-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
skl.go
516 lines (452 loc) · 14.5 KB
/
skl.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/*
* Copyright 2017 Dgraph Labs, Inc. and Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
Adapted from RocksDB inline skiplist.
Key differences:
- No optimization for sequential inserts (no "prev").
- No custom comparator.
- Support overwrites. This requires care when we see the same key when inserting.
For RocksDB or LevelDB, overwrites are implemented as a newer sequence number in the key, so
there is no need for values. We don't intend to support versioning. In-place updates of values
would be more efficient.
- We discard all non-concurrent code.
- We do not support Splices. This simplifies the code a lot.
- No AllocateNode or other pointer arithmetic.
- We combine the findLessThan, findGreaterOrEqual, etc into one function.
*/
package skl
import (
"math"
"math/rand"
"sync/atomic"
"unsafe"
"github.com/dgraph-io/badger/y"
)
const (
maxHeight = 20
heightIncrease = math.MaxUint32 / 3
)
// MaxNodeSize is the memory footprint of a node of maximum height.
const MaxNodeSize = int(unsafe.Sizeof(node{}))
type node struct {
// A byte slice is 24 bytes. We are trying to save space here.
keyOffset uint32 // Immutable. No need to lock to access key.
keySize uint16 // Immutable. No need to lock to access key.
// Height of the tower.
height uint16
// Multiple parts of the value are encoded as a single uint64 so that it
// can be atomically loaded and stored:
// value offset: uint32 (bits 0-31)
// value size : uint16 (bits 32-47)
value uint64
// Most nodes do not need to use the full height of the tower, since the
// probability of each successive level decreases exponentially. Because
// these elements are never accessed, they do not need to be allocated.
// Therefore, when a node is allocated in the arena, its memory footprint
// is deliberately truncated to not include unneeded tower elements.
//
// All accesses to elements should use CAS operations, with no need to lock.
tower [maxHeight]uint32
}
// Skiplist maps keys to values (in memory)
type Skiplist struct {
height int32 // Current height. 1 <= height <= kMaxHeight. CAS.
head *node
ref int32
arena *Arena
}
// IncrRef increases the refcount
func (s *Skiplist) IncrRef() {
atomic.AddInt32(&s.ref, 1)
}
// DecrRef decrements the refcount, deallocating the Skiplist when done using it
func (s *Skiplist) DecrRef() {
newRef := atomic.AddInt32(&s.ref, -1)
if newRef > 0 {
return
}
s.arena.reset()
// Indicate we are closed. Good for testing. Also, lets GC reclaim memory. Race condition
// here would suggest we are accessing skiplist when we are supposed to have no reference!
s.arena = nil
}
func (s *Skiplist) valid() bool { return s.arena != nil }
func newNode(arena *Arena, key []byte, v y.ValueStruct, height int) *node {
// The base level is already allocated in the node struct.
offset := arena.putNode(height)
node := arena.getNode(offset)
node.keyOffset = arena.putKey(key)
node.keySize = uint16(len(key))
node.height = uint16(height)
node.value = encodeValue(arena.putVal(v), v.EncodedSize())
return node
}
func encodeValue(valOffset uint32, valSize uint16) uint64 {
return uint64(valSize)<<32 | uint64(valOffset)
}
func decodeValue(value uint64) (valOffset uint32, valSize uint16) {
valOffset = uint32(value)
valSize = uint16(value >> 32)
return
}
// NewSkiplist makes a new empty skiplist, with a given arena size
func NewSkiplist(arenaSize int64) *Skiplist {
arena := newArena(arenaSize)
head := newNode(arena, nil, y.ValueStruct{}, maxHeight)
return &Skiplist{
height: 1,
head: head,
arena: arena,
ref: 1,
}
}
func (s *node) getValueOffset() (uint32, uint16) {
value := atomic.LoadUint64(&s.value)
return decodeValue(value)
}
func (s *node) key(arena *Arena) []byte {
return arena.getKey(s.keyOffset, s.keySize)
}
func (s *node) setValue(arena *Arena, v y.ValueStruct) {
valOffset := arena.putVal(v)
value := encodeValue(valOffset, v.EncodedSize())
atomic.StoreUint64(&s.value, value)
}
func (s *node) getNextOffset(h int) uint32 {
return atomic.LoadUint32(&s.tower[h])
}
func (s *node) casNextOffset(h int, old, val uint32) bool {
return atomic.CompareAndSwapUint32(&s.tower[h], old, val)
}
// Returns true if key is strictly > n.key.
// If n is nil, this is an "end" marker and we return false.
//func (s *Skiplist) keyIsAfterNode(key []byte, n *node) bool {
// y.AssertTrue(n != s.head)
// return n != nil && y.CompareKeys(key, n.key) > 0
//}
func randomHeight() int {
h := 1
for h < maxHeight && rand.Uint32() <= heightIncrease {
h++
}
return h
}
func (s *Skiplist) getNext(nd *node, height int) *node {
return s.arena.getNode(nd.getNextOffset(height))
}
// findNear finds the node near to key.
// If less=true, it finds rightmost node such that node.key < key (if allowEqual=false) or
// node.key <= key (if allowEqual=true).
// If less=false, it finds leftmost node such that node.key > key (if allowEqual=false) or
// node.key >= key (if allowEqual=true).
// Returns the node found. The bool returned is true if the node has key equal to given key.
func (s *Skiplist) findNear(key []byte, less bool, allowEqual bool) (*node, bool) {
x := s.head
level := int(s.getHeight() - 1)
for {
// Assume x.key < key.
next := s.getNext(x, level)
if next == nil {
// x.key < key < END OF LIST
if level > 0 {
// Can descend further to iterate closer to the end.
level--
continue
}
// Level=0. Cannot descend further. Let's return something that makes sense.
if !less {
return nil, false
}
// Try to return x. Make sure it is not a head node.
if x == s.head {
return nil, false
}
return x, false
}
nextKey := next.key(s.arena)
cmp := y.CompareKeys(key, nextKey)
if cmp > 0 {
// x.key < next.key < key. We can continue to move right.
x = next
continue
}
if cmp == 0 {
// x.key < key == next.key.
if allowEqual {
return next, true
}
if !less {
// We want >, so go to base level to grab the next bigger note.
return s.getNext(next, 0), false
}
// We want <. If not base level, we should go closer in the next level.
if level > 0 {
level--
continue
}
// On base level. Return x.
if x == s.head {
return nil, false
}
return x, false
}
// cmp < 0. In other words, x.key < key < next.
if level > 0 {
level--
continue
}
// At base level. Need to return something.
if !less {
return next, false
}
// Try to return x. Make sure it is not a head node.
if x == s.head {
return nil, false
}
return x, false
}
}
// findSpliceForLevel returns (outBefore, outAfter) with outBefore.key <= key <= outAfter.key.
// The input "before" tells us where to start looking.
// If we found a node with the same key, then we return outBefore = outAfter.
// Otherwise, outBefore.key < key < outAfter.key.
func (s *Skiplist) findSpliceForLevel(key []byte, before *node, level int) (*node, *node) {
for {
// Assume before.key < key.
next := s.getNext(before, level)
if next == nil {
return before, next
}
nextKey := next.key(s.arena)
cmp := y.CompareKeys(key, nextKey)
if cmp == 0 {
// Equality case.
return next, next
}
if cmp < 0 {
// before.key < key < next.key. We are done for this level.
return before, next
}
before = next // Keep moving right on this level.
}
}
func (s *Skiplist) getHeight() int32 {
return atomic.LoadInt32(&s.height)
}
// Put inserts the key-value pair.
func (s *Skiplist) Put(key []byte, v y.ValueStruct) {
// Since we allow overwrite, we may not need to create a new node. We might not even need to
// increase the height. Let's defer these actions.
listHeight := s.getHeight()
var prev [maxHeight + 1]*node
var next [maxHeight + 1]*node
prev[listHeight] = s.head
next[listHeight] = nil
for i := int(listHeight) - 1; i >= 0; i-- {
// Use higher level to speed up for current level.
prev[i], next[i] = s.findSpliceForLevel(key, prev[i+1], i)
if prev[i] == next[i] {
prev[i].setValue(s.arena, v)
return
}
}
// We do need to create a new node.
height := randomHeight()
x := newNode(s.arena, key, v, height)
// Try to increase s.height via CAS.
listHeight = s.getHeight()
for height > int(listHeight) {
if atomic.CompareAndSwapInt32(&s.height, listHeight, int32(height)) {
// Successfully increased skiplist.height.
break
}
listHeight = s.getHeight()
}
// We always insert from the base level and up. After you add a node in base level, we cannot
// create a node in the level above because it would have discovered the node in the base level.
for i := 0; i < height; i++ {
for {
if prev[i] == nil {
y.AssertTrue(i > 1) // This cannot happen in base level.
// We haven't computed prev, next for this level because height exceeds old listHeight.
// For these levels, we expect the lists to be sparse, so we can just search from head.
prev[i], next[i] = s.findSpliceForLevel(key, s.head, i)
// Someone adds the exact same key before we are able to do so. This can only happen on
// the base level. But we know we are not on the base level.
y.AssertTrue(prev[i] != next[i])
}
nextOffset := s.arena.getNodeOffset(next[i])
x.tower[i] = nextOffset
if prev[i].casNextOffset(i, nextOffset, s.arena.getNodeOffset(x)) {
// Managed to insert x between prev[i] and next[i]. Go to the next level.
break
}
// CAS failed. We need to recompute prev and next.
