-
-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Closed
Description
from the mailing list cc @lodagro
That is indeed odd.
There also seems to be a dependency on the dtype. Below an example for all ints and all floats.
In [121]: df
Out[121]:
A B
a 7 0
b 7 -2
In [122]: df.apply(foo, 1)
Out[122]:
A B
a NaN NaN
b NaN NaN
All NaN???
I would expect to see this:
In [123]: s = pandas.Series([foo(row[1]) for row in df.iterrows()], df.index)
In [124]: s
Out[124]:
a {'properties': {'A': 7, 'B': 0}}
b {'properties': {'A': 7, 'B': -2}}
Seems to work fine for all floats.
In [125]: df = pandas.DataFrame(np.random.randn(2, 2), columns=list('AB'), index=list('ab'))
In [126]: df
Out[126]:
A B
a -0.407883 0.018206
b -1.081038 0.492944
In [127]: df.apply(foo, 1)
Out[127]:
a {'properties': {'A': -0.407882576359619, 'B': 0.0
b {'properties': {'A': -1.081038117264707, 'B': 0.4