1046, 1051], "workflow": [371, 374, 375, 384, 407, 414, 1023, 1026], "working_memori": [358, 359, 464, 782, 903, 1039], "workingdai": [44, 184], "workload": 1019, "workproperli": [104, 160, 244, 245, 261, 263, 270, 314], "workshop": [0, 403, 411, 840, 1002], "workstat": 379, "world": [0, 88, 102, 106, 183, 210, 229, 242, 257, 346, 358, 364, 368, 403, 408, 411, 966, 990, 1000, 1002, 1020, 1024, 1026, 1031], "worldwid": 1024, "wornbb": 1042, "worri": [87, 997], "wors": [44, 116, 134, 168, 184, 212, 263, 271, 282, 308, 354, 401, 403, 413, 426, 461, 478, 479, 480, 549, 551, 553, 555, 557, 559, 562, 565, 567, 609, 610, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 668, 669, 671, 672, 677, 678, 679, 705, 721, 722, 723, 724, 725, 729, 786, 838, 839, 848, 856, 863, 906, 908, 911, 914, 916, 1000, 1010, 1040], "worse_prob": 263, "worsen": 144, "worst": [143, 163, 206, 309, 368, 403, 440, 443, 708, 712, 730, 731, 784, 785, 788, 793, 794, 830, 1000, 1024, 1031, 1044], "worth": [88, 142, 184, 206, 371, 1024], "worthwhil": [104, 385], "would": [0, 26, 44, 46, 49, 53, 64, 65, 67, 69, 86, 88, 91, 102, 103, 104, 109, 111, 112, 116, 118, 125, 134, 143, 146, 151, 154, 155, 163, 167, 172, 173, 183, 184, 185, 186, 188, 194, 200, 206, 207, 208, 220, 223, 232, 239, 242, 244, 250, 253, 257, 259, 260, 261, 262, 263, 264, 269, 271, 273, 277, 280, 283, 289, 295, 300, 303, 304, 308, 309, 315, 317, 318, 322, 327, 335, 339, 342, 343, 346, 348, 353, 354, 358, 366, 367, 371, 372, 373, 377, 379, 380, 383, 384, 385, 386, 394, 397, 400, 401, 403, 404, 405, 406, 407, 408, 410, 411, 412, 426, 442, 461, 464, 478, 479, 480, 485, 524, 529, 531, 533, 538, 541, 549, 551, 553, 554, 555, 556, 557, 558, 559, 561, 562, 563, 565, 567, 581, 582, 585, 587, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 610, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 671, 672, 673, 674, 675, 677, 678, 700, 702, 708, 712, 713, 720, 757, 779, 783, 786, 801, 803, 815, 822, 830, 838, 839, 848, 856, 863, 890, 891, 893, 894, 895, 896, 897, 898, 903, 905, 906, 908, 911, 913, 914, 915, 916, 958, 961, 989, 990, 993, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1008, 1010, 1015, 1019, 1020, 1024, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "wp": [411, 656, 670], "wpd": 346, "wprd": 411, "wrap": [2, 103, 120, 139, 146, 155, 165, 233, 234, 244, 246, 257, 262, 277, 283, 301, 313, 316, 320, 322, 365, 373, 385, 397, 402, 427, 433, 505, 608, 656, 657, 658, 675, 731, 831, 889, 943, 990, 1000, 1003, 1015, 1019, 1031, 1036, 1039, 1041, 1042, 1044, 1046, 1051], "wraparound": 372, "wrapper": [2, 65, 283, 377, 380, 407, 413, 414, 541, 619, 667, 670, 743, 905, 996, 1016, 1019, 1035, 1043, 1050], "wrath": 404, "write": [48, 56, 147, 179, 186, 239, 312, 346, 358, 359, 365, 370, 371, 375, 376, 377, 379, 380, 383, 385, 397, 399, 404, 408, 411, 1011, 1020, 1032, 1044, 1048], "writeabl": [931, 932, 1049], "writer": 346, "written": [42, 45, 47, 66, 84, 86, 123, 161, 180, 256, 287, 315, 324, 325, 359, 368, 371, 372, 373, 377, 379, 383, 385, 404, 409, 483, 499, 505, 697, 709, 713, 831, 910, 917, 994, 996, 1000, 1004, 1005, 1014, 1021, 1040], "wrong": [93, 206, 257, 289, 346, 354, 368, 371, 373, 411, 501, 727, 757, 794, 1000, 1006, 1015, 1034, 1036, 1038, 1039, 1040, 1041, 1044, 1048, 1049], "wrongli": [206, 335, 1049, 1051], "wrote": [154, 366], "ws2001": 992, "wspace": [54, 55, 79, 95, 100, 111, 120, 136, 206, 223, 232, 248, 250, 251, 254, 288, 296, 325, 332], "wstate": 1044, "wtv": 377, "wtw": 377, "wu": [1015, 1035, 1043], "wurp": [1045, 1046], "wuthrich": [206, 223], "ww": 408, "www": [46, 103, 188, 206, 221, 223, 277, 282, 300, 365, 366, 371, 403, 407, 438, 445, 483, 505, 506, 528, 531, 534, 538, 643, 657, 663, 670, 684, 685, 854, 861, 913, 914, 996, 1013], "www4": [163, 368], "wyseguy7": 1037, "w\u00fcthrich": 401, "x": [2, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 58, 62, 63, 64, 65, 67, 68, 70, 71, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 103, 104, 106, 107, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 124, 125, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 217, 218, 219, 220, 221, 223, 225, 226, 227, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 288, 289, 290, 291, 292, 293, 294, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 364, 365, 366, 367, 371, 372, 373, 375, 376, 377, 378, 379, 380, 383, 384, 385, 394, 397, 399, 401, 402, 403, 404, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 483, 490, 491, 492, 495, 497, 498, 499, 502, 503, 505, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 583, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 706, 710, 711, 726, 733, 736, 743, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 789, 793, 794, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 868, 869, 870, 871, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 890, 891, 892, 893, 894, 895, 896, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 922, 924, 926, 927, 928, 929, 930, 931, 932, 935, 946, 949, 950, 951, 961, 962, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 988, 989, 990, 991, 992, 994, 995, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1010, 1012, 1013, 1014, 1015, 1016, 1020, 1028, 1031, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "x0": [52, 143, 214, 228, 246, 303, 332, 385, 424, 460, 564, 565, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 626, 627, 628, 629, 868, 869, 870, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886], "x00": 411, "x006": 1032, "x00a": 411, "x00b": 411, "x00c": 411, "x00d": 411, "x00e": 411, "x00f": 411, "x00g": 411, "x00h": 411, "x00i": 411, "x00l": 411, "x00n": 411, "x00o": 411, "x00r": 411, "x00t": 411, "x00u": 411, "x00z": 411, "x0_cat": [316, 1010], "x0_infrequent_sklearn": [316, 1010], "x0_label": 303, "x0_rabbit": [316, 1010], "x0_str_femal": 878, "x0_str_male": 878, "x0l": 1035, "x1": [52, 100, 115, 136, 143, 145, 170, 217, 228, 303, 332, 373, 385, 424, 460, 506, 564, 565, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 626, 627, 628, 629, 699, 868, 869, 870, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886], "x110": 1046, "x1_int_1": 878, "x1_int_2": 878, "x1_int_3": 878, "x1_label": 303, "x2": [100, 115, 136, 145, 170, 217, 246, 373, 404, 586, 628, 699], "x27": [52, 64, 103, 104, 139, 141, 143, 150, 151, 154, 155, 156, 160, 172, 183, 184, 185, 192, 233, 234, 243, 244, 245, 246, 253, 257, 261, 262, 263, 264, 270, 275, 277, 301, 309, 313, 314, 316, 317, 319, 322, 326, 352, 353], "x2_tr": 628, "x3": [145, 246, 404], "x7f6643629240": 261, "x7f664e020ca0": 253, "x7f664ebbd5a0": 139, "x7f664ebbdfc0": 139, "x7f664ec24ee0": 262, "x7f664f49a5f0": 275, "x7f666dc42c40": 275, "x7f6676066560": [160, 246, 316], "x7f6676066710": 103, "x8": 86, "x86_64": [374, 389], "x9ft": 411, "x_": [158, 168, 254, 263, 312, 373, 403, 406, 408, 626, 634, 765, 860, 900, 901, 996, 1002, 1007, 1037], "x_0": [207, 656], "x_1": [103, 104, 120, 139, 143, 154, 158, 160, 170, 183, 184, 207, 234, 244, 270, 313, 316, 406, 408, 410, 612, 624, 656, 878, 905, 906, 996, 1002, 1004, 1010, 1014], "x_1d": 316, "x_1x_2": 1010, "x_1x_2x_3": 1010, "x_1x_3": 1010, "x_2": [158, 170, 408, 410, 411, 612, 624, 996, 1004, 1010], "x_20": 328, "x_2d": 335, "x_2x_3": 1010, "x_3": [158, 1010], "x_6": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316, 878], "x_7": [103, 139, 143, 154, 183, 184, 234, 244, 313, 316, 878], "x_a": 307, "x_adult": 319, "x_aniso": [79, 90, 95], "x_axi": [122, 213, 267], "x_b": 307, "x_bimod": 307, "x_bin": 304, "x_bound": [413, 616], "x_c": [478, 479, 481, 1007], "x_calib": 433, "x_california": 179, "x_cardiotocographi": 242, "x_center": 192, "x_check": 932, "x_chisq": 307, "x_cluster": 857, "x_cmd": 228, "x_convert": 931, "x_copi": 1042, "x_cu": 399, "x_d": [413, 613], "x_dens": [319, 541], "x_df": 151, "x_diabet": 179, "x_different_covari": 71, "x_digit": [105, 299, 404], "x_dist_graph": 849, "x_emb": 687, "x_embed": [292, 293, 692, 696, 854, 1003], "x_error": 212, "x_errors_larg": 212, "x_featur": [106, 639, 640, 641, 992], "x_filter": 90, "x_fit": 688, "x_fit_": [532, 642], "x_forestcov": 242, "x_full": [178, 179, 303], "x_full_train": 139, "x_gaussian": 307, "x_hashed_lsa": 347, "x_hat": [528, 534, 542, 543], "x_hetero": 127, "x_homo": 127, "x_i": [53, 111, 138, 158, 183, 207, 315, 342, 403, 408, 409, 410, 413, 613, 614, 618, 621, 622, 624, 840, 841, 844, 991, 992, 996, 1002, 1003, 1004, 1010, 1014, 1015, 1016], "x_idx_sort": 1043, "x_imput": 629, "x_indic": 159, "x_inform": 310, "x_inlier": 290, "x_ipca": 124, "x_iri": 268, "x_isotropic_covari": 71, "x_j": [403, 413, 613, 614, 618, 621, 622, 624, 991, 992, 996, 1003, 1015, 1016], "x_k": [406, 408, 994, 1003], "x_label": 179, "x_leav": [554, 555, 556, 557, 561, 562, 563, 913, 914, 915, 916], "x_left_lower_corn": [51, 296, 366, 495], "x_legend": 48, "x_list": 306, "x_loadings_": [478, 479, 480], "x_lognorm": [307, 1010], "x_lsa": 347, "x_m": 1004, "x_max": [68, 85, 91, 136, 142, 152, 169, 237, 298, 305, 329, 339, 340], "x_max_": 634, "x_md": 228, "x_mean": 415, "x_mean_": 1043, "x_min": [68, 85, 91, 136, 142, 146, 152, 169, 198, 237, 298, 305, 329, 339, 340], "x_min_": 634, "x_miss": [149, 178, 179], "x_miss_california": 179, "x_miss_diabet": 179, "x_n": [104, 120, 160, 270, 408, 905, 906, 1002, 1004, 1014], "x_near_unique_categori": 310, "x_new": [89, 404, 408, 412, 427, 438, 439, 441, 443, 445, 528, 529, 530, 531, 532, 533, 534, 536, 538, 539, 540, 541, 546, 564, 566, 567, 580, 581, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 627, 629, 634, 637, 638, 639, 640, 641, 687, 688, 689, 690, 691, 692, 854, 861, 868, 869, 870, 871, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 897, 898, 1012], "x_new_again": 1012, "x_new_invers": 1012, "x_nmd": 228, "x_norm_squar": [764, 1036, 1048], "x_normal": 1010, "x_np": 399, "x_offset": 192, "x_offset_": [643, 644, 1043], "x_origin": [441, 478, 479, 480, 528, 530, 531, 532, 534, 535, 536, 537, 538, 539, 540, 541, 579, 586, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 629, 801, 804, 805, 815, 865, 869, 870, 874, 875, 878, 879, 881, 882, 883, 885, 897, 898], "x_out": [317, 869, 878, 879], "x_outlier": [193, 219, 289, 290, 334], "x_p": [403, 442, 996], "x_pca": 124, "x_plot": [190, 207, 212, 238, 266, 288, 308, 344], "x_plot_ext": 207, "x_plot_scal": 308, "x_po": 282, "x_q": 403, "x_r": [128, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601], "x_r2": 128, "x_rand": 269, "x_random": 198, "x_reconstruct": [316, 581], "x_reconstructed_kernel_pca": [45, 125], "x_reconstructed_pca": [45, 125], "x_red": 85, "x_reduc": [84, 126, 152, 441], "x_restor": 84, "x_right": 71, "x_rope": 263, "x_rotations_": [406, 478, 479, 480], "x_scale": [192, 875, 891, 1010], "x_scale_": [643, 644, 1043], "x_scaler": 50, "x_score": [290, 478, 479, 480, 481], "x_scores_": [480, 1043], "x_select": 354, "x_shared_covari": 71, "x_shuffl": 310, "x_size": 112, "x_sp": 195, "x_spars": [319, 531, 970, 973], "x_sparse_embed": 563, "x_squared_norm": [251, 456], "x_src": 288, "x_std": [875, 891, 1010], "x_std_": 1043, "x_t": [460, 626, 864], "x_test": [45, 46, 47, 48, 50, 53, 62, 63, 64, 65, 67, 68, 69, 102, 103, 107, 109, 115, 116, 125, 134, 137, 139, 141, 145, 146, 147, 148, 149, 150, 153, 159, 160, 165, 172, 175, 182, 183, 184, 185, 186, 188, 191, 194, 203, 204, 212, 213, 219, 220, 221, 223, 233, 235, 241, 245, 246, 250, 256, 257, 260, 261, 266, 270, 272, 276, 278, 282, 286, 289, 291, 292, 295, 298, 300, 301, 305, 307, 308, 310, 312, 313, 314, 319, 320, 327, 328, 334, 346, 350, 352, 353, 354, 358, 365, 373, 376, 384, 397, 404, 407, 410, 434, 466, 467, 468, 469, 470, 471, 472, 506, 555, 556, 557, 564, 565, 697, 698, 700, 702, 800, 823, 831, 833, 836, 854, 862, 863, 865, 879, 915, 916, 990, 1000, 1002, 1003, 1004, 1006, 1010, 1014, 1015, 1016, 1028, 1031], "x_test_df": 246, "x_test_kernel_pca": 125, "x_test_maxab": 1010, "x_test_minmax": 1010, "x_test_miss": 149, "x_test_no_cf_encod": 310, "x_test_noisi": 45, "x_test_np": 246, "x_test_pca": [46, 125], "x_test_r": 115, "x_test_scal": 246, "x_test_sel": 186, "x_test_select": 354, "x_test_text": 48, "x_test_tran": 1010, "x_test_transform": [354, 407], "x_text": 48, "x_tfidf": 347, "x_thresholds_": [235, 634, 1043], "x_torch": 399, "x_tr": [868, 874, 877, 883, 885, 888, 890, 891, 895, 896], "x_train": [45, 46, 47, 48, 50, 53, 62, 63, 64, 65, 67, 68, 69, 102, 103, 107, 109, 115, 116, 125, 134, 137, 141, 144, 145, 146, 147, 148, 149, 150, 153, 159, 160, 165, 173, 174, 175, 176, 182, 183, 184, 185, 186, 188, 191, 194, 203, 204, 207, 213, 219, 220, 221, 223, 233, 241, 245, 246, 250, 252, 256, 257, 260, 261, 266, 270, 272, 276, 282, 286, 289, 291, 292, 295, 298, 300, 301, 305, 307, 308, 310, 312, 313, 314, 319, 320, 322, 327, 328, 334, 346, 350, 353, 354, 358, 365, 373, 376, 384, 404, 407, 410, 433, 434, 506, 555, 556, 557, 564, 565, 697, 698, 700, 702, 800, 823, 831, 833, 836, 854, 862, 863, 865, 879, 915, 916, 990, 1000, 1002, 1003, 1004, 1006, 1008, 1010, 1014, 1015, 1028], "x_train_": 610, "x_train_ensembl": 139, "x_train_linear": 139, "x_train_maxab": 1010, "x_train_minmax": 1010, "x_train_miss": 149, "x_train_no_cf_encod": 310, "x_train_noisi": 45, "x_train_pca": 46, "x_train_preprocess": 183, "x_train_r": 115, "x_train_sel": 186, "x_train_select": 354, "x_train_std_transform": 308, "x_train_text": 48, "x_train_tran": 1010, "x_train_transform": [308, 354, 407], "x_train_valid": 64, "x_tran": [307, 318, 399, 438, 460, 881, 886, 893, 926, 1010], "x_trans_bc": 307, "x_trans_qt": 307, "x_trans_yj": 307, "x_transform": [124, 152, 239, 481, 528, 529, 530, 531, 532, 534, 536, 540, 563, 637, 638, 688, 689, 690, 691], "x_transformed_fit_": 532, "x_true": 228, "x_uniform": 307, "x_val": [143, 144, 151, 154, 257, 309, 317, 321, 322, 558, 559, 1008, 1051], "x_valid": 64, "x_valu": 327, "x_vari": 90, "x_weibul": 307, "x_weights_": [406, 478, 479, 480, 481], "x_wrong": 71, "xa": 579, "xanchor": 264, "xarg": 1031, "xavier": [862, 863, 1039, 1040, 1041, 1043, 1044, 1049], "xaxi": [126, 140, 143, 225, 227, 230, 283, 288, 346], "xaxis2": 140, "xb": [115, 884], "xbar_": 546, "xbc": 411, "xc3": 411, "xcjason": 1041, "xcode": 369, "xd": 523, "xdang": 678, "xerox": 52, "xerr": [143, 178, 179, 347], "xethan": 1043, "xfail": [379, 942, 943, 944, 1050, 1052], "xfail_strict": [943, 944], "xfc": 411, "xfcche": 411, "xfea": 411, "xff": 411, "xgamma": 684, "xgboost": [149, 151, 410, 1019], "xgrid": [51, 296], "xhan": 1040, "xhy": 1038, "xi": [2, 79, 98, 368, 403, 406, 411, 446, 452, 506, 1014, 1042], "xi_i": 1014, "xi_k": 406, "xiang": 1049, "xiangyin": 1044, "xiao": [0, 382, 392, 1039, 1041, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "xiaojin": 900, "xiaoyu": 1043, "xiaoyuchai": 1044, "xin": [678, 996, 1039], "xinfan": [1031, 1032, 1035], "xing": [1039, 1040], "xinyu": 403, "xinyuliu12": 1040, "xiong": [1039, 1040, 1045], "xj": 401, "xk": [98, 547], "xlabel": [44, 48, 49, 53, 62, 63, 64, 65, 70, 73, 76, 94, 109, 110, 112, 113, 115, 116, 122, 126, 127, 135, 136, 138, 145, 146, 147, 148, 149, 153, 156, 158, 159, 162, 167, 168, 169, 170, 172, 173, 174, 183, 190, 193, 194, 196, 197, 198, 200, 201, 202, 204, 206, 208, 209, 211, 214, 215, 219, 223, 236, 238, 240, 242, 258, 262, 263, 267, 268, 272, 273, 276, 278, 285, 286, 289, 290, 309, 310, 332, 334, 335, 338, 346, 351, 352, 630], "xlim": [52, 64, 79, 91, 95, 105, 109, 110, 111, 122, 136, 137, 138, 153, 168, 169, 183, 190, 200, 205, 212, 214, 219, 232, 240, 249, 254, 258, 272, 278, 289, 290, 334, 339, 340, 343, 352], "xm": [52, 228], "xmax": [51, 109, 200, 214, 215, 296], "xmin": [51, 109, 200, 214, 215, 296], "xn": 506, "xom": 52, "xor": [155, 166, 168, 169, 170, 180, 215, 216, 218, 252, 306, 340, 609, 613, 621, 996, 1016, 1021, 1038], "xp": [406, 880], "xpass": [943, 944], "xrang": 1037, "xred": 1047, "xrot": 54, "xrx": 52, "xs_sp": 195, "xsat": 1041, "xscale": [168, 173, 238], "xt": [156, 283, 385, 626, 628, 801, 804, 805, 815, 849, 857, 865, 870, 875, 882, 894, 929, 1047, 1049], "xtick": [44, 46, 48, 51, 67, 71, 75, 79, 80, 83, 84, 85, 91, 92, 95, 113, 115, 123, 145, 149, 169, 170, 171, 175, 218, 232, 240, 249, 250, 251, 254, 262, 263, 278, 287, 296, 301, 309, 324, 328, 335, 338, 340, 697], "xtick_period": 184, "xtick_start": 184, "xticklabel": [44, 50, 149, 184, 309], "xticks_label": 145, "xticks_po": 145, "xticks_rot": [46, 697], "xto": [64, 141, 154, 156, 185, 244, 275, 319], "xtrain": 296, "xu": [403, 406, 414, 440, 1014, 1044, 1045, 1048, 1049, 1050, 1051], "xue": [0, 1035, 1036, 1037, 1039, 1040, 1043], "xuefeng": [1048, 1049, 1050, 1051], "xueqin": [678, 996], "xun": [1041, 1043], "xuniu": 1046, "xval": 179, "xw": [205, 315, 645, 646, 648, 651, 652, 653, 654, 655, 659, 660, 661, 662, 671, 680, 681, 682, 683, 996], "xx": [77, 91, 111, 142, 146, 152, 169, 170, 171, 184, 200, 215, 216, 217, 218, 219, 230, 232, 240, 252, 289, 298, 305, 306, 329, 334, 335, 339, 340, 343], "xx0": [136, 630], "xx1": [136, 630], "xx_coarser": 142, "xy": [49, 64, 82, 143, 270, 296, 340, 389, 645, 646, 649, 650, 651, 652, 653, 654, 659, 660, 661, 662, 663, 680, 681, 682, 683, 685], "xycoord": [49, 64, 143], "xyguo": [1037, 1039], "xytext": [49, 64, 143, 188], "xyz": 370, "y": [2, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 62, 63, 64, 65, 67, 68, 70, 71, 73, 75, 77, 78, 79, 85, 87, 89, 90, 93, 94, 95, 98, 99, 100, 103, 104, 106, 107, 112, 115, 116, 118, 122, 124, 125, 128, 129, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 208, 209, 210, 211, 212, 213, 214, 215, 217, 218, 220, 221, 223, 225, 226, 227, 230, 233, 234, 235, 236, 237, 238, 239, 240, 242, 243, 244, 245, 246, 248, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 350, 351, 352, 353, 354, 363, 364, 365, 366, 367, 369, 371, 373, 375, 376, 378, 379, 380, 384, 385, 394, 397, 399, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 460, 461, 464, 465, 466, 467, 468, 469, 470, 471, 472, 478, 479, 480, 481, 483, 495, 497, 499, 502, 505, 506, 509, 510, 511, 512, 513, 514, 515, 516, 517, 519, 520, 521, 523, 525, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 581, 583, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 697, 698, 699, 700, 701, 702, 706, 711, 727, 728, 733, 736, 742, 743, 757, 759, 760, 761, 762, 764, 765, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 786, 789, 790, 793, 794, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 861, 862, 863, 864, 865, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 889, 897, 898, 900, 901, 902, 903, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 918, 924, 925, 931, 936, 937, 961, 963, 964, 965, 970, 973, 986, 988, 989, 990, 991, 992, 994, 995, 996, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1007, 1010, 1014, 1015, 1016, 1020, 1026, 1028, 1031, 1032, 1033, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "y0": [52, 228], "y1": [52, 136, 228, 506, 716, 1001, 1002], "y1_label": 47, "y2": [136, 716, 1001], "y2_label": 47, "y3": 1001, "y_": [235, 249, 253, 254, 295, 373, 406, 408, 636, 647, 668, 679, 709, 730, 731, 739, 765, 784, 785, 788, 996, 1000, 1037], "y_1": [135, 352, 406, 1000, 1004, 1014], "y_2": [135, 352, 1004], "y_20": 328, "y_2d": 335, "y_3": 352, "y_30": 329, "y_50": 329, "y_adult": 319, "y_all": [665, 667, 675, 833, 834, 862], "y_ard": 190, "y_ard_std": 190, "y_axi": [122, 213], "y_bia": 137, "y_brr": 190, "y_brr_std": 190, "y_c": [478, 479, 481], "y_calib": 433, "y_california": 179, "y_coclust": 58, "y_convert": 931, "y_cov": 610, "y_cu": 399, "y_decis": [319, 836], "y_dens": 1001, "y_diabet": 179, "y_different_covari": 71, "y_digit": [105, 299, 404], "y_error": [137, 212], "y_errors_larg": 212, "y_filter": 90, "y_full": [178, 179, 303], "y_full_train": 139, "y_grid_pr": 152, "y_hat": 461, "y_high": 146, "y_i": [138, 315, 342, 401, 410, 991, 992, 996, 1000, 1004, 1014, 1015, 1016], "y_indic": 876, "y_iri": 268, "y_isotropic_covari": 71, "y_j": [992, 1000, 1002, 1010, 1015], "y_k": [406, 1010], "y_kmean": 58, "y_kr": 238, "y_l": 1000, "y_label": 223, "y_left_lower_corn": [51, 296, 366, 495], "y_loadings_": [478, 479, 480], "y_loc": 346, "y_log_prob": 836, "y_log_proba": [852, 865], "y_low": 146, "y_lower": [93, 146], "y_mask": 328, "y_max": [68, 91, 136, 142, 152, 169, 223, 237, 298, 305, 329, 339, 340, 634, 636], "y_mean": [172, 173, 176, 610, 643, 644], "y_mean_": 1043, "y_med": 146, "y_min": [68, 91, 136, 142, 152, 169, 237, 298, 305, 329, 339, 340, 634, 636], "y_miss": [178, 179], "y_miss_california": 179, "y_miss_diabet": 179, "y_multirf": 153, "y_n": [1000, 1004, 1014], "y_new": 89, "y_nois": 137, "y_noisi": 205, "y_norm_squar": 764, "y_normal": 208, "y_np": 399, "y_numer": [931, 988], "y_observ": 320, "y_onehot_test": 272, "y_org": 936, "y_origin": [478, 479, 480, 872, 873, 876], "y_outlier": 193, "y_pareto": 208, "y_plot": [190, 207, 212, 266, 344], "y_plot_ext": 207, "y_po": 348, "y_pred": [44, 46, 47, 53, 63, 64, 67, 69, 71, 79, 90, 95, 102, 107, 134, 141, 146, 147, 149, 154, 156, 160, 183, 185, 204, 206, 208, 215, 220, 222, 223, 232, 233, 244, 257, 259, 261, 266, 275, 290, 294, 301, 308, 319, 320, 327, 328, 354, 371, 378, 385, 399, 410, 426, 435, 461, 478, 479, 480, 546, 549, 551, 553, 554, 555, 557, 559, 561, 562, 564, 565, 567, 610, 630, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 677, 678, 679, 697, 698, 700, 701, 702, 703, 708, 712, 713, 718, 721, 723, 724, 725, 729, 730, 731, 735, 737, 739, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 784, 785, 786, 788, 791, 792, 797, 801, 804, 805, 815, 826, 836, 838, 839, 848, 852, 856, 863, 865, 905, 906, 907, 908, 909, 910, 911, 914, 916, 1000, 1002, 1028, 1037, 1038, 1040, 1042, 1046, 1047, 1048, 1051, 1052], "y_pred_ard": 194, "y_pred_bin": 206, "y_pred_chain": 282, "y_pred_empti": [730, 731], "y_pred_enet": 194, "y_pred_ensembl": 282, "y_pred_lasso": 194, "y_pred_lr": 208, "y_pred_nnl": 203, "y_pred_ol": 203, "y_pred_outli": [219, 289, 334], "y_pred_outliers_sgd": 219, "y_pred_ovr": 282, "y_pred_proba": 67, "y_pred_product": 223, "y_pred_qr": 208, "y_pred_ridg": 107, "y_pred_ridge_with_trans_target": 107, "y_pred_scal": 308, "y_pred_seg": 206, "y_pred_test": [219, 289, 334], "y_pred_test_sgd": 219, "y_pred_tot": 223, "y_pred_train": [219, 334], "y_pred_train_sgd": 219, "y_pred_with_": 182, "y_pred_without_": 182, "y_predict": [137, 373, 1031], "y_prob": [63, 65, 170, 434, 435, 709, 836, 862, 1000, 1045, 1049], "y_proba": [145, 148, 308, 385, 709, 722, 852, 865, 1049], "y_proba_sc": 308, "y_rand": 329, "y_rf": 153, "y_right": 71, "y_rotations_": [406, 478, 479, 480], "y_sampl": [176, 610], "y_scaler": 50, "y_score": [233, 242, 270, 272, 385, 478, 479, 480, 546, 698, 700, 702, 706, 707, 720, 727, 728, 740, 741, 757, 783, 789, 790, 795, 801, 804, 805, 815, 852, 865, 1000, 1037, 1045, 1047, 1049, 1051, 1052], "y_scores_": [480, 1043], "y_shared_covari": 71, "y_spars": 1001, "y_std": [173, 176, 549, 610, 643, 644, 1044], "y_std_": 1043, "y_svr": 238, "y_test": [45, 46, 47, 48, 50, 53, 62, 63, 64, 65, 67, 68, 69, 102, 103, 107, 115, 116, 125, 134, 137, 139, 141, 145, 146, 147, 148, 149, 150, 153, 159, 160, 165, 175, 182, 183, 184, 185, 186, 188, 194, 203, 204, 206, 212, 213, 220, 221, 223, 233, 241, 245, 246, 250, 256, 257, 260, 261, 266, 270, 272, 276, 282, 286, 291, 292, 298, 300, 301, 305, 308, 310, 312, 313, 314, 319, 320, 327, 328, 346, 350, 353, 354, 365, 376, 384, 404, 407, 410, 434, 506, 555, 556, 557, 564, 565, 697, 698, 700, 702, 800, 823, 831, 833, 836, 854, 862, 863, 865, 915, 916, 1000, 1002, 1003, 1010, 1015, 1028, 1031], "y_test_pr": 250, "y_test_predict": 241, "y_test_r": 115, "y_test_tru": 327, "y_thresholds_": [235, 634, 1043], "y_torch": 399, "y_train": [45, 46, 47, 48, 50, 53, 62, 63, 64, 65, 67, 68, 69, 102, 103, 107, 115, 116, 125, 134, 137, 141, 144, 145, 146, 147, 148, 149, 150, 153, 159, 160, 165, 173, 174, 175, 176, 182, 183, 184, 185, 186, 188, 191, 194, 203, 204, 207, 213, 220, 221, 233, 241, 245, 246, 250, 256, 257, 260, 261, 266, 270, 272, 276, 282, 286, 291, 292, 298, 300, 301, 305, 308, 310, 312, 313, 314, 319, 320, 322, 324, 325, 327, 328, 329, 346, 350, 353, 354, 358, 365, 373, 376, 384, 404, 407, 410, 433, 434, 506, 555, 556, 557, 564, 565, 697, 698, 700, 702, 800, 823, 831, 833, 836, 854, 862, 863, 865, 915, 916, 990, 1000, 1002, 1003, 1008, 1010, 1015, 1028], "y_train_": 610, "y_train_ensembl": 139, "y_train_linear": 139, "y_train_noisi": 174, "y_train_pr": 250, "y_train_r": 115, "y_train_semi": 328, "y_train_valid": 64, "y_tran": 107, "y_transform": 481, "y_true": [44, 53, 58, 64, 69, 92, 107, 134, 141, 154, 156, 170, 185, 206, 215, 223, 242, 244, 251, 257, 275, 319, 327, 371, 399, 426, 434, 435, 461, 478, 479, 480, 549, 551, 553, 554, 555, 557, 559, 561, 562, 565, 567, 610, 634, 642, 643, 644, 645, 646, 648, 649, 650, 651, 652, 653, 654, 655, 656, 659, 660, 661, 662, 663, 664, 666, 669, 671, 672, 677, 678, 697, 698, 700, 701, 702, 703, 706, 707, 708, 709, 712, 713, 718, 720, 721, 722, 723, 724, 725, 727, 728, 729, 730, 731, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 757, 783, 784, 785, 786, 788, 789, 790, 791, 792, 795, 797, 800, 838, 839, 848, 856, 863, 906, 908, 911, 914, 916, 1000, 1032, 1037, 1038, 1039, 1040, 1042, 1043, 1045, 1046, 1048, 1051, 1052], "y_true_bin": 206, "y_true_categor": [709, 1000], "y_true_empti": 730, "y_true_mean": 208, "y_true_seg": 206, "y_type_": 872, "y_uniqu": [62, 67], "y_upper": [93, 146], "y_val": [143, 144, 151, 154, 257, 309, 317, 321, 322, 558, 559, 1008, 1051], "y_valid": 64, "y_var": 137, "y_vari": 90, "y_weights_": [406, 478, 479, 480, 481], "y_wrong": 71, "yacin": 1039, "yadav": 1045, "yagi": 1043, "yahoo": 52, "yaich": 1051, "yair": [403, 691, 1051], "yakov": 1043, "yalburgi": [1038, 1039], "yaman": 1046, "yamanishi": 366, "yamin": 1031, "yaml": [375, 379], "yan": [1035, 1043], "yanchor": 264, "yang": [366, 403, 408, 531, 638, 1037, 1038, 1041, 1043, 1044, 1045, 1047, 1048], "yangarbit": 1038, "yanhong": 1046, "yanlend": 1037, "yann": [1031, 1033], "yanni": 403, "yannick": [1031, 1033], "yao": [0, 368, 382, 392, 1037, 1038, 1039, 1040, 1047, 1048, 1049, 1050, 1051], "yap": 1038, "yar": 1045, "yareyaredesuyo": [1049, 1050], "yaroslav": [0, 393, 1031, 1032, 1033, 1034, 1037, 1038, 1039, 1040, 1047, 1048, 1049, 1050, 1051], "yarowski": [314, 902, 1013], "yashika": 1043, "yaslam": 1051, "yasmeen": 1044, "yat2016": 403, "yate": [588, 731], "yates2011": 588, "yau": [1034, 1035, 1036, 1037, 1038], "yaxi": [47, 50, 93, 126, 140, 225, 227, 230, 248, 283, 288, 346], "ye": [103, 139, 155, 233, 234, 244, 246, 257, 262, 277, 301, 313, 316, 322, 346, 379, 385, 397, 657, 658, 872, 889, 996], "year": [0, 44, 155, 156, 163, 172, 182, 183, 184, 206, 207, 223, 320, 368, 370, 375, 383, 407, 411, 803, 808, 810, 884, 996, 1000, 1020, 1024], "yearli": [44, 386], "yearremodadd": 154, "yeast": [282, 836], "yee": [1038, 1039], "yegelwel": 1043, "yeh": 1044, "yelit": 1037, "yellow": [71, 118, 335, 352, 1001], "yellowbrick": 1019, "yellowgreen": [207, 209, 215, 352], "yen": [1037, 1038], "yenchen": [0, 1037], "yenchenlin": 1037, "yenugula": [1049, 1051], "yeo": [303, 307, 881, 893, 1010, 1039, 1045, 1047, 1051], "yeojohnson": 1051, "yep": 374, "yerr": [105, 110, 112, 141, 143, 162, 285, 309, 327], "yesy": 391, "yesyesclassificationclassificationnumb": 391, "yesyesdo": 391, "yesyesfew": 391, "yesyesllelledimensionalityreductiondimension": 391, "yesyespredict": 391, "yesyessgdclassifiersgd": 391, "yesyessgdregressorsgd": 391, "yesyestextdatatext": 391, "yet": [49, 90, 194, 223, 253, 264, 321, 348, 360, 366, 370, 373, 375, 383, 388, 389, 394, 407, 408, 410, 411, 413, 444, 448, 457, 458, 550, 551, 575, 983, 989, 996, 1000, 1006, 1014, 1020, 1040, 1048], "yeung": 1037, "ygrid": [51, 296], "yhoo": 52, "yi": [506, 1002, 1035, 1039, 1040, 1043], "yichuan": [1037, 1038], "yield": [2, 48, 49, 52, 63, 64, 88, 103, 104, 109, 110, 111, 112, 146, 154, 155, 183, 194, 203, 206, 220, 223, 244, 253, 257, 261, 262, 263, 268, 275, 282, 298, 303, 332, 337, 346, 347, 354, 358, 360, 365, 376, 385, 400, 403, 405, 407, 408, 410, 411, 412, 414, 433, 445, 464, 468, 505, 506, 534, 535, 536, 538, 543, 550, 551, 556, 557, 558, 559, 564, 565, 592, 600, 646, 650, 651, 652, 654, 660, 662, 664, 672, 674, 685, 727, 782, 789, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 828, 829, 830, 832, 836, 839, 897, 898, 942, 943, 950, 952, 953, 959, 992, 994, 996, 997, 1000, 1015, 1016, 1036, 1037, 1039, 1042, 1044], "yifan": 1004, "yime": 1039, "ying": [403, 448, 458, 1045], "yinglr": 1041, "yisheng": 1048, "yiyangq": 1045, "yj": [115, 307], "ylabel": [44, 48, 49, 53, 62, 63, 64, 65, 70, 73, 94, 109, 110, 112, 113, 115, 116, 122, 126, 127, 135, 136, 138, 145, 146, 147, 148, 149, 153, 156, 158, 159, 162, 167, 168, 169, 170, 172, 173, 174, 183, 190, 193, 194, 196, 197, 198, 200, 201, 202, 204, 206, 208, 209, 211, 214, 215, 223, 236, 238, 240, 258, 262, 263, 266, 267, 268, 272, 273, 276, 278, 286, 310, 328, 332, 335, 338, 346, 351, 352, 630], "ylim": [52, 62, 64, 70, 73, 79, 91, 95, 109, 110, 111, 122, 136, 137, 146, 153, 168, 169, 183, 198, 200, 201, 202, 212, 214, 215, 219, 232, 240, 249, 254, 258, 262, 266, 272, 278, 289, 290, 334, 339, 340, 343, 346, 352], "ylorbr_r": 111, "ym": [52, 228], "ymax": [48, 50, 51, 109, 198, 200, 201, 207, 214, 263, 296], "ymazari": 1039, "ymean": 191, "ymin": [51, 109, 198, 200, 201, 207, 214, 263, 296], "yml": [371, 379], "yn": [506, 1001, 1002], "yoav": 1037, "yoch": 1044, "yogendrasingh": 1046, "yojana": 1046, "yokasr": 1041, "yoni": 1034, "yoon": 1042, "yoram": [280, 736], "york": [262, 789, 798, 852, 990, 1000, 1012], "yoshihiro": 1041, "yoshiki": [1034, 1037], "yoshizawa": 1039, "yoshua": [862, 863, 1013], "yosshi999": 1045, "yosuk": [1043, 1044], "yotam": 1047, "you": [0, 31, 55, 59, 62, 103, 126, 139, 142, 143, 145, 147, 154, 155, 160, 163, 165, 175, 176, 179, 183, 184, 185, 186, 192, 196, 207, 210, 233, 234, 239, 243, 244, 246, 251, 257, 258, 262, 263, 264, 270, 272, 277, 289, 301, 309, 312, 313, 316, 318, 319, 321, 322, 325, 339, 346, 352, 354, 358, 359, 360, 365, 366, 369, 370, 371, 372, 373, 375, 376, 377, 379, 380, 384, 385, 389, 390, 391, 394, 397, 399, 401, 402, 403, 404, 405, 407, 410, 411, 412, 414, 415, 420, 433, 439, 440, 442, 443, 445, 450, 460, 461, 463, 465, 478, 479, 480, 497, 500, 501, 506, 507, 529, 530, 533, 535, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 577, 578, 586, 587, 588, 589, 602, 605, 606, 608, 609, 610, 626, 634, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 686, 690, 699, 700, 786, 799, 800, 802, 803, 804, 805, 806, 808, 810, 816, 817, 819, 820, 821, 823, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 855, 856, 862, 863, 864, 865, 866, 868, 869, 870, 871, 872, 877, 878, 879, 884, 885, 890, 891, 893, 894, 895, 896, 898, 900, 901, 905, 906, 907, 908, 909, 910, 911, 913, 914, 915, 916, 924, 942, 949, 967, 989, 990, 995, 996, 1000, 1001, 1004, 1006, 1007, 1010, 1011, 1014, 1015, 1016, 1018, 1019, 1023, 1024, 1028, 1031, 1034, 1035, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "youcan": [103, 139, 143, 154, 160, 183, 185, 233, 234, 243, 244, 246, 264, 270, 277, 309, 313, 316, 322], "youden": 1000, "younger": 223, "your": [0, 16, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 354, 358, 359, 360, 365, 369, 370, 371, 372, 374, 375, 377, 379, 380, 383, 384, 385, 389, 390, 391, 397, 399, 402, 403, 404, 405, 410, 411, 414, 415, 440, 442, 500, 530, 602, 645, 686, 942, 997, 1000, 1004, 1010, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1023, 1024, 1028, 1032, 1035, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "yourlogin": 371, "yourself": [103, 370, 371, 372, 373, 376, 379, 1004], "youtub": 1018, "ypred": 1038, "yrsold": 154, "yscale": [168, 173, 206, 238, 346], "ystd": 191, "yt": 876, "ython": 0, "ytick": [46, 51, 67, 71, 75, 79, 80, 83, 84, 85, 91, 92, 95, 113, 115, 123, 147, 159, 169, 170, 171, 175, 218, 232, 240, 249, 250, 251, 254, 258, 278, 287, 296, 301, 324, 335, 340, 346], "yticklabel": [258, 346], "ytrain": 296, "ytrue": 1038, "yu": [194, 403, 433, 448, 458, 657, 996, 1004, 1034, 1035, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045], "yuan": [1045, 1046, 1047, 1048, 1049, 1050, 1051], "yuchen": [1047, 1048], "yucheng": 1036, "yue": [1043, 1049], "yufeng": 1039, "yuichi": 1038, "yuki": 1045, "yule": [446, 453, 779, 780, 781], "yulia": [1041, 1051], "yum": 369, "yun": [1046, 1047], "yung": [1034, 1037], "yunji": 1051, "yunqian": 996, "yurchak": [0, 393, 411, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045], "yuri": [1034, 1036], "yusuf": [1046, 1047], "yusuk": 1044, "yusukenagasaka": 1044, "yutaro": 1043, "yuusuk": 1048, "yuval": [400, 447], "yuvi": 1051, "yv": 406, "yve": 1044, "yy": [77, 91, 111, 142, 152, 169, 171, 184, 200, 216, 217, 218, 219, 230, 232, 240, 289, 298, 305, 306, 329, 334, 335, 339, 340, 343], "yy_coars": 142, "yy_down": 340, "yy_up": 340, "yzhenman": 1044, "z": [51, 91, 142, 169, 171, 184, 215, 217, 218, 225, 227, 232, 237, 252, 289, 296, 298, 305, 308, 329, 335, 340, 368, 375, 400, 401, 408, 410, 550, 551, 583, 638, 663, 670, 684, 685, 689, 693, 694, 699, 725, 786, 885, 996, 997, 1004, 1005, 1046], "z_": 408, "z_1": 996, "z_2": 996, "z_3": 996, "z_4": 996, "z_5": 996, "z_i": [138, 997, 1004], "z_j": 997, "z_l": 1004, "z_points_coars": 142, "zabidi": 1051, "zablit": 1046, "zac": 1036, "zacchari": 1043, "zach": [1039, 1040, 1045, 1051], "zachari": 1050, "zachariah": 1039, "zadrozni": [65, 401, 433, 675], "zaffalon": 263, "zahlii": 1044, "zain": [0, 392, 1045, 1046, 1047, 1048, 1050, 1052], "zalkow": 1036, "zambelli": 1034, "zamrii": 1041, "zanouda": 1038, "zaroual": 1051, "zaxi": [126, 225], "zayd": 1040, "zaytsev": 1034, "zdzieblo": 1048, "zebra": 712, "zedan": 1047, "zeel": 1045, "zeeshan": [1046, 1047], "zempleni": 1045, "zen": 936, "zenin": 1037, "zentrum": 1000, "zero": [2, 26, 50, 51, 54, 65, 71, 73, 75, 76, 85, 87, 103, 110, 112, 113, 120, 123, 125, 136, 137, 139, 143, 145, 147, 148, 151, 153, 154, 155, 156, 160, 163, 179, 183, 184, 190, 194, 195, 197, 199, 201, 202, 205, 206, 207, 210, 211, 212, 215, 220, 223, 234, 236, 239, 240, 242, 244, 248, 252, 254, 257, 260, 263, 264, 268, 272, 273, 276, 288, 303, 309, 313, 314, 316, 317, 322, 339, 342, 347, 348, 350, 353, 358, 359, 366, 373, 377, 385, 401, 403, 405, 408, 410, 411, 412, 413, 416, 442, 448, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 483, 494, 505, 506, 520, 523, 524, 528, 529, 532, 534, 535, 536, 537, 539, 540, 544, 545, 549, 554, 555, 556, 557, 558, 559, 561, 562, 563, 579, 583, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 605, 606, 610, 635, 638, 642, 643, 644, 649, 657, 658, 663, 664, 665, 666, 667, 670, 675, 676, 677, 684, 685, 703, 707, 712, 713, 715, 716, 720, 726, 728, 730, 731, 735, 739, 740, 741, 747, 783, 784, 785, 786, 788, 790, 797, 798, 816, 817, 820, 821, 834, 845, 846, 847, 848, 849, 851, 853, 854, 855, 856, 857, 858, 859, 860, 861, 868, 875, 877, 878, 880, 881, 882, 884, 885, 891, 892, 893, 894, 898, 905, 913, 914, 915, 916, 947, 974, 985, 990, 996, 998, 999, 1002, 1003, 1004, 1010, 1011, 1012, 1014, 1015, 1016, 1031, 1033, 1035, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1050, 1051], "zero_bas": [483, 505, 506], "zero_class": 240, "zero_divis": [301, 713, 730, 731, 739, 784, 785, 788, 1000, 1041, 1043, 1047], "zero_on": [371, 1032], "zero_one_loss": [2, 371, 399, 703, 735, 1000, 1032, 1033, 1034, 1048, 1049, 1052], "zero_one_scor": 1032, "zerodivisionerror": [1038, 1041, 1047], "zeros_lik": [82, 208, 272], "zeta": 1015, "zeta_i": 1015, "zev": [1037, 1038, 1039, 1040], "zeyusun": 1044, "zha": [689, 693, 997], "zhai_pro": 1036, "zhan": 1046, "zhang": [403, 438, 663, 678, 684, 685, 689, 693, 759, 760, 996, 997, 998, 1002, 1014, 1035, 1036, 1038, 1039, 1040, 1041, 1043, 1047, 1048, 1049, 1051], "zhang02c": 675, "zhang96": [403, 438], "zhao": [1041, 1043, 1044, 1045, 1046], "zhaowei": 1043, "zhaoweiwang": 1044, "zhauniarovich": 1036, "zhdanovich": 1039, "zhechev": 1046, "zhehao": [1044, 1045, 1046, 1047, 1049], "zhenfish": 1045, "zheng": [1037, 1038, 1043], "zhenq": 1039, "zhi": [560, 1006], "zhiqe": 1039, "zhou": [560, 638, 901, 1006, 1039, 1047, 1048], "zht2007": 196, "zhu": [134, 410, 516, 550, 657, 900, 1051], "zhuyi": [1039, 1040], "zhuzhunashvili": [403, 458], "ziad": [1049, 1050], "zibulevski": [663, 684, 685], "zichen": 1036, "zielinska": 1042, "zihna": [1044, 1050], "ziji": [1039, 1040], "zijlstra": 1034, "zike": 1037, "zimek": 442, "zimmer": [1035, 1045], "zinkov": [1031, 1032, 1033, 1035, 1036], "zip": [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 115, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 178, 179, 180, 182, 183, 184, 185, 186, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 327, 328, 329, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 352, 353, 369, 410, 829, 1010, 1023, 1027], "zisserman": [637, 992, 1000], "zito": [1031, 1044, 1052], "ziv": 1037, "zivori": 1037, "zj": [1039, 1040], "zlabel": 126, "zoj613": 1043, "zolisa": 1043, "zoom": [44, 139, 303, 391], "zoom_in_percentile_rang": 303, "zorder": [52, 91, 122, 151, 168, 176, 204, 226, 228, 235, 238, 248, 313, 319, 340], "zou": [134, 196, 410, 516, 550, 655, 996, 1014], "zou_et_al_criterion_resc": 196, "zoubin": 900, "zoubir": 112, "zouhar": 1044, "zsh": 359, "zuckerberg": 0, "zwinck": 1033, "zxcvbniu": 1038, "zy": 1050, "zz": 111, "zzrh2009": 410, "z\u00e9": 1039, "\u00e4yr\u00e4m\u00f6": 996, "\u00e7anakc\u0131": 1051, "\u00e7anak\u00e7\u0131": 1051, "\u00f3scar": [1035, 1036, 1037, 1038], "\u00f6zer": 1044, "\u0142ukasz": 1046, "\u015fahin": 1045, "\u0161t\u011bp\u00e1n": [1049, 1050], "\u675c\u4e16\u6a4b": [0, 393], "\u8d75\u4e30": 1045}, "titles": ["About us", "Recently Deprecated", "API Reference", "sklearn", "sklearn.base", "sklearn.calibration", "sklearn.cluster", "sklearn.compose", "sklearn.covariance", "sklearn.cross_decomposition", "sklearn.datasets", "sklearn.decomposition", "sklearn.discriminant_analysis", "sklearn.dummy", "sklearn.ensemble", "sklearn.exceptions", "sklearn.experimental", "sklearn.feature_extraction", "sklearn.feature_selection", "sklearn.frozen", "sklearn.gaussian_process", "sklearn.impute", "sklearn.inspection", "sklearn.isotonic", "sklearn.kernel_approximation", "sklearn.kernel_ridge", "sklearn.linear_model", "sklearn.manifold", "sklearn.metrics", "sklearn.mixture", "sklearn.model_selection", "sklearn.multiclass", "sklearn.multioutput", "sklearn.naive_bayes", "sklearn.neighbors", "sklearn.neural_network", "sklearn.pipeline", "sklearn.preprocessing", "sklearn.random_projection", "sklearn.semi_supervised", "sklearn.svm", "sklearn.tree", "sklearn.utils", "Examples based on real world datasets", "Time-related feature engineering", "Image denoising using kernel PCA", "Faces recognition example using eigenfaces and SVMs", "Model Complexity Influence", "Out-of-core classification of text documents", "Outlier detection on a real data set", "Prediction Latency", "Species distribution modeling", "Visualizing the stock market structure", "Lagged features for time series forecasting", "Compressive sensing: tomography reconstruction with L1 prior (Lasso)", "Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation", "Wikipedia principal eigenvector", "Biclustering", "Biclustering documents with the Spectral Co-clustering algorithm", "A demo of the Spectral Biclustering algorithm", "A demo of the Spectral Co-Clustering algorithm", "Calibration", "Probability calibration of classifiers", "Probability Calibration curves", "Probability Calibration for 3-class classification", "Comparison of Calibration of Classifiers", "Classification", "Plot classification probability", "Classifier comparison", "Recognizing hand-written digits", "Normal, Ledoit-Wolf and OAS Linear Discriminant Analysis for classification", "Linear and Quadratic Discriminant Analysis with covariance ellipsoid", "Clustering", "Adjustment for chance in clustering performance evaluation", "Demo of affinity propagation clustering algorithm", "Agglomerative clustering with different metrics", "Plot Hierarchical Clustering Dendrogram", "Compare BIRCH and MiniBatchKMeans", "Bisecting K-Means and Regular K-Means Performance Comparison", "Comparing different clustering algorithms on toy datasets", "Segmenting the picture of greek coins in regions", "A demo of structured Ward hierarchical clustering on an image of coins", "Demo of DBSCAN clustering algorithm", "Online learning of a dictionary of parts of faces", "Feature agglomeration", "Various Agglomerative Clustering on a 2D embedding of digits", "Vector Quantization Example", "Feature agglomeration vs. univariate selection", "Demo of HDBSCAN clustering algorithm", "Inductive Clustering", "Demonstration of k-means assumptions", "A demo of K-Means clustering on the handwritten digits data", "An example of K-Means++ initialization", "Selecting the number of clusters with silhouette analysis on KMeans clustering", "Empirical evaluation of the impact of k-means initialization", "Comparing different hierarchical linkage methods on toy datasets", "A demo of the mean-shift clustering algorithm", "Comparison of the K-Means and MiniBatchKMeans clustering algorithms", "Demo of OPTICS clustering algorithm", "Spectral clustering for image segmentation", "Hierarchical clustering with and without structure", "Pipelines and composite estimators", "Column Transformer with Heterogeneous Data Sources", "Column Transformer with Mixed Types", "Selecting dimensionality reduction with Pipeline and GridSearchCV", "Pipelining: chaining a PCA and a logistic regression", "Concatenating multiple feature extraction methods", "Effect of transforming the targets in regression model", "Covariance estimation", "Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood", "Ledoit-Wolf vs OAS estimation", "Robust covariance estimation and Mahalanobis distances relevance", "Robust vs Empirical covariance estimate", "Sparse inverse covariance estimation", "Cross decomposition", "Compare cross decomposition methods", "Principal Component Regression vs Partial Least Squares Regression", "Dataset examples", "Plot randomly generated multilabel dataset", "Decomposition", "Faces dataset decompositions", "Blind source separation using FastICA", "FastICA on 2D point clouds", "Image denoising using dictionary learning", "Incremental PCA", "Kernel PCA", "Principal Component Analysis (PCA) on Iris Dataset", "Model selection with Probabilistic PCA and Factor Analysis (FA)", "Comparison of LDA and PCA 2D projection of Iris dataset", "Sparse coding with a precomputed dictionary", "Factor Analysis (with rotation) to visualize patterns", "Developing Estimators", "__sklearn_is_fitted__ as Developer API", "Ensemble methods", "Multi-class AdaBoosted Decision Trees", "Decision Tree Regression with AdaBoost", "Two-class AdaBoost", "Single estimator versus bagging: bias-variance decomposition", "OOB Errors for Random Forests", "Feature transformations with ensembles of trees", "Comparing Random Forests and Histogram Gradient Boosting models", "Feature importances with a forest of trees", "Plot the decision surfaces of ensembles of trees on the iris dataset", "Categorical Feature Support in Gradient Boosting", "Early stopping in Gradient Boosting", "Gradient Boosting Out-of-Bag estimates", "Prediction Intervals for Gradient Boosting Regression", "Gradient Boosting regression", "Gradient Boosting regularization", "Features in Histogram Gradient Boosting Trees", "IsolationForest example", "Monotonic Constraints", "Hashing feature transformation using Totally Random Trees", "Comparing random forests and the multi-output meta estimator", "Combine predictors using stacking", "Visualizing the probabilistic predictions of a VotingClassifier", "Plot individual and voting regression predictions", "Feature Selection", "Comparison of F-test and mutual information", "Univariate Feature Selection", "Pipeline ANOVA SVM", "Recursive feature elimination", "Recursive feature elimination with cross-validation", "Model-based and sequential feature selection", "Frozen Estimators", "Examples of Using FrozenEstimator", "Gaussian Process for Machine Learning", "Comparison of kernel ridge and Gaussian process regression", "Probabilistic predictions with Gaussian process classification (GPC)", "Gaussian process classification (GPC) on iris dataset", "Iso-probability lines for Gaussian Processes classification (GPC)", "Illustration of Gaussian process classification (GPC) on the XOR dataset", "Forecasting of CO2 level on Mona Loa dataset using Gaussian process regression (GPR)", "Ability of Gaussian process regression (GPR) to estimate data noise-level", "Gaussian Processes regression: basic introductory example", "Gaussian processes on discrete data structures", "Illustration of prior and posterior Gaussian process for different kernels", "Missing Value Imputation", "Imputing missing values with variants of IterativeImputer", "Imputing missing values before building an estimator", "Examples", "Inspection", "Failure of Machine Learning to infer causal effects", "Common pitfalls in the interpretation of coefficients of linear models", "Partial Dependence and Individual Conditional Expectation Plots", "Permutation Importance vs Random Forest Feature Importance (MDI)", "Permutation Importance with Multicollinear or Correlated Features", "Kernel Approximation", "Scalable learning with polynomial kernel approximation", "Generalized Linear Models", "Comparing Linear Bayesian Regressors", "Curve Fitting with Bayesian Ridge Regression", "Fitting an Elastic Net with a precomputed Gram Matrix and Weighted Samples", "HuberRegressor vs Ridge on dataset with strong outliers", "L1-based models for Sparse Signals", "Lasso on dense and sparse data", "Lasso model selection via information criteria", "Lasso, Lasso-LARS, and Elastic Net paths", "Lasso model selection: AIC-BIC / cross-validation", "L1 Penalty and Sparsity in Logistic Regression", "Decision Boundaries of Multinomial and One-vs-Rest Logistic Regression", "Regularization path of L1- Logistic Regression", "Joint feature selection with multi-task Lasso", "Non-negative least squares", "Ordinary Least Squares and Ridge Regression", "Orthogonal Matching Pursuit", "Poisson regression and non-normal loss", "Polynomial and Spline interpolation", "Quantile regression", "Robust linear model estimation using RANSAC", "Ridge coefficients as a function of the L2 Regularization", "Plot Ridge coefficients as a function of the regularization", "Robust linear estimator fitting", "Early stopping of Stochastic Gradient Descent", "Plot multi-class SGD on the iris dataset", "SGD: convex loss functions", "SGD: Penalties", "SGD: Maximum margin separating hyperplane", "SGD: Weighted samples", "One-Class SVM versus One-Class SVM using Stochastic Gradient Descent", "Multiclass sparse logistic regression on 20newgroups", "MNIST classification using multinomial logistic + L1", "Theil-Sen Regression", "Tweedie regression on insurance claims", "Manifold learning", "Comparison of Manifold Learning methods", "Manifold learning on handwritten digits: Locally Linear Embedding, Isomap\u2026", "Manifold Learning methods on a severed sphere", "Multi-dimensional scaling", "Swiss Roll And Swiss-Hole Reduction", "t-SNE: The effect of various perplexity values on the shape", "Miscellaneous", "Comparing anomaly detection algorithms for outlier detection on toy datasets", "Visualizations with Display Objects", "Displaying estimators and complex pipelines", "Isotonic Regression", "The Johnson-Lindenstrauss bound for embedding with random projections", "Explicit feature map approximation for RBF kernels", "Comparison of kernel ridge regression and SVR", "Metadata Routing", "Multilabel classification", "Face completion with a multi-output estimators", "Evaluation of outlier detection estimators", "Advanced Plotting With Partial Dependence", "Displaying Pipelines", "ROC Curve with Visualization API", "Introducing the set_output API", "Gaussian Mixture Models", "Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture", "Gaussian Mixture Model Ellipsoids", "GMM covariances", "GMM Initialization Methods", "Density Estimation for a Gaussian mixture", "Gaussian Mixture Model Selection", "Gaussian Mixture Model Sine Curve", "Model Selection", "Confusion matrix", "Post-tuning the decision threshold for cost-sensitive learning", "Visualizing cross-validation behavior in scikit-learn", "Plotting Cross-Validated Predictions", "Detection error tradeoff (DET) curve", "Custom refit strategy of a grid search with cross-validation", "Balance model complexity and cross-validated score", "Statistical comparison of models using grid search", "Sample pipeline for text feature extraction and evaluation", "Plotting Learning Curves and Checking Models\u2019 Scalability", "Class Likelihood Ratios to measure classification performance", "Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV", "Nested versus non-nested cross-validation", "Test with permutations the significance of a classification score", "Precision-Recall", "Comparing randomized search and grid search for hyperparameter estimation", "Multiclass Receiver Operating Characteristic (ROC)", "Receiver Operating Characteristic (ROC) with cross validation", "Comparison between grid search and successive halving", "Successive Halving Iterations", "Effect of model regularization on training and test error", "Post-hoc tuning the cut-off point of decision function", "Underfitting vs. Overfitting", "Multiclass methods", "Overview of multiclass training meta-estimators", "Multioutput methods", "Multilabel classification using a classifier chain", "Approximate nearest neighbors in TSNE", "Nearest Neighbors", "Caching nearest neighbors", "Nearest Neighbors Classification", "Kernel Density Estimation", "Simple 1D Kernel Density Estimation", "Novelty detection with Local Outlier Factor (LOF)", "Outlier detection with Local Outlier Factor (LOF)", "Comparing Nearest Neighbors with and without Neighborhood Components Analysis", "Dimensionality Reduction with Neighborhood Components Analysis", "Neighborhood Components Analysis Illustration", "Nearest Centroid Classification", "Nearest Neighbors regression", "Kernel Density Estimate of Species Distributions", "Neural Networks", "Varying regularization in Multi-layer Perceptron", "Compare Stochastic learning strategies for MLPClassifier", "Visualization of MLP weights on MNIST", "Restricted Boltzmann Machine features for digit classification", "Preprocessing", "Compare the effect of different scalers on data with outliers", "Using KBinsDiscretizer to discretize continuous features", "Feature discretization", "Demonstrating the different strategies of KBinsDiscretizer", "Map data to a normal distribution", "Importance of Feature Scaling", "Comparing Target Encoder with Other Encoders", "Target Encoder\u2019s Internal Cross fitting", "Release Highlights", "Release Highlights for scikit-learn 0.22", "Release Highlights for scikit-learn 0.23", "Release Highlights for scikit-learn 0.24", "Release Highlights for scikit-learn 1.0", "Release Highlights for scikit-learn 1.1", "Release Highlights for scikit-learn 1.2", "Release Highlights for scikit-learn 1.3", "Release Highlights for scikit-learn 1.4", "Release Highlights for scikit-learn 1.5", "Release Highlights for scikit-learn 1.6", "Release Highlights for scikit-learn 1.7", "Semi Supervised Classification", "Label Propagation digits: Demonstrating performance", "Label Propagation digits: Active learning", "Label Propagation circles: Learning a complex structure", "Effect of varying threshold for self-training", "Semi-supervised Classification on a Text Dataset", "Decision boundary of semi-supervised classifiers versus SVM on the Iris dataset", "Support Vector Machines", "SVM with custom kernel", "Plot different SVM classifiers in the iris dataset", "Plot the support vectors in LinearSVC", "One-class SVM with non-linear kernel (RBF)", "RBF SVM parameters", "SVM: Maximum margin separating hyperplane", "SVM: Separating hyperplane for unbalanced classes", "SVM-Anova: SVM with univariate feature selection", "Plot classification boundaries with different SVM Kernels", "SVM Margins Example", "Support Vector Regression (SVR) using linear and non-linear kernels", "Scaling the regularization parameter for SVCs", "SVM Tie Breaking Example", "SVM: Weighted samples", "Working with text documents", "Classification of text documents using sparse features", "Clustering text documents using k-means", "FeatureHasher and DictVectorizer Comparison", "Decision Trees", "Post pruning decision trees with cost complexity pruning", "Plot the decision surface of decision trees trained on the iris dataset", "Decision Tree Regression", "Understanding the decision tree structure", "11. Common pitfalls and recommended practices", "<no title>", "<no title>", "9. Computing with scikit-learn", "9.2. Computational Performance", "9.3. Parallelism, resource management, and configuration", "9.1. Strategies to scale computationally: bigger data", "<no title>", "<no title>", "7. Dataset transformations", "8. Dataset loading utilities", "8.4. Loading other datasets", "8.2. Real world datasets", "8.3. Generated datasets", "8.1. Toy datasets", "Installing the development version of scikit-learn", "Bug triaging and issue curation", "Contributing", "Cython Best Practices, Conventions and Knowledge", "Developing scikit-learn estimators", "Developer\u2019s Guide", "Maintainer Information", "Crafting a minimal reproducer for scikit-learn", "How to optimize for speed", "Developing with the Plotting API", "Developers\u2019 Tips and Tricks", "Utilities for Developers", "12. Dispatching", "<no title>", "Frequently Asked Questions", "Getting Started", "Glossary of Common Terms and API Elements", "Scikit-learn governance and decision-making", "Index", "5. Inspection", "Installing scikit-learn", "<no title>", "13. Choosing the right estimator", "<no title>", "<no title>", "4. Metadata Routing", "<no title>", "<no title>", "10. Model persistence", "3. Model selection and evaluation", "12.1. Array API support (experimental)", "2.4. Biclustering", "1.16. Probability calibration", "3.3. Tuning the decision threshold for class prediction", "2.3. Clustering", "7.1. Pipelines and composite estimators", "2.6. Covariance estimation", "1.8. Cross decomposition", "3.1. Cross-validation: evaluating estimator performance", "2.5. Decomposing signals in components (matrix factorization problems)", "2.8. Density Estimation", "1.11. Ensembles: Gradient boosting, random forests, bagging, voting, stacking", "7.2. Feature extraction", "1.13. Feature selection", "1.7. Gaussian Processes", "dbscan", "fastica", "oas", "BaseEstimator", "BiclusterMixin", "ClassNamePrefixFeaturesOutMixin", "ClassifierMixin", "ClusterMixin", "DensityMixin", "MetaEstimatorMixin", "OneToOneFeatureMixin", "OutlierMixin", "RegressorMixin", "TransformerMixin", "clone", "is_classifier", "is_clusterer", "is_outlier_detector", "is_regressor", "CalibratedClassifierCV", "CalibrationDisplay", "calibration_curve", "AffinityPropagation", "AgglomerativeClustering", "Birch", "BisectingKMeans", "DBSCAN", "FeatureAgglomeration", "HDBSCAN", "KMeans", "MeanShift", "MiniBatchKMeans", "OPTICS", "SpectralBiclustering", "SpectralClustering", "SpectralCoclustering", "affinity_propagation", "cluster_optics_dbscan", "cluster_optics_xi", "compute_optics_graph", "estimate_bandwidth", "k_means", "kmeans_plusplus", "mean_shift", "spectral_clustering", "ward_tree", "ColumnTransformer", "TransformedTargetRegressor", "make_column_selector", "make_column_transformer", "config_context", "EllipticEnvelope", "EmpiricalCovariance", "GraphicalLasso", "GraphicalLassoCV", "LedoitWolf", "MinCovDet", "OAS", "ShrunkCovariance", "empirical_covariance", "graphical_lasso", "ledoit_wolf", "ledoit_wolf_shrinkage", "shrunk_covariance", "CCA", "PLSCanonical", "PLSRegression", "PLSSVD", "clear_data_home", "dump_svmlight_file", "fetch_20newsgroups", "fetch_20newsgroups_vectorized", "fetch_california_housing", "fetch_covtype", "fetch_file", "fetch_kddcup99", "fetch_lfw_pairs", "fetch_lfw_people", "fetch_olivetti_faces", "fetch_openml", "fetch_rcv1", "fetch_species_distributions", "get_data_home", "load_breast_cancer", "load_diabetes", "load_digits", "load_files", "load_iris", "load_linnerud", "load_sample_image", "load_sample_images", "load_svmlight_file", "load_svmlight_files", "load_wine", "make_biclusters", "make_blobs", "make_checkerboard", "make_circles", "make_classification", "make_friedman1", "make_friedman2", "make_friedman3", "make_gaussian_quantiles", "make_hastie_10_2", "make_low_rank_matrix", "make_moons", "make_multilabel_classification", "make_regression", "make_s_curve", "make_sparse_coded_signal", "make_sparse_spd_matrix", "make_sparse_uncorrelated", "make_spd_matrix", "make_swiss_roll", "DictionaryLearning", "FactorAnalysis", "FastICA", "IncrementalPCA", "KernelPCA", "LatentDirichletAllocation", "MiniBatchDictionaryLearning", "MiniBatchNMF", "MiniBatchSparsePCA", "NMF", "PCA", "SparseCoder", "SparsePCA", "TruncatedSVD", "dict_learning", "dict_learning_online", "non_negative_factorization", "sparse_encode", "LinearDiscriminantAnalysis", "QuadraticDiscriminantAnalysis", "DummyClassifier", "DummyRegressor", "AdaBoostClassifier", "AdaBoostRegressor", "BaggingClassifier", "BaggingRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "GradientBoostingClassifier", "GradientBoostingRegressor", "HistGradientBoostingClassifier", "HistGradientBoostingRegressor", "IsolationForest", "RandomForestClassifier", "RandomForestRegressor", "RandomTreesEmbedding", "StackingClassifier", "StackingRegressor", "VotingClassifier", "VotingRegressor", "ConvergenceWarning", "DataConversionWarning", "DataDimensionalityWarning", "EfficiencyWarning", "EstimatorCheckFailedWarning", "FitFailedWarning", "InconsistentVersionWarning", "NotFittedError", "UndefinedMetricWarning", "enable_halving_search_cv", "enable_iterative_imputer", "DictVectorizer", "FeatureHasher", "PatchExtractor", "extract_patches_2d", "grid_to_graph", "img_to_graph", "reconstruct_from_patches_2d", "CountVectorizer", "HashingVectorizer", "TfidfTransformer", "TfidfVectorizer", "GenericUnivariateSelect", "RFE", "RFECV", "SelectFdr", "SelectFpr", "SelectFromModel", "SelectFwe", "SelectKBest", "SelectPercentile", "SelectorMixin", "SequentialFeatureSelector", "VarianceThreshold", "chi2", "f_classif", "f_regression", "mutual_info_classif", "mutual_info_regression", "r_regression", "FrozenEstimator", "GaussianProcessClassifier", "GaussianProcessRegressor", "CompoundKernel", "ConstantKernel", "DotProduct", "ExpSineSquared", "Exponentiation", "Hyperparameter", "Kernel", "Matern", "PairwiseKernel", "Product", "RBF", "RationalQuadratic", "Sum", "WhiteKernel", "get_config", "IterativeImputer", "KNNImputer", "MissingIndicator", "SimpleImputer", "DecisionBoundaryDisplay", "PartialDependenceDisplay", "partial_dependence", "permutation_importance", "IsotonicRegression", "check_increasing", "isotonic_regression", "AdditiveChi2Sampler", "Nystroem", "PolynomialCountSketch", "RBFSampler", "SkewedChi2Sampler", "KernelRidge", "ARDRegression", "BayesianRidge", "ElasticNet", "ElasticNetCV", "GammaRegressor", "HuberRegressor", "Lars", "LarsCV", "Lasso", "LassoCV", "LassoLars", "LassoLarsCV", "LassoLarsIC", "LinearRegression", "LogisticRegression", "LogisticRegressionCV", "MultiTaskElasticNet", "MultiTaskElasticNetCV", "MultiTaskLasso", "MultiTaskLassoCV", "OrthogonalMatchingPursuit", "OrthogonalMatchingPursuitCV", "PassiveAggressiveClassifier", "PassiveAggressiveRegressor", "Perceptron", "PoissonRegressor", "QuantileRegressor", "RANSACRegressor", "Ridge", "RidgeCV", "RidgeClassifier", "RidgeClassifierCV", "SGDClassifier", "SGDOneClassSVM", "SGDRegressor", "TheilSenRegressor", "TweedieRegressor", "enet_path", "lars_path", "lars_path_gram", "lasso_path", "orthogonal_mp", "orthogonal_mp_gram", "ridge_regression", "ClassicalMDS", "Isomap", "LocallyLinearEmbedding", "MDS", "SpectralEmbedding", "TSNE", "locally_linear_embedding", "smacof", "spectral_embedding", "trustworthiness", "ConfusionMatrixDisplay", "DetCurveDisplay", "DistanceMetric", "PrecisionRecallDisplay", "PredictionErrorDisplay", "RocCurveDisplay", "accuracy_score", "adjusted_mutual_info_score", "adjusted_rand_score", "auc", "average_precision_score", "balanced_accuracy_score", "brier_score_loss", "calinski_harabasz_score", "check_scoring", "class_likelihood_ratios", "classification_report", "contingency_matrix", "pair_confusion_matrix", "cohen_kappa_score", "completeness_score", "confusion_matrix", "consensus_score", "coverage_error", "d2_absolute_error_score", "d2_brier_score", "d2_log_loss_score", "d2_pinball_score", "d2_tweedie_score", "davies_bouldin_score", "dcg_score", "det_curve", "explained_variance_score", "f1_score", "fbeta_score", "fowlkes_mallows_score", "get_scorer", "get_scorer_names", "hamming_loss", "hinge_loss", "homogeneity_completeness_v_measure", "homogeneity_score", "jaccard_score", "label_ranking_average_precision_score", "label_ranking_loss", "log_loss", "make_scorer", "matthews_corrcoef", "max_error", "mean_absolute_error", "mean_absolute_percentage_error", "mean_gamma_deviance", "mean_pinball_loss", "mean_poisson_deviance", "mean_squared_error", "mean_squared_log_error", "mean_tweedie_deviance", "median_absolute_error", "multilabel_confusion_matrix", "mutual_info_score", "ndcg_score", "normalized_mutual_info_score", "additive_chi2_kernel", "chi2_kernel", "cosine_distances", "cosine_similarity", "distance_metrics", "euclidean_distances", "haversine_distances", "kernel_metrics", "laplacian_kernel", "linear_kernel", "manhattan_distances", "nan_euclidean_distances", "paired_cosine_distances", "paired_distances", "paired_euclidean_distances", "paired_manhattan_distances", "pairwise_kernels", "polynomial_kernel", "rbf_kernel", "sigmoid_kernel", "pairwise_distances", "pairwise_distances_argmin", "pairwise_distances_argmin_min", "pairwise_distances_chunked", "precision_recall_curve", "precision_recall_fscore_support", "precision_score", "r2_score", "rand_score", "recall_score", "roc_auc_score", "roc_curve", "root_mean_squared_error", "root_mean_squared_log_error", "silhouette_samples", "silhouette_score", "top_k_accuracy_score", "v_measure_score", "zero_one_loss", "BayesianGaussianMixture", "GaussianMixture", "FixedThresholdClassifier", "GridSearchCV", "GroupKFold", "GroupShuffleSplit", "HalvingGridSearchCV", "HalvingRandomSearchCV", "KFold", "LearningCurveDisplay", "LeaveOneGroupOut", "LeaveOneOut", "LeavePGroupsOut", "LeavePOut", "ParameterGrid", "ParameterSampler", "PredefinedSplit", "RandomizedSearchCV", "RepeatedKFold", "RepeatedStratifiedKFold", "ShuffleSplit", "StratifiedGroupKFold", "StratifiedKFold", "StratifiedShuffleSplit", "TimeSeriesSplit", "TunedThresholdClassifierCV", "ValidationCurveDisplay", "check_cv", "cross_val_predict", "cross_val_score", "cross_validate", "learning_curve", "permutation_test_score", "train_test_split", "validation_curve", "OneVsOneClassifier", "OneVsRestClassifier", "OutputCodeClassifier", "ClassifierChain", "MultiOutputClassifier", "MultiOutputRegressor", "RegressorChain", "BernoulliNB", "CategoricalNB", "ComplementNB", "GaussianNB", "MultinomialNB", "BallTree", "KDTree", "KNeighborsClassifier", "KNeighborsRegressor", "KNeighborsTransformer", "KernelDensity", "LocalOutlierFactor", "NearestCentroid", "NearestNeighbors", "NeighborhoodComponentsAnalysis", "RadiusNeighborsClassifier", "RadiusNeighborsRegressor", "RadiusNeighborsTransformer", "kneighbors_graph", "radius_neighbors_graph", "sort_graph_by_row_values", "BernoulliRBM", "MLPClassifier", "MLPRegressor", "FeatureUnion", "Pipeline", "make_pipeline", "make_union", "Binarizer", "FunctionTransformer", "KBinsDiscretizer", "KernelCenterer", "LabelBinarizer", "LabelEncoder", "MaxAbsScaler", "MinMaxScaler", "MultiLabelBinarizer", "Normalizer", "OneHotEncoder", "OrdinalEncoder", "PolynomialFeatures", "PowerTransformer", "QuantileTransformer", "RobustScaler", "SplineTransformer", "StandardScaler", "TargetEncoder", "add_dummy_feature", "binarize", "label_binarize", "maxabs_scale", "minmax_scale", "normalize", "power_transform", "quantile_transform", "robust_scale", "scale", "GaussianRandomProjection", "SparseRandomProjection", "johnson_lindenstrauss_min_dim", "LabelPropagation", "LabelSpreading", "SelfTrainingClassifier", "set_config", "show_versions", "LinearSVC", "LinearSVR", "NuSVC", "NuSVR", "OneClassSVM", "SVC", "SVR", "l1_min_c", "DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor", "export_graphviz", "export_text", "plot_tree", "Bunch", "ClassifierTags", "InputTags", "RegressorTags", "Tags", "TargetTags", "TransformerTags", "_safe_indexing", "min_pos", "as_float_array", "assert_all_finite", "check_X_y", "check_array", "check_consistent_length", "check_random_state", "check_scalar", "compute_class_weight", "compute_sample_weight", "deprecated", "all_displays", "all_estimators", "all_functions", "check_estimator", "estimator_checks_generator", "parametrize_with_checks", "estimator_html_repr", "density", "fast_logdet", "randomized_range_finder", "randomized_svd", "safe_sparse_dot", "weighted_mode", "gen_batches", "gen_even_slices", "get_tags", "single_source_shortest_path_length", "indexable", "MetadataRequest", "MetadataRouter", "MethodMapping", "get_routing_for_object", "process_routing", "available_if", "is_multilabel", "type_of_target", "unique_labels", "murmurhash3_32", "Parallel", "delayed", "sample_without_replacement", "resample", "safe_mask", "safe_sqr", "shuffle", "incr_mean_variance_axis", "inplace_column_scale", "inplace_csr_column_scale", "inplace_row_scale", "inplace_swap_column", "inplace_swap_row", "mean_variance_axis", "inplace_csr_row_normalize_l1", "inplace_csr_row_normalize_l2", "check_is_fitted", "check_memory", "check_symmetric", "column_or_1d", "has_fit_parameter", "validate_data", "3.2. Tuning the hyper-parameters of an estimator", "7.4. Imputation of missing values", "1.15. Isotonic regression", "7.7. Kernel Approximation", "1.3. Kernel ridge regression", "1.2. Linear and Quadratic Discriminant Analysis", "3.5. Validation curves: plotting scores to evaluate models", "1.1. Linear Models", "2.2. Manifold learning", "7.8. Pairwise metrics, Affinities and Kernels", "2.1. Gaussian mixture models", "3.4. Metrics and scoring: quantifying the quality of predictions", "1.12. Multiclass and multioutput algorithms", "1.9. Naive Bayes", "1.6. Nearest Neighbors", "1.17. Neural network models (supervised)", "2.9. Neural network models (unsupervised)", "2.7. Novelty and Outlier Detection", "5.1. Partial Dependence and Individual Conditional Expectation plots", "5.2. Permutation feature importance", "<no title>", "7.3. Preprocessing data", "7.9. Transforming the prediction target (y)", "7.6. Random Projection", "1.14. Semi-supervised learning", "1.5. Stochastic Gradient Descent", "1.4. Support Vector Machines", "1.10. Decision Trees", "7.5. Unsupervised dimensionality reduction", "14. External Resources, Videos and Talks", "Related Projects", "Roadmap", "Computation times", "1. Supervised learning", "Support", "Testimonials", "2. Unsupervised learning", "User Guide", "Available documentation for scikit-learn", "6. Visualizations", "Release History", "<no title>", "Older Versions", "Version 0.13", "Version 0.14", "Version 0.15", "Version 0.16", "Version 0.17", "Version 0.18", "Version 0.19", "Version 0.20", "Version 0.21", "Version 0.22", "Version 0.23", "Version 0.24", "Version 1.0", "Version 1.1", "Version 1.2", "Version 1.3", "Version 1.4", "Version 1.5", "Version 1.6", "Version 1.7", "Version 1.8"], "titleterms": {"": [185, 308, 310, 322, 374, 383, 410, 1000], "0": [179, 312, 313, 314, 315, 1016, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "1": [184, 315, 316, 317, 318, 319, 320, 321, 322, 383, 1031, 1032, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "10": 1031, "11": 1031, "12": 1031, "13": [321, 1032, 1050], "14": 1033, "15": 1034, "16": 1035, "17": 1036, "18": 1037, "19": 1038, "1d": [288, 352], "2": [317, 1034, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051], "20": [102, 346, 366, 1039], "2018": 1020, "20newgroup": 220, "21": 1040, "22": [312, 1041], "23": [313, 1042], "24": [314, 1043], "2d": [52, 67, 85, 100, 122, 128, 184], "3": [64, 318, 321, 1039, 1040, 1045, 1047, 1050], "3d": 184, "4": [319, 1031, 1039, 1048], "5": [320, 1016, 1031, 1049], "6": [321, 1031, 1050], "7": [322, 1031, 1051], "8": [1031, 1052], "9": 1031, "99": 366, "A": [53, 59, 60, 81, 91, 96, 206, 315, 370, 377, 407], "And": [229, 386], "In": 270, "NOT": 376, "One": [200, 219, 272, 315, 334, 407, 1006, 1014], "The": [0, 116, 182, 183, 206, 230, 236, 257, 261, 270, 277, 280, 366, 375, 379, 407, 411, 999, 1000, 1012, 1018], "Will": 383, "With": 243, "__sklearn_is_fitted__": 132, "_safe_index": 927, "abil": 173, "ablat": 242, "about": [0, 183, 383], "absolut": 1000, "access": 404, "accuraci": [185, 237, 346, 350, 1000], "accuracy_scor": 703, "across": 354, "action": 371, "activ": [0, 325], "ad": 403, "adaboost": [134, 135, 136, 410], "adaboostclassifi": [134, 550], "adaboostregressor": 551, "adapt": 1000, "add": [319, 383], "add_dummy_featur": 887, "addit": [410, 992], "additive_chi2_kernel": 759, "additivechi2sampl": 637, "address": 257, "adjac": 56, "adjust": 73, "adjusted_mutual_info_scor": 704, "adjusted_rand_scor": 705, "advanc": 243, "advantag": 403, "affin": [52, 74, 403, 998], "affinity_propag": 450, "affinitypropag": 436, "agglom": [75, 85], "agglomer": [84, 87, 1017], "agglomerativeclust": 437, "aggress": [989, 996], "aic": [198, 996], "algebra": [358, 380], "algorithm": [58, 59, 60, 74, 79, 82, 88, 96, 97, 98, 225, 232, 377, 383, 994, 996, 1001, 1003, 1004, 1008, 1016], "alias": 379, "align": 997, "all": [263, 272, 316, 389, 1046, 1047, 1048], "all_displai": 939, "all_estim": 940, "all_funct": 941, "alloc": [55, 408], "almost": 321, "alpha": 350, "alpin": 389, "alreadi": 56, "altern": 989, "am": [143, 242], "amount": 275, "an": [81, 92, 132, 179, 192, 198, 293, 312, 316, 321, 379, 383, 411, 989, 1006], "anaconda": 389, "analysi": [44, 65, 67, 70, 71, 93, 120, 126, 127, 130, 134, 146, 184, 194, 248, 265, 266, 273, 291, 292, 293, 346, 406, 408, 994, 1003, 1017], "analyz": [53, 989], "angl": [198, 996], "ani": [321, 383], "anomali": 232, "anova": [160, 338], "api": [2, 42, 132, 245, 246, 312, 315, 317, 321, 322, 359, 373, 378, 385, 394, 399, 1000, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1041, 1048, 1049, 1050, 1051, 1052], "applic": 411, "approach": [109, 198, 263], "approxim": [180, 187, 188, 237, 283, 314, 405, 992], "ar": [257, 315, 383], "arch": 389, "architectur": 1020, "ard": [194, 996], "ardregress": 643, "arff": 365, "argument": [315, 1042, 1044], "arm64": 379, "arrai": [42, 317, 320, 321, 322, 353, 380, 399, 1048, 1049, 1050, 1051, 1052], "artifact": 397, "as_float_arrai": 929, "ask": 383, "assert": 373, "assert_all_finit": 930, "assign": 403, "assumpt": 90, "atom": [50, 358], "attent": 383, "attribut": [373, 385, 989], "auc": [312, 706], "author": [375, 1031], "autom": 371, "automat": [194, 384, 996], "auxiliari": 42, "avail": [316, 1027, 1028], "available_if": 962, "averag": [270, 272, 403, 410, 1000], "average_precision_scor": 707, "avoid": [354, 404], "aweb": 1024, "ax": 378, "b": 115, "backend": 379, "backward": 371, "bag": [137, 145, 346, 410, 411, 989], "baggingclassifi": 552, "baggingregressor": 553, "balanc": [262, 1000], "balanced_accuracy_scor": 708, "ball": 1003, "balltre": [845, 1003], "base": [4, 42, 43, 44, 115, 141, 163, 180, 194, 238, 312, 313, 315, 317, 318, 319, 322, 371, 373, 403, 407, 410, 412, 996, 1008, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1050, 1051, 1052], "baseestim": [373, 417], "baselin": [188, 206, 260], "basi": [45, 176, 413, 992, 996], "basic": [174, 223, 384, 405, 413], "batch": [403, 408], "bay": [62, 63, 1002], "bayesian": [26, 190, 191, 248, 263, 996, 999], "bayesiangaussianmixtur": 798, "bayesianridg": 644, "befor": 179, "behavior": 258, "behind": 0, "being": 183, "benchmark": [47, 50, 91, 346], "bernoulli": [1002, 1005], "bernoullinb": 840, "bernoullirbm": 861, "best": [253, 372, 383], "bestofmedia": 1024, "beta": 408, "betawork": 1024, "between": [97, 274, 996], "bia": 137, "bic": [198, 253, 996], "biclust": [28, 57, 58, 59, 180, 367, 400], "biclustermixin": 418, "bigger": 360, "bike": [44, 53, 184], "bin": 1010, "binar": [868, 888, 1010, 1011], "binari": [270, 282, 320, 996, 1000], "birch": [77, 403, 438], "birchbox": 1024, "bisect": [78, 403], "bisectingkmean": [316, 439], "blind": 121, "bnp": 1024, "boil": 376, "boltzmann": [301, 1005], "book": 1024, "boost": [44, 140, 143, 144, 145, 146, 147, 148, 149, 184, 206, 312, 313, 315, 317, 318, 322, 410], "bouldin": 403, "bound": 236, "boundari": [67, 150, 200, 286, 329, 339], "branch": 379, "brand": 0, "break": 343, "breast": [186, 368], "brier": 1000, "brier_score_loss": 709, "brute": [989, 1003], "bug": [370, 371, 1023, 1034, 1035, 1036, 1037, 1038, 1039, 1040], "build": [172, 179, 369, 371, 379, 404, 1049, 1050], "bulk": [50, 358], "bump": 375, "bunch": [383, 920], "busi": 257, "c": 377, "c4": 1016, "c5": 1016, "cach": [104, 285, 404], "calcul": 144, "calibr": [5, 61, 62, 63, 64, 65, 146, 165, 180, 206, 401, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "calibratedclassifiercv": 433, "calibration_curv": 435, "calibrationdisplai": 434, "california": 366, "calinski": 403, "calinski_harabasz_scor": 710, "call": [354, 370], "callabl": 1000, "callgrind": 377, "can": 383, "cancer": [186, 368], "candid": [275, 989], "canon": [115, 406], "captur": 100, "card": 257, "cardif": 1024, "cardiotocographi": 242, "cart": 1016, "case": [342, 996, 1000], "categor": [143, 309, 314, 319, 383, 410, 1002, 1010], "categori": [44, 316, 318, 1010], "categoricalnb": 841, "caus": 389, "causal": [182, 183], "cautiou": 183, "cca": [115, 478], "center": [120, 1010], "central": 56, "centroid": [294, 1003], "chain": [105, 244, 282, 384, 404], "chanc": 73, "chang": [239, 371, 386, 1024, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "changelog": [1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049], "characterist": [272, 273, 1000], "check": [183, 265, 312, 379, 399, 1039, 1040, 1041], "check_arrai": 932, "check_consistent_length": 933, "check_cv": 825, "check_estim": 942, "check_increas": 635, "check_is_fit": [373, 983], "check_memori": 984, "check_random_st": 934, "check_scalar": 935, "check_scor": 711, "check_symmetr": 985, "check_x_i": 931, "checker": 42, "checklist": 371, "chi": [992, 998], "chi2": 602, "chi2_kernel": 760, "choic": 408, "choleski": 321, "choos": [47, 391], "ci": [371, 379], "circl": [99, 326], "cite": 0, "claim": [206, 223], "class": [42, 64, 73, 134, 136, 214, 219, 266, 270, 272, 315, 334, 337, 385, 402, 407, 410, 411, 1000, 1003, 1006, 1014, 1015, 1031, 1032], "class_likelihood_ratio": 712, "classic": 26, "classicalmd": 687, "classif": [28, 48, 64, 66, 67, 69, 70, 102, 168, 169, 170, 171, 175, 180, 221, 240, 266, 269, 270, 273, 282, 286, 294, 301, 312, 323, 328, 339, 346, 367, 413, 996, 1000, 1001, 1003, 1004, 1014, 1015, 1016], "classifi": [26, 42, 62, 63, 65, 67, 68, 132, 156, 165, 200, 244, 260, 277, 282, 286, 312, 320, 329, 332, 335, 346, 353, 401, 410, 994, 1003], "classification_report": 713, "classifierchain": [836, 1001], "classifiermixin": 420, "classifiertag": 921, "classnameprefixfeaturesoutmixin": 419, "clear": 1041, "clear_data_hom": 482, "clone": [373, 428], "close": [370, 379], "cloud": 122, "cloudpickl": 397, "cluster": [6, 28, 52, 58, 60, 72, 73, 74, 75, 76, 79, 81, 82, 85, 88, 89, 91, 93, 96, 97, 98, 99, 100, 120, 180, 316, 318, 347, 367, 400, 403, 408, 1000, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "cluster_optics_dbscan": 451, "cluster_optics_xi": 452, "clustermixin": 421, "co": [58, 60, 400], "co2": 172, "code": [0, 47, 120, 129, 371, 373, 376, 377, 379, 408, 1035, 1036, 1037, 1038, 1039], "coeffici": [163, 183, 190, 210, 211, 276, 403, 1000], "cohen": 1000, "cohen_kappa_scor": 716, "coin": [80, 81], "column": [102, 103, 244], "column_or_1d": 986, "columntransform": [320, 404, 460], "com": 1024, "combin": [154, 233], "comment": 376, "commit": 371, "committe": 386, "common": [183, 354, 385, 399, 411], "commun": [0, 371], "compact": 234, "compar": [64, 77, 79, 95, 109, 115, 140, 153, 159, 188, 190, 195, 208, 232, 238, 260, 263, 271, 291, 299, 303, 309, 383], "comparison": [65, 68, 71, 78, 97, 111, 128, 143, 144, 158, 167, 225, 226, 238, 263, 274, 276, 280, 348, 996], "compat": [42, 312, 371, 399], "compil": [369, 377], "complement": 1002, "complementnb": 842, "complet": [241, 321, 403], "completeness_scor": 717, "complex": [47, 234, 244, 262, 265, 326, 350, 358, 996, 1003, 1004, 1014, 1015, 1016], "compon": [116, 120, 126, 291, 292, 293, 408, 1003, 1017], "compos": [7, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "composit": [101, 180, 404, 989], "compoundkernel": 611, "compress": [54, 86, 358], "comput": [42, 56, 74, 81, 82, 96, 97, 100, 109, 140, 201, 211, 357, 358, 404, 407, 1007, 1021], "computation": 360, "compute_class_weight": 936, "compute_optics_graph": 453, "compute_sample_weight": 937, "concaten": 106, "concentr": 248, "concept": [385, 996], "conclud": [44, 229], "conclus": [47, 53, 167, 194, 198, 204, 262, 280, 286, 310, 339], "conda": 369, "condit": [184, 314, 1007], "confid": 146, "config_context": 464, "configur": [358, 359], "conflict": 371, "confus": [256, 403, 1000], "confusion_matrix": 718, "confusionmatrixdisplai": [233, 697], "connect": [100, 403, 411], "consensu": 996, "consensus_scor": 719, "consider": 257, "consist": 322, "constant": [206, 257, 990], "constantkernel": 612, "constraint": [100, 149, 151, 317, 319, 403, 410], "construct": 238, "consum": 239, "content": 383, "conting": 403, "contingency_matrix": 714, "continu": [304, 371], "contribut": [371, 383], "contributor": [0, 370, 371, 386, 1035, 1036, 1037, 1038, 1039], "control": [354, 410, 1004], "convent": 372, "converg": 134, "convergencewarn": 568, "convex": 215, "cookbook": 176, "coordin": [198, 996], "core": [0, 48, 360, 370, 377, 383, 386, 1002], "corpu": 411, "correl": [183, 186, 406, 1000, 1008], "cosin": 998, "cosine_dist": 761, "cosine_similar": 762, "cost": [257, 350, 1016], "countvector": 586, "covari": [8, 71, 108, 109, 111, 112, 113, 180, 250, 405, 994, 1039, 1043, 1044, 1045, 1047, 1048, 1050, 1051], "coverag": [371, 379, 1000], "coverage_error": 720, "covertyp": [242, 366], "cpython": [321, 1050], "craft": 376, "crash": 383, "creat": [102, 127, 134, 210, 233, 270, 310, 338, 339, 352, 383, 1000], "credit": 257, "criteria": [196, 383, 996, 1016], "criterion": [198, 314, 989, 1014], "cross": [44, 114, 115, 162, 180, 198, 257, 258, 259, 261, 262, 266, 268, 273, 310, 322, 338, 354, 402, 406, 407, 989, 996], "cross_decomposit": [9, 1041, 1043, 1045, 1047, 1049, 1050], "cross_val_predict": 826, "cross_val_scor": [267, 827], "cross_valid": [407, 828], "cubic": 191, "cumul": 1000, "curat": 370, "curv": [63, 65, 191, 238, 245, 254, 260, 265, 270, 272, 322, 401, 995], "custom": [132, 184, 261, 320, 322, 331, 411, 1000, 1010, 1015], "cut": [257, 277], "cv": [258, 354], "cv_results_": 989, "cython": [372, 377, 379], "d": [407, 1003], "d2_absolute_error_scor": 721, "d2_brier_scor": 722, "d2_log_loss_scor": 723, "d2_pinball_scor": 724, "d2_tweedie_scor": 725, "data": [44, 47, 49, 52, 56, 59, 62, 64, 67, 71, 74, 81, 82, 83, 88, 90, 91, 96, 97, 99, 102, 107, 109, 111, 113, 115, 116, 121, 122, 125, 127, 135, 141, 144, 147, 149, 150, 154, 159, 162, 163, 173, 175, 179, 182, 185, 186, 188, 191, 195, 201, 202, 204, 210, 233, 238, 245, 253, 258, 260, 264, 269, 270, 272, 273, 276, 286, 290, 295, 301, 303, 307, 308, 309, 319, 321, 324, 335, 338, 341, 342, 347, 348, 354, 358, 360, 376, 383, 385, 403, 404, 407, 412, 1010, 1014, 1024], "dataconversionwarn": 569, "datadimensionalitywarn": 570, "datafram": [312, 319, 383, 1048], "dataiku": 1024, "datarobot": 1024, "dataset": [10, 43, 44, 45, 48, 53, 62, 63, 67, 69, 79, 91, 95, 100, 102, 115, 117, 118, 120, 126, 128, 134, 140, 142, 143, 154, 167, 169, 171, 172, 174, 176, 180, 182, 183, 184, 190, 193, 194, 198, 200, 206, 208, 214, 223, 225, 226, 228, 232, 237, 242, 243, 257, 261, 262, 269, 270, 277, 280, 282, 310, 321, 328, 329, 332, 339, 346, 351, 352, 363, 364, 365, 366, 367, 368, 376, 383, 413, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "davi": 403, "davies_bouldin_scor": 726, "dbscan": [82, 403, 414, 440], "dbscan_clust": 88, "dcg_score": 727, "deal": [42, 383], "debian": 389, "debug": 379, "debugg": 377, "decis": [67, 134, 135, 142, 150, 165, 180, 200, 237, 257, 277, 286, 318, 320, 329, 339, 349, 350, 351, 352, 353, 383, 386, 402, 1016], "decisionboundarydisplai": 630, "decisiontre": 135, "decisiontreeclassifi": 913, "decisiontreeregressor": [314, 914], "decod": 411, "decompos": 408, "decomposit": [11, 114, 115, 119, 120, 137, 180, 367, 406, 408, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "decreas": [141, 