Skip to content

Commit fbc1e08

Browse files
author
Svetlana Karslioglu
authored
Merge branch 'main' into i876
2 parents 329ae37 + 64dc702 commit fbc1e08

16 files changed

+170
-118
lines changed

.github/PULL_REQUEST_TEMPLATE.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,4 +8,4 @@ Fixes #ISSUE_NUMBER
88
- [ ] The issue that is being fixed is referred in the description (see above "Fixes #ISSUE_NUMBER")
99
- [ ] Only one issue is addressed in this pull request
1010
- [ ] Labels from the issue that this PR is fixing are added to this pull request
11-
- [ ] No unnessessary issues are included into this pull request.
11+
- [ ] No unnecessary issues are included into this pull request.

.github/scripts/docathon-label-sync.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,9 @@ def main():
1414
repo = g.get_repo(f'{repo_owner}/{repo_name}')
1515
pull_request = repo.get_pull(pull_request_number)
1616
pull_request_body = pull_request.body
17+
# PR without description
18+
if pull_request_body is None:
19+
return
1720

1821
# get issue number from the PR body
1922
if not re.search(r'#\d{1,5}', pull_request_body):

beginner_source/basics/optimization_tutorial.py

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -149,6 +149,9 @@ def forward(self, x):
149149

150150
def train_loop(dataloader, model, loss_fn, optimizer):
151151
size = len(dataloader.dataset)
152+
# Set the model to training mode - important for batch normalization and dropout layers
153+
# Unnecessary in this situation but added for best practices
154+
model.train()
152155
for batch, (X, y) in enumerate(dataloader):
153156
# Compute prediction and loss
154157
pred = model(X)
@@ -165,10 +168,15 @@ def train_loop(dataloader, model, loss_fn, optimizer):
165168

166169

167170
def test_loop(dataloader, model, loss_fn):
171+
# Set the model to evaluation mode - important for batch normalization and dropout layers
172+
# Unnecessary in this situation but added for best practices
173+
model.eval()
168174
size = len(dataloader.dataset)
169175
num_batches = len(dataloader)
170176
test_loss, correct = 0, 0
171177

178+
# Evaluating the model with torch.no_grad() ensures that no gradients are computed during test mode
179+
# also serves to reduce unnecessary gradient computations and memory usage for tensors with requires_grad=True
172180
with torch.no_grad():
173181
for X, y in dataloader:
174182
pred = model(X)
Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,10 @@
1+
Finetuning Torchvision Models
2+
=============================
3+
4+
This tutorial has been moved to https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
5+
6+
It will redirect in 3 seconds.
7+
8+
.. raw:: html
9+
10+
<meta http-equiv="Refresh" content="3; url='https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html'" />

beginner_source/former_torchies/parallelism_tutorial.py

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,10 @@ def forward(self, x):
5353

5454
class MyDataParallel(nn.DataParallel):
5555
def __getattr__(self, name):
56-
return getattr(self.module, name)
56+
try:
57+
return super().__getattr__(name)
58+
except AttributeError:
59+
return getattr(self.module, name)
5760

5861
########################################################################
5962
# **Primitives on which DataParallel is implemented upon:**

beginner_source/introyt/introyt1_tutorial.py

Lines changed: 21 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -288,7 +288,7 @@ def num_flat_features(self, x):
288288

289289
transform = transforms.Compose(
290290
[transforms.ToTensor(),
291-
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
291+
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))])
292292

293293

294294
##########################################################################
@@ -297,9 +297,28 @@ def num_flat_features(self, x):
297297
# - ``transforms.ToTensor()`` converts images loaded by Pillow into
298298
# PyTorch tensors.
299299
# - ``transforms.Normalize()`` adjusts the values of the tensor so
300-
# that their average is zero and their standard deviation is 0.5. Most
300+
# that their average is zero and their standard deviation is 1.0. Most
301301
# activation functions have their strongest gradients around x = 0, so
302302
# centering our data there can speed learning.
303+
# The values passed to the transform are the means (first tuple) and the
304+
# standard deviations (second tuple) of the rgb values of the images in
305+
# the dataset. You can calculate these values yourself by running these
306+
# few lines of code:
307+
# ```
308+
# from torch.utils.data import ConcatDataset
309+
# transform = transforms.Compose([transforms.ToTensor()])
310+
# trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
311+
# download=True, transform=transform)
312+
#
313+
# #stack all train images together into a tensor of shape
314+
# #(50000, 3, 32, 32)
315+
# x = torch.stack([sample[0] for sample in ConcatDataset([trainset])])
316+
#
317+
# #get the mean of each channel
318+
# mean = torch.mean(x, dim=(0,2,3)) #tensor([0.4914, 0.4822, 0.4465])
319+
# std = torch.std(x, dim=(0,2,3)) #tensor([0.2470, 0.2435, 0.2616])
320+
#
321+
# ```
303322
#
304323
# There are many more transforms available, including cropping, centering,
305324
# rotation, and reflection.

beginner_source/introyt/tensorboardyt_tutorial.py

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -64,6 +64,13 @@
6464
# PyTorch TensorBoard support
6565
from torch.utils.tensorboard import SummaryWriter
6666

67+
# In case you are using an environment that has TensorFlow installed,
68+
# such as Google Colab, uncomment the following code to avoid
69+
# a bug with saving embeddings to your TensorBoard directory
70+
71+
# import tensorflow as tf
72+
# import tensorboard as tb
73+
# tf.io.gfile = tb.compat.tensorflow_stub.io.gfile
6774

6875
######################################################################
6976
# Showing Images in TensorBoard

beginner_source/nn_tutorial.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -795,8 +795,7 @@ def __len__(self):
795795
return len(self.dl)
796796

