-
-
Notifications
You must be signed in to change notification settings - Fork 18.5k
/
Copy pathhashing.py
339 lines (286 loc) · 9.43 KB
/
hashing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""
data hash pandas / numpy objects
"""
from __future__ import annotations
import itertools
from typing import TYPE_CHECKING
import numpy as np
from pandas._libs.hashing import hash_object_array
from pandas.core.dtypes.common import is_list_like
from pandas.core.dtypes.dtypes import CategoricalDtype
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCExtensionArray,
ABCIndex,
ABCMultiIndex,
ABCSeries,
)
if TYPE_CHECKING:
from collections.abc import (
Hashable,
Iterable,
Iterator,
)
from pandas._typing import (
ArrayLike,
npt,
)
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
)
# 16 byte long hashing key
_default_hash_key = "0123456789123456"
def combine_hash_arrays(
arrays: Iterator[np.ndarray], num_items: int
) -> npt.NDArray[np.uint64]:
"""
Parameters
----------
arrays : Iterator[np.ndarray]
num_items : int
Returns
-------
np.ndarray[uint64]
Should be the same as CPython's tupleobject.c
"""
try:
first = next(arrays)
except StopIteration:
return np.array([], dtype=np.uint64)
arrays = itertools.chain([first], arrays)
mult = np.uint64(1000003)
out = np.zeros_like(first) + np.uint64(0x345678)
last_i = 0
for i, a in enumerate(arrays):
inverse_i = num_items - i
out ^= a
out *= mult
mult += np.uint64(82520 + inverse_i + inverse_i)
last_i = i
assert last_i + 1 == num_items, "Fed in wrong num_items"
out += np.uint64(97531)
return out
def hash_pandas_object(
obj: Index | DataFrame | Series,
index: bool = True,
encoding: str = "utf8",
hash_key: str | None = _default_hash_key,
categorize: bool = True,
) -> Series:
"""
Return a data hash of the Index/Series/DataFrame.
Parameters
----------
obj : Index, Series, or DataFrame
index : bool, default True
Include the index in the hash (if Series/DataFrame).
encoding : str, default 'utf8'
Encoding for data & key when strings.
hash_key : str, default _default_hash_key
Hash_key for string key to encode.
categorize : bool, default True
Whether to first categorize object arrays before hashing. This is more
efficient when the array contains duplicate values.
Returns
-------
Series of uint64, same length as the object
Examples
--------
>>> pd.util.hash_pandas_object(pd.Series([1, 2, 3]))
0 14639053686158035780
1 3869563279212530728
2 393322362522515241
dtype: uint64
"""
from pandas import Series
if hash_key is None:
hash_key = _default_hash_key
if isinstance(obj, ABCMultiIndex):
return Series(hash_tuples(obj, encoding, hash_key), dtype="uint64", copy=False)
elif isinstance(obj, ABCIndex):
h = hash_array(obj._values, encoding, hash_key, categorize).astype(
"uint64", copy=False
)
ser = Series(h, index=obj, dtype="uint64", copy=False)
elif isinstance(obj, ABCSeries):
h = hash_array(obj._values, encoding, hash_key, categorize).astype(
"uint64", copy=False
)
if index:
index_iter = (
hash_pandas_object(
obj.index,
index=False,
encoding=encoding,
hash_key=hash_key,
categorize=categorize,
)._values
for _ in [None]
)
arrays = itertools.chain([h], index_iter)
h = combine_hash_arrays(arrays, 2)
ser = Series(h, index=obj.index, dtype="uint64", copy=False)
elif isinstance(obj, ABCDataFrame):
hashes = (
hash_array(series._values, encoding, hash_key, categorize)
for _, series in obj.items()
)
num_items = len(obj.columns)
if index:
index_hash_generator = (
hash_pandas_object(
obj.index,
index=False,
encoding=encoding,
hash_key=hash_key,
categorize=categorize,
)._values
for _ in [None]
)
num_items += 1
# keep `hashes` specifically a generator to keep mypy happy
_hashes = itertools.chain(hashes, index_hash_generator)
hashes = (x for x in _hashes)
h = combine_hash_arrays(hashes, num_items)
ser = Series(h, index=obj.index, dtype="uint64", copy=False)
else:
raise TypeError(f"Unexpected type for hashing {type(obj)}")
return ser
def hash_tuples(
vals: MultiIndex | Iterable[tuple[Hashable, ...]],
encoding: str = "utf8",
hash_key: str = _default_hash_key,
) -> npt.NDArray[np.uint64]:
"""
Hash an MultiIndex / listlike-of-tuples efficiently.
Parameters
----------
vals : MultiIndex or listlike-of-tuples
encoding : str, default 'utf8'
hash_key : str, default _default_hash_key
Returns
-------
ndarray[np.uint64] of hashed values
"""
if not is_list_like(vals):
raise TypeError("must be convertible to a list-of-tuples")
from pandas import (
Categorical,
MultiIndex,
)
if not isinstance(vals, ABCMultiIndex):
mi = MultiIndex.from_tuples(vals)
else:
mi = vals
# create a list-of-Categoricals
cat_vals = [
Categorical._simple_new(
mi.codes[level],
CategoricalDtype(categories=mi.levels[level], ordered=False),
)
for level in range(mi.nlevels)
]
# hash the list-of-ndarrays
hashes = (
cat._hash_pandas_object(encoding=encoding, hash_key=hash_key, categorize=False)
for cat in cat_vals
)
h = combine_hash_arrays(hashes, len(cat_vals))
return h
def hash_array(
vals: ArrayLike,
encoding: str = "utf8",
hash_key: str = _default_hash_key,
categorize: bool = True,
) -> npt.NDArray[np.uint64]:
"""
Given a 1d array, return an array of deterministic integers.
Parameters
----------
vals : ndarray or ExtensionArray
encoding : str, default 'utf8'
Encoding for data & key when strings.
hash_key : str, default _default_hash_key
Hash_key for string key to encode.
categorize : bool, default True
Whether to first categorize object arrays before hashing. This is more
efficient when the array contains duplicate values.
Returns
-------
ndarray[np.uint64, ndim=1]
Hashed values, same length as the vals.
Examples
--------
>>> pd.util.hash_array(np.array([1, 2, 3]))
array([ 6238072747940578789, 15839785061582574730, 2185194620014831856],
dtype=uint64)
"""
if not hasattr(vals, "dtype"):
raise TypeError("must pass a ndarray-like")
if isinstance(vals, ABCExtensionArray):
return vals._hash_pandas_object(
encoding=encoding, hash_key=hash_key, categorize=categorize
)
if not isinstance(vals, np.ndarray):
# GH#42003
raise TypeError(
"hash_array requires np.ndarray or ExtensionArray, not "
f"{type(vals).__name__}. Use hash_pandas_object instead."
)
return _hash_ndarray(vals, encoding, hash_key, categorize)
def _hash_ndarray(
vals: np.ndarray,
encoding: str = "utf8",
hash_key: str = _default_hash_key,
categorize: bool = True,
) -> npt.NDArray[np.uint64]:
"""
See hash_array.__doc__.
"""
dtype = vals.dtype
# _hash_ndarray only takes 64-bit values, so handle 128-bit by parts
if np.issubdtype(dtype, np.complex128):
hash_real = _hash_ndarray(vals.real, encoding, hash_key, categorize)
hash_imag = _hash_ndarray(vals.imag, encoding, hash_key, categorize)
return hash_real + 23 * hash_imag
# First, turn whatever array this is into unsigned 64-bit ints, if we can
# manage it.
if dtype == bool:
vals = vals.astype("u8")
elif issubclass(dtype.type, (np.datetime64, np.timedelta64)):
vals = vals.view("i8").astype("u8", copy=False)
elif issubclass(dtype.type, np.number) and dtype.itemsize <= 8:
vals = vals.view(f"u{vals.dtype.itemsize}").astype("u8")
else:
# With repeated values, its MUCH faster to categorize object dtypes,
# then hash and rename categories. We allow skipping the categorization
# when the values are known/likely to be unique.
if categorize:
from pandas import (
Categorical,
Index,
factorize,
)
codes, categories = factorize(vals, sort=False)
dtype = CategoricalDtype(categories=Index(categories), ordered=False)
cat = Categorical._simple_new(codes, dtype)
return cat._hash_pandas_object(
encoding=encoding, hash_key=hash_key, categorize=False
)
try:
vals = hash_object_array(vals, hash_key, encoding)
except TypeError:
# we have mixed types
vals = hash_object_array(
vals.astype(str).astype(object), hash_key, encoding
)
# Then, redistribute these 64-bit ints within the space of 64-bit ints
vals ^= vals >> 30
vals *= np.uint64(0xBF58476D1CE4E5B9)
vals ^= vals >> 27
vals *= np.uint64(0x94D049BB133111EB)
vals ^= vals >> 31
return vals