185], "deep": 383, "default": [239, 290, 371], "defin": [73, 81, 91, 225, 258, 260, 261, 348, 1000], "definit": [223, 276, 301, 1007, 1041], "deflat": 115, "delai": 968, "demand": [44, 53], "demo": [59, 60, 74, 81, 82, 88, 91, 96, 98], "demonstr": [90, 267, 306, 324], "dendrogram": 76, "denois": [45, 123], "dens": 195, "densiti": [252, 287, 288, 296, 318, 409, 946, 1015], "densitymixin": 422, "depend": [184, 239, 243, 375, 1007, 1031, 1044, 1045], "deploi": 383, "deploy": 389, "deprec": [1, 239, 371, 938, 1041], "descent": [198, 213, 219, 996, 1014], "descript": 182, "design": 172, "det": [260, 1000], "det_curv": 728, "detail": [992, 1014, 1015], "detcurvedisplai": 698, "detect": [49, 232, 242, 260, 289, 290, 1000, 1006, 1015], "determin": [112, 194, 405, 996, 1000], "dev0": 1052, "develop": [131, 132, 180, 239, 321, 369, 372, 373, 374, 378, 379, 380, 989, 1047], "devianc": [147, 1000], "devic": 399, "diabet": [243, 277, 368], "diagnost": 368, "dict": 411, "dict_learn": 542, "dict_learning_onlin": 543, "dictionari": [83, 120, 123, 129, 408], "dictionarylearn": 528, "dictvector": [348, 579], "did": 383, "diff": 379, "differ": [75, 79, 95, 109, 176, 184, 303, 306, 309, 332, 339, 373, 383, 394, 403, 996], "digit": [69, 85, 91, 226, 262, 301, 324, 325, 368], "dimension": [104, 225, 228, 244, 292, 308, 347, 994, 997, 1003, 1017], "direct": 222, "dirichlet": [55, 408, 999], "discount": 1000, "discov": 42, "discret": [150, 175, 304, 305, 1010], "discrimin": [70, 71, 994], "discriminant_analysi": [12, 1039, 1040, 1043, 1045, 1046, 1047, 1050], "discuss": 370, "disk": 56, "dispatch": 381, "displai": [123, 211, 233, 234, 244, 317, 318, 319, 379, 1028, 1047], "distanc": [28, 111, 320], "distance_metr": 763, "distancemetr": 699, "distort": 123, "distribut": [51, 223, 225, 296, 307, 366, 389, 997, 1010], "diverg": 408, "divid": 316, "do": [376, 383], "document": [0, 48, 58, 180, 314, 315, 345, 346, 347, 371, 1019, 1020, 1023, 1027, 1031, 1034, 1035, 1038, 1039], "doe": 383, "domain": 1019, "donat": 0, "dot": [176, 413], "dotproduct": 613, "down": 376, "download": [56, 154, 179, 321, 365], "drawback": 403, "drop": [143, 1050], "dtype": 319, "dummi": [13, 1000, 1039, 1040, 1041, 1044, 1045, 1049], "dummyclassifi": 548, "dummyregressor": 549, "dump_svmlight_fil": 483, "dure": 354, "d\u00b2": 1000, "each": [270, 275, 346], "earli": [144, 149, 213], "earlier": 1031, "eas": 372, "effect": [107, 149, 182, 230, 276, 303, 308, 327, 350], "effici": [317, 319, 380], "efficiencywarn": 571, "eigenfac": [46, 120], "eigenmap": 997, "eigenvector": 56, "elast": [192, 197, 996], "elasticnet": [194, 313, 645], "elasticnetcv": 646, "element": 385, "elimin": [161, 162, 412, 989], "ellipsoid": [71, 249], "ellipt": 1006, "ellipticenvelop": 465, "embed": [52, 85, 225, 226, 236, 293, 410, 997], "emeritu": 0, "empir": [94, 112, 236, 405], "empirical_covari": 473, "empiricalcovari": 466, "enable_halving_search_cv": 577, "enable_iterative_imput": 578, "encod": [86, 143, 309, 310, 318, 1010, 1011], "enet_path": 680, "enforc": [1042, 1044], "engin": [44, 53, 185, 1019, 1024], "enhanc": [317, 386, 1019, 1034, 1035, 1036, 1037, 1038], "enrich": 319, "ensembl": [14, 133, 139, 142, 180, 410, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "enthought": 389, "entir": 383, "entri": 1013, "envelop": 1006, "environ": [359, 379, 397], "equival": 263, "error": [134, 138, 144, 146, 190, 210, 260, 276, 379, 389, 996, 1000], "establish": [97, 188], "estim": [42, 101, 108, 109, 110, 111, 112, 113, 131, 132, 137, 143, 145, 153, 164, 173, 179, 180, 190, 209, 212, 234, 239, 241, 242, 252, 271, 280, 287, 288, 296, 312, 313, 314, 317, 319, 321, 322, 354, 373, 383, 384, 385, 391, 399, 404, 405, 407, 409, 410, 989, 990, 994, 996, 1000, 1015, 1019, 1032, 1039, 1040, 1041], "estimate_bandwidth": 454, "estimator_checks_gener": 943, "estimator_html_repr": 945, "estimatorcheckfailedwarn": 572, "euclidean_dist": 764, "evalu": [53, 67, 73, 91, 94, 112, 204, 206, 242, 257, 264, 267, 276, 301, 309, 347, 384, 398, 400, 403, 407, 410, 989, 995, 1000], "evernot": 1024, "exact": 408, "exampl": [43, 46, 49, 86, 92, 107, 117, 132, 150, 165, 174, 180, 210, 340, 343, 360, 376, 394, 399, 402, 411, 413, 417, 420, 423, 426, 427, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 454, 456, 458, 460, 461, 462, 463, 464, 465, 466, 468, 469, 470, 471, 472, 473, 475, 478, 479, 480, 484, 485, 486, 487, 488, 489, 491, 492, 493, 495, 496, 497, 498, 499, 501, 507, 508, 509, 510, 511, 512, 516, 517, 518, 519, 520, 521, 522, 523, 524, 527, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 582, 585, 586, 587, 588, 589, 591, 592, 595, 597, 598, 600, 602, 603, 604, 605, 606, 608, 609, 610, 612, 613, 614, 616, 617, 618, 621, 622, 624, 626, 627, 629, 630, 631, 632, 633, 634, 638, 639, 640, 642, 643, 644, 645, 646, 647, 648, 651, 652, 654, 655, 656, 657, 658, 661, 663, 664, 667, 668, 669, 670, 671, 672, 673, 675, 676, 677, 678, 679, 680, 681, 683, 687, 688, 689, 690, 691, 692, 693, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 709, 712, 713, 717, 718, 719, 728, 730, 733, 735, 736, 738, 739, 742, 743, 746, 747, 749, 750, 751, 753, 754, 756, 758, 762, 779, 780, 783, 785, 786, 787, 788, 789, 790, 791, 793, 794, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 840, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 858, 861, 862, 863, 864, 865, 866, 869, 870, 872, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 889, 891, 894, 898, 899, 901, 902, 903, 905, 908, 909, 910, 911, 912, 913, 914, 919, 920, 924, 932, 934, 942, 944, 946, 953, 958, 959, 960, 961, 962, 973, 983, 988, 1031], "except": [15, 380, 1043, 1047], "execut": [354, 383], "exhaust": 989, "exist": 371, "exp": [176, 413], "expans": 190, "expect": [184, 314, 1007], "experi": [0, 73, 370], "experiment": [16, 317, 375, 399, 1047], "explain": 1000, "explained_variance_scor": 729, "explicit": 237, "explor": 44, "exponenti": 615, "export": [41, 383], "export_graphviz": 917, "export_text": 918, "expsinesquar": 614, "extend": 996, "extens": [377, 389], "extern": [365, 1018, 1031, 1040], "extra": 321, "extract": [55, 106, 123, 223, 264, 347, 358, 360, 411], "extract_patches_2d": 582, "extrapol": 172, "extratreeclassifi": 915, "extratreeregressor": 916, "extratreesclassifi": 554, "extratreesregressor": 555, "extrem": [376, 410], "f": [158, 1000], "f1": 270, "f1_score": 730, "f_classif": 603, "f_regress": 604, "fa": [120, 127], "face": [46, 83, 120, 241, 366, 1024], "factor": [55, 120, 127, 130, 289, 290, 408, 1006], "factoranalysi": 529, "fail": 376, "failur": [182, 989], "fast_logdet": 947, "faster": [317, 410], "fastica": [120, 121, 122, 415, 530], "fbeta_scor": 731, "featur": [44, 53, 84, 87, 106, 125, 126, 139, 141, 143, 147, 149, 151, 152, 157, 159, 161, 162, 163, 180, 185, 186, 188, 190, 202, 223, 237, 243, 264, 301, 304, 305, 308, 309, 312, 314, 315, 338, 346, 347, 358, 360, 371, 375, 394, 404, 410, 411, 412, 990, 1008, 1010, 1017, 1034, 1035, 1036, 1037, 1038], "feature_extract": [17, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "feature_select": [18, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051], "featureagglomer": [403, 441], "featurehash": [348, 580], "featureunion": [404, 864], "fedora": 389, "fetch_20newsgroup": 484, "fetch_20newsgroups_vector": 485, "fetch_california_h": 486, "fetch_covtyp": 487, "fetch_fil": 488, "fetch_kddcup99": 489, "fetch_lfw_pair": 490, "fetch_lfw_peopl": 491, "fetch_olivetti_fac": 492, "fetch_openml": [317, 493], "fetch_rcv1": 494, "fetch_species_distribut": 495, "file": [56, 371, 379, 389, 411], "final": [90, 167], "find": 1003, "first": [49, 73], "fit": [30, 59, 64, 90, 121, 127, 141, 146, 147, 165, 172, 190, 191, 192, 202, 208, 212, 262, 270, 282, 290, 295, 310, 341, 352, 354, 373, 384, 394, 410, 1002, 1006], "fitfailedwarn": 573, "fix": [73, 1031, 1034, 1035, 1036, 1037, 1038, 1044], "fixedthresholdclassifi": [320, 800], "flag": 379, "flexibl": [315, 990], "float64": 399, "fold": [379, 407], "footprint": 86, "forc": [989, 1003], "forecast": [53, 172], "forest": [138, 140, 141, 153, 185, 186, 242, 245, 319, 366, 410, 1006], "forg": 369, "format": [365, 376, 383, 1001], "formul": [400, 410, 994, 1003, 1014, 1015, 1016], "four": 99, "fowlk": 403, "fowlkes_mallows_scor": 732, "framework": 1019, "free": [174, 321, 1050], "freebsd": 369, "freez": [321, 383], "french": 206, "frequenc": 223, "frequent": 383, "frequentist": 263, "frobeniu": 408, "from": [17, 52, 123, 163, 185, 309, 312, 321, 322, 359, 365, 369, 383, 411, 1000, 1041], "frozen": [19, 164, 180, 1050], "frozenestim": [165, 321, 608], "fruit": 370, "fulli": 182, "function": [42, 50, 71, 176, 210, 211, 215, 226, 258, 262, 277, 314, 338, 348, 380, 399, 407, 410, 413, 992, 996, 1000, 1015, 1048], "functiontransform": 869, "fund": 0, "futur": 383, "futurewarn": 1041, "gain": [257, 1000], "galleri": [417, 420, 423, 426, 427, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 454, 456, 458, 460, 461, 462, 463, 464, 465, 466, 468, 469, 470, 471, 472, 473, 475, 478, 479, 480, 484, 485, 486, 487, 488, 489, 491, 492, 493, 495, 496, 497, 498, 499, 501, 507, 508, 509, 510, 511, 512, 516, 517, 518, 519, 520, 521, 522, 523, 524, 527, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 546, 547, 548, 549, 550, 551, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 579, 580, 582, 585, 586, 587, 588, 589, 591, 592, 595, 597, 598, 600, 602, 603, 604, 605, 606, 608, 609, 610, 612, 613, 614, 616, 617, 618, 621, 622, 624, 626, 627, 629, 630, 631, 632, 633, 634, 638, 639, 640, 642, 643, 644, 645, 646, 647, 648, 651, 652, 654, 655, 656, 657, 658, 661, 663, 664, 667, 668, 669, 670, 671, 672, 673, 675, 676, 677, 678, 679, 680, 681, 683, 687, 688, 689, 690, 691, 692, 693, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 709, 712, 713, 717, 718, 719, 728, 730, 733, 735, 736, 738, 739, 742, 743, 746, 747, 749, 750, 751, 753, 754, 756, 758, 762, 779, 780, 783, 785, 786, 787, 788, 789, 790, 791, 793, 794, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 840, 842, 843, 844, 847, 848, 849, 850, 851, 852, 853, 854, 858, 861, 862, 863, 864, 865, 866, 869, 870, 872, 874, 875, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 889, 891, 894, 898, 899, 901, 902, 903, 905, 908, 909, 910, 911, 912, 913, 914, 919, 920, 924, 932, 934, 942, 944, 946, 953, 958, 959, 960, 961, 962, 973, 983, 988], "gamma": [223, 318, 1000], "gammaregressor": 647, "gap": 996, "gaussian": [62, 63, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 180, 247, 248, 249, 252, 253, 254, 303, 413, 999, 1002, 1010, 1012], "gaussian_process": [20, 1039, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1051, 1052], "gaussianmixtur": 799, "gaussiannb": 843, "gaussianprocessclassifi": 609, "gaussianprocessregressor": 610, "gaussianrandomproject": 897, "gdb": 377, "gen_batch": 952, "gen_even_slic": 953, "gener": [10, 26, 53, 59, 62, 71, 74, 81, 82, 88, 90, 96, 97, 99, 100, 109, 111, 113, 118, 121, 122, 123, 141, 150, 159, 162, 167, 173, 174, 176, 180, 189, 190, 191, 194, 200, 202, 206, 208, 238, 253, 260, 276, 290, 295, 301, 313, 324, 341, 342, 354, 367, 371, 385, 408, 410, 996, 1010, 1020], "genericunivariateselect": 590, "german": 257, "get": [354, 379, 383, 384], "get_config": 625, "get_data_hom": 496, "get_feature_names_out": 316, "get_param": 373, "get_routing_for_object": 960, "get_scor": 733, "get_scorer_nam": 734, "get_tag": 954, "git": 371, "github": 371, "gitter": 1023, "glm": 26, "glossari": 385, "gmm": [250, 251], "goal": 1020, "good": [371, 376], "govern": [0, 386], "gpc": [168, 169, 170, 171, 413], "gperftool": 377, "gpr": [172, 173, 413], "gprof": 377, "gpu": 383, "gradient": [44, 140, 143, 144, 145, 146, 147, 148, 149, 184, 206, 213, 219, 312, 313, 315, 317, 318, 322, 410, 996, 1014], "gradientboostingclassifi": [410, 556], "gradientboostingregressor": [410, 557], "gram": 192, "graph": [42, 52, 100, 312, 380, 383, 403, 411], "graphic": [383, 1005], "graphical_lasso": 474, "graphicallasso": 467, "graphicallassocv": 468, "greek": 80, "grid": [244, 261, 262, 263, 271, 274, 989], "grid_to_graph": 583, "gridsearchcv": [104, 262, 267, 801], "ground": [73, 190], "group": [316, 318, 407, 1024], "groupkfold": 802, "groupshufflesplit": 803, "grow": 73, "guid": [374, 1026], "guidelin": [371, 373, 375], "halv": [274, 275, 314, 989], "halvinggridsearchcv": 804, "halvingrandomsearchcv": 805, "ham": 1000, "hamming_loss": 735, "hand": 69, "handl": [42, 186, 399, 990], "handwritten": [91, 226, 368], "harabasz": 403, "hard": 410, "has_fit_paramet": 987, "hash": [152, 380, 411], "hashingvector": [347, 587], "haversine_dist": 765, "hdbscan": [88, 318, 403, 442], "help": [370, 383], "helper": [50, 176, 226, 262, 380], "here": 353, "hessian": 997, "heterogen": [102, 404], "hierarch": [76, 81, 95, 100, 318, 403], "hierarchi": 403, "higher": 359, "highlight": [180, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 1031, 1034, 1035, 1038, 1039], "hing": 1000, "hinge_loss": 736, "histgradientboost": [314, 319], "histgradientboostingclassifi": [410, 558], "histgradientboostingregressor": [316, 559], "histogram": [140, 149, 313, 315, 317, 322, 409, 410], "histori": [0, 1029], "hmm": 383, "hoc": 277, "hole": 229, "home": 263, "homebrew": 369, "homogen": 403, "homogeneity_completeness_v_measur": 737, "homogeneity_scor": 738, "hot": 143, "hour": 53, "hourli": 182, "hous": [143, 242, 366], "how": [354, 371, 377, 383], "howaboutw": 1024, "html": [234, 322, 373], "huber": 996, "huberregressor": [193, 648], "hug": 1024, "hyper": [30, 146, 261, 314, 989], "hyperparamet": [88, 172, 173, 264, 271, 280, 616], "hyperplan": [200, 217, 336, 337], "i": [320, 353, 376, 383, 407, 1000, 1024], "ic": [184, 1007], "ica": [121, 408], "id3": 1016, "idf": 411, "illustr": [104, 171, 176, 293, 413], "imag": [17, 45, 81, 83, 86, 99, 123, 365, 383, 411], "img_to_graph": 584, "impact": [44, 94, 276, 1046, 1047, 1048, 1049, 1050, 1051], "implement": [132, 195, 383, 1003, 1014, 1015], "import": [141, 147, 163, 185, 186, 237, 280, 308, 312, 402, 410, 1008], "improv": [313, 314, 315, 316, 317, 319, 320, 321, 322, 370, 371, 1034, 1035], "impur": [141, 185, 350, 1008], "imput": [21, 177, 178, 179, 180, 312, 320, 990, 1010, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "includ": 383, "inclus": 383, "incom": 182, "inconsist": 354, "inconsistentversionwarn": 574, "incr_mean_variance_axi": 974, "increment": [124, 360, 408], "incrementalpca": 531, "independ": [120, 408], "index": [403, 956], "indic": 258, "individu": [156, 184, 314, 1007], "induct": 89, "infer": 182, "influenc": [47, 50, 358], "infonea": 1024, "inform": [158, 196, 198, 260, 375, 403, 989, 996], "infrequ": [316, 318, 1010], "initi": [92, 94, 251], "inplace_column_scal": 975, "inplace_csr_column_scal": 976, "inplace_csr_row_normalize_l1": 981, "inplace_csr_row_normalize_l2": 982, "inplace_row_scal": 977, "inplace_swap_column": 978, "inplace_swap_row": 979, "input": [42, 358, 373, 399, 403, 1010], "inputtag": 922, "inria": 1024, "inspect": [22, 180, 181, 184, 388, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1051], "instal": [369, 389], "instanc": [354, 360], "instanti": 373, "instead": 257, "instruct": 369, "insur": 223, "integr": 371, "intel": 389, "interact": [44, 184, 317, 410], "interfac": [28, 394], "intern": [310, 402], "internet": 52, "interoper": 1019, "interpol": 207, "interpret": [172, 183, 210, 242, 282, 408, 410], "interv": 146, "introduc": 246, "introduct": [262, 997], "introductori": 174, "invari": [88, 266], "invers": [113, 405, 1012], "io": 397, "iri": [67, 126, 128, 142, 169, 214, 329, 332, 351, 368, 413], "is_classifi": 429, "is_cluster": 430, "is_multilabel": 963, "is_outlier_detector": 431, "is_regressor": 432, "iso": [170, 270], "isol": 1006, "isolationforest": [150, 560], "isomap": [225, 226, 688, 997], "isoton": [23, 235, 401, 991, 1039, 1040, 1041, 1043, 1045, 1046], "isotonic_regress": 636, "isotonicregress": 634, "issu": [370, 371, 379, 383], "iter": [179, 275, 407], "iterativeimput": [178, 626, 990], "j": 1024, "jaccard": 1000, "jaccard_scor": 739, "job": 383, "joblib": [359, 377, 397], "johnson": [236, 1012], "johnson_lindenstrauss_min_dim": 899, "joint": 202, "k": [78, 90, 91, 92, 94, 97, 115, 286, 308, 347, 403, 407, 