# -*- coding: utf-8 -*- """ Created on Mon Feb 26 14:29:11 2018 @author: Christian Bender @license: MIT-license This module contains some useful classes and functions for dealing with linear algebra in python. Overview: - class Vector - function zeroVector(dimension) - function unitBasisVector(dimension,pos) - function axpy(scalar,vector1,vector2) - function randomVector(N,a,b) - class Matrix - function squareZeroMatrix(N) - function randomMatrix(W,H,a,b) """ import math import random class Vector(object): """ This class represents a vector of arbitray size. You need to give the vector components. Overview about the methods: constructor(components : list) : init the vector set(components : list) : changes the vector components. __str__() : toString method component(i : int): gets the i-th component (start by 0) size() : gets the size of the vector (number of components) euclidLength() : returns the eulidean length of the vector. operator + : vector addition operator - : vector subtraction operator * : scalar multiplication and dot product copy() : copies this vector and returns it. changeComponent(pos,value) : changes the specified component. TODO: compare-operator """ def __init__(self, components): """ input: components or nothing simple constructor for init the vector """ self.__components = components def set(self, components): """ input: new components changes the components of the vector. replace the components with newer one. """ if len(components) > 0: self.__components = components else: raise Exception("please give any vector") def __str__(self): """ returns a string representation of the vector """ ans = "(" length = len(self.__components) for i in range(length): if i != length - 1: ans += str(self.__components[i]) + "," else: ans += str(self.__components[i]) + ")" if len(ans) == 1: ans += ")" return ans def component(self, i): """ input: index (start at 0) output: the i-th component of the vector. """ if i < len(self.__components) and i >= 0: return self.__components[i] else: raise Exception("index out of range") def size(self): """ returns the size of the vector """ return len(self.__components) def eulidLength(self): """ returns the eulidean length of the vector """ summe = 0 for c in self.__components: summe += c**2 return math.sqrt(summe) def __add__(self, other): """ input: other vector assumes: other vector has the same size returns a new vector that represents the sum. """ size = self.size() result = [] if size == other.size(): for i in range(size): result.append(self.__components[i] + other.component(i)) else: raise Exception("must have the same size") return Vector(result) def __sub__(self, other): """ input: other vector assumes: other vector has the same size returns a new vector that represents the differenz. """ size = self.size() result = [] if size == other.size(): for i in range(size): result.append(self.__components[i] - other.component(i)) else: # error case raise Exception("must have the same size") return Vector(result) def __mul__(self, other): """ mul implements the scalar multiplication and the dot-product """ ans = [] if isinstance(other, float) or isinstance(other, int): for c in self.__components: ans.append(c * other) elif isinstance(other, Vector) and (self.size() == other.size()): size = self.size() summe = 0 for i in range(size): summe += self.__components[i] * other.component(i) return summe else: # error case raise Exception("invalide operand!") return Vector(ans) def copy(self): """ copies this vector and returns it. """ components = [x for x in self.__components] return Vector(components) def changeComponent(self, pos, value): """ input: an index (pos) and a value changes the specified component (pos) with the 'value' """ # precondition assert pos >= 0 and pos < len(self.__components) self.__components[pos] = value def norm(self): """ normalizes this vector and returns it. """ eLength = self.eulidLength() quotient = 1.0 / eLength for i in range(len(self.__components)): self.__components[i] = self.__components[i] * quotient return self def __eq__(self, other): """ returns true if the vectors are equal otherwise false. """ ans = True SIZE = self.size() if SIZE == other.size(): for i in range(SIZE): if self.__components[i] != other.component(i): ans = False break else: ans = False return ans def zeroVector(dimension): """ returns a zero-vector of size 'dimension' """ # precondition assert isinstance(dimension, int) ans = [] for i in range(dimension): ans.append(0) return Vector(ans) def unitBasisVector(dimension, pos): """ returns a unit basis vector with a One at index 'pos' (indexing at 0) """ # precondition assert isinstance(dimension, int) and (isinstance(pos, int)) ans = [] for i in range(dimension): if i != pos: ans.append(0) else: ans.append(1) return Vector(ans) def axpy(scalar, x, y): """ input: a 'scalar' and two vectors 'x' and 'y' output: a vector computes the axpy operation """ # precondition assert ( isinstance(x, Vector) and (isinstance(y, Vector)) and (isinstance(scalar, int) or isinstance(scalar, float)) ) return x * scalar + y def randomVector(N, a, b): """ input: size (N) of the vector. random range (a,b) output: returns a random vector of size N, with random integer components between 'a' and 'b'. """ ans = zeroVector(N) random.seed(None) for i in range(N): ans.changeComponent(i, random.randint(a, b)) return ans class Matrix(object): """ class: Matrix This class represents a arbitrary matrix. Overview about the methods: __str__() : returns a string representation operator * : implements the matrix vector multiplication implements the matrix-scalar multiplication. changeComponent(x,y,value) : changes the specified component. component(x,y) : returns the specified component. width() : returns the width of the matrix height() : returns the height of the matrix operator + : implements the matrix-addition. operator - _ implements the matrix-subtraction """ def __init__(self, matrix, w, h): """ simple constructor for initialzes the matrix with components. """ self.__matrix = matrix self.__width = w self.__height = h def __str__(self): """ returns a string representation of this matrix. """ ans = "" for i in range(self.__height): ans += "|" for j in range(self.__width): if j < self.__width - 1: ans += str(self.__matrix[i][j]) + "," else: ans += str(self.__matrix[i][j]) + "|\n" return ans def changeComponent(self, x, y, value): """ changes the x-y component of this matrix """ if x >= 0 and x < self.__height and y >= 0 and y < self.__width: self.__matrix[x][y] = value else: raise Exception("changeComponent: indices out of bounds") def component(self, x, y): """ returns the specified (x,y) component """ if x >= 0 and x < self.__height and y >= 0 and y < self.__width: return self.__matrix[x][y] else: raise Exception("changeComponent: indices out of bounds") def width(self): """ getter for the width """ return self.__width def height(self): """ getter for the height """ return self.__height def __mul__(self, other): """ implements the matrix-vector multiplication. implements the matrix-scalar multiplication """ if isinstance(other, Vector): # vector-matrix if other.size() == self.__width: ans = zeroVector(self.__height) for i in range(self.__height): summe = 0 for j in range(self.__width): summe += other.component(j) * self.__matrix[i][j] ans.changeComponent(i, summe) summe = 0 return ans else: raise Exception( "vector must have the same size as the " + "number of columns of the matrix!" ) elif isinstance(other, int) or isinstance(other, float): # matrix-scalar matrix = [] for i in range(self.__height): row = [] for j in range(self.__width): row.append(self.__matrix[i][j] * other) matrix.append(row) return Matrix(matrix, self.__width, self.__height) def __add__(self, other): """ implements the matrix-addition. """ if self.__width == other.width() and self.__height == other.height(): matrix = [] for i in range(self.__height): row = [] for j in range(self.__width): row.append(self.__matrix[i][j] + other.component(i, j)) matrix.append(row) return Matrix(matrix, self.__width, self.__height) else: raise Exception("matrix must have the same dimension!") def __sub__(self, other): """ implements the matrix-subtraction. """ if self.__width == other.width() and self.__height == other.height(): matrix = [] for i in range(self.__height): row = [] for j in range(self.__width): row.append(self.__matrix[i][j] - other.component(i, j)) matrix.append(row) return Matrix(matrix, self.__width, self.__height) else: raise Exception("matrix must have the same dimension!") def __eq__(self, other): """ returns true if the matrices are equal otherwise false. """ ans = True if self.__width == other.width() and self.__height == other.height(): for i in range(self.__height): for j in range(self.__width): if self.__matrix[i][j] != other.component(i, j): ans = False break else: ans = False return ans def squareZeroMatrix(N): """ returns a square zero-matrix of dimension NxN """ ans = [] for i in range(N): row = [] for j in range(N): row.append(0) ans.append(row) return Matrix(ans, N, N) def randomMatrix(W, H, a, b): """ returns a random matrix WxH with integer components between 'a' and 'b' """ matrix = [] random.seed(None) for i in range(H): row = [] for j in range(W): row.append(random.randint(a, b)) matrix.append(row) return Matrix(matrix, W, H)