.. currentmodule:: pandas .. _missing_data: .. ipython:: python :suppress: from pandas import * options.display.max_rows=15 ************************* Working with missing data ************************* In this section, we will discuss missing (also referred to as NA) values in pandas. .. ipython:: python :suppress: import numpy as np; randn = np.random.randn; randint =np.random.randint from pandas import * import matplotlib.pyplot as plt from pandas.compat import lrange .. note:: The choice of using ``NaN`` internally to denote missing data was largely for simplicity and performance reasons. It differs from the MaskedArray approach of, for example, :mod:`scikits.timeseries`. We are hopeful that NumPy will soon be able to provide a native NA type solution (similar to R) performant enough to be used in pandas. See the :ref:`cookbook` for some advanced strategies Missing data basics ------------------- When / why does data become missing? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Some might quibble over our usage of *missing*. By "missing" we simply mean **null** or "not present for whatever reason". Many data sets simply arrive with missing data, either because it exists and was not collected or it never existed. For example, in a collection of financial time series, some of the time series might start on different dates. Thus, values prior to the start date would generally be marked as missing. In pandas, one of the most common ways that missing data is **introduced** into a data set is by reindexing. For example .. ipython:: python df = DataFrame(randn(5, 3), index=['a', 'c', 'e', 'f', 'h'], columns=['one', 'two', 'three']) df['four'] = 'bar' df['five'] = df['one'] > 0 df df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) df2 Values considered "missing" ~~~~~~~~~~~~~~~~~~~~~~~~~~~ As data comes in many shapes and forms, pandas aims to be flexible with regard to handling missing data. While ``NaN`` is the default missing value marker for reasons of computational speed and convenience, we need to be able to easily detect this value with data of different types: floating point, integer, boolean, and general object. In many cases, however, the Python ``None`` will arise and we wish to also consider that "missing" or "null". Prior to version v0.10.0 ``inf`` and ``-inf`` were also considered to be "null" in computations. This is no longer the case by default; use the ``mode.use_inf_as_null`` option to recover it. .. _missing.isnull: To make detecting missing values easier (and across different array dtypes), pandas provides the :func:`~pandas.core.common.isnull` and :func:`~pandas.core.common.notnull` functions, which are also methods on ``Series`` objects: .. ipython:: python df2['one'] isnull(df2['one']) df2['four'].notnull() **Summary:** ``NaN`` and ``None`` (in object arrays) are considered missing by the ``isnull`` and ``notnull`` functions. ``inf`` and ``-inf`` are no longer considered missing by default. Datetimes --------- For datetime64[ns] types, ``NaT`` represents missing values. This is a pseudo-native sentinel value that can be represented by numpy in a singular dtype (datetime64[ns]). pandas objects provide intercompatibility between ``NaT`` and ``NaN``. .. ipython:: python df2 = df.copy() df2['timestamp'] = Timestamp('20120101') df2 df2.ix[['a','c','h'],['one','timestamp']] = np.nan df2 df2.get_dtype_counts() .. _missing.inserting: Inserting missing data ---------------------- You can insert missing values by simply assigning to containers. The actual missing value used will be chosen based on the dtype. For example, numeric containers will always use ``NaN`` regardless of the missing value type chosen: .. ipython:: python s = Series([1, 2, 3]) s.loc[0] = None s Likewise, datetime containers will always use ``NaT``. For object containers, pandas will use the value given: .. ipython:: python s = Series(["a", "b", "c"]) s.loc[0] = None s.loc[1] = np.nan s Calculations with missing data ------------------------------ Missing values propagate naturally through arithmetic operations between pandas objects. .. ipython:: python :suppress: df = df2.ix[:, ['one', 'two', 'three']] a = df2.ix[:5, ['one', 'two']].fillna(method='pad') b = df2.ix[:5, ['one', 'two', 'three']] .. ipython:: python a b a + b The descriptive statistics and computational methods discussed in the :ref:`data structure overview ` (and listed :ref:`here ` and :ref:`here `) are all written to account for missing data. For example: * When summing data, NA (missing) values will be treated as zero * If the data are all NA, the result will be NA * Methods like **cumsum** and **cumprod** ignore NA values, but preserve them in the resulting arrays .. ipython:: python df df['one'].sum() df.mean(1) df.cumsum() NA values in GroupBy ~~~~~~~~~~~~~~~~~~~~ NA groups in GroupBy are automatically excluded. This behavior is consistent with R, for example. Cleaning / filling missing data -------------------------------- pandas objects are equipped with various data manipulation methods for dealing with missing data. .. _missing_data.fillna: Filling missing values: fillna ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The **fillna** function can "fill in" NA values with non-null data in a couple of ways, which we illustrate: **Replace NA with a scalar value** .. ipython:: python df2 df2.fillna(0) df2['four'].fillna('missing') **Fill gaps forward or backward** Using the same filling arguments as :ref:`reindexing `, we can propagate non-null values forward or backward: .. ipython:: python df df.fillna(method='pad') .. _missing_data.fillna.limit: **Limit the amount of filling** If we only want consecutive gaps filled up to a certain number of data points, we can use the `limit` keyword: .. ipython:: python :suppress: df.ix[2:4, :] = np.nan .. ipython:: python df df.fillna(method='pad', limit=1) To remind you, these are the available filling methods: .. csv-table:: :header: "Method", "Action" :widths: 30, 50 pad / ffill, Fill values forward bfill / backfill, Fill values backward With time series data, using pad/ffill is extremely common so that the "last known value" is available at every time point. The ``ffill()`` function is equivalent to ``fillna(method='ffill')`` and ``bfill()`` is equivalent to ``fillna(method='bfill')`` .. _missing_data.PandasObject: Filling with a PandasObject ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. versionadded:: 0.12 You can also fillna using a dict or Series that is alignable. The labels of the dict or index of the Series must match the columns of the frame you wish to fill. The use case of this is to fill a DataFrame with the mean of that column. .. ipython:: python dff = DataFrame(np.random.randn(10,3),columns=list('ABC')) dff.iloc[3:5,0] = np.nan dff.iloc[4:6,1] = np.nan dff.iloc[5:8,2] = np.nan dff dff.fillna(dff.mean()) dff.fillna(dff.mean()['B':'C']) .. versionadded:: 0.13 Same result as above, but is aligning the 'fill' value which is a Series in this case. .. ipython:: python dff.where(notnull(dff),dff.mean(),axis='columns') .. _missing_data.dropna: Dropping axis labels with missing data: dropna ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You may wish to simply exclude labels from a data set which refer to missing data. To do this, use the **dropna** method: .. ipython:: python :suppress: df['two'] = df['two'].fillna(0) df['three'] = df['three'].fillna(0) .. ipython:: python df df.dropna(axis=0) df.dropna(axis=1) df['one'].dropna() Series.dropna is a simpler method as it only has one axis to consider. DataFrame.dropna has considerably more options than Series.dropna, which can be examined :ref:`in the API `. .. _missing_data.interpolate: Interpolation ~~~~~~~~~~~~~ .. versionadded:: 0.13.0 :meth:`~pandas.DataFrame.interpolate`, and :meth:`~pandas.Series.interpolate` have revamped interpolation methods and functionaility. Both Series and Dataframe objects have an ``interpolate`` method that, by default, performs linear interpolation at missing datapoints. .. ipython:: python :suppress: np.random.seed(123456) idx = date_range('1/1/2000', periods=100, freq='BM') ts = Series(randn(100), index=idx) ts[1:20] = np.nan ts[60:80] = np.nan ts = ts.cumsum() .. ipython:: python ts ts.count() ts.interpolate().count() plt.figure() @savefig series_interpolate.png ts.interpolate().plot() Index aware interpolation is available via the ``method`` keyword: .. ipython:: python :suppress: ts2 = ts[[0, 1, 30, 60, 99]] .. ipython:: python ts2 ts2.interpolate() ts2.interpolate(method='time') For a floating-point index, use ``method='values'``: .. ipython:: python :suppress: idx = [0., 1., 10.] ser = Series([0., np.nan, 10.], idx) .. ipython:: python ser ser.interpolate() ser.interpolate(method='values') You can also interpolate with a DataFrame: .. ipython:: python df = DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8], 'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]}) df df.interpolate() The ``method`` argument gives access to fancier interpolation methods. If you have scipy_ installed, you can set pass the name of a 1-d interpolation routine to ``method``. You'll want to consult the full scipy interpolation documentation_ and reference guide_ for details. The appropriate interpolation method will depend on the type of data you are working with. For example, if you are dealing with a time series that is growing at an increasing rate, ``method='quadratic'`` may be appropriate. If you have values approximating a cumulative distribution function, then ``method='pchip'`` should work well. .. warning:: These methods require ``scipy``. .. ipython:: python df.interpolate(method='barycentric') df.interpolate(method='pchip') When interpolating via a polynomial or spline approximation, you must also specify the degree or order of the approximation: .. ipython:: python df.interpolate(method='spline', order=2) df.interpolate(method='polynomial', order=2) Compare several methods: .. ipython:: python np.random.seed(2) ser = Series(np.arange(1, 10.1, .25)**2 + np.random.randn(37)) bad = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29]) ser[bad] = np.nan methods = ['linear', 'quadratic', 'cubic'] df = DataFrame({m: ser.interpolate(method=m) for m in methods}) plt.figure() @savefig compare_interpolations.png df.plot() Another use case is interpolation at *new* values. Suppose you have 100 observations from some distribution. And let's suppose that you're particularly interested in what's happening around the middle. You can mix pandas' ``reindex`` and ``interpolate`` methods to interpolate at the new values. .. ipython:: python ser = Series(np.sort(np.random.uniform(size=100))) # interpolate at new_index new_index = ser.index | Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75]) interp_s = ser.reindex(new_index).interpolate(method='pchip') interp_s[49:51] .. _scipy: http://www.scipy.org .. _documentation: http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation .. _guide: http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html Like other pandas fill methods, ``interpolate`` accepts a ``limit`` keyword argument. Use this to limit the number of consecutive interpolations, keeping ``NaN`` values for interpolations that are too far from the last valid observation: .. ipython:: python ser = Series([1, 3, np.nan, np.nan, np.nan, 11]) ser.interpolate(limit=2) .. _missing_data.replace: Replacing Generic Values ~~~~~~~~~~~~~~~~~~~~~~~~ Often times we want to replace arbitrary values with other values. New in v0.8 is the ``replace`` method in Series/DataFrame that provides an efficient yet flexible way to perform such replacements. For a Series, you can replace a single value or a list of values by another value: .. ipython:: python ser = Series([0., 1., 2., 3., 4.]) ser.replace(0, 5) You can replace a list of values by a list of other values: .. ipython:: python ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0]) You can also specify a mapping dict: .. ipython:: python ser.replace({0: 10, 1: 100}) For a DataFrame, you can specify individual values by column: .. ipython:: python df = DataFrame({'a': [0, 1, 2, 3, 4], 'b': [5, 6, 7, 8, 9]}) df.replace({'a': 0, 'b': 5}, 100) Instead of replacing with specified values, you can treat all given values as missing and interpolate over them: .. ipython:: python ser.replace([1, 2, 3], method='pad') .. _missing_data.replace_expression: String/Regular Expression Replacement ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. note:: Python strings prefixed with the ``r`` character such as ``r'hello world'`` are so-called "raw" strings. They have different semantics regarding backslashes than strings without this prefix. Backslashes in raw strings will be interpreted as an escaped backslash, e.g., ``r'\' == '\\'``. You should `read about them `__ if this is unclear. Replace the '.' with ``nan`` (str -> str) .. ipython:: python :suppress: from numpy.random import rand, randn from numpy import nan from pandas import DataFrame .. ipython:: python d = {'a': list(range(4)), 'b': list('ab..'), 'c': ['a', 'b', nan, 'd']} df = DataFrame(d) df.replace('.', nan) Now do it with a regular expression that removes surrounding whitespace (regex -> regex) .. ipython:: python df.replace(r'\s*\.