Description
Code Sample
import pandas as pd
pd.show_versions()
index = pd.DatetimeIndex(["20181101 1100", "20181101 1200", "20181102 1300", "20181102 1400"], name='datetime')
df = pd.DataFrame(data=[["A", 1.4], ["B", 140.5], ["A", 1.6], ["B", 145.0]],
columns=["ONE", "TWO"],
index=index)
grouped = df.groupby("ONE").TWO
# Resampling onto a period index: expected result is a PeriodIndex, actual is DatetimeIndex.
resampled_period = grouped.resample("D", kind="period").last()
assert isinstance(resampled_period.index.get_level_values('datetime'), pd.PeriodIndex)
# Resampling onto a datetime index: works as expected.
resampled_datetime = grouped.resample("D", kind="datetime").last()
assert isinstance(resampled_datetime.index.get_level_values('datetime'), pd.DatetimeIndex)
Problem description
The 'kind' argument to groupby-resample in the example above is ignored and the result is always as if the argument passed is kind="datetime".
Expected Output
The 'datetime' level in the MultiIndex in the example above should be of type PeriodIndex if kind="period", but instead we get DatetimeIndex.
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 2.7.13.final.0
python-bits: 64
OS: Linux
OS-release: 3.10.0-514.10.2.el7.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: en_GB.UTF-8
pandas: 0.23.4
pytest: 3.1.0
pip: 8.1.1
setuptools: 28.8.0
Cython: None
numpy: 1.15.4
scipy: None
pyarrow: None
xarray: None
IPython: 5.3.0
sphinx: None
patsy: None
dateutil: 2.7.5
pytz: 2018.7
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: None
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: None
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None