.. currentmodule:: pandas .. _basics: .. ipython:: python :suppress: import numpy as np from pandas import * randn = np.random.randn np.set_printoptions(precision=4, suppress=True) from pandas.compat import lrange options.display.max_rows=15 ============================== Essential Basic Functionality ============================== Here we discuss a lot of the essential functionality common to the pandas data structures. Here's how to create some of the objects used in the examples from the previous section: .. ipython:: python index = date_range('1/1/2000', periods=8) s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e']) df = DataFrame(randn(8, 3), index=index, columns=['A', 'B', 'C']) wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'], major_axis=date_range('1/1/2000', periods=5), minor_axis=['A', 'B', 'C', 'D']) .. _basics.head_tail: Head and Tail ------------- To view a small sample of a Series or DataFrame object, use the ``head`` and ``tail`` methods. The default number of elements to display is five, but you may pass a custom number. .. ipython:: python long_series = Series(randn(1000)) long_series.head() long_series.tail(3) .. _basics.attrs: Attributes and the raw ndarray(s) --------------------------------- pandas objects have a number of attributes enabling you to access the metadata * **shape**: gives the axis dimensions of the object, consistent with ndarray * Axis labels * **Series**: *index* (only axis) * **DataFrame**: *index* (rows) and *columns* * **Panel**: *items*, *major_axis*, and *minor_axis* Note, **these attributes can be safely assigned to**! .. ipython:: python df[:2] df.columns = [x.lower() for x in df.columns] df To get the actual data inside a data structure, one need only access the **values** property: .. ipython:: python s.values df.values wp.values If a DataFrame or Panel contains homogeneously-typed data, the ndarray can actually be modified in-place, and the changes will be reflected in the data structure. For heterogeneous data (e.g. some of the DataFrame's columns are not all the same dtype), this will not be the case. The values attribute itself, unlike the axis labels, cannot be assigned to. .. note:: When working with heterogeneous data, the dtype of the resulting ndarray will be chosen to accommodate all of the data involved. For example, if strings are involved, the result will be of object dtype. If there are only floats and integers, the resulting array will be of float dtype. .. _basics.accelerate: Accelerated operations ---------------------- pandas has support for accelerating certain types of binary numerical and boolean operations using the ``numexpr`` library (starting in 0.11.0) and the ``bottleneck`` libraries. These libraries are especially useful when dealing with large data sets, and provide large speedups. ``numexpr`` uses smart chunking, caching, and multiple cores. ``bottleneck`` is a set of specialized cython routines that are especially fast when dealing with arrays that have ``nans``. Here is a sample (using 100 column x 100,000 row ``DataFrames``): .. csv-table:: :header: "Operation", "0.11.0 (ms)", "Prior Version (ms)", "Ratio to Prior" :widths: 25, 25, 25, 25 :delim: ; ``df1 > df2``; 13.32; 125.35; 0.1063 ``df1 * df2``; 21.71; 36.63; 0.5928 ``df1 + df2``; 22.04; 36.50; 0.6039 You are highly encouraged to install both libraries. See the section :ref:`Recommended Dependencies ` for more installation info. .. _basics.binop: Flexible binary operations -------------------------- With binary operations between pandas data structures, there are two key points of interest: * Broadcasting behavior between higher- (e.g. DataFrame) and lower-dimensional (e.g. Series) objects. * Missing data in computations We will demonstrate how to manage these issues independently, though they can be handled simultaneously. Matching / broadcasting behavior ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DataFrame has the methods **add, sub, mul, div** and related functions **radd, rsub, ...** for carrying out binary operations. For broadcasting behavior, Series input is of primary interest. Using these functions, you can use to either match on the *index* or *columns* via the **axis** keyword: .. ipython:: python df = DataFrame({'one' : Series(randn(3), index=['a', 'b', 'c']), 'two' : Series(randn(4), index=['a', 'b', 'c', 'd']), 'three' : Series(randn(3), index=['b', 'c', 'd'])}) df row = df.ix[1] column = df['two'] df.sub(row, axis='columns') df.sub(row, axis=1) df.sub(column, axis='index') df.sub(column, axis=0) .. ipython:: python :suppress: df_orig = df Furthermore you can align a level of a multi-indexed DataFrame with a Series. .. ipython:: python dfmi = df.copy() dfmi.index = MultiIndex.from_tuples([(1,'a'),(1,'b'),(1,'c'),(2,'a')], names=['first','second']) dfmi.sub(column, axis=0, level='second') With Panel, describing the matching behavior is a bit more difficult, so the arithmetic methods instead (and perhaps confusingly?) give you the option to specify the *broadcast axis*. For example, suppose we wished to demean the data over a particular axis. This can be accomplished by taking the mean over an