// It is unlikely to be helpful to try to use a different level as we redo the search,
// because it is unlikely that lots of nodes are inserted between prev[i] and next[i].
prev[i], next[i] = s.findSpliceForLevel(key, prev[i], i)
if prev[i] == next[i] {
y.AssertTruef(i == 0, "Equality can happen only on base level: %d", i)
prev[i].setValue(s.arena, v)
return
}
}
}
}
// Empty returns if the Skiplist is empty.
func (s *Skiplist) Empty() bool {
return s.findLast() == nil
}
// findLast returns the last element. If head (empty list), we return nil. All the find functions
// will NEVER return the head nodes.
func (s *Skiplist) findLast() *node {
n := s.head
level := int(s.getHeight()) - 1
for {
next := s.getNext(n, level)
if next != nil {
n = next
continue
}
if level == 0 {
if n == s.head {
return nil
}
return n
}
level--
}
}
// Get gets the value associated with the key. It returns a valid value if it finds equal or earlier
// version of the same key.
func (s *Skiplist) Get(key []byte) y.ValueStruct {
n, _ := s.findNear(key, false, true) // findGreaterOrEqual.
if n == nil {
return y.ValueStruct{}
}
nextKey := s.arena.getKey(n.keyOffset, n.keySize)
if !y.SameKey(key, nextKey) {
return y.ValueStruct{}
}
valOffset, valSize := n.getValueOffset()
vs := s.arena.getVal(valOffset, valSize)
vs.Version = y.ParseTs(nextKey)
return vs
}
// NewIterator returns a skiplist iterator. You have to Close() the iterator.
func (s *Skiplist) NewIterator() *Iterator {
s.IncrRef()
return &Iterator{list: s}
}
// MemSize returns the size of the Skiplist in terms of how much memory is used within its internal
// arena.
func (s *Skiplist) MemSize() int64 { return s.arena.size() }
// Iterator is an iterator over skiplist object. For new objects, you just
// need to initialize Iterator.list.
type Iterator struct {
list *Skiplist
n *node
}
// Close frees the resources held by the iterator
func (s *Iterator) Close() error {
s.list.DecrRef()
return nil
}
// Valid returns true iff the iterator is positioned at a valid node.
func (s *Iterator) Valid() bool { return s.n != nil }
// Key returns the key at the current position.
func (s *Iterator) Key() []byte {
return s.list.arena.getKey(s.n.keyOffset, s.n.keySize)
}
// Value returns value.
func (s *Iterator) Value() y.ValueStruct {
valOffset, valSize := s.n.getValueOffset()
return s.list.arena.getVal(valOffset, valSize)
}
// Next advances to the next position.
func (s *Iterator) Next() {
y.AssertTrue(s.Valid())
s.n = s.list.getNext(s.n, 0)
}
// Prev advances to the previous position.
func (s *Iterator) Prev() {
y.AssertTrue(s.Valid())
s.n, _ = s.list.findNear(s.Key(), true, false) // find <. No equality allowed.
}
// Seek advances to the first entry with a key >= target.
func (s *Iterator) Seek(target []byte) {
s.n, _ = s.list.findNear(target, false, true) // find >=.
}
// SeekForPrev finds an entry with key <= target.
func (s *Iterator) SeekForPrev(target []byte) {
s.n, _ = s.list.findNear(target, true, true) // find <=.
}
// SeekToFirst seeks position at the first entry in list.
// Final state of iterator is Valid() iff list is not empty.
func (s *Iterator) SeekToFirst() {
s.n = s.list.getNext(s.list.head, 0)
}
// SeekToLast seeks position at the last entry in list.
// Final state of iterator is Valid() iff list is not empty.
func (s *Iterator) SeekToLast() {
s.n = s.list.findLast()
}
// UniIterator is a unidirectional memtable iterator. It is a thin wrapper around
// Iterator. We like to keep Iterator as before, because it is more powerful and
// we might support bidirectional iterators in the future.
type UniIterator struct {
iter *Iterator
reversed bool
}
// NewUniIterator returns a UniIterator.
func (s *Skiplist) NewUniIterator(reversed bool) *UniIterator {
return &UniIterator{
iter: s.NewIterator(),
reversed: reversed,
}
}
// Next implements y.Interface
func (s *UniIterator) Next() {
if !s.reversed {
s.iter.Next()
} else {
s.iter.Prev()
}
}
// Rewind implements y.Interface
func (s *UniIterator) Rewind() {
if !s.reversed {
s.iter.SeekToFirst()
} else {
s.iter.SeekToLast()
}
}
// Seek implements y.Interface
func (s *UniIterator) Seek(key []byte) {
if !s.reversed {
s.iter.Seek(key)
} else {
s.iter.SeekForPrev(key)
}
}
// Key implements y.Interface
func (s *UniIterator) Key() []byte { return s.iter.Key() }
// Value implements y.Interface
func (s *UniIterator) Value() y.ValueStruct { return s.iter.Value() }
// Valid implements y.Interface
func (s *UniIterator) Valid() bool { return s.iter.Valid() }
// Close implements y.Interface (and frees up the iter's resources)
func (s *UniIterator) Close() error { return s.iter.Close() }