797797
def __iter__(self):
798-
batches = iter(self.dl)
799-
for b in batches:
798+
for b in self.dl:
800799
yield (self.func(*b))
801800

802801
train_dl, valid_dl = get_data(train_ds, valid_ds, bs)

beginner_source/transfer_learning_tutorial.py

Lines changed: 66 additions & 62 deletions
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@
4646
import matplotlib.pyplot as plt
4747
import time
4848
import os
49-
import copy
49+
from tempfile import TemporaryDirectory
5050

5151
cudnn.benchmark = True
5252
plt.ion() # interactive mode
@@ -146,67 +146,71 @@ def imshow(inp, title=None):
146146
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
147147
since = time.time()
148148

149-
best_model_wts = copy.deepcopy(model.state_dict())
150-
best_acc = 0.0
151-
152-
for epoch in range(num_epochs):
153-
print(f'Epoch {epoch}/{num_epochs - 1}')
154-
print('-' * 10)
155-
156-
# Each epoch has a training and validation phase
157-
for phase in ['train', 'val']:
158-
if phase == 'train':
159-
model.train() # Set model to training mode
160-
else:
161-
model.eval() # Set model to evaluate mode
162-
163-
running_loss = 0.0
164-
running_corrects = 0
165-
166-
# Iterate over data.
167-
for inputs, labels in dataloaders[phase]:
168-
inputs = inputs.to(device)
169-
labels = labels.to(device)
170-
171-
# zero the parameter gradients
172-
optimizer.zero_grad()
173-
174-
# forward
175-
# track history if only in train
176-
with torch.set_grad_enabled(phase == 'train'):
177-
outputs = model(inputs)
178-
_, preds = torch.max(outputs, 1)
179-
loss = criterion(outputs, labels)
180-
181-
# backward + optimize only if in training phase
182-
if phase == 'train':
183-
loss.backward()
184-
optimizer.step()
185-
186-
# statistics
187-
running_loss += loss.item() * inputs.size(0)
188-
running_corrects += torch.sum(preds == labels.data)
189-
if phase == 'train':
190-
scheduler.step()
191-
192-
epoch_loss = running_loss / dataset_sizes[phase]
193-
epoch_acc = running_corrects.double() / dataset_sizes[phase]
194-
195-
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
196-
197-
# deep copy the model
198-
if phase == 'val' and epoch_acc > best_acc:
199-
best_acc = epoch_acc
200-
best_model_wts = copy.deepcopy(model.state_dict())
201-
202-
print()
203-
204-
time_elapsed = time.time() - since
205-
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
206-
print(f'Best val Acc: {best_acc:4f}')
207-
208-
# load best model weights
209-
model.load_state_dict(best_model_wts)
149+
# Create a temporary directory to save training checkpoints
150+
with TemporaryDirectory() as tempdir:
151+
best_model_params_path = os.path.join(tempdir, 'best_model_params.pt')
152+
153+
torch.save(model.state_dict(), best_model_params_path)
154+
best_acc = 0.0
155+
156+
for epoch in range(num_epochs):
157+
print(f'Epoch {epoch}/{num_epochs - 1}')
158+
print('-' * 10)
159+
160+
# Each epoch has a training and validation phase
161+
for phase in ['train', 'val']:
162+
if phase == 'train':
163+
model.train() # Set model to training mode
164+
else:
165+
model.eval() # Set model to evaluate mode
166+
167+
running_loss = 0.0
168+
running_corrects = 0
169+
170+
# Iterate over data.
171+
for inputs, labels in dataloaders[phase]:
172+
inputs = inputs.to(device)
173+
labels = labels.to(device)
174+
175+
# zero the parameter gradients
176+
optimizer.zero_grad()
177+
178+
# forward
179+
# track history if only in train
180+
with torch.set_grad_enabled(phase == 'train'):
181+
outputs = model(inputs)
182+
_, preds = torch.max(outputs, 1)
183+
loss = criterion(outputs, labels)
184+
185+
# backward + optimize only if in training phase
186+
if phase == 'train':
187+
loss.backward()
188+
optimizer.step()
189+
190+
# statistics
191+
running_loss += loss.item() * inputs.size(0)
192+
running_corrects += torch.sum(preds == labels.data)
193+
if phase == 'train':
194+
scheduler.step()
195+
196+
epoch_loss = running_loss / dataset_sizes[phase]
197+
epoch_acc = running_corrects.double() / dataset_sizes[phase]
198+
199+
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
200+
201+
# deep copy the model
202+
if phase == 'val' and epoch_acc > best_acc:
203+
best_acc = epoch_acc
204+
torch.save(model.state_dict(), best_model_params_path)
205+
206+
print()
207+
208+
time_elapsed = time.time() - since
209+
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
210+
print(f'Best val Acc: {best_acc:4f}')
211+
212+
# load best model weights
213+
model.load_state_dict(torch.load(best_model_params_path))
210214
return model
211215

212216

beginner_source/transformer_tutorial.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -149,7 +149,7 @@ def forward(self, x: Tensor) -> Tensor:
149149
# into ``batch_size`` columns. If the data does not divide evenly into
150150
# ``batch_size`` columns, then the data is trimmed to fit. For instance, with
151151
# the alphabet as the data (total length of 26) and ``batch_size=4``, we would
152-
# divide the alphabet into 4 sequences of length 6:
152+
# divide the alphabet into sequences of length 6, resulting in 4 of such sequences.
153153
#
154154
# .. math::
155155
# \begin{bmatrix}

0 commit comments

Comments
 (0)