# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass from typing import Optional import torch import torch.nn as nn from torch import Tensor from torch.nn import functional as F from torch.nn.attention.flex_attention import ( _mask_mod_signature, BlockMask, flex_attention, ) def find_multiple(n: int, k: int) -> int: if n % k == 0: return n return n + k - (n % k) def get_mask_mod(mask_mod: _mask_mod_signature, offset: int): def _mask_mod(b, h, q, kv): return mask_mod(b, h, q + offset, kv) return _mask_mod @dataclass class ModelArgs: block_size: int = 2048 vocab_size: int = 32000 n_layer: int = 32 n_head: int = 32 dim: int = 4096 intermediate_size: int = None n_local_heads: int = -1 head_dim: int = 64 rope_base: float = 10000 norm_eps: float = 1e-5 rope_scaling: Optional[dict] = None def __post_init__(self): if self.n_local_heads == -1: self.n_local_heads = self.n_head if self.intermediate_size is None: hidden_dim = 4 * self.dim n_hidden = int(2 * hidden_dim / 3) self.intermediate_size = find_multiple(n_hidden, 256) self.head_dim = self.dim // self.n_head @classmethod def from_name(cls, name: str): if name in transformer_configs: return cls(**transformer_configs[name]) # fuzzy search config = [config for config in transformer_configs if config.lower() in str(name).lower()] # We may have two or more configs matched (e.g. "7B" and "Mistral-7B"). Find the best config match, # take longer name (as it have more symbols matched) if len(config) > 1: config.sort(key=len, reverse=True) assert len(config[0]) != len(config[1]), name # make sure only one 'best' match return cls(**transformer_configs[config[0]]) transformer_configs = { "CodeLlama-7b-Python-hf": dict(block_size=16384, vocab_size=32000, n_layer=32, dim = 4096, rope_base=1000000), "7B": dict(n_layer=32, n_head=32, dim=4096), "13B": dict(n_layer=40, n_head=40, dim=5120), "30B": dict(n_layer=60, n_head=52, dim=6656), "34B": dict(n_layer=48, n_head=64, dim=8192, vocab_size=32000, n_local_heads=8, intermediate_size=22016, rope_base=1000000), # CodeLlama-34B-Python-hf "70B": dict(n_layer=80, n_head=64, dim=8192, n_local_heads=8, intermediate_size=28672), "Mistral-7B": dict(n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, vocab_size=32000), "stories15M": dict(n_layer=6, n_head=6, dim=288), "stories110M": dict(n_layer=12, n_head=12, dim=768), "llama-3-8b": dict(block_size=8192, n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, vocab_size=128256, rope_base=500000), "llama-3-70b": dict(block_size=8192, n_layer=80, n_head=64, n_local_heads=8, dim=8192, intermediate_size=28672, vocab_size=128256, rope_base=500000), "llama-3.1-8b": dict(block_size=131072, n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, vocab_size=128256, rope_base=500000, rope_scaling=dict(factor=8.0, low_freq_factor=1.0, high_freq_factor=4.0, original_max_position_embeddings=8192), ), "llama-3.1-70b": dict(block_size=131072, n_layer=80, n_head=64, n_local_heads=8, dim=8192, intermediate_size=28672, vocab_size=128256, rope_base=500000, rope_scaling=dict(factor=8.0, low_freq_factor=1.0, high_freq_factor=4.0, original_max_position_embeddings=8192), ), "llama-3.1-405b": dict(block_size=131072, n_layer=126, n_head=128, n_local_heads=8, dim=16384, intermediate_size=53248, vocab_size=128256, rope_base=500000, rope_scaling=dict(factor=8.0, low_freq_factor=1.0, high_freq_factor=4.0, original_max_position_embeddings=8192), ), } class KVCache(nn.Module): def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16): super().__init__() cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim) self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype)) self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype)) def update(self, input_pos, k_val, v_val): # input_pos: [S], k_val: [B, H, S, D] assert input_pos.shape[0] == k_val.shape[2] k_out = self.k_cache v_out = self.v_cache k_out[:, :, input_pos] = k_val v_out[:, :, input_pos] = v_val return k_out, v_out class Transformer(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.config = config self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer)) self.norm = RMSNorm(config.dim, eps=config.norm_eps) self.output = nn.Linear(config.dim, config.vocab_size, bias=False) self.freqs_cis: Optional[Tensor] = None self.mask_cache: Optional[Tensor] = None self.max_batch_size = -1 self.max_seq_length = -1 self.get_mask_mod = get_mask_mod def setup_caches(self, max_batch_size, max_seq_length): if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size: return head_dim = self.config.dim // self.config.n_head max_seq_length = find_multiple(max_seq_length, 8) self.max_seq_length = max_seq_length self.max_batch_size = max_batch_size dtype = self.output.weight.dtype # For quantized layers, dtype is encoded in scales if hasattr(self.output, "scales"): dtype = self.output.scales.dtype elif hasattr(self.output, "scales_and_zeros"): dtype = self.output.scales_and_zeros.dtype for b in self.layers: b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_local_heads, head_dim, dtype) self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.dim // self.config.n_head, self.config.rope_base, dtype, self.config.rope_scaling) def forward(self, mask: BlockMask, idx: Tensor, input_pos: Optional[Tensor] = None) -> Tensor: assert self.freqs_cis is not None, "Caches must be initialized first" mask.mask_mod = self.get_mask_mod(mask.mask_mod, input_pos[0]) freqs_cis = self.freqs_cis[input_pos] x = self.tok_embeddings(idx) for i, layer in enumerate(self.layers): x = layer(x, input_pos, freqs_cis, mask) x = self.norm(x) logits = self.output(x) return logits @classmethod def from_name(cls, name: str): return cls(ModelArgs.from_name(name)) class TransformerBlock(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.attention = Attention(config) self.feed_forward = FeedForward(config) self.ffn_norm = RMSNorm(config.dim, config.norm_eps) self.attention_norm = RMSNorm(config.dim, config.norm_eps) def forward(self, x: Tensor, input_pos: Tensor, freqs_cis: Tensor, mask: BlockMask) -> Tensor: h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos) out = h + self.feed_forward(self.ffn_norm(h)) return out class Attention(nn.Module): def __init__(self, config: ModelArgs): super().__init__() assert config.dim % config.n_head == 0 total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim # key, query, value projections for all heads, but in a batch self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False) self.wo = nn.Linear(config.dim, config.dim, bias=False) self.kv_cache = None self.n_head = config.n_head self.head_dim = config.head_dim self.n_local_heads = config.n_local_heads self.dim = config.dim self._register_load_state_dict_pre_hook(self.load_hook) def load_hook(self, state_dict, prefix, *args): if prefix + "wq.weight" in state_dict: wq = state_dict.pop(prefix + "wq.weight") wk = state_dict.pop(prefix + "wk.weight") wv = state_dict.pop(prefix + "wv.weight") state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) def forward(self, x: Tensor, freqs_cis: Tensor, mask: BlockMask, input_pos: Optional[Tensor] = None) -> Tensor: bsz, seqlen, _ = x.shape kv_size = self.n_local_heads * self.head_dim q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) q = q.view(bsz, seqlen, self.n_head, self.head_dim) k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim) v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim) q = apply_rotary_emb(q, freqs_cis) k = apply_rotary_emb(k, freqs_cis) q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) if self.kv_cache is not None: k, v = self.kv_cache.update(input_pos, k, v) y = flex_attention(q, k, v, block_mask=mask, enable_gqa=(self.n_head != self.n_local_heads)) y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) y = self.wo(y) return y class FeedForward(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) def forward(self, x: Tensor) -> Tensor: return self.w2(F.silu(self.w1(x)) * self.w3(x)) class RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) def forward(self, x: Tensor) -> Tensor: output = self._norm(x.float()).type_as(x) return output * self.weight def apply_rope_scaling(freqs: torch.Tensor, rope_scaling: Optional[dict] = None): factor = rope_scaling["factor"] low_freq_factor = rope_scaling["low_freq_factor"] high_freq_factor = rope_scaling["high_freq_factor"] old_context_len = rope_scaling["original_max_position_embeddings"] low_freq_wavelen = old_context_len / low_freq_factor high_freq_wavelen = old_context_len / high_freq_factor new_freqs = [] for freq in freqs: wavelen = 2 * math.pi / freq if wavelen < high_freq_wavelen: new_freqs.append(freq) elif wavelen > low_freq_wavelen: new_freqs.append(freq / factor) else: assert low_freq_wavelen != high_freq_wavelen smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) new_freqs.append((1 - smooth) * freq / factor + smooth * freq) return torch.tensor(new_freqs, dtype=freqs.dtype, device=freqs.device) def precompute_freqs_cis( seq_len: int, n_elem: int, base: int = 10000, dtype: torch.dtype = torch.bfloat16, rope_scaling: Optional[dict] = None, ) -> Tensor: freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) if rope_scaling is not None: freqs = apply_rope_scaling(freqs, rope_scaling) t = torch.arange(seq_len, device=freqs.device) freqs = torch.outer(t, freqs) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) return cache.to(dtype=dtype) def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: xshaped = x.float().reshape(*x.shape[:-1], -1, 2) freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) x_out2 = torch.stack( [ xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], ], -1, ) x_out2 = x_out2.flatten(3) return x_out2.type_as(x)