For example a file containing the text below, read using: ``` >>> pandas.read_csv("file.log") produces the following output: Numbers 0 17007000002000192 1 17007000002000192 2 17007000002000192 3 17007000002000192 4 17007000002000192 5 17007000002000192 6 17007000002000192 7 17007000002000192 8 17007000002000192 9 17007000002000194 >> numpy.spacing(17007000002000192) ``` is 2.0 for this range of numbers but the type reported for the value is int64 not double/float64 file.log contains: ``` Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194 ```