{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Demo of affinity propagation clustering algorithm\n\nReference:\nBrendan J. Frey and Delbert Dueck, \"Clustering by Passing Messages\nBetween Data Points\", Science Feb. 2007\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from sklearn.cluster import AffinityPropagation\nfrom sklearn import metrics\nfrom sklearn.datasets import make_blobs\n\n# #############################################################################\n# Generate sample data\ncenters = [[1, 1], [-1, -1], [1, -1]]\nX, labels_true = make_blobs(\n n_samples=300, centers=centers, cluster_std=0.5, random_state=0\n)\n\n# #############################################################################\n# Compute Affinity Propagation\naf = AffinityPropagation(preference=-50, random_state=0).fit(X)\ncluster_centers_indices = af.cluster_centers_indices_\nlabels = af.labels_\n\nn_clusters_ = len(cluster_centers_indices)\n\nprint(\"Estimated number of clusters: %d\" % n_clusters_)\nprint(\"Homogeneity: %0.3f\" % metrics.homogeneity_score(labels_true, labels))\nprint(\"Completeness: %0.3f\" % metrics.completeness_score(labels_true, labels))\nprint(\"V-measure: %0.3f\" % metrics.v_measure_score(labels_true, labels))\nprint(\"Adjusted Rand Index: %0.3f\" % metrics.adjusted_rand_score(labels_true, labels))\nprint(\n \"Adjusted Mutual Information: %0.3f\"\n % metrics.adjusted_mutual_info_score(labels_true, labels)\n)\nprint(\n \"Silhouette Coefficient: %0.3f\"\n % metrics.silhouette_score(X, labels, metric=\"sqeuclidean\")\n)\n\n# #############################################################################\n# Plot result\nimport matplotlib.pyplot as plt\nfrom itertools import cycle\n\nplt.close(\"all\")\nplt.figure(1)\nplt.clf()\n\ncolors = cycle(\"bgrcmykbgrcmykbgrcmykbgrcmyk\")\nfor k, col in zip(range(n_clusters_), colors):\n class_members = labels == k\n cluster_center = X[cluster_centers_indices[k]]\n plt.plot(X[class_members, 0], X[class_members, 1], col + \".\")\n plt.plot(\n cluster_center[0],\n cluster_center[1],\n \"o\",\n markerfacecolor=col,\n markeredgecolor=\"k\",\n markersize=14,\n )\n for x in X[class_members]:\n plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)\n\nplt.title(\"Estimated number of clusters: %d\" % n_clusters_)\nplt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 0 }