
1

1

Procedural approaches towards Maximal
Extracted Value

Alexander Sandy Bradley1,2, Sam Bacha1,2, and et al1

1 Manifold Finance, Inc
2 CommodityStream, Ltd.

{sandy,sam}@manifoldfinance.com
janitor@manifoldfinance.com

Keywords: MEV, · Miner Extractable Value · trade optimization, · EVM ·
uniswap · sushiswap · ethereum · formal verification

⋆ Thanks to Johannes, Kitsuana, et al

Table of Contents

Procedural approaches towards Maximal Extracted Value 2
Alexander Sandy Bradley, Sam Bacha, and et al

2 Protocol Specification . 4

3 Mathematical Model . 7

4 Equivalence Checking . 11

5 Math Libraries and BigInt support . 14

6 Bibliography . 17

2

Protocol Specification

Abstract.

MEV is sucks.
MEV suck, Sandwiches sucks,

use OpenMEVs.3

1 Motivation

see Abstract .

1.1 Design

The Original design for the router was to use flashloans only to arbitrage then
immediately distribute profits to hard coded addresses. Apart from the issue
of hard coded addresses, this setup was inefficient because of small amounts
frequently being split and transferring to multiple addresses being expensive. This
opened the possibility of leaving profits to accumulate on the router. Furthermore
it provides a way to arbitrage without a flashloan, saving gas and the loan fee
(i.e. more profit, less gas). Additionally, the harvesting profits means ownership
control of the router. A more robust 2 step process was chosen to control and
transfer router ownership and harvest control. Ideal setup would be multisig
consensus ownership.4

3 Bacha, Sam ”MEV is essentially looking for the reachable state where their balance
is maximized. Given any arbitrary re-ordering, insertion or censorship of pending or
existing transactions, this can suck, suck real hard.”

4 Ownership control of the router is not an issue, as a new router can be used or
fallback to the legacy router contract.

Procedural approaches towards Maximal Extracted Value 5

2 Requirements

2.1 Security properties

In following the standards set forth by the UniswapV02/SushiswapV01 router
contracts, the SushiswapV02 router contracts are intended to be safe to use with:

Potentially re-entrant tokens Tokens that do not return from transfer Patho-
logical Tokens The SushiswapV02 router contracts are not intended to be used
tokens that exhibit the following behavior Tokens that exhibit a discretizing
inflation curve Tokens that exhibit an ’unowned’ supply Tokens that implement
user defined types for standard mathematical operations Numerical error analysis
The engineering team would like to request a review of the numerical error in-
curred during contract execution, with a focus on the desirable invariant proposed
by both the development team and auditors. Examples include any significant
rounding error, if any, in a swap, favors the pool. etc.

2.2 Conformant Algorithms

Conformant Algorithms Our requirements are phrased in the imperative, as such,
part of algorithms (such as ”strip any leading space characters” or ”return false
and abort these steps”) are to be interpreted with the meaning of the RFC/EIP
defined key words (”must”, ”should”, ”may”, etc) used in introducing algorithms

Conformance requirements phrased as algorithms or specific steps that can
be implemented in any manner, so long as the end result are equivalent. In
particular, the algorithms defined in this specification are intended to be easy to
understand and are not necessarily intended to be performant. Implementers are
encouraged to either: switch to an L2, optimize, or use Vyper5.

3 Swap Execution

Presented herein, a derivation of optimal arbitrage between 2 Constant Product
Automated Market Maker (CPAAM), Decentralized Exchanges (DEXs) for usage
in procedural processes that enable value extraction (i.e. MEV). This math is
applied in the new Sushiswap router for at the source of Miner Extractable
Value (MEV). These trades post user swaps atomically. Profits are distributed to
liquidity providers, in turn giving users better rates. Extracting MEV at source
protects user trades from front-run attacks inherently and helps prevent fee spikes
from attackers.

Slippage: The amount of price impact that a liquidator engenders when
trying to sell collateral. Slippage is denoted ∆p(q) and is formally defined as the

5 Vyperlang: https://vyper.readthedocs.io/en/stable/

6 Alexander Sandy Bradley, Sam Bacha, and et al

difference between the midpoint price at time t, pmid (t) and the execution price,
pexec (q, t) for a traded quantity q at time

t,∆p(q, t) = pmid (t)− pexec (q, t)

. This quantity is usually a function of other variables, such as implied and
realized volatility. 6

3.1 Router Implementation

As a general approach to security, deviation from current UniswapV2Router was
kept to a minimum. Pair contract calls should be consistent with the existing
router. Reliance on the new router storing and transferring tokens brings in a new
attack vector. A robust Ownership setup, as above, was chosen to mitigate this
threat along with reduction of functions accessing the funds. 2 helper libraries were
also chosen from solmate to supersede UniswapV2Helper libraries for security.

safeTransferLib ERC20 Since UniswapV2Router was not designed to store
tokens, some functions are not compatible and had to be changed. E.g.

removeLiquidityETHSupportingFeeOnTransferTokens

(, amountETH) = removeLiquidity(

token,

WETH,

liquidity,

amountTokenMin,

amountETHMin,

address(this),

deadline

);

TransferHelper.safeTransfer(token, to, IERC20(token).balanceOf(address(this)));

Changes to

uint256 balanceBefore = ERC20(token).balanceOf(address(this));

(, amountETH) = removeLiquidity(token, weth, liquidity, amountTokenMin, amountETHMin,

address(this),

deadline);

ERC20(token).safeTransfer(to, ERC20(token).balanceOf(address(this)) - balanceBefore);

6 Slippage is also known as market impact within academic literature.

3

Mathematical Model

The following sections describe the derivation of the optimal sizes for post user
swap arbitrage between UniswapV2 style exchanges.

7

4 Constant Product Automated Market Maker

Constant Product Automated Market Makers (CPAMMs) are smart contracts
for token liquidity pairs. UniswapV2 and SushiswapV1 are all governed by the
constant product formula given in equation 1.

k = RαRβ (1)

Where Rα corresponds to the Reserves of token α, Rβ to the Reserves of
token β within the pair contract and k the constant invariant.

A swap trading ∆β tokens for ∆α must satisfy equation 2.

k = (Rα −∆α)(Rβ + γ∆β) (2)

γ = 1− fee (3)

Where the fee on UniswapV02 and SushiswapV01 is 0.3% and 0.25% respec-
tively. For big integer math, equation 3 can be written in the form of equation
4.

γ =
997

1000
(4)

From equations 1 and 2 we can derive an equations for the expected amounts
out and in, given in equations 5 and 6.

amountOut : ∆α =
997Rα∆β

1000Rβ + 997∆β
(5)

amountIn : ∆β =
1000Rβ∆α

997(Rα −∆α)
(6)

7 Benchmarking contracts for establishing a baseline can be found here:
https://github.com/manifoldfinance/v2-periphery/tree/master/contracts

8 Alexander Sandy Bradley, Sam Bacha, and et al

Post swap, the new liquidity reserves are modified as shown in equations 7
and 8.

Rαnew = Rαold−∆α (7)

Rβnew = Rβold+∆β (8)

Therefore sequential swaps can be simulated off-chain in a deterministic way,
given the current liquidity state.

5 Minimal Procedural DEX Arbitrage

Establishing a minimal swap for DEX arbitrage consists of a single swap on one
DEX followed by the reverse swap on another.

Token amount swap path:

DEX0 : ∆β0 ⇒ ∆α0 (9)

DEX1 : ∆α0 ⇒ ∆β1 (10)

6 Optimal simple DEX arbitrage size

From equation 5, the definition of a simple DEX arbitrage for CPAMMs can be
written in the form of equations 11 and 12.

∆α0 =
997Rα0∆β0

1000Rβ0 + 997∆β0
(11)

∆β1 =
997Rβ1∆α0

1000Rα1 + 997∆α0
(12)

Profit of the arbitrage is simply the amount out of the second trade minus
the amount in of the first, shown by equation 13.

profit : y = ∆β1 −∆β0 (13)

Substituting equation 11 into equation 12, we get equation 14.

∆β1 =
997Rβ1

997Rα0∆β0

1000Rβ0+997∆β0

1000Rα1 + 997 997Rα0∆β0

1000Rβ0+997∆β0

(14)

=
9972Rβ1Rα0∆β0

(1000Rβ0 + 997∆β0)1000Rα1 + 9972Rα0∆β0
(15)

Since we are looking for the optimal amount In (∆β0), we can make the
following simplifications.

Procedural approaches towards Maximal Extracted Value 9

let x = ∆β0 (16)

let CA = 9972Rβ1Rα0 (17)

let CB = 10002Rβ0Rα1 (18)

let CC = 997000Rα1 (19)

let CD = 9972Rα0 (20)

Thus equation 15 can be reduced to equation 21.

∆β1 =
CAx

CB + x(CC + CD)
(21)

Therefore the profit (y), from equation 13 can be expressed in terms of the
amount In (x), shown in equation 22.

y =
CAx

CB + x(CC + CD)
− x (22)

=
CAx− x(CB + x(CC + CD))

CB + x(CC + CD)
(23)

=
x(CA − CB)− x2(CC + CD)

CB + x(CC + CD)
(24)

=
xCF − x2CG

CB + xCG
(25)

Where:

CF = CA − CB (26)

CG = CC + CD (27)

Maximum profit occurs at a turning point i.e. where the gradient or differential
is zero, shown in equation 28.

dy

dx
= 0 (28)

Since we have a complex equation for differentiating, we can use the quotient
rule from equation ??. Numerator and denominator differentials are shown in
equations 32 and 33.

10 Alexander Sandy Bradley, Sam Bacha, and et al

dy

dx
=

d f(x)
g(x)

dx
(29)

f(x) = xCF − x2CG (30)

g(x) = CB + xCG (31)

f(x)

dx
= CF − 2xCG (32)

g(x)

dx
= CG (33)

Combining the quotient rule with equation 28, we get equation 34, which
expands to equation 35.

f ′g = g′f (34)

(CF − 2xCG)(CB + xCG) = CG(xCF − x2CG) (35)

Equation 35 can be re-arranged to form a generic quadratic equation 36 and
so the parameters can be defined for the quadratic solution in equation 37.

x2C2
G + x(2CBCG)− CBCF = 0 (36)

Solution to the optimal simple DEX arbitrage size for a given swap is shown
in equation 37.

x∗ =
−(2CBCG)±

√
(2CBCG)2 − 4(C2

G)(−CBCF)

2C2
G

(37)

For positive roots only, this can be reduced to:

x∗ =
−CB +

√
C2

B + CBCF

CG
(38)

4

Equivalence Checking

6.1 Backrun placement

By definition, backruns must occur after user to user swap. From a design point
of view the simplest place to insert the backrun function would be in the internal

swap function which is called by the other swaps. However, some of the swap
variants eg swapTokensForExactETH perform user actions after swap is called.
This is not ideal, as we do not want to interfere with the user swap. Moreover, other
swap variants such as swapExactTokensForTokensSupportingFeeOnTransferTokens
do not use swap. Backrun functions were therefore placed at the end of each
external swap variant. E.g.

Fig. 1. Backrun Placement

function swapExactTokensForTokens(

uint amountIn,

uint amountOutMin,

address[] calldata path,

address to,

uint deadline

) external virtual override ensure(deadline) returns

(uint[] memory amounts) {

amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);

require(amounts[amounts.length - 1]

>= amountOutMin, 'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT');

TransferHelper.safeTransferFrom(

path[0], msg.sender,

UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]

);

_swap(amounts, path, to);

}

12 Alexander Sandy Bradley, Sam Bacha, and et al

Fig. 2. Backrun Implementation

function swapExactTokensForTokens(

uint amountIn,

uint amountOutMin,

address[] calldata path,

address to,

uint deadline

) external virtual override ensure(deadline) returns (uint[] memory amounts) {

amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);

require(amounts[amounts.length - 1] >= amountOutMin,

'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT');

TransferHelper.safeTransferFrom(

path[0],

msg.sender,

UniswapV2Library.pairFor(factory, path[0], path[1]), amounts[0]

);

_swap(amounts, path, to);

_backrunSwaps(path);

}

6.2 Multiple factories

Multiple factories (at least 2) are required for the backrun arbitrage. The adoption
of multiple factories within the router, lead to some internal function changes. In
particular pairFor.

// calculates the CREATE2 address for a pair without making any external calls

function pairFor(

address factory,

address tokenA,

address tokenB

)

internal pure returns (address pair) {

(address token0, address token1) = sortTokens(tokenA, tokenB);

pair = address(uint160(uint(keccak256(abi.encodePacked(

hex'ff',

factory,

keccak256(abi.encodePacked(token0, token1)),

// hard coded factory init code hash

hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f'

)))));

}

Procedural approaches towards Maximal Extracted Value 13

Changes to

Fig. 3. New Factories Implementation

function pairFor(address factory, address tokenA, address tokenB)

internal view returns (address pair) {

bytes memory factoryHash = factory

== SUSHI_FACTORY ? SUSHI_FACTORY_HASH : BACKUP_FACTORY_HASH;

(address token0, address token1) = _sortTokens(tokenA, tokenB);

pair = address(uint160(uint(keccak256(abi.encodePacked(

hex'ff',

factory,

keccak256(abi.encodePacked(token0, token1)),

factoryHash // init code hash

)))));

}

6.3 Fallback factory

Since the extra factory is required for the arbitrage, we can use it, for the user,
to check for an available swap on the alternate factory if it would otherwise fail
on the default factory through slippage.

amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);

require(amounts[amounts.length - 1]

>= amountOutMin, 'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT');

Changes to

Fig. 4. Fallback Factory Implementation

address factory = SUSHI_FACTORY;

amounts = _getAmountsOut(factory, amountIn, path);

if(amounts[amounts.length - 1] < amountOutMin){

// Change 1 -> fallback for insufficient output amount, check backup router

amounts = _getAmountsOut(BACKUP_FACTORY, amountIn, path);

require(amounts[amounts.length - 1]

>= amountOutMin, 'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT');

factory = BACKUP_FACTORY;

}

5

Math Libraries and BigInt support

These following sections describe testing various math libraries to accommodate
the additional calculations required of the router.

6.4 Uint256 overflow

Optimal arbitrage calculations were overflowing uint256. i.e.

uint Cd = reserve0Token1.mul(997).mul(997);

uint Cc = reserve1Token1.mul(997000);

uint Cb = reserve1Token1.mul(reserve0Token0).mul(1000).mul(1000);

uint Ca = reserve1Token0.mul(reserve0Token1).mul(997).mul(997);

uint Cf = Ca - Cb;

uint Cg = Cc + Cd;

uint a = Cg * Cg;

uint b = 2 * Cb * Cg;

uint c = Cb * Cf;

uint d = (b*b) + (4 * a * c);

would consistently overflow by uintb. Found out through individual checks:

unchecked {

uint a = Cg * Cg;

require(a/Cg == Cg,"a overflow");

uint b = 2 * Cb * Cg;

require(b/Cb == 2*Cg ,"b overflow");

uint c = Cb * Cf;

require(c/Cb == Cf,"c overflow");

uint d = (b*b) + (4 * a * c);

require(d/(b*b) == 4*a*c,"d overflow");

}

Procedural approaches towards Maximal Extracted Value 15

ABDKMath ABDKMath library was used for a time, as it avoided overflow by dropping to floats.8

bytes16 _Cg = ABDKMathQuad.fromUInt(Cg);

bytes16 _a = ABDKMathQuad.mul(_Cg, _Cg);

However we found this lost precision and failed echidna tests.

Fig. 5. Uint256 overflow:5

echidna_mulUint:

failed!

Call sequence:

setX1 (1106235220955)

setX (9390953368914254812617)

echidna_Uint_conversion:

failed!

Call sequence:

setX (10518526264810785485368401065708505)

echidna_divUint:

failed!

Call sequence:

setX (10417774989007224423389698535018119)

setX1 (1)

8 https : //github.com/abdk − consulting/abdk − libraries− solidity

16 Alexander Sandy Bradley, Sam Bacha, and et al

PRBMath We also tried PRBMath9 library. These performed better in echidna
tests but still suffered overflow issues.

Fig. 6. PRBMath

echidna_mulUint:

~ failed!

Call sequence:

setX1 (1106235220955)

setX (9390953368914254812617)

echidna_Uint_convertion:

~ failed!

Call sequence:

setX (10518526264810785485368401065708505)

echidna_divUint:

~ failed!

Call sequence:

setX (10417774989007224423389698535018119)

setX1 (1)

Uint512 Ultimately we settled on Uint512 which both passed echidna and overflow issue.10

Fig. 7. Uint512

echidna mulUint : ˜ passed !
ech idna d ivUint : ˜ passed !

7 Conclusions and Future Work

9 https://github.com/paulrberg/prb-math/
10 see github.com/SimonSuckut/SolidityU int512/blob/main/contracts/Uint512.sol

6

Bibliography

References

1. Sam Bacha, Sandy Bradley. OpenMEV source code, github.com/manifoldfinance/
OpenMevRouter. Last accessed 20 April 2022

2. Guillermo Angeris, Tarun Chitra, Alex Evans, Stephen Boyd Guillermo Angeris et
al. Optimal Routing for Constant Function Market Makers. arXiv:2204.05238 In
arXiv 1911.03380, 26 Jul 2021 Optimization and Control (math.OC); Trading and
Market Microstructure (q-fin.TR)

3. Guillermo Angeris et al. An analysis of Uniswap markets. 2019. arXiv: 1911.03380
An analysis of Uniswap markets. Mathematical Finance (q-fin.MF); Optimization
and Control; Trading and Market Microstructure (q-fin.TR) arXiv: 1911.03380,

4. Guillermo Angeris, Alex Evans, Tarun Chitra Replicating Market Makers Math-
ematical Finance (q-fin.MF); Optimization and Control; Trading and Market Mi-
crostructure (q-fin.TR) arXiv:2103.14769, 26 Mar 2021.

5. Guillermo Angeris, Alex Evans, Tarun Chitra Constant Function Market Mak-
ers: Multi-Asset Trades via Convex Optimization Mathematical Finance (q-
fin.MF); Optimization and Control; Trading and Market Microstructure (q-fin.TR)
arXiv:2107.12484 , 26 Jul 2021] https://doi.org/10.48550/arXiv.2107.12484

6. Guillermo Angeris, Tarun Chitra, Alex Evans, Stephen Boyd Optimal Routing for
Constant Function Market Makers Optimization and Control (math.OC); Trading
and Market Microstructure (q-fin.TR) arXiv:2204.05238, 11 Apr 2022] https://arxiv.
org/abs/2204.05238v1

7. Suckut, Simon Uint512 Solidity Library GitHub, 11 Apr 2022] $https://github.com/
SimonSuckut/Solidity Uint512/blob/main/contracts/Uint512.sol$

github.com/manifoldfinance/OpenMevRouter
github.com/manifoldfinance/OpenMevRouter
https://doi.org/10.48550/arXiv.2107.12484
https://arxiv.org/abs/2204.05238v1
https://arxiv.org/abs/2204.05238v1
$https://github.com/SimonSuckut/Solidity_Uint512/blob/main/contracts/Uint512.sol$
$https://github.com/SimonSuckut/Solidity_Uint512/blob/main/contracts/Uint512.sol$

	Procedural approaches towards Maximal Extracted Value
	Protocol Specification
	Mathematical Model
	Equivalence Checking
	Math Libraries and BigInt support
	Bibliography