\s*', nan, regex=True) Replace a few different values (list -> list) .. ipython:: python df.replace(['a', '.'], ['b', nan]) list of regex -> list of regex .. ipython:: python df.replace([r'\.', r'(a)'], ['dot', '\1stuff'], regex=True) Only search in column ``'b'`` (dict -> dict) .. ipython:: python df.replace({'b': '.'}, {'b': nan}) Same as the previous example, but use a regular expression for searching instead (dict of regex -> dict) .. ipython:: python df.replace({'b': r'\s*\.\s*'}, {'b': nan}, regex=True) You can pass nested dictionaries of regular expressions that use ``regex=True`` .. ipython:: python df.replace({'b': {'b': r''}}, regex=True) or you can pass the nested dictionary like so .. ipython:: python df.replace(regex={'b': {r'\s*\.\s*': nan}}) You can also use the group of a regular expression match when replacing (dict of regex -> dict of regex), this works for lists as well .. ipython:: python df.replace({'b': r'\s*(\.)\s*'}, {'b': r'\1ty'}, regex=True) You can pass a list of regular expressions, of which those that match will be replaced with a scalar (list of regex -> regex) .. ipython:: python df.replace([r'\s*\.\s*', r'a|b'], nan, regex=True) All of the regular expression examples can also be passed with the ``to_replace`` argument as the ``regex`` argument. In this case the ``value`` argument must be passed explicitly by name or ``regex`` must be a nested dictionary. The previous example, in this case, would then be .. ipython:: python df.replace(regex=[r'\s*\.\s*', r'a|b'], value=nan) This can be convenient if you do not want to pass ``regex=True`` every time you want to use a regular expression. .. note:: Anywhere in the above ``replace`` examples that you see a regular expression a compiled regular expression is valid as well. Numeric Replacement ~~~~~~~~~~~~~~~~~~~ Similar to ``DataFrame.fillna`` .. ipython:: python :suppress: from numpy.random import rand, randn from numpy import nan from pandas import DataFrame from pandas.util.testing import assert_frame_equal .. ipython:: python df = DataFrame(randn(10, 2)) df[rand(df.shape[0]) > 0.5] = 1.5 df.replace(1.5, nan) Replacing more than one value via lists works as well .. ipython:: python df00 = df.values[0, 0] df.replace([1.5, df00], [nan, 'a']) df[1].dtype You can also operate on the DataFrame in place .. ipython:: python df.replace(1.5, nan, inplace=True) .. warning:: When replacing multiple ``bool`` or ``datetime64`` objects, the first argument to ``replace`` (``to_replace``) must match the type of the value being replaced type. For example, .. code-block:: python s = Series([True, False, True]) s.replace({'a string': 'new value', True: False}) # raises TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str' will raise a ``TypeError`` because one of the ``dict`` keys is not of the correct type for replacement. However, when replacing a *single* object such as, .. ipython:: python s = Series([True, False, True]) s.replace('a string', 'another string') the original ``NDFrame`` object will be returned untouched. We're working on unifying this API, but for backwards compatibility reasons we cannot break the latter behavior. See :issue:`6354` for more details. Missing data casting rules and indexing --------------------------------------- While pandas supports storing arrays of integer and boolean type, these types are not capable of storing missing data. Until we can switch to using a native NA type in NumPy, we've established some "casting rules" when reindexing will cause missing data to be introduced into, say, a Series or DataFrame. Here they are: .. csv-table:: :header: "data type", "Cast to" :widths: 40, 40 integer, float boolean, object float, no cast object, no cast For example: .. ipython:: python s = Series(randn(5), index=[0, 2, 4, 6, 7]) s > 0 (s > 0).dtype crit = (s > 0).reindex(list(range(8))) crit crit.dtype Ordinarily NumPy will complain if you try to use an object array (even if it contains boolean values) instead of a boolean array to get or set values from an ndarray (e.g. selecting values based on some criteria). If a boolean vector contains NAs, an exception will be generated: .. ipython:: python :okexcept: reindexed = s.reindex(list(range(8))).fillna(0) reindexed[crit] However, these can be filled in using **fillna** and it will work fine: .. ipython:: python reindexed[crit.fillna(False)] reindexed[crit.fillna(True)]