Skip to content

BUG: ArrowDtype __from_arrow__ ignores its dtype but converts data to its mapped ArrowDtype #52533

Closed
@chelsea-lin

Description

@chelsea-lin

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pyarrow as pa
import pandas as pd
from datetime import date, timedelta

# Create a Date32Array (date32[day]) in PyArrow
date_array = pa.array([date.today() - timedelta(days=i) for i in range(5)], type=pa.date32())

# Create a PyArrow Table
table = pa.Table.from_arrays([date_array], schema=pa.schema([('date', pa.date32())]))

# Convert PyArrow Table to pandas DataFrame using types_mapper
df = table.to_pandas(types_mapper={pa.date32(): pd.ArrowDtype(pa.date64())}.get)

# Display the pandas DataFrame
>>> df.dtypes
date    date32[day][pyarrow]
dtype: object

## ERROR: we expect an `date64[ms][pyarrow]` dtype here.

Issue Description

Here is the call stack of above example:

  • init (pandas/core/arrays/arrow/array.py:208)
    def __init__(self, values: pa.Array | pa.ChunkedArray, *, dtype: ArrowDtype | None = None) -> None:
        ...
        elif isinstance(values, pa.ChunkedArray):
            self._data = values
        ...
        self._dtype = ArrowDtype(self._data.type)

Here, self._data.type is DataType(date32[day]) so mapped to ArrowDtype as date32[day][pyarrow]. Although we expect it map to date64[ms][pyarrow]

  • from_arrow (pandas/core/arrays/arrow/dtype.py:204)
    def __from_arrow__(self, array: pa.Array | pa.ChunkedArray):
        """
        Construct IntegerArray/FloatingArray from pyarrow Array/ChunkedArray.
        """
        array_class = self.construct_array_type()
        return array_class(array)

Here, the self is a date64[ms][pyarrow] ArrowDtype and array is pyarrow DataType(date32[day])

  • _reconstruct_block (pyarrow/pandas_compat.py:780)
  • (pyarrow/pandas_compat.py:1171)
  • _table_to_blocks (pyarrow/pandas_compat.py:1171)
  • table_to_blockmanager (pyarrow/pandas_compat.py:820)
  • table.to_pandas(types_mapper={pa.date32(): pd.ArrowDtype(pa.date64())}.get)

Expected Behavior

Instead of getting ArrowDtype from data, can ArrowDtype.__from_arrow__ pass itself to ArrowExtensionArray.__init__. In this way, the data can convert to be an expected pandas dtype.

Installed Versions

INSTALLED VERSIONS

commit : fe415f5
python : 3.9.16.final.0
python-bits : 64
OS : Linux
OS-release : 5.19.11-1rodete1-amd64
Version : #1 SMP PREEMPT_DYNAMIC Debian 5.19.11-1rodete1 (2022-10-31)
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.1.0.dev0+444.gfe415f553f
numpy : 1.24.2
pytz : 2023.3
dateutil : 2.8.2
setuptools : 67.6.0
pip : 23.0.1
Cython : None
pytest : 7.2.2
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 8.12.0
pandas_datareader: None
bs4 : None
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Arrowpyarrow functionalityBugExtensionArrayExtending pandas with custom dtypes or arrays.

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions