from vbench.benchmark import Benchmark from datetime import datetime common_setup = """from pandas_vb_common import * """ #---------------------------------------------------------------------- # DataFrame reindex columns setup = common_setup + """ df = DataFrame(index=range(10000), data=np.random.rand(10000,30), columns=range(30)) """ statement = "df.reindex(columns=df.columns[1:5])" reindex_frame_columns = Benchmark(statement, setup, name='dataframe_reindex_columns') #---------------------------------------------------------------------- setup = common_setup + """ rng = DateRange('1/1/1970', periods=10000, offset=datetools.Minute()) df = DataFrame(np.random.rand(10000, 10), index=rng, columns=range(10)) df['foo'] = 'bar' rng2 = Index(rng[::2]) """ statement = "df.reindex(rng2)" reindex_frame_daterange = Benchmark(statement, setup, name='dataframe_reindex_daterange') #---------------------------------------------------------------------- # multiindex reindexing setup = common_setup + """ N = 1000 K = 20 level1 = np.array([tm.rands(10) for _ in xrange(N)], dtype='O').repeat(K) level2 = np.tile(np.array([tm.rands(10) for _ in xrange(K)], dtype='O'), N) index = MultiIndex.from_arrays([level1, level2]) s1 = Series(np.random.randn(N * K), index=index) s2 = s1[::2] """ statement = "s1.reindex(s2.index)" reindex_multi = Benchmark(statement, setup, name='reindex_multiindex', start_date=datetime(2011, 9, 1)) #---------------------------------------------------------------------- # Pad / backfill setup = common_setup + """ rng = DateRange('1/1/2000', periods=10000, offset=datetools.Minute()) ts = Series(np.random.randn(len(rng)), index=rng) ts2 = ts[::2] ts3 = ts2.reindex(ts.index) def pad(): try: ts2.reindex(ts.index, method='pad') except: ts2.reindex(ts.index, fillMethod='pad') def backfill(): try: ts2.reindex(ts.index, method='backfill') except: ts2.reindex(ts.index, fillMethod='backfill') """ statement = "pad()" reindex_daterange_pad = Benchmark(statement, setup, name="reindex_daterange_pad") statement = "backfill()" reindex_daterange_backfill = Benchmark(statement, setup, name="reindex_daterange_backfill") reindex_fillna_pad = Benchmark("ts3.fillna(method='pad')", setup, name="reindex_fillna_pad") reindex_fillna_backfill = Benchmark("ts3.fillna(method='backfill')", setup, name="reindex_fillna_backfill") #---------------------------------------------------------------------- # align on level setup = common_setup + """ index = MultiIndex(levels=[np.arange(10), np.arange(100), np.arange(100)], labels=[np.arange(10).repeat(10000), np.tile(np.arange(100).repeat(100), 10), np.tile(np.tile(np.arange(100), 100), 10)]) random.shuffle(index.values) df = DataFrame(np.random.randn(len(index), 4), index=index) df_level = DataFrame(np.random.randn(100, 4), index=index.levels[1]) """ reindex_frame_level_align = \ Benchmark("df.align(df_level, level=1, copy=False)", setup, name='reindex_frame_level_align', start_date=datetime(2011, 12, 27)) reindex_frame_level_reindex = \ Benchmark("df_level.reindex(df.index, level=1)", setup, name='reindex_frame_level_reindex', start_date=datetime(2011, 12, 27)) #---------------------------------------------------------------------- # sort_index, drop_duplicates # pathological, but realistic setup = common_setup + """ N = 10000 K = 10 key1 = np.array([rands(10) for _ in xrange(N)], dtype='O').repeat(K) key2 = np.array([rands(10) for _ in xrange(N)], dtype='O').repeat(K) df = DataFrame({'key1' : key1, 'key2' : key2, 'value' : np.random.randn(N * K)}) """ statement = "df.sort_index(by=['key1', 'key2'])" frame_sort_index_by_columns = Benchmark(statement, setup, name='frame_sort_index_by_columns', start_date=datetime(2011, 11, 1)) # drop_duplicates statement = "df.drop_duplicates(['key1', 'key2'])" frame_drop_duplicates = Benchmark(statement, setup, name='frame_drop_duplicates', start_date=datetime(2011, 11, 15)) #---------------------------------------------------------------------- # fillna, many columns setup = common_setup + """ values = np.random.randn(1000, 1000) values[::2] = np.nan df = DataFrame(values) """ frame_fillna_many_columns_pad = Benchmark("df.fillna(method='pad')", setup)