1000, 1003, 1010], "k_mean": 455, "kappa": 1000, "kbinsdiscret": [304, 306, 870], "kcachegrind": 377, "kddcup": 366, "kddcup99": 242, "kdtree": [846, 1003], "keep": 990, "kei": 397, "kernel": [20, 44, 45, 125, 167, 172, 173, 175, 176, 180, 187, 188, 237, 238, 287, 288, 296, 314, 331, 334, 339, 341, 408, 409, 413, 617, 992, 993, 998, 1010, 1015], "kernel_approxim": [24, 1041, 1043, 1044, 1045, 1046, 1047], "kernel_metr": 766, "kernel_ridg": [25, 1048], "kernelcenter": 871, "kerneldens": 850, "kernelpca": [125, 532], "kernelridg": 642, "keyword": [315, 1042, 1044], "kfold": 806, "kind": 0, "kmean": [93, 97, 313, 443], "kmeans_plusplu": 456, "kneighbors_graph": 858, "kneighborsclassifi": 847, "kneighborsregressor": 848, "kneighborstransform": 849, "knn": [179, 312], "knnimput": 627, "knowledg": 372, "known": [1039, 1040], "kpca": 408, "l": 191, "l1": [54, 194, 199, 201, 221, 342, 412], "l1_min_c": 912, "l2": [210, 342], "label": [42, 73, 270, 324, 325, 326, 366, 367, 383, 403, 407, 410, 1000, 1011, 1013], "label_binar": 889, "label_ranking_average_precision_scor": 740, "label_ranking_loss": 741, "labelbinar": [872, 1011], "labelencod": 873, "labelpropag": 900, "labelspread": 901, "lag": 53, "laplacian": 998, "laplacian_kernel": 767, "lar": [197, 649, 996], "larg": 411, "lars_path": 681, "lars_path_gram": 682, "larscv": 650, "lasso": [54, 194, 195, 196, 197, 198, 202, 313, 651, 996], "lasso_path": 683, "lassocv": 652, "lassolar": 653, "lassolars": 655, "lassolarscv": 654, "latenc": [50, 358], "latent": [55, 115, 408], "latentdirichletalloc": 533, "latest": 389, "layer": [184, 298, 322, 1004], "lda": [71, 128, 408, 994], "leakag": 354, "learn": [0, 42, 45, 52, 83, 120, 123, 166, 180, 182, 183, 184, 188, 224, 225, 226, 227, 238, 239, 257, 258, 265, 293, 299, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 324, 325, 326, 357, 358, 360, 367, 369, 371, 372, 373, 375, 376, 383, 386, 389, 408, 410, 995, 997, 1005, 1013, 1018, 1019, 1020, 1022, 1024, 1025, 1027], "learner": [134, 410], "learning_curv": 829, "learningcurvedisplai": 807, "least": [116, 146, 198, 203, 204, 996], "leav": [350, 407, 996], "leaveonegroupout": 808, "leaveoneout": 809, "leavepgroupsout": 810, "leavepout": 811, "ledoit": [70, 110, 405], "ledoit_wolf": 475, "ledoit_wolf_shrinkag": 476, "ledoitwolf": [109, 469], "lemma": 1012, "length": [150, 389], "lesson": [182, 183], "level": [172, 173, 359, 403, 410], "liabil": 206, "librari": [321, 358, 359], "libsvm": 365, "likelihood": [109, 190, 191, 266, 1000, 1005], "limit": [143, 167, 358, 389, 397, 411], "lindenstrauss": [236, 1012], "line": 170, "linear": [26, 44, 63, 70, 71, 146, 167, 180, 183, 189, 190, 204, 206, 209, 212, 225, 226, 237, 313, 334, 339, 341, 358, 380, 383, 994, 996, 997, 998, 1010], "linear_kernel": 768, "linear_model": [26, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "lineardiscriminantanalysi": [317, 546], "linearregress": [208, 656], "linearsvc": [333, 905], "linearsvr": 906, "link": [358, 1000], "linkag": [95, 403], "linnerrud": 368, "linux": [369, 383, 389], "list": [73, 375, 1023], "loa": 172, "load": [45, 47, 56, 83, 91, 126, 140, 143, 147, 163, 185, 201, 204, 223, 226, 233, 237, 245, 262, 264, 272, 273, 282, 286, 308, 309, 335, 338, 346, 347, 348, 364, 365, 376, 383, 411], "load_breast_canc": 497, "load_diabet": 498, "load_digit": 499, "load_fil": 500, "load_iri": 501, "load_linnerud": 502, "load_sample_imag": [503, 504], "load_svmlight_fil": [505, 506], "load_win": 507, "loader": 10, "local": [100, 225, 226, 289, 290, 997, 1006], "locally_linear_embed": 693, "locallylinearembed": 689, "localoutlierfactor": 851, "lock": [371, 379], "lof": [289, 290], "log": [190, 191, 1000], "log_loss": 742, "logarithm": 1000, "logist": [105, 199, 200, 201, 220, 221, 996], "logisticregress": [282, 321, 657], "logisticregressioncv": 658, "logo": 0, "loo": 407, "look": [53, 238, 341], "loss": [149, 206, 215, 313, 316, 318, 410, 1000, 1048], "lot": 383, "love": 1024, "low": [403, 410, 412], "lower": 359, "lpo": 407, "lsa": 347, "mac": 389, "machin": [166, 180, 182, 183, 184, 301, 330, 379, 1005, 1015], "machinali": 1024, "maco": 369, "macport": 389, "macro": 272, "mahalanobi": 111, "mail": 1023, "main": [48, 206], "maintain": [0, 371, 375, 397], "major": [410, 1039, 1040], "make": [154, 156, 179, 371, 386], "make_biclust": 508, "make_blob": [376, 509], "make_checkerboard": 510, "make_circl": 511, "make_classif": [376, 512], "make_column_selector": 462, "make_column_transform": 463, "make_friedman1": 513, "make_friedman2": 514, "make_friedman3": 515, "make_gaussian_quantil": 516, "make_hastie_10_2": 517, "make_low_rank_matrix": 518, "make_moon": 519, "make_multilabel_classif": 520, "make_pipelin": 866, "make_regress": [376, 521], "make_s_curv": 522, "make_scor": [743, 1000], "make_sparse_coded_sign": 523, "make_sparse_spd_matrix": 524, "make_sparse_uncorrel": 525, "make_spd_matrix": 526, "make_swiss_rol": 527, "make_union": 867, "mallow": 403, "manag": [359, 389], "manhattan_dist": 769, "mani": [258, 317, 359, 383, 1048, 1049, 1050, 1051], "manifold": [27, 180, 224, 225, 226, 227, 367, 997, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1050, 1051, 1052], "manual": [257, 402], "map": [237, 307, 1010], "mar": 1024, "margin": [190, 191, 217, 336, 340], "mark": 990, "markdown": 376, "marker": 371, "market": 52, "match": [205, 996], "matern": 618, "mathemat": [42, 400, 410, 992, 994, 1003, 1007, 1014, 1015, 1016], "matric": [42, 380, 1010], "matrix": [55, 56, 175, 192, 256, 403, 408, 1000], "matter": 183, "matthew": 1000, "matthews_corrcoef": 744, "mat\u00e9rn": [176, 413], "max": [109, 1000], "max_error": 745, "maxabs_scal": 890, "maxabsscal": [303, 874], "maximum": [217, 336, 1005], "md": [690, 997], "mdi": 185, "mean": [78, 90, 91, 92, 94, 96, 97, 141, 179, 185, 210, 347, 383, 403, 1000, 1010], "mean_absolute_error": 746, "mean_absolute_percentage_error": 747, "mean_gamma_devi": 748, "mean_pinball_loss": 749, "mean_poisson_devi": 750, "mean_shift": 457, "mean_squared_error": 751, "mean_squared_log_error": 752, "mean_tweedie_devi": 753, "mean_variance_axi": 980, "meanshift": [96, 444], "measur": [154, 266, 403, 1000], "media": 1023, "median": [996, 1000], "median_absolute_error": 754, "member": 370, "memori": [86, 319, 358, 377, 379], "merg": 375, "meson": [379, 1049], "messag": [263, 371], "meta": [42, 153, 239, 280, 314, 399, 410], "metadata": [42, 239, 318, 319, 321, 346, 385, 394, 1048, 1049, 1050, 1051, 1052], "metadatarequest": 957, "metadatarout": 958, "metaestimatormixin": 423, "method": [95, 106, 115, 133, 167, 180, 225, 227, 251, 279, 281, 385, 397, 403, 992, 1006, 1007], "methodmap": 959, "metric": [28, 73, 75, 146, 257, 267, 399, 403, 407, 989, 998, 1000, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "micro": [270, 272], "migrat": 322, "min_cluster_s": 88, "min_po": 928, "min_sampl": 88, "mincovdet": 470, "mini": [403, 408], "minibatchdictionarylearn": 534, "minibatchkmean": [77, 97, 120, 445], "minibatchnmf": [316, 535], "minibatchsparsepca": [120, 408, 536], "minim": [376, 1016, 1044, 1045], "minimum": [112, 375, 405], "minmax_scal": 891, "minmaxscal": [303, 875], "misc": 1031, "miscellan": [26, 180, 231, 1039, 1040, 1041, 1042, 1043, 1044, 1047], "mislead": 1008, "miss": [149, 177, 178, 179, 180, 312, 318, 319, 321, 410, 990, 1010, 1016], "missingind": 628, "mix": 103, "mixin": 373, "mixtur": [29, 180, 247, 248, 249, 252, 253, 254, 999, 1039, 1040, 1044, 1045, 1047, 1049, 1051], "mlp": 300, "mlpclassifi": [299, 862], "mlpregressor": 863, "mnist": [221, 300], "mode": [115, 358], "model": [26, 28, 30, 44, 47, 51, 53, 90, 107, 115, 121, 127, 140, 141, 143, 144, 147, 150, 162, 163, 167, 172, 180, 183, 184, 185, 188, 189, 190, 194, 196, 198, 202, 204, 206, 209, 223, 233, 238, 242, 243, 247, 249, 253, 254, 255, 257, 262, 263, 265, 270, 276, 282, 290, 295, 301, 308, 313, 315, 319, 339, 341, 346, 352, 358, 383, 384, 386, 397, 398, 407, 989, 995, 996, 999, 1000, 1002, 1004, 1005, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "model_select": [30, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051], "modifi": 997, "modul": [1031, 1039, 1040, 1046, 1047, 1048, 1049, 1050, 1051], "mona": 172, "monitor": 371, "monoton": [149, 151, 319, 410], "mooc": 1018, "more": [315, 383, 1004], "morgan": 1024, "most": 324, "motor": 206, "mp": 399, "multi": [26, 88, 134, 153, 184, 202, 214, 228, 241, 267, 270, 298, 322, 352, 377, 996, 997, 1000, 1004, 1015, 1016], "multiclass": [31, 42, 180, 220, 272, 279, 280, 312, 321, 380, 401, 1000, 1001, 1040, 1043, 1044, 1045, 1051, 1052], "multicollinear": 186, "multidimension": 225, "multilabel": [28, 118, 240, 282, 367, 380, 1000, 1001], "multilabel_confusion_matrix": 755, "multilabelbinar": [876, 1011], "multinomi": [200, 221, 996, 1002], "multinomialnb": 844, "multioutput": [32, 180, 281, 1001, 1039, 1040, 1041, 1042, 1043, 1046, 1047, 1048, 1049, 1051], "multioutputclassifi": [837, 1001], "multioutputregressor": [838, 1001], "multipl": [106, 244, 267, 354, 378, 407, 989, 990, 1000, 1039, 1040], "multitaskelasticnet": 659, "multitaskelasticnetcv": 660, "multitasklasso": 661, "multitasklassocv": 662, "multivari": [115, 990], "murmurhash3_32": 966, "mutual": [158, 403], "mutual_info_classif": 605, "mutual_info_regress": 606, "mutual_info_scor": 756, "my": 383, "n_featur": 50, "n_job": 383, "naiv": [44, 53, 62, 63, 1002], "naive_bay": [33, 1039, 1041, 1042, 1043, 1044, 1046, 1047, 1051], "name": [151, 315, 383, 404, 1000], "nan": 990, "nan_euclidean_dist": 770, "nativ": [143, 309, 312, 314, 319, 383], "ndcg_score": 757, "nearest": [180, 283, 284, 285, 286, 291, 294, 295, 312, 990, 1003], "nearestcentroid": 852, "nearestneighbor": 853, "necessari": 376, "need": 383, "neg": [55, 120, 163, 203, 408, 996], "neighbor": [34, 180, 225, 283, 284, 285, 286, 291, 295, 308, 312, 990, 997, 1003, 1039, 1040, 1041, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050], "neighborhood": [291, 292, 293, 1003], "neighborhoodcomponentsanalysi": 854, "nest": [268, 404], "net": [192, 197, 996], "netbsd": 389, "network": [180, 184, 297, 1004, 1005], "neural": [180, 184, 297, 1004, 1005], "neural_network": [35, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1050, 1051], "new": [312, 314, 315, 317, 318, 371, 383, 1018, 1031, 1032, 1034, 1035, 1036, 1037, 1038], "newsgroup": [102, 346, 366], "newton": 321, "next": [53, 384], "nightli": 369, "nmf": [120, 316, 408, 537], "nnmf": 408, "nois": [173, 174, 191], "noisi": [123, 174, 210], "non": [44, 55, 120, 146, 203, 206, 210, 225, 260, 268, 320, 334, 341, 408, 996, 1010], "non_negative_factor": 544, "none": 354, "norm": 408, "normal": [70, 188, 206, 303, 307, 877, 892, 1000, 1010], "normalized_mutual_info_scor": 758, "note": [360, 399, 402, 407], "notfittederror": 575, "novelti": [289, 1006, 1015], "now": [312, 315, 1041], "number": [73, 93, 143, 149, 162, 275, 358, 373, 990], "numer": [183, 320, 359, 373], "numpi": [359, 376], "nusvc": 907, "nusvr": 908, "nystroem": [638, 992], "oa": [70, 109, 110, 416, 471], "object": [42, 233, 258, 373, 383, 989, 1000, 1028], "observ": 182, "obtain": [383, 407], "off": [257, 277, 996], "offici": 1050, "okcupid": 1024, "older": 1031, "olivetti": 366, "omp": 996, "one": [116, 143, 243, 996, 1000], "oneclasssvm": 909, "onehotencod": [316, 878], "onetoonefeaturemixin": 424, "onevsoneclassifi": [833, 1001], "onevsrestclassifi": [282, 834, 1001], "onli": [222, 1042, 1044], "onlin": [83, 315, 316, 1014], "onnx": 397, "oob": 138, "openml": [45, 309, 312, 365], "openmp": [359, 372], "oper": [42, 272, 273, 370, 380, 413, 1000], "optic": [98, 368, 403, 446], "optim": [30, 42, 377, 989], "optimis": 173, "option": 402, "oracl": 405, "ordin": 143, "ordinalencod": [318, 879], "ordinari": [204, 996], "org": [365, 375, 1024], "origin": [86, 125, 269, 293, 303], "orthogon": [205, 996], "orthogonal_mp": 684, "orthogonal_mp_gram": 685, "orthogonalmatchingpursuit": 663, "orthogonalmatchingpursuitcv": 664, "osx": [383, 389], "other": [309, 321, 365, 383, 410, 1019, 1031], "otto": 1024, "our": [91, 258, 261, 277, 371, 375], "out": [48, 145, 360, 379, 407, 989, 996, 1002], "outdat": 379, "outlier": [26, 49, 193, 222, 232, 242, 289, 290, 303, 996, 1006, 1010], "outliermixin": 425, "outlin": 1008, "output": [153, 241, 303, 317, 319, 352, 399, 1016], "outputcodeclassifi": [835, 1001], "over": 244, "overfit": 278, "overhead": 358, "oversubscript": 359, "overview": [280, 378, 397, 403, 1000, 1006], "ovo": 272, "ovr": 272, "own": [373, 383], "p": [407, 1024], "packag": [237, 1019, 1043], "paid": 1023, "pair": [126, 403], "pair_confusion_matrix": 715, "paired_cosine_dist": 771, "paired_dist": 772, "paired_euclidean_dist": 773, "paired_manhattan_dist": 774, "pairwis": [28, 44, 263, 320, 998], "pairwise_dist": 779, "pairwise_distances_argmin": 780, "pairwise_distances_argmin_min": 781, "pairwise_distances_chunk": 782, "pairwise_kernel": 775, "pairwisekernel": 619, "panda": [317, 376], "parallel": [42, 359, 377, 403, 410, 967, 989], "paramet": [30, 42, 47, 109, 146, 261, 262, 276, 314, 335, 342, 371, 384, 385, 404, 410, 989, 996, 1000, 1015], "parametergrid": 812, "parametersampl": 813, "parametr": 1005, "parametrize_with_check": 944, "pariba": 1024, "paristech": 1024, "pariti": 97, "parser": [317, 365], "part": [83, 412], "parti": [206, 239, 321, 389], "partial": [116, 182, 184, 243, 1007], "partial_depend": 632, "partialdependencedisplai": 631, "partit": 188, "passiv": 996, "passiveaggressiveclassifi": 665, "passiveaggressiveregressor": 666, "past": 0, "patch": [123, 411], "patchextractor": 581, "path": [150, 197, 201, 211, 353, 389], "pattern": 130, "pca": [45, 91, 105, 120, 121, 124, 125, 126, 127, 128, 308, 319, 320, 408, 538, 1017], "pdp": 184, "peerindex": 1024, "penalti": [199, 216, 342], "peopl": [0, 383, 1031, 1032, 1033, 1034], "per": 347, "percentag": 1000, "percentil": 338, "perceptron": [184, 298, 322, 667, 996, 1004], "perform": [73, 78, 262, 266, 308, 314, 316, 320, 324, 347, 358, 371, 372, 403, 407], "period": [44, 207], "permiss": 383, "permut": [141, 185, 186, 269, 312, 407, 1008], "permutation_import": 633, "permutation_test_scor": 830, "perplex": 230, "persist": 397, "phimeca": 1024, "pickl": 397, "pictur": 80, "pinbal": 1000, "pipelin": [36, 101, 102, 104, 105, 154, 160, 180, 183, 234, 239, 244, 262, 264, 309, 321, 338, 383, 384, 404, 412, 865, 1017, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1050, 1051], "pitfal": [183, 354], "pl": 115, "plai": 338, "plan": 383, "plant": 368, "platform": [369, 379, 389], "plot": [22, 28, 41, 47, 48, 50, 59, 62, 67, 71, 74, 76, 81, 82, 83, 90, 96, 97, 99, 100, 109, 113, 115, 118, 121, 122, 126, 135, 140, 142, 147, 150, 154, 156, 162, 179, 184, 190, 191, 194, 201, 202, 204, 210, 211, 214, 226, 233, 237, 242, 243, 245, 253, 259, 265, 267, 270, 272, 282, 290, 301, 309, 312, 314, 315, 322, 324, 328, 332, 333, 338, 339, 346, 351, 352, 378, 995, 1007, 1028], "plot_tre": 919, "pls1": 115, "pls2": 115, "plscanon": [406, 479], "plsregress": [406, 480], "plssvd": [406, 481], "point": [122, 184, 257, 277, 293, 397], "poisson": [206, 223, 313, 314, 1000], "poissonregressor": 668, "polar": [53, 319], "polici": 371, "polynomi": [44, 188, 190, 191, 207, 339, 992, 996, 998, 1010], "polynomial_kernel": 776, "polynomialcountsketch": [314, 639], "polynomialfeatur": 880, "posit": [120, 315], "possibl": [90, 376], "post": [30, 257, 266, 277, 350, 402], "post1": 1041, "posterior": 176, "power": [116, 206], "power_transform": 893, "powertransform": [303, 881], "pr": 370, "practic": [263, 354, 372, 376, 997, 1004, 1014, 1015, 1016], "pre": [165, 266, 354, 384], "precis": [270, 1000], "precision_recall_curv": 783, "precision_recall_fscore_support": 784, "precision_scor": 785, "precisionrecalldisplai": [233, 700], "precomput": [129, 192, 312, 408], "predefin": [407, 1000], "predefinedsplit": 814, "predict": [44, 50, 53, 62, 116, 135, 146, 155, 156, 168, 182, 191, 206, 238, 257, 259, 270, 324, 352, 358, 383, 384, 402, 407, 413, 1000, 1011], "predictionerrordisplai": 701, "predictor": 154, "premium": 223, "prepar": [120, 135, 144, 149, 188, 204, 225, 228, 272, 273, 308, 335], "preprocess": [37, 147, 154, 180, 183, 184, 242, 244, 302, 348, 354, 383, 1010, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "preprocessor": 184, "preserv": 379, "preval": 266, "princip": [56, 116, 126, 408, 1017], "print": 262, "prior": [54, 176, 248], "privat": 1048, "probabilist": [67, 127, 155, 168, 408, 413], "probabl": [62, 63, 64, 67, 170, 401, 410, 1015], "problem": [183, 257, 408, 1015, 1016], "process": [166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 180, 183, 354, 386, 413, 999], "process_rout": 961, "processor": 384, "product": [176, 223, 379, 383, 397, 413, 620], "profil": 377, "project": [0, 67, 116, 125, 128, 236, 373, 383, 1012, 1017, 1019], "pronounc": 383, "propag": [52, 74, 324, 325, 326, 403, 1013], "proper": [53, 172], "properti": 385, "propos": 386, "provid": 376, "prune": [312, 350, 1016], "public": 1041, "publica": 1024, "pull": [371, 375, 379, 383], "pure": 223, "purpos": [210, 348, 1020], "pursuit": [205, 996], "pypi": [383, 1050], "pytest": 379, "python": [237, 359, 377, 1018, 1019], "pytorch": 399, "qda": [71, 994], "quadrat": [71, 176, 413, 994], "quadraticdiscriminantanalysi": 547, "qualit": [44, 53], "qualiti": [347, 1000], "quantifi": [347, 1000], "quantil": [53, 146, 149, 208, 315, 316, 996], "quantile_transform": 894, "quantileregressor": [208, 669], "quantiletransform": [303, 882], "quantit": 67, "quantiz": 86, "question": [383, 1023], "r2_score": 786, "r_regress": 607, "radial": [176, 413, 992], "radius_neighbors_graph": 859, "radiusneighborsclassifi": 855, "radiusneighborsregressor": 856, "radiusneighborstransform": 857, "rand": 403, "rand_scor": 787, "random": [42, 56, 120, 138, 140, 152, 153, 185, 186, 236, 245, 269, 271, 319, 352, 354, 373, 380, 407, 408, 410, 989, 996, 1012, 1017], "random_project": [38, 1045], "random_st": 383, "randomforestclassifi": 561, "randomforestregressor": 562, "randomized_range_find": 948, "randomized_svd": 949, "randomizedsearchcv": 815, "randomli": 118, "randomst": 354, "randomtreesembed": 563, "rang": 1010, "rangespan": 1024, "rank": [28, 206, 1000], "ransac": [209, 996], "ransacregressor": 670, "rate": 410, "ratio": [266, 1000], "ration": [176, 413], "rationalquadrat": 622, "rbf": [237, 334, 335, 339, 413, 621, 998, 1015], "rbf_kernel": 777, "rbfsampler": 640, "rcv1": 366, "reachabl": 403, "read": 371, "real": [43, 49, 107, 180, 366], "recal": [270, 1000], "recall_scor": 788, "receiv": [272, 273, 1000], "recent": 1, "recogn": 69, "recognit": [46, 366, 368], "recommend": [354, 1019], "reconstruct": [45, 54, 123], "reconstruct_from_patches_2d": 585, "recov": 190, "recurs": [161, 162, 412], "redirect": 56, "reduc": [91, 358], "reduct": [104, 225, 229, 244, 292, 308, 347, 994, 1003, 1017], "refer": [2, 51, 63, 65, 112, 123, 137, 188, 194, 280, 296, 375, 413], "refit": [257, 261], "regard": [257, 402], "region": [80, 263], "regress": [26, 28, 44, 53, 105, 107, 115, 116, 135, 146, 147, 156, 167, 172, 173, 174, 175, 190, 191, 198, 199, 200, 201, 204, 206, 208, 220, 222, 223, 235, 238, 295, 341, 352, 367, 404, 413, 991, 993, 996, 1000, 1001, 1003, 1004, 1014, 1015, 1016], "regressor": [26, 50, 135, 146, 190, 210, 310, 312, 315, 410], "regressorchain": [839, 1001], "regressormixin": 426, "regressortag": 923, "regular": [78, 109, 148, 183, 201, 210, 211, 276, 298, 342, 996, 1004], "reinforc": 383, "relat": [44, 48, 1008, 1019, 1038], "releas": [180, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 375, 389, 1029], "relev": [111, 194, 996], "remark": [44, 90, 229, 236], "remot": 379, "remov": [383, 412, 1010, 1031], "repeat": [354, 404, 407], "repeatedkfold": 816, "repeatedstratifiedkfold": 817, "replac": 179, "repli": 379, "replic": 397, "report": [371, 376, 1000], "repositori": 365, "represent": [126, 184, 234, 313, 322, 358, 373, 411], "reproduc": [354, 376], "request": [371, 375, 379, 383], "resampl": 970, "rescal": 308, "reshap": 358, "resolv": 371, "resourc": [275, 359, 371, 1018, 1023], "respect": 266, "respons": [115, 386], "rest": [200, 272], "restart": 377, "restrict": [301, 1005], "result": [47, 48, 59, 65, 74, 81, 82, 83, 90, 91, 96, 97, 109, 111, 113, 121, 122, 135, 140, 154, 156, 179, 188, 194, 204, 211, 238, 242, 262, 267, 282, 290, 309, 322, 328, 341, 347, 352, 354, 989], "retriev": [52, 312], "reuter": 48, "review": [370, 371, 379], "rfe": 591, "rfecv": 592, "rich": [234, 313], "ridg": [167, 191, 193, 204, 210, 211, 238, 310, 671, 993, 996], "ridge_regress": 686, "ridgeclassifi": 673, "ridgeclassifiercv": 674, "ridgecv": 672, "right": 391, "roadmap": 1020, "robust": [26, 88, 111, 112, 190, 209, 212, 354, 405, 989, 996], "robust_scal": 895, "robustscal": [303, 883], "roc": [245, 260, 272, 273, 312, 322, 1000], "roc_auc_scor": 789, "roc_curv": 790, "roccurvedisplai": [233, 702], "role": 386, "roll": [100, 229, 373], "root_mean_squared_error": 791, "root_mean_squared_log_error": 792, "rotat": 130, "rout": [42, 239, 318, 319, 321, 385, 394, 1048, 1049, 1050, 1051, 1052], "routin": [48, 359, 380], "rule": [996, 1000], "run": [47, 91, 267], "runtim": 319, "r\u00b2": 1000, "sa": 242, "safe": 996, "safe_mask": 971, "safe_sparse_dot": 950, "safe_sqr": 972, "sampl": [10, 42, 59, 74, 88, 96, 109, 121, 122, 159, 192, 218, 238, 264, 276, 295, 313, 341, 344, 365, 380, 385, 410, 996], "sample_without_replac": 969, "saniti": 379, "save": 383, "scalabl": [188, 265, 313], "scale": [88, 183, 225, 228, 308, 342, 360, 401, 896, 997, 1006, 1010, 1017], "scaler": 303, "scatter": 115, "scenario": 996, "scientif": 1018, "scikit": [0, 42, 239, 258, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 357, 358, 369, 372, 373, 375, 376, 383, 386, 389, 1018, 1019, 1020, 1024, 1027], "scipi": [359, 1048], "score": [56, 115, 140, 162, 179, 190, 253, 262, 269, 270, 338, 394, 399, 403, 407, 995, 1000, 1015], "scorer": 1000, "screen": 996, "script": 376, "search": [244, 261, 262, 263, 271, 274, 280, 384, 989], "second": [49, 73], "secur": [397, 1049], "segment": [80, 99], "select": [26, 28, 87, 93, 104, 127, 157, 159, 162, 163, 180, 196, 198, 202, 253, 255, 338, 383, 394, 398, 407, 412, 989, 996, 1037], "selectfdr": 593, "selectfpr": 594, "selectfrommodel": [412, 595], "selectfw": 596, "selectkbest": 597, "selectormixin": 599, "selectpercentil": 598, "self": [314, 327, 1013], "selftrainingclassifi": 902, "semant": 408, "semi": [180, 323, 324, 328, 329, 1013], "semi_supervis": [39, 1041, 1042, 1043, 1047, 1050], "sen": [222, 996], "sens": 54, "sensit": 257, "separ": [121, 217, 336, 337], "sequenc": [175, 383], "sequenti": [163, 412], "sequentialfeatureselector": [314, 600], "seri": [53, 202, 407], "serv": 397, "set": [49, 107, 109, 154, 165, 179, 210, 257, 262, 270, 320, 322, 335, 350, 383, 402, 407, 996], "set_config": 903, "set_output": [246, 317, 319, 373], "set_param": 373, "setuptool": 1050, "sever": [223, 227], "sgd": [214, 215, 216, 217, 218, 996, 1014], "sgdclassifi": 675, "sgdoneclasssvm": 676, "sgdregressor": 677, "shape": 230, "share": [44, 53, 184], "shift": [96, 403], "should": [383, 1000], "show": 272, "show_vers": 904, "shrinkag": [109, 405, 410, 994], "shrunk": 405, "shrunk_covari": 477, "shrunkcovari": 472, "shrunken": 1003, "shuffl": [407, 973], "shufflesplit": 818, "sigmoid": [339, 401, 998], "sigmoid_kernel": 778, "signal": [194, 408], "signific": 269, "silhouett": [93, 403], "silhouette_sampl": 793, "silhouette_scor": 794, "similar": [175, 998, 1000], "simpl": [132, 167, 239, 288, 377], "simpleimput": [320, 629], "simul": 182, "sine": [176, 254, 413], "singl": [137, 154, 223, 233, 367, 403, 990], "single_source_shortest_path_length": 955, "singular": [56, 408], "sinusoid": 191, "size": 410, "sketch": 992, "skew": 992, "skewedchi2sampl": 641, "sklearn": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "sklearn_assume_finit": 359, "sklearn_build_enable_debug_symbol": 359, "sklearn_enable_debug_cython_direct": 359, "sklearn_pairwise_dist_chunk_s": 359, "sklearn_run_float32_test": 359, "sklearn_se": 359, "sklearn_skip_network_test": 359, "sklearn_tests_global_random_se": 359, "sklearn_warnings_as_error": 359, "sklearn_working_memori": 359, "skop": 397, "slep": 386, "smacof": 694, "small": 376, "sne": [230, 997], "so": 383, "social": 1023, "soft": 410, "solido": 1024, "solut": 90, "solver": [321, 408, 996], "some": 338, "someth": 376, "sometim": 383, "sort_graph_by_row_valu": 860, "sourc": [102, 121, 369], "space": [52, 125, 404, 989, 997], "spam": 383, "spars": [42, 113, 120, 129, 183, 194, 195, 220, 312, 319, 322, 346, 347, 380, 405, 408, 412, 1010, 1012, 1014, 1048], "sparse_encod": 545, "sparsecod": 539, "sparsefunc": 1040, "sparsepca": [408, 540], "sparserandomproject": 898, "sparsiti": [199, 411], "spawn": 359, "speci": [51, 296, 366], "special": 348, "specif": [272, 369, 989, 1019], "specifi": [151, 383, 989], "spectral": [58, 59, 60, 99, 225, 400, 403, 997], "spectral_clust": 458, "spectral_embed": 695, "spectralbiclust": [59, 447], "spectralclust": 448, "spectralcoclust": 449, "spectralembed": 691, "speed": [50, 377], "sphere": 227, "sphinx": 371, "spiral": 100, "spline": [44, 207, 315, 1010], "splinetransform": 884, "split": [143, 314, 354, 407], "splitter": [30, 354], "sponsor": 0, "spotifi": 1024, "sprint": 0, "squar": [116, 146, 176, 203, 204, 210, 413, 992, 996, 998, 1000], "stabil": 313, "stabl": 315, "stack": [154, 312, 410], "stackingclassifi": 564, "stackingregressor": 565, "stall": 371, "standard": [379, 1010], "standardscal": [303, 885], "start": [383, 384], "statement": 1020, "statist": [263, 1019], "statlog": 257, "statu": 394, "std": 190, "step": [44, 244, 375, 384, 404], "stochast": [213, 219, 225, 299, 996, 997, 1005, 1014], "stock": 52, "stop": [144, 149, 213, 411, 1014], "strategi": [86, 261, 280, 299, 306, 318, 320, 360, 403], "stratif": 407, "stratifi": 407, "stratifiedgroupkfold": [407, 819], "stratifiedkfold": 820, "stratifiedshufflesplit": 821, "stream": 360, "string": [383, 1000], "strip": 346, "strong": 193, "strongli": 1008, "structur": [52, 81, 100, 175, 326, 353], "studi": 242, "submit": 371, "subsampl": 410, "subscript": 320, "subtleti": 354, "success": [274, 275, 314, 989], "sum": 623, "summar": 397, "summari": [63, 144, 198, 347, 348, 397, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038], "supervis": [180, 323, 324, 328, 329, 1004, 1013, 1022], "support": [63, 143, 149, 180, 202, 309, 312, 313, 314, 315, 317, 318, 319, 321, 322, 330, 333, 341, 383, 389, 394, 399, 401, 410, 1015, 1016, 1023, 1048, 1049, 1050, 1051, 1052], "surfac": [142, 237, 351], "svc": [245, 339, 342, 910, 1015], "svd": [56, 120, 408], "svm": [40, 46, 159, 160, 188, 219, 237, 315, 329, 331, 332, 334, 335, 336, 337, 338, 339, 340, 343, 344, 996, 1006, 1014, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1049, 1051], "svmlight": 365, "svr": [238, 341, 911, 1015], "swag": 0, "swiss": [100, 229], "switch": 359, "symmetr": 115, "synthet": [62, 107, 190, 194, 260, 310, 376], "system": 369, "t": [225, 230, 997], "tabl": 383, "tag": [369, 371, 373, 924], "take": 263, "takeawai": 206, "talk": 1018, "tangent": 997, "target": [42, 107, 143, 174, 223, 309, 310, 352, 383, 385, 404, 1001, 1010, 1011], "targetencod": [318, 886], "targettag": 925, "task": [26, 202, 352, 996, 1019], "team": [0, 370], "technic": 386, "techniqu": 226, "temperatur": 401, "templat": 373, "tensor": 992, "term": [347, 385, 411], "test": [45, 109, 158, 266, 269, 276, 346, 350, 371, 373, 379, 380, 407], "text": [17, 48, 180, 234, 264, 328, 345, 346, 347, 348, 366, 411], "tf": 411, "tfidftransform": 588, "tfidfvector": [347, 348, 589], "than": [321, 383], "theil": [222, 996], "theilsenregressor": 678, "them": [123, 370], "theoret": 236, "thi": [210, 1020], "third": [206, 239, 321, 389], "thread": [321, 359, 1050], "threshold": [165, 257, 277, 320, 327, 402], "throughput": [50, 358], "tie": 343, "time": [44, 53, 140, 202, 237, 238, 346, 407, 1021], "timeseriessplit": 822, "tip": [358, 372, 379, 989, 997, 1004, 1014, 1015, 1016], "togeth": [243, 272], "toi": [79, 95, 232, 368], "toler": 163, "tomographi": 54, "too": 359, "tool": [380, 383, 399], "top": [347, 1000], "top_k_accuracy_scor": 795, "topic": 55, "total": [152, 350, 410], "tough": 370, "toward": 322, "track": [379, 404], "tracker": [371, 1023], "trade": 996, "tradeoff": [260, 1000], "train": [134, 135, 144, 147, 150, 156, 162, 200, 210, 233, 238, 242, 243, 245, 253, 276, 280, 301, 309, 310, 314, 327, 335, 339, 346, 350, 351, 353, 397, 407, 1003, 1013], "train_test_split": 831, "transform": [102, 103, 104, 107, 115, 139, 152, 244, 314, 315, 316, 321, 363, 383, 384, 404, 1003, 1010, 1011, 1012], "transformedtargetregressor": 461, "transformermixin": 427, "transformertag": 926, "translat": 1019, "tree": [41, 134, 135, 139, 141, 142, 149, 152, 180, 185, 206, 312, 317, 318, 319, 321, 349, 350, 351, 352, 353, 383, 410, 412, 1003, 1008, 1016, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1052], "triag": 370, "trick": [358, 377, 379, 411], "trigonometr": 44, "troubleshoot": 389, "true": [190, 191], "truncat": 408, "truncatedsvd": 541, "trustworthi": 696, "truth": [73, 190], "tsne": [283, 692], "tune": [30, 146, 257, 261, 264, 277, 314, 320, 402, 989], "tunedthresholdclassifiercv": [320, 823], "tutori": 1018, "tweedi": [223, 1000], "tweedieregressor": [223, 679], "two": [99, 136, 195, 243, 263], "type": [103, 248, 372, 373, 383, 385, 399, 403], "type_of_target": 964, "typic": 370, "t\u00e9l\u00e9com": 1024, "u": 0, "ubuntu": 389, "uci": 280, "unbalanc": [337, 1015], "uncertain": 324, "uncertainti": 53, "unclaim": 371, "undefinedmetricwarn": 576, "under": [175, 383, 1047], "underfit": 278, "understand": 353, "unfold": 379, "uniform": [303, 1010], "unique_label": 965, "univari": [87, 115, 159, 338, 412, 990], "univers": 373, "unlabel": 1013, "unless": 376, "unsupervis": [1003, 1005, 1017, 1025], "unweight": 394, "up": [262, 1006], "updat": [375, 1041], "us": [45, 46, 52, 56, 100, 120, 121, 123, 151, 152, 154, 163, 165, 172, 209, 219, 221, 263, 267, 272, 282, 304, 341, 346, 347, 353, 354, 360, 372, 376, 377, 379, 383, 407, 408, 411, 412, 994, 996, 997, 1000, 1004, 1014, 1015, 1016, 1024, 1041], "usabl": 383, "usag": [377, 383, 394, 399, 401, 404, 410, 411, 996], "user": [1023, 1026], "util": [42, 364, 376, 380, 1028, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "v": [87, 109, 110, 112, 116, 125, 162, 184, 185, 193, 200, 223, 266, 272, 278, 350, 403, 410, 990], "v_measure_scor": 796, "valgrind": [377, 379], "valid": [30, 42, 44, 162, 198, 236, 257, 258, 259, 261, 262, 266, 268, 273, 322, 338, 354, 358, 373, 380, 402, 407, 989, 995, 996], "validate_data": 988, "validation_curv": 832, "validationcurvedisplai": [318, 824], "valu": [149, 163, 177, 178, 179, 180, 230, 239, 312, 318, 319, 321, 353, 371, 408, 410, 990, 1008, 1010, 1016], "vanilla": [257, 277], "vari": [73, 298, 327, 403], "variabl": [26, 115, 182, 183, 359, 383], "varianc": [137, 204, 412, 1000, 1010], "variancethreshold": 601, "variant": 178, "variat": [248, 999], "variou": [50, 85, 230, 383], "vector": [56, 63, 86, 180, 330, 333, 341, 346, 348, 411, 1015], "version": [316, 365, 369, 371, 375, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052], "versu": [137, 219, 268, 329, 358], "via": [45, 53, 86, 196, 198, 223, 410, 992, 1000], "video": [371, 1018], "visual": [5, 30, 52, 91, 130, 144, 155, 200, 233, 238, 245, 258, 262, 300, 313, 335, 403, 404, 1000, 1028], "vote": [156, 410], "votingclassifi": [155, 566], "votingregressor": 567, "wage": [182, 183], "wai": [184, 371, 383], "ward": [81, 403], "ward_tre": 459, "warm": 377, "warm_start": 1004, "warn": 380, "weak": [134, 410], "web": 321, "websit": [375, 1041], "weight": [42, 134, 190, 192, 218, 300, 313, 344, 394, 410, 411], "weighted_mod": 951, "what": [353, 383], "when": 257, "which": [996, 1000], "whitekernel": 624, "who": 1024, "why": [383, 410], "wikipedia": 56, "wild": 366, "window": [369, 389], "wine": 368, "winpython": 389, "wisconsin": 368, "within": 104, "without": [100, 291, 346], "wolf": [70, 110, 405], "word": [346, 411], "work": [42, 180, 345, 358, 370, 383], "workflow": [370, 397], "world": [43, 107, 180, 366], "wrap": 282, "written": 69, "wrong": [183, 383], "x": [222, 321], "x86_64": 379, "xor": [171, 339, 413], "y": [222, 383, 1011, 1013], "yeast": 280, "yep": 377, "yhat": 1024, "you": 383, "your": [373, 376], "zero": 1000, "zero_one_loss": 797, "zopa": 1024}})