axis and broadcasting over the same axis: .. ipython:: python major_mean = wp.mean(axis='major') major_mean wp.sub(major_mean, axis='major') And similarly for ``axis="items"`` and ``axis="minor"``. .. note:: I could be convinced to make the **axis** argument in the DataFrame methods match the broadcasting behavior of Panel. Though it would require a transition period so users can change their code... Missing data / operations with fill values ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In Series and DataFrame (though not yet in Panel), the arithmetic functions have the option of inputting a *fill_value*, namely a value to substitute when at most one of the values at a location are missing. For example, when adding two DataFrame objects, you may wish to treat NaN as 0 unless both DataFrames are missing that value, in which case the result will be NaN (you can later replace NaN with some other value using ``fillna`` if you wish). .. ipython:: python :suppress: df2 = df.copy() df2['three']['a'] = 1. .. ipython:: python df df2 df + df2 df.add(df2, fill_value=0) .. _basics.compare: Flexible Comparisons ~~~~~~~~~~~~~~~~~~~~ Starting in v0.8, pandas introduced binary comparison methods eq, ne, lt, gt, le, and ge to Series and DataFrame whose behavior is analogous to the binary arithmetic operations described above: .. ipython:: python df.gt(df2) df2.ne(df) These operations produce a pandas object the same type as the left-hand-side input that if of dtype ``bool``. These ``boolean`` objects can be used in indexing operations, see :ref:`here` .. _basics.reductions: Boolean Reductions ~~~~~~~~~~~~~~~~~~ You can apply the reductions: ``empty``, ``any()``, ``all()``, and ``bool()`` to provide a way to summarize a boolean result. .. ipython:: python (df>0).all() (df>0).any() You can reduce to a final boolean value. .. ipython:: python (df>0).any().any() You can test if a pandas object is empty, via the ``empty`` property. .. ipython:: python df.empty DataFrame(columns=list('ABC')).empty To evaluate single-element pandas objects in a boolean context, use the method ``.bool()``: .. ipython:: python Series([True]).bool() Series([False]).bool() DataFrame([[True]]).bool() DataFrame([[False]]).bool() .. warning:: You might be tempted to do the following: .. code-block:: python >>>if df: ... Or .. code-block:: python >>> df and df2 These both will raise as you are trying to compare multiple values. .. code-block:: python ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all(). See :ref:`gotchas` for a more detailed discussion. .. _basics.equals: Comparing if objects are equivalent ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Often you may find there is more than one way to compute the same result. As a simple example, consider ``df+df`` and ``df*2``. To test that these two computations produce the same result, given the tools shown above, you might imagine using ``(df+df == df*2).all()``. But in fact, this expression is False: .. ipython:: python df+df == df*2 (df+df == df*2).all() Notice that the boolean DataFrame ``df+df == df*2`` contains some False values! That is because NaNs do not compare as equals: .. ipython:: python np.nan == np.nan So, as of v0.13.1, NDFrames (such as Series, DataFrames, and Panels) have an ``equals`` method for testing equality, with NaNs in corresponding locations treated as equal. .. ipython:: python (df+df).equals(df*2) Note that the Series or DataFrame index needs to be in the same order for equality to be True: .. ipython:: python df1 = DataFrame({'col':['foo', 0, np.nan]}) df2 = DataFrame({'col':[np.nan, 0, 'foo']}, index=[2,1,0]) df1.equals(df2) df1.equals(df2.sort()) Combining overlapping data sets ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A problem occasionally arising is the combination of two similar data sets where values in one are preferred over the other. An example would be two data series representing a particular economic indicator where one is considered to be of "higher quality". However, the lower quality series might extend further back in history or have more complete data coverage. As such, we would like to combine two DataFrame objects where missing values in one DataFrame are conditionally filled with like-labeled values from the other DataFrame. The function implementing this operation is ``combine_first``, which we illustrate: .. ipython:: python df1 = DataFrame({'A' : [1., np.nan, 3., 5., np.nan], 'B' : [np.nan, 2., 3., np.nan, 6.]}) df2 = DataFrame({'A' : [5., 2., 4., np.nan, 3., 7.], 'B' : [np.nan, np.nan, 3., 4., 6., 8.]}) df1 df2 df1.combine_first(df2) General DataFrame Combine ~~~~~~~~~~~~~~~~~~~~~~~~~ The ``combine_first`` method above calls the more general DataFrame method ``combine``. This method takes another DataFrame and a combiner function, aligns the input DataFrame and then passes the combiner function pairs of Series (i.e., columns whose names are the same). So, for instance, to reproduce ``combine_first`` as above: .. ipython:: python combiner = lambda x, y: np.where(isnull(x), y, x) df1.combine(df2, combiner) .. _basics.stats: Descriptive statistics ---------------------- A large number of methods for computing descriptive statistics and other related operations on :ref:`Series `, :ref:`DataFrame `, and :ref:`Panel `. Most of these are aggregations (hence producing a lower-dimensional result) like **sum**, **mean**, and **quantile**, but some of them, like **cumsum** and **cumprod**, produce an object of the same size. Generally speaking, these methods take an **axis** argument, just like *ndarray.{sum, std, ...}*, but the axis can be specified by name or integer: - **Series**: no axis argument needed - **DataFrame**: "index" (axis=0, default), "columns" (axis=1) - **Panel**: "items" (axis=0), "major" (axis=1, default), "minor" (axis=2) For example: .. ipython:: python df df.mean(0) df.mean(1) All such methods have a ``skipna`` option signaling whether to exclude missing data (``True`` by default): .. ipython:: python df.sum(0, skipna=False) df.sum(axis=1, skipna=True) Combined with the broadcasting / arithmetic behavior, one can describe various statistical procedures, like standardization (rendering data zero mean and standard deviation 1), very concisely: .. ipython:: python ts_stand = (df - df.mean()) / df.std() ts_stand.std() xs_stand = df.sub(df.mean(1), axis=0).div(df.std(1), axis=0) xs_stand.std(1) Note that methods like **cumsum** and **cumprod** preserve the location of NA values: .. ipython:: python df.cumsum() Here is a quick reference summary table of common functions. Each also takes an optional ``level`` parameter which applies only if the object has a :ref:`hierarchical index`. .. csv-table:: :header: "Function", "Description" :widths: 20, 80 ``count``, Number of non-null observations ``sum``, Sum of values ``mean``, Mean of values ``mad``, Mean absolute deviation ``median``, Arithmetic median of values ``min``, Minimum ``max``, Maximum ``mode``, Mode ``abs``, Absolute Value ``prod``, Product of values ``std``, Unbiased standard deviation ``var``, Unbiased variance ``sem``, Unbiased standard error of the mean ``skew``, Unbiased skewness (3rd moment) ``kurt``, Unbiased kurtosis (4th moment) ``quantile``, Sample quantile (value at %) ``cumsum``, Cumulative sum ``cumprod``, Cumulative product ``cummax``, Cumulative maximum ``cummin``, Cumulative minimum Note that by chance some NumPy methods, like ``mean``, ``std``, and ``sum``, will exclude NAs on Series input by default: .. ipython:: python np.mean(df['one']) np.mean(df['one'].values) ``Series`` also has a method ``nunique`` which will return the number of unique non-null values: .. ipython:: python series = Series(randn(500)) series[20:500] = np.nan series[10:20] = 5 series.nunique() .. _basics.describe: Summarizing data: describe ~~~~~~~~~~~~~~~~~~~~~~~~~~ There is a convenient ``describe`` function which computes a variety of summary statistics about a Series or the columns of a DataFrame (excluding NAs of course): .. ipython:: python series = Series(randn(1000)) series[::2] = np.nan series.describe() frame = DataFrame(randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e']) frame.ix[::2] = np.nan frame.describe() You can select specific percentiles to include in the output: .. ipython:: python series.describe(percentiles=[.05, .25, .75, .95]) By default, the median is always included. For a non-numerical Series object, `describe` will give a simple summary of the number of unique values and most frequently occurring values: .. ipython:: python s = Series(['a', 'a', 'b', 'b', 'a', 'a', np.nan, 'c', 'd', 'a']) s.describe() Note that on a mixed-type DataFrame object, `describe` will restrict the summary to include only numerical columns or, if none are, only categorical columns: .. ipython:: python frame = DataFrame({'a': ['Yes', 'Yes', 'No', 'No'], 'b': range(4)}) frame.describe() This behaviour can be controlled by providing a list of types as ``include``/``exclude`` arguments. The special value ``all`` can also be used: .. ipython:: python frame.describe(include=['object']) frame.describe(include=['number']) frame.describe(include='all') That feature relies on :ref:`select_dtypes `. Refer to there for details about accepted inputs. .. _basics.idxmin: Index of Min/Max Values ~~~~~~~~~~~~~~~~~~~~~~~ The ``idxmin`` and ``idxmax`` functions on Series and DataFrame compute the index labels with the minimum and maximum corresponding values: .. ipython:: python s1 = Series(randn(5)) s1 s1.idxmin(), s1.idxmax() df1 = DataFrame(randn(5,3), columns=['A','B','C']) df1 df1.idxmin(axis=0) df1.idxmax(axis=1) When there are multiple rows (or columns) matching the minimum or maximum value, ``idxmin`` and ``idxmax`` return the first matching index: .. ipython:: python df3 = DataFrame([2, 1, 1, 3, np.nan], columns=['A'], index=list('edcba')) df3 df3['A'].idxmin() .. note:: ``idxmin`` and ``idxmax`` are called ``argmin`` and ``argmax`` in NumPy. .. _basics.discretization: Value counts (histogramming) / Mode ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ``value_counts`` Series method and top-level function computes a histogram of a 1D array of values. It can also be used as a function on regular arrays: .. ipython:: python data = np.random.randint(0, 7, size=50) data s = Series(data) s.value_counts() value_counts(data) Similarly, you can get the most frequently occurring value(s) (the mode) of the values in a Series or DataFrame: .. ipython:: python s5 = Series([1, 1, 3, 3, 3, 5, 5, 7, 7, 7]) s5.mode() df5 = DataFrame({"A": np.random.randint(0, 7, size=50), "B": np.random.randint(-10, 15, size=50)}) df5.mode() Discretization and quantiling ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Continuous values can be discretized using the ``cut`` (bins based on values) and ``qcut`` (bins based on sample quantiles) functions: .. ipython:: python arr = np.random.randn(20) factor = cut(arr, 4) factor factor = cut(arr, [-5, -1, 0, 1, 5]) factor ``qcut`` computes sample quantiles. For example, we could slice up some normally distributed data into equal-size quartiles like so: .. ipython:: python arr = np.random.randn(30) factor = qcut(arr, [0, .25, .5, .75, 1]) factor value_counts(factor) We can also pass infinite values to define the bins: .. ipython:: python arr = np.random.randn(20) factor = cut(arr, [-np.inf, 0, np.inf]) factor .. _basics.apply: Function application -------------------- Arbitrary functions can be applied along the axes of a DataFrame or Panel using the ``apply`` method, which, like the descriptive statistics methods, take an optional ``axis`` argument: .. ipython:: python df.apply(np.mean) df.apply(np.mean, axis=1) df.apply(lambda x: x.max() - x.min()) df.apply(np.cumsum) df.apply(np.exp) Depending on the return type of the function passed to ``apply``, the result will either be of lower dimension or the same dimension. ``apply`` combined with some cleverness can be used to answer many questions about a data set. For example, suppose we wanted to extract the date where the maximum value for each column occurred: .. ipython:: python tsdf = DataFrame(randn(1000, 3), columns=['A', 'B', 'C'], index=date_range('1/1/2000', periods=1000)) tsdf.apply(lambda x: x.idxmax()) You may also pass additional arguments and keyword arguments to the ``apply`` method. For instance, consider the following function you would like to apply: .. code-block:: python def subtract_and_divide(x, sub, divide=1): return (x - sub) / divide You may then apply this function as follows: .. code-block:: python df.apply(subtract_and_divide, args=(5,), divide=3) Another useful feature is the ability to pass Series methods to carry out some Series operation on each column or row: .. ipython:: python :suppress: tsdf = DataFrame(randn(10, 3), columns=['A', 'B', 'C'], index=date_range('1/1/2000', periods=10)) tsdf.values[3:7] = np.nan .. ipython:: python tsdf tsdf.apply(Series.interpolate) Finally, ``apply`` takes an argument ``raw`` which is False by default, which converts each row or column into a Series before applying the function. When set to True, the passed function will instead receive an ndarray object, which has positive performance implications if you do not need the indexing functionality. .. seealso:: The section on :ref:`GroupBy ` demonstrates related, flexible functionality for grouping by some criterion, applying, and combining the results into a Series, DataFrame, etc. Applying elementwise Python functions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods ``applymap`` on DataFrame and analogously ``map`` on Series accept any Python function taking a single value and returning a single value. For example: .. ipython:: python :suppress: df4 = df_orig.copy() .. ipython:: python df4 f = lambda x: len(str(x)) df4['one'].map(f) df4.applymap(f) ``Series.map`` has an additional feature which is that it can be used to easily "link" or "map" values defined by a secondary series. This is closely related to :ref:`merging/joining functionality `: .. ipython:: python s = Series(['six', 'seven', 'six', 'seven', 'six'], index=['a', 'b', 'c', 'd', 'e']) t = Series({'six' : 6., 'seven' : 7.}) s s.map(t) .. _basics.apply_panel: Applying with a Panel ~~~~~~~~~~~~~~~~~~~~~ Applying with a ``Panel`` will pass a ``Series`` to the applied function. If the applied function returns a ``Series``, the result of the application will be a ``Panel``. If the applied function reduces to a scalar, the result of the application will be a ``DataFrame``. .. note:: Prior to 0.13.1 ``apply`` on a ``Panel`` would only work on ``ufuncs`` (e.g. ``np.sum/np.max``). .. ipython:: python import pandas.util.testing as tm panel = tm.makePanel(5) panel panel['ItemA'] A transformational apply. .. ipython:: python result = panel.apply(lambda x: x*2, axis='items') result result['ItemA'] A reduction operation. .. ipython:: python panel.apply(lambda x: x.dtype, axis='items') A similar reduction type operation .. ipython:: python panel.apply(lambda x: x.sum(), axis='major_axis') This last reduction is equivalent to .. ipython:: python panel.sum('major_axis') A transformation operation that returns a ``Panel``, but is computing the z-score across the ``major_axis``. .. ipython:: python result = panel.apply( lambda x: (x-x.mean())/x.std(), axis='major_axis') result result['ItemA'] Apply can also accept multiple axes in the ``axis`` argument. This will pass a ``DataFrame`` of the cross-section to the applied function. .. ipython:: python f = lambda x: ((x.T-x.mean(1))/x.std(1)).T result = panel.apply(f, axis = ['items','major_axis']) result result.loc[:,:,'ItemA'] This is equivalent to the following .. ipython:: python result = Panel(dict([ (ax,f(panel.loc[:,:,ax])) for ax in panel.minor_axis ])) result result.loc[:,:,'ItemA'] .. _basics.reindexing: Reindexing and altering labels ------------------------------ ``reindex`` is the fundamental data alignment method in pandas. It is used to implement nearly all other features relying on label-alignment functionality. To *reindex* means to conform the data to match a given set of labels along a particular axis. This accomplishes several things: * Reorders the existing data to match a new set of labels * Inserts missing value (NA) markers in label locations where no data for that label existed * If specified, **fill** data for missing labels using logic (highly relevant to working with time series data) Here is a simple example: .. ipython:: python s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e']) s s.reindex(['e', 'b', 'f', 'd']) Here, the ``f`` label was not contained in the Series and hence appears as ``NaN`` in the result. With a DataFrame, you can simultaneously reindex the index and columns: .. ipython:: python df df.reindex(index=['c', 'f', 'b'], columns=['three', 'two', 'one']) For convenience, you may utilize the ``reindex_axis`` method, which takes the labels and a keyword ``axis`` parameter. Note that the ``Index`` objects containing the actual axis labels can be **shared** between objects. So if we have a Series and a DataFrame, the following can be done: .. ipython:: python rs = s.reindex(df.index) rs rs.index is df.index This means that the reindexed Series's index is the same Python object as the DataFrame's index. .. seealso:: :ref:`MultiIndex / Advanced Indexing ` is an even more concise way of doing reindexing. .. note:: When writing performance-sensitive code, there is a good reason to spend some time becoming a reindexing ninja: **many operations are faster on pre-aligned data**. Adding two unaligned DataFrames internally triggers a reindexing step. For exploratory analysis you will hardly notice the difference (because ``reindex`` has been heavily optimized), but when CPU cycles matter sprinkling a few explicit ``reindex`` calls here and there can have an impact. .. _basics.reindex_like: Reindexing to align with another object ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You may wish to take an object and reindex its axes to be labeled the same as another object. While the syntax for this is straightforward albeit verbose, it is a common enough operation that the ``reindex_like`` method is available to make this simpler: .. ipython:: python :suppress: df2 = df.reindex(['a', 'b', 'c'], columns=['one', 'two']) df3 = df2 - df2.mean() .. ipython:: python df2 df3 df.reindex_like(df2) Reindexing with ``reindex_axis`` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. _basics.align: Aligning objects with each other with ``align`` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The ``align`` method is the fastest way to simultaneously align two objects. It supports a ``join`` argument (related to :ref:`joining and merging `): - ``join='outer'``: take the union of the indexes (default) - ``join='left'``: use the calling object's index - ``join='right'``: use the passed object's index - ``join='inner'``: intersect the indexes It returns a tuple with both of the reindexed Series: .. ipython:: python s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e']) s1 = s[:4] s2 = s[1:] s1.align(s2) s1.align(s2, join='inner') s1.align(s2, join='left') .. _basics.df_join: For DataFrames, the join method will be applied to both the index and the columns by default: .. ipython:: python df.align(df2, join='inner') You can also pass an ``axis`` option to only align on the specified axis: .. ipython:: python df.align(df2, join='inner', axis=0) .. _basics.align.frame.series: If you pass a Series to ``DataFrame.align``, you can choose to align both objects either on the DataFrame's index or columns using the ``axis`` argument: .. ipython:: python df.align(df2.ix[0], axis=1) .. _basics.reindex_fill: Filling while reindexing ~~~~~~~~~~~~~~~~~~~~~~~~ ``reindex`` takes an optional parameter ``method`` which is a filling method chosen from the following table: .. csv-table:: :header: "Method", "Action" :widths: 30, 50 pad / ffill, Fill values forward bfill / backfill, Fill values backward nearest, Fill from the nearest index value We illustrate these fill methods on a simple Series: .. ipython:: python rng = date_range('1/3/2000', periods=8) ts = Series(randn(8), index=rng) ts2 = ts[[0, 3, 6]] ts ts2 ts2.reindex(ts.index) ts2.reindex(ts.index, method='ffill') ts2.reindex(ts.index, method='bfill') ts2.reindex(ts.index, method='nearest') These methods require that the indexes are **ordered** increasing or decreasing. Note that the same result could have been achieved using :ref:`fillna ` (except for ``method='nearest'``) or :ref:`interpolate `: .. ipython:: python ts2.reindex(ts.index).fillna(method='ffill') ``reindex`` will raise a ValueError if the index is not monotonic increasing or descreasing. ``fillna`` and ``interpolate`` will not make any checks on the order of the index. .. _basics.drop: Dropping labels from an axis ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A method closely related to ``reindex`` is the ``drop`` function. It removes a set of labels from an axis: .. ipython:: python df df.drop(['a', 'd'], axis=0) df.drop(['one'], axis=1) Note that the following also works, but is a bit less obvious / clean: .. ipython:: python df.reindex(df.index - ['a', 'd']) .. _basics.rename: Renaming / mapping labels ~~~~~~~~~~~~~~~~~~~~~~~~~ The ``rename`` method allows you to relabel an axis based on some mapping (a dict or Series) or an arbitrary function. .. ipython:: python s s.rename(str.upper) If you pass a function, it must return a value when called with any of the labels (and must produce a set of unique values). But if you pass a dict or Series, it need only contain a subset of the labels as keys: .. ipython:: python df.rename(columns={'one' : 'foo', 'two' : 'bar'}, index={'a' : 'apple', 'b' : 'banana', 'd' : 'durian'}) The ``rename`` method also provides an ``inplace`` named parameter that is by default ``False`` and copies the underlying data. Pass ``inplace=True`` to rename the data in place. .. _basics.rename_axis: The Panel class has a related ``rename_axis`` class which can rename any of its three axes. Iteration --------- Because Series is array-like, basic iteration produces the values. Other data structures follow the dict-like convention of iterating over the "keys" of the objects. In short: * **Series**: values * **DataFrame**: column labels * **Panel**: item labels Thus, for example: .. ipython:: In [0]: for col in df: ...: print(col) ...: iteritems ~~~~~~~~~ Consistent with the dict-like interface, **iteritems** iterates through key-value pairs: * **Series**: (index, scalar value) pairs * **DataFrame**: (column, Series) pairs * **Panel**: (item, DataFrame) pairs For example: .. ipython:: In [0]: for item, frame in wp.iteritems(): ...: print(item) ...: print(frame) ...: .. _basics.iterrows: iterrows ~~~~~~~~ New in v0.7 is the ability to iterate efficiently through rows of a DataFrame. It returns an iterator yielding each index value along with a Series containing the data in each row: .. ipython:: In [0]: for row_index, row in df2.iterrows(): ...: print('%s\n%s' % (row_index, row)) ...: For instance, a contrived way to transpose the DataFrame would be: .. ipython:: python df2 = DataFrame({'x': [1, 2, 3], 'y': [4, 5, 6]}) print(df2) print(df2.T) df2_t = DataFrame(dict((idx,values) for idx, values in df2.iterrows())) print(df2_t) .. note:: ``iterrows`` does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, .. ipython:: python df_iter = DataFrame([[1, 1.0]], columns=['x', 'y']) row = next(df_iter.iterrows())[1] print(row['x'].dtype) print(df_iter['x'].dtype) itertuples ~~~~~~~~~~ This method will return an iterator yielding a tuple for each row in the DataFrame. The first element of the tuple will be the row's corresponding index value, while the remaining values are the row values proper. For instance, .. ipython:: python for r in df2.itertuples(): print(r) .. _basics.dt_accessors: .dt accessor ~~~~~~~~~~~~ ``Series`` has an accessor to succinctly return datetime like properties for the *values* of the Series, if its a datetime/period like Series. This will return a Series, indexed like the existing Series. .. ipython:: python # datetime s = Series(date_range('20130101 09:10:12',periods=4)) s s.dt.hour s.dt.second s.dt.day This enables nice expressions like this: .. ipython:: python s[s.dt.day==2] You can easily produces tz aware transformations: .. ipython:: python stz = s.dt.tz_localize('US/Eastern') stz stz.dt.tz You can also chain these types of operations: .. ipython:: python s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern') The ``.dt`` accessor works for period and timedelta dtypes. .. ipython:: python # period s = Series(period_range('20130101',periods=4,freq='D')) s s.dt.year s.dt.day .. ipython:: python # timedelta s = Series(timedelta_range('1 day 00:00:05',periods=4,freq='s')) s s.dt.days s.dt.seconds s.dt.components .. note:: ``Series.dt`` will raise a ``TypeError`` if you access with a non-datetimelike values Vectorized string methods ------------------------- Series is equipped with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the Series's ``str`` attribute and generally have names matching the equivalent (scalar) built-in string methods. For example: .. ipython:: python s = Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) s.str.lower() Powerful pattern-matching methods are provided as well, but note that pattern-matching generally uses `regular expressions `__ by default (and in some cases always uses them). Please see :ref:`Vectorized String Methods ` for a complete description. .. _basics.sorting: Sorting by index and value -------------------------- There are two obvious kinds of sorting that you may be interested in: sorting by label and sorting by actual values. The primary method for sorting axis labels (indexes) across data structures is the ``sort_index`` method. .. ipython:: python unsorted_df = df.reindex(index=['a', 'd', 'c', 'b'], columns=['three', 'two', 'one']) unsorted_df.sort_index() unsorted_df.sort_index(ascending=False) unsorted_df.sort_index(axis=1) ``DataFrame.sort_index`` can accept an optional ``by`` argument for ``axis=0`` which will use an arbitrary vector or a column name of the DataFrame to determine the sort order: .. ipython:: python df1 = DataFrame({'one':[2,1,1,1],'two':[1,3,2,4],'three':[5,4,3,2]}) df1.sort_index(by='two') The ``by`` argument can take a list of column names, e.g.: .. ipython:: python df1[['one', 'two', 'three']].sort_index(by=['one','two']) Series has the method ``order`` (analogous to `R's order function `__) which sorts by value, with special treatment of NA values via the ``na_position`` argument: .. ipython:: python s[2] = np.nan s.order() s.order(na_position='first') .. note:: ``Series.sort`` sorts a Series by value in-place. This is to provide compatibility with NumPy methods which expect the ``ndarray.sort`` behavior. ``Series.order`` returns a copy of the sorted data. Series has the ``searchsorted`` method, which works similar to ``np.ndarray.searchsorted``. .. ipython:: python ser = Series([1, 2, 3]) ser.searchsorted([0, 3]) ser.searchsorted([0, 4]) ser.searchsorted([1, 3], side='right') ser.searchsorted([1, 3], side='left') ser = Series([3, 1, 2]) ser.searchsorted([0, 3], sorter=np.argsort(ser)) .. _basics.nsorted: smallest / largest values ~~~~~~~~~~~~~~~~~~~~~~~~~ .. versionadded:: 0.14.0 ``Series`` has the ``nsmallest`` and ``nlargest`` methods which return the smallest or largest :math:`n` values. For a large ``Series`` this can be much faster than sorting the entire Series and calling ``head(n)`` on the result. .. ipython:: python s = Series(np.random.permutation(10)) s s.order() s.nsmallest(3) s.nlargest(3) .. _basics.multi-index_sorting: Sorting by a multi-index column ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You must be explicit about sorting when the column is a multi-index, and fully specify all levels to ``by``. .. ipython:: python df1.columns = MultiIndex.from_tuples([('a','one'),('a','two'),('b','three')]) df1.sort_index(by=('a','two')) Copying ------- The ``copy`` method on pandas objects copies the underlying data (though not the axis indexes, since they are immutable) and returns a new object. Note that **it is seldom necessary to copy objects**. For example, there are only a handful of ways to alter a DataFrame *in-place*: * Inserting, deleting, or modifying a column * Assigning to the ``index`` or ``columns`` attributes * For homogeneous data, directly modifying the values via the ``values`` attribute or advanced indexing To be clear, no pandas methods have the side effect of modifying your data; almost all methods return new objects, leaving the original object untouched. If data is modified, it is because you did so explicitly. .. _basics.dtypes: dtypes ------ The main types stored in pandas objects are ``float``, ``int``, ``bool``, ``datetime64[ns]``, ``timedelta[ns]``, and ``object``. In addition these dtypes have item sizes, e.g. ``int64`` and ``int32``. A convenient ``dtypes`` attribute for DataFrames returns a Series with the data type of each column. .. ipython:: python dft = DataFrame(dict( A = np.random.rand(3), B = 1, C = 'foo', D = Timestamp('20010102'), E = Series([1.0]*3).astype('float32'), F = False, G = Series([1]*3,dtype='int8'))) dft dft.dtypes On a ``Series`` use the ``dtype`` method. .. ipython:: python dft['A'].dtype If a pandas object contains data multiple dtypes *IN A SINGLE COLUMN*, the dtype of the column will be chosen to accommodate all of the data types (``object`` is the most general). .. ipython:: python # these ints are coerced to floats Series([1, 2, 3, 4, 5, 6.]) # string data forces an ``object`` dtype Series([1, 2, 3, 6., 'foo']) The method ``get_dtype_counts`` will return the number of columns of each type in a ``DataFrame``: .. ipython:: python dft.get_dtype_counts() Numeric dtypes will propagate and can coexist in DataFrames (starting in v0.11.0). If a dtype is passed (either directly via the ``dtype`` keyword, a passed ``ndarray``, or a passed ``Series``, then it will be preserved in DataFrame operations. Furthermore, different numeric dtypes will **NOT** be combined. The following example will give you a taste. .. ipython:: python df1 = DataFrame(randn(8, 1), columns = ['A'], dtype = 'float32') df1 df1.dtypes df2 = DataFrame(dict( A = Series(randn(8),dtype='float16'), B = Series(randn(8)), C = Series(np.array(randn(8),dtype='uint8')) )) df2 df2.dtypes defaults ~~~~~~~~ By default integer types are ``int64`` and float types are ``float64``, *REGARDLESS* of platform (32-bit or 64-bit). The following will all result in ``int64`` dtypes. .. ipython:: python DataFrame([1, 2], columns=['a']).dtypes DataFrame({'a': [1, 2]}).dtypes DataFrame({'a': 1 }, index=list(range(2))).dtypes Numpy, however will choose *platform-dependent* types when creating arrays. The following **WILL** result in ``int32`` on 32-bit platform. .. ipython:: python frame = DataFrame(np.array([1, 2])) upcasting ~~~~~~~~~ Types can potentially be *upcasted* when combined with other types, meaning they are promoted from the current type (say ``int`` to ``float``) .. ipython:: python df3 = df1.reindex_like(df2).fillna(value=0.0) + df2 df3 df3.dtypes The ``values`` attribute on a DataFrame return the *lower-common-denominator* of the dtypes, meaning the dtype that can accommodate **ALL** of the types in the resulting homogeneous dtyped numpy array. This can force some *upcasting*. .. ipython:: python df3.values.dtype astype ~~~~~~ .. _basics.cast: You can use the ``astype`` method to explicitly convert dtypes from one to another. These will by default return a copy, even if the dtype was unchanged (pass ``copy=False`` to change this behavior). In addition, they will raise an exception if the astype operation is invalid. Upcasting is always according to the **numpy** rules. If two different dtypes are involved in an operation, then the more *general* one will be used as the result of the operation. .. ipython:: python df3 df3.dtypes # conversion of dtypes df3.astype('float32').dtypes object conversion ~~~~~~~~~~~~~~~~~ ``convert_objects`` is a method to try to force conversion of types from the ``object`` dtype to other types. To force conversion of specific types that are *number like*, e.g. could be a string that represents a number, pass ``convert_numeric=True``. This will force strings and numbers alike to be numbers if possible, otherwise they will be set to ``np.nan``. .. ipython:: python df3['D'] = '1.' df3['E'] = '1' df3.convert_objects(convert_numeric=True).dtypes # same, but specific dtype conversion df3['D'] = df3['D'].astype('float16') df3['E'] = df3['E'].astype('int32') df3.dtypes To force conversion to ``datetime64[ns]``, pass ``convert_dates='coerce'``. This will convert any datetime-like object to dates, forcing other values to ``NaT``. This might be useful if you are reading in data which is mostly dates, but occasionally has non-dates intermixed and you want to represent as missing. .. ipython:: python s = Series([datetime(2001,1,1,0,0), 'foo', 1.0, 1, Timestamp('20010104'), '20010105'],dtype='O') s s.convert_objects(convert_dates='coerce') In addition, ``convert_objects`` will attempt the *soft* conversion of any *object* dtypes, meaning that if all the objects in a Series are of the same type, the Series will have that dtype. gotchas ~~~~~~~ Performing selection operations on ``integer`` type data can easily upcast the data to ``floating``. The dtype of the input data will be preserved in cases where ``nans`` are not introduced (starting in 0.11.0) See also :ref:`integer na gotchas ` .. ipython:: python dfi = df3.astype('int32') dfi['E'] = 1 dfi dfi.dtypes casted = dfi[dfi>0] casted casted.dtypes While float dtypes are unchanged. .. ipython:: python dfa = df3.copy() dfa['A'] = dfa['A'].astype('float32') dfa.dtypes casted = dfa[df2>0] casted casted.dtypes Selecting columns based on ``dtype`` ------------------------------------ .. _basics.selectdtypes: .. versionadded:: 0.14.1 The :meth:`~pandas.DataFrame.select_dtypes` method implements subsetting of columns based on their ``dtype``. First, let's create a :class:`~pandas.DataFrame` with a slew of different dtypes: .. ipython:: python df = DataFrame({'string': list('abc'), 'int64': list(range(1, 4)), 'uint8': np.arange(3, 6).astype('u1'), 'float64': np.arange(4.0, 7.0), 'bool1': [True, False, True], 'bool2': [False, True, False], 'dates': pd.date_range('now', periods=3).values, 'category': pd.Categorical(list("ABC"))}) df['tdeltas'] = df.dates.diff() df['uint64'] = np.arange(3, 6).astype('u8') df['other_dates'] = pd.date_range('20130101', periods=3).values df ``select_dtypes`` has two parameters ``include`` and ``exclude`` that allow you to say "give me the columns WITH these dtypes" (``include``) and/or "give the columns WITHOUT these dtypes" (``exclude``). For example, to select ``bool`` columns .. ipython:: python df.select_dtypes(include=[bool]) You can also pass the name of a dtype in the `numpy dtype hierarchy `__: .. ipython:: python df.select_dtypes(include=['bool']) :meth:`~pandas.DataFrame.select_dtypes` also works with generic dtypes as well. For example, to select all numeric and boolean columns while excluding unsigned integers .. ipython:: python df.select_dtypes(include=['number', 'bool'], exclude=['unsignedinteger']) To select string columns you must use the ``object`` dtype: .. ipython:: python df.select_dtypes(include=['object']) To see all the child dtypes of a generic ``dtype`` like ``numpy.number`` you can define a function that returns a tree of child dtypes: .. ipython:: python def subdtypes(dtype): subs = dtype.__subclasses__() if not subs: return dtype return [dtype, [subdtypes(dt) for dt in subs]] All numpy dtypes are subclasses of ``numpy.generic``: .. ipython:: python subdtypes(np.generic) .. note:: Pandas also defines an additional ``category`` dtype, which is not integrated into the normal numpy hierarchy and wont show up with the above function. .. note:: The ``include`` and ``exclude`` parameters must be non-string sequences.