from vbench.benchmark import Benchmark from datetime import datetime common_setup = """from pandas_vb_common import * """ #---------------------------------------------------------------------- # Creation from nested dict setup = common_setup + """ N, K = 5000, 50 index = [rands(10) for _ in xrange(N)] columns = [rands(10) for _ in xrange(K)] frame = DataFrame(np.random.randn(N, K), index=index, columns=columns) try: data = frame.to_dict() except: data = frame.toDict() some_dict = data.values()[0] dict_list = [dict(zip(columns, row)) for row in frame.values] """ frame_ctor_nested_dict = Benchmark("DataFrame(data)", setup) # From JSON-like stuff frame_ctor_list_of_dict = Benchmark("DataFrame(dict_list)", setup, start_date=datetime(2011, 12, 20)) series_ctor_from_dict = Benchmark("Series(some_dict)", setup) # nested dict, integer indexes, regression described in #621 setup = common_setup + """ data = dict((i,dict((j,float(j)) for j in xrange(100))) for i in xrange(2000)) """ frame_ctor_nested_dict_int64 = Benchmark("DataFrame(data)", setup) #---------------------------------------------------------------------- # get_numeric_data setup = common_setup + """ df = DataFrame(randn(10000, 25)) df['foo'] = 'bar' df['bar'] = 'baz' df = df.consolidate() """ frame_get_numeric_data = Benchmark('df._get_numeric_data()', setup, start_date=datetime(2011, 11, 1))