from sklearn.svm import SVC from .common import Benchmark, Estimator, Predictor from .datasets import _synth_classification_dataset from .utils import make_gen_classif_scorers class SVCBenchmark(Predictor, Estimator, Benchmark): """Benchmarks for SVC.""" param_names = ["kernel"] params = (["linear", "poly", "rbf", "sigmoid"],) def setup_cache(self): super().setup_cache() def make_data(self, params): return _synth_classification_dataset() def make_estimator(self, params): (kernel,) = params estimator = SVC( max_iter=100, tol=1e-16, kernel=kernel, random_state=0, gamma="scale" ) return estimator def make_scorers(self): make_gen_classif_scorers(self)