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Preface

About ten years removed from my PhD, the time has come to pause and reflect on my
research path. But, even admitting I have come to a point where I can look back at my
work and make sense of it, how to convey this in a coherent manuscript that still has
some value to a reader?

I don’t know if I found the answer, at any rate I could not get a clear one by asking
around. I guess this is part of the exercise. I chose to write three chapters that survey
topics I particularly endear, in the hope that they motivate readers to get into similar
areas of research. You will judge if I have succeeded.

As a last thing before moving to the main course, I would like to leave a message
in a bottle for future HDR candidates: everyone knows what an HDR is not, but no
one seems to know what it is. You shall follow the advice of previous candidates, of
course, but in the end you will decide what you make of it, so try and make what is
most valuable to you and your community.

Akcnowledgments. I would like to start by thanking the person who is responsible
for getting me into all of this. He has been a mentor, a coworker, a friend, a paternal
figure, and, above all, he was the one crazy enough to believe, back in 2007, that isogeny
based cryptography may be a serious thing one day. I am obviously naming François
Morain. Who knows whether isogeny based cryptography would have been ready on
time for NIST’s post-quantum competition without his vision.

The next person, is the one responsible for keeping me from falling completely into
this. She is my best friend, an amazing chef, a talented artist, a charismatic teacher,
and a loving presence. Without her, I could not have taken the load of stress and fatigue
that comes with preparing this thesis. I am talking of Rachel Deyts.

I want to specially thank my research students: C. Hugounenq, S. Besnier, L.
Brieulle, É. Rousseau, R. Larrieu, J. Kieffer and M. Veroni. In the end, this manuscript
is about them, and the wonderful moments we have spent working together. I am
also grateful to all my other students for everything they have given to me, but I can’t
possibly fit all their names in here.

My coauthors, É. Schost, D. Jao, J. Doliskani, J. Plût, J.-P. Flori, M. Kohlhase,
D. Müller, M. Pfeiffer, N. Thiéry, V. Vasilyev, T. Wiesing, B. Smith, S. Galbraith, R.
Azarderakhsh, B. Koziel, M. Campagna, B. LaMacchia, C. Costello, P. Longa, M.
Naehrig, B. Hess, J. Renes, A. Jalali, V. Soukharev and D. Urbanik, also deserve a
special thanks. Research is no fun alone in an office. Even if we are not technically
coauthors, I have spent hours working on things that I value as much as pure research
with E. Bray, J. Demeyer and V. Delecroix, and I am grateful for that.

A special thank to Louis Goubin, who is the ideal boss, and whose advice for
preparing this manuscript and the defense has been priceless.

I am honored and humbled that A. Enge, F. Hess and D. Kohel have accepted to
review this manuscript, and that P. Barreto, J.-M. Couveignes and A. Valibouze have
agreed to serve on the jury. They are among my role models, and it means a lot to me
that they have looked with interest to my work.

I am immensely grateful for the working and leisure time I have spent with my
coworkers at UVSQ, at Inria Saclay, at Télécom Paristech and at Paris Sud: C. Boura,
C. Chaigneau, I. Chilotti, N. Gama, M. Krir, A. Mathieu-Mahias, G. Moreno-Socias,
J. Patarin, N. Perrin, M. Quisquater, V. Sécherre, F. Vial-Prado, D. Augot, E. Barelli,
A. Couvreur, V. Ducet, J. Lavauzelle, F. Lévy, B. Meyer, D. Madore, J. Pieltant, M.
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Rambaud, H. Randriam, F. Hivert, S. Lelièvre, B. Pilorget, V. Pons, and I am sure I
am forgetting students who have come and gone.

My life would have been much harder without the invaluable help of our assistants,
C. Le Quéré, I. Moudenner, C. Ducoin, and F. Chevalier.

I want to thank my family for always having been supportive of my life choices, and
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Introduction

If you are reading this on a computer screen, chances are that you got to it by browsing
the web. You probably went to a search engine, or maybe received a link via email,
or social media. You followed the link, landing on some scientific repository, and
downloaded the pdf.

Two to three hops, each triggering dozens of connections to search servers, CDNs
for static assets, targeted advertisement services, and trackers of all sorts. All over
HTTPS.

In the lapse of a few seconds, your CPU has chosen some standardized elliptic
curves, drawn dozens of random integers, multiplied some default generators by them,
and sent around projective points over the wire. Maybe it is even the year 2050,
and, as we have all moved to Siberia to escape the effects of global warming, your
Megacorp branded browser is now offering perfect forward secrecy through ephemeral
supersingular isogeny key exchange.

Yes. Supersingular isogeny key exchange. Indeed, this may sound straight out of a
William Gibson novel, but it actually is a real thing. And you do not even need to wait
for Netherlands to be under water to use it: Microsoft has released a fork of OpenVPN
containing it.1

The goal of this document is to make those four words sound less otherworldly, at
least for those who have been around asymmetric cryptography in recent years. It is not
a course on arithmetic geometry, nor a complete review of isogeny-based cryptography,
not even a monography. It is more like a promenade, a stroll around topics related
to isogeny graphs that are dearest to my heart. A journey through unexplored lands
made possible by science and technological progress. Like mathematical capitaines
Nemos we shall start our journey on an isolated island, an elliptic curve surfacing out
of an uncharted sea.

We shall start our exploration by diving in the sea. We will discover nearby un-
derwater elliptic curves, linked to our island by isogenies. We will enter our Nautilus,
and, equipped with an algebraic bathymeter, we will dive to the sea floor to explore the
slopes of an underwater volcano.

Next, we shall climb to the top of the island to gain a vantage point and observe the
seascape around us. Wewill build observation towers to look as far as the remotest islets,
discovering that our tiny island is only a minuscule part of an immense archipelago:
an isogeny graph crisscrossed by isogenies of any degree.

Finally, we shall set sail to explore the archipelago, charting the isogeny routes
that link the elliptic curves. The theories of complex multiplication and of quaternion
algebras will work as a compass, indicating the direction to the next island. However,
despite our technological prowess, like seamen in a starless night, we will miss a
fundamental tool: a telemeter to keep track of the distance between elliptic curves.
A blessing and a curse, the lack of a telemeter will let us hide secrets in the isogeny
graph, confident that any pirate seeking them will be condemned to wander aimlessly
through the archipelago for centuries to come.

Breaking out of the metaphors, Chapter I deals with isogenies of elliptic curves and
algorithmic problems related to them. We will introduce the Explicit isogeny problem,
first studied by Elkies, and present some algorithms to solve it. We will then focus
on elliptic curves over finite fields, and on a specific algorithm for the explicit isogeny
problem due to Couveignes. To understand it better, we will study the Frobenius

1https://github.com/Microsoft/PQCrypto-VPN.
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endomorphism, and see how it determines the types of isogenies around an elliptic
curve; by looking at its action on the Tate module, we will gain a global view on the
isogeny graph. Then, an effective version of Tate’s isogeny theorem will provide us with
an effective way to probe the depths of the isogeny graph. Armed with this tool, we
will end the chapter with a generalization of Couveignes’ algorithm, currently the
algorithm with the best complexity for solving the explicit isogeny problem.

The effective version of Tate’s theorem is only as efficient as the algorithms at
our disposal to compute in the algebraic closure of a finite field. In Chapter II we
shall study algorithms to represent and compute with finite extensions of a finite
field. We will review algorithms to compute irreducible polynomials, then move to two
radically different paradigms to represent the algebraic closure of finite fields. One,
based on special families of irreducible polynomials, will extend some algorithms for
irreducible polynomials by adding to them more features: compatibility, incrementality
and uniqueness. The other one, based on lattices of arbitrary irreducible polynomials,
will be founded on an algorithm for computing isomorphisms of finite fields; we shall
thus review all known algorithms for this problem, and see how they are related to
algorithms for irreducible polynomials.

The goal of this chapter is not only to be a review in computational complexity, but
also to explore the practical implementation aspects of the algorithms. All along the
exposition, we will refer to the available implementations in the most popular computer
algebra systems and libraries (Magma, SageMath, PARI/GP, Nemo, Flint, NTL, . . . ),
and highlight the implementation challenges and possible ways forward.

Finally, in Chapter III we will come to the much anticipated isogeny-based cryp-
tography. This novel type of cryptography, pioneered by Couveignes in the nineties, is
built on the algebraic structure of large isogeny graphs. We will see how the theory
of complex multiplication and that of quaternion algebras determine the structure of
these graphs, and how they prove their expansion properties. We will then focus, only,
on key exchange protocols based on isogenies graphs; we will review three proposals:
Couveignes’ original one based on ordinary graphs, a recent twist on it, named CSIDH,
based on supersingular Fp-graphs, and another one based on generic supersingular
graphs named SIDH. We will conclude the chapter by discussing security of isogeny-
based primitives. The main selling point for isogeny-based algorithms is their supposed
resistance to quantum attacks, we shall thus review the known quantum algorithms
for breaking them, and discuss the impact on security parameters.

Thewhole document ismeant as an introduction to a research area, thus it purposely
ignores some important topics and skips technical details. Each chapter is accompanied
by one or two research articles, previously appeared in peer reviewed journals and
proceedings, for the reader interested in gainingmore insights. These are, for Chapter I,

Luca De Feo, Cyril Hugounenq, Jérôme Plût and Éric Schost. “Explicit
isogenies in quadratic time in any characteristic”. LMS Journal of Compu-
tation and Mathematics [De +16].

Introducing the generalization of Couveignes’ algorithm. For Chapter II,

Luca De Feo, Javad Doliskani and Éric Schost. “Fast Arithmetic for the Al-
gebraic Closure of Finite Fields”. Proceedings of the 39th International Sym-
posium on Symbolic and Algebraic Computation (ISSAC 2014) [DDS14].

On realizing the algebraic closure of a finite field, and
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Ludovic Brieulle, Luca De Feo, Javad Doliskani, Jean-Pierre Flori and
Éric Schost. “Computing Isomorphisms and Embeddings of Finite Fields”.
Mathematics of Computation [Bri+18].

On the complexity and the practical performance of isomorphism algorithms for finite
fields. For Chapter III,

Luca De Feo, David Jao and Jérôme Plût. “Towards Quantum-Resistant
Cryptosystems from Supersingular Elliptic Curve Isogenies”. Journal of
Mathematical Cryptology [DJP14].

introducing the key exchange protocol SIDH, and

Luca De Feo, Jean Kieffer and Benjamin Smith. “Towards practical
key exchange from ordinary isogeny graphs”. Proceedings of AsiaCrypt
2018 [DKS18].

on improvements to the Couveignes–Rostovtsev–Stolbunov key exchange protocol.
Finally, this document also wants to serve as a snapshot of the current state of the

research in the various areas it touches. For this reason, each chapter is terminated
by a section called “Perspectives”, pointing to interesting related research topics, both
easy and hard.

I hope that you will appreciate the topics I have selected, enjoy the flow of the
presentation, and forgive me for omissions and approximations.
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I Bathymetry

What is an isogeny, anyway? Despite the imposing sounding name, an isogeny is
a pretty simple concept: a morphism between two elliptic curves, preserving their
algebraic structure (both as a group and as a variety).

Isogenies of abelian varieties have been studied since the beginning of the 19th
century, by the likes of Abel, Jacobi, Weierstrass, Riemann, Picard, etc. According to
Wikipedia1, the name “isogeny” was introduced in the 20th century by André Weil,
to avoid confusion with “isomorphism”. After the schematic revolution in algebraic
geometry, major contributions to the theory of abelian varieties and isogenies were
made by Cartier, Serre, Tate, and, obviously, Grothendieck. With the development
of computer algebra, people grew increasingly interested in effective methods, with
important contributions being made by Schoof, Atkin, Elkies, Satoh, Kedlaya, and
many others. In recent years, isogenies have found various applications in cryptology,
sparking a remarkable wave of results on their algorithmic properties.

In this chapter, we shall take the algorithmic point of view, and discuss algorithms
to compute and classify isogenies of elliptic curves. The focal point of interest will be
the Frobenius endomorphism of an elliptic curve defined over a finite field. We will first
learn how it governs the properties of isogenies “in the neighborhood” of an elliptic
curve. We will then define isogeny graphs—graphs whose vertices are elliptic curves
and whose edges are isogenies—, and, not unlike a biologist, set on a mission to classify
them. Isogeny graphs inherit from an infinite tree structure, but over a finite field
they must “fold” in order to fit into a finite space. Thanks to a celebrated theorem of
Tate, we will discover that the Frobenius endomorphism, much like the DNA of a living
creature, determines the “folding” of the isogeny graph.

Even knowing the structure of an isogeny graph, it is not always easy to navigate
it. An effective version of Tate’s theorem will provide us with a tool to “probe the depth”
of a curve inside an isogeny graph. Armed with our brand new tool, we will conclude
the chapter by presenting the algorithm with the best known complexity to compute
an isogeny between two given elliptic curves.

I.1 Isogenies

An isogeny is a non-constant algebraic map between elliptic curves, preserving the
point at infinity. An isogeny is also a surjective group morphism of elliptic curves. It
turns out these definitions are equivalent, but, before getting these pages drenched in
more properties and theorems, let’s have a look at an example.

The map φ from the elliptic curve y2 = x3 + x to y2 = x3−4x defined by

φ(x,y) =
(

x2 +1
x

,y
x2−1

x2

)
,

φ(0,0) = φ(O) = O

(I.1)

is an isogeny. As an algebraic map it has degree 2, which implies that it is a two-to-one
map, as it can be inferred from the polynomial degrees.

What does an isogeny “look like”? Drawing the above one in R2 would look rather
messy, but an isogeny defined over the rationals is still an isogeny if we reduce modulo
a prime p. Figure I.1 plots the action of the isogeny (I.1) on the image of the curves

1See https://en.wikipedia.org/wiki/Isogeny. No source is given, though.

https://en.wikipedia.org/wiki/Isogeny
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E : y2 = x3 + x E ′ : y2 = x3−4x

Figure I.1: The isogeny (x,y) 7→
(
(x2 +1)/x, y(x2−1)/x2

)
, as a map between curves

defined over F11.

in F11. A red arrow indicates that a point of the left curve is sent onto a point on the
right curve; the action on the point in (0,0), going to the point at infinity, is not shown.
We observe a symmetry with respect to the x-axis, a consequence of the fact that φ is a
group morphism; and, by looking closer, we may also notice that collinear points are
sent to collinear points, also a necessity for a group morphism.

Something strikes us, though: the map looks by no means surjective! This is
because, when we think of isogenies, we think of them as geometric objects, acting on
the extension of the curves to the algebraic closure. This is not dissimilar from the
way power-by-n maps act on the multiplicative group k× of a field k: the map x 7→ x2,
for example, is a two-to-one (algebraic) group morphism on F×11, and those elements
that have no preimage, the non-squares, will have exactly two square roots in F112 ,
and so on. In much the same way, in an algebraic closure F̄11 of F11, the isogeny φ

becomes surjective and every point gains exactly two antecedents. This analogy is
more profound that it may seem, and shall bear its fruits in Chapter II.

For elliptic curves defined over a field of characteristic p > 0, there is another kind
of isogeny. Let E : y2 = x3 +ax+b be an elliptic curve, let q be a power of p, and let
E(q) : y2 = x3 +aqx+bq. The isogeny πq : E→ E(q) defined by

πq(x,y) = (xq,yq),

πq(O) = O
(I.2)

is a purely inseparable isogeny of degree q. We call πq a Frobenius isogeny. Despite
being of degree q, Frobenius isogenies have trivial kernel, and are one-to-one over finite
fields (and other perfect fields).

Any isogeny can be decomposed as a product of a Frobenius isogeny and a separable
isogeny:

E E(q) E ′
πq φs

φ

Computing this decomposition is also easy given rational functions for φ : simply
factor out the powers of p from the polynomials. For these reasons we shall be mostly
concerned with separable isogenies and their computations.
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Themost unique property of separable isogenies is that they are entirely determined
by their kernel.

Proposition I.1. Let E be an elliptic curve defined over an algebraically closed field,
and let G be a finite subgroup of E. There is a curve E ′, and a separable isogeny φ , such
that kerφ = G and φ : E → E ′. Furthermore, E ′ and φ are unique up to composition
with an isomorphism E ′ ' E ′′.

Said otherwise, for any finite subgroupG⊂E, we have an exact sequence of algebraic
groups

0−→ G−→ E
φ−→ E ′ −→ 0.

Uniqueness up to isomorphisms justifies the notation E/G for the isomorphism class of
the image curve E ′. Now, it would be useful if we could find a way to define a canonical
representative inside E/G. It turns out there is a pretty natural way to define one.

Definition I.2 (Normalized isogeny). Let E,E ′ be two elliptic curves, ωE ,ω
′
E their

invariant differential, φ : E→ E ′ a separable isogeny and φ ∗ : ΩE ′ →ΩE its pullback.
We say that φ is normalized if its pullback preserves the invariant differentials, i.e.,
φ ∗(ωE ′) = ωE .

Since φ is separable, φ ∗ is an isomorphism of vector spaces of dimension 1. Said
otherwise, if φ is not normalized, then it is only “off” by a (non-zero) constant φ ∗(ωE ′) =
cωE , and we can easily normalize φ by a change of variables. This also shows that, for
fixed E and kerφ , the normalized isogeny is unique, and justifies abusing the notation
E/G to mean the image of the normalized isogeny with kernel G.2

Conversely, since any non-constant morphism of elliptic curves necessarily has finite
kernel, we have a canonical bijection between the finite subgroups of a curve E and the
normalized isogenies with domain E. This correspondence is rich in consequences: it
is an easy exercise to prove the following useful facts.

Corollary I.3.

1. Any isogeny of elliptic curves can be decomposed as a product of prime degree
isogenies.

2. Let E be defined over an algebraically closed field k, let ` be a prime different from
the characteristic of k, then there are exactly `+1 normalized isogenies of degree `
with domain E.

Slightly more work is required to prove the following, fundamental, theorem (the
difficulty comes essentially from the inseparable part, see [Sil92, p. III.6.1] for a detailed
proof).

Theorem I.4 (Dual isogeny theorem). Let φ : E→ E ′ be an isogeny of degree m. There
is a unique isogeny φ̂ : E ′→ E such that

φ̂ ◦φ = [m]E , φ ◦ φ̂ = [m]E ′ .

φ̂ is called the dual isogeny of φ ; it has the following properties:

2Note that this convention is not universal in the literature, as there are other useful choices for a
canonical representative of E/G.
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1. φ̂ has degree m;

2. φ̂ is defined over k if and only if φ is;

3. ψ̂ ◦φ = φ̂ ◦ ψ̂ for any isogeny ψ : E ′→ E ′′;

4. ψ̂ +φ = ψ̂ + φ̂ for any isogeny ψ : E→ E ′;

5. degφ = deg φ̂ ;

6. ˆ̂
φ = φ .

Note that, since [m]∗(ω) = mω , if φ is normalized so that φ ∗ω ′ = ω , φ̂ almost never
is. The computational counterpart to the kernel-isogeny correspondence is given by
Vélu’s much celebrated formulas.

Proposition I.5 (Vélu [Vél71]). Let E : y2 = x3 + ax+ b be an elliptic curve defined
over a field k, and let G⊂ E(k̄) be a finite subgroup. The normalized separable isogeny
φ : E→ E/G, of kernel G, can be written as

φ(P) =

(
x(P)+ ∑

Q∈G\{O}
x(P+Q)− x(Q),y(P)+ ∑

Q∈G\{O}
y(P+Q)− y(Q)

)
;

and the curve E/G has equation y2 = x3 +a′x+b′, where

a′ = a−5 ∑
Q∈G\{O}

(3x(Q)2 +a),

b′ = b−7 ∑
Q∈G\{O}

(5x(Q)3 +3ax(Q)+b).

But how “good” are Vélu’s formulas from a computational perspective? “Pretty
good”, is the message we want to convey, but, in order to understand the question, we
need to discuss rationality. Let E be defined over a field k with algebraic closure k̄. We
say that an isogeny φ : E→ E ′ is defined over k, or k-rational, if φ is invariant under
the action of the Galois group of k̄/k. This is equivalent to φ being defined by rational
maps with coefficients in k, and implies3 that kerφ is stable under Gal(k̄/k). It implies
that E ′ is defined over k, but the converse is not true.

In the rest of this work, when we say “an isogeny”, we really mean “an isogeny
defined over the base field”, unless specified otherwise. What are the input and output
sizes of Vélu’s formulas, if we restrict to k-rational isogenies?

The output is a pair of rational fractions, and, letting `= #G, it is not too difficult to
see that they have O(`) coefficients. The input is the kernel G, and, since it is finite, it
must be generated by at most two elements. However G is only stable under Gal(k̄/k),
implying that its elements are defined in an (abelian) extension of degree in O(`). Thus,
in general, G is represented by O(`) coefficients of k.

Now, if we apply mindlessly Vélu’s formulas, we need at least O(`2) coefficients
in k to write down all the elements of G. A better approach is to represent G by a
polynomial with coefficients in k that vanishes on all P ∈ G, for example

hG(x) = ∏
P∈G\{O}

(x− x(P)).

3The converse is only true up to twist.
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The polynomial hG is called the kernel polynomial4 of G, and has coefficients in k if
and only if φ is k-rational; it can be computed from the generators of G in only Õ(`)
operations over k. Following Kohel [Koh96], we can rewrite Vélu’s formulas in terms of
hG, then, their evaluation can also be accomplished in Õ(`) operations.

In conclusion, we see that Vélu’s formulas make the kernel/isogeny correspondence
explicit, using a quasi-optimal number of operations in general. This will be crucial
when we will study isogeny-based cryptosystems in Chapter III, however, we will
encounter there some examples where the cost of evaluating an isogeny is exponentially
lower than that of Vélu’s formulas.

I.2 The explicit isogeny and other problems

When it comes to computations, Vélu’s formulas are only part of the story: how dowe find
a rational kernel G in the first place? Elkies, while working on point counting [Elk92;
Elk98], famously baptized this the explicit isogeny problem.

Problem I.6 (Explicit isogeny problem). Let E be an elliptic curve, and let ` be an
integer. Find, if it exists, an isogeny of degree ` with domain E.

A slightly modified version of the same problem is often found in the literature.

Problem I.7. Let E and E ′ be two elliptic curves, and ` an integer. Decide whether
there exists an isogeny φ : E→ E ′ of degree `, and compute its kernel.

Themany variants of the explicit isogeny problem have kept the research community
busy for more than twenty years, and still do today. Let’s have a closer look at it.

Elkies’ algorithm. For a start, it should be noticed that both variants are by no
means “hard”. Indeed, we have explicit formulas for adding points on a curve E, from
which we can deduce an explicit formula for multiplying points on E by any scalar `∈Z.
Said otherwise, we have an explicit formula for the multiplication-by-` isogeny, and, by
reading its denominators, we can deduce its kernel polynomial h`.5

Let us assume for simplicity that ` is prime and different from the characteristic,
then we know there are at most `+1 normalized isogenies of degree ` from E. Factoring
h` over the field of definition k of E lets us compute all possible kernel polynomials of
order `, and thus all possible isogenies. At most `+1 applications of Vélu’s formula will
then give the answer to either of the two variants of the explicit isogeny problem. Since
E[`] ' (Z/`Z)2 over the algebraic closure, h` has degree `2− 1, thus this algorithm
costs no more than factoring a degree O(`2) polynomial in k[x].

We see that the matter is not solving the explicit isogeny problem. The matter is
solving it fast!

An interesting case, and the one Elkies was originally interested in, is when the
curves are defined over a finite field. Let us relax the problem a bit, and see what can
be told about it. Decisional versions, first: two elliptic curves are said to be isogenous if
there exists an isogeny connecting them (this is an equivalence relation, thanks to the
dual isogeny theorem).

4Other works prefer defining the kernel polynomial as the square root of hG, however this adds some
complications when #G is even.

5Up to a constant, h` is the square of ψ`, the `-th division polynomial. See [BSS99, p. III.4] for explicit
formulas.
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Problem I.8. Let E,E ′ be two elliptic curves defined over a finite field Fq, decide
whether they are isogenous.

Tate [Tat66, Th. 1(c)] famously showed6 that E and E ′ are isogenous over Fq if and
only if #E(Fq) = #E ′(Fq). Schoof’s point counting algorithm [Sch85; Sch95] completely
settles the problem by computing the orders of E and E ′ in polynomial time in logq.
However, when we add a degree constraint on the isogeny, the problem immediately
becomes harder, even for finite fields.

Problem I.9. Let E,E ′ be two elliptic curves, and ` be an integer. Decide whether
they are `-isogenous.

The modular polynomial helps solve this problem. Assuming ` is prime, the `-th
modular polynomial, denoted by Φ`(x,y), is a bivariate polynomial with coefficients inZ,
symmetric in x and y, of degree `+1 in each variable, with the following property: two
elliptic curves E,E ′ are `-isogenous if and only if Φ`( j(E), j(E ′)) = Φ`( j(E ′), j(E)) = 0.
We stress that the definition of Φ` is independent of the base field. Given that Φ`

has O(`2) coefficients (and rather large ones), using it to decide the explicit isogeny
problem is asymptotically only slightly better than factoring the division polynomial;
it is however usually considerably more efficient in practice, especially when tables
of modular polynomials are precomputed, as is the case in computer algebra systems
such as Pari [PARI], Magma [BCP97], or SageMath [Sage].

The modular polynomial can also be used to produce all isogenous elliptic curves,
up to isomorphism, to a given curve: simply plug j(E) in Φ`, then factor Φ`( j(E),y)
to find the isogenous j-invariants. Elkies used this approach to reduce the explicit
isogeny problem to Problem I.7, but he managed to extract even more information from
Φ`: he showed how to obtain a normalized equation for the image curve.

Theorem I.10 ([Elk92; Sch95; Elk98]). Let E : y2 = x3+ax+b be an elliptic curve, let j
be its j-invariant and let j′ be such that Φ`( j, j′) = 0. Assume that (∂Φ`/∂y)( j, j′) 6= 0,
and define

λ =
−18
`

b
a

∂Φ`
∂x ( j, j′)

∂Φ`
∂y ( j, j′)

j,

a′ =− 1
48

λ 2

j′( j′−1728)
1
`4 ,

b′ =− 1
864

λ 3

( j′)2( j′−1728)
1
`6 .

(I.3)

Then there is a normalized isogeny of degree ` from E to E ′ : y2 = x3 +a′x+b′.

Elkies’ theorem prompts us to define a weaker variant of the explicit isogeny prob-
lem.

Problem I.11 (Inverse Vélu problem7). Let E,E ′ be elliptic curves such that there
exists a normalized isogeny φ : E→ E ′ of degree `. Compute the kernel of φ .

6Tate, citing Mumford, also points out that, for the case of elliptic curves, this is an easy consequence of
the much celebrated work of Deuring [Deu41].

7The name is ours and not attested in the literature.
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Unsurprisingly, Elkies also gave the solution to this problem in [Elk92; Elk98]. He
observed that the rational fractions defining φ are related by a differential equation,
involving only the coefficients of E and E ′. Solving the differential equation gives the
rational fractions, and thus the kernel. This gives a method to solve the inverse Vélu
problem in O(`2) operations over the base field, or even Õ(`) using computer algebra
techniques as suggested by Bostan, Morain, Salvy and Schost [Bos+08].

We have, essentially, sketched the computation involved in the Schoof-Elkies-Atkin
(SEA) point counting algorithm [Sch95], for those that are called Elkies primes (more
on these later). However, the last part of Elkies’ algorithm, the solution to the inverse
Vélu problem, only works when the characteristic is 0 or large enough. While this is
good enough for counting points of elliptic curves defined over a prime field Fp, it fails,
for example, over binary fields.

Couveignes’ algorithm. After Elkies, others set out to solve the explicit isogeny
problem in small characteristic. While Elkies’ method is grounded in complex anal-
ysis, and thus naturally works in characteristic 0, Couveignes [Cou94; Cou96] and
Lercier [Ler96] introduced “more algebraic” methods, that only work over finite fields.

The one that shall interest us here is Couveignes’ second method: a strikingly
simple idea to solve Problem I.7 directly. It is based on the observation that any isogeny
φ : E→ E ′ must preserve Sylow subgroups:

φ(E[rk])⊆ E ′[rk] for any prime r and k ≥ 0, (I.4)

with equality if r does not divide degφ . If E/Fpn is an ordinary curve, E[pk]' Z/pkZ
has a particularly simple structure. The idea is to compute E[pk] and E ′[pk] for k large
enough (precisely, pk ∼ 4degφ ), make a guess for the exact image of one group into the
other, and interpolate the isogeny. If the guess was right, the computed isogeny can be
verified through Vélu’s formulas; if not a new guess is made. Given that the pk-torsion
groups are cyclic, at most ϕ(pk) different guesses must be made.

Despite its simplicity, Couveignes’ algorithm requires some heavy computer algebra
artillery to achieve a decent complexity, but with some effort it can be made to run in
Õ(`2 p3) operations [Cou00; DS09; De 11]. However, the polynomial dependency in p
is a serious handicap, quickly making the algorithm unusable as the characteristic
grows. Couveignes’ other algorithm is affected by the same problem, whereas Lercier’s
algorithm only works when p = 2.

With the introduction of p-adic alternatives to Schoof’s point counting algo-
rithm [Sat00; Ked01; Ked04; Lau04; Har14], interest in solutions to the explicit
isogeny problem limited to such small characteristic started to fade. Later, Lercier
and Sirvent [LS08b] explained how to extend Elkies’ algorithm to finite fields of any
characteristic by lifting the explicit isogeny problem to a p-adic field. Their algorithm
only has a logarithmic dependency in the characteristic, and gracefully degrades to
Elkies’ algorithm when p becomes large enough. Said otherwise, Lercier and Sirvent
effectively rendered all previous algorithms obsolete!

Incidentally, this coincides with the beginning of my career in research, one that
started off by desperately trying to beat the cycles out of an algorithm that would be
made obsolete before the end of my first year as a PhD student.8

Nevertheless, Couveignes’ algorithm is still a great source of inspiration, with many
ramifications that we shall explore in the rest of this work. By the end of this chapter

8I can only imagine FM’s cold sweats when Lercier and Sirvent published their algorithm. I did not
understand at the time. I do now.
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it will be clear that its algebraic nature, deeply related to Tate’s isogeny theorem, has
more to offer than what may appear at first glance.

I.3 The neighborhood

From now on, Fq will be a finite field of characteristic p, and all elliptic curves and
isogenies will be defined over it, unless stated otherwise.

We want to explore the “neighborhood” of E/Fq, i.e., given a prime `, how many
`-isogenous curves to E are there? What properties do they have?

Fortunately, we have a Swiss-army-knife to answer these questions. The Frobenius
endomorphism is the map

π : E −→ E,

(x,y) 7−→ (xq,yq).

Hasse’s well known theorem states that π , as an element of the endomorphism ring
End(E), satisfies a quadratic equation with integer coefficients π2 +q = tπ , where t is
called the trace of π . Hasse also proved that ∆π = t2−4q≤ 0, with equality happening
only if E is supersingular. ∆π is called the discriminant of π .

An isogeny φ : E → E/G is Fq-rational if and only if π(G) = G, which suggests
looking at the restriction of π to E[`]. Assume ` 6= p, then E[`] is a group of rank 2 and
π acts on it like an element of GL2(F`), up to conjugation. Clearly, the order of π in
GL2(F`) is the degree of the smallest extension of Fq where all `-isogenies of E are
defined. But we can tell even more by diagonalizing the matrix: π must have between
0 and 2 eigenvalues, and the corresponding eigenvectors define kernels of rational
isogenies. We thus are in one of the following four cases9:

(0) π is not diagonalizable in F`, then E has no `-isogenies.

(1.1) π has one eigenvalue of (geometric) multiplicity one, i.e., it is conjugate to a
non-diagonal matrix

(
λ ∗
0 λ

)
; then E has one `-isogeny.

(1.2) π has one eigenvalue of multiplicity two, i.e., it acts like a scalar matrix
(

λ 0
0 λ

)
;

then E has `+1 isogenies of degree `.

(2) π has two distinct eigenvalues, i.e., it is conjugate to a diagonal matrix
(

λ 0
0 µ

)
with λ 6= µ ; then E has two `-isogenies.

Naturally, the number of eigenvalues of π depends on the factorization of the
polynomial x2− tx+q over F`, or equivalently on whether ∆π is a square modulo `.

Each of the four cases also corresponds to a different factorization pattern of the
modular polynomial. The following proposition is at the heart of Atkin’s improvement
to Schoof’s point counting algorithm.

Proposition I.12 (Atkin [Atk91; Atk92]). Let E/Fq be a curve with j(E) 6= 0,1728. Let
` be a prime different from the characteristic, and let Φ` be the `-th modular polynomial.
The number of distinct Fq-rational normalized `-isogenies of E is equal to the number
of linear factors of Φ`( j(E),y) over Fq; furthermore, the factorization degree pattern of
Φ`( j(E),y) falls into one of these four categories:

(0) r, . . . ,r for some r dividing `+1;
9In the point counting literature, Case (0) is known as the Atkin case, and Case (2) as the Elkies case.
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(1.1) 1, `;

(1.2) 1, . . . ,1;

(2) 1,1,r, . . . ,r for some r dividing `−1.

For ordinary elliptic curves, Kohel [Koh96] showed that this classification can be
further refined by introducing a notion of “depth” of an elliptic curve. Let K =Q(π) be
an imaginary quadratic number field where we identify the Frobenius π to one root of
x2− tx+q. Let OK be the ring of integers of K then End(E) is isomorphic to an order O

Z[π]⊆ O ⊆ OK .

We have already seen that two elliptic curves are isogenous over Fq if and only if
they have the same number of points; equivalently, they are isogenous if and only if
Q(πE)'Q(πE ′). Kohel refined Tate’s theorem as follows.

Proposition I.13 (Kohel [Koh96, Prop. 21]). Let E,E ′ be elliptic curves defined over
a finite field, and let O,O ′ be their respective endomorphism ring. Suppose that there
exists an isogeny φ : E → E ′ of prime degree `, then O contains O ′ or O ′ contains O ,
and the index of one in the other divides `.

For a fixed prime `, Kohel defines a curve E to be at the surface if v`([OK : End(E)]) =
0, where v` is the `-adic valuation. E is said to be at depth d if v`([OK : End(E)]) = d;
the maximal depth being dmax = v`([OK : Z[π]]), curves at depth dmax are said to be at
the floor (of rationality), and dmax is called the height of the graph of E. Kohel calls
then an `-isogeny horizontal if it goes to a curve at the same depth, descending if it
goes to a curve at greater depth, ascending if it goes to a curve at lesser depth.

But howmany horizontal and vertical `-isogenies does a given curve have? Typically
this question is answered by the theory of complex multiplication, but we shall use
another strategy that better serves our purpose. So far, the Frobenius endomorphism
has only given us a “local” view on the neighboring curves. We need to “elevate” our
point of view and look further away, in order to gain a global view on the whole isogeny
class.

I.4 How isogeny graphs fold

An isogeny graph is a connected graph whose vertices are elliptic curves up to isomor-
phism, and whose edges are isogenies under some restrictions. In this chapter we are
only interested in graphs of `-isogenies, for some fixed prime `; other types of isogeny
graphs will appear in Chapter III. Because of the dual isogeny theorem, these isogeny
graphs are undirected; technically we should be more properly speaking of directed
multi-graphs, since multiple edges and self-loops are possible, but these cases are rare
enough that we can deal with them explicitly.

As a first example, let us start with elliptic curves over the complex numbers. We
know every such curve has exactly `+ 1 isogenies, thus every vertex in the isogeny
graph has out degree `+1. If we let E/C be a curve without complex multiplication,
i.e., such that End(E) = Z, then its connected component cannot have loops, otherwise
that would provide a non-trivial endomorphism of E. Hence, the isogeny graph of E is
an infinite (`+1)-tree, as pictured in Figure I.2.

To study the structure of these graphs we introduce a tool, a sort of “lighthouse”
planted at the origin, lighting the graph as it extends away towards infinity. Here is
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Figure I.2: Infinite 2-isogeny graph of elliptic curves without complex multiplication.

an intuition: if we put E at the origin of the graph,10 its neighbors are determined by
the cyclic subgroups of E[`]; if we “climb” to E[`n], we will be able to “see” as far as the
ball of radius n around E. To make sense of the whole graph, it thus feels natural to
climb “infinitely high”, i.e., to ascend to the Tate module T`(E).

The Tate module T`(E) is the projective limit

T`(E) = lim←−E[`n]

given by the natural projections

E[`n]
[`]−→ E[`n−1].

Since the E[`n] are Z/`nZ-modules, T`(E) has a Z`-module structure, where Z` denotes
the `-adic integers. Any isogeny φ : E→ E ′ induces a morphism φ` : T`(E)→ T`(E ′) on
the Tate modules, and we may prove that no information is lost in the process (see
[Sil92, III, Th 7.4]).

Theorem I.14. Let E,E ′ be elliptic curves defined over a field k, and let ` be a prime
different from the characteristic of k. The canonical map

Hom(E,E ′)⊗Z` −→ Hom(T`(E),T`(E ′))

is injective.

We can thus associate elements of GL2(Q`) to the isogeny graph rooted in E as
follows. Fix a basis of T`(E), there are `+1 isogenies of degree ` from E to other curves
E ′, determined by their respective kernels; up to a change of basis of T`(E ′) the matrix
φ` (acting on the left) associated to φ : E→ E ′ is one of(

` 0
0 1

)
,

(
1 a
0 `

)
for 0≤ a < `. (I.5)

10An infinite tree has no well defined origin, but we may arbitrarily choose one.
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(
1 0
0 1

)
(

1 0
0 2

)(
1 0
0 4

)(
1 0
0 8

)
(

1 4
0 8

) (
1 2
0 4

)
(

1 2
0 8

) (
1 6
0 8

)

(
1 1
0 2

)
(

1 1
0 4

)
(

1 1
0 8

)
(

1 5
0 8

)

(
1 3
0 4

) (
1 3
0 8

)
(

1 7
0 8

)
(

2 0
0 1

)
(

2 1
0 2

)
(

2 3
0 4

)(
2 1
0 4

)

(
4 0
0 1

)
(

4 1
0 2

)
(

8 0
0 1

)

Figure I.3: Dyadic Serre tree, representing isogenies of degree 2n on T2(E).

By composing these elementary matrices, we obtain the matrix of any isogeny of degree
`n; then, quotienting by the center of GL2(Q`), we factor out endomorphisms of E.

We thus define an infinite tree on PGL2(Q`)/PGL2(Z`), isomorphic to the graph
of E, by associating the identity matrix to the origin, and the matrices φ` to the
paths φ : E → E ′, as shown in Figure I.3. The tree of PGL2(Q`) was already studied
by Serre [Ser77, p. II],11 and is at the heart of various constructions of expander
graphs [LPS88; Lub94; Cos+18], a topic that we shall encounter again in Chapter III.12

Despite the nice drawings, these graphs are, algebraically, “boring”: the choice
of an origin is arbitrary, and they look the same from every vertex. Things get more
interesting if we go back to finite fields. Any curve E/Fq can be seen as the reduction
modulo p of some curve E/Q̄; thus it must inherit the connectivity structure of the
isogeny graph of E/Q̄. However, there is only a finite number of curves defined over
Fq, and not all isogenies will be Fq-rational. Thus, the infinite tree of PGL2(Q`) must
somehow “fold” to fit inside Fq.

For example, if E/Fq is a supersingular curve, we shall see in Chapter III that
its isogeny graph “folds” to a finite (`+1)-regular graph containing all supersingular
curves, up to F̄q-isomorphisms.

For the case of ordinary curves, we have already discussed the notion of “depth”, we
thus know that, as we travel along a path of descending isogenies, there is an algebraic
invariant that tells us how far we are from the surface. Said otherwise, unlike the graph
of E/C without complex multiplication, that of E/Fq has one (or more) recognizable
origins.

Is it possible to read on T`(E) the depth of E? We again turn to the Frobenius
endomorphism π for help. Tate’s isogeny theorem makes a stronger statement than
Theorem I.14, by restricting to morphisms that are invariant under the action of π : it

11Note that Serre uses a different convention for the elementary matrices in Eq. (I.5): he has them act on
the right, instead of on the left, and thus obtains

(
1 0
0 `

)
,
(
` a
0 1

)
, . . . as a basis.

12I am grateful to J. Plût for explaining this to me, and for providing the TikZ code for Figure I.3
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tells us that, for finite fields, studying Galois-invariant morphisms of T`(E) is the same
as studying rational isogenies of E.

Theorem I.15 (Tate [Tat66]). Let Fq be a finite field of characteristic p, and let ` 6= p
be a prime. Let E,E ′ be elliptic curves defined over Fq, the canonical map

HomFq(E,E
′)⊗Z` −→ HomGal(F̄q/Fq)

(T`(E),T`(E ′))

is an isomorphism of Z`-modules.

Tate’s theorem has many important consequences. Among those, we have already
mentioned that E and E ′ are isogenous if and only if #E(Fq) = #E ′(Fq). Furthermore,
the action of π on T`(E) provides a 2-dimensional representation of Gal(F̄q/Fq), and
Tate’s theorem states that E and E ′ are isogenous over Fq if and only if T`(E) and T`(E ′)
are isomorphic as Q`-representations. By explicitly computing this representation we
obtain an effective version of Tate’s theorem; one that lets us, in Kohel’s words, “probe
the depths”.

We again let K =Q(π) be an imaginary quadratic number field where we identify
the Frobenius π to one root of x2−tx+q; we let ∆π = t2−4q be the discriminant of Z[π],
and ∆K the fundamental discriminant of OK . In particular, [OK : Z[π]] =

√
∆π/∆K .

Proposition I.16 (Miret et al. [Mir+08], Hugounenq [Hug17]). Let E/Fq be an ordinary
elliptic curve with Frobenius endomorphism π , and let h = v`(

√
∆π/∆K). There exists a

unique e ∈ {0,h} such that π|T`(E) is conjugate, over Z`, to a matrix M =
(

a `e

c d

)
with

ad∧ `= 1, a = d (mod `h), and v`(∆π)≤ v`(c)+e. In particular, M =
(

a `e

0 a

)
(mod `h).

Moreover, h = v`([OK : Z[π]]) is the height of the graph of E; if E lies at the surface,
then e = h, otherwise h− e is the depth of E.

In the case where π2− tπ + q splits in Z`, i.e., when
(

∆K
`

)
= 1, we have a more

precise statement.

Proposition I.17 (D., Hugounenq, Plût, Schost [De +16]). Let E/Fq be an ordinary el-
liptic curve with Frobenius endomorphism π . Assume that the characteristic polynomial
of π has two distinct roots λ ,µ in Z`, and let h = v`(λ −µ) = v`(

√
∆π/∆K). Then there

exists a unique e ∈ {0,h} such that π|T`(E) is conjugate, over Z`, to the matrix
(

λ `e

0 µ

)
.

We thus have an effective bathymeter to navigate the isogeny graph: it is indeed
sufficient to compute π|T`(E) up to precision `h, i.e., π|E[`h], in order to determine the
depth of E. This generalizes previous partial results of Miret et al. [Mir+06; Mir+08]
and Ionica and Joux [IJ13].

But what about horizontal isogenies? Can we construct indefinitely long walks
entirely made of them? The effective version of Tate’s theorem also gives us an effective
way to characterize horizontal isogenies. Indeed, if φ : E→ E ′ is an Fq-rational isogeny,
φ` its restriction to T`(E), and we let π,π ′ be the Frobenius endomorphisms of E,E ′,
then π ′ = φ`πφ

−1
` (where we have tensored by Q` to make sense of φ

−1
` ).

We have already conveniently arranged all isogenies of degree `n in the graph of
Figure I.3, thus, if we are given a matrix for π|T`(E), all we have to do to compute
π|T`(E ′) is to conjugate by the corresponding matrix φ`. For example, assume that the
characteristic polynomial of π has two distinct roots, so that we are in the setting of
Proposition I.17. If π diagonalizes as

(
λ 0
0 µ

)
, the two isogenies

(
1 0
0 `

)
and

(
` 0
0 1

)
do not

change the matrix of π , thus they are both horizontal, whereas all other isogenies are
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Isogeny types
→ ↑ ↓

v`(∆π/∆K) = 0 ` - [OK : O]] ` - [O : Z[π]] 1+
(

∆K
`

)
` - [OK : O]] ` | [O : Z[π]] 1+

(
∆K
`

)
`−
(

∆K
`

)
v`(∆π/∆K)> 1 ` | [OK : O]] ` | [O : Z[π]] 1 `

` | [OK : O]] ` - [O : Z[π]] 1

Table I.1: Number and types of `-isogenies, according to splitting type of the character-
istic polynomial of π .

descending. On the other hand, if π can only be put in the form
(

λ `e

0 µ

)
with e < h, we

see that the isogeny
(
` 0
0 1

)
is ascending, whereas all others are descending. Finally,

if π is of the form
(

λ 1
0 µ

)
, then we have one ascending isogeny as before, however no

descending isogeny can be rational.
By applying the same reasoning to

(
∆K
`

)
=−1,0, we can prove a complete classifi-

cation of rational isogenies. This is summarized in Table I.1.

Theorem I.18 (Kohel [Koh96]). Let E/Fq be an ordinary elliptic curve, π its Frobenius
endomorphism, and ∆K the fundamental discriminant of Q(π).

1. If E is not at the floor, there are `+1 isogenies of degree ` from E, in total.

2. If E is at the floor, there are no descending `-isogenies from E.

3. If E is at the surface, then there are
(

∆K
`

)
+1 horizontal `-isogenies from E (and

no ascending `-isogenies).

4. If E is not at the surface, there are no horizontal `-isogenies from E, and one
ascending `-isogeny.

This theorem shows that, away from the surface, isogeny graphs just look like
`-regular complete trees of bounded height, with ` descending isogenies at every level
except the floor. However, the surface has a more varied structure:

(0) If
(

∆K
`

)
= −1, there are no horizontal isogenies: the isogeny graph is just a

complete tree of degree `+1 (in the graph theoretic sense) at each level but the
last. We call this the Atkin case, as it is an extension of the Atkin case in the
SEA point counting algorithm.

(1) If
(

∆K
`

)
= 0, there is exactly one horizontal isogeny φ : E → E ′ at the surface.

Since E ′ also has one horizontal isogeny, it necessarily is φ̂ , so the surface only
contains two elliptic curves, each the root of a complete tree. We call this the
ramified case.

(2) The case
(

∆K
`

)
= 1 is arguably the most interesting one. Each curve at the

surface has exactly two horizontal isogenies, thus the subgraph made by curves
on the surface is two-regular and finite, i.e., a cycle. The eigenvalue λ (resp. µ)
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of π defines an eigenspace, that projects onto a cyclic subgroup of E[`n], which is
the kernel of an `n-isogeny represented by the matrix

(
`n 0
0 1

)
(resp.

(
1 0
0 `n
)
). Hence,

λ and µ define two opposite directions on the cycle, independent of the starting
point, and dual to one another.

Below each curve of the surface there are `−1 curves, each the root of a complete
tree. We call this the Elkies case, again by extension of point counting.

Atkin:
(

∆K
`

)
=−1 ramified:

(
∆K
`

)
= 0 Elkies:

(
∆K
`

)
=+1

Figure I.4: The three shapes of volcanoes of 2-isogenies of height 1.

The three cases are summarized in Figure I.4. Tate’s theorem only allows us to tell
as much; to know more on the number and sizes of isogeny graphs, we shall need the
theory of complex multiplication, however we delay this to Chapter III, where it will be
used to construct “cryptographic” isogeny graphs.

The shapes of the graphs, in particular the Elkies case, suggest a geological
metaphor: Fouquet and Morain [FM02] famously called them isogeny volcanoes. Ad-
hering to this metaphor, from now on we shall call crater the cycle at the surface of an
Elkies volcano, but we shall refrain from using this name for the surface of other types
of volcanoes.13 Of course, to reconcile Kohel’s maritime metaphors with Fouquet and
Morain’s, we shall assume that isogeny volcanoes are underwater, with the crater just
touching the sea surface.

I.5 Explicit isogenies in quadratic time

Armed with our new knowledge on isogeny volcanoes, we can now come back to the
explicit isogeny problem.

Recall Couveignes’ algorithm: it interpolates an isogeny φ : E→ E ′ of degree r over
the pk-torsion subgroups, for k large enough. Its main disadvantage is the polynomial
dependency in p, the characteristic of the base field; in practice, Couveignes’ algorithm
is hardly practical for p > 3.

To get rid of the bad dependency in p, the obvious idea is to replace E[pk] with E[`k]
for some small prime ` coprime to r, say `= 2. However, a naive algorithm based on
this would have a much worse complexity than Couveignes’ original algorithm. Indeed
E[pk] is cyclic, thus there are only ϕ(pk) possible morphisms E[pk]→ E ′[pk] to test; if
each test takes pk+O(1) operations, the whole algorithm takes p2k+O(1) = r2 pO(1). On
the other hand, E[`k] is of rank 2, thus Hom(E[`k],E ′[`k]) is isomorphic to GL2(Z/`kZ)
and has size O(`4k); if each interpolation test takes `2k+O(1) operations, the whole
algorithm takes `6k+O(1) = r3`O(1).

13The literature, including my own works [De +16], is inconsistent on the use of the word “crater” for
non-Elkies volcanoes.
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But we are not interested in any isogeny: we are explicitly looking for a rational
isogeny, thus we can use all that we have learned so far. Indeed, we are just applying
Tate’s theorem: trying to identify, among all matrices in Hom(T`(E),T`(E ′)) (truncated
to precision `k), the one that corresponds to the isogeny φ . Since ` does not divide degφ ,
the curves E and E ′ have the same depth in their respective volcanoes (which may or
may not be distinct); and since φ is rational, its matrix must commute with π . Thus,
even though Hom(T`(E),T`(E ′)) has dimension 4 as a Z`-module, we can focus on the,
potentially smaller, submodule of matrices that leave π stable.

Concretely, assume that the characteristic polynomial of π has two distinct roots,
and suppose that E is on the crater. Then we can find bases for E[`k] and E ′[`k] such that
the respective Frobenius endomorphisms act like

(
λ 0
0 µ

)
on each. Since φ is rational, it

must map the eigenspace of λ in E[`k] into the eigenspace of λ in E ′[`k], and similarly
for µ . Said otherwise, φ must be represented by a diagonal matrix, thus the search
space is reduced to a dimension 2 submodule, that is O(`2k) different possibilities to
try, for an overall complexity of only r2`O(1) operations.

What we just described is the gist of the algorithm presented in “Explicit isogenies
in quadratic time in any characteristic” written with C. Hugounenq, J. Plût and
É. Schost [De +16], and included in the appendix to this document. Although I must
admit that the title cheats in two ways:

• The algorithm solves Problem I.7 in quadratic time, i.e., not exactly the “explicit
isogeny problem” as we have stated it, and thus does not improve the complexity
of the SEA point counting algorithm;

• The algorithm only achieves quadratic complexity for almost all prime powers q
and almost all pairs of isogenous curves E,E ′ defined over Fq.

In our defense, artificial as Problem I.7 may seem, ours is the only algorithm that
achieves quadratic complexity in the isogeny degree, beating even Lercier and Sirvent’s
algorithm. Although its impact is purely theoretical, the techniques employed are of
independent interest and may find useful applications in other contexts.

Concerning the second problem, the difficulty comes from the fact that our tech-
niques only work when the characteristic polynomial of π splits over Z`, i.e., when ` is
an Elkies prime for E. However, it may happen that no small prime is Elkies for E, and
indeed curves such that none of the first O(logq) primes is Elkies do exist, although
they are “rare”.14

Before we close this chapter, let us summarize the steps of our “`-adic Couveignes’
algorithm”. Note that, to run the algorithm, we need an Elkies prime ` for E. It would
be easy to find one if we knew the order of E(Fq), but this would be cheating, since
one of the goals of Couveignes’ algorithm is to help count the points of E. Instead we
show that the number of roots of π in Z` can be “discovered” as we proceed in the steps
below. For simplicity, we are also going to assume that E and E ′ are on the craters
of the respective volcanoes; note that we can always reduce to this situation using
Proposition I.17.

1. For a given prime `, construct torsion bases E[`k] and E ′[`k], where k is chosen
so that `2k > 4r.

14Interestingly, we will look at the opposite problem in Chapter III: construct curves such that a lot of
small primes are Elkies.
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2. Perform a change of basis so that π acts on E[`k] = 〈P,Q〉 like a diagonal matrix(
λ 0
0 µ

)
, with λ 6= µ ; do the same for E ′[`k] = 〈P′,Q′〉. If this is not possible, either

` is not an Elkies prime, or we have computed T`(E) to too low a precision (i.e.,
we need to choose a larger k). In either case, we can decide to change prime ` and
start again, or to increase k up to an acceptable bound.

3. For each diagonal matrix M in GL2(Z/`kZ), interpolate the isogeny that maps
(P,Q)t to M(P′,Q′)t . If this results in a rational isogeny of degree r, return it and
stop.

Pretty simple, huh? Well, now it is time to look at what we swept under the rug. So
far we have spoken of “constructing E[`k]” as if this was an easy thing to do. However
the attentive reader will have noticed that E[`k] may be not (entirely) contained in
E(Fq), and indeed it will almost never be in the context of our algorithm. Thus, we first
need to compute the smallest field extension of Fq where E[`k] is going to be defined.
We “ascend” level by level: first computing E[`], then E[`2], and so on until we reach
E[`k]. Each step will require factoring some polynomials, in general of degree `, leading
to the construction of a tower of extensions on top of Fq. Performing computations in
towers of field extensions in optimal time is a delicate task, requiring a great deal of
computer algebra techniques that we shall explore in the next chapter.

I.6 Perspectives

Point counting. The raison d’être of the explicit isogeny problem lies in improving
Schoof’s point counting algorithm. In this chapter, we have not succeeded in improving
its complexity, and, to be completely honest, we have not even tried: any solution to the
explicit isogeny problem wanting to improve upon the Elkies-Lercier-Sirvent algorithm
needs to get rid of the modular polynomial first. Indeed, even assuming an optimal
algorithm15 to compute Φ`, simply storing its coefficients requires O(`3) bits, that
become O(`2 log p) after reducing modulo p.

A possible way aroundwould be an algorithm to computeΦ` mod p directly, without
computing its integer coefficients first; however the best algorithm for this [BLS12], a
multi-modular approach exploiting the structure of isogeny volcanoes, only achieves
quasi-optimal storage, but still requires Õ(`3) binary operations. Even better, one
could compute Φ`( j(E),y) directly, as Sutherland does [Sut13b], however even for this
problem we only have an algorithm with quasi-optimal storage, but the same cubic
complexity.

The same problem is felt, even more strongly, for curves of higher genus. Indeed,
even for the case of genus two curves, modular polynomials are so unwieldy [Gau00;
Dup06; BL09; Mil15; MR17] that they do not allow improving upon the basic Schoof-Pila
algorithm [Pil90].

To the present day, the only known techniques to enumerate isogenous curves of a
fixed degree are based on factoring the division polynomial or the modular polynomial.
The techniques of this chapter do not seem to help. I am personally rather pessimistic
on the possibility of improving the SEA algorithm using Tate’s isogeny theorem alone,
however it is certainly interesting to try to combine it with other ideas, in the hope of
getting a breakthrough in point counting, especially for higher genus curves.

15Quasi-optimal algorithms for computing modular polynomials do exist, see [Eng09; BLS12]
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Couveignes’ algorithm. Moving to Problem I.7 and to the “`-adic Couveignes’ algo-
rithm” presented in the previous section, even though we know that it does not improve
the asymptotic complexity of point counting, it would still be interesting to know for
which parameters it improves SEA in practice, and by how much.

Related to this, a goal that looks realistic would be to lift the restriction to Elkies
primes in the algorithm; hopefully having it run in quadratic time for any elliptic curve.
To be more precise, our paper uses [SS14] to show that one can find an Elkies prime
`= O(logq) for almost all finite fields Fq and curves E/Fq. In his PhD thesis [Hug17],
C. Hugounenq partially solves this problem by giving a quadratic time algorithm when(

∆π

`

)
=−1, i.e. when ` is an Atkin prime and the corresponding volcano has height

0. This allows him to prove the existence of a quadratic algorithm for any elliptic
curve, however it does not improve upon the bound `= O(logq). A quadratic algorithm
working with any ` would considerably improve the complexity in logq, and would also
be much more practical and easy to implement.

It is tempting to look for a variant of Couveignes’ algorithm with sub-quadratic
complexity, possibly even quasi-linear. The techniques developed in this chapter do not
seem capable of breaking the quadratic barrier, and this looks somehow intrinsic to
Tate’s theorem. My guess is that, if it was possible to obtain a sub-quadratic variant
of Couveignes’ algorithm, bad things would start happening for the cryptosystems
presented in Chapter III, at least those based on complex multiplication.

Computing isogenies of supersingular curves would be another obvious extension
of Couveignes’ algorithm. Couveignes’ original algorithm simply does not apply to
supersingular curves, because pk-torsion groups are trivial. Our `-adic algorithm
is easily adapted to supersingular curves defined over Fp, because, as we shall see,
their Frobenius endomorphism behaves similarly to that of ordinary curves; however
it does not achieve the desired complexity for general supersingular curves. This is
deeply related to the differences between the CSIDH and SIDH protocols presented in
Chapter III, and their security.

Computing endomorphism rings. Kohel’s original motivation for defining depth
and direction was to compute the endomorphism ring of an ordinary curve E/Fq, a
problem strictly harder than point counting. Indeed, knowing #E determines π , which
in turn determines Q(π); the only thing that is left to know, then, is the depth of E in
each of the `-volcanoes, for `2 dividing ∆π . The problem with this is that ` is potentially
as large as O(

√
q), and thus any algorithm computing `-isogenies is bound to have

exponential complexity. An alternative approach using isogenies of smooth degree, due
to Bisson and Sutherland [BS11], achieves sub-exponential complexity.

The effective versions of Tate’s theorem give an alternative way to determine the
depth of an elliptic curve, one that potentially has polynomial complexity in logq.
However, the methods proposed in this chapter to compute π|T`(E) involve computing
the `-torsion, and thus have polynomial complexity in `.

I find it unlikely that the techniques of this chapter could improve significantly
the computation of endomorphism rings, but let’s be optimistic and imagine a sci-fi
scenario. In the same way that Schoof’s algorithm computes the trace of π modulo
many small primes to find its value in Z, one may hope that there is some sort of
“global” description of π|∏′` T`(E) that can be reconstructed from π|T`′(E) for many
small primes `′. If this description could be computed in polynomial time, then we
would have a polynomial time algorithm for the endomorphism ring.
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Besides science-fiction, the way isogeny volcanoes interact for different primes has
received very little attention so far, the only work I am aware of being [Moo12]. I believe
that some interesting algorithmic ideas could derive from studying how the knowledge
of π|T`(E) affects the computation of π|T`′(E).
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II Altimetry

In the previous chapter we saw how to determine the structure of an isogeny volcano by
looking at the way the Frobenius endomorphism acts on the Tate module. To effectively
perform the computation, we need to approximate the Tate module by projecting it onto
a torsion group of order, say, `k. Even this finite group, however, may not be defined
over the base field. It is then natural to construct towers of extensions fields, over which
increasingly larger torsion groups are defined.

But why stop at towers? This chapter is devoted to techniques to “ascend” in lattices
of extension fields, possibly up to the full algebraic closure F̄p. The structure of F̄p is
simple enough that we will not need more than the basic theory of cyclotomic extensions.
Instead, we will concentrate our efforts on looking for asymptotically optimal algorithms,
discovering on our path a rich palette of algorithmic ideas.

After learning about representations of finite fields and algorithms to compute
irreducible polynomials, we will explore two radically different paradigms to represent
the algebraic closure of Fp, both being currently used in computer algebra systems.
On one side, we will have lattices of finite fields represented by families of special
polynomials, the most well known example being the family of Conway polynomials,
introduced in the GAP system [GAP], and then adopted by Magma [BCP97] and
SageMath [Sage]. On the other side, we will have lattices of arbitrarily represented
finite fields, such as those used by Magma. The fundamental tool for these will be
an isomorphism algorithm, we shall thus learn about the two main existing families:
the first one, due to Lenstra [Len91] and Allombert [All02a], based on the theory of
Kummer extensions; the second one, due to Pinch [Pin92] and Rains [Rai96], based on
Gaussian periods.

II.1 Computing irreducible polynomials

From now on, Fp is a finite field of prime order. Much of what we are going to present
is easily generalized to non-prime fields, however we will stick to prime fields for
simplicity, and refer to the appendix the reader interested in the general case.

Since this chapter is chiefly about complexity, we need to agree on a unit of mea-
surement. The field Fp is typically represented as the ring of integers modulo p, using
log p bits per element. Addition, subtraction and multiplication modulo p can all be per-
formed in Õ(log p) binary operations using asymptotically fast integer multiplication
and Euclidean division, while field inversion can be computed at the same asymptotic
cost using a fast extended Euclidean algorithm (see [GG99] for a detailed account).
Zech logarithms are another commonly used representation for finite fields of small
size: elements of Fp are represented as powers of a generator, making it relatively
cheap to multiply and invert elements, whereas additions are computed by a lookup in
a table with O(p) entries.

Even though in practice any representation has noticeably different costs for the
various arithmetic operations, it will be convenient to abstract from the actual imple-
mentation of Fp and measure complexities in the algebraic model, i.e., counting every
field operation as O(1). Given a complexity in the algebraic model, a relatively accurate
estimate of the binary complexity can be obtained by multiplying by log p (and ignoring
polynomial terms in loglog p).

The universally employed way to represent a field extension Fpn is as a quotient
of the polynomial ring Fp[X ] by a monic irreducible polynomial f (X) of degree n. In
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this representation, much like in the modular integers case, all arithmetic operations
can be performed in Õ(n) elementary algebraic operations using fast polynomial multi-
plication, Euclidean division, and extended Euclidean algorithm (see again [GG99]).
Most popular software libraries for number theory, e.g., Flint [Har10], NTL [NTL],
PARI/GP [PARI], Magma [BCP97], use this representation1, and a considerable amount
of effort has been spent in optimizing it. Hence this representation, that we shall call
univariate, is the best choice both from an asymptotical and a practical point of view.

Of course, to employ this representation, we need an algorithm to compute irre-
ducible polynomials of arbitrary degree. Three different approaches are known.

The first one, and the simplest, consists in taking random monic polynomials until
an irreducible one is found. The density of irreducible polynomials of a given degree n is
∼ 1/n, thus this approach will lead to an irreducible polynomial in O(n) tries on average.
Testing irreducibility of random polynomials can be done in Õ(n log p) operations on
average, using Ben-Or’s algorithm [Ben81; GP97], thus in total this approach has a
quasi-quadratic dependency on n. This is the most commonly implemented method,
available in Magma, SageMath, etc.

The second method is due to Adleman and Lenstra [AL86], and implemented, as
far as I know, only in PARI/GP2. It is based on the properties of cyclotomic polynomials,
and is similar in spirit to Rains’ algorithm presented in Section II.4. Adleman and
Lenstra show that their algorithm takes deterministic polynomial time, under the
generalized Riemann hypothesis, albeit with a quite large exponent. However, the
algorithm is quite efficient in practice, and the average case complexity of the variant
implemented in PARI/GP is similar to that of factoring a degree n polynomial over Fp.3

The third method is due to Shoup [Sho90; Sho93; Sho94b], later extended by
Couveignes and Lercier [CL13; DDS13]. It uses a variety of algorithms, that we shall
discuss in Section II.3. Using the best available routines, it can compute an irreducible
polynomial in Õ(n(log p)5) operations on average, but trade-offs are available if the
cost in log p is deemed too high. We are not aware of any computer algebra software
implementing this method, probably owing to the relative novelty of the method, and
to its intricacies.

We note that it is an open problem to give an unconditionally deterministic algorithm
to compute irreducible polynomials of arbitrary degree. The closest to this is Shoup’s
first algorithm [Sho90]: it consists of reduction from the problem of finding irreducible
polynomials to that of polynomial factoring, and can be made fully deterministic using
Berlekamp’s deterministic factoring algorithm [Ber70]; however Berlekamp’s algorithm
has an exponential dependency in log p.

II.2 From one extension to the algebraic closure

In many contexts, such as when manipulating geometrical objects, it is natural to
work in many extensions of Fp at once. We may push this to the limit: the algebraic
closure F̄p is the (infinite) reunion of all the finite extensions of Fp; it is thus sufficient
to represent all finite extensions of Fp in a compatible way in order to represent F̄p.

1Givaro [Giv] is one notable exception, employing Zech logarithms. All of the mentioned libraries, with
the exception of Magma, are used by SageMath [Sage].

2And thus also available in SageMath.
3We are not aware of any published formal analysis of the PARI/GP variant, however we believe that

the average-case complexity is (heuristically) dominated by the cost of factoring a cyclotomic polynomial of
degree O(n logn). See also Section II.4
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A natural choice to represent a collection of extensions of Fp is as a towers of exten-
sions: for example, Fp2 may be represented asFp[X1]/ f1(X1), thenFp6 asFp2 [X2]/ f2(X2),
and so on. In general, the polynomial fi will have coefficients over the previous field.
“Flattening” the tower, we may rewrite the system of extension fields as a quotient

Fp[X1, . . . ,Xk]/

∣∣∣∣∣∣∣
Xnk

k − f̃k(X1, . . . ,Xk),
...

Xn1
1 − f̃1(X1),

(II.1)

where the i-th field in the tower is identified with the subring generated by X1, . . . ,Xi.
The polynomial ideal in Eq. (II.1) is a special case of a (zero-dimensional) triangular set,
and an extensive literature is devoted to computing modulo them, both in dimension
0 [Leb15; PS13b], and in higher dimension [ALM99]. Performing arithmetic operations
modulo triangular sets incurs an intrinsic penalty, exponential in the number k of
variables, that an ordinary univariate representation does not [CKY89; LMS07; Hoe04].

To recover the quasi-optimal performance of the univariate representation, we may
seek a change of order4 algorithm to rewrite the quotient as

Fp[X1, . . . ,Xk]/

∣∣∣∣∣∣∣∣∣
Xe

k −gn(Xk),
...

X2−g2(Xk),
X1−g1(Xk).

This representation goes under various names, such as rational univariate represen-
tation [Rou99] and geometric resolution [GLS01]. Using this representation, we can
efficiently perform arithmetic in the top level of the tower, and we can still identify the
i-th intermediate fields as being generated by Xi, or equivalently by the polynomial
expression gi(Xk).

However, our special instance enjoysmany special properties that general triangular
sets do not, and we wish to exploit them. On the other hand, the tower of extensions
paradigm is not adapted to all situations: for example, a field Fpmn with m∧n = 1 can
be seen both as an extension of Fpn and as one of Fpm .

Ideally, we would like to have a data structure to represent arbitrary collections
of extensions of Fp, in such a way that any extension is represented in optimal space
(i.e., O(n) coefficients for an element of an extension of degree n), and that arithmetic
operations are performed in quasi-optimal time (i.e., Õ(n) operations). To this end, we
now name several useful properties that we are going to seek.

Compatibility: For any pair of extensions Fp⊂ k⊂K, there is an algorithm that takes
an element x ∈ k and outputs its representation as an element of K. Reciprocally,
there is an algorithm that tests whether an element y ∈ K belongs to k, and in
that case outputs its representation as an element of the smaller field.

Incrementality: The data associated with an extension (e.g., its irreducible polyno-
mial, change-of-basis matrices, . . . ) must be computable efficiently and incre-
mentally, i.e., adding a new field extensions to the collection does not require
recomputing data for all extensions already represented.

4The name ”change of order” comes from the theory of Gröbner bases, it is indeed equivalent to a change
of order from lexicographic to inverse lexicographic.
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Uniqueness: Any extension is determined by an irreducible polynomial whose defini-
tion only depends on the characteristic p and the degree of the extension.

Note that both incrementality and uniqueness are optional, however the former
is necessary to represent the algebraic closure effectively, and the latter provides a
standard way to represent it. More advanced features, such as computing normal
bases, evaluating Frobenius morphisms, etc., are also (terribly) interesting, but they
are out of the scope of this document.

The reader may be surprised to learn that no such representation is known! The
difficulty is not a theoretical one: besides the problem of finding irreducible polynomials,
any other question is amenable to linear algebra, as Lenstra showed [Len91]. Instead,
the difficulty is to satisfy all requirements in an efficient, possibly quasi-optimal,
manner.

Various solutions have been deployed in practice in computer algebra systems such
as Magma and SageMath, however none of these is especially efficient. In the next
sections we shall explore the various available constructions, and possible research
avenues.

II.3 Special families of irreducible polynomials

Among all irreducible polynomials, which ones are best suited to represent a collection
of finite extensions of Fp, or potentially the collection of all finite extensions of Fp? This
fascinating question, investigated by many, has no single answer: indeed, depending
on what is meant by “best”, different solutions are possible.

Conway polynomials. One of the most famous constructions is that of Conway
polynomials. The main feature of Conway polynomials is norm compatibility: the norm
map Fqn → Fqm is a surjection from the roots of the n-th Conway polynomial to the
roots of the m-th Conway polynomial, whenever m divides n.

Norm compatibility is easy to achieve for a fixed collection F of finite extensions
of Fp: let K/Fp be the smallest finite field containing all fields in F , let η be a
primitive element of K, i.e., a generator of the multiplicative group K×, then the
Conway polynomial of a field k ⊂ K is defined as the minimal polynomial of NK/k(η),
where NK/k is the norm map. However, Conway polynomials have two other goals:
incrementality and uniqueness. This leads to the following definition.

Definition II.1 (Conway polynomial). Let p be a prime and n > 1 an integer. The
Conway polynomial Cp,n is the lexicographically smallest monic irreducible polynomial
of degree n satisfying the following conditions:

• Primitivity: Cp,n is primitive (i.e., its roots generate the multiplicative group F×pn );

• Norm compatibility: If m divides n, then Cp,m

(
X

pn−1
pm−1

)
= 0 mod Cp,n.

The “lexicographically smallest” condition is required to ensure uniqueness; it is
typically defined by writing f ∈ Fp[X ] as

f =
n

∑
i=0

(−1)n−i fixi, with 0≤ fi < p,
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Figure II.1: Lattice of extensions of Fp.

and taking the lexicographic order on the words fn . . . f0.
Conway polynomials were defined by Parker5, who named them in honor of John

Conway and his famous book “On Numbers and Games” [Con00]; their existence was
shown by Nickel [Nic88]. They were first adopted by the computer algebra system
GAP [GAP] as a default representation for finite fields. They are typically computed by
exhaustive search over all irreducible polynomials, or by a slightly better algorithm
due to Heath and Loehr [HL99]. Given the huge computational cost involved in finding
them, they are usually precomputed; tables of Conway polynomials are available in
any major computer algebra system.6

We note that Conway polynomials are not especially good to represent embed-
dings: given an element of Fpm represented as a(X) mod Cp,m(X), its image in Fpn ,
for m | n, is computed as a(X (pn−1)/(pm−1)) mod Cp,n(X), requiring very large modular
exponentiations; while there are algorithms to perform this computation in O(n1+o(1))
operations [KU11], they are known to be very inefficient in practice.

Primary towers. All other solutions are generalizations of Shoup’s algorithm for
computing irreducible polynomials [Sho90; Sho93; Sho94b].

We start by restricting to primary towers of extensions, i.e., towers of extensions of
prime-power degree. Formally, for a prime ` 6= p, define the `-adic closure of Fp as the
infinite field F(`)

p =
⋃

i≥0Fp`i .

To represent F(`)
p , we want to define an infinite family of irreducible polynomials of

degree `i for i > 0, and algorithms to evaluate the corresponding embeddings F
p`i−1 ⊂

Fp`i .
Here is a simple example: suppose that ` divides p−1, then the `-th power map

is not injective on Fp, and thus Fp contains `-adic non-residues. Let η be such a

5According to Lübeck [Lüb08].
6Most computer algebra systems switch to other methods when precomputed Conway polynomials are

not available. An interesting exception is SageMath (since version 5.13 [RFB13]), that defines pseudo-Conway
polynomials by dropping the “lexicographically first” requirement, and computes them on the fly whenever
a true Conway polynomial is not available in the tables. The approach is notoriously slow: computing a
pseudo-Conway polynomial for Fp30 takes in the order of seconds, already for p > 1000; compare this to the
milliseconds needed to compute a random irreducible polynomial of the same degree.
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non-residue, then X `i

i −η is a family of irreducible polynomials, and the embeddings
between the fields Fp`i are easily defined by the relationship X `

i = Xi−1. We may call
this special case the “Kummer case”, for obvious reasons.

Shoup’s construction generalizes the Kummer case to an arbitrary prime `, by
adjoining `-th roots of unity to Fp. The idea is to define an extension Fq = Fp(ζ`) of
the base field, and then construct its `-adic closure F(`)

q . The sought closure is then
identified to a subfield F(`)

p ⊂ F(`)
q using a projection map; this is illustrated below.

Fp

Fq = Fp(ζ`) Fp`

Fq` F(`)
p

F(`)
q

r `

Shoup explicitly computes Fq by factoring the `-th cyclotomic polynomial, then finds
an `-adic non-residue η ∈ Fq, and defines Fq`i as Fq(Xi)/(X `i

i −η). Then, a defining
polynomial of Fp`i is found by taking the trace Fq`i → Fp`i of the residue class of Xi, and
computing its minimal polynomial.

Shoup’s construction pays an intrinsic O(`) overhead, because of the auxiliary
extension Fp(ζ`). To avoid this cost, Couveignes and Lercier’s generalize the Kummer
case in a different direction.

It is well known in number theory folklore that any algorithm that uses purely
multiplicative properties of Fp can be generalized by replacing the multiplicative group
F×p with a different algebraic group G(Fp), e.g., the group of points of an elliptic curve
E/Fp. This principle is the basis, for example, for Lenstra’s elliptic curve factoring
method [Len87]. We shall see this principle applied over and over again in this chapter.

The Kummer case is based on the fact that the map x 7→ x` is surjective on F̄p, but
not on Fp. Because of its geometric properties, its fibers are irreducible and define
irreducible polynomials X `−η whenever η is an `-adic non-residue. Does this ring a
bell?

We saw at the beginning of this document that an isogeny φ : E→ E ′ is a degree `
map, surjective on E ′(F̄p), but not on E ′(Fp) whenever kerφ ⊂ E(Fp). If we choose an
elliptic curve E/Fp such that π|E[`] acts like

(1 0
0 µ

)
for some µ 6= 1 (mod `), then the

isogeny φ associated to the eigenvalue 1 is not surjective, and its fibers are irreducible.
Couveignes and Lercier take random elliptic curves, and count their points, until

one with the desired Frobenius endomorphism is found. Then they compute the unique
`-isogeny φ : E → E ′ with rational kernel, using Vélu’s formulas, and find a point
P ∈ E ′(Fp) not in φ(E(Fp)). The irreducible polynomial defining Fp` is then deduced
from the fiber φ−1(P), for example by projecting onto the x-axis. By iterating the
process, we easily generalize to arbitrary primary extensions Fp`i .

The drawback of this technique is the high cost involved in the search for a suit-
able elliptic curve: if ` < p1/4 about one curve in ` has the desired property [Len87;
CH13], and counting the number of points takes Õ((log p)5) operations using Schoof’s
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algorithm7. Hence, this construction is only practical for relatively small values of p
and `. Also, in general, ` may be so large that no elliptic curve exists with the desired
properties. In this case Couveignes and Lercier propose extending the base field Fp to
an extension of degree O(log`), and use the same projection machinery as in Shoup’s
original construction. Although this trick salvages the asymptotic complexity of the
method, I am not sure anyone has ever dared implement it.

So far, we have only mentioned the construction of the irreducible polynomials,
without talking about compatibility. In the work “Fast Algorithms for `-adic Towers over
Finite Fields” written with J. Doliskani and É. Schost [DDS13], we provide algorithms
to efficiently evaluate embeddings, both for Shoup’s and for Couveignes and Lercier’s
construction, and we also add incrementality to the latter. The techniques are relatively
simple generalizations of the Kummer case, leveraging fast algorithms for polynomial
composition and decomposition, and we will not detail them. Suffice to say that they
are very efficient, both asymptotically and in practice, and achieve compatibility in
quasi-linear time for the Couveignes–Lercier construction. Experiments in [DDS13]
show that they beat other techniques by orders of magnitude, in particular when
constructing a primary tower with many levels8.

Couveignes and Lercier’s technique, and thus our extension, does not naturally
provide uniqueness: this depends intrinsically on the random choices of elliptic curves.
Although it would be possible to fix the choices of the algorithm in a deterministic
way, this feels even less natural than for Conway polynomials. A better option is to
fix the choices made by Shoup’s construction in a deterministic way; this is exactly
what Lenstra and de Smit do in [LS08a], with a special focus on deterministic algo-
rithms. However, to the best of my knowledge, no one has ever tried implementing this
construction, that looks mostly of theoretical interest.

A few words on the case ` = p, to finish. We can define F(p)
p in the same way as

we have defined the `-adic closure, however none of the techniques described so far
applies to this case. The construction of irreducible polynomials of degree pi using
Artin-Schreier theory is folklore, and already present in [AL86]. The related algorithms
for computing embeddings are developed in [DS09; DS12].

Composita. Once we have `-adic closures for any `, we need to “glue” them together
to obtain the algebraic closure. Formally, F̄p is isomorphic to the tensor product⊗

`F
(`)
p , where ` runs over all primes. This suggests representing an extension of

degree n = `e1
1 · · ·`

ek
k as a quotient

Fp[X1, . . . ,Xk]/

∣∣∣∣∣∣∣∣
X
`

ek
k

k − fk(Xk),
...

X
`

e1
1

1 − f1(X1);

(II.2)

however, arithmetic operations in this representation incur the same penalty as trian-
gular sets.

The building block to switch to a rational univariate representation will be an algo-
rithm to compute composita with explicit embeddings. Formally, given two extensions
fields Fpm and Fpn , with m∧n = 1, we want to compute a univariate representation

7This complexity bound could be improved using the Schoof–Elkies–Atkin algorithm, however this would
add additional heuristic hypotheses to the construction.

8Gains are already remarkable for Fp81
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for the field Fpmn , together with efficient algorithms for evaluating the embeddings
Fpm ↪→ Fpmn and Fpn ↪→ Fpmn . By applying this construction recursively, we can repre-
sent an arbitrary tensor product of primary extensions.

The construction of an irreducible polynomial of degree mn is folklore, and was
already used by Shoup [Sho90]. Given two separable polynomials f and g, their
composed product is the polynomial

( f ⊗g)(X) = ∏
f (α)=0

∏
g(β )=0

(X−αβ ).

We similarly define the composed sum as the polynomial whose roots are the sums
of the roots of f and g. It is well known that, if f ,g ∈ Fp[X ] are irreducible polyno-
mials of coprime degree, then both their composed sum and composed product are
irreducible [BC87].9 Both polynomials can be computed in Õ(mn) operations using
algorithms in [Bos+06], and both have been used to construct irreducible polynomials
of arbitrary degree.

The less evident part is the evaluation of the embeddings. In “Fast Arithmetic for
the Algebraic Closure of Finite Fields” written with J. Doliskani and É. Schost [DDS14],
and included in the appendix, we develop new techniques for embeddings of composita
constructed through composed products. Our techniques are purely algebraic, and
apply to any base field, however they are most interesting in practice to compute in
composita of finite fields.

The main technical ingredient of our work is a representation of finite field elements
using a pair of monomial/dual bases, drawing from previous work of Shoup [Sho94b;
Sho95; Sho99] and Bostan, Salvy and Schost [BSS03].

If Fpm is represented as Fp[X ]/ f (X), we define its monomial basis as
(1,X , . . . ,Xm−1). The associated dual basis is (X∗0 ,X∗1 , . . . ,X∗m−1), where X∗i are defined
by

Tr(X jX∗i )k =

{
1 if i = j,
0 otherwise,

Tr denoting the trace from Fpm to Fp. Given the polynomial f , conversions between
the monomial and the dual basis can be performed very efficiently at a cost of Õ(n)
operations, thus we allow ourselves to switch freely between the two representations.

Now, let Fpm ,Fpn and Fpmn be represented as in the diagram

Fp

Fp[X ]/ f (X) = Fpm Fpn = Fp[Y ]/g(Y )

Fpmn = Fp[Z]/( f ⊗g)(Z)

with the natural embedding defined by Z = XY . We seek an algorithm for the following
operation: given b ∈ Fpm and c ∈ Fpn , compute bc ∈ Fpmn . Note that this gives a way to
evaluate both embeddings, by fixing either c = 1 or b = 1.

The key observation is that the product bc is computed as a component-wise product
in the dual bases of the respective fields. The embedding algorithm is thus (almost) as

9The hypothesis that f ,g have coefficients in a finite field is important. For example, only the composed
sum is necessarily irreducible if the polynomials have rational coefficients.
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simple as converting both b and c to the respective dual bases, multiplying component-
by-component, and converting back to the monomial basis of Fpmn . We refer to the
appendix for further details.

There is another, quite technical, ingredient to the paper, that we have mostly
ignored so far. Evaluating embeddings is only half of the job: we also want to evaluate
the (partial) inverse maps, or, more generally, projections Fpmn → Fpm and Fpmn → Fpn

that, when composed with the embeddings, yield the identity map.
A general mantra states that, whenever a field isomorphism φ : k→ K can be

evaluated at a certain cost, the inverse map φ−1 can evaluated at the same cost
(see [Bri+17, §8.2] for a precise statement). In our specific instance, let b ∈ Fpm , and let
Mb be the matrix of the map c 7→ bc, for any c ∈ Fpn , in the dual bases of Fpn and Fpmn .
Direct calculation shows that Mt

b is the matrix of the map a 7→ TrFpmn/Fpn (ab) in the
monomial bases of Fpmn and Fpn ; thus, if TrFpmn/Fpn (b) = 1, the matrix Mt

b is a partial
inverse to Mb (albeit in a different basis).10

To obtain an algorithm from this observation, we use a technique called transposi-
tion principle [Sho99; BLS03], transforming an algorithm to evaluate Mb into one to
evaluate Mt

b at the same cost. Said otherwise, we derive an efficient projection algorithm
by transposing the embedding one.

In conclusion, our techniques allow to compute embeddings and projections of com-
posita in quasi-optimal time. They also allow to evaluate vector space isomorphisms
(e.g., Fpmn ' Fn

pm with respect to the monomial or the dual basis) with the best known
complexity, although not in quasi-optimal time. By combining these techniques with
any technique for primary towers, we obtain a representation for F̄p, unique if the rep-
resentation of primary towers is. Unfortunately, since we do not know how to evaluate
vector space isomorphisms in quasi-optimal time, we inherit the same unsatisfactory
complexity for any computation in F̄p. Lifting this restriction is one of the problems
that torments me.

II.4 Isomorphisms of finite fields

Special (compatible) families of irreducible polynomials are a fascinating topic, however
they are not a universal solution. In some circumstances, we may not have the choice
of the polynomial representing a field extensions; this happens quite often in computer
algebra systems that let the user choose their own polynomial.

Isomorphism algorithms let us lift this restriction: using them, a computer algebra
system may internally represent finite fields with special polynomials, while letting the
user work with an isomorphic copy defined by a polynomial of their choice. In the next
section we shall also see how isomorphism algorithms (actually, embedding algorithms)
allow us to represent F̄p without using any special polynomial.

The isomorphism problem was first investigated by Lenstra [Len91], who showed
that it can be solved in deterministic polynomial time. A thorough review of all known
algorithms is given in the paper “Computing Isomorphisms and Embeddings of Finite
Fields”, written with L. Brieulle, J. Doliskani, J.-P. Flori and É. Schost [Bri+18], and
included in the appendix. In the paper, we study the more general embedding problem
of two finite fields k ⊂ K.

10I feel so guilty for shrinking one of my favorite tricks to one single paragraph. Really, go read [Bri+17,
§8], please!
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Irreducible polynomials Isomorphisms
Kummer g = 0 Shoup [Sho90; Sho93; Sho94b] Lenstra [Len91], Allombert [All02a]
Kummer g = 1 Couveignes–Lercier [CL13] Narayanan [Nar18]
Cyclotomic g = 0 Adleman–Lenstra [AL86] Pinch [Pin92], Rains [Rai96]
Cyclotomic g = 1 — Pinch [Pin92], BDDFS [Bri+18]

Table II.1: Main algorithmic ideas to compute irreducible polynomials and isomor-
phisms of finite fields, by inventors.

Problem II.2 (Embedding description). Given two finite fields k = Fp[X ]/ f (X) and
K = Fp[Y ]/g(Y ), with deg f dividing degg, determine elements α ∈ k and β ∈ K such
that k = Fp(α), and such that there exists an embedding φ mapping α to β .

It is easily seen that (α,β ) describes an embedding if and only if α and β share
the same minimal polynomial. Therefore, the simplest solution, although not the most
efficient, consists in taking the class of X for α , and a root of f (X) in K for β .

Given an embedding description (α,β ), the associated embedding (and its par-
tial inverse) can be evaluated on any element of k by linear algebra. More efficient
techniques, similar to those employed in the previous section for composita, are also
available. They are not discussed in the appendix, but they are described in the
extended version [Bri+17] of [Bri+18].

The algorithms for embedding description are very similar to those to compute
irreducible polynomials. For simplicity, we shall only discuss here isomorphisms, i.e.,
k ' K. We refer to the appendix for the general problem.

There essentially exist two big families: the “Kummer family”, a generalization of
the “Kummer case” for primary towers discussed in Section II.3; and the “Cyclotomic
family”, a generalization of the Adleman–Lenstra algorithm. Each of these families
can come in a “genus 0” flavor, like the Kummer case for primary towers, or in a “genus
1” flavor, like the Couveignes–Lercier construction.11 In Table II.1 we summarize
the known constructions for computing irreducible polynomials and isomorphism
descriptions, according to these categories.

We will now describe Kummer-type algorithms first, then cyclotomic-type. The
common principle for all of them is to compute a special element, say in Fpn , uniquely
defined up to automorphisms of Fpn .

Lenstra–Allombert algorithm. In [Len91], Lenstra proved that the isomorphism
problem can be solved in deterministic polynomial time, without focusing much on
getting the best possible complexity. In [All02a; All02b], Allombert modified Lenstra’s
algorithm to obtain an efficient one; in doing so, he replaced some routines with
polynomial factorization, thus dropping determinism. In [Bri+18], we give several
variants of Allombert’s algorithm that are more efficient, both asymptotically and in
practice. Allombert has included in PARI/GP both his variants and ours.

The Lenstra–Allombert algorithm is similar in spirit to Shoup’s algorithm for
computing irreducible polynomials [Sho90; Sho93; Sho94b]. Let k,K be two isomorphic
copies of Fpn , the idea is to choose α ∈ k and β ∈ K to be solutions to Hilbert’s theorem
90: these are not uniquely defined up to automorphisms, but at least they are unique
up to a scalar.

11Note that higher genus generalization are possible, but they seldom give efficient algorithms.
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Assume, for example, that n divides p−1, and fix a n-th root of unity ζn ∈ Fp. An
element α ∈ k is a solution to Hilbert 90 if and only if α p = ζnα ; it is immediate to see
that any other solution is of the form cα for c ∈ Fp. Hence, if β ∈ K is also a solution
to Hilbert 90, any isomorphic image of β in k is such that α/β = c ∈ Fp; the problem
is then to find this scalar.

Lenstra and Allombert differ in the way the scalar c is found. We describe here
Allombert’s variant:

1. Compute a n-th root of unity ζn ∈ Fp;

2. Find solutions α ∈ k and β ∈ K to Hilbert 90 relative to ζn;

3. Compute a = αn and b = β n, they are both in Fp;

4. Compute c = n
√

a/b ∈ Fp using a polynomial factoring algorithm;

5. Return α and cβ .

To extend the algorithm to arbitrary n, assume first that p does not divide n. Like in
Shoup’s algorithm, we adjoin the necessary roots of unity to the base fields: Allombert
factors the n-th cyclotomic polynomials Φn and extends scalars to An = Fp(ζn), whereas
Lenstra uses the unfactored polynomial and constructs the ring An = Fp[Z]/Φn(Z).
Then, the same algorithm as above is run in Fpn ⊗An, and the result is descended to
Fpn using a projection. Note that, in both cases, Fpn ⊗An is not necessarily a field.

Finally, extensions of degree pk are dealt with an additive variant of the algorithm
above, analogous to Shoup’s construction based on Artin–Schreier theory. Then, a
solution for a generic n = pkn′ is obtained by combining (either by multiplying or by
adding) the multiplicative solution for n′ and the additive one for pk.

The dominant cost in the Lenstra–Allombert algorithm is computing the solution
to Hilbert 90. In general, Fpn ⊗An is an algebra of degree O(n2), thus there is no hope
to obtain an algorithm better than quadratic. In [Bri+18] we show that it is indeed
possible to achieve the optimum, and even lower than that in favorable cases.

Proposition II.3 (Brieulle, D., Doliskani, Flori, Schost [Bri+18]). Let k,K be two
extensions of degree r over Fp, where r is a prime power. Let s be the order of p in
(Z/rZ)×. Let ω be an exponent such that n×n matrices with coefficients in Fp can be
multiplied using nω operations, and let M(n) be the cost of multiplying polynomials of
degree at most n in Fp[X ]. Allombert’s algorithm computes its output using on average

• O(s(ω−1)/2r(ω+1)/2 log(r)+M(r) log(p)) operations if s ∈ O(r(ω−3)/(ω−5)), or

• O(r(ω
2−4ω−1)/(ω−5)+(s+ r2/(5−ω))M(r) log(p)+ sω−1r log(r) log(s)) operations if

s ∈Ω(r(ω−3)/(ω−5)) and s ∈ O(r1/(ω−1)), or

• O(M(r2) log2(r)+M(r) log(r) log(p)) operations otherwise.

Note that the bounds for the first two cases could be improved using algorithms of
Kedlaya and Umans [KU11], however we do not consider these algorithms as they are
deemed unpractical.

An elliptic curve variant of the Lenstra–Allombert algorithm was recently proposed
by Narayanan [Nar18]. Historically, it is the first isomorphism algorithm to achieve a
quasi-quadratic complexity, however it is deeply dependent on Kedlaya and Umans’
results, thus unlikely to be practical.



30 Altimetry

Rains’ algorithm. Rains’ algorithm is an improvement over an idea of Pinch [Pin92].
Rains never published his findings, however his algorithm was eventually implemented
in Magma v2.14. The original paper is still unpublished, the only publicly available
sources for it being, at the moment, Magma’s source code12, and our paper [Bri+18].
An elliptic curve generalization of the algorithm was also originally proposed by Pinch,
and then improved in [Bri+18] using ideas similar to Rains’.

The key idea is similar to the Adleman–Lenstra algorithm. If k,K are two isomorphic
copies of Fpn , find an integer ` such that Fpn ' Fp(ζ`), where ζ` is an `-th root of unity;
then the roots of the cyclotomic polynomial Φ` generate both k and K over Fp. However,
the roots of Φ` are only uniquely defined (up to isomorphism) if Φ` is irreducible over
Fp, i.e., if n = ϕ(`). In order to uniquely define an element of k,K in general, Rains
suggested using Gaussian periods, i.e., traces of roots of unity in a number field.

Definition II.4 (Gaussian period). Let p be a prime, and let ` be a squarefree integer
such that (Z/`Z)× = 〈p〉×S for some S. For any primitive `-th root of unity ζ` in F̄p,
define the Gaussian period ηp(ζ`) as

ηp(ζ`) = ∑
σ∈S

ζ
σ
` .

It is a classic fact that the periods η(ζ`), as ζ` runs through the roots of Φ`, form
a normal basis of Fp(ζ`); thus η(ζ`) is uniquely defined up to isomorphism. Rains’
algorithm follows immediately:

1. Find a small ` such that (Z/`Z)× = 〈p〉×S, with #〈p〉= n;

2. Take random roots of unity ζ` ∈ k and ζ ′` ∈ K;

3. Return the Gaussian periods α = η(ζ`) and β = η(ζ ′`).

However it may happen that no such small ` exists. Rains’ solution to the problem
(identical to Adleman and Lenstra’s) is to extend scalars to a small degree auxiliary
extension Fq = Fps , with s∧n = 1, and apply the same algorithm to k⊗Fq and K⊗Fq;
then the result is descended to an isomorphism of k,K by taking a trace.

A different way to solve the problem is to generalize Gaussian periods to elliptic
periods. Let E/Fp be an elliptic curve, and suppose that π|E[`] acts like a matrix(

λ 0
0 µ

)
; suppose that the order in (Z/`Z)× of, say, λ is equal to n, then the eigenspace

of λ is contained in E(Fpn). By mimicking the definition of Gaussian periods, we can
obtain a uniquely defined element of Fpn .

Definition II.5 (Elliptic period). Let E/Fp be an elliptic curve of j-invariant not 0 or
1728. Let ` > 3 be an Elkies prime for E, λ an eigenvalue of π , and P a point of order `
such that π(P) = λP. Suppose that there is a subgroup S of (Z/`Z)× such that

(Z/`Z)× = 〈λ 〉×S.

Then we define an elliptic period as

ηλ ,S(P) =

{
∑σ∈S/{±1} x([σ ]P) if −1 ∈ S,
∑σ∈S x([σ ]P) otherwise,

where x(P) denotes the abscissa of P.
12Precisely, in file package/Ring/FldFin/embed.m.
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It is immediate to modify Rains’ algorithm to use elliptic periods instead of Gaussian
ones, the freedom in the choice of the curve E/Fp enabling us to find a smaller `without
the need for an auxiliary extension. However, we encounter a problem: elliptic periods
do not form normal bases, in general. While it is easy to find examples where elliptic
periods are not normal, it is enough for our purposes that they generate Fpn as a field.
Heuristically, this is an extremely likely event, hence, in principle, our elliptic variant
of Rains’ algorithm has a very tiny failure probability; more detailed statements are
given in Section C.5.

However, when we tried to find example inputs on which the elliptic variant fails,
we were surprised to find none, despite an extensive search over more than 43 million
curves, carefully documented in [Bri+17]. Our failed search has thus led us to state the
conjecture below, that elliptic period always generate their field of definition, implying
that the elliptic variant of Rains algorithm never fails.

Conjecture II.6 (Brieulle, D., Doliskani, Flori, Schost [Bri+18]). Let E/Fp be an
elliptic curve with j-invariant not 0 or 1728; let ` be an Elkies prime for E, and
P ∈ E[`] a point in the eigenspace of a Frobenius eigenvalue λ for `. Assume that
(Z/`Z)× = 〈λ 〉×S, then the elliptic period ηλ ,S(P) generates Fp(x(P)) over Fp.

The complexity of Rains’ algorithm is extremely sensitive to how small the integer
` is. Unfortunately, even assuming the generalized Riemann hypothesis, bounds on `
are very loose, thus provable bounds on the complexity of the algorithm are very bad.
However, in practice we expect that `= O(n logn), and we give enough experimental
evidence in [Bri+18] to support this heuristic. Assuming this heuristic bound, we can
prove that Rains’ algorithm runs in average time Õ(n(ω+1)/2 +n logq), where ω is the
exponent of linear algebra, while the elliptic variant runs in time Õ(n2 logq).

These bounds are remarkable: according to them, Rains’ original algorithm is the
only isomorphism algorithm with subquadratic complexity. However this bound is
only heuristic, and experiments show that, both the original algorithm and the elliptic
variant, perform faster than Allombert’s algorithm only in very limited cases.

II.5 Lattices of finite fields

We end this chapter coming back to the problem of representing the algebraic closure F̄p.
We saw how special families of polynomials can be used to represent finite extensions
of Fp in a compatible, incremental, and possibly unique way, and thus can also be
used to represent the whole F̄p. At the opposite end of the spectrum we have the
possibility of representing finite extensions of Fp by arbitrary polynomials, and provide
compatibility through a general purpose embedding algorithm such as those presented
in the previous section.

This approach was first formalized by Bosma, Cannon and Steel, in “Lattices of
Compatibly Embedded Finite Fields” [BCS97a]. They implemented it as the default
system for Magma; to compute embeddings, they originally used the naive approach
based on polynomial factoring, then added Rains’ algorithm as an alternative. To
this day, Magma still has the most efficient system to represent lattices of arbitrary
extensions of Fp.

The Bosma–Cannon–Steel framework maintains a single data structure: a collec-
tion (a lattice) of compatible extension fields. We may add new extensions to the lattice,
at the user’s request, by computing embeddings into each of the fields already present
in it, and storing the embedding data along.
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However, a naive implementation of this idea may easily get stuck. Take for example
p = 5, and a lattice containing Fp2 , Fp4 and Fp6 ; assume that the extensions are defined
by the polynomials in the diagram below.

F5

F5[X ]/(X2−X +2)

F5[X ]/(X4−X2 +2) F5[X ]/(X6−X3 +2)

F5[X ]/(X12−X6 +2)

Denote by η2,η4,η6 the classes of X in Fp2 ,Fp4 ,Fp6 respectively, and assume that we
have chosen the embeddings η2 7→ η2

4 and η2 7→ η3
6 . Now, suppose that we want to add

Fp12 to the lattice. We start by embedding Fp4 ↪→ Fp12 with η4 7→ η15
12 ; at this point,

we are not anymore free to choose any embedding for Fp6 ↪→ Fp12 : indeed, choosing
η6 7→ η2

12 would imply η6
12 = η2 = η30

12 , and thus η24
12 = 1, which is impossible because

all 24th roots of unity are in F52 .
The tour de force by Bosma, Cannon and Steel consists in showing that it is always

possible to construct compatible lattices, if one does so carefully. They define six
conditions that the lattice must satisfy in order to ensure compatibility; we paraphrase
them below:

Uniqueness: For every pair of fields k,K in the lattice, there is at most one embedding
k ↪→ K.

Reflexivity: Every field is embedded in itself through the identity morphism.

Prime subfield: Fp is embedded in every field via the canonical embedding.

Invertibility: If k ' K, then the embeddings k ↪→ K and K ↪→ k are inverse to one
another.

Transitivity: For any triple k ⊂ K ⊂ L the embeddings φk,K : k→ K, φK,L : K → L,
φk,L : k→ L, are compatible, i.e., φk,L = φK,L ◦φk,K .

Intersection: For any triple k,K,L such that k ⊂ L and K ⊂ L, the subfield k∩K is
also in the lattice and is compatibly embedded in k,K,L.

By maintaining these properties throughout a session, Magma is able to ensure
compatibility regardless of the number of finite fields created by the user. If a criticism
must be addressed to this data structure, it is on the combinatorial explosion that it
entails: for any field in the lattice, the data on embeddings to any other subfield must
be stored, thus storage grows quadratically in the number of fields in the lattice. Also,
as more and more fields are added, more and more computations must be performed to
keep compatibility. Nevertheless, Magma has still today undoubtedly the most efficient
system to represent the algebraic closure of a finite field.

II.6 Perspectives

Despite 40 years of research, the question of computing in extensions of Fp is not closed
yet: there is still progress to be made both on the practical and the theoretical side.
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Implementations. As we have seen, the only computer algebra systems implement-
ing a generic mechanism to compute in F̄p are Magma and SageMath. Neither can be
said to be really efficient, but the prize for the fastest and most feature-rich undoubtedly
goes to Magma.

The spectrum of available algorithms is nowadays considerably larger than what is
used in these two systems, and it would be worth experimenting with them with the
goal of beating the current implementations.

With H. Randriam, É. Rousseau and É. Schost, we have started experiment-
ing with the Bosma–Cannon–Steel framework in the new computer algebra system
Nemo [Fie+17]. A reproduction of the system in Magma has already been implemented
by É. Rousseau13, and we are now exploring possible ways to improve its efficiency.

Unfortunately, no single catch-all technique emerges from the theory, thus experi-
ments will necessarily have to take many different techniques into account.

After having obtained convincing results, it will be highly desirable to port the
techniques that worked best to SageMath. This will be facilitated by the fact that
Nemo and SageMath share the same low-level C library in Flint, which is where we
are adding the critical parts of the algorithms we test.

Special families. Special families of irreducible polynomials are the most promising
option for efficiently representing F̄p, and the only one granting uniqueness. However,
at the moment they have serious drawbacks that make them an unrealistic target for
implementation. For one, they are quite complex to implement: the Couveignes–Lercier
construction, for example, requires algorithms for counting points of elliptic curves.14
Finally, when the base field gets relatively large, the Couveignes–Lercier construction
becomes too costly, and must be replaced by Shoup’s construction, which is not quasi-
optimal. Thus, a first goal would be to find a simple algorithm for constructing primary
towers, that is reasonably efficient for any parameter.

Even with a good construction for primary towers, we then need to construct com-
posita in order to deal with general extensions. Our construction is reasonably simple
and efficient, however it is not optimal when it comes to vector space isomorphisms,
and thus it is not optimal for F̄p either. A construction for composita with quasi-linear
complexity would be a big discovery, and would likely pave the way for a larger adoption
of special families. In the meantime, our construction is by far the one with the best
available complexity, and is simple enough that it would be worth experimenting with
it.

A radically different approach would be to keep the decomposition of F̄p as a tensor
product of primary towers, i.e., to represent elements as multivariate polynomials
modulo an ideal of univariate polynomials. We have already said that known tech-
niques, e.g., Kronecker substitution, incur an exponential penalty in the number of
variables, i.e., the number of primary factors. Improving this complexity would be a
major breakthrough in computer algebra, with consequences that reach well beyond
implementing F̄p.

On uniqueness and elegance. Uniqueness in families of polynomials is an inter-
esting question, because there is a social aspect to it.

13https://github.com/erou/LatticesGF.jl
14Realistically, though, a naive algorithm is enough, given that the Couveignes–Lercier algorithm is only

practical for relatively small base fields.

https://github.com/erou/LatticesGF.jl
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Unfortunately, there is no “natural” choice for a unique family of irreducible poly-
nomials. What come closest to a canonical definition of an algebraic closure of a finite
field is Conway’s construction of the field On2, which contains F̄2 as a subfield [Con00].
However, as Lenstra showed [Len77], computing the finite subfields of On2 is not trivial.
Furthermore, no satisfactory generalization of Conway’s work is known for general p.

Thus even reasonably simple proposals, such as Conway polynomials (which are
mostly unrelated to On2), require a certain dose of ad hocness, such as a “lexicographi-
cally constraint”.

Any algorithm for computing irreducible polynomials can be artificially turned
into a deterministic one by fixing random choices. However, the main motivation for
uniqueness is data portability: i.e., the possibility to run the same computation in
two computer algebra system (two different systems, the same system but different
sessions, or versions, ...), and obtain the same results. Thus, for a unique construction
of irreducible polynomials to be accepted, it must be simple enough that all systems
can implement it correctly, test it easily, and it must also be popular enough that all
systems want to implement it.

I am afraid that the Couveignes–Lercier construction does not fit the bill. Shoup’s
construction would be acceptable, but as long as its advantages over Conway polyno-
mials are not clearly visible, I suspect few developers will be willing to implement
it.

Therefore, I am convinced that a simple enough construction, even if not optimal,
offering advantages similar to Conway polynomials at a lesser cost, would be extremely
valuable to the community.

Isomorphisms. I am sure that the hole in Table II.1 has not gone unnoticed. Before
the reader jumps on filling it, let me tell that I do not see how to obtain an interesting
algorithm from it.

One obvious idea would be to look for curves E/Fp with a certain number of points,
construct some isogeny of degree `, and use its kernel polynomial to define an irre-
ducible polynomial of the wanted degree (maybe using elliptic periods?). However, this
approach would not have a better complexity than the Adleman–Lenstra algorithm,
in the same way that the elliptic variant of Rains’ algorithm does not have a better
complexity than the original one. It would also quite probably require the use of the
`-th modular polynomial, since the computations involved are very similar to those for
the Explicit isogeny problem we saw in the previous chapter; thus it would probably
also be unpractical.

A different approach would use curves defined over number fields. This is probably
even more desperate, given how hard it is to find torsion points on them.

Coming to something concrete, now, the obvious breakthrough would be to find an
isomorphism algorithm with subquadratic complexity. Rains’ algorithm comes close to
it, however it requires heuristic hypotheses that are probably out of reach.

Less ambitiously, we may look for practical algorithms. Our experiments show that
(one of the variants of) Allombert’s algorithm is by far the most practical of all; beating
its performance using a different paradigm would be a nice challenge.

Arbitrary extensions. Moving to lattices of arbitrary extensions, we have already
discussed the combinatorial explosion that the Bosma–Cannon–Steel data structure
suffers from. I am currently interested in taking ideas from isomorphism algorithms,
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and applying them to lattices of extensions, in the hope of reducing the amount of
information that needs to be stored.

More in detail, we have seen that all isomorphism algorithms are based on the
principle of finding some “(almost) uniquely defined” generators for the finite fields.
We may imagine more than this: we may hope to find a lattice of uniquely defined
generators such that generators are “compatible” in some way. This would allow storing
only the generators, one per field, and deduce all embeddings from them.

The analogy between isomorphism algorithms and algorithms for irreducible poly-
nomials, shown in Table II.1, also hints at the fact that these lattices of generators
would be a sort of “half-way” construction, between special families of polynomials and
arbitrary lattices, and may potentially lead to new solutions to the uniqueness problem
mentioned above.

Limited examples of this idea are easy to produce: think for example of the lattice
of roots of unity, defining the “cyclotomic extensions” of Fp. However finding a general
construction capable of describing arbitrary extensions seems harder. We are currently
exploring this idea in conjunction with the Lenstra–Allombert algorithm, and hope to
have interesting results soon.
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III Telemetry

In Chapter I we learned how to classify isogenies over finite fields. For ordinary curves,
we defined the depth of E/Fq as the valuation of the conductor [OK : End(E)] at some
prime `. We saw how to effectively compute the depth, and how to recognize ascending,
descending, and horizontal isogenies. The structure theorems revealed that there are
three possible shapes of `-isogeny graphs, only differing in the structure of the surface:
a single curve in the Atkin case, a pair of curves in the ramified case, and a crater (a
cycle) in the Elkies case.

However, we left two questions unanswered: for a given curve E/Fq and a prime
`, how many vertices does its `-isogeny graph contain? And, for a given quadratic
imaginary field Q(π) and a prime `, how many distinct `-isogeny graphs are there?

The first question is easy to answer for the Atkin and the ramified case: we know
indeed that isogeny volcanoes have height h = v`(

√
∆π/∆K), therefore an Atkin volcano

contains ((`+1)h+1−1)/` curves, whereas a ramified volcano contains 2(`+1)h curves.
In order to determine the size of the crater in the Elkies case, and to answer the second
question, we will have to resort to the theory of complex multiplication. We will then
learn that, while heights tend to be “small” (i.e., logarithmic in q), craters tend to be
“large” (polynomial in q).

At this point, we will begin studying large isogeny graphs containing isogenies of
mixed degree. We will be faced with a new problem that is finding a “short” isogeny path
between two curves in a graph, and upon this problemwe will build a new cryptographic
primitive. We will then turn our attention to supersingular isogeny graphs. The unique
properties of the Frobenius endomorphism of supersingular curves will allow us to build
a much more efficient cryptographic primitive, known by the name of CSIDH. Finally,
by pushing the study of supersingular graphs further, we will get to the primitive
known as SIDH, the building block of SIKE [SIKE], one of the candidates to the NIST
call for post-quantum public key encryption [Nat16].

III.1 Complex multiplication

Let O be an order in a quadratic imaginary field K =Q(
√
−D), we say that an elliptic

curve E has complex multiplication by O (or, in short, CM by O) if End(E)' O . We
have already seen that all ordinary elliptic curves over finite fields have complex
multiplication, with K =Q(π).

Supersingular curves have the similar property EndFq(E)' O ⊂Q(
√−q), when-

ever q is an odd power of a prime p > 3. Strictly speaking, no supersingular curve
should be said to have complex multiplication, because the ring of endomorphisms
defined over the algebraic closure is larger (more on this later); we will nevertheless
use the name for this special case.

We now present a group action on the set of all curves having complex multiplication
by a fixed order O . We will denote by Ellq(O) the set of isomorphism classes over F̄q of
curves with complex multiplication by O , and we will assume that it is non-empty.

Let a be an invertible ideal in End(E) ' O , of norm coprime to q, and define the
a-torsion subgroup of E as

E[a] = {P ∈ E(F̄q) | σ(P) = 0 for all σ ∈ a}.

This subgroup is the kernel of a separable isogeny φa : E→E/E[a]; it can be proven that
φa is horizontal, and that its degree is the norm of a. By composing with an appropriate
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purely inseparable isogeny, the definition of φa is easily extended to invertible ideals of
any norm.

Writing a ·E for the isomorphism class of the image of φa, we get an action · :
I (O)×Ellq(O)→ Ellq(O) of the group of invertible ideals of O on Ellq(O). It is then
apparent that endomorphisms of E correspond to principal ideals in O , and act trivially
on Ellq(O). Recall that the class group Cl(O) is defined as the quotient of I (O) by
the subgroup P(O) of principal ideals; since the above action factors through P(O),
it natural to consider the induced action of Cl(O) on Ellq(O). The main theorem of
complex multiplication states that this action is simply transitive.

Theorem III.1 (Complex multiplication). Let Fq be a finite field, O ⊂ Q(
√
−D) an

order in a quadratic imaginary field, and Ellq(O) the set of F̄q-isomorphism classes of
curves with complex multiplication by O .

Assume Ellq(O) is non-empty, then it is a principal homogeneous space for the class
group Cl(O), under the action

Cl(O)×Ellq(O)−→ Ellq(O),

(a,E) 7−→ a ·E

defined above.

Being a principal homogeneous space means that, for any fixed base point E ∈
Ellq(O), there is a bijection

Cl(O)−→ Ellq(O)

Ideal class of a 7−→ Isomorphism class of a ·E.

Recall that Cl(O) is abelian and finite, and that its order is called the class number of
O , and denoted by h(O). We have just proven that #Ellq(O) = h(O), and we also have
answered both questions we had asked at the beginning of the chapter.

Corollary III.2. Let O be a quadratic imaginary order, and assume that Ellq(O)
is non-empty. Let ` be a prime such that O is `-maximal, i.e., such that ` does not
divide the conductor of O . All `-isogeny volcanoes of curves in Ellq(O) are isomorphic.
Furthermore, one of the following is true.

(0) If the ideal (`) is prime in O , then there are h(O) distinct `-isogeny volcanoes of
Atkin type, with surface in Ellq(O).

(1) If (`) is ramified in O , i.e., if it decomposes as a square l2, then there are h(O)/2
distinct `-isogeny volcanoes of ramified type, with surface in Ellq(O).

(2) If (`) splits as a product l · l̂ of two distinct prime ideals, then there are h(O)/n
distinct `-isogeny volcanoes of Elkies type, with craters in Ellq(O) of size n, where
n is the order of l in Cl(O).

Like in Chapter I, we are mostly interested in Elkies volcanoes. We already saw
that if π|T`(E) diagonalizes as

(
λ 0
0 µ

)
with λ 6= µ , to each eigenvalue we can associate

a direction on the crater of the `-volcano. The same phenomenon can be observed
through complex multiplication: associate to λ and µ the prime ideals a= (π−λ , `)
and â = (π− µ, `), both of norm `; then E[a] is the eigenspace of λ , and E[â] that of
µ . Because aâ= âa= (`), the ideal classes a and â are the inverse of one another in
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Figure III.1: An isogeny cycle for an
Elkies prime `, with edge directions as-
sociated with the Frobenius eigenval-
ues λ and µ .

Figure III.2: Graph of horizontal iso-
genies on 12 curves, with isogenies of
three different degrees (represented in
different colors).

Cl(O), therefore the isogenies φa : E→ a ·E and φâ : a ·E→ E are dual to one another
(up to isomorphism).

We see, once again, that the eigenvalues λ and µ define two opposite directions on
the `-isogeny crater, independent of the starting curve, as shown in Figure III.1. The
size of the crater is the order of (π−λ , `) in Cl(O), and the set Ellq(O) is partitioned
into craters of equal size.

For the rest of the chapter, we will focus mostly on craters of isogeny volcanoes, with
horizontal isogenies. In some cases, we will also assume that volcanoes have height 0,
so that the crater is the whole graph; for obvious reasons, these are also called isogeny
cycles in the literature [CM94].

III.2 Quaternion algebras

Supersingular curves are generally not covered by the theory of complex multiplication.
For most of them, indeed, the Frobenius endomorphism acts like an element of Z,
instead of acting like a “complex multiplier”.

Supersingular curves are defined by the fact that multiplication by p is purely
inseparable, i.e., E[p] is trivial. This implies that the curve E(p2) is isomorphic to E,
and thus that both are isomorphic to a curve defined over Fp2 .

If E/Fp2 is a supersingular curve, its Frobenius endomorphism must satisfy π2−
tπ + p2 = 0, with t a multiple of p; hence, by Hasse’s theorem, t ∈ {0,±p,±2p}. The
cases t ∈ {0,±p} only happen for a very limited number of curves with j-invariant 0
or 1728; we are thus mostly interested in the case t =±2p, i.e., π =±p. In this case,
π|T`(E) acts like a scalar matrix for any ` 6= p, hence, by Tate’s theorem, End(E)⊗Q`

is isomorphic to the full space of 2×2 matrices over Q`. With a little more work, we
can prove that End(E)⊗Q is isomorphic to the quaternion algebra Bp,∞ ramified at p
and at infinity.

With more effort, we can prove that End(E) is isomorphic to a maximal order
O ⊂ Bp,∞. Like the CM case, isogenies are in correspondence with (left) ideals of O .
Unlike the CM case, Bp,∞ has more than one maximal order, and there is no concept of
depth, thus no ascending, descending or horizontal isogenies.



Expander graphs from isogenies 39

More precisely, let a⊂ Bp,∞ a lattice, the left order of a is the ring O(a) = {x ∈ Bp,∞ |
xa⊂ a}. Two lattices a,b are said to be right isomorphic if a= bx for some x ∈ Bp,∞. If
O ⊂ Bp,∞ is an order, a is called a left ideal of O if O ⊂O(a); the left class set Cl(O) is
the set of right ideal classes of left ideals of O . The order #Cl(O) only depends on the
quaternion algebra, and is called the class number of Bp,∞. Analogous definitions can
be given by swapping left and right; we refer to [Voi18, Chapter 42] for more properties
and definitions.

Like in the CM case, the set Cl(O) is in bijection with the vertex set of a supersin-
gular graph.

Theorem III.3. Let Bp,∞ be the quaternion algebra ramified at p and infinity, and
let O ⊂ Bp,∞ be a maximal order. Let E0/Fp2 be a supersingular elliptic curve with
End(E0)'O .

1. The number of isomorphism classes of supersingular elliptic curves is equal to the
class number of Bp,∞.

2. There is a one-to-one correspondence a 7→ a ·E0 between Cl(O) and the set of
isomorphism classes of supersingular elliptic curves, such that End(a · E0) is
isomorphic to the right order of a.

This theorem can be turned into an equivalence of categories, see [Koh96, Theo-
rem 45]. Thanks to the Eichler mass formula, we obtain the exact size of the isogeny
class.

Corollary III.4. The number of isomorphism classes of supersingular elliptic curves
is equal to ⌊ p

12

⌋
+


0 if p = 1 mod 12,
1 if p = 5,7 mod 12,
2 if p = 11 mod 12.

We thus have a bound on the size of a supersingular isogeny graph over Fp2 . Since
the Frobenius acts like a scalar, all isogenies are defined over Fp2 , hence supersingular
`-isogeny graphs are necessarily (`+1)-regular. In the next section we will learn that
the supersingular `-isogeny graph has a unique connected component.

III.3 Expander graphs from isogenies

We are now going to introduce new families of isogeny graphs suitable for cryptographic
use. We will want them to somehow “behave like large random graphs”, while at the
same time having a strong algebraic structure: the first is needed for security, the
second to produce complex protocols such as key exchange.

The random-like properties of isogeny graphs are typically expressed in terms of
expansion. An undirected graph on n vertices has n real eigenvalues λ1 ≥ ·· · ≥ λn,
and, if the graph is k-regular, it can be proven that k = λ1 ≥ λn ≥−k. Because of this
equality, λ1 is called the trivial eigenvalue. An expander graph is a k-regular graph
such that its non-trivial eigenvalues are bounded away, in absolute value, from k. We
recall here some basic facts about expanders; for an in depth review, see [Gol11; Tao11].

Definition III.5 (Expander graph). Let ε > 0 and k≥ 1. A k-regular graph is called a
(one-sided) ε-expander if

λ2 ≤ (1− ε)k;
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and a two-sided ε-expander if it also satisfies

λn ≥−(1− ε)k.

A sequence Gi = (Vi,Ei) of k-regular graphs with #Vi → ∞ is said to be a one-sided
(resp. two-sided) expander family if there is an ε > 0 such that Gi is a one-sided (resp.
two-sided) ε-expander for all sufficiently large i.

Theorem III.6 (Ramanujan graph). Let k ≥ 1, and let Gi be a sequence of k-regular
graphs. Then

max(|λ2|, |λn|)≥ 2
√

k−1−o(1),

as n→ ∞. A graph such that |λ j| ≤ 2
√

k−1 for any λ j except λ1 is called a Ramanujan
graph.

Two related properties of expander graphs are relevant to us. First, they have
short diameter: as n→ ∞ the diameter of an expander is bounded by O(logn), with the
constant depending only on k and ε . Second, expanders have rapidly mixing walks:
loosely speaking, the next proposition says that random walks of length close to the
diameter terminate on any vertex with probability close to uniform.

Proposition III.7 (Mixing theorem ([JMV09])). Let G = (V,E) be a k-regular two-
sided ε-expander. Let F ⊂V be any subset of the vertices of G, and let v be any vertex in
V . Then a random walk of length at least

log(#F1/2/(2#V ))

log(1− ε)

starting from v will land in F with probability at least #F/(2#V ).

The walk length in the mixing theorem is also called the mixing length of the
expander graph.

Random regular graphs typically make good expanders, but only a handful of
deterministic constructions is known, most of them based on Cayley graphs [LPS88;
Chu89; Gol11].

Definition III.8 (Cayley graph). Let G be a group and S⊂ G be a symmetric subset
(i.e., s ∈ S implies s−1 ∈ S). The Cayley graph of (G,S) is the undirected graph whose
vertices are the elements of G, and such that there is an edge between g and sg if and
only if s ∈ S.

In our case, we will construct a Cayley graph by “gluing many isogeny cycles
together”: we take Ellq(O) as vertex set, select a subset of ideals S⊂Cl(O) represented
by isogenies of bounded prime degree, and draw an edge between E and a ·E for any
a ∈ S. This graph is called the Schreier graph of (Cl(O),S,Ellq(O)), and is isomorphic
to the Cayley graph of (Cl(O),S); an example is shown in Figure III.2.

Theorem III.9 (Jao, Miller, Venkatesan [JMV09]). Let O be a quadratic imaginary
order, and assume that Ellq(O) is non-empty. Let δ > 0, and define the graph G on
Ellq(O) where two vertices are connected whenever there is a horizontal isogeny between
them of prime degree bounded by O((logq)2+δ ).

Then G is a regular graph and, under the generalized Riemann hypothesis for the
characters of Cl(O), there exists an ε independent of O and q such that G is a two-sided
ε-expander.
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Figure III.3: Supersingular isogeny graphs of degree 2 (left, blue) and 3 (right, red) on
F972 .

The theorem is readily generalized to supersingular curves and isogenies defined
over Fp.

A radically different construction of expander graphs is given by graphs of su-
persingular curves defined over Fp2 with `-isogenies, for a single prime ` 6= p. Two
examples of such graphs are shown in Figure III.3. This construction is related to LPS
graphs [LPS88; Lub94; Cos+18], but is not isomorphic to a Cayley graph.

Theorem III.10 (Mestre [Mes86], Pizer [Piz90; Piz98]). Let ` 6= p be two primes. The
`-isogeny graph of supersingular curves in F̄p, is connected, (`+1)-regular, and has the
Ramanujan property.

Both of these isogeny graphs will be used in the next sections to build key exchange
protocols. For reasons that will be apparent soon, there will only be a mild connection
between the expansions properties of the graphs and the security of the protocols: the
expansion theorems will mostly serve as a blueprint for devising good cryptosystems,
but will have no provable impact.

III.4 Key exchange from CM graphs

The first isogeny-based protocol was introduced by Couveignes during a talk at the École
Normale Superieure in 1997, although it was only published ten years later in [Cou06];
independently, Rostovtsev and Stolbunov proposed similar protocols in [RS06; Sto10].
Couveignes’ key exchange protocol was presented in a more general setting, applying
to any principal homogeneous space satisfying some cryptographic properties.

Recall that a principal homogeneous space (PHS) for a group G is a set X with an
action of G on X such that for any x,x′ ∈ X , there is a unique g ∈ G such that g · x = x′.
Equivalently, the map ϕx : g 7→ g · x is a bijection between G and X for any x ∈ X .
Couveignes defines a hard homogeneous space (HHS) to be a PHS where the action of
G on X is efficiently computable, but inverting the isomorphism ϕx is computationally
hard for any x.

Any HHS X for an abelian group G can be used to construct a key exchange based on
the hardness of inverting ϕx: the system parameters are a HHS (G,X), and a starting
point x0 ∈ X ; a secret key is a random element g ∈ G, and the associated public key
is g · x0. If Alice and Bob have keypairs (gA,xA) and (gB,xB), respectively, then the
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Figure III.4: Example of key exchange on the isogeny graph of Figure III.2. Alice’s
path is represented by continuous lines, Bob’s path by dashed lines. On the left, Bob
computes the shared secret starting from Alice’s public data. On the right, Alice does
the analogous computation.

commutativity of G lets them derive a shared secret

gA · xB = gA ·gB · x0 = gB ·gA · x0 = gB · xA.

The analogy with classic group-based Diffie–Hellman is evident.
Couveignes suggested to use Ellq(O) as an instance of a HHS: the system parame-

ters are a starting curve E/Fq, and the associated class group Cl(O); the secret keys
are random elements of Cl(O), and public keys are j-invariants of curves in Ellq(O).
However, given a generic element of Cl(O), the best algorithm [JS10] to evaluate its
action on Ellq(O) has subexponential complexity in q, making the protocol infeasible.

Instead, following Rostovtsev and Stolbunov [RS06], we may choose to represent
elements of Cl(O) in a way that makes it easy to evaluate the group action. We fix a set
S of ideals in Cl(O) of small degree, possibly in such a way that the associated Cayley
graph is an expander. Instead of sampling uniformly random elements of Cl(O), we
sample random walks in the Schreier graph of (Cl(O),S,Ellq(O)). The walks can be
computed efficiently as a composition of small degree isogenies, and, if they are long
enough, they approach the uniform distribution on Ellq(O). The protocol is illustrated
in Figure III.4.

Towards a practical key exchange. Even with these adjustments, the protocol
is far from practical: Stolbunov managed to run a 108 bit secure implementation in
around 5 minutes [Sto12]. To understand why, let’s see how a random element of
Cl(O) is sampled and the group action evaluated. We have a set S of prime ideals of
O , represented as (π −λ , `) for some eigenvalue λ modulo a prime `. A secret key
corresponds to a product of ideals in S:

s= ∏
ai∈S

aei
i . (III.1)

For simplicity, we may assume that the exponents ei are taken in a box [−B,B],1 then
the size of the key space is at most (2B+1)#S.

1Negative values represent the dual direction to (π−λ , `), associated to the ideal (π−µ, `).
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On the other hand, evaluating the action of s requires computing at most #S ·B
isogenies. We see that, for a fixed set S, increasing B only increases the key space
polynomially, while it also increases the running time linearly. On the other hand, for a
fixed B, increasing #S exponentially increases the key space, while it only increases the
running time linearly. Thus, to strike a balance between security and running time,
we need to use a fairly large set S: values in the hundreds are typical for #S, and all
ideals in S must have different (prime) norms to avoid duplicates. Hence, evaluating
the action of s implies computing up to #S ·B isogenies of degrees as large as a few
thousands!

What algorithms do we have at our disposal to compute these isogenies? We have a
curve E, a prime ` and a direction π−λ . Without further assumptions, we have an
instance of the Explicit isogeny problem: we want to enumerate the isogenies of degree
`, and choose the one that is horizontal of direction π −λ . We are thus stuck with
Elkies’ or Couveignes’ algorithm, both requiring to evaluate and factor the modular
polynomial Φ` in the first place. It is no surprise then that evaluating one Cl(O)-action
takes several minutes.

Is it possible to do better? One idea that comes to mind is to use Vélu’s formulas
instead. This idea was explored in “Towards practical key exchange from ordinary
isogeny graphs”, written with J. Kieffer and B. Smith [DKS18], and included in the
appendix to this document. Suppose, for example, that π|E[`] acts like

(1 0
0 µ

)
, with

µ 6= 1. In this case, there is an easily recognizable direction associated to the eigenvalue
1: the corresponding eigenspace is the cyclic group of rational `-torsion points. A point
in this eigenspace can be computed by taking a random point in E(Fq), and multiplying
it by #E/`: there is a (`−1)/` chance that the result is not zero, and can thus be used
to compute the `-isogeny of direction π−1 using Vélu’s formulas.

We can do even better. Suppose that π|E[`] acts like
(

1 0
0 −1

)
, then both directions

are recognizable: π−1 is obtained like before, while π +1 corresponds to the rational
`-torsion subgroup of a quadratic twist2 of E. More generally, we can use primes such
that π|E[`] acts like

(
−λ 0
0 λ−1

)
: then, if r is the order of λ (mod `), one direction is

identified with the rational `-torsion subgroup of E(Fqr), and the other one with that
of a quadratic twist. If r is not too large, this approach is still faster than using Elkies’
algorithm.

At any rate, the constraints we are putting on π force three conditions:

1. q =−1 mod `,

2.
(

∆π

`

)
= 1,

3. the roots of π2− tπ +q mod ` have small multiplicative order,

and this for each of the primes ` we want to include in the set S.
The first condition is easy to fulfill: choose a prime q = f ·∏i `i−1 for some cofactor

f . The other two are much harder, because they essentially require finding a curve
E/Fq with a specific trace t. The best technique at our disposal consists in taking
random curves E/Fq and computing #E, until a suitable one is found.

In [DKS18] we go at great length optimizing the search for a good curve, using
modular curves and an early abort variation on the SEA point counting algorithm.
Despite all our efforts, the search is still extremely hard, and the best curve we could

2A quadratic twist is a curve isomorphic to E over Fq2 , hence it represents the same point in the isogeny
graph.
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find in 17,000 CPU-hours satisfies the constraints above for only 12 primes, plus relaxed
constraints for 11 other primes.

The final result is still disappointing: a 128-bit secure key exchange that runs in
about 5 minutes.

CSIDH. Somehow, we have not been bold enough. What if we asked even more
stringent constraints?

For example, we may ask that π|E[`] =
(

1 0
0 −1

)
for all primes in S. This forces the

trace t of π to be 0 (mod `). If we impose this constraint for enough primes, because of
Hasse’s theorem, we actually force it for every prime. Thus we end up with a trace zero
supersingular curve.

We may be tempted3 to quickly dismiss this case, because supersingular curves
do not have complex multiplication. However, as already mentioned in Section III.1,
Delfs and Galbraith [DG16] showed that if we restrict to curves, endomorphisms and
isogenies defined over a prime field Fp, we have a perfect clone of the ordinary complex
multiplication case. Indeed, if E is a supersingular curve defined over a prime field Fp
with p > 3, it has trace zero and its endomorphism ring is isomorphic to either Z[

√−p]

or Z[(1+
√−p)/2]. For such a curve, every prime ` such that

(
−4p
`

)
= 1 is an Elkies

prime, with eigenvalues equal to ±√−p.
In [Cas+18], Castryck, Lange, Martindale, Panny and Renes introduce CSIDH4: a

variant of the Couveignes–Rostovtsev–Stolbunov system where all isogenies can be
computed using Vélu’s formulas. CSIDH uses a prime p of the form 4 ·∏i `i−1, and
a supersingular curve E/Fp as starting point, so that π|E[`i] =

(
1 0
0 −1

)
for all `i. By

cleverly optimizing computations, they achieve a key-exchange at the 128 bits security
level in only 0.1 seconds.

Now, I would love to add [Cas+18] to the appendix, but it seems that the rules do
not allow me to. I strongly encourage the reader to look for the paper online and read
it for themselves.

In the next section we are going to present another key exchange protocol based
on supersingular isogeny graphs. The graph structure will be radically different, but
Vélu’s formulas will still play a crucial role for its performance.

III.5 Key exchange from supersingular graphs

In the previous section we saw how supersingular curves allowed us to go from a
dramatically slow protocol to a fairly efficient one. The upshot is the following: we can
control the group structure of supersingular curves simply by controlling the order of
the base field Fq; this lets us choose curves with many rational points of small order,
which in turn can be used to construct small degree isogenies via Vélu’s formulas.
Ultimately, specially crafted supersingular curves let us navigate their isogeny graph
very efficiently.

Can we apply the same principle to the Ramanujan graphs of Theorem III.10?
This is the idea behind the two papers “Towards Quantum-Resistant Cryptosystems
from Supersingular Elliptic Curve Isogenies”, written with D. Jao and J. Plût [JD11;
DJP14], the second of which is included in the appendix. In this section we will briefly
describe the ideas behind this protocol, that has come to be known as SIDH5.

3As I was.
4Pronounced “sea-side”.
5An acronym for Supersingular Isogeny Diffie Hellman
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kerα = 〈A〉 ⊂ E[`eA
A ]

kerβ = 〈B〉 ⊂ E[`eB
B ]

kerα ′ = 〈β (A)〉

kerβ ′ = 〈α(B)〉

E E/〈A〉

E/〈B〉 E/〈A,B〉

α

α ′

β β ′

Figure III.5: Commutative isogeny diagram constructed from Alice’s and Bob’s secrets.
Quantities known to Alice are drawn in blue, those known to Bob are drawn in red.

SIDH uses supersingular curves E/Fp2 with trace ±2p, for a specially chosen p.6

For these curves π|E[`] =±
(

p 0
0 p

)
for any ` 6= p, and there are exactly `+1 isogenies

of degree `.
Compared to the complex multiplication case, graphs of supersingular isogenies

have two attractive features. First, one isogeny degree is enough to obtain an expander
graph: this allows us to use isogenies of a single small prime degree, e.g., 2 or 3, instead
of many small prime degrees up to the thousands. Second, there is no action of an
abelian group, such as Cl(O), on them: we will see in the next section how this thwarts
attacks by quantum computers.

The key idea of SIDH is to let Alice and Bob take random walks in two distinct
`-isogeny graphs on the same vertex set of all supersingular j-invariants defined over
Fp2 . We will denote by `A and `B the isogeny degrees used by Alice and Bob respectively.
Figure III.3 shows a toy example of such graphs, where p = 97, `A = 2 and `B = 3.

Like in CSIDH, we want to be able to evaluate `-isogenies using Vélu’s formulas,
thus we need p =±1 (mod `). However, this is not enough to define a key exchange
protocol, as we shall see. Instead, we will use Vélu’s formulas to evaluate an isogeny of
degree `e, for some large exponent e, all at once. Therefore, we select a prime of the
form p∓1 = `eA

A `eB
B f , where eA and eB are exponents to be determined and f is a small

cofactor, so that E/Fp2 contains the full subgroups E[`eA
A ] and E[`eB

B ]. Typical values
are p = 22503159−1 or p = 23723239−1 (see [SIKE]).

The protocol now proceeds similarly to the Couveignes–Rostovtsev–Stolbunov key
exchange: Alice chooses a secret walk of length eA in the `A-isogeny graph; this is
equivalent to her choosing a secret cyclic subgroup 〈A〉 ⊂ E[`eA

A ]. Bob does the same
in the `B-isogeny graph, choosing a secret 〈B〉 ⊂ E[`eB

B ]. Then, there is a well defined
subgroup 〈A〉+ 〈B〉 = 〈A,B〉, defining an isogeny to E/〈A,B〉. Since we have taken
care to choose `A 6= `B, the group 〈A,B〉 is cyclic of order `eA

A `eB
B . This is illustrated in

Figure III.5.
After Alice and Bob have computed their respective secrets 〈A〉 and 〈B〉, we need

them to exchange enough information to both compute E/〈A,B〉 (up to isomorphism).
However, publishing E/〈A〉 and E/〈B〉 does not give enough information to the other
party, and the diagram in Figure III.5 shows no way by which they could compute
E/〈A,B〉 without revealing their secrets.

We solve this problem by a very peculiar trick, which sets SIDH apart from other
isogeny based protocols. The idea is to let Alice and Bob publish some additional
information to help each other compute the shared secret. Let us summarize what are

6Note that this case includes trace zero curves E/Fp, after extending scalars to Fp2 .
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E

E/〈A〉
α(PB)

α(QB)

E/〈B〉
β (PA)

β (QA)

E/〈A〉
α(B) ' E/〈A,B〉 ' E/〈B〉

β (A)

α β

β ′ α ′

α(B) β (A)

Figure III.6: Schematics of SIDH key exchange. Quantities only known to Alice are
drawn in blue, quantities only known to Bob in red.

the quantities known to Alice and Bob. To set up the cryptosystem, they have publicly
agreed on a prime p and a supersingular curve E such that

E(Fp2)' (Z/`eA
A Z)2⊕ (Z/`eB

B Z)2⊕ (Z/ fZ)2.

It will be convenient to also fix public bases of their respective torsion groups:

E[`eA
A ] = 〈PA,QA〉,

E[`eB
B ] = 〈PB,QB〉.

To start the protocol, they choose random secret subgroups

〈A〉= 〈[mA]PA +[nA]QA〉 ⊂ E[`eA
A ],

〈B〉= 〈[mB]PB +[nB]QB〉 ⊂ E[`eB
B ],

of respective orders `eA
A , `eB

B , and compute the secret isogenies

α : E→ E/〈A〉,
β : E→ E/〈B〉.

They respectively publish EA = E/〈A〉 and EB = E/〈B〉.
Now, to compute the shared secret E/〈A,B〉, Alice needs to compute the isogeny

α ′ : E/〈B〉 → E/〈A,B〉, whose kernel is generated by β (A). We see that the kernel of
α ′ depends on both secrets, thus Alice cannot compute it without Bob’s assistance. The
trick here is for Bob to publish the values β (PA) and β (QA): they do not require the
knowledge of Alice’s secret, and we will assume that they do not give any advantage in
computing E/〈A,B〉 to an attacker. From Bob’s published values, Alice can compute
β (A) as [mA]β (PA)+[nA]β (QA), and complete the protocol. Bob performs the analogous
computation, with the help of Alice. The protocol is schematized in Figure III.6.
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III.6 Security and quantum computers

We end this chapter with a quick review of the security of the key exchange protocols
presented so far. The problem that is often cited as the cornerstone of isogeny based
cryptography is the isogeny walk problem.

Problem III.11 (Isogeny walk problem). Let Fq be a finite field. Given two elliptic
curves E,E ′ defined over Fq such that #E(Fq) = #E ′(Fq), find an isogeny E → E ′ of
smooth degree.

The “smooth degree” requirement is there so that the isogeny can be represented
compactly as a composition of small degree isogenies. We are purposefully vague on
the distribution where E,E ′ are taken from, because this is going to depend on the
cryptosystem. Naturally, the first parameter to look at is the size of the isogeny class
of E,E ′: too small, and we can find the isogeny by brute force.

Security of CM constructions. In the CM case, using the bathymeter developed in
Chapter I, we can find ascending paths from E and E ′ to two curves Ê, Ê ′ with complex
multiplication by the maximal order; then, we are left with the problem of finding a
horizontal isogeny between Ê and Ê ′. Since the horizontal isogeny class of OK is the
smallest among all horizontal isogeny classes of curves with complex multiplication by
some O ⊂OK , it makes sense to reduce to this case, as first noted by Galbraith, Hess
and Smart [GHS02; GS13].

Problem III.12 (Horizontal isogeny walk problem). Let Fq be a finite field, and let OK
be the ring of integers of a quadratic imaginary field K =Q(

√
−D). Given two elliptic

curves E,E ′ defined over Fq with complex multiplication by OK , find an isogeny E→ E ′

of smooth degree.

The size of the horizontal isogeny class is h(OK); it is known by the class number for-
mula that this is in O(

√
∆K log∆K), and, for the typical isogeny class7, ∆K = O(q). The

best generic attack against the Horizontal isogeny walk problem is a Pollard-rho style
algorithm, performing random walks from E and E ′ until a collision is found [GHS02].
Its average complexity is O(

√
h(OK)), thus O(q1/4) for a typical isogeny class. This

justifies choosing a prime q of 4n bits, for a security level of 2n, and this is indeed what
we do in [DKS18] and what CSIDH does [Cas+18].

However, we must also ensure that the key space covers the whole Ellq(OK), possibly
approaching the uniform distribution. This means that isogeny walks, as in Eq. (III.1),
must be sampled from a relatively large subset S⊂ Cl(OK), implying that #S� logq.
For efficiency reasons, practical instantiations take S just large enough: #S∼ (logq)/2;8
however it will not go unnoticed that this choice is insufficient to apply Theorem III.9.
We may as well live with it, changing our security assumptions to take into account
the biased distributions given by random walks in graphs that are not known to be
expanders, as it is done in [DKS18].

Security of SIDH. Things are quite different in SIDH. We know that the supersin-
gular isogeny graph over Fp2 has ≈ p/12 vertices, thus in general we can find a smooth
isogeny between two supersingular curves in O(

√
p) operations using the same kind of

random walk algorithm.
7Including the isogeny class of trace zero supersingular curves used in CSIDH.
8Additional constraints in CSIDH force #S to grow as (logq)/(loglogq).
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However, this is not the best attack against SIDH. To understand why, we need
to look at the key space. Recall that the prime in SIDH is chosen of the form p±1 =
`eA

A `eB
B f . Alice’s secrets are uniformly random cyclic subgroups of E[`eA

A ]; Alice’s key
space contains thus at most (`A +1)`eA−1 elements. Similarly, Bob’s keyspace contains
at most (`B +1)`eB−1 elements. To balance out the size of the two key spaces, we need
`eA

A ≈ `eB
B ≈

√
p. Thus, Alice’s and Bob’s key spaces only cover a tiny fraction of the

whole supersingular graph, much less they satisfy the conditions to Theorem III.10.
An isogeny path in any of the two subgraphs can be found by a meet-in-the middle
strategy (also called a claw finding algorithm) in only O(p1/4) steps.9

Hence, like in the CM setting, we need to take log p ∼ 4n for a security of 2n

operations. However SIDH j-invariants are elements of Fp2 , thus they will typically
be twice as big as j-invariants in CSIDH. Adding to that the fact that SIDH public
keys contain more than a j-invariant (see Figure III.6), we see that CSIDH consumes
considerably less bandwidth than SIDH. This is offset by the fact that SIDH is an order
of magnitude faster than CSIDH, owing to the smaller isogeny degrees.

However, we just highlighted a very important point on SIDH: it transmits more
information than what we would normally feel comfortable sharing. Indeed, SIDH
transmits not only the image curve E/〈A〉, but also the image of the basis points PB,QB.
This is enough information to interpolate the secret isogeny by a Couveignes-like
algorithm, however we do not know how to exploit the fact that the isogeny has smooth
degree, and in fact we do not know any algorithm that takes advantage of this auxiliary
information.10

At any rate, the security of SIDH cannot be founded on the Isogeny walk problem.
Instead, it is necessary to make ad hoc assumptions taking into account the information
communicated by the protocol. These assumptions, going under the names of CSSI,
SSCDH, SSDDH [JD11; DJP14] or SIDH [SIKE], are too ad hoc to deserve a space
here; we refer the reader to the appendix for their definitions.

Quantum security. The discussion on security would not be complete without sur-
veying quantum attacks. Indeed, the main selling point of isogeny-based key exchange
protocols is their (conjectured) resistance to quantum algorithms.

Let’s start with CM constructions. Couveignes’ Hard Homogeneous Spaces setting
is scarily similar to the Diffie–Hellman key exchange, which is indeed a special case of
it. Shor’s algorithm [Sho94a] solves the discrete logarithm problem in polynomial time
on a quantum computer, and thus breaks the Diffie–Hellman protocol. But is there a
variant of Shor’s algorithm that also breaks generic HHS constructions?

Definition III.13 (Hidden Subgroup Problem (HSP)). Let f : G→ X be a function from
a group G to a set X . Assume that there is a subgroup H ⊂ G such that f (g) = f (g′)
if and only if g′ ∈ gH. The function f is said to hide the subgroup H, and the hidden
subgroup problem consists in finding generators for H, given access to f .

It is well known that Kitaev’s generalization of Shor’s algorithm [Kit95] solves the
hidden subgroup problem in quantum polynomial time, when G is a finitely generated
abelian group.

9A Pollard-rho style of algorithm is not possible in this case, since its complexity would depend on the
size of the whole graph. The claw finding algorithm is very memory hungry, and some argue that the RAM
model is not appropriate to study its complexity. In a constant memory model, the currently best attack
against SIDH is estimated to take O(p3/8) steps [Adj+18].

10See [Pet17] for a distant cousin of SIDH for which it is possible to extract useful information out of the
auxiliary data.
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Definition III.14 (Hidden Shift Problem (HShP)). Let f0, f1 : G→ X be two injective
functions from a group G to a set X . Assume that there is an element s ∈ G such that
f0(g) = f1(gs) for any g ∈ G. The element s is called a hidden shift for f0, f1, and the
hidden shift problem is to find s, given access to f0 and f1.

For any group G, the hidden shift problem reduces to the hidden subgroup problem
for the (generalized) dihedral group GoC2.11 No generalization of Kitaev’s algorithm
is known for non-abelian groups, but a different family of algorithms, due to Kuper-
berg [Kup05; Kup13] and Regev [Reg04], solves the HShP in subexponential quantum
time exp(

√
log#G).

As first noted in [CJS14] and then improved in [BS18; BIJ18; Jao+18], Kuperberg’s
algorithm can be used to solve the Horizontal isogeny walk problem as follows: let
E,E ′ be the two curves with complex multiplication by OK , define two functions f0, f1 :
Cl(OK)→ Ellq(OK) as f0(a) = a ·E and f1(a) = a ·E ′, then the hidden shift defines a
horizontal isogeny between E and E ′.

Kuperberg’s algorithm is a game changer for protocols based on complex multiplica-
tion: indeed, to ensure 2n quantum security we need to take logq = O(n2). The actual
constant depends on the variant of Kuperberg’s algorithm, and various parameters such
as available quantum memory; its exact value is currently debated, but it appears that
taking logq somewhere between 512 and 1024 bits grants a security of 264 quantum
gates [Cas+18; DKS18; BS18; Ber+18].

For SIDH, on the other hand, there is no group structure12 that can be exploited
by Kuperberg’s algorithm. Currently, the best quantum attack against SIDH is a
Grover-like claw finding algorithm due to Tani [Tan09], requiring O(p1/6) quantum
gates (and as many qubits!). For this reason, p is typically chosen so that log p∼ 6n
for a quantum security of 2n gates, although it is debated whether Tani’s algorithm
actually presents an advantage over the classical claw finding attack.

III.7 Perspectives

The field of isogeny-based cryptography is a relatively young one, and still confidential
compared to other post-quantum families.

Other protocols. In this chapter we have only presented key exchange systems, how-
ever it is possible to obtain other interesting protocols from isogeny graphs. Public key
encryption à la El Gamal is an easy exercise, whereas CCA-secure Key Encapsulation
Methods (KEMs) already pose a riddle. On one hand, key validation is problematic for
SIDH, forcing the use of generic transforms such as Fujisaki and Okamoto’s [FO99].
On the other hand, key validation in CM systems essentially amounts to verifying
the order of the elliptic curves; this allows CCA-secure systems à la DHIES [ABR99;
ABR01; CS03], but also static-static non-interactive key exchange (NIKE), making
CSIDH the first practical post-quantum NIKE.

Signatures are another soft spot of isogeny-based cryptography. No analogue of
Schnorr signatures is known for any of the primitives presented so far. Instead, we
have zero-knowledge identification schemes for SIDH [DJP14; Yoo+17; GPS17] and,

11To reduce HShP to HSP, simply define the function f by f (g,1) = f0(g) and f (g,−1) = f1(g), so that
the hidden subgroup is generated by (s,−1).

12Outside of the subgraph of Fp-rational curves, but the algorithm in [BJS14] does not impact the security
of SIDH.
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very recently, CSIDH [DG18]. From these, we can derive signature schemes via the
Fiat–Shamir transform, but these are either slow, or have large signatures, or both. It
is currently an open problem to build a compact and efficient signature scheme from
isogeny primitives.

Finally, none of the advanced protocols derived fromDiffie–Helman, such as identity
based encryption, blind signatures, etc., is known to have an isogeny-based analogue.
One of the most advanced cryptographic ideas based on isogenies, a sort of multilinear
map, has been recently introduced by Boneh, Glass, Krashen, Lauter, Sharif, Silverberg,
Tibouchi and Zhandry [Bon+18]; however the idea fails to give an actual protocol,
because a key mathematical ingredient (a generalization of the j-invariant of elliptic
curves) is missing, and finding it was left as an open problem by the authors.

Other graphs. It is also natural to ask whether other families of expander graphs
could be used for cryptography. LPS graphs [LPS88], for example, are verymuch related
to supersingular graphs, and have already been proposed as a basis for (symmetric)
cryptography [CGL09], although they have been broken [TZ08; PLQ08].

As another example, groupoids of maximal orders of quaternion algebras are isomor-
phic to supersingular isogeny graphs; however it has been shown that the equivalent
of the Isogeny walk problem in these groupoids can be solved in (classical) polynomial
time [Koh+14].13 We do not know how to use this result to break SIDH, however it has
been employed in various security reductions [Gal+16; Eis+18].

An obvious generalization of isogeny based protocols would consist in replacing
elliptic curves with higher dimensional varieties. Some advantages are to be expected:
higher dimensional varieties have larger torsion groups, thus more isogenies for a
fixed degree. This has the potential to produce smaller parameters, however the
current knowledge on isogenies in higher dimension is still very rudimentary, and few
algorithms exist. Some early progress in understanding them has been made in [LR12;
LR15; CR15; IT14; BJW17], it would be interesting to further develop this field.

Efficiency. Both SIDH and CSIDH have very small keys, compared to other post-
quantum candidates (or even to RSA). However, SIDH is among the slowest candidates
to the NIST post-quantum competition, and CSIDH is currently an order of magnitude
slower.

Considerable efforts have been devoted to speed up SIDH, using ideas such as opti-
mal strategies for Vélu’s formulas [DJP14], projectivized curve equations [CLN16],
key compression [Aza+16; Cos+17; Zan+18], arithmetic modulo primes of special
form [CLN16; Kar+16; BF17], dedicated Montgomery ladders [Faz+17], and various
software and hardware level optimizations [MRC17]. Owing to this, we seem to have
pretty much hit a wall on how much SIDH can be further sped up: barring spectacular
discoveries14, its efficiency is bound to receive only minor improvements in the coming
years. In particular, this poses a problem for IoT and other embedded devices, where
SIDH is still unsuitable owing to its large memory and CPU requirements.

13To put this result into perspective, note that its equivalent for the CM case would amount to solve the
discrete logarithm problem of Cl(O) in classical polynomial time!

14One particular trick in CSIDH that is completely absent in SIDH is using the quadratic twist to
perform part of the computations. I have thought of this for a while, and I see no fundamental reason why it
should not work for SIDH, if it was not for the fact that finding suitable parameters seems computationally
unfeasible. My favorite example is p = 17, so p2− 1 = 2532; if it were possible to find large primes with
similar properties, the gain would be spectacular.
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On the other hand, CSIDH is still very young, and a lot of optimization avenues are
yet to be explored. In particular, CSIDH still lacks a constant-time implementation.
The abysmal performance of the ordinary curve Couveignes–Rostovtsev–Stolbunov
protocol could also use some improvements, although I am out of ideas at the moment.

In the CSIDH setting, different contexts call for different parameter choices. Note
that, while p must grow like O(n2) due to Kuperberg’s algorithm, the key space is only
forced to grow at a much slower rate of O(n), the best available attacks being the same
claw finding algorithms used against SIDH. While the authors of [Cas+18] have the
key-space grow at the same rate as the prime p, it is more convenient for signatures to
have a smaller key space [DG18]. This of course leads to a probability distribution on
Ellq(O) very far from uniform, potentially affecting security proofs. It is an interesting
problem to study the various compromises that can be made on parameters, and their
impact on security.

Security. Obviously, confidence in isogeny based cryptography can only be gained
through more research on security.

This means, of course, working on attacks. A fundamental topic, at the moment, is
establishing the quantum security of CSIDH. Some preliminary work has been done
in [BS18; BIJ18; Jao+18], but a consensus has yet to be reached.

Concerning SIDH, it is interesting that the only recent result on generic attacks
shows that SIDH is potentially more secure than originally thought [Adj+18]. It is
known that an efficient algorithm to compute endomorphism rings of supersingular
curves would also break SIDH [Gal+16], however the currently best algorithms for this
problem [Cer04; Koh96] have much worse complexity than other attacks on SIDH. It
would be extremely interesting to look for sub-exponential algorithms for computing
endomorphism rings of supersingular curves, or alternatively produce convincing
arguments for why this is not possible.

However, none of the known attacks on SIDH exploits the “auxiliary” information
transmitted by the protocol in the form of torsion points. Some work in this direction
has been done by Petit [Pet17], but no direct impact on SIDH has been demonstrated. In
particular, there seems to be absolutely no research on using the auxiliary information
in a quantum algorithm.

Whether quantum computers, Tate’s theorem, Couveignes’ algorithm, or a combi-
nation of all can help crack the security of SIDH is certainly one of the most fascinating
topics in isogeny based cryptography.

Besides key recovery, other kinds of attacks are also interesting. The most cele-
brated one is Galbraith, Petit, Shani and Ti’s key learning attack against the static
version of SIDH [Gal+16], showing that key validation for SIDH is indeed hard. Other
attack models, e.g., side channel attacks, have also been investigated [GW17; Ti17].
These efforts remain sporadic, and more work is needed in these directions.

Finally, more security proofs would help consolidate trust in isogenies. The security
assumption of SIDH being so ad hoc, more work on security reductions, such as [Gal+16;
Eis+18], could help build trust by reducing security to more “natural” problems. CSIDH,
on the other hand, benefits from a much nicer hardness assumption, although key
distribution is often an issue for security proofs: it is not clear how much its security
is affected by more aggressive parameters deviating considerably from the uniform
distribution. Given the intended use of these protocols, proofs of quantum security are
another obvious target for research.
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A Explicit isogenies in quadratic time in any characteristic

Abstract

Consider two ordinary elliptic curves E,E ′ defined over a finite field Fq, and
suppose that there exists an isogeny ψ between E and E ′. We propose an algorithm
that determines ψ from the knowledge of E, E ′ and of its degree r, by using the
structure of the `-torsion of the curves (where ` is a prime different from the
characteristic p of the base field).

Our approach is inspired by a previous algorithm due to Couveignes, that
involved computations using the p-torsion on the curves. The most refined version
of that algorithm, due to De Feo, has a complexity of Õ(r2)pO(1) base field operations.
On the other hand, the cost of our algorithm is Õ(r2) log(q)O(1), for a large class
of inputs; this makes it an interesting alternative for the medium- and large-
characteristic cases.

A.1 Introduction

Isogenies are non-zero morphisms of elliptic curves, that is, non-constant rational maps
preserving the identity element. They are also algebraic group morphisms. Isogeny
computations play a central role in the algorithmic theory of elliptic curves. They
are notably used to speed up Schoof’s point counting algorithm [Sch85; Atk91; Sch95;
Elk98]. They are also widely applied in cryptography, where they are used to speed
up point multiplication [GLV01; LS14], to perform cryptanalysis [MMT01], and to
construct new cryptosystems [Tes06; CGL09; Sto10; DJP14; JS14].

The degree of an isogeny is its degree as a rational map. If an isogeny has degree
r, we call it an r-isogeny, and we say that two elliptic curves are r-isogenous if there
exists an r-isogeny relating them. Accordingly, we say that two field elements j and j′

are r-isogenous if there exist r-isogenous elliptic curves E and E ′ such that j(E) = j
and j(E ′) = j′. The explicit isogeny problem has many incarnations. In this paper, we
are interested in the variant defined below.

ProblemA.1 (Explicit isogeny problem). Given two j-invariants j and j′, and a positive
integer r, determine if they are r-isogenous. In that case, compute curves E, E ′ with
j(E) = j and j(E ′) = j′, and the rational functions defining an r-isogeny ψ : E→ E ′.

A good measure of the computational difficulty of the problem is given by the
isogeny degree r. Indeed the output is represented by O(r) base field elements, hence
an asymptotically optimal algorithmwould solve the problem using O(r) field operations.
Even though the input size is logarithmic in r, by a slight abuse we say that an algorithm
solves the isogeny problem in polynomial time if it does so in the size of the output.
Thanks to Vélu’s formulas [Vél71], in particular the version appearing in [Koh96, §2.4],
we can compute ψ from the knowledge of the polynomial h vanishing on the abscissas
of the points in kerψ , at the cost of a constant number of multiplications of polynomials
of degree O(r). Given that all known algorithms to compute h require more than a few
polynomial multiplications, we often say that we have computed ψ whenever we have
computed h, and conversely.

This paper focuses on the explicit isogeny problem for ordinary elliptic curves over
finite fields. A famous theorem by Tate [Tat66] states that two curves are isogenous
over a finite field if and only if they have the same cardinality over that field. The
explicit isogeny problem stated here appears naturally in the Schoof-Elkies-Atkin point
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counting algorithm (SEA). There, E is a curve over Fq, whose rational points we wish to
count, and E ′ is an r-isogenous curve, with r a prime of size approximately log(q). For
this reason, the explicit isogeny problem is customarily solved without prior knowledge
of the cardinality of E(Fq). We abide by this convention here.

Many algorithms have been suggested over the years to solve the explicit isogeny
problem. Early algorithms were due to Atkin [Atk91] and Charlap, Coley and Rob-
bins [CCR91]. Elkies’ [Elk98; Bos+08] was the first algorithm targeted to finite fields (of
large enough characteristic). Assuming r is prime, its complexity is dominated by the
computation of the modular polynomial Φr, which is an object of bit size O(r3 log(r)).
Later Bröker, Lauter and Sutherland [BLS12] optimized the modular polynomial
computation in the context of the SEA algorithm [Sut13b]. Finally Lercier and Sir-
vent [LS08b; LV16] generalized Elkies’ algorithm to work in any characteristic. Despite
these advances, the overall cost of Elkies’ algorithm and its variants is still at least
cubic in r.

Another line of work to solve the explicit isogeny problem for ordinary curves was
initiated by Couveignes [Cou94; Cou96; Cou00], and later improved by De Feo and
Schost [De 11; DS12]. These algorithms use an interpolation approach combined with
ad-hoc constructions for towers of finite fields of characteristic p. Their complexity is
quasi-quadratic in r, but exponential in log(p), hence they are only practical for very
small characteristic.

In this paper we present a variant of Couveignes’ algorithm with complexity poly-
nomial in log(p) and quasi-quadratic in r. Like the original algorithm, it is limited to
isogenies of ordinary curves. Together with the Lercier-Sirvent algorithm, they are the
only polynomial-time isogeny computation algorithms working in any characteristic,
hence they are especially relevant for counting points in medium characteristic (i.e.,
counting points over Fpn , when n� p/ log(p)).

Note that, although Couveignes-type algorithms do not make use of the modular
polynomial Φr, its computation is still necessary in the context of the SEA algorithm.
Thus our new algorithm does not improve the overall complexity of point counting,
though it may provide a speed-up in some cases. It gives, however, an effective algorithm
for solving the explicit isogeny problem, with potential applications in other contexts,
e.g., cryptography.

Notation

Throughout this paper: r is a positive integer, p an odd prime, q a power of p, and
Fq is the finite field with q elements. E is an ordinary elliptic curve over Fq, its
group of n-torsion points is denoted by E[n], its q-Frobenius endomorphism by π . The
endomorphism ring of E is denoted by O , with K = O⊗Q the corresponding number
field, OK its maximal order, and dK the discriminant of OK . For a prime ` different
from p and not dividing r, we denote by E[`k] the group of `k-torsion points of E, E[`∞] =
lim−→E[`k] the union of all E[`k], and T`(E) = lim←−E[`k] the `-adic Tate module [Sil92,
p. III.7], which is free of rank two over Z`. The factorization of the characteristic
polynomial of π over Z` is determined by the Kronecker symbol (dK/`). If (dK/`) = +1
then we also define λ ,µ as the eigenvalues of π in Z` and write h = v`(λ −µ), where
v` is the `-adic valuation.

Wemeasure all computational complexities in terms of operations in Fq; the boolean
costs associated to the algorithms presented next are negligible compared to the alge-
braic costs, and will be ignored. We use the Landau notation O( ) to express asymptotic
complexities, and the notation Õ( ) to neglect (poly)logarithmic factors. We let M(n)
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be a function such that polynomials in Fq[x] of degree less than n can be multiplied
using M(n) operations in Fq, under the assumptions of [GG99, Chapter 8.3]. Using
FFT multiplication, one can take M(n) ∈ O(n log(n) loglog(n)).

Couveignes’ algorithm and our contribution

Couveignes’ isogeny algorithm takes as input two ordinary j-invariants j, j′ ∈ Fq, and
a positive integer r not divisible by p, and returns, if it exists, an r-isogeny ψ : E→ E ′,
with j(E) = j and j(E ′) = j′. It is based on the observation that the isogeny ψ must
put E[pk] in bijection with E ′[pk], in a way that is compatible with their structure as
cyclic groups. It proceeds in three steps

1. Compute generators P,P′ of E[pk] and E ′[pk] respectively, for k large enough;

2. Compute the interpolation polynomial L sending x(P) to x(P′), and the abscissas
of their scalar multiples accordingly;

3. Deduce a rational fraction g(x)/h(x) that coincides with L at all points of E[pk],
and verify that it defines the x-component of an isogeny of degree r. If it does,
return it; otherwise, replace P′ with a scalar multiple of itself and go back to
Step 2.

For this algorithm to succeed, enough interpolation points are required. Given that
the x-component of ψ is defined by O(r) coefficients, we have pk ∈Θ(r). However, most
of the time, those points are not going to be defined in the base field Fq, so we must use
efficient algorithms to construct and compute in towers of extensions of finite fields.
Indeed, Couveignes and his successors go at great length in studying the arithmetic
of Artin-Schreier towers [Cou00; DS12], and the adaptation of the fast interpolation
algorithm to that setting [De 11]. Using these highly specialized constructions, Steps 1
and 2 are both executed in time Õ(pk+O(1)) = Õ(rpO(1)). However the last step only
succeeds for one pair of torsion points P,P′, in general, thus O(r) trials are expected
on average. Hence, the overall complexity of Couveignes’ algorithm is Õ(r2 pO(1)), i.e.,
quadratic in r, but exponential in log(p). Although the exponent of p is relatively small,
Couveignes algorithm quickly becomes impractical as p grows.

In this paper we introduce a variant of Couveignes’ algorithm with the same
quadratic complexity in r, and no exponential dependency in log(p).

The bottom line of our algorithm is elementary: replace E[pk] in the algorithm
with E[`k], for some small prime `. However a naive application of this idea fails
to yield a quadratic-time algorithm. Indeed, in the worst case one has `2k ∈ Θ(r),
with E[`k]' (Z/`kZ)2. Hence, two generators P,Q of E[`k] must be mapped onto two
generators of E ′[`k]. This can be done in O(`4k) possible ways, with a best possible cost
of O(`2k) per trial, thus yielding an algorithm of complexity O(`6k) = O(r3) at best.

To avoid this pitfall, we carefully study in Section A.2 the structure of E[`k], and
its relationship with the Frobenius endomorphism π . With that knowledge, we can
put some restrictions on the generators P,Q, as explained in Section A.3, thus limiting
the number of trials to O(`2k). In Section A.4 we present an interpolation algorithm
adapted to the setting of `-adic towers, and in Section A.5 we put all steps together
and analyze the full algorithm. Finally in Section A.6 we discuss our implementation
and the performance of the algorithm.
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Towers of finite fields

The algorithms presented next operate on elements defined in finite extensions of
Fq. Specifically, we will work in a tower of finite fields Fq = F0 ⊂ F1 ⊂ ·· · ⊂ Fn, with `
dividing #F1−1, d1 = [F1 : F0] dividing `−1, and [Fi+1 : Fi] = ` for any i > 0. For `= 2,
we build upon the work of Doliskani and Schost [DS15], whereas for general ` we use
towers of Kummer extensions in a way similar to [DDS13, §2]. Both constructions
represent elements of Fi as univariate polynomials with coefficients in Fq, thus basic
arithmetic operations can be performed using modular polynomial arithmetic over Fq.
While constructing the tower, we also enforce special relations between the generators
of each level, so that moving elements up and down the tower, and testing membership,
can be done at negligible cost.

We briefly sketch the construction for odd `. We first look for a primitive polynomial
P1 ∈ Fq[x] of degree equal to [F1 : F0]. There are many probabilistic algorithms to
compute P1 in expected time polynomial in ` and log(q); since their cost does not
depend on the height n of the tower, we neglect it (in all that follows, by expected
cost of an algorithm, we refer to a Las Vegas algorithm, whose runtime is given in
expectation). Then, the image x1 of x in F1 = Fq[x]/P1(x) is an element of multiplicative
order #F1−1, and in particular it is not a `-th power. Hence for any i > 1 we define Fi

as Fq[x]/P1
(
x`

i−1), the computation of the polynomials P1
(
x`

i−1) incurring no algebraic
cost. Using this representation, elements of Fi can be expressed as elements of a higher
level Fi+ j, and reciprocally, by a simple rearrangement of the coefficients. Another
fundamental operation can be done much more efficiently than in generic finite fields,
as the following generalization of [DS15, §2.3] shows.

Lemma A.2. Let F0 ⊂ ·· · ⊂ Fn be a Kummer tower as defined above, and let a ∈ Fi
for some 0 ≤ i ≤ n. For any integer j, we can compute the (#Fj)-th power of a us-
ing O(`i−1M(`)) operations in Fq, after a precomputation independent of a of cost
O(`M(`) log(q)).

Proof. Without loss of generality, we can assume that j < i; otherwise, the output
is simply a itself. Let s = #Fj, and let d = [Fi : F1] = `i−1. Let xi be the image of x in
Fi = Fq[x]/Pi(x), so that xd

i = x1.
The first step, independently of a, is to compute y = xs

i . Writing s = ud + r, with
r < d, we see that y is given by xu mod #F1

1 xr
i . We compute xu mod #F1

1 using O(`M(`) log(q))
operations in Fq, and we keep this element as a monomial of F1[xi]. By assumption,
a is represented as a polynomial in xi of degree less than [Fi : F0]. We rewrite it as
a = a0 +a1xi + · · ·+ad−1xd−1

i , with ai ∈ F1. This is done by a simple rearrangement of
the coefficients of a.

Finally, we compute a(y) by a Horner scheme. All powers yk we need are themselves
monomials in F1[xi], each computed from the previous one using O(M(`)) operations
in Fq, for a total of O(`i−1M(`)). Finally the monomials akyk are combined together to
form a polynomial in (x1,xi) of degree less than (d1,d), and then brought to a canonical
form in Fi via another rearrangement of coefficients.

Summarizing, the following computations can be performed in a Kummer tower at
the indicated asymptotic costs, all expressed in terms of operations in Fq.

• basic arithmetic operations (addition, multiplication) in Fi, using O(M(`i)) oper-
ations;
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• inversion in Fi using O(M(`i) log(`i)) operations (when `= 2, a factor of i can be
saved here [DS15], but we will disregard this optimization for simplicity.)

• mapping elements from Fi−1 to Fi and vice versa at no arithmetic cost;

• multiplication and Euclidean division of polynomials of degree at most d in Fi[x]
using O(M(d`i)) operations, via Kronecker’s substitution, as already done in
e.g. [GS92];

• computing a (#Fj)-th power in Fi using O(`i−1M(`)) operations, after a precom-
putation that uses O(`M(`) log(q)) operations.

For one fundamental operation, we only have an efficient algorithm in the case
`= 2, hence we introduce the following notation:

• R(i) is a bound on the expected cost of finding a root of a polynomial of degree `
in Fi[x].

Note that we allow Las Vegas algorithms here, as no deterministic polynomial time
algorithm is known. For `= 2, Doliskani and Schost show that R(i) = O(M(`i) log(`iq)).
For general `, we haveR(i)=O(`iM(`i+1) log(`) log(`q)) using the variant of the Cantor-
Zassenhaus algorithm described in [GG99, Chapter 14.5], or R(i) = O

(
(`i(ω+1)/2 +

M(`i+1 log(q)))i log(`)
)
using [KS97]. Here, ω is such that matrix multiplication in

size m over any ring can be done in O(mω) base ring operations (so we can take ω = 2.38
using the Coppersmith-Winograd algorithm). In any case, R(i) is between linear and
quadratic in the degree `i.

A.2 The Frobenius and the volcano

In this section we explore some fundamental properties of ordinary elliptic curves over
finite fields: the structure of their isogeny classes, its relationship with the rational
`∞-torsion points, and with the Frobenius endomorphism π .

Isogeny volcanoes

For an extensive introduction to isogeny volcanoes we refer the reader to [Sut13a]. We
recall here, without their proof, two results about `-isogenies between ordinary elliptic
curves.

Proposition A.3 ([Koh96, Proposition 21]). Let φ : E → E ′ be an `-isogeny between
ordinary elliptic curves and O,O ′ be their endomorphism rings. Then one of the three
following cases is true:

1. [O ′ : O] = `, in which case we call φ ascending;

2. [O : O ′] = `, in which case we call φ descending;

3. O ′ = O , in which case we call φ horizontal.

Proposition A.4 ([Koh96, Proposition 23]; [Sut13a, Lemma 6]). Let E be an ordinary
elliptic curve with endomorphism ring O .

1. If O is `-maximal then there are (dK/`)+1 horizontal `-isogenies from E (and no
ascending `-isogenies).
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2. If O is not `-maximal then there are no horizontal `-isogenies from E, and one
ascending `-isogeny.

A volcano of `-isogenies is a connected component of the graph of rational `-isogenies
between curves defined on Fq. The crater is the subgraph corresponding to curves
having an `-maximal endomorphism ring. The shape of the crater is given by the
Kronecker symbol (dK/`), as per Proposition A.4. For any k ≥ 0, an `k-isogeny is
horizontal if it is the composite of k horizontal `-isogenies. The depth of a curve is its
distance from the crater. It is also the `-adic valuation of the conductor of O = End(E).
We illustrate the three possible shapes for a volcano in Figure A.1.

•

• • •
“Stromboli”: (dK/`) =−1

• •

• •
“Vesuvius”: (dK/`) = 0

•

• •

• ••

“Etna”: (dK/`) = +1

•

•

•

•
•

•

Figure A.1: The three shapes of volcanoes of 2-isogenies

The `-adic Frobenius

In the rest of this paper we consider only a volcano with a cyclic crater (i.e. we assume
(dK/`) = +1), so that ` is an Elkies prime for these curves. This implies that the
Frobenius automorphism on T`(E), which we write π|T`(E), has two distinct eigenval-
ues λ 6= µ . The depth of the volcano of Fq-rational `-isogenies is h = v`(λ −µ) [Sut13a,
Theorem 7(iv)].

Proposition A.5. Let E be an ordinary elliptic curve with Frobenius endomorphism π .
Assume that the characteristic polynomial of π has two distinct roots λ ,µ in Z`, so that
the `-isogeny volcano has a cyclic crater. Then there exists a unique e ∈ J0,hK such that
π|T`(E) is conjugate, over Z`, to the matrix

(
λ `e

0 µ

)
. Moreover e = h if E lies on the crater,

and else h− e is the depth of E in the volcano.

We note here that the matrix
(

λ `h

0 µ

)
is conjugate over Z` to

(
λ 0
0 µ

)
.

Proof. Since the characteristic polynomial of π splits over Z`, the matrix of π|T`(E)
is trigonalizable. Conjugating the matrix

(
λ a
0 µ

)
by
(

1 b
0 1

)
replaces a by a−b(λ −µ),

and conjugating by
(

c 0
0 1

)
replaces a by c · a, so that the valuation e = v`(a) is an

invariant under matrix conjugation. This proves the first part. For the second part,
by Tate’s theorem [Sil92, Isogeny theorem 7.7 (a)], O⊗Z` is isomorphic to the order
in Q`[π`] of matrices with integer coefficients, which is generated by the identity
and `−min(h,v`(a))(π`−λ ).

We now study the action of `-isogenies on the `-adic Frobenius by showing the link
between two related notions of diagonalization.

Definition A.6 (Horizontal and diagonal bases). Let E be a curve lying on the crater.
We call a point of E[`k] horizontal if it generates the kernel of a horizontal `k-isogeny.
We call a basis of E[`k] diagonal if π is diagonal in it, horizontal if both basis points
are horizontal.
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Proposition A.7. Let E be a curve lying on the crater and P be a point of E[`k] such
that `hP is an eigenvector of π . Then `hP is horizontal if, and only if, P is an eigenvector
for π . If π(P) = λP then we say that `hP has direction λ .

This proposition being trivially true for h≥ k, we assume that k≥ h in what follows.
Let R be a point of E of order `k, let φ be the isogeny with kernel 〈R〉, and let E ′ be

its image. The subgroup 〈R〉 defines a point in the projective space of E[`k], which is a
projective line over Z/`kZ. There exists a canonical bijection [Ser77, p. II.1.1] between
this projective line and the set of lattices of index `k in the Z`-module T`(E): it maps a
line 〈R〉 to the lattice ΛR = 〈R〉+ `kT`(E). This lattice is also the preimage by φ of the
lattice `kT`(E ′).

Fix a basis (P,Q) of E[`k], let Π be the matrix of π in this basis, and let R = xP+yQ.
The lattice ΛR is generated by the columns of the matrix LR =

(
`k 0 x
0 `k y

)
. The Hermite

normal form of LR is MR =
(
`k−m x/y′

0 `m

)
, where we write y = `my′ with ` - y′, and the

columns of MR also generate the lattice ΛR. We check that MR has determinant `k.
Since ΛR = φ

−1
R (`kT`(E ′)), there exists a basis of T`(E ′) in which φR has matrix `kM−1

R .
Therefore, in that basis of T`(E ′), the matrix of π|T`(E ′) is M−1

R ·Π ·MR.

Proof of Proposition A.7. Fix a basis (R,S) of E[`k] that diagonalizes π . We can
write P = xR+ yS; without loss of generality we may assume y = 1. Let φ be the
isogeny determined by `hP, and let E ′ be its image. Since `hP is an eigenvector
of π , φ is a rational isogeny. According to the previous discussion, π|T`(E ′) has ma-
trix

(
λ `h−kx(λ−µ)
0 µ

)
. This matrix is diagonalizable only if v`(x) ≥ k−h. On the other

hand, we can compute (π−µ)P = x(λ −µ)R, so that P is an eigenvector on the same
condition v`(x)≥ k−h.

While horizontal bases are our main interest, diagonal bases are easier to compute
in practice. Algorithms computing both kind of bases are given in Section A.3. The
main tool for this is the next proposition: given a horizontal point of order `k, it allows
us to compute a horizontal point of order `k+1.

Proposition A.8. Let ψ : E→ E ′ be a horizontal `-isogeny with direction λ . For any
point Q ∈ E[`∞], if `Q is horizontal with direction µ , then ψ(Q) is horizontal with
direction µ .

Proof. Let Q′ = ψ(Q) and ψ̂ be the isogeny dual to ψ . Since both ψ̂ and ψ̂(Q′) = `Q
are horizontal with direction µ , Q′ is also horizontal.

Proposition A.9. Let ψ : E→ E ′ be an isogeny of degree r prime to `.

1. The curves E and E ′ have the same depth in their `-isogeny volcanoes.

2. For any point P ∈ E[`k], the isogenies with kernel 〈P〉 and 〈ψ(P)〉 have the same
type (ascending, descending, or horizontal with the same direction).

3. If P ∈ E[`] and P′ ∈ E ′[`] are both ascending, or both horizontal with the same
direction, then E/P and E ′/P′ are again r-isogenous.

Proof. Points (i) and (ii) are consequences of Proposition A.5 and of the fact that ψ ,
being rational and of degree prime to `, induces an isomorphism between the Tate
modules of E and E ′, commuting to the Frobenius endomorphisms. For point (iii), we
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just note that since there exists a unique subgroup of order ` which is either ascending
or horizontal with a given direction, we must have 〈P′〉= 〈ψ(P)〉.

Galois classes in the `-torsion

Assume that E has a `-maximal endomorphism ring. The following proposition sum-
marizes the properties of E[`k] that we will need for our main interpolation algorithm.
If ` is odd, let α = v`(λ `−1− 1) and β = v`(µ`−1− 1); if ` = 2, let α = v2(λ

2− 1)− 1
and β = v2(µ

2−1)−1, and assume without loss of generality that α ≥ β . Since λ 6≡ µ

(mod `h+1), it is impossible that λ ≡ µ ≡ 1 (mod `h), so that one at least of the two
valuations α,β is ≤ h, and therefore β ≤ h.

Proposition A.10. For any k, let dk be the degree of the smallest field extension F/Fq
such that E[`k]⊂ E(F). Then:

1. The order of q in (Z/`Z)× divides d1, and d1 divides (`−1).

2. If ` is odd then for all k ≥ 1, dk = `min(v`(d1),k−β ).

3. If `= 2 then d2 ∈ {1,2} and, for all k ≥ 2, dk = `min(v`(d2),k−β ).

4. Let [F : Fq] = d1`
n, the group E[`∞](F) is isomorphic to (Z/`n+αZ)× (Z/`n+βZ).

5. The group E[`k] contains at most k · `k+β Galois conjugacy classes over F1 = Fqd1 .

Proof. The degree dk is exactly the order of the matrix π|E[`k]. It is therefore the
least common multiple of the multiplicative orders of λ ,µ modulo `k. This proves (i)
using the fact that λ · µ = q. For points (ii)–(v) we may assume that d1 = 1. Then,
for any N, v`(λ 2N − 1) = α + v`(2N). Let (P,Q) be a diagonal basis of E[`k]. The
point (πN − 1)(xP+ yQ) = (λ N − 1)xP+(µN − 1)yQ is zero iff v`(x)+α + v`(N) ≥ k
and v`(y)+β + v`(N) ≥ k. This shows (iv). The largest Galois classes are those for
which v`(y)= 0 and their size is `k−β , proving (ii) and (iii). Moreover, for any i≤ k−β the
points in an orbit of size ≤ `i are those for which v`(x)≥ k−α− i and v`(y)≥ k−β − i;
there are at most `min(α+i,k)+min(β+i,k) such points, and therefore `min(α+i,k)+min(β ,k−i) ≤
`k−i+β corresponding classes. Summing this over all i proves (v).

A.3 Computing the action of the Frobenius endomorphism

We continue here our study on the action of the Frobenius π on E[`k]. Given an ordinary
elliptic curve E with `-maximal endomorphism ring, we explicitly compute diagonal
and horizontal bases of E[`k] as defined in the previous section. We will use the latter
basis of E[`k] in Section A.5, to put restrictions on the interpolation problem of our
algorithm.

We suppose that k > h. By Proposition A.10, there exists a Kummer tower F0 ⊂
·· · ⊂ Fk−β such that all the points of E[`k] are rational over Fk−β . The algorithms
presented next assume that the tower has already been computed.

Computation of a diagonal basis

In Algorithm 1 below, we describe how to compute eigenvalues of the Frobenius mod `k

and corresponding eigenvectors in the `k-torsion subgroup. We write Q← divide(`,P)
for the computation of a preimage of P by multiplication by `.
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Algorithm 1 Computing a diagonal basis of E[`k]

Input: E: an ordinary, `-maximal elliptic curve; k: a positive integer;
Output: (Pk,Qk): a basis of E[`k]; λ ,µ ∈ Z/`kZ such that π(Pk) = λPk, π(Qk) = µQk.
1: λ ← 0; µ ← 0; P0,Q0← neutral element of E[`].
2: for i = 0 to k−1 do
3: P′← divide(`,Pi); Q′← divide(`,Qi).
4: compute π|(P′,Q′) =

(
λ+a`i b`i

c`i µ+d`i

)
(mod `i+1).

5: if b = 0 then x← 0; solve equation c`i +((d−a)`i +µ−λ )y = 0;
6: else solve equation c`ix2 +((d−a)`i +µ−λ )x−b`i = 0; y←−cx/b; end if.
7: Pi+1← P′+ yQ′; Qi+1← xP′+Q′.
8: λ ← λ + `i(a+bx); µ ← µ + `i(d + cy).
9: end for

10: return (Pk,Qk,λ ,µ).

Proposition A.11. Algorithm 1 computes a diagonal basis of E[`k] using an expected
O(R(k−β )+ `2M(`k−β )+ `M(`2) log(`) log(`q)) operations in Fq.

Proof. The equation at line 5 or 6 is first divided out by the largest power of ` possible,
which is `min(h,i), then solved modulo `. For i ≤ h− 1, since a = d and b = c = 0, the
solutions are x = y = 0, and steps 5 to 7 do nothing. A straightforward calculation
shows that after each loop the basis (Pi+1,Qi+1) is diagonal.

For i = 0, the basis of E[`](F1) at step 3 is computed by factoring the `-division
polynomial at an expected cost of O(`M(`2) log(`) log(`q)) operations using the Cantor-
Zassenhaus algorithm. Once E[`] has been computed, we can factor the multiplication-
by-` map as a product of two `-isogenies. Then, for any P defined in E(Fi−β ), the
computation of divide(`,P) at Step 3 costs O(R(i−β +1)) operations. Evaluating π(P′)
in Step 4 has a cost of O(`i−βM(`)). Writing π(P′) as a linear combination αP′+βQ′

needs at most `2 point additions, with a cost of `2M(`i−β+1). The cost of solving the
equations at Steps 5 and 6 by exhaustive search is negligible, as are the remaining
operations. Since the cost of each loop grows geometrically, the last loop dominates all
others, and gives the stated complexity.

Computation of a horizontal basis

Using the previous algorithm we can compute a diagonal basis of E[`h+1]. By Proposi-
tion A.7, this gives us a horizontal basis of E[`]. Thanks to Proposition A.8, we can use
this information to improve horizontal points of E[`i] into horizontal points of E[`i+1],
as illustrated in Algorithm 2.

Proposition A.12. Algorithm 2 is correct and computes its output using an expected
O(R(k−β )+ kR(h−β +1)+ k`2M(`h−β+1)) operations in Fq.

Proof. Let Ei be the image curve of φi. We check that at step i of the loop, the
points (Pi,Qi) form a diagonal basis of Ei[`

h+1], and φi has direction λ . The fact that R is
horizontal is then a consequence of Proposition A.8. The two most expensive operations
in the loop are Steps 4 and 5, costing respectively O(R(h−β +1)) and O(`2M(`h−β+1)),
as discussed in the proof of Proposition A.11. They are repeated k times. Finally, Step 7
is dominated by the last divide operation, which costs O(R(k−β )).
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Algorithm 2 Computing a horizontal point of order `k

Input: (P0,Q0): a diagonal basis of E[`h+1]; k: an integer, k ≥ h+1.
Output: R: a horizontal point of E[`k] with direction λ .
1: for i = 1 to k−1 do
2: φi← isogeny with kernel

〈
`hPi−1

〉
3: Qi← φi(Qi−1)
4: P′← divide(`,φi(Pi−1)).
5: Write π(P′) = λP′+bQi for b ∈ Z/`Z and let Pi← P′− (b/µ)Qi.
6: end for
7: return R = φ̂1 ◦ . . .◦ φ̂k−1(divide(`

k−(h+1),Pk−1)).

One application of Algorithm 1 (with input k ← h+ 1) and two applications of
Algorithm 2 allow us to compute a horizontal basis of E[`k]. This could be done directly
with Algorithm 1 instead, but that would require computing in an extension Fk+h−β .

A.4 Interpolation step

After constructing bases (P,Q) of E[`k] and (P′,Q′) of E ′[`k] using the algorithms of
the previous section, our algorithm computes the polynomial with coefficients in Fq
mapping x(P) to x(P′), x(Q) to x(Q′), and the other abscissas accordingly. In this section
we give an efficient algorithm for this specific interpolation problem. The algorithm
appeared in [De 11] in the context of the Artin-Schreier extensions used in Couveignes’
isogeny algorithm; it uses original ideas from [EM03]. We recall this algorithm here,
and adapt the complexity analysis to our setting of Kummer extensions.

We start by tackling a simpler problem. We suppose we have constructed a tower of
Kummer extensions Fq = F0 ⊂ F1 ⊂ ·· · ⊂ Fn, with [F1 : F0] | (`−1), and [Fi+1 : Fi] = `
for any i > 0. Given two elements v,w ∈ Fn \Fn−1, we want to compute polynomials T
and L such that:

• T ∈ Fq[x] is the minimal polynomial of v, of degree d = degT < `n;

• L is in Fq[x], of degree less than d, and L(v) = w.

Observe that, since v,w /∈ Fn−1, we necessarily have v`(d) = n−1, so that `n−1 ≤ d < `n.
Using a fast interpolation algorithm [GG99, Chapter 10.2], the polynomials T and
L could be computed in O

(
nM(`2n) log(`)

)
operations in Fq. We can do much better

by exploiting the form of the Kummer tower, and the Frobenius algorithm given in
Lemma A.2.

Following [De 11], we first compute T , starting from T (0) = x− v. We let σi be
the map that takes all the coefficients of a polynomial in Fn−i[x] to the power #Fn−i−1.
For i = 0, . . . ,n− 1, suppose we know a polynomial T (i) of degree `i in Fn−i[x]. Then,
compute the polynomials T (i, j) given by T (i, j) = σ

j
i

(
T (i)
)
for 0≤ j ≤ `−1, and define

T (i+1) =
b

∏
j=0

T (i, j) with b =

{
`−1 if i < n−1,
d/`n−1 otherwise.

(A.1)

One easily sees that T (i+1) is the minimal polynomial of v over Fn−i+1.

Lemma A.13. The cost of computing T is O(nM(`n+1) log(`)) operations in Fq.
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Proof. At each step i, from the knowledge of T (i) we compute all T (i, j) using Lemma A.2.
The cost for a single polynomial T (i, j) is of O(`i`n−i−1M(`)) operations, i.e. O(`nM(`))
for all O(`) of them. From the T (i, j)’s we compute T (i+1) using a subproduct tree, as
in [GG99, Lemma 10.4]. The result has degree O(`i+1) and coefficients in Fn−i, thus
the overall cost is O(M(`n+1) log(`)). After T (i+1) is computed this way, we can convert
its coefficients to Fn−i−1 at no algebraic cost. Summing over all i, we obtain the stated
complexity.

We can finally proceed with the interpolation itself. First, compute w′ = w/T ′(v)
and let L(0) = w′. Next, for i = 0, . . . ,n−2, suppose we know a polynomial L(i) in Fn−i[x]
of degree less than `i. We compute the polynomials L(i, j) given by L(i, j) = σ

j
i

(
L(i)
)
and

L(i+1) =
b

∑
j=0

L(i, j) T (i+1)

T (i, j)
, b defined as in Eq. (A.1).

As shown in [De 11], L(n) is the polynomial L we are looking for.

Proposition A.14. Given v,w ∈ Fn \Fn−1, the cost of computing the minimal polyno-
mial T ∈ Fq[x] of v and the interpolating polynomial L ∈ Fq[x] such that L(v) = w is
O(nM(`n+1) log(`)) operations in Fq.

Proof. After the polynomials T (i) have been computed, we need to compute T ′(v).
This is done by means of successive Euclidean remainders, since T ′(v) = (((T ′ mod
T (1)) mod T (2)) · · · mod T (n)). At stage i, we have to compute the Euclidean division of a
polynomial of degree O(`n−i+1) by one of degree O(`n−i) in Fi[x]. Using the complexities
from Section A.1 we deduce that each division can be done in time O(M(`n+1)), for a
total of O(nM(`n+1)) operations. Then, computing w′ = w/T ′(v) takes O(M(`n) log(`n))
operations.

Finally, at each step i, the polynomials L(i, j) are computed at a cost of O(`nM(`)), as
in the proof of Lemma A.13. The computation of L(i+1) uses the same subproduct tree as
for the computation of T (i), requiring O(log`) additions, multiplications and divisions of
polynomials of degree O(`i+1) with coefficients in Fn−i, for a total of O(M(`n+1) log(`)).
Summing over all i, the complexity statement follows readily.

We end with the general problem of interpolating a polynomial in Fq[x] at points of
Fn.

Proposition A.15. Let (v1,w1), . . . ,(vs,ws) be pairs of elements of Fn, let ti be the degree
of the minimal polynomial of vi, and let t = ∑ ti. The polynomials

• T ∈ Fq[x] of degree t such that T (vi) = 0 for all i, and

• L ∈ Fq[x] of degree less than t such that L(vi) = wi for all i

can be computed using O
(
M(t) log(s)+nM(`2t) log(`)

)
operations in Fq.

Proof. The polynomial T is simply the product of all the minimal polynomials Ti. Let
ni = v`(ti), so that vi,wi ∈ Fni+1 \Fni , and `ni ≤ ti < `ni+1. We convert (vi,wi) to a pair
of elements of Fni+1 at no algebraic cost, then we compute Ti as explained previously
at a cost of O(nM(`ni+2) log(`)) operations. Bounding `ni by ti, summing over all i, and
using the superlinearity of M, we obtain a total cost of O(nM(`2t) log(`)) operations.
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Simultaneously, we compute all the polynomials Li such that Li(vi) = wi, at the same
cost.

Then we arrange the Ti’s into a binary subproduct tree and multiply them together.
A balanced binary tree, though not necessarily optimal, has a depth of O(log(s)), and
requires O(M(t)) operations per level. Thus we can bound the cost of computing T by
O(M(t) log(s)).

Finally, using the same subproduct tree structure, we apply the Chinese remain-
der algorithm of [GG99, Chapter 10] to compute the polynomial L at the same cost
O(M(t) log(s)).

A.5 The complete algorithm

We finally come to the description of the full algorithm. Given two j-invariants, defining
two elliptic curves E and E ′, and an integer r, we want to compute an isogeny ψ : E→ E ′

of degree r. Since the algorithms of Section A.3 apply to curves on top of volcanoes
with cyclic crater, we first need to determine a small Elkies prime ` for E and E ′, and
then reduce to an explicit isogeny problem on the crater of the `-volcanoes. These steps
are discussed and analyzed next.

Finding a suitable `-volcano

Our algorithm uses an Elkies prime `. Since dK is not assumed to be known yet, we
need to be able to compute the height h of the volcano, the shape of its crater, as well
as the shortest `-isogeny chain from E to the crater.

The algorithms of Fouquet and Morain [FM02] compute the height h and find
a curve Emax on the crater at the cost of O(`h2) factorizations of the `-th modular
polynomial Φ`. The polynomial Φ` is computed using Õ(`3 log(`)) boolean operations,
then each factorization costs an expected O(M(`) log(`) log(`q)) operations using the
Cantor-Zassenhaus algorithm (more efficient methods for special instances of volcanoes
are presented in [Mir+05] and in [IJ13], but we do not discuss them). Working on E and
E ′, we compute the shortest path of `-isogenies α : E → Emax, α ′ : E ′→ E ′max linking
the curves E,E ′ to the craters. We still have to determine the shape of these craters.
Since the height h of the volcano is known, using Algorithm 1 we can compute a matrix
of π|Emax[`

h+1]. If this matrix has two distinct eigenvalues then the crater is cyclic,
otherwise it is not.

By Proposition A.9, the depth of E and E ′ below their respective craters is the
same. By Proposition A.9 3, the curves Emax and E ′max are again r-isogenous; we can
use our algorithm to compute such an isogeny ψmax. Then, since ` is coprime to r,
ψ = (α ′)−1 ◦ψmax ◦α is well defined and is the required r-isogeny. Its kernel can be
computed in O(hM(`r) log(`r)) operations by evaluating the dual isogeny α̂ on the
kernel of ψmax via a sequence of resultants.

Interpolating the isogeny

We now assume that both curves E,E ′ have `-maximal endomorphism rings. We fix
bases of E[`k], E ′[`k] and write π,π ′ for the matrices of the Frobenius. Since ψ is
rational, its matrix satisfies the relation π ′ ·ψ = ψ ·π in Z2×2

` and hence in (Z/`kZ)2×2.
If diagonal bases of E[`k],E ′[`k] are used, then, since π is a cyclic endomorphism

of Z2
` , this condition seems to ensure that ψ is a diagonal matrix; however, Z/`kZ is

not an integral domain and π is congruent, modulo `h, to the scalar matrix λ , so we



The complete algorithm 65

can only say that ψ (mod `k−h) is diagonal. If on the other hand we choose horizontal
bases of E[`k],E ′[`k] then, by Proposition A.9 2, we know that ψ is a diagonal matrix.

We then enumerate all the `2k−2 invertible diagonal matrices; for each matrix M,
we interpolate the action of M on E[`k] as a rational fraction, and verify that it is an
r-isogeny. The successful interpolation will be our explicit isogeny ψ . Precisely, we
interpolate using the abscissas of non-zero points of E[`k]; there are (`2k−1)/2 distinct
such abscissas (or 22k−1 +1 when `= 2). The isogeny ψ acts on abscissas as a rational
fraction of degrees (r,r− 1), which is thus defined by 2r coefficients; knowing this
rational function allows us to find the kernel of ψ , and recover ψ itself using Vélu’s
formulas. For this method to work, we therefore select the smallest k ≥ h+ 1 such
that `2k−1 > 4r.

Summarizing, our algorithm for two `-maximal curves proceeds as follows:

1. Use Algorithms 1 and 2 to compute horizontal bases (P,Q),(P′,Q′) of E[`k],E ′[`k];

2. Compute the polynomial T vanishing on the abscissas of 〈P,Q〉 as in Section A.4;

3. For each invertible diagonal matrix
(

a 0
0 b

)
in (Z/`kZ)2×2:

a) compute the interpolation polynomial La,b such that La,b(x(uP+ vQ)) =
x(auP′+bvQ′) for all u,v ∈ Z/`kZ;

b) Use the Cauchy interpolation algorithm of [GG99, Chapter 5.8] to compute
a rational fraction Fa,b ≡ La,b (mod T ) of degrees (r,r−1);

c) If Fa,b defines an isogeny of degree r, return it and stop.

Proposition A.16. Assuming that `h <
√

r, the algorithm above computes an isogeny
ψ : E→ E ′ in expected time O

((
r`2M(r`4)+M(r`3) log(`q)

)
log(r) log(`)

)
.

Proof. By definition of k, we know that `2k ∈ O(r`2). By Proposition A.10, there is
a β < h such that E[`k] is contained in E(Fn) with n = k−β . We thus construct the
Kummer tower F0 ⊂ ·· · ⊂ Fn, and we do the precomputations required by Lemma A.2
at a cost of O(`M(`) log(q)).

Bounding h by k − 1, Step 1 costs on average O(kR(k − β ) + k`2M(`
√

r) +
`M(`2) log(`) log(`q)) according to Propositions A.11 and A.12. Using the most
pessimistic estimates of Section A.1, we see that this cost is bounded by
O(M(r`3) log(r) log(`) log(`q)).

By Proposition A.10 5, there are at most O(k · `k+β ) Galois classes in E[`k]. In order
to apply the algorithms of Section A.4, we need to compute a representative for each
class. Each representative is computed from the basis (P,Q) using point multiplica-
tion by two scalars ≤ `k in the field Fn, which costs O(M(`n) log(`k)) operations. We
thus have a total cost of O(kM(`2k) log(`k)) ⊂ O(M(r`2) log(r)2) to compute all such
representatives.

Then, using Proposition A.15, where the total degree is t = (`2k−1)/2∈O(r`2), and
the number of interpolation points is s ∈O(k ·`k+β ), we can compute the polynomials T
and La,b at a cost of O(M(r`4) log(r) log(`)). The cost of computing Fa,b, and identifying
the isogeny, is dominated by that of computing La,b [De 11, §3.3]. Finally, in general
approximately `2k = O(r`2) candidate matrices must be tried before finding the isogeny.
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Overall complexity

By a result of Shparlinski and Sutherland [SS14, Theorem 1], for almost all primes q
and curves E/Fq, for L≥ log(q)ε for any ε > 0, asymptotically half of the primes `≤ L
are Elkies primes. Hence, we expect to have enough small Elkies primes to apply our
algorithm. The following theorem states a worst case bound depending on r and q
alone.

Theorem. For almost all primes q and curves E,E ′ over Fq, it is possible to solve the
“Explicit Isogeny Problem” in expected time O

(
rM(r log(q)6) log(r) loglog(q)

)
.

Proof. Given a curveE, we search for the smallest Elkies prime satisfying the conditions
of Proposition A.16. As a special case of [SS14, Theorem 1], we can take L ∈ O(log(q))
such that the product of all Elkies primes `≤ L exceeds Ω(

√
q). On the other hand,

we discard those primes ` ≤ L for which the height h satisfies `h >
√

r; since those
discarded primes are divisors of

√
dK , their product is at most O(

√
q). This shows

that there remains enough “good” Elkies primes in J1,LK, so that in the worst case
` ∈ O(log(q)).

The most expensive steps in Section A.5 are the computation and the factorization
of the modular polynomials for all primes up to `. This is well within O(log(q)6). The
stated complexity follows then from substituting `= O(log(q)) in Proposition A.16.

A.6 Conclusion and experimental results

In the previous sections we have obtained a Las Vegas algorithm with an interesting
asymptotic complexity. In particular, in the favorable case where `= O(1), the running
time of the algorithm is quasi-quadratic in the isogeny degree r and quasi-linear in logq.
Thus we expect it to be practical, and a substantial improvement over Couveignes’
original algorithm, at least when small parameters ` and h can be found quickly. A
large ` or h adversely affects performance in the following ways:

• All modular polynomials up to Φ` must be computed or retrieved from tables.

• All degrees (`2k−1)/4≤ r < (`2k+1−1)/4 require essentially the same compu-
tational effort, thus resulting in a staircase behavior when r increases.

• Because we must have k > h, all degrees r smaller than (`2h+2−1)/4 require the
same computational effort.

For these reasons, it is wisest in practice to set small a priori bounds on ` and h, and
only run our algorithm when parameters within these bounds can be found.

To validate our findings, we implemented a simplified version of our main algorithm
using SageMath v7.1 [Sage]. In our current implementation, we only handle the case
` = 2 and we work only with curves on the crater of a 2-volcano. We implemented
the construction of Kummer towers described in [DS15], in the favorable case where
p = 1 mod 4. Source code and benchmark data are available in the GitHub project
https://github.com/Hugounenq-Cyril/Two_curves_on_a_volcano/.

We ran benchmarks on an Intel Xeon E5530 CPU clocked at 2.4GHz. We fixed a
base field Fq and an elliptic curve E with height h= 3 and β = 2, then ran our algorithm
to compute the multiplication-by-r isogeny E→ E, for r increasing. The torsion levels
involved in the computations varied from 23 to 28. Figure A.2 (left) shows the running
times for the computation of the horizontal basis of E[`k], and for one execution of the

https://github.com/Hugounenq-Cyril/Two_curves_on_a_volcano/


Galois classes in E[`k] 67

 0.0625
 0.25

 1
 4

 16
 64

 256
 1024
 4096

 4  16  64  256  1024  4096

se
co

nd
s

r

Algorithms 1+2
Interpolation

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 4  16  64  256  1024  4096

se
co

nd
s

r

p = 101
p ≈ 230

p ≈ 262

p ≈ 2252

Figure A.2: Left: comparison of horizontal basis computation and interpolation phases,
for a fixed curve defined over F101, and increasing r. Right: Comparison of one in-
terpolation phase for F101, F230+669, F262+189 and F2252+421, and increasing r. Plots in
logarithmic scale.

interpolation step. Running times are close to linear in r, as expected. The staircase
behavior of our algorithm is apparent from the plot. Since the interpolation steps must
be repeated ∼ r times, we focus on this step to compare the running time for different
base fields. In Figure A.2 (right) we observe that the dependency in q, although much
better than in Couveignes’ original algorithm, is higher than what the theoretical
analysis would predict. This may due to low-level implementation details of SageMath,
which, in the current implementation, are beyond our control.

In conclusion, our algorithm shows promise of being of practical interest within se-
lected parameter ranges. Generalizing it to work with Atkin primes would considerably
enlarge its applicability range; we hope to develop such a generalization in a future
work. On the practical side, we plan to work on two improvements that seem within
reach. First, the reduction from generic curves to `-maximal curves seems superfluous
and unduly expensive: it would be interesting to generalize the concept of horizontal
bases to any curve. Second, a multi-modular approach interpolating on a torsion group
of composite order is certainly possible, and could improve the running time of our
algorithm by allowing it to work in smaller extension fields.

A.7 Galois classes in E[`k]

We give here the full decomposition of E[`k] in Galois classes. This is a more precise
form of Proposition A.10 (v).

Proposition A.17. Let E be an elliptic curve with `-maximal endomorphism ring.
Assume ` 6= 2, λ ≡ µ ≡ 1 (mod `) and let α = v`(λ −1),β = v`(µ−1). Write ν(x,y) =
min(x+y,x+β −1,y+α−1) and ρ(x,y) = x+y−ν(x,y) = max(0,x−α +1,y−β +1).
The decomposition of the group E[`k] in Galois classes is as follows:

1. for i, j = 1, . . . ,k−1: (`−1)2 · `ν(i, j) classes of size `ρ(i, j);

2. for i = 1, . . . ,k− 1: (`− 1) · `min(i,α−1) classes of size `max(0,i−α+1), and (`− 1) ·
`min(i,β−1) classes of size `max(0,i−β+1);

3. the `2 singleton classes of E[`].
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Proof. Fix a basis (P,Q) of E[`k] such that π(P) = λP, π(Q) = µQ. Studying the Galois
orbits of E[`k] means studying the map Z2

` → Z2
` ,(x,y) 7→ (λx,µy). In other words, the

orbits correspond to elements of Z2
` modulo the multiplicative subgroup generated

by (λ ,µ). An easy way to describe this is to consider a multiplicative lattice in (Q×` )
2.

Let ξ be a primitive (`−1)-th root of unity in Z`. Then by [Ser70, Théorème II.3.2],
themap f (x,y,z)= `x ·ξ y ·exp(`z) is a group isomorphism betweenZ×(Z/(`−1)Z)×Z`

and Q×` . For i ∈ J0,k−1K and c ∈ Z/(`−1)Z, let V (i,c) be the image in Z/`kZ of the
map f (k−1− i,c,–): then the multiplicative structure of V (i,c) is that of a principal
homogeneous space under Z/`iZ. We also defineW (i, j,c,d) =V (i,c) ·P +V ( j,d) ·Q⊂
E[`k].

Since λ ≡ 1 (mod `), we may write λ = f (0,0,u`α−1) and µ = f (0,0,v`β−1) for
some u,v ∈ Z×` . This implies that the set W (i, j,c,d) is stable under Galois. Moreover,
the orbits of W (i, j,c,d) correspond bijectively to points of a fundamental domain of

the lattice Λi, j generated by the columns of
(
`i 0 u`α−1

0 ` j v`β−1

)
, whereas the size of each

orbit is [(Z/`iZ)× (Z/` jZ) : Λi, j]. By using elementary column manipulations, we
find that the covolume of Λi, j is `ν(i, j), hence the point (i) of the proposition. (The
case i = j = 0 yields singleton classes in E[`]).

The union of all the sets W ( j, i,c,d) is exactly the set of all xP+ yQ for x,y 6= 0. We
obtain the classes of (ii) by considering the sets V (i,c) ·P and V ( j,d) ·Q.

We now state the equivalent proposition when `= 2. The proof is much the same
as in the odd case.

Proposition A.18. Let E be an elliptic curve with 2-maximal endomorphism ring.
Assume λ ≡ µ ≡ 1 (mod 4) and let α = v2(λ − 1),β = v2(µ − 1). Write ν2(x,y) =
min(x+y,x+β−2,y+α−2) and ρ2(x,y)= x+y−ν2(x,y)=max(0,x−α+2,y−β +2).
The decomposition of the group E[2k] in Galois classes is as follows:

1. for i, j = 1, . . . ,k−2: 4 ·2ν2(i, j) classes of size 2ρ2(i, j);

2. for i = 1, . . . ,k− 2: 4 · 2min(i,α−2) classes of size 2max(0,i−α+2), and 4 · 2min(i,β−2)

classes of size 2max(0,i−β+2).

3. the 16 singleton classes of E[4].

Note that if λ or µ ≡−1 (mod 4) then by replacing the base field by a quadratic
extension, we can always ensure that the condition λ ≡ µ ≡ 1 (mod 4) is satisfied.
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B Fast arithmetic for the algebraic closure of finite fields

Abstract

We present algorithms to construct and do arithmetic operations in the al-
gebraic closure of the finite field Fp. Our approach is inspired by algorithms for
constructing irreducible polynomials, which first reduce to prime power degrees,
then use composita techniques. We use similar ideas to give efficient algorithms
for embeddings and isomorphisms.

B.1 Introduction

Several computer algebra systems or libraries, such as Magma [BCP97], Sage [Sage],
NTL [NTL], PARI [PARI] or Flint [Har10], offer built-in features to build and compute
in arbitrary finite fields. At the core of these designs, one finds algorithms for building
irreducible polynomials and algorithms to compute embeddings and isomorphisms. The
system used in Magma (one of the most complete we know of) is described in [BCS97a].

Previous algorithms typically rely on linear algebra techniques, for instance to de-
scribe embeddings or isomorphisms (this is the case for the algorithms in [BCS97a], but
also for those in [Len91; All02a]). Unfortunately, linear algebra techniques have cost
at least quadratic in the degree of the extensions we consider, and (usually) quadratic
memory requirements. Our goal here is to replace linear algebra by polynomial arith-
metic, exploiting fast polynomial multiplication to obtain algorithms of quasi-linear
complexity. As we will see, we meet this goal for several, but not all, operations.
Setup. Let p be a prime (that will be fixed throughout this paper). We are interested
in describing extensions Fpn of Fp; such an extension has dimension n over Fp, so
representing an element in it involves n base field elements.

It is customary to use polynomial arithmetic to describe these extensions (but
not necessary: Lenstra’s algorithm [Len91] uses a multiplication tensor). For an
extension degree n, a first step is to construct an irreducible polynomial Qn of degree n
in Fp[x]. Identifying Fpn with Fp[x]/〈Qn〉, operations (+,×,÷) in Fp[x]/〈Qn〉 all take
quasi-linear time in n.

However, this is not sufficient: we also want mechanisms for e.g. field embeddings.
Given irreducible polynomials Qm and Qn overFp, with deg(Qm)=m dividing deg(Qn)=
n, there exist algorithms to embed Fp[x]/〈Qm〉 in Fp[x]/〈Qn〉 (for the system to be
consistent, these embeddings must be compatible [BCS97a]). However, most algorithms
use linear algebra techniques.

To bypass these issues, we use an approach inspired by Shoup’s algorithm for
computing irreducible polynomials [Sho90; Sho94b] (see also [CL13; LS08a]): first
reduce to the case of prime power degrees, then use composita techniques, in a manner
that ensures compatibility of the embeddings automatically.
Background: towers. Suppose that for any prime `, an `-adic tower over Fp is available.
By this, we mean a family of polynomials (T`,i)i≥1, with T`,i ∈ Fp[x1, . . . ,xi], monic of
degree ` in xi, such that for all i the ideal 〈T`,1, . . . ,T`,i〉 is maximal in Fp[x1, . . . ,xi]. Our
model of the field with p`

i elements could then beK`i = Fp[x1, . . . ,xi]/〈T`,1, . . . ,T`,i〉, but
we prefer to work with univariate polynomials (the cost of arithmetic operations is
higher in the multivariate basis).

For 1≤ i≤ n, let then Q`,i be the minimal polynomial of xi in the extension K`n/Fp.
This polynomial does not depend on n, but only on i; it is monic, irreducible of degree
`i in Fp[xi] and allows us to define Fp`i as Fp[xi]/〈Q`,i〉. For 1 ≤ i ≤ j ≤ n, let further
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Q`,i, j−i be the minimal polynomial of x j in the extension Fp[xi]/〈Q`,i〉 ↪→K`n (as above,
it does not depend on n). This polynomial is monic, irreducible of degree ` j−i in
Fp`i [x j] = Fp[xi]/〈Q`,i〉[x j].

Thus, Fp[x j]/〈Q`, j〉 and Fp[xi,x j]/〈Q`,i,Q`,i, j−i〉 are two models for F
p` j . Provided

conversion algorithms between these representations are available, we can perform
embeddings (that will necessarily be compatible) between different levels of the `-adic
tower, i.e. extensions of degrees (`i)i≥1.

Such towers, together with efficient conversion algorithms, were constructed in
the cases ` = p in [Can89; Cou00; DS12], ` = 2 in [DS15], and for other values of `
in [DDS13]. Thus, it remains to give algorithms to “glue” towers defined for different
values of `. This is the purpose of this paper.
Our contribution. The algorithms used to construct towers are inspired by those used
in [Sho90; Sho94b; CL13] to build irreducible polynomials. Also used in these references
is the following idea: let Qm(x) and Qn(y) be irreducible polynomials over Fp, with
coprime degrees m,n > 1, and having respectively (ai)1≤i≤m and (b j)1≤ j≤n as roots in
an algebraic closure of Fp. Then their composed product Qmn = ∏1≤i≤m,1≤ j≤n(z−aib j)
is irreducible of degree mn in Fp[z].

In this paper, we use an algebraic complexity model, where the cost of an algorithm
is counted in terms of the number of operations (+,×,÷) in Fp. If the goal is building
irreducible polynomials, then computing Qmn is enough: an algorithm given in [Bos+06]
has quasi-linear cost in mn. Our goal here is to give algorithms for further operations:
computing embeddings of the form ϕx : Fp[x]/〈Qm〉→ Fp[z]/〈Qmn〉 or ϕy : Fp[y]/〈Qn〉→
Fp[z]/〈Qmn〉, and the isomorphism Φ : Fp[x,y]/〈Qm,Qn〉 → Fp[z]/〈Qmn〉 or its inverse.

Standard solutions to these questions exist, using modular composition tech-
niques: once the image S = Φ(x) is known, computing ϕx(a) amounts to computing
a(S) mod Qmn; similarly, computing Φ(b), for b in Fp[x,y]/〈Qm,Qn〉, amounts to com-
puting b(S,T ) mod Qmn, with T = Φ(y). This can be done using the Brent and Kung
algorithm [BK78]: the resulting cost is O(mn(ω+1)/2)⊂ O(mn1.69) for ϕx (see the analy-
sis in [Sho94b]) and O((mn)(ω+1)/2)⊂ O(m1.69n1.69) for Φ or its inverse [PS13b]. Here,
we denote by ω a constant in (2,3] such that one can multiply matrices of size m over
any ring A using O(mω) operations (+,×) in A; using the algorithms of [CW90; Vas12],
we can take ω ≤ 2.38.

Our main result improves on these former ones. We denote byM : N→N a function
such that for any ring A, polynomials in A[x] of degree at most n can be multiplied in
M(n) operations (+,×) in A, and we make the usual super-linearity assumptions on
M [GG99, Chapter 8].

Theorem B.1. One can apply ϕx (resp. ϕy) to an element of Fp[x]/〈Qm〉 (resp.
Fp[x]/〈Qn〉), or invert it on its image, using O(nM(m)+mM(n)) operations in Fp.

Suppose that m ≤ n. Then one can apply Φ to an element of Fp[x,y]/〈Qm,Qn〉 or
invert it using either O(m2M(n)) or O(M(mn)n1/2 +M(m)n(ω+1)/2) operations in Fp.

Using the O˜ notation to neglect polylogarithmic factors, we can take M(n) ∈ O˜(n).
Our algorithm for embeddings and their inverses has quasi-linear cost O˜(mn). Those
for Φ or Φ−1 have respective costs O˜(m2n) and O˜(mn(ω+1)/2); the minimum of the two
is in O˜((mn)2ω/(ω+1)); for ω ∈ (2,3], the resulting exponent is in (1.333 . . . ,1.5].

If S = Φ(x) and T = Φ(y) are known, a result by Kedlaya and Umans [KU11] for
modular composition, and its extension in [PS13a], yield an algorithm with bit com-
plexity essentially linear in mn and log(p) on a RAM. Unfortunately, making these



74 Fast arithmetic for the algebraic closure of finite fields

algorithms competitive in practice is challenging; we are not aware of any implemen-
tation of them. It is also worth noting that our algorithms apply in a more general
setting than finite fields (mild assumptions are required).
Outline. Section B.2 presents basic algorithms for polynomials and their transposes.
Section B.3 introduces the main idea behind our algorithms: the trace induces a duality
on algebras of the form Fp[x]/〈Q〉, and some conversion algorithms are straightforward
in dual bases; the algorithms are detailed in Section B.4. Section B.5 explains how the
results in this paper can be used in order to construct the algebraic closure of Fp. We
conclude with experimental results.

B.2 Preliminaries

We recall first previous results concerning polynomial arithmetic and transposition
of algorithms. In all this section, a ground field k, not necessarily finite, is fixed. For
integers m,n, we denote by k[x]m (resp. k[x,y]m,n) the set of polynomials P in k[x] with
deg(P)< m (resp. P in k[x,y] with deg(P,x)< m and deg(P,y)< n).

Polynomial multiplication and remainder

We start with some classical algorithms and their complexity. For all the algorithms that
follow, all polynomials are written on the canonical monomial basis (this is innocuous
for the moment, but other bases will be discussed below).

The product of two polynomials of respective degrees at most m and n can be
computed in M(max(m,n)) operations in k. If P is a monic polynomial of degree m in
k[x], for n≥ 1, we let rem(.,P,n) be the operator

rem(.,P,n) : k[x]n → k[x]m
a 7→ a mod P.

For n≤ m, this is free of cost. For n > m, this can be computed in time O(nM(m)/m)
using the Cook-Sieveking-Kung algorithm and blocking techniques [Bos10, Ch. 5.1.3].
Defining A = k[x]/〈P〉, and choosing a fixed b ∈ A, we can then define the mapping
mulmod(.,b,P), which maps a ∈ A to ab mod P; it can be computed in time O(M(m)).
Finally, given an integer m, the reversal operator in length m is

rev(.,m) : k[x]m → k[x]m
a 7→ xm−1a(1/x).

Duality and the transposition principle

The transposition principle is an algorithmic result which states that, given an algo-
rithm that performs a matrix-vector product u 7→Mu, one can deduce an algorithm
with essentially the same cost which performs the transposed matrix-vector product
v 7→Mtv [BCS97b, Ch. 13].

Following [De 10], we give here a more abstract presentation of the transposition
principle, using the algebraic theory of duality (see [Bou07, Ch. IX.1.8]). The added
level of abstraction will pay off by greatly simplifying the proofs of the next sections.

Let E and F be k-vector spaces, with dim(E) = dim(F)< ∞, and suppose that 〈., .〉 :
E×F → k is a non-degenerate bilinear form. Then, to any vector space basis ξξξ = (ξi)i
of E, we can associate a unique dual basis ξξξ

∗
= (ξ ∗i )i of F such that 〈ξi,ξ

∗
j 〉= δi, j (the
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Kronecker symbol). In other words, given a in F , the coefficients (ai) of a on the basis
ξξξ
∗ are given by ai = 〈ξi,a〉.
For example, denote by E∗ the dual space of E, i.e. the k-linear forms on E. The

bilinear form on E×E∗ defined by with 〈v, `〉 = `(v) for all v ∈ E and ` ∈ E∗ is non-
degenerate. This is indeed the canonical example, and any non-degenerate form, is
isomorphic to this one. We will see in the next section another family of examples, with
E = F .

Let E ′,F ′ be two further vector spaces, with dim(E ′) = dim(F ′)< ∞ and let 〈., .〉′ be
a bilinear form E ′×F ′→ k. Then, to any linear mapping u : E→ E ′, one associates its
dual (with respect to 〈., .〉 and 〈., .〉′), which is a linear mapping ut : F ′→F characterized
by the equality 〈u(a),b′〉′ = 〈a,ut(b′)〉, for all a ∈ E and b′ ∈ F ′.

Let as above ξξξ be a basis of E, and let ξξξ
∗ be the dual basis of F ; consider as well a

basis υυυ of E ′ and its dual basis υυυ∗ of F ′. If M is the matrix of u in the bases (ξξξ ,υυυ), the
matrix of ut in the bases (υυυ∗,ξξξ ∗) is the transpose of M.

As presented in [BLS03; De 10], the transposition principle is an algorithmic
technique that, given an algorithm to compute u : E → E ′ in the bases (ξξξ ,υυυ), yields
an algorithm for the dual map ut : F ′→ F in the bases (υυυ∗,ξξξ ∗). The two algorithms
have same cost, up to O(dim(E)+dim(E ′)). In a nutshell, starting from an algorithm
relying on a few basic operations (such as polynomial or matrix multiplication), its
transpose is obtained by transposing each basic subroutine, then reversing their order.

Let us briefly review the transposes of operations described in the previous subsec-
tion. The transpose of polynomial multiplication is described in [BLS03]; it is closely
related to the middle product [HQZ04]. Let next P be monic of degree m, and define
A = k[x]/〈P〉. As shown in [BLS03], the dual map of rem

remt(.,P,n) : A∗ → k[x]∗n

is equivalent to linear sequence extension: it takes as input the initial m values of
a linear recurring sequence of minimal polynomial P, and outputs its first n values.
The transposed version of the Cook-Sieveking-Kung fast Euclidean division algorithm
yields an algorithm with cost O(nM(m)/m) operations in k [GS92; Sho99].

For a fixed b ∈ A, the transpose of mulmod is the map

mulmodt(.,b,P) : A∗ → A∗

` 7→ b · `,

where b · ` is defined by (b · `)(a) = `(ab). Algorithms for mulmodt have been subject to
much research (for instance, Berlekamp’s bit serial multiplication [Ber82] is a popular
arithmetic circuit for mulmodt in the case k = F2); algorithms of cost O(M(m)) are
given in [Sho99; BLS03].

Lastly, the reversal operator on k[x]m is its own transpose.

B.3 Trace and duality

Next, we discuss some classical facts about the trace form, and give algorithms to
change between monomial bases and their duals. In all this section, k is a perfect field.
General references for the following are [Kun86; CLO05].
Traces in reduced algebras. Let s be a positive integer and I a zero dimensional radical
ideal in k[x1, . . . ,xs]. Thus, A = k[x1, . . . ,xs]/I is a reduced k-algebra of finite dimension
d, where d is the cardinality of V =V (I)⊂ k

s (in general, A is not a field).
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Let a be in A. As we did in the case of one variable, we associate to a the endomor-
phism of multiplication-by-a Ma : A→ A given by Ma(b) = ab. Even though A may not
be a field, we still define the minimal polynomial of a as the minimal polynomial of Ma;
since I is radical, this polynomial is squarefree, with roots a(x), for x in V . Similarly,
the trace of a is the trace of Ma, and denote it by τI(a). Because I is radical, the trace
defines a non-degenerate bilinear form on A×A, given by 〈a,b〉I = τI(ab).

Thus, to any basis ξξξ = (ξi)0≤i<d of A, one can associate a dual basis ξξξ
∗
= (ξ ∗i )0≤i<d ,

such that 〈ξi,ξ
∗
j 〉I = δi, j for all i, j. It will be useful to keep in mind that for a ∈ A, its

expression on the dual basis ξξξ
∗ is a = ∑0≤i<d〈a,ξi〉Iξ ∗i .

We now describe algorithms for converting between the monomial basis and its dual,
in two particular cases, involving respectively univariate and bivariate polynomials. In
both cases, our conclusion will be that such conversions have quasi-linear complexity.
Univariate conversion. Let P be monic of degree m and squarefree in k[x], and define
A = k[x]/〈P〉. We denote by P′ its derivative and by τP the trace modulo the ideal 〈P〉.

The k-algebra A is endowed with the canonical monomial basis ξξξ = (xi)0≤i<m. In
view of what was said in the previous subsection, the coefficients of an element a ∈ A
on the dual basis ξξξ

∗ are the traces τP(axi)0≤i<m. The following lemma shows that the
generating series of these traces is rational, with a known denominator; this will be
the key to the conversion algorithm. This is a restatement of well-known results, see
for instance the proof of [Rou99, Theorem 3.1].

Lemma B.2. For a in A, the following holds in k[[x]]:

∑
i≥0

τP(axi)xi =
rev(P′a mod P,m)

rev(P,m+1)
.

Some well-known algorithms to convert between ξξξ and ξξξ
∗ follow easily. In these

algorithms, and all that follows, input and output are vectors (written in sans serif
font).

Algorithm 1: MonomialToDual(a,P)

Input a = (ai)0≤i<m ∈ km,
P monic squarefree in k[x] of degree m
Output (τP(axi))0≤i<m, with a = ∑0≤i<m aixi

1. T = 1/rev(P,m+1) mod xm

2. b = rev(P′∑0≤i<m aixi mod P,m)T mod xm

3. return (coefficient(b,xi))0≤i<m

Algorithm 2: DualToMonomial(b,P)

Input b = (bi)0≤i<m ∈ km,
P monic squarefree in k[x] of degree m
Output (ai)0≤i<m such that τP(∑0≤i<m aixi+ j) = b j for all j

1. S = 1/P′ mod P
2. b = rev(P,m+1)∑0≤i<m bixi mod xm

3. c = rev(b,m)
4. d = cS mod P
5. return (coefficient(d,xi))0≤i<m
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Lemma B.3. Algorithms 1 and 2 are correct. The former uses O(M(m)) operations in
k, the latter O(M(m) log(m)). If the polynomial S = 1/P′ mod P is known, the running
time of Algorithm 2 drops to O(M(m)).

Proof. Correctness follows from Lemma B.2. Once we point out that power series
inversion modulo xm can be done in time O(M(m)), the running time analysis of the
former is straightforward. For Algorithm 2, the dominant part is the computation
of S, which takes time O(M(m) log(m)) by fast XGCD; all other steps take O(M(m))
operations in k.

Bivariate conversions. Now we consider two monic squarefree polynomials P in k[x] of
degree m, and Q in k[y] of degree n. We define A = k[x,y]/I, with I = 〈P,Q〉, then A has
the canonical monomial basis (xiy j)0≤i<m,0≤ j<n. We denote by τI the trace modulo I,
and by τP and τQ the traces modulo respectively 〈P〉 and 〈Q〉.

In addition to its monomial basis, A can be endowed with a total of four natural
bases, which are described as follows. Let ξξξ = (xi)0≤i<m and υυυ = (yi)0≤ j<n be the
monomial bases of respectively k[x]/〈P〉 and k[y]/〈Q〉; let ξξξ

∗ and υυυ∗ be their respective
dual bases, with respect to τP and τQ. The monomial basis seen above is ξξξ⊗υυυ ; the other
combinations ξξξ

∗⊗υυυ , ξξξ⊗υυυ∗ and ξξξ
∗⊗υυυ∗ are bases of A as well. After a precomputation

of cost O(M(m) log(m)+M(n) log(n)), Lemma B.3 shows that conversions between any
pair of these bases can be done using O(nM(m)+mM(n)) operations in k (by applying
the univariate conversion algorithms n times x-wise and / or m times y-wise). Using
fast multiplication, this is quasi-linear in the dimension mn of A.

The following easy lemma will help us exhibit the duality relationships between
these bases; it follows from the fact that A is the tensor product of k[x]/〈P〉 and k[y]/〈Q〉.

Lemma B.4. Let b be in k[x]/〈P〉 and c in k[y]/〈Q〉. Then we have τI(bc) = τP(b) τQ(c).

This lemma implies that ξξξ ⊗υυυ and ξξξ
∗⊗υυυ∗ are dual to one another with respect to

〈., .〉I , as are ξξξ
∗⊗υυυ and ξξξ ⊗υυυ∗.

B.4 Embedding and isomorphism

This section contains the main algorithms of this paper. We consider two squarefree
polynomials P(x) and Q(y) of respective degrees m and n, with coefficients in a perfect
field k. Let us then set A = k[x,y]/I, where I is the ideal 〈P(x),Q(y)〉 in k[x,y]. In all
this section, we assume that xy is a generator of A as a k-algebra.

The main example we have in mind is the following: k is a finite field and both P and
Q are irreducible, with gcd(m,n) = 1. Then our assumption is satisfied and in addition
A is a field, namely, the compositum of the fields k[x]/〈P〉 and k[y]/〈Q〉, see [BC87].
More generally, if we let (ri)i<m be the roots of P in an algebraic closure of k, and let
(s j) j<n be the roots of Q, then as soon as the products ris j are pairwise distinct, xy
generates A as a k-algebra.

Let R ∈ k[z] be the minimal polynomial of xy in the extension A/k (equivalently, the
roots of R are the products ris j); this polynomial is known as the composed product of P
and Q, and we will denote it R = P�Q. As k-algebras, we have A' k[x]/〈R〉, so there
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exist embeddings ϕx, ϕy, and an isomorphism Φ of the form

ϕx : k[x]/〈P〉 → k[z]/〈R〉
ϕy : k[y]/〈Q〉 → k[z]/〈R〉

and Φ : A = k[x,y]/〈P,Q〉 → k[z]/〈R〉
xy ←[ z.

In this section, we give algorithms for computing R, applying ϕx, ϕy and their sections,
and finally Φ and its inverse. Except from the computation of R, these are all linear
algebra problems. If R and the images S = Φ(x),T = Φ(y) are known, then as was
explained in the introduction, direct solutions are available for both ϕx (or ϕy) and Φ –
modular composition – but none of these approaches have a quasi-linear running time.

We take a different path. Our algorithms have quasi-linear running time for ϕx and
ϕy and improve on the Brent-Kung algorithm for Φ. Put together, Lemmas B.6 to B.10
below prove Theorem B.1. One of the key aspects of these algorithms is that some are
written in the usual monomial bases, whereas others are naturally expressed in the
corresponding dual bases. From the complexity point of view, this is not an issue, since
we saw that all change-of-bases can be done in quasi-linear time.

In what follows, we write τP,τQ,τR,τI for the traces modulo the ideals 〈P〉 ⊂ k[x],
〈Q〉 ⊂ k[y], 〈R〉 ⊂ k[z] and I = 〈P,Q〉 ⊂ k[x,y]; the corresponding bilinear forms are
denoted by 〈., .〉P, . . .

We let ξξξ = (xi)0≤i<m, υυυ = (yi)0≤ j<n and ζζζ = (zi)0≤i<mn be the monomial bases of
respectively k[x]/〈P〉, k[y]/〈Q〉 and k[z]/〈R〉. We also let ξξξ

∗
= (ξ ∗i )0≤i<m, υυυ∗ = (υ∗i )0≤i<n

and ζζζ
∗
= (ζ ∗i )0≤i<mn be the dual bases, with respect to respectively 〈., .〉P, 〈., .〉Q and

〈., .〉R.
Finally, we denote by uP ∈ km the vector of the coordinates of 1 ∈ k[x]/〈P〉 on the

dual basis ξξξ
∗; the vector uQ is defined similarly. These vectors can both be computed in

quasi-linear time, since we have, for instance, uP =MonomialToDual((1,0, . . . ,0),P).
Thus, in what follows, we assume that these vectors are known.

Embedding and computing R

We first show how to compute the embeddings ϕx and ϕy, and their inverses in quasi-
linear time in mn. We actually give a slightly more general algorithm, which computes
the restriction of Φ to the set

Π = {bc | b ∈ k[x]/〈P〉, c ∈ k[y]/〈Q〉} ⊂ k[x,y]/〈P,Q〉.

We will use the following lemma, which results from the base independence of the trace
(the second equality is Lemma B.4).

Lemma B.5. Let b be in k[x]/〈P〉 and c in k[y]/〈Q〉. Then we have τR(Φ(bc)) = τI(bc) =
τP(b) τQ(c).

An easy consequence is that τR(zi) = τP(xi)τQ(yi). From this lemma, we also imme-
diately deduce Algorithm 3, which computes the image in k[z]/〈R〉 of any element of Π,
with inputs and outputs written on dual bases.
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Algorithm 3: Embed(b,c,r)

Input b = (bi)0≤i<m ∈ km, c = (ci)0≤i<n ∈ kn

an optional integer r ≥ mn set to r = mn by default
Output a = (ai)0≤i<r ∈ kr

1. (ti)0≤i<r = remt(b,P,r)
2. (ui)0≤i<r = remt(c,Q,r)
3. return(tiui)0≤i<r

Lemma B.6. Let b ∈ k[x]/〈P〉 and c ∈ k[y]/〈Q〉. Given the coefficients b and c of re-
spectively b and c in the bases ξξξ

∗ and υυυ∗, Embed(b,c,r) computes ai = τR
(
Φ(bc)zi

)
for

0≤ i < r in time O(r(M(m)/m+M(n)/n)). If r = mn, (ai)0≤i<mn are the coefficients of
Φ(bc) in the basis ζζζ

∗.

Proof. Recall that for 0 ≤ i < m, bi = τP(bxi), and that for 0 ≤ i < n, ci = τQ(cyi). By
definition of remt , the sequences (ti) and (ui) encode the same traces, but up to index r.
By Lemma B.5, the algorithm correctly computes(

τP(bxi)τQ(cyi)
)

i<r =
(
τR(Φ(bc)zi))

)
i<r.

For r = mn, this is indeed the representation of Φ(bc) on the dual basis ζζζ
∗ of k[z]/〈R〉.

The cost of the calls to remt is in Section B.2; the last step takes r multiplications
in k.

In particular, the map ϕx is computed as Embed(·,uQ), and the map ϕy as
Embed(uP, ·). Another interesting consequence is that, when A is known to be a field,
Embed allows us to compute R, using the Berlekamp-Massey algorithm.

Algorithm 4: ComputeR(P,Q)

Input P in k[x], Q in k[y]
Output R in k[z]

1. (ti)0≤i<2mn = Embed(uP,uQ,2mn),
2. return BerlekampMassey((ti)0≤i<2mn)

Indeed, in this case, Embed(uP,uQ,2mn) computes the sequence (τR(zi))0≤i<2mn.
If we know that A is a field, R is irreducible, so the minimal polynomial of this se-
quence (which is computed by the Berlekamp-Massey algorithm) is precisely R; the
running time is O(M(mn) log(mn)) operations in k. This algorithm for computing R is
well-known; see for instance [Bos+06] for a variant using power series exponentials
instead of Berlekamp-Massey’s algorithm (that applies in large enough characteristic)
and [Bos+05] for the specific case of finite fields of small characteristic.

For the inverse of say ϕx, we take a in k[z]/〈R〉 of the form a = ϕx(b), and compute
b. Using the equality of Lemma B.5 in the form τP(bxi) = τR(azi)/τQ(yi) would lead to
a simple algorithm, but some traces τQ(yi) may vanish.

We take a different path. Let c be a fixed element in k[y]/〈Q〉 such that τQ(c) = 1; we
will take for c the first element υ∗0 of the dual basis of k[y]/〈Q〉, but this is not necessary.
Let us denote by ε : k[x]/〈P〉 → k[z]/〈R〉 the mapping defined by ε(b) = Φ(bc), and let
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Algorithm 5: Project(a)

Input a = (ai)0≤i<mn ∈ kmn

Output b = (bi)0≤i<m ∈ km

1. c = (1,0, . . . ,0)
2. (ui)0≤i<mn = remt(c,Q,mn)
3. d = ∑

mn−1
i=0 aiuixi mod P

4. return (coefficient(d, i))0≤i<m

ε t : k[z]/〈R〉 → k[x]/〈P〉 be its dual map with respect to the bilinear forms 〈., .〉P and
〈., .〉R. Then, for b and b′ in k[x]/〈P〉, we have

〈b,b′〉P = τP(bb′) = τP(bb′)τQ(c) = τR(Φ(bb′c))

= 〈ε(b),Φ(b′)〉R = 〈b,ε t(Φ(b′))〉P,

where the third equality comes from Lemma B.5. Using the non-degeneracy of 〈., .〉P,
we get ε t(Φ(b′)) = b′, that is, ε t(ϕx(b′)) = b′. Thus, ε t is an inverse of ϕx on its image.

Writing c=(1,0, . . . ,0), we remark that Embed(.,c) precisely computes themapping
b 7→ ε(b). Since Embed is written in the dual bases, the discussion of Section B.2 shows
that transposing this algorithm (with respect to b) yields an algorithm for ε t written in
the monomial bases.

Lemma B.7. Let b ∈ k[x]/〈P〉 and a = ϕx(b). Given the coefficients a of a in the basis
ζζζ = (zi)0≤i<mn, Project(a) computes the coefficients of b in the basis ξξξ = (xi)0≤i<m using
O(nM(m)+nM(n)) operations in k.

Proof. We show correctness using transposition techniques as in [BLS03]. For fixed
c, Embed(b,c) is linear in b and can be written as πc ◦ remt , where πc is the map that
multiplies a vector in kmn coefficient-wise by (τQ(cyi))i<mn, for c = ∑0≤i<n ciυ

∗
i ; hence,

its transpose is rem◦π t
c. It is evident that π t

c = πc (since πc is a diagonal map), whereas
rem is just reduction modulo P. These correspond to steps 3 and 4. The discussion
above now proves that the output is ε t(a). The cost analysis is similar to the one in
Lemma B.6.

Isomorphism

We are not able to give an algorithm for Φ that would be as efficient as those for
embedding; instead, we provide two algorithms, with different domains of applicability.
In what follows, without loss of generality, we assume that m≤ n.

Recall that ξξξ ⊗υυυ , ξξξ
∗⊗υυυ , ξξξ ⊗υυυ∗ and ξξξ

∗⊗υυυ∗ are four bases of A, with (ξξξ ⊗υυυ ,ξξξ
∗⊗

υυυ∗) and (ξξξ
∗⊗ υυυ ,ξξξ ⊗ υυυ∗) being two pairs of dual bases with respect to 〈., .〉I . Our

algorithms will exploit all these bases; this is harmless, since conversions between
these bases have quasi-linear complexity.

Before giving the details of the algorithms, we make an observation similar to the
one we did regarding the transpose of Embed. Let Φt be the dual map of Φ with respect
to 〈., .〉I and 〈., .〉R. Then, for any b,b′ ∈ k[z]/〈R〉, we have:

〈b,b′〉I = τI(bb′) = τR(Φ(bb′))

= 〈Φ(b),Φ(b′)〉R = 〈b,Φt(Φ(b′))〉I ;

hence, Φt = Φ−1. If b and b∗ are two bases of A = k[x,y]/I, dual with respect to 〈., .〉I
(such as the ones seen above) and if c and c∗ are two bases of k[z]/〈R〉, dual with respect
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Algorithm 6: Phi1(b)

Input b = (bi, j)0≤i<m,0≤ j<n ∈ km×n

Output a = (ai)0≤i<mn ∈ kmn

1. (ui)0≤i<m(n+1)−1 = remt(uP,P,m(n+1)−1)
2. (ai)0≤i<mn = (0, . . . ,0)
3. for 0≤ i < m
4. (t j)0≤ j<mn = remt((bi, j)0≤ j<n,Q,mn)
5. (a j)0≤ j<mn = (a j + t jui+ j)0≤ j<mn
6. return (ai)0≤i<mn

Algorithm 7: InversePhi1(a)

Input a = (ai)0≤i<mn ∈ kmn

Output b = (bi, j)0≤i<m,0≤ j<n ∈ km×n

1. (ui)0≤i<m(n+1)−1 = remt(uP,P,m(n+1)−1)
2. for i = m−1, . . . ,0
3. d = ∑0≤ j<mn a jui+ jy j mod Q
4. (bi, j)0≤ j<n = (coefficient(d, j))0≤ j<n
5. return (bi, j)0≤i<m,0≤ j<n

to 〈., .〉R, the previous equality, together with the transposition principle, shows the
following: if we have an algorithm for Φ, expressed in the bases (b, c), transposing it
yields an algorithm for Φ−1, expressed in the bases (c∗,b∗).
First case: m is small. We start by a direct application of the results in the previous
subsection, which is well-suited to situations where m is small compared to n.

Let b be in k[x,y]/I and let a = Φ(b). Writing b = ∑0≤i<m bixi, with all bi in k[y]/〈Q〉,
we obtain a straightforward algorithm to compute a: compute all Φ(bixi) using Embed,
then sum. Since Embed takes its inputs written on the dual bases, the algorithm
requires that all bi be written on the dual basis of k[y]/〈Q〉 (equivalently, the input is
given on the basis ξξξ ⊗υυυ∗ of A). We also use the fact that the expression of xi on the
dual basis ξξξ

∗ is uP shifted by i positions to give a more compact algorithm, called Phi1.
Transposing this algorithm then gives an algorithm for Φ−1. Its input is given on

the monomial basis (zi)0≤i<mn of k[z]/〈R〉; the output is written on the basis ξξξ
∗⊗υυυ of

A.

Lemma B.8. Let b ∈ k[x,y]/I. Given the coefficients b of b in the basis ξξξ ⊗υυυ∗, Phi1(b)
computes the coefficients of Φ(b) in the basis ζζζ

∗ using O(m2M(n)) operations in k.
Let a ∈ k[z]/〈R〉. Given the coefficients a of a in the basis ζζζ = (zi)0≤i<mn,

InversePhi1(a) computes the coefficients of Φ−1(a) in the basis ξξξ ⊗υυυ∗ using O(m2M(n))
operations in k.

Proof. Correctness of Phi1 follows from the previous discussion; the most expensive
step is m calls to remt , for a cumulated cost of O(m2M(n)).

The correctness of the transposed algorithm is proved as in Lemma B.7, observing
that it consists of the line-by-line transposition of Phi1. The running time analysis
is straightforward: the dominant cost is that of m remainders, each of which costs
O(mM(n)).
Second case: m is not small. The previous algorithms are most efficient when m is
small; now, we propose an alternative solution that does better when m and n are of
the same order of magnitude (with still m≤ n).
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This approach is based on baby steps / giant steps techniques, as in Brent and
Kung’s modular composition algorithm, but uses the fact that z = Φ(xy) to reduce the
cost. Given b in A = k[x,y]/〈P,Q〉, let us write

b =
m−1

∑
i=0

n−1

∑
j=0

bi, jxiy j =
m−1

∑
i=0

n−1

∑
j=0

bi, jxiyiy j−i

=
n−1

∑
h=−m+1

m−1

∑
i=0

bi,i+h(xy)iyh =
1

ym−1

m+n−2

∑
h=0

ch(xy)yh,

with ch(z) = ∑0≤i<m bi,i+h−m+1zi for all h (undefined indices are set to zero). Hence
a = Φ(b) has the form

a =
1

T m−1 ã mod R with ã =
m+n−2

∑
h=0

chT h,

where T = Φ(y). We use baby steps / giant steps techniques from [LMS13] (inspired by
Brent and Kung’s algorithm) to compute a, reducing the problem to polynomial matrix
multiplication. Let n′ = m+n−1, p = d

√
n′e and q = dn′/pe, so that n ≤ n′ ≤ 2n−1

and p ' q '√n. For baby steps, we compute the polynomials Ti = T i mod R, which
have degree at most mn−1; we write Ti = ∑0≤ j<n T ′i, jz

jm, with T ′i, j of degree less than
m, and build the polynomial matrix MT ′ with entries T ′i, j. We define the matrix MC =
[ciq+ j]0≤i<p,0≤ j<q containing the polynomials ch organized in a row-major fashion, and
compute the product MV = MCMT . We can then construct polynomials from the rows
of MV , and conclude with giant steps using Horner’s scheme.

The previous discussion leads to Algorithm 8. Remark that input and output are
written on the monomial bases.

Lemma B.9. Let b ∈ k[x,y]/I. Given the coefficients b of b in the basis ξξξ ⊗ υυυ =
(xiy j)0≤i<m,0≤ j<n, Phi2(b) computes the coefficients of Φ(b) in the basis ζζζ = (zi)0≤i<mn

in O(M(mn)n1/2 +M(m)n(ω+1)/2) operations in k.

Proof. Correctness follows from the discussion prior to the algorithm. As to the cost
analysis, remark first that n′ = O(n), and that p and q are both O(

√
n). Steps 4

and 14 cost O(M(mn) log(mn)) operations. Steps 5 (the baby steps) and the loop at
Step 12 (the giant steps) cost O(

√
nM(mn)). The dominant cost is the matrix product

at Step 8, which involves matrices of size O(
√

n)×O(
√

n) and O(
√

n)×O(n), with
polynomial entries of degree m: using block matrix multiplication in size O(

√
n), this

takes O(M(m)n(ω+1)/2) operations in k.

As before, writing the transpose of this algorithm gives us an algorithm for Φ−1,
this time written in the dual bases. The process is the same for the previous transposed
algorithms we saw, involving line-by-line transposition. The only point that deserves
mention is Step 13, where we transpose polynomial matrix multiplication; it becomes a
similar matrix product, but this time involving transposed polynomial multiplications
(with degree parameters m−1 and m). The cost then remains the same, and leads to
Lemma B.10.

Lemma B.10. Let a ∈ k[z]/〈R〉. Given the coefficients a of a in the basis ζζζ
∗,

InversePhi2(a) computes the coefficients of Φ−1(a) in the basis ξξξ
∗⊗υυυ∗ in O(M(mn)n1/2+

M(m)n(ω+1)/2) operations in k.
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Algorithm 8: Phi2(b)

Input b = (bi, j)0≤i<m,0≤ j<n ∈ km×n

Output a = (ai)0≤i<mn ∈ kmn

1. n′ = m+n−1, p = d
√

n′e, q = dn′/pe
2. y = MonomialToDual((0,1,0, . . . ,0),Q)
3. T = DualToMonomial(Embed(uP,y),R)
4. U = 1/T mod R
5. T ′ = [T i mod R]0≤i≤q
6. MT ′ = [T ′i, j]0≤i<q,0,≤ j<n T ′i, j are defined in the text
7. MC = [ciq+ j]0≤i<p,0≤ j<q ch are defined in the text
8. MV = MCMT ′

9. V = [∑0≤ j<n MV i, jz jm]0≤i<p
10. V ′ = [Vi mod R]0≤i<p
11. a = 0
12. for i = p−1, . . . ,0
13. a = T ′q a+V ′i mod R
14. a = aUm−1 mod R
15. return (coefficient(a, i))0≤i<mn

Algorithm 9: InversePhi2(a)

Input a = (ai)0≤i<mn ∈ kmn

Output b = (bi, j)0≤i<m,0≤ j<n ∈ km×n

1. n′ = m+n−1, p = d
√

n′e, q = dn′/pe
2. y = MonomialToDual((0,1,0, . . . ,0),Q)
3. T = DualToMonomial(Embed(uP,y),R)
4. U = 1/T mod R
5. T ′ = [T i mod R]0≤i≤q
6. MT ′ = [T ′i, j]0≤i<q,0,≤ j<n T ′i, j as defined above
7. a = mulmodt(a,Um−1,R)
8. for i = 0, . . . , p−1
9. V ′i = a

10. a = mulmodt(a,T ′q,R)
11. V = [remt(V ′i ,R,mn+m−1)]0≤i<p
12. MV = [(Vi) jm,..., jm+2m−2]0≤i<p,0≤ j<n
13. MC = mult(MV ,MT ′ ,m−1,m)
14. c = [MC0,0, . . . ,MC0,q−1, . . . ,MC p−1,q−1]
15. return [coefficient(ci− j+m−1, i)]0≤i<m,0≤ j<n

B.5 The algebraic closure of Fp

In this section, we explain how the algorithms of Section B.4 can be used in order
to construct and work in arbitrary extensions of Fp, when used in conjunction with
algorithms for `-adic towers over Fp. Space constraints prevent us from giving detailed
algorithms, so we only outline the construction. We reuse definitions given in the
introduction relative to `-adic towers: polynomials T`,i, Q`,i and Q`,i, j−i and fields
K`i = Fp[x1, . . . ,xi]/〈T`,1, . . . ,T`,i〉. We also assume that algorithms for embeddings or
change of basis in `-adic towers are available (as in [DDS13] and references therein).

Setup. For ` prime and i ≥ 1, the residue class of xi in K`i will be written x`i . For a
positive integer m = `e1

1 · · ·`er
r , with `i pairwise distinct primes and ei positive integers,
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Km denotes the tensor product K`
e1
1
⊗·· ·⊗K`er

r
; this is a field with pm elements. If

m divides n, then Km embeds in Kn. Taking the direct limit of all Km under such
embeddings, we get an algebraic closure K of Fp. The residue classes written x`e in
K`e all lie in K and are still written x`e .

For any integer m of the form m = `e1
1 · · ·`er

r with `i’s pairwise distinct primes, we
write xm = x`e1

1
· · ·x`er

r
∈K.

Minimal polynomials. We discuss first minimal polynomials of monomials in K over
Fp.

Take x`e in K, with ` prime. By construction, its minimal polynomial over Fp is
Q`,e, irreducible of degree `e in (say) Fp[z]. Next, consider a term xm, with m = `e1

1 · · ·`er
r ,

with `i’s pairwise distinct primes. It equals x`e1
1
· · ·x`er

r
, so it is a root of the composed

product Qm = Q`1,e1 �·· ·�Q`r ,er . In Section B.4, we pointed out that Qm is irreducible
of degree m = `e1

1 · · ·`er
r in Fp[z], so it must be the minimal polynomial of xm over Fp. In

particular, this implies that Fp(xm) is a field with pm elements, and that if we consider
terms xm and xn, with m dividing n, then xm is in Fp(xn).

Note that this process of constructing irreducible polynomials over Fp is already
in [Sho90; Sho94b; CL13].
Embedding and change of basis. Consider a sequence e= (e1, . . . ,et) of positive integers,
and let n = e1 · · ·et . The set

Be = {xa1
e1

xa2
e1e2
· · ·xat

e1···et | 0≤ ai < ei for all i}
is a basis of Fp(xn). Important examples are sequences of the form e = (e1), with thus
n = e1, for which Be is the univariate basis (xi

n)0≤i<n. Also useful for us are sequences
e = (e1,e2); letting m = e1 and n = e1e2, Be is the bivariate basis (xi

mx j
n)0≤i<m,0≤ j<n/m.

Consider sequences d = (d1, . . . ,ds) and e = (e1, . . . ,et), with m = d1 · · ·ds and n =
e1 · · ·et , and suppose that m divides n. The linear mapping Fm

p → Fn
p that describes

the embedding Fpm → Fpn in the bases Bd and Be is denoted by Φe,d ; when m = n, it is
an isomorphism, with inverse Φd,e. More generally, as soon as this expression makes
sense, we have Φ f ,d = Φ f ,e ◦Φe,d , so these mappings are compatible.

To conclude this section, we describe how the algorithms of this paper can be used
in this framework to realize some particular cases of mappings Φd,e (more general
examples can be deduced readily).
Embedding. Consider two integers m,n with m dividing n. We describe here how to
embed Fp(xm) in Fp(xn), that is, how to compute Φ(n),(m). Without loss of generality,
we may assume that n = m`, with ` prime.

Assume first that gcd(m, `) = 1. Since then xn = xmx`, and we have access to the
polynomials Qm, Q` and Qn (see above), we just apply the embedding algorithm of
Section B.4.

Suppose now that ` divides m, so m = m′`k, with m′, ` coprime. Using one of the
inverse isomorphism algorithms of Section B.4, we can rewrite an element given on the
basis (xi

m)0≤i<m on the basis (xi
m′x

j
`k)0≤i<m′,0≤ j<`k . Using an algorithm for embeddings

in the `-adic tower, we can then embed on the basis (xi
m′x

j
`k+1)0≤i<m′,0≤ j<`k+1 ; applying

our isomorphism algorithm, we end up on the basis (xi
m`)0≤i<m`, since xm` = xm′x`k+1 .

Further operations. Without entering into details, let us mention that further opera-
tions are feasible, in the same spirit as the embedding algorithm we just described.

For instance, for arbitrary integers m and n, it is possible to compute the relative
minimal polynomial of xmn over Fp(xm); it is obtained as a composed product, with
factors deduced from the decomposition of m and n into primes.
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Figure B.1: Timings in seconds, p = 5, n = m+1

As another example, we can compute Φ(m,n),(mn), that is, go from the univariate basis
(xi

mn)0≤i<mn to the bivariate basis (xi
mx j

mn)0≤i<m,0≤ j<n. This can be used to compute for
instance relative traces, norms or minimal polynomials of arbitrary elements of Fpmn

over Fpm .

B.6 Implementation

To demonstrate the practicality of our algorithms, we made a C implementation and
compared it to various ways of constructing the same fields in Magma. All timings
in this section are obtained on an Intel Xeon E5620 CPU at 2.40GHz, using Magma
V2.18-12, Flint 2.4.1 and Sage 6.

Our implementation is limited to finite fields of word-sized characteristic. It is
based on the C library Flint [Har10], and we make it available as a Sage module in an
experimental fork at https://github.com/defeo/sage/tree/ff_compositum. We
plan to make it available as a standard Sage module, as well as a separate C library,
when the code has stabilized.

Based on the observation that algorithms Embed and Project are simpler than
conversion algorithms between monomial and dual bases, we chose to implement a
lazy change of basis strategy. By this we mean that our Sage module (rather than
the C library itself) represents elements on either the monomial or the dual basis,
with one representation computed from the other only when needed. For example, two
elements of the same field can be summed if both have a monomial or if both have a dual
representation. Similarly, two elements can bemultiplied using standardmultiplication
if both have a monomial representation, or using transposed multiplication if one of
the two has a monomial representation. In all other cases, the required representation
is computed and stored when the user input prompts it. To implement this strategy
efficiently, our Sage module is written in the compiled language Cython.

We focus our benchmarks on the setting of Section B.4: P and Q are two irreducible
polynomials of coprime degrees m and n, and R = P�Q. We fix the base field Fp and
make m and n grow together with n = m+1. We measure the time to compute R, to
apply the algorithms Embed, Phi1, etc., and to compute the changes of bases. We
noticed no major difference between different characteristics, so we chose p = 5 for our

https://github.com/defeo/sage/tree/ff_compositum
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Figure B.2: Magma timings in seconds, p = 5, n = m+1

demonstration. As shown in Figure B.1, the dominating phase is the computation of
R (line labeled R). Surprisingly, transposed modular multiplication is slightly faster
than ordinary modular multiplication. The cost of Embed is about the same as that of
multiplication, while DualToMonomial is about 50% slower. Project and MonomialToD-
ual have, respectively, similar performances (only slightly faster) hence they are not
reported on the graph. This justifies our design choice of lazy change of basis.

Unsurprisingly, the isomorphism algorithms take significantly more time than the
computation of R; for our choices of degrees, Phi2 is asymptotically faster than Phi1
and the crossover between them happens around m = 70.

We compare our implementation to four different strategies available in Magma.
For each of them we measure the time to construct the finite fields and embedding data,
as well as the time to do operations equivalent to Embed, resp. inverse isomorphism.

Figure B.2 reports on the following experiments. In irred, we supply directly P, Q
and R to Magma’s finite field constructor, then we call the Embed routine to compute
the embedding data. In P R, we use Magma’s default constructor to compute P and R
(Magma chooses its own polynomials), then we call the Embed routine to compute the
embedding. In P Q, we use Magma’s default constructor to compute P and Q (Magma
chooses its own polynomials), then use the CommonOverfield routine to compute R,
then Embed to compute the embedding data. In ext, we use Magma’s default constructor
to compute P, then the ext operator to compute an extension of degree n of Fp[x]/〈P〉
(Magma chooses its own polynomials).

Timings for constructing the extension and the embedding vary from one method to
the other; once this is done, timings for applying embeddings or (inverse) isomorphisms
are the same across these methods.

The Magma implementation cannot construct the embedding data in large cases
(m = 150) in less than 1000 seconds, while our code takes a few seconds. Once the
embedding data is known,Magma can apply the embeddings or isomorphisms extremely
fast; in our case, one may do the same, using our algorithms to compute the matrices
of Φ and Φ−1, when precomputation time and memory are not a concern.
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C Computing isomorphisms and embeddings of finite fields

Abstract

Let Fq be a finite field. Given two irreducible polynomials f ,g over Fq, with
deg f dividing degg, the finite field embedding problem asks to compute an explicit
description of a field embedding of Fq[X ]/ f (X) into Fq[Y ]/g(Y ). When deg f = degg,
this is also known as the isomorphism problem.

This problem, a special instance of polynomial factorization, plays a central
role in computer algebra software. We review previous algorithms, due to Lenstra,
Allombert, Rains, and Narayanan, and propose improvements and generalizations.
Our detailed complexity analysis shows that our newly proposed variants are at
least as efficient as previously known algorithms, and in many cases significantly
better.

We also implement most of the presented algorithms, compare them with the
state of the art computer algebra software, and make the code available as open
source. Our experiments show that our new variants consistently outperform
available software.

C.1 Introduction

Let q be a prime power and let Fq be a field with q elements. Let f and g be ir-
reducible polynomials over Fq, with deg f dividing degg. Define k = Fq[X ]/ f (X) and
K =Fq[Y ]/g(Y ); then, there is an embedding φ : k ↪→K, unique up toFq-automorphisms
of k. The goal of this paper is to describe algorithms to efficiently represent and evaluate
one such embedding.

All the algorithms we are aware of split the embedding problem in two sub-problems:

1. Determine elements α ∈ k and β ∈ K such that k = Fq(α), and such that there
exists an embedding φ mapping α to β . We refer to this problem as the embedding
description problem. It is easily seen that (α,β ) describes an embedding if and
only if α and β share the same minimal polynomial.

2. Given elements α and β as above, given γ ∈ k and δ ∈ K, solve the following
problems:

• Compute φ(γ) ∈ K.
• Test if δ ∈ φ(k).
• If δ ∈ φ(k), compute φ−1(δ ) ∈ k.

We refer collectively to these problems as the embedding evaluation problem.

Motivation, previous work. The first to get interested in this problem was
H. Lenstra: in his seminal paper [Len91] he shows that it can be solved in deter-
ministic polynomial time, by using a representation for finite fields that he calls explicit
data.1 In practice, the embedding problem arises naturally when designing a computer
algebra system: as soon as a system is capable of representing arbitrary finite fields, it
is natural to ask it to compute the morphisms between them. Ultimately, by represent-
ing effectively the lattice of finite fields with inclusions, the user is given access to the

1Technically, Lenstra only proved his theorem in the case where k and K are isomorphic; however, the
generalization to the embedding problem poses no difficulties.
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algebraic closure of Fq. The first system to implement a general embedding algorithm
was Magma [BCP97]. As detailed by its developers [BCS97a], it used a much simpler
approach than Lenstra’s algorithm, entirely based on polynomial factorization and
linear algebra. Lenstra’s algorithm was later revived by Allombert [All02a; All02b]
who modified some key steps in order to make it practical; his implementation has
since been part of the PARI/GP system [PARI].

Meanwhile, a distinct family of algorithms for the embedding problem was started
by Pinch [Pin92], and later improved by Rains [Rai96]. These algorithms, based on
principles radically different from Lenstra’s, are intrinsically probabilistic. Although
their worst-case complexity is no better than that of Allombert’s algorithm, they are
potentially much more efficient on a large set of parameters. This potential was
understood by Magma’s developers, who implemented Rains’ algorithm in Magma
v2.14.2

With the exception of Lenstra’s work, the aforementioned papers were mostly
concerned with the practical aspects of the embedding problem. While it was generally
understood that computing embeddings is an easier problem than general polynomial
factoring, no results on its complexity more precise than Lenstra’s had appeared
until recently. A few months before the present paper was finalized, Narayanan
published a novel generalization of Allombert’s algorithm [Nar18], based on elliptic
curve computations, and showed that its (randomized) complexity is at most quadratic.
Narayanan’s generalization relies on the fact that Artin–Schreier and Kummer theories
are special cases of a more general situation: as already emphasized by Couveignes
and Lercier [CL08], whereas the former theory acts on the additive group of a finite
field, and the latter on its multiplicative group, they can be extended to more general
commutative algebraic groups, in particular to elliptic curves.

Our contribution. This work aims to be, in large part, a complete review of all
known algorithms for the embedding problem; we analyze in detail the cost of existing
algorithms and introduce several new variants. After laying out the foundations in the
next section, we start with algorithms for the embedding description problem.

Section C.3 describes the family of algorithms based (more or less loosely) on
Lenstra’s work; we call these Kummer-type algorithms. In doing so, we pay a particular
attention to Allombert’s algorithm: to our knowledge, this is the first detailed and
complete complexity analysis of this algorithm and its variants. Thanks to our work on
asymptotic complexity, we were able to devise improvements to the original variants
of Allombert that largely outperform them both in theory and practice. One notable
omission in this section is Narayanan’s algorithm, which is, in our opinion, mostly
of theoretical rather than practical interest. We present instead in Subsection C.3 a
simpler algorithm with essentially the same complexity.

In Section C.4 we describe Rains’ algorithm. Rains’ original preprint [Rai96] went
unpublished, thus we give here a complete description and analysis of his algorithm,
for reference. We also give new variants of Rains’ algorithm of lesser interest in
Appendix C.8.

Then, in Section C.5 we present a generalization of Rains’ algorithm using elliptic
curves. The possibility of this algorithm was hinted at by Rains, but never fully devel-
oped; we show that it is indeed possible to use elliptic periods to solve the embedding
description problem, and that the resulting algorithm behaves well both in theory and

2As a matter of fact, Rains’ algorithm was never published; the only publicly available source for it is in
Magma’s source code (file package/Ring/FldFin/embed.m, since v2.14).
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in practice. While working out the correctness proof of the elliptic variant of Rains’
algorithm, we encounter an unexpected difficulty: whereas roots of unity enjoy Galois
properties that guarantee the success of Rains’ original algorithm, points of elliptic
curves fail to provide the same. Heuristically, the failure probability of the elliptic vari-
ant is extremely small, however we are not able to prove it formally. Our experimental
searches even seem to suggest that the failure probability might be, surprisingly, zero.
We state this as a conjecture on elliptic periods (see Conjecture C.22).

Section C.6 does a global comparison of all the algorithms presented previously. In
particular, Rains’ algorithm and variants require a non-trivial search for parameters,
which we discuss thoroughly. Then we present an algorithm to select the best perform-
ing embedding description algorithm from a practical point of view. This theoretical
study is complemented by the experimental Section C.7, where we compare our imple-
mentations of all the algorithms; our source code is made available through the Git
repository https://github.com/defeo/ffisom for replication and further scrutiny.

The algorithms for the embedding evaluation problem are much more classical and
well understood. Due to space constraints, we do not present them here; we address
instead the interested reader to the extended version of the present paper [Bri+17].

In conclusion, we hope that our review will constitute a reference guide for re-
searchers and engineers interested in implementing embeddings of finite fields in a
computer algebra system.

C.2 Preliminaries

Fundamental algorithms and complexity

We review the fundamental building blocks that constitute the algorithms presented
next. We are going to measure all complexities in number of operations +, ×, ÷ in Fq,
unless explicitly stated otherwise. Most of the algorithms we present are randomized;
we use the big-Oh notation O() to express average asymptotic complexity, and we will
make it clear when this complexity depends on heuristics. We also occasionally use the
notation Õ() to neglect logarithmic factors in the parameters.

We let M(m) be a function such that polynomials in Fq[X ] of degree less than m
can be multiplied in M(m) operations in Fq, under the assumptions of [GG99, Ch. 8.3],
together with the slightly stronger one, that M(mn) is in O(m1+εM(n)) for all ε > 0.
Using FFT multiplication, one can take M(m) ∈ O(m log(m) loglog(m)) [CK91].

We denote by ω the exponent of linear algebra, i.e. a constant such that m×m
matrices with coefficients in any field k can be multiplied using O(mω) additions and
multiplications in k. One can take ω < 2.38, the best result to date being in [Le 14]; on
the other hand, we also suppose that ω > 2.

The algorithms presented in the next sections perform computations in ring ex-
tensions of finite fields. Some of these extensions also happen to be finite fields. As
customary, if k is a finite field and ξ is some element of an algebraic extension of k,
we will write k[ξ ] for the ring generated by ξ . To avoid confusion, when the extension
generated by ξ is a finite field, we will write instead k(ξ ).

Some algorithms will operate in a polynomial ring k[Z], where k is a field extension
of Fq; some other algorithms will operate in k[Z]/h(Z), where h is a monic polynomial
in k[Z]. We review the basic operations in these rings. We assume that k is represented
as a quotient ring Fq[X ]/ f (X), with m = deg f , and we let s = degh in the complexity
estimates.

https://github.com/defeo/ffisom
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Multiplying and dividing polynomials of degree at most s in k[Z] is done in O(M(sm))
operations in Fq, using Kronecker’s substitution [Moe76; Kal87; GG99; GS92; Har09].
Multiplication in k[Z]/h(Z) is also done in O(M(sm)) operations using the technique
in [PS06]. By the same techniques, gcds of degree m polynomials in k[Z] and inverses
in k[Z]/h(Z) are computed in O(M(sm) log(sm)) operations.

Given polynomials e,g,h ∈ k[Z] of degree at most s, modular composition is the
problem of computing e(g) mod h. An upper bound on the algebraic complexity of
modular composition is obtained by the Brent–Kung algorithm [BK78]; under our
assumptions on the respective costs of polynomial and matrix multiplication, its cost is
O(s(ω+1)/2M(m)) operations in Fq (so if k = Fq, this is O(s(ω+1)/2)). In the binary RAM
complexity model, the Kedlaya–Umans algorithm [KU11] and its extension in [PS13a]
yield an algorithm with essentially linear complexity in s, m and log(q). Unfortunately,
making these algorithms competitive in practice is challenging; we are not aware of
any implementation of them that would outperform Brent and Kung’s algorithm.

Note: If we have several modular compositions of the form e1(g) mod h, . . . , et(g) mod h
to compute, we can slightly improve the obvious bound O(ts(ω+1)/2) (we discuss
here k = Fq, so m = 1). If t = O(s), using [KS98, Lemma 4], this can be done in
time O(t(ω−1)/2s(ω+1)/2). If t = Ω(s), this can be done in O(tsω−1) operations,
by computing 1,g, . . . ,gs−1 modulo f , and doing a matrix product in size s× s by
s× t.

Frobenius evaluation. Consider an Fq-algebra Q, and an element α in Q. Given
integers c,d, we will have to compute expressions of the form

σd = α
qd
, τd =

d−1

∑
i=0

α
qci
, µd = α

bqd/cc .

A direct binary powering approach would yield a complexity of, e.g., O(d log(q)) multi-
plications in Q for the first expression.

To do better, we use a recursive approach that goes back to [GS92], with further
ideas borrowed from [Sho94b; KS97]. For i≥ 1, define integers Ai,Bi as follows

qi = Aic+Bi, 0≤ Bi < c.

Then, we have the relations

σi+ j = σ
qi

j , τi+ j = τi + τ
qic

j , µi+ j = µ
qi

j µ
B j
i α

bBiB j/cc.

Since we are interested in σd ,τd and µd , using an addition chain for d, we are left to
perform O(log(d)) steps as above.

To perform these operations, we will make a heavy use of a technique originating
in [GS92]. In its simplest form, it amounts to the following: if Q = Fq[X ]/ f (X), for
some polynomial f in Fq[X ], and β is in Q, we can compute β q by means of the modular
composition β (ξ ), where ξ = xq and x is the image of X modulo f .

In the following proposition, we discuss versions of this idea for various kinds of
algebras Q, and how they allow us to compute the expressions σd ,τd ,µd defined above.

Proposition C.1. Let f ∈ Fq[X ] be a polynomial of degree m, and define the Fq-algebra
Q = Fq[X ]/ f (X). Let h ∈ Q[Z] be a polynomial of degree s, and define the Q-algebra
S = Q[Z]/h(Z). Finally, whenever h ∈ Fq[Z], define the Fq-algebra Q′ = Fq[Z]/h(Z).
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Denote by TQ,TS,TQ′ the cost, in terms of Fq-operations, of one modular composition
in Q,S,Q′ respectively. Also denote by TQ,t ≤ tTQ (resp. TS,t ,TQ′,t ) the cost of t modular
compositions sharing the same polynomial (see Note C.2).

Then the expressions

σd = α
qd
, τd =

d−1

∑
i=0

α
qci
, µd = α

bqd/cc

can be computed using the following number of operations:

Case 1. α ∈ Q:

• σd : O(M(m) log(q)+TQ log(d)),
• τd : O(M(m) log(q)+TQ log(dc)),
• µd : O(M(m) log(q)+(TQ +M(m) log(c)) log(d));

Case 2. α ∈ Q with f |X r−1:

• σd : O(M(m) log(q)+M(r) log(d)),
• τd : O(M(m) log(q)+M(r) log(dc)),
• µd : O(M(m) log(q)+(M(r)+M(m) log(c)) log(d));

Case 3. α ∈ S:

• σd : O(M(ms) log(q)+(TQ,s +TS) log(d)),
• τd : O(M(ms) log(q)+(TQ,s +TS) log(dc)),
• µd : O(M(ms) log(q)+(TQ,s +TS +M(ms) log(c)) log(d));

Case 4. α ∈ S with h ∈ Fq[Z]:

• σd : O((M(m)+M(s)) log(q)+(TQ,s +TQ′,m) log(d),
• τd : O((M(m)+M(s)) log(q)+(TQ,s +TQ′,m) log(dc)),
• µd : O((M(m) + M(s)) log(q) + (TQ,s + TQ′,m + (mM(s) +

sM(m)) log(c)) log(d));

Case 5. α ∈ S with h|X r−a for a ∈ Q:

• σd : O(M(m) log(q)+(TQ,s +M(mr)) log(d)),
• τd : O(M(m) log(q)+(TQ,s +M(mr)) log(dc)),
• µd : O(M(m) log(q)+(TQ,s +M(mr)+M(m) log(c)) log(d)).

Proof. The complexity estimates mostly rely on the complexity of modular composition.

Case 1. We let x be the image of X in Q, and we start by computing xq, using
O(M(m) log(q)) operations in Fq.

For i≥ 0, given ξi = xqi and β in Q, we can compute β qi as β qi
= β (ξi), using

TQ =O(m(ω+1)/2) operations; in particular, this allows us to compute ξi+ j from
the knowledge of ξi and ξ j. Given an addition chain for d, we thus compute
all corresponding ξi’s, and we deduce the σi’s similarly, since σi+ j = σ j(ξ j).
Altogether, starting from ξ1 = xq, this gives us σd for O(TQ log(d)) further
operations in Fq.
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The same holds for τd , with a cost in O(TQ log(cd)), since we have to compute
ξc first; and for µd , with a cost in O((TQ +M(m) log(c)) log(d)) operations,
as the formula for µi+ j shows that we can obtain it by means of a modular
composition (to compute µ

qi

j = µ j(ξi)), together with two exponentiations of
indices less than c.

The costs for computing σd ,τd ,µd follow immediately.

Case 2. When f divides X r−1, we obtain β (ξi) by computing β (Xqi mod r) mod (X r−
1) first, and then reducing modulo f (X). Thus, the cost of one modular
composition is TQ = O(M(r)), and the total cost is obtained by replacing this
value in the estimates for the previous case.

Case 3. We let x and z be the respective images of X in Q and Z in S, and as a first step,
we compute zq (and xq, unless f is as in Case 2 above), in O(M(ms) log(q))
operations.

In order to compute the quantities σd ,τd ,µd , we apply the same strategy as
above; the key factor for complexity is thus the cost of computing β qi , for β

in S, given ζi = zqi and ξi = xqi (as we did in Case 1, we apply this procedure
to our input element α , as well as to ζi itself, and ξi, in order to be able to
continue the calculation).

To do so, we use an algorithm by Kaltofen and Shoup [KS97], which boils down
to writing β = ∑

s−1
j=0 c j(x)z j, so that β qi

= ∑
s−1
j=0 c j(x)qi

ζ
j

i . The s coefficients
c j(x)qi are computed by applying the previous algorithms in Q to s inputs.
This takes time at most sTQ, but as pointed out in Note C.2, improvements
are possible if we base our algorithm on modular composition; we thus denote
the cost TQ,s.

Then, we do a modular composition in S to evaluate the result at ζi; this latter
step takes TS = O(s(ω+1)/2M(m)) operations in Fq.

Case 4. The cost for computing zq is O(M(s) log(q)) and that for computing xq is
O(M(m) log(q)). In the last step, the cost TS of modular composition in S is
now that of m modular compositions in degree s (with the same argument), as
detailed in Note C.2, that we denote TQ′,m. Similarly, the cost of multiplication
in S can be reduced from O(M(ms)) to O(sM(m)+mM(s)) operations.

Case 5. We start by computing xq, using O(M(m) log(q)) operations in Fq.

For β as above, suppose that we have already computed all coefficients d j(x) =
c j(x)qi in O(TQ,s) operations; we now have to compute β qi

= ∑
s−1
j=0 d j(x)ζ

j
i .

We first do the calculation modulo Zr−a rather than modulo h; that is, we
compute ∑

s−1
j=0 d j(x)z

j
i where zi = zqi . Because zr = a, we have zi = aizqi mod r,

with ai = abq
i/rc. If we assume that ai is known, we can compute ∑

s−1
j=0 d j(x)z

j
i

using Horner’s method, in time O(sM(m)), and we reduce this result modulo
h, for the cost O(M(mr)) of a Euclidean division in degree r in Q[Z].

In order to continue the calculation for all indices in our addition chain, we
must thus compute the corresponding ai’s as well, just like the µi’s; this takes
O(TQ +M(m) log(r)) operations.
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Since the first stage of the algorithm took O(TQ,s) operations, we can take
TS = O(M(mr)) for computing β qi .
To initiate the procedure, the algorithm also needs to compute a1 = abq/rc,
using O(log(q)) multiplications in Q for a cost O(M(m) log(q)).

Computing subfields. With k = Fq[X ]/ f (X) and deg f = m as above, we are given
a divisor r of m, and we want to construct an intermediate extension Fq ⊂ L ⊂ k of
degree r over Fq. More precisely, we want to compute a monic irreducible polynomial
g ∈ Fq[X ] of degree r, and a polynomial h ∈ Fq[X ] such that x 7→ h(x) mod f defines an
embedding L = Fq[X ]/g(X) ↪→ k.

An algorithm for this will be used to reduce the embedding problem to an isomor-
phism problem; although this is not strictly necessary for most of our algorithms to
work, it will greatly simplify the expostion. We proceed as follows.

Let α ∈ k be a random element3. Then α has a minimal polynomial of degree m
over Fq with high probability. In other words, one needs O(1) such random elements
to find one with degree m minimal polynomial. Now, the trace

Trk/L(α) = α +α
qr
+ · · ·+α

qm−r
(C.1)

has a minimal polynomial of degree r over Fq with high probability as well. This means
we can compute, after O(1) random trials, the desired polynomials β = Trk/L(α), its
minimal polynomial g, and h the polynomial of degree less than m representing β .

Proposition C.2. Let Fq ⊂ k be a finite extension of degree m, and let r be a divisor
of m. Computing an intermediate field Fq ⊂ L ⊂ k with [L : Fq] = r takes an expected
O(m(ω+1)/2 log(m)+M(m) log(q)) operations in Fq. Once L is computed, any element
γ ∈ L can be lifted to its image in k using O(m(ω+1)/2) operations.

Proof. Computing the minimal polynomial of an element in k takes O(m(ω+1)/2) op-
erations in Fq, see [Sho99]. The trace in Eq. (C.1) is computed as the expression τm

of the previous paragraph (with c = r and d = m/r), at a cost of O(m(ω+1)/2 log(m)+
M(m) log(q)) operations in Fq.

Finally, given an element γ ∈ L, its image in k is computed by evaluating h(γ),
where h is the polynomial representation of Trk/L(α). This can be done by a modular
composition at cost O(m(ω+1)/2).

Root finding in cyclotomic extensions. Given a field k = Fq[X ]/ f (X) of degree
m as above, we will need to factor some special polynomials in k[Z]: we are inter-
ested in finding one factor of a polynomial that splits into factors of the same, known,
degree. This problem is known as equal degree factorization (EDF), and the best
generic algorithm for it is the Cantor–Zassenhaus method [CZ81; GS92], which runs
in O(M(sm)(dm log(q)+ log(sm))) operations in Fq [GG99, Th. 14.9], where s is the
degree of the polynomial to factor, and d is the degree of the factors.

More efficient variants of the Cantor–Zassenhaus method are known for special
cases. When the degree s of the polynomial is small compared to the extension degree
m, Kaltofen and Shoup [KS97] give an efficient algorithm which is as follows.

3For efficiency reasons, it may be preferable to choose α pseudo-randomly, such as a low-degree polyno-
mial in the generator of k
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Algorithm 3 Kaltofen–Shoup EDF for extension fields
Input: A polynomial h with irreducible factors of degree d over k = Fq[X ]/ f (X).
Output: An irreducible factor of h over k.
1: If degh = d return h.
2: Take a random polynomial a0 ∈ k[Z] of degree less than degh,

3: Compute a1←
md−1

∑
i=0

aqi

0 mod h,

4: if q is an even power q = 2e then

5: Compute a2←
e−1

∑
i=0

a2i

1 mod h

6: else
7: Compute a2← a(q−1)/2

1 mod h
8: end if
9: Compute h0← gcd(a2,h) and h1← gcd(a2−1,h) and h−1← h/(h0h1),

10: Apply recursively to the smallest non-constant polynomial among h0,h1,h−1.

We refer the reader to the original paper [KS97] for the correctness of the Kaltofen–
Shoup algorithm. We are mainly interested here in its application to root extraction in
cyclotomic extensions. Let r be a prime power and let f be an irreducible factor of the
r-th cyclotomic polynomial Φr, with s = deg f . Denote Fq[X ]/ f (X) by Fq(ζ ), where ζ is
the image of X in the quotient. Given an r-th power α ∈ Fq(ζ ) we want to compute an
r-th root α1/r, or equivalently a linear factor of Zr−α over Fq(ζ ).

We propose two different algorithms; one of them is quadratic in r, whereas the
other one has a runtime that depends on r and s, and will perform better for small
values of s.

Proposition C.3. Let r be a prime power and let ζ be a primitive r-th root of unity; let
also s = [Fq(ζ ) : Fq]. One can take r-th roots in Fq(ζ ) using either

O(M(s) log(q)+ rsω−1 log(r) log(s)+M(rs) log(s) log(r))

or
O(M(s) log(q)+ rM(r) log(s)+M(rs) log(s) log(r))

operations in Fq.

Proof. We use Algorithm 3 with k = Fq(ζ ), to get a linear factor of the polynomial
Zr−α , so that d = 1 (note that Zr−α splits into linear factors in k[Z]). We discuss
Step 3, which is the dominant step. Let f ∈ Fq[X ] be the defining polynomial of Fq(ζ )
and let h be a factor of Zr−α of degree n.

We are in Case 5 of our discussion on Frobenius evaluation, and we want to compute
a trace-like expression of the form τs. As per that discussion, two algorithms are
available to do Frobenius evaluation in k (one of them uses modular composition, the
other the fact that f divides X r−1). Because s≤ r, we deduce that a1 can be computed
in either

O(M(s) log(q)+ rsω−1 log(s)+M(rs) log(s))

or
O(M(s) log(q)+nM(r) log(s)+M(rs) log(s))
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operations in Fq, where the first term accounts for computing αbq/rc (so we need only
compute it once).

Steps 7 and 5 are again an instance of Case 5, and their cost is subsumed by Step 3.
The depth of the recursion in Algorithm 3 is log(r), and the degree n is halved each
time, so we obtain the desired result.

Root finding in some extensions of cyclotomic extensions. Let r = vd , where
v 6= p is a prime and d is a positive integer and let s be the order of q in Z/vZ. We
assume that d ≥ 2, since this will be the case whenever we want to apply the following.

Consider an extension Fq ⊂ k = Fq[X ]/ f (X) of degree r, and let Fq(ζ ) and k(ζ ) be
extensions of degree s over Fq and k respectively, defined by an irreducible factor of the
v-th cyclotomic polynomial over Fq. In this paragraph, we discuss the cost of computing
a v-th root in k(ζ ), by adapting the root extraction algorithm given in [DS14].

Following [DS14, Algorithm 3], one reduces the root extraction in k(ζ ) to a root
extraction in Fq(ζ ); note that [DS14, Algorithm 3] reduces the root extraction to the
smallest possible extension of Fp, but projecting to Fq(ζ ) is more convenient here.
The critical computation in this algorithm is a trace-like computation performing the
reduction.

Algorithm 4 v-th root in k(ζ )

Input: a ∈ k(ζ )v

Output: a v-th root of a
1: repeat
2: choose a random c ∈ k(ζ )
3: a′← acv

4: λ ← a′(q
s−1)/v

5: b← 1+λ +λ 1+qs
+ · · ·+λ 1+qs+···+q(r−2)s

6: until b 6= 0
7: β ← (a′bv)1/v in Fq(ζ )
8: return βb−1c−1

One multiplication in k(ζ ) amounts to doing r multiplications modulo a degree s
factor of Φv, and s multiplications modulo f ; since s≤ r, this takes O(sM(r)) operations
in Fq. The computation of λ = a′(q

s−1)/v = a′bq
s/vc can then be done as explained in our

discussion on Frobenius evaluation (Case 4). The cost of each modular composition is
O(s(ω−1)/2r(ω+1)/2), for a total of O(s(ω−1)/2r(ω+1)/2 log(s)+ sM(r) log(q)) operations
in Fq.

The trace-like computation of 1+λ +λ 1+qs
+ · · ·+λ 1+qs+···+q(r−2)s can be done as

follows. Let x be the image of X in k = Fq[X ]/ f (X). To compute xqs we first compute xq

using O(M(r) log(q)) operations in Fq, and then do log(s) modular compositions in k.
To compute λ qs , note that an element λ ∈ k(ζ ) can be written as λ = λ0(x)+λ1(x)ζ +
· · ·+λs−1(x)ζ s−1 and that ζ qs

= ζ . Therefore for any i,

λ
qis

=
s−1

∑
j=0

λ j(xqis
)
(

ζ
qis
) j

=
s−1

∑
j=0

λ j(xqis
)ζ j.

In particular, given xqis , λ qis can be computed using O(s(ω−1)/2r(ω+1)/2) operations
in Fq, and [DS14, Algorithm 2] can be applied in a direct way, with a cost of
O(s(ω−1)/2r(ω+1)/2 log(r)+M(r) log(q)) operations in Fq.
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The root extraction in Fq(ζ ) is done as in the previous paragraph, and have a
negligible cost, since we assumed that s≤ v≤√r. Therefore, we arrive at the following
result.

Proposition C.4. With k, ζ and v as above, one can extract v-th roots in k(ζ ) using an
expected O(s(ω−1)/2r(ω+1)/2 log(r)+ sM(r) log(q)) operations in Fq.

The Embedding Description problem

We are finally ready to address the problem of describing the embedding of k =
Fq[X ]/ f (X) in K = Fq[Y ]/g(Y ); throughout the paper we let m = deg f and n = degg,
so that m|n. The embedding description problem asks to find two elements α ∈ k and
β ∈ K such that φ(α) = β for some field embedding φ : k→ K. This is equivalent to
saying that α and β have the same minimal polynomial.

Themost obvious way to solve this problem is to take the class of X in k =Fq[X ]/ f (X)
for α , and a root of f in K for β . Since f splits completely in K, we can apply Algorithm
3 for the special case d = 1. Using our discussion on the cost of Frobenius evalua-
tion (precisely, Case 4), we obtain an upper bound of O

(
(nm(ω+1)/2 +M(m)n(ω+1)/2 +

mM(n) log(q)) log(m)
)
expected operations in Fq for the problem. We remark that this

complexity is strictly larger than Õ(m2).
For a more specialized approach, we note that it is enough to solve the following

problem: let r be a prime power such that r|m and gcd(r,m/r) = 1, find αr ∈ k and
βr ∈ K such that αr and βr have the same minimal polynomial, of degree r.

Indeed, once such αr and βr are known for every primary factor r of m, possible
solutions to the embedding problem are

α = ∏
r|m,

gcd(r,m/r)=1

αr, β = ∏
r|m,

gcd(r,m/r)=1

βr,

or
α = ∑

r|m,
gcd(r,m/r)=1

αr, β = ∑
r|m,

gcd(r,m/r)=1

βr.

Moreover, to treat the general embedding description problem, it is sufficient to
treat the case where [k : Fq] = [K : Fq] = r. Indeed, we can reduce to this situation by
applying Proposition C.2, at an additional cost of O(n(ω+1)/2 log(n)+M(n) log(q)) for
each primary factor r. Therefore, to simplify the exposition, we focus on algorithms
solving the following problem.

ProblemC.5. Let r be a prime power and k,K two extensions ofFq of degree r. Describe
an isomorphism between k and K.

All algorithms presented next are going to rely on one common principle: construct
an element in k (and in K) such that its minimal polynomial (or, equivalently, its orbit
under the absolute Galois group of Fq) is uniquely (or almost uniquely) defined.

C.3 Kummer-type algorithms

In this section, we review what we call Kummer-type approaches to the embedding prob-
lem for prime power degree extensions. We briefly review the works of Lenstra [Len91],
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and Allombert [All02a; All02b], then we give variants of these algorithms with signif-
icantly lower complexities. As stated above, we let k,K be degree r extensions of Fq,
where r is a prime power, and we let p be their characteristic. We give our fast versions
of the algorithms for two separate cases: the case p - r is treated in Section C.3, the case
r = pd , where d is a positive integer, is treated in Section C.3. Finally, in Section C.3
we give a variant of the case p - r better suited for the case where r is a high-degree
prime power.

In [Len91], Lenstra proves that given two finite fields of the same size, there exists a
deterministic polynomial time algorithm that finds an isomorphism between them. The
focus of the paper is on theoretical computational complexity; in particular, it avoids
using randomized subroutines, such as polynomial factorization. In [All02a; All02b],
Allombert gives a similar approach with more focus on practical efficiency. In contrast
to Lenstra’s, his algorithm relies on polynomial factorization, thus it is polynomial time
Las Vegas. Even though neither of the two algorithms is given a detailed complexity
analysis, both rely on solving linear systems, thus a rough analysis yields an estimate
of O(rω) operations in Fq in both cases.

The idea of Lenstra’s algorithm is as follows. Assume that r is prime, and let
Fq[ζ ],k[ζ ] denote the ring extensions Fq[Z]/Φr(Z),k[Z]/Φr(Z) where Φr is the r-th
cyclotomic polynomial. From a normal basis of k, computed using linear algebra,
Lenstra constructs an element θ1 ∈ k[ζ ] such that θ1 and τ1 = θ r

1 are generators of the
Teichmüller subgroups of k[ζ ] and Fq[ζ ], respectively. He then proves that there is an
Fq[ζ ]-isomorphism of rings

k[ζ ] ∼−→ Fq[ζ ][Y ]/(Y r− τ1)

sending θ1 to the class ofY . Doing the same for K[ζ ], elements θ2 ∈K[ζ ] and τ2 ∈ Fq[ζ ]
and an Fq[ζ ]-isomorphism

Fq[ζ ][Y ]/(Y r− τ2)
∼−→ K[ζ ],

that sends the class ofY to θ2, is obtained. Since τ1 and τ2 both generate the Teichmüller
subgroup of Fq[ζ ], there exists an integer j > 0 such that τ1 = τ

j
2 , then the map

ψ : k[ζ ] → K[ζ ]

θ1 7→ θ
j

2

is an isomorphism of rings. Finally, denoting by ∆ the automorphism group of k[ζ ] over
k, an embedding k ↪→ K is obtained by restricting the above isomorphism ψ to the fixed
field k[ζ ]∆. To summarize, the algorithm is made of three steps:

• Construct elements θ1 ∈ k[ζ ] and θ2 ∈ K[ζ ];

• Letting τi = θ r
i , find the integer j such that τ1 = τ

j
2 by a discrete logarithm

computation in Fq[ζ ];

• Compute α ∈ k and β ∈ K as some functions of θ1,θ
j

2 invariant under ∆.

The algorithm is readily generalized to prime powers r by iterating this procedure.
Allombert’s algorithms differ from Lenstra’s in two key steps, both resorting to

polynomial factorization. First, he computes an irreducible factor h of the cyclotomic
polynomial Φr of degree s, and so constructs a field extension Fq(ζ ) as Fq[Z]/h(Z). Then
he defines k[ζ ] = k[Z]/h(Z) and K[ζ ] = K[Z]/h(Z) (note that these are not fields if r is
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not prime), and constructs θ1 ∈ k[ζ ] and θ2 ∈K[ζ ] in a way equivalent to Lenstra’s using
linear algebra. At this point, rather than computing a discrete logarithm, Allombert
points out that there exists a c ∈ Fq(ζ ) such that θ1 7→ cθ2 defines an isomorphism,
and that such value can be computed as the r-th root of θ r

1/θ r
2 . Finally, by making the

automorphism group of k[ζ ] over k act on θ1 and θ2, he obtains an embedding k ↪→ K.

Allombert’s algorithm

In this section, we analyze the complexity of Allombert’s original algorithm [All02a],
that of its revised version [All02b], and we present new variants with the best known
asymptotic complexities. The main difference with respect to the versions presented
in [All02a; All02b] is in the way we compute θ1,θ2, which are solutions to Hilbert’s
theorem 90 as will become clear below. Whereas Allombert resorts to linear algebra, we
rely instead on evaluation formulas that have a high probability of yielding a solution.
Recently, Narayanan [Nar18, Sec. 3] independently described a variant which is similar
to our Proposition C.8 in the special case s = 1.

General strategy

Let k = Fq[X ]/ f (X) where f has degree r, a prime power, and let x be the image of X in
k. Let h(Z) be an irreducible factor of the r-th cyclotomic polynomial over Fq. Then h
has degree s where s is the order of q in the multiplicative group (Z/rZ)×. We form the
field extension Fq(ζ )∼= Fq[Z]/h(Z) and the ring extension k[ζ ] = k[Z]/h(Z)∼= k⊗Fq(ζ )
where ζ is the image of Z in the quotients. The action of the Galois group Gal(k/Fq)
can be extended to k[ζ ] by

σ : k[ζ ] → k[ζ ],
x⊗ζ 7→ xq⊗ζ .

Allombert shows (see [All02a, Prop. 3.2]) that σ is an automorphism of Fq(ζ )-algebras,
and that its fixed set is isomorphic to Fq(ζ ). The same can be done for the ring K[ζ ].
Let us restate the algorithm for clarity.

Algorithm 5 Allombert’s algorithm
Input: Field extensions k,K of Fq of degree r.
Output: The description of a field embedding k→ K.
1: Factor the r-th cyclotomic polynomial and make the extensions Fq(ζ ),k[ζ ],K[ζ ];
2: Find θ1 ∈ k[ζ ] such that σ(θ1) = ζ θ1;
3: Find θ2 ∈ K[ζ ] such that σ(θ2) = ζ θ2;
4: Compute an r-th root c of θ r

1/θ r
2 in Fq(ζ );

5: Let α,β be the constant terms of θ1,cθ2 respectively;
6: return The field embedding defined by α 7→ β .

The cyclotomic polynomial Φr is factored over Fq using [Sho94b, Theorem 9], and
r-th root extraction in Fq(ζ ) is done using Proposition C.3, so we are left with the
problem of finding θ1 (and θ2), that is, instances of Hilbert’s theorem 90.

We now show how to do it in the extension k[ζ ]/Fq(ζ ), the case of K[ζ ] being
analogous. We review approaches due to Allombert, that rely on linear algebra, and
propose new algorithms that rely on evaluation formulas and ultimately polynomial
arithmetic. Note that all these variants can be directly applied to any extension degree
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r as long as p - r, and do not require r to be a prime power. Nevertheless, in practice, it
is more efficient to perform computations for each primary factor independently and
glue the results together in the end.

If A is a polynomial with coefficients in Fq(ζ ), we will denote by Â the morphism
A(σ) of the algebra k[ζ ]; note that the usual property of q-polynomials holds: ÂB= Â◦ B̂.

Algorithms relying on linear algebra

As some algorithmic details were omitted in Allombert’s publications, and no precise
complexity analysis was performed, we extracted the details from PARI/GP source
code [PARI] and perform the complexity analysis here. We also propose another variant,
using an algorithm by Paterson and Stockmeyer.

Allombert’s original algorithm. A direct solution to Hilbert’s theorem 90 is to
find a non-zero θ ∈ k[ζ ] such that (̂S−ζ )(θ) = 0.

The original version of Allombert’s algorithm [All02a] does precisely this, by comput-
ing the matrix of the Frobenius automorphism σ of k/Fq using O(M(r) log(q)+ rM(r))
operations in Fq and then an eigenvalue of σ for ζ over Fq(ζ ) using linear algebra, at
a cost of O((rs)ω) operations in Fq. This gives a total cost of O(sM(r) log(q)+ (rs)ω)
operations in Fq.

Allombert’s revised algorithm. Allombert’s revision of his own algorithm [All02b]
uses the factorization

h(S) = (S−ζ )b(S). (C.2)
If we set h(S) = Ss +∑

s−1
i=0 hiSi, we can explicitly write b as

b(S) =
s−1

∑
i=0

bi(S)ζ i, where

{
bs−1(S) = 1,
bi−1(S) = bi(S)S+hi.

(C.3)

Indeed, Horner’s rule shows that b−1(S) = h(S), and by direct calculation we find that
(S−ζ ) ·b(S) = b−1(S).

We get a solution to Hilbert’s theorem 90 by evaluating b(S) = h(S)/(S−ζ ) on an
element in the kernel of ĥ over k, linear algebra now taking place over Fq rather than
Fq(ζ ). The details on the computation of ĥ were extracted from PARI/GP source code
and yield the following complexity.

Proposition C.6. Using Allombert’s revised algorithm, a solution θ to Hilbert’s theo-
rem 90 can be computed in O(M(r) log(q)+ srM(r)+ rω) operations in Fq.

Proof. As in Allombert’s original algorithm, one first computes the matrix of σ over k
at a cost of O(M(r) log(q)+ rM(r)) operations in Fq.

To get the matrix of ĥ over k, one first computes the powers xqi for 0≤ i≤ s using
the matrix of σ , at a cost of O(sr2) operations in Fq. From them, one can iteratively
compute the powers x jqi for 2≤ j ≤ r for a total cost of O(srM(r)) operations in Fq, and
iteratively compute the matrix of ĥ for an additional total cost of O(sr2) operations in
Fq, accounting for the scalar multiplications by the coefficients of h. The total cost is
therefore dominated by O(srM(r)) operations in Fq.

Given the matrix of ĥ over k, computing an element in its kernel costs O(rω)
operations in Fq. The final evaluation of b̂ is done using Eq. (C.3) and the matrix of σ

for Frobenius computations, for a cost of O(sr2) operations in Fq.
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Using the Paterson–Stockmeyer algorithm. Given the matrix Mσ of σ , there
is a natural way of evaluating ĥ at a reduced cost: the Paterson–Stockmeyer algo-
rithm [PS73] computes the matrix of ĥ and h(Mσ ), using O(

√
srω) operations in Fq.

The evaluations of σ that take a total of O(sr2) operations in Fq can be done directly
using modular exponentiations, for a total of O(sM(r) log(q)).

Proposition C.7. Using the Paterson–Stockmeyer algorithm and modular exponentia-
tions, a solution θ to Hilbert’s theorem 90 can be computed in O(sM(r) log(q)+

√
srω)

operations in Fq.

Although this complexity is not as good as the ones we will obtain next, this variant
performs reasonably well in practice, as discussed in Section C.7.

Algorithms relying on polynomial arithmetic

It is immediate to see that the minimal polynomial of σ over k[ζ ] is Sr−1; by direct
calculation, we verify that it factors as

Sr−1 = (S−ζ ) ·Θ(S) = (S−ζ )
r−1

∑
i=0

ζ
−i−1Si. (C.4)

Hence, we can set

θa = Θ̂(a) = a⊗ζ
−1 +σ(a)⊗ζ

−2 + · · ·+σ
r−1(a)⊗ζ

−r (C.5)

for some a ∈ k chosen at random. Because of Eq. (C.4), θa is a solution as long as it is
non-zero. This is reminiscent of Lenstra’s algorithm [Len91, Th. 5.2].

To ensure the existence of a such that θa 6= 0, we only need to prove that k is not
entirely contained in ker Θ̂. But the maps σ i restricted to k are all distinct, thus Artin’s
theorem on character independence (see [Lan02, Ch VI, Theorem 4.1]) shows that they
are linearly independent, and therefore Θ̂ is not identically zero on k. In practice, we
take a ∈ k at random until θa 6= 0. Since the map Θ̂ is Fq-linear and non-zero, it has
rank at least 1, thus a random θa is zero with probability less than 1/q. Therefore, we
only need O(1) trials to find θ1 (and θ2).

Using the polynomial b(S) introduced in Eq. (C.2), and defining g(S) = (Sr−1)/h(S),
we can rewrite Eq. (C.4) as

Θ(S) = b(S) ·g(S). (C.6)
Then, the morphism Θ̂ can be evaluated as b̂ ◦ ĝ, the advantage being that g has
coefficients in Fq, rather than in Fq(ζ ): we set τa = ĝ(a) for some a ∈ k chosen at
random and compute θa = b̂(τa) using Eq. (C.3), yielding a solution to Hilbert’s theorem
90 as soon as τa 6= 0. As before, O(1) trials are enough to get θa 6= 0.

We now give three variations on the above algorithm to compute a candidate solution
θa more efficiently. Which algorithm has the best asymptotic complexity depends on
the value of s with respect to r; we arrange them by increasing s.

First solution: divide-and-conquer recursion. We use a recursive algorithm
similar to the computation of trace-like functions in Proposition C.1, to directly evaluate
θa using Eq. (C.5). For j ≥ 1, let ξ j = σ j(x) and θa, j = a⊗ ζ−1 +σ(a)⊗ ζ−2 + · · ·+
σ j−1(a)⊗ ζ− j, so that we want to compute θa,r = θa. For j = 1, we have (ξ1,θa,1) =
(xq,aζ−1); for i, j ≥ 1, we have the following recursive relations:

(ξi+ j,θa,i+ j) = (σ i(ξ j),θa,i +σ
i(θa, j)ζ

−i). (C.7)
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Proposition C.8. Given a ∈ k, the value θa in Eq. (C.5) can be computed using

O(s(ω−1)/2r(ω+1)/2 log(r)+M(r) log(q))

operations in Fq.

Proof. The value ξ1 is computed by binary powering using O(M(r) log(q)) operations,
while the value θa,1 is deduced from the polynomial h using O(rs) operations.

To compute the recursive formulas in Eq. (C.7) we use the same technique as in
Proposition C.1: given b ∈ k[ζ ], the value σ j(b) is computed as the modular composi-
tion of the polynomial b(x,z) with the polynomial ξ j(x) in the first argument. Each
modular composition in k[ζ ] is done using s modular compositions in k, at a cost of
O(s(ω−1)/2r(ω+1)/2) operations (see Note C.2). Multiplications by ζ− j are done by seeing
the elements of k[ζ ] as polynomials in x over Fq(ζ ), thus performing r multiplications
modulo h, at a cost of O(rM(s)) operations. Given that the total depth of the recursion
is O(log(r)), we obtain the stated bound.

Second solution: automorphism evaluation. We use Eq. (C.6) and Eq. (C.3) to
compute θa as θa = b̂◦ ĝ(a).

Proposition C.9. Given a ∈ k, the value θa in Eq. (C.5) can be computed using

O(r(ω
2−4ω−1)/(ω−5)+(s+ r2/(5−ω))M(r) log(q))

operations in Fq.

Proof. We proceed in two steps. We first compute ĝ(a) using the automorphism
evaluation algorithm of Kaltofen and Shoup [KS98, Algorithm AE], at a cost of
O(r(ω+1)/2+(3−ω)|β−1/2| + r(ω+1)/2+(1−β )(ω−1)/2 + rβM(r) log(q)), for any 0 ≤ β ≤ 1.
Choosing β = 2/(5−ω) minimizes the overall runtime, giving the exponents reported
above.

We then use Eq. (C.3) to compute θa = ∑
s−1
i=0 ai⊗ζ i, where as−1 = ĝ(a), and ai−1 =

σ(ai)+ hiĝ(a). The cost of this computation is dominated by the evaluations of σ ,
which take O(M(r) log(q)) operations each, thus contributing O(sM(r) log(q)) total
operations.

Third solution: multipoint evaluation. Finally, we can compute all the values
σ(a), . . . ,σ r−1(a) directly, write θa as a polynomial in x and ζ of degree r−1 in both
variables, and reduce modulo h for each power xi.

Proposition C.10. Given a ∈ k, the value θa in Eq. (C.5) can be computed using

O(M(r2) log(r)+M(r) log(q))

operations in Fq.

Proof. The values σ(a), . . . ,σ r−1(a) can be computed by binary powering using
O(rM(r) log(q)). We can do slightly better using the iterated Frobenius technique
of von zur Gathen and Shoup [GS92, Algorithm 3.1] (see also [GG99, Ch. 14.7]), which
costs of O(M(r2) log(r)+M(r) log(q)) operations. The final reduction modulo h costs
O(rM(r) log(r)) operations, which is negligible in front of the previous step.
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The following proposition summarizes our analysis. To clarify the order of mag-
nitude of the exponents, let us assume q = O(1) and neglect polylogarithmic factors;
then, if ω = 2.38 (best bound to date), the runtimes are O(s0.69r1.69) for s ∈ O(r0.23),
O(r1.85 + s1.38r) for s ∈ Ω(r0.23) and s ∈ O(r0.72), and Õ(r2) otherwise. For ω = 3, all
costs are at best quadratic.

Proposition C.11. Given k,K of degree r over Fq, assuming that s is the order of q in
(Z/rZ)×, Algorithm 5 computes its output using

• O(s(ω−1)/2r(ω+1)/2 log(r) + M(r) log(q)) expected operations in Fq if s ∈
O(r(ω−3)/(ω−5)), or

• O(r(ω
2−4ω−1)/(ω−5)+(s+ r2/(5−ω))M(r) log(q)+ sω−1r log(r) log(s)) expected op-

erations in Fq if if s ∈Ω(r(ω−3)/(ω−5)) and s ∈ O(r1/(ω−1)), or

• O(M(r2) log2(r)+M(r) log(r) log(q)) expected operations in Fq otherwise.

Proof. The cost of factoring the r-th cyclotomic polynomial is an expected
O(M(r) log(rq)) operations in Fq, using [Sho94b, Theorem 9]. This is negligible com-
pared with other steps. The solutions θ1,θ2 to Hilbert’s theorem 90 are computed
as described above, according to the size of s. The powers θ r

1 ,θ
r
2 are computed using

Kronecker substitution in O(M(sr) log(r)) operations, which is also negligible. Finally,
the cost of computing an r-th root in Fq(ζ ) is given by Proposition C.3 and can not be
neglected.

Combining the costs coming from the solution to Hilbert’s theorem 90 and the r-th
root extraction, we obtain the following complexities according to s.

• If we use the algorithm described in our first solution, combining Proposi-
tion C.8 with the first case of Proposition C.3, we obtain an estimate of
O(s(ω−1)/2r(ω+1)/2 log(r)+M(r) log(q)) operations.

• If we use the algorithm described in our second solution, combining
Proposition C.9 with the first case of Proposition C.3, we obtain an es-
timate of O(r(ω

2−4ω−1)/(ω−5) + (s + r2/(5−ω))M(r) log(q) + sω−1r log(r) log(s) +
M(rs) log(r) log(s)) operations.

• Otherwise, we use the algorithm described in our third solution. Combining
Proposition C.10 with the second case of Proposition C.3, and replacing s with r ev-
erywhere, we obtain an estimate of O(M(r2) log2(r)+M(r) log(r) log(q)) expected
operations.

For s ∈ O(r(ω−3)/(ω−5)), the first solution has the better runtime. Assuming s ∈
Ω(r(ω−3)/(ω−5)), the runtime in the second case can be written as O(r(ω

2−4ω−1)/(ω−5)+
(s+ r2/(5−ω))M(r) log(q)+ sω−1r log(r) log(s)). If in addition s is in O(r1/(ω−1)), this
runtime is subquadratic, that is, better than that in our third solution.

The Artin–Schreier case

This section is devoted to the case r = pd for some positive integer d. The technique
we present here originates in Adleman and Lenstra’s work [AL86, Lemma 5], and
appears again in Lenstra’s [Len91] and Allombert’s [All02a]. The chief difference with
previous work once again consists in replacing linear algebra with a technique to solve
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the additive version of Hilbert’s theorem 90 similar to the one in the previous section.
Recently, Narayanan [Nar18, Sec. 4] independently described a related variant with a
similar complexity.

The idea is to build a tower inside the extension k/Fq using polynomials of the
form X p−X − a where a ∈ k. To start, let a1 ∈ Fq be such that TrFq/Fp(a1) 6= 0. Let
σ ∈ Gal(Fq/Fp) be a generator of the Galois group. Then by the additive version of
Hilbert’s theorem 90 there is no element α ∈ Fq such that σ(α)−α = a1. Equivalently,
the polynomial f1 = X p−X − a1 has no root in Fq. By the Artin–Schreier theorem
in [Lan02, Ch VI], f1 is irreducible over Fq. For a root α1 ∈ k of f1, the extension
Fq(α1)/Fq is of degree p. Now let a2 = a1α

p−1
1 . Then, by [AL86, Lemma 5], the

polynomial f2 = X p−X−a2 is irreducible over Fq(α1). So, for a root α2 ∈ k of f2 the
extension Fq(α2,α1)/Fq(α1) is of degree p. Continuing the above process we build a
tower

Fq ⊂ Fq(α1)⊂ ·· · ⊂ Fq(α1, · · · ,αd) = k. (C.8)

The idea of building such tower using the Artin–Schreier polynomials fi can also be
found in [Len91; All02a; Sho93]. By construction, αi /∈ Fq(α1, · · · ,αi−1) for all 1≤ i≤ d.
This means that the minimal polynomial of αd over Fq is of degree r = pd . Therefore,
k = Fq(αd), and the element αd is uniquely defined up to Fq-isomorphism.

The above construction boils down to computing a root of the polynomial f =
X p−X−a∈ k[X ]. We now show how to efficiently compute such a root. By construction,
a is always in an intermediate subfield Fq ⊆ k′ ⊂ k. This means

Trk/Fp(a) = Trk′/Fp(Trk/k′(a)) = Trk′/Fp(pia) = 0

for some i > 0. By Hilbert’s theorem 90 there exists α ∈ k such that α−σ(α) =−a for
a generator σ ∈ Gal(k/Fp). In other words, α p−α−a = 0. Therefore, α is a root of f .
On the other hand, for a random element θ ∈ k with nonzero trace, α can be explicitly
set as

α =
1

Tr(θ)
[aσ(θ)+(a+σ(a))σ2(θ)+ · · ·+(a+σ(a)+ · · ·+σ

rt−2(a))σ rt−1(θ)] (C.9)

where t = [Fq : Fp]. To compute α using Eq. (C.9) efficiently, for j ≥ 1, we define
ξ j = σ j(x), and, for u in k,

βu, j = u+σ(u)+ · · ·+σ
j−1(u), αu, j = βa,1σ(u)+ · · ·+βa, jσ

j(u).

Our goal is to ultimately compute βθ ,rt = Tr(θ) and α = β
−1
θ ,rt αθ ,rt . For this, we show

how to compute quadruples of the form (ξ j,βa, j,βθ , j,αθ , j), for j ≥ 1.
For j = 1, we have (ξ1,βa,1,βθ ,1,αθ ,1) = (xq,a,θ ,aθ q); for i, j ≥ 1, a calculation

gives

(ξi+ j,βa,i+ j,βθ ,i+ j,αθ ,i+ j) =(
σ

j(ξi), βa, j +σ
j(βa,i), βθ , j +σ

j(βθ ,i), αθ , j +σ
j(αθ ,i)+βa, jσ

j+1(βθ ,i)
)
. (C.10)

In particular, the values βθ ,rt , and αθ ,rt can be computed recursively, in O(log(rt))
steps. The initial values (ξ1,βa,1,βθ ,1,αθ ,1) are computed using O(M(r) log(q)) opera-
tions in Fq. For higher indices, as before, the action of σ j is the same as composing
with ξ j, so each step of the recursion is dominated by O(1) modular compositions over
Fq, at the cost of O(r(ω+1)/2) operations in Fq. Therefore, the cost of computing a root
of f is O(r(ω+1)/2 log(rt)+M(r) log(q)) operations in Fq.
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Now, to compute αd in Eq. (C.8) we need to take d roots where d ∈O(log(r)/ log(p))
which leads to the following result. (Note that ξ1 is computed only once and reused
thereafter.)

Proposition C.12. Let r = pd for a positive integer d, and let t = [Fq : Fp]. An
isomorphism of two extensions k/Fq, K/Fq of degree r can be constructed using
O(r(ω+1)/2 log(rt) log(r)+M(r) log(q)) operations in Fq.

High-degree prime powers

We end this section with an algorithm that is particularly efficient when the extension
degree r is a high-degree prime power. Allombert’s algorithm works well in this case,
however its complexity depends linearly on the order s of q modulo r. If r = vd for some
prime v 6= p, it is natural to seek an algorithm which depends on the order of q modulo
v instead. The idea we present is a variation on Lenstra’s algorithm, using successive
v-th root extractions. We are not aware of this algorithm appearing anywhere in the
literature. We also note that Narayanan [Nar18, Sec. 5] recently published a radically
different generalization of Allombert’s algorithm with a very similar complexity in r
(his algorithm has much worse complexity in q, though).

An overview of our construction is as follows. Let r = vd where v 6= p is a prime
and d is a positive integer. Suppose the extension k/Fq is of degree r. Let s be the
order of q in Z/vZ, and write qs−1 = uvt where gcd(v,u) = 1. Since qr = qvd

= q mod
v, we see that qr has the same order s in Z/vZ. So the cyclotomic field extensions
Fq(ζ )/Fq,k(ζ )/k,K(ζ )/K are all of degree s. We move to these extensions by obtaining
an irreducible factor of the v-th cyclotomic polynomial over Fq. Next, we obtain a
random non-v-th power η in Fq(ζ )

∗.
It follows from vt | qs−1 that vt+d | qrs−1. So we can compute an r-th root θ1 of η

in k(ζ ) using d successive v-th root extractions in k(ζ ). Since η is a non-v-th power,
the polynomial Y r−η is irreducible over Fq(ζ ) and there is an Fq(ζ )-isomorphism

Fq(ζ )(θ1)
∼−→ Fq(ζ )[Y ]/(Y r−η)

that sends θ1 to Y . From this we see that Fq(θ) and k(ζ ) have the same degree over Fq,
and hence Fq(θ1) = k(ζ ). Similarly, we find θ2 ∈K(ζ ). So we have an Fq(ζ )-embedding

φ : k(ζ ) ∼−→ Fq(ζ )[Y ]/(Y r−η)
∼−→ K(ζ )

that sends θ1 to θ2. Let α = Trk(ζ )/k(θ1) and β = TrK(ζ )/K(θ2). Then k = Fq(α) and
K = Fq(β ), see [Sho93, Algorithm 13] and the proof of [Sho90, Theorem 2.1]. Since φ

commutes with traces, the map α 7→ β defines an isomorphism.
The main difficulty in applying such an algorithm resides in computing efficiently

v-th roots in k(ζ ), for which we use Proposition C.4; this yields the main result of this
section.

TheoremC.13. Let r = vd where v 6= p is a prime and d is a positive integer. Also let s be
the order of q inZ/vZ. Given extensions k/Fq, K/Fq of degree r, an embedding k ↪→K can
be constructed at the cost of an expected O(s(ω−1)/2r(ω+1)/2 log(r)2 + sM(r) log(r) log(q)
operations in Fq.

Proof. We can construct the embedding of Theorem C.13 as follows. We first build the
extensions k(ζ )/Fq(ζ ) and K(ζ )/Fq(ζ ). Let η be a non v-th power in Fq(ζ ). Then
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Algorithm 6 Kummer-type algorithm for extension towers

Input: Extensions k/Fq, K/Fq of degree prime-power r = vd , with v 6= p.
Output: The description of a field embedding k ↪→ K.
1: Factor the v-th cyclotomic polynomial over Fq to build the extensions k(ζ )/Fq(ζ )

and K(ζ )/Fq(ζ );
2: Find a random non v-th power η ∈ Fq(ζ );
3: Compute r-th roots θ1,θ2 of η in k(ζ ),K(ζ );
4: Compute α = Trk(ζ )/k(θ1) and β = TrK(ζ )/K(θ2);
5: return The field embedding defined by α 7→ β .

η is an r-power in k(ζ ) and K(ζ ). To obtain r-th roots θ1 ∈ k, θ2 ∈ K of η we take d
successive v-th roots.

Step 1 is done using [Sho94b, Theorem 9], which takes O(M(v) log(vq)) operations
in Fq. We do Step 2 by taking random elements in Fq(ζ ) until a non v-th power is
found. Testing whether η is a v-th power amounts to computing η(qs−1)/v in Fq(ζ ),
which can be done in O(s(ω−1)/2 log(s)+M(s) log(v) log(s)+M(s) log(q)) operations in
Fq, in view of our discussion in Section C.2.

Step 3 is done using d = O(log(r)/ log(v)) successive root extractions, each of which
takes an expected O(s(ω−1)/2r(ω+1)/2 log(r)+ sM(r) log(q)) operations in Fq. Writing
θ1 and θ2 as polynomials in ζ with coefficients in k and K, reps., we see that computing
the traces of Step 4 boils down to computing the traces TrFq(ζ )/Fq(ζ

i) for 0≤ i < s. The
cost of this is dominated by those of the previous steps. Therefore, Algorithm 6 runs in
an expected O(s(ω−1)/2r(ω+1)/2 log(r)2 + sM(r) log(r) log(q) operations in Fq.

C.4 Rains’ algorithm

We now move on to a different family of algorithms based on the theory of algebraic
groups. The simplest of these is Pinch’s cyclotomic algorithm [Pin92]. The idea is very
simple: given r, select an integer ` such that [Fq(µ`) : Fq] = r, where µ` is the group
of `-th roots of unity. Then, any embedding k→ K takes µ` ⊂ k∗ to µ` ⊂ K∗, and the
minimal polynomial of any primitive `-th root of unity has degree exactly r.

Pinch’s algorithm is very effective when r = ϕ(`). Indeed in this case the `-th
cyclotomic polynomial Φ` is irreducible over Fq, and its roots form a unique orbit under
the action of the absolute Galois group of Fq. Thus we can take any primitive `-th roots
of unity α ∈ k and β ∈ K to describe the embedding.

In the general case, however, the roots of Φ` are partitioned in ϕ(`)/r orbits, thus
for two randomly chosen `-th roots of unity ζ1 ∈ k and ζ2 ∈ K, we can only say that
there exists an exponent e such that

α = ζ1 7→ ζ
e
2 = β

defines a valid embedding. Pinch’s algorithm tests all possible exponents e, until a
suitable one is found. To test for the validity of a given e, it applies the embedding
φ : ζ1 7→ ζ2 to the class of X in k, and verifies that its image is a root of f in K.

The trial-and-error nature of Pinch’s algorithm makes it impractical, except for
rare favorable cases where a small ` such that r = ϕ(`) can be found. One possible
workaround, suggested by Pinch himself, is to replace the group of roots of unity with
a group of torsion points of a well chosen elliptic curve. We analyze this idea in greater
detail in Section C.5.
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This section is devoted to a different way of improving Pinch’s algorithm, imagined
by Rains [Rai96], and implemented in the Magma computer algebra system [BCP97].
Rains’ technical contribution is twofold: first he replaces roots of unity with Gaussian
periods to avoid trial-and-error, second he moves to slightly larger extension fields to
ensure the existence of a small ` as above.

Uniquely defined orbits from Gaussian periods

For the rest of the section, we are going to assume that q is prime. The case where q is
a higher power of a prime is discussed in Note C.4.

Suppose that we have an `, coprime with q, such that [Fq(µ`) : Fq] = r, then the
cyclotomic polynomial Φ` factors over Fq into ϕ(`)/r distinct factors of degree r. Pinch’s
method, by choosing random roots of Φ` in k and K, randomly selects one of these
factors as minimal polynomial. By combining the roots of Φ` into Gaussian periods,
Rains’ method uniquely selects a minimal polynomial of degree r.

Definition C.14. Let q be a prime, and let ` be a squarefree integer such that
(Z/`Z)× = 〈q〉×S for some S. For any generator ζ` of µ` in Fq(µ`), define the Gaussian
period ηq(ζ`) as

ηq(ζ`) = ∑
σ∈S

ζ
σ
` . (C.11)

It is evident from the definition that the Galois orbit of ηq(ζ`) is independent of
the initial choice of ζ`. Much less evident is the fact that this orbit has maximal size
and forms a normal basis of Fq(µ`), as stated in the following lemma.

Lemma C.15. Let q be a prime, and let ` be a squarefree integer such that (Z/`Z)× =
〈q〉×S for some S. The periods ηq(ζ

τ
` ) for τ running through 〈q〉 form a normal basis

of Fq(µ`) over Fq, independent of the choice of ζ`.

Proof. Gaussian periods were introduced by Gauss [Gau86] in 1796 and extensively
studied by Kummer [Kum46; Kum47b; Kum47a; Kum47c; Kum51; Kum55; Kum57].
The existence of integral normal bases for general Galois extensions without rami-
fication was proved by Noether [Noe32]. For a generalized treatment specific to the
case of finite fields, see [FGS99, Main Theorem]: the main idea of the proof is to show
that cyclotomic units are normal in characteristic zero, then that integrality conditions
carry normality through reduction modulo q.

In what follows we are going to write η(ζ`) when q is clear from the context.

Example C.16. Consider the extension F8/F2 of degree 3, which is generated by the
7-th roots of unity. We have a decomposition (Z/7Z)× = 〈2〉×〈−1〉, and the cyclotomic
polynomial factors as

Φ7(X) = (X3 +X +1)(X3 +X2 +1). (C.12)

For any root ζ7, we define the period

η2(ζ7) = ζ7 +ζ
−1
7 . (C.13)

The three periods η2(ζ7), η2(ζ7)
2 and η2(ζ7)

4 are all roots of the polynomial x3 +x2 +1
and form a normal basis of F8/F2.
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Rains’ cyclotomic algorithm

The bottom-line of Rains’ algorithm follows immediately from the previous section:
given k, K and r,

1. find a small ` satisfying the conditions of Lemma C.15 with [Fq(µ`) : Fq] = r;

2. take random `-th roots of unity ζ` ∈ k and ζ ′` ∈ K;

3. return the Gaussian periods αr = η(ζ`) and βr = η(ζ ′`).

The problem with this algorithm is the vaguely defined smallness requirement on
`. Indeed the conditions of Lemma C.15 imply that ` divides Φr(q), thus in the worst
case ` can be as large as O(qϕ(r)), which yields an algorithm of exponential complexity
in the field size.

To circumvent this problem, Rains allows the algorithm to work in small auxiliary
extensions of k and K, and then descend the results to k and K via a field trace. In
other words, Rains’ algorithm looks for ` such that [Fq(µ`) : Fq] = rs for some small s.
We summarize this method in Algorithm 7; we only give the procedure for the field k,
the procedure for the field K being identical.

Algorithm 7 Rains’ cyclotomic algorithm
Input: A field extension k/Fq of degree r; a squarefree integer ` such that

• (Z/`Z)× = 〈q〉×S for some S,

• #〈q〉= rs for some integer s;

a polynomial h of degree s irreducible over k.
Output: A normal generator of k over Fq, with a uniquely defined Galois orbit.
1: Construct the field extension k′ = k[Z]/h(Z);
2: repeat
3: Compute ζ ← θ (#k′−1)/` for a random θ ∈ k′

4: until ζ is a primitive `-th root of unity;
5: Compute η(ζ )← ∑σ∈S ζ σ ;
6: return α ← Trk′/k η(ζ ) = ∑

s−1
i=0 η(ζ )qri .

Proposition C.17. Algorithm 7 is correct. On input q,r, `,s it computes its output
using O(sr(ω+1)/2 log(sr)+M(sr)(log(q)+(`/r) log(`))) operations in Fq on average.

Proof. By construction k′ is isomorphic to Fq(µ`). By Lemma C.15 η(ζ ) is a normal
generator of k′, and by [MP13, Prop. 5.2.3.1] α is a normal generator of k. This proves
correctness.

According to Proposition C.1, computing ζ in Step 3 costs

O
((

s(ω+1)/2M(r)+ sr(ω+1)/2 +M(sr) log(`)
)

log(sr)+M(sr) log(q)
)
,

and the loop is executed O(1) times on average. By observing that s(ω−1)/2 ∈ O(`/r),
this fits into the stated bound.

Steps 5 and 6 can be performed at once by observing that

α =
s−1

∑
i=0

η(ζ qri
) =

s−1

∑
i=0

∑
σ∈S

ζ
qriσ .
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By reducing qriσ modulo `, we can compute this sum at the cost of ϕ(`)/r exponen-
tiations of degree at most ` in k′, for a total cost of O((M(sr)(`/r) log(`)), using the
techniques of Section C.2. The final result is obtained as an element of k.

The attentive reader will have noticed the irreducible polynomial h of degree s given
as input to Rains’ algorithm. Computing this polynomial may be expensive. For a start,
we may ask s to be coprime with r, so that h can be taken with coefficients in Fq. Then,
for small values of s and q, one may use a table of irreducible polynomials. For larger
values, the constructions [CL13; DDS13; DDS14] are reasonably efficient, and yield an
irreducible polynomial in time less than quadratic in s. However negligible from an
asymptotic point of view, the construction of the polynomial h and of the field k′ take a
serious toll on the practical performances of Rains’ algorithm.4

This concludes the presentation of Rains’ algorithm. However, we are still left with
a problem: how to find ` satisfying the conditions of the algorithm, and what bounds
can be given on it. These questions will be analyzed in Section C.6.

Note: Rains’ algorithm is easily extended to a non-prime field Fq, as long as q = pd

with gcd(d,r) = 1. In this case, indeed, any generator of Fpr over Fp is also a
generator of Fqr over Fq. The algorithm is unchanged, except for the additional
requirement that gcd(ϕ(`),d) = 1, which ensures that the Gaussian periods
indeed generate Fpr .

However, when gcd(d,r) 6= 1, it is impossible to have (Z/`Z)× = 〈q〉 × S, so
Rains’ algorithm simply cannot be applied to this case. In the next section we
are going to present a variant that does not suffer from this problem.

C.5 Elliptic Rains’ algorithm

The Pinch/Rains’ algorithm presented in the previous section relies on the use of
the multiplicative group of finite fields. It is natural to try to extend it to other
types of algebraic groups in order to cover a wider range of parameters. And indeed
Pinch [Pin92] showed how to use torsion points of elliptic curves in place of roots of
unity. Rains also considered this possibility, but did not investigate it thoroughly as no
theoretical gain was to be expected. However, the situation in practice is quite different.
In particular, the need for auxiliary extensions in the cyclotomic method is very costly,
whereas the elliptic variant has naturally more chances to work in the base fields, and
to be therefore very competitive.

In the next sections, we first introduce elliptic periods, a straightforward gener-
alization of Gaussian periods for torsion points of elliptic curves, then analyze the
cost of their computation. The main issue with this generalization is that, contrary to
Gaussian periods, elliptic periods do not yield normal bases of finite fields. We still
provide experimental data and heuristic arguments to support the benefit of using
them. Whether they always yield an element generating the right field extension, a
weak counterpart to Lemma C.15, is left as an open problem.

4 A straightforward way to avoid these constructions consists in computing a factor h of the cyclotomic
polynomial Φ` over the extension k following case 5 from Section C.2. Then, using Newton’s identities, the
period can be recovered from the logarithmic derivative of the reciprocal of h. Nevertheless, the cost of
factoring Φ` renders this approach unpractical.
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Uniquely defined orbits from elliptic periods

An elliptic curve E/L defined over a field L is given by an equation of the form

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6 with a1,a2,a3,a4,a6 ∈ L.

For any field extension M/L the group of M-rational points of E is the set

E(M) = {(x,y) ∈M2 | E(x,y) = 0}∪{O}

endowed with the usual group law, where O is the point at infinity.
For an integer `, we denote by E[`] the `-torsion subgroup of E(L̄), where L̄ denotes

the algebraic closure of L. In this section we are going to consider integers ` coprime
with the characteristic of L, then E[`] is a group of rank 2.

For an elliptic curve E/Fq defined over a finite field, we denote by π its Frobenius
endomorphism. It is well known that π satisfies a quadratic equation π2− tπ +q = 0,
where t is called the trace of E, and that this equation determines the cardinality of E
as #E(Fq) = q+1− t.

Like in the cyclotomic case, the Frobenius endomorphism partitions E[`] into orbits.
Our goal is to take traces of points in E[`] so that a uniquely defined orbit arises. This
task is made more complex by the fact that E[`] has rank 2, hence we are going to
restrict to a family of primes ` named Elkies primes.

Definition C.18 (Elkies prime). Let E/Fq be an elliptic curve, let ` be a prime number
not dividing q. We say that ` is an Elkies prime for E if the characteristic polynomial
of the Frobenius endomorphism π splits into two distinct factors over Z/`Z:

π
2− tπ +q = (π−λ )(π−µ) mod ` with λ 6= µ. (C.14)

Note that if ` is an Elkies prime for E, then E[`] splits into two eigenspaces for
π which are defined on extensions of Fq of degrees ord`(λ ) and ord`(µ). We are now
ready to define the elliptic curve analogue of Gaussian periods.

Definition C.19. Let E/Fq be an elliptic curve of j-invariant not 0 or 1728.5 Let ` > 3
be an Elkies prime for E, λ an eigenvalue of π , and P a point of order ` in the eigenspace
corresponding to λ (i.e., such that π(P) = λP). Suppose that there is a subgroup S of
(Z/`Z)× such that

(Z/`Z)× = 〈λ 〉×S. (C.15)
Then we define an elliptic period as

ηλ ,S(P) =

{
∑σ∈S/{±1} x([σ ]P) if −1 ∈ S,
∑σ∈S x([σ ]P) otherwise,

(C.16)

where x(P) denotes the abscissa of P.

Lemma C.20. With the same notation as in Definition C.19, let

#〈λ 〉=
{

r if −1 /∈ 〈λ 〉,
2r otherwise.

Then, for any point P in the eigenspace of λ , the period ηλ ,S(P) is in Fqr , and its minimal
polynomial does not depend on the choice of P.

5The definition is easily extended to include j = 0,1728: one must quotient S by Aut(E)∩S and raise
summands to an appropriate power. See [Bri+17] for more details.
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Proof. By construction, the Frobenius endomorphism π acts on 〈P〉 as multiplication
by the scalar λ . It is well known that two points have the same abscissa if and only if
they are opposite, hence the Galois orbit of x(P) has size r, and we conclude that both
x(P) and ηλ ,S(P) are in Fqr .

Now let P′= [a]P be another point in the eigenspace of λ . By construction, a=±λ iσ ,
for some 0≤ i < r and some σ ∈ S. Hence ηλ ,S(P′) = ηλ ,S([λ

i]P), implying that ηλ ,S(P)
and ηλ ,S(P′) are conjugates in Fqr .

We remark that the previous lemma only states that the elliptic periods ηλ ,S([λ
i]P)

uniquely define an orbit inside Fqr , but gives no guarantee that they generate the whole
Fqr . At this point, one would like to have an equivalent of Lemma C.15 for elliptic
periods, i.e. that the elliptic period ηλ ,S(P) is a normal generator of Fq(x(P)). However,
it is easy to find non-normal elliptic periods, as the following example shows.

Example C.21. Let E/F7 be defined by y2 = x3 + 5x+ 4, and consider the degree 3
extension of F7 defined by k = F7[X ]/(X3 +6X2 +4). Then

• `= 31 is an Elkies prime for E;

• the eigenvalues of the Frobenius modulo ` are λ = 25 of multiplicative order 3
and µ = 4 of multiplicative order 5;

• P = (5a2 +2a,4) is a point of order 31 of E/k;

• η = ηλ ,S(P) = 5a2 +5a+4 is not a normal element, indeed η +4η7 +2η49 = 0.

All known proofs of Lemma C.15 rely on the fact that the `-th cyclotomic polynomial
is irreducible over Q, and its roots form a normal basis of Q(ζ`). This fails in the
elliptic case: there is indeed no guarantee that the eigenspace of λ can be lifted to a
normal basis over some number field.

Note however that, even if the elliptic period is not normal, it is enough for our
purpose that it generates Fq(x(P)) as a field, like in the example above. Experimental
evidence suggests that this might always be the case. Thus, we state this as a conjecture.

Conjecture C.22. With the above notation, the elliptic period ηλ ,S(P) generates
Fq(x(P)) over Fq.

If the conjecture is false, the only arguments we can give are of a heuristic nature.
First and most simply, we can assume that the elliptic period behaves like a random
element of Fq(x(P)). In this case the chance of it not being a generator is approximately
1/qr. Based on this observation, numerous experiments were conducted for small values
of q and r: for all primes ` up to 1000, and all primes q up to a bound depending on `,
we tested all curves defined over Fq such that ` is an Elkies prime and a corresponding
eigenvalue r is an odd prime. Overall, more than 43 million curves were tested, and
no counterexample was found. We also tested the conjecture through more involved
methods using modular curves, more details are given in [Bri+17, Appendix C.2].6

Secondly, based on the polynomially cyclic algebras setting of [MV10], one can give
a sufficient condition for the period to be a normal generator of Fq(x(P)), that is a weak
counterpart to Lemma C.15 (see [Bri+17, Appendix C.1]). Heuristically, this suggests
that the chance of the period not being normal is approximately 1/q.

We are now ready to present the generalization of Rains’ algorithm, with the
warning that the algorithm may fail, with low probability, if Conjecture C.22 is false.

6The source code for our tests is available at https://github.com/defeo/ffisom/blob/master/
misc/conjdata/.

https://github.com/defeo/ffisom/blob/master/misc/conjdata/
https://github.com/defeo/ffisom/blob/master/misc/conjdata/


114 Computing isomorphisms and embeddings of finite fields

Elliptic variant of Rains’ algorithm

Rain’s cyclotomic algorithm needs auxiliary extensions to accommodate for sufficiently
small subgroups µ` of the unit group. By replacing unit groups with torsion groups of
elliptic curves, we gain more freedom on the choice of the size of the group, thus we are
able to work with smaller fields.

The algorithm is very similar to Algorithm 7, and follows immediately from the
previous section. For simplicity, we are going to state it only for r odd. Given k, K and
r,

1. find a prime `, an elliptic curve E, and an eigenvalue λ of the Frobenius endomor-
phism, satisfying the conditions of Definition C.19, and such that ord`(λ ) = r;

2. take random points P ∈ E(k)[`] and P′ ∈ E(K)[`] in the eigenspace of λ ;

3. return the elliptic periods α := ηλ ,S(P) and β := ηλ ,S(P′).

Here we are faced with a difficulty: given E and λ it is easy to pick a random point
in E[`], but it is potentially much more expensive to compute a point in the eigenspace
of λ . We will circumvent the problem by forcing E(Fqr)[`] to be of rank 1, and to coincide
exactly with the eigenspace of λ . If we write µ = q/λ for the other eigenvalue of π ,
this is easily ensured by further asking that ord`(µ) - r.

We defer the discussion on the search for the elliptic curve E to Section C.6. Here
we suppose that we are already given suitable parameters `, E and λ , and analyze the
last two steps of the algorithm, summarized below. We only give the procedure for k,
the procedure for the field K being identical.

Algorithm 8 Elliptic Rain’s algorithm
Input: A field extension k/Fq of odd degree r, an elliptic curve E/Fq, its trace t, a

prime ` not dividing q, an integer λ such that:

• X2− tX +q = (X−λ )(X−q/λ ) mod `,

• ord`(λ ) = r, ord`(q/λ ) - r,

• (Z/`Z)× = 〈λ 〉×S for some S.

Output: A generator of k over Fq, with a uniquely defined Galois orbit, or FAIL.
1: repeat
2: Compute P← [#E(k)/`]Q for a random Q ∈ E(k);
3: until P 6= O ;
4: Compute α ← ηλ ,S(P);
5: return α if k = Fq(α), FAIL otherwise.

Proposition C.23. Algorithm 8 is correct. Assuming the heuristics about elliptic
periods are correct, it fails with probability≤ 1/qr. On input r,q,E, t, `,λ it computes its
output using O(M(r)(r log(q)+(`/r) log(`)) operations in Fq on average, or Õ(r2 log(q))
assuming ` ∈ o(r2).

Proof. Correctness follows immediately from Lemma C.20. Success probability comes
from the assumption that ηλ ,S(P) behaves like a random element of Fq(x(P)).
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From the knowledge of the trace t, we immediately determine the zeta function of
E, and hence the cardinality #E(k), at no algebraic cost.

To select the random point Q∈ E(k) we take a random element x ∈ k, then we verify
that it is the abscissa of a point using a squareness test, at a costs of O(rM(r) log(q))
operations. Then, using Montgomery’s formulas for scalar multiplication [Mon87], we
can compute the points P and [`]P without the knowledge of the ordinate of Q, at a cost
of O(rM(r) log(q)) operations. A valid point is obtained after O(1) tries on average.

The computation of the elliptic period α requires O(`/r) scalar multiplications by
an integer less than `, for a total cost of O((M(r)(`/r) log(`)).

Finally, testing that α generates k is done by computing its minimal polynomial, at
a cost of O(r(ω+1)/2) operations in Fq using [Sho93].

C.6 Algorithm selection

The algorithms presented in the previous sections have very similar complexities, and
no one stands out as absolute winner. The complexity of all algorithms depends in a
non-trivial way on the parameters q and r, and, for Rains’ algorithms, on the search
for a parameter ` and an associated elliptic curve.

This section studies the complexity of the embedding description problem from
a global perspective: we explain how to find parameters for Rains’ algorithms and
criteria to choose the best among the embedding algorithms.

Given parameters q = pd and r, Rains’ cyclotomic algorithm asks for a small pa-
rameter ` such that:

1. (Z/`Z)× = 〈q〉×S for some S,

2. 〈q〉= rs for some integer s,

3. gcd(ϕ(`),d) = 1 (see Note C.4).

Since r is a prime power, the second condition lets us take a prime power for ` too.
Indeed if Z/`Z'Z/`1Z×Z/`2Z, then either q mod `1 or q mod `2 has order a multiple
of r. Furthermore, if gcd(`,r) = 1, then we can take ` prime, since higher powers would
not help satisfy the conditions. On the other hand if gcd(`,r) 6= 1, then the algorithms
of Section C.3 have much better complexity. Hence we shall take ` prime.

Given the above constraints, we can rewrite the conditions as:

1. `= rsv+1 for some s,v such that gcd(rs,v) = 1,

2. ord`(q) = rs,

3. gcd(rsv,d) = 1.

Remark C.24. Rains remarked that, when q = 2 and r is a power of 2 greater than 4,
no ` can satisfy these constraints because 2 is a quadratic residue modulo any prime
of the form 8u+1. This case, however, is covered by the Artin–Schreier technique in
Section C.3, we thus ignore it.

In the elliptic algorithm we look for an integer ` and a curve E/Fq that satisfy the
preconditions of Algorithm 8, i.e., such that

1. the Frobenius endomorphism π satisfies a characteristic equation

(π−λ )(π−µ) = 0 mod `,
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2. (Z/`Z)× = 〈λ 〉×S for some S,

3. #〈λ 〉= r, and

4. µr 6= 1 mod `.

As before, we only need to look at prime `. Because µ = q/λ , the last condition is
equivalent to qr 6= 1 mod `. Hence, we can restate the conditions on ` as

1. `= ru+1 for some u such that gcd(r,u) = 1,

2. qr 6= 1 mod `.

Once ` is found, we compile a list of all integers of order r in (Z/`Z)×, and look for a
curve of trace t = λ +q/λ mod ` for any λ in the list. Note, however, that for there to
be such a curve, t must have a representative in the interval [−2

√
q,2
√

q].
We thus have a procedure to produce parameters for Rains’ algorithms: test integers

of the form `= ur+1 for increasing u, until a suitable one is found. We summarize the
elliptic case in Algorithm 9.

Algorithm 9 Parameter selection for Rains’ elliptic algorithm
Input: Prime powers q and r, a bound ū ∈ o( 4

√
q/r);

Output: An elliptic curve suitable for Rains’ elliptic algorithm, or FAIL.
1: for u = 1 to ū do
2: if gcd(u,r) = 1, and `= ur+1 is prime, and qr 6= 1 mod ` then
3: Compute T ←{λ +q/λ mod ` | ord`(λ ) = r};
4: for each curve E defined over Fq do
5: Compute t = #E−q+1;
6: if (t mod `) ∈T return (E, t);
7: end for
8: end if
9: end for

10: return FAIL.

Nevertheless, we are left with a question: when does the search for a suitable prime
` stop? It is not easy to give a precise answer: already the condition that ` = ur+1
is prime poses some difficulties. Heuristically, we expect that about u/ log(u) of those
numbers are prime. However the best lower bound on primes of the form `= ur+1,
even under GRH, is ` ∈ O(r2.4+ε) [Hea92]. Empirical data show that the reality is
much closer to the heuristic bound: in Figure C.1 we plot for all prime powers r < 108

the smallest u such that ur+ 1 is prime. It appears that u is effectively bounded by
O(log(r)) for any practical purpose.

For the cyclotomic algorithmwe also require that ord`(q) is amultiple of r. Assuming
that q is uniformly distributed in (Z/`Z)×, this happens with probability at least
ϕ(r)/r ≥ 1/2, hence we can assume that asymptotically ` ∈ O(r log(r)).

The elliptic algorithm has a similar condition on `, however it also requires that
the set of curves with trace in T is not empty. In principle, it is enough to ask that
` < 4

√
q; however, in order to have a good chance of finding such curves, we set an even

more stringent bound ` ∈ o( 4
√

q). Indeed, although it is well known that traces are not
evenly distributed modulo prime numbers [Len87], it is shown in [CH13, Th. 1] that
the probability that the trace of a random curve is in T approaches |T |/`∼ r/`, as `
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