Skip to content

read_csv, read_table in version 0.9.0 are parsing integers as double but reporting type as int64 #3258

@nisaggarwal

Description

@nisaggarwal

For example a file containing the text below, read using:

>>> pandas.read_csv("file.log")

produces the following output:

             Numbers
0  17007000002000192
1  17007000002000192
2  17007000002000192
3  17007000002000192
4  17007000002000192
5  17007000002000192
6  17007000002000192
7  17007000002000192
8  17007000002000192
9  17007000002000194

>> numpy.spacing(17007000002000192)

is 2.0 for this range of numbers

but the type reported for the value is int64 not double/float64

file.log contains:

Numbers
17007000002000191
17007000002000191
17007000002000191
17007000002000191
17007000002000192
17007000002000192
17007000002000192
17007000002000192
17007000002000192
17007000002000194

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions