# Time: O(n^2 + len(diffs) * n * k) = O(n^3 * k) at most # Space: O(len(diffs) + n * k) = O(n^2) at most # sort, dp, prefix sum, two pointers class Solution(object): def sumOfPowers(self, nums, k): MOD = 10**9+7 nums.sort() result = prev = 0 for mn in sorted({nums[j]-nums[i] for i in xrange(len(nums)) for j in xrange(i+1, len(nums))}, reverse=True): dp = [[0]*(k+1) for _ in xrange(len(nums)+1)] dp[0][0] = 1 j = 0 for i in xrange(len(nums)): j = next((j for j in xrange(j, len(nums)) if nums[i]-nums[j] < mn), len(nums)) for l in xrange(1, k+1): dp[i+1][l] = (dp[i+1][l]+dp[(j-1)+1][l-1])%MOD # dp[i+1][l]: count of subsequences of length l ending at i having min diff >= mn for l in xrange(k+1): dp[i+1][l] = (dp[i+1][l]+dp[i][l])%MOD # dp[i+1][l]: accumulated count of subsequences of length l ending at [0, i] having min diff >= mn cnt = (dp[-1][k]-prev)%MOD result = (result+mn*cnt)%MOD prev = dp[-1][k] return result # Time: O(n^3 * len(diffs)) = O(n^5) at most # Space: O(n^2 * len(diffs)) = O(n^4) at most import collections # sort, dp class Solution2(object): def sumOfPowers(self, nums, k): """ :type nums: List[int] :type k: int :rtype: int """ MOD = 10**9+7 nums.sort() dp = [[collections.defaultdict(int) for _ in xrange(len(nums)+1)] for _ in xrange(len(nums))] for i in xrange(len(nums)): for j in xrange(max(k-(len(nums)-i+1)-1, 0), i): diff = nums[i]-nums[j] dp[i][2][diff] += 1 for l in xrange(max(k-(len(nums)-i+1), 0), i+1): for mn, cnt in dp[j][l].iteritems(): dp[i][l+1][min(diff, mn)] = (dp[i][l+1][min(diff, mn)]+cnt)%MOD return reduce(lambda accu, x: (accu+x)%MOD, ((mn*cnt)%MOD for i in xrange(k-1, len(dp)) for mn, cnt in dp[i][k].iteritems()))