{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Demo of DBSCAN clustering algorithm\n\nFinds core samples of high density and expands clusters from them.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n\nfrom sklearn.cluster import DBSCAN\nfrom sklearn import metrics\nfrom sklearn.datasets import make_blobs\nfrom sklearn.preprocessing import StandardScaler" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Generate sample data\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "centers = [[1, 1], [-1, -1], [1, -1]]\nX, labels_true = make_blobs(\n n_samples=750, centers=centers, cluster_std=0.4, random_state=0\n)\n\nX = StandardScaler().fit_transform(X)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Compute DBSCAN\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "db = DBSCAN(eps=0.3, min_samples=10).fit(X)\ncore_samples_mask = np.zeros_like(db.labels_, dtype=bool)\ncore_samples_mask[db.core_sample_indices_] = True\nlabels = db.labels_\n\n# Number of clusters in labels, ignoring noise if present.\nn_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)\nn_noise_ = list(labels).count(-1)\n\nprint(\"Estimated number of clusters: %d\" % n_clusters_)\nprint(\"Estimated number of noise points: %d\" % n_noise_)\nprint(\"Homogeneity: %0.3f\" % metrics.homogeneity_score(labels_true, labels))\nprint(\"Completeness: %0.3f\" % metrics.completeness_score(labels_true, labels))\nprint(\"V-measure: %0.3f\" % metrics.v_measure_score(labels_true, labels))\nprint(\"Adjusted Rand Index: %0.3f\" % metrics.adjusted_rand_score(labels_true, labels))\nprint(\n \"Adjusted Mutual Information: %0.3f\"\n % metrics.adjusted_mutual_info_score(labels_true, labels)\n)\nprint(\"Silhouette Coefficient: %0.3f\" % metrics.silhouette_score(X, labels))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot result\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n\n# Black removed and is used for noise instead.\nunique_labels = set(labels)\ncolors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(unique_labels))]\nfor k, col in zip(unique_labels, colors):\n if k == -1:\n # Black used for noise.\n col = [0, 0, 0, 1]\n\n class_member_mask = labels == k\n\n xy = X[class_member_mask & core_samples_mask]\n plt.plot(\n xy[:, 0],\n xy[:, 1],\n \"o\",\n markerfacecolor=tuple(col),\n markeredgecolor=\"k\",\n markersize=14,\n )\n\n xy = X[class_member_mask & ~core_samples_mask]\n plt.plot(\n xy[:, 0],\n xy[:, 1],\n \"o\",\n markerfacecolor=tuple(col),\n markeredgecolor=\"k\",\n markersize=6,\n )\n\nplt.title(\"Estimated number of clusters: %d\" % n_clusters_)\nplt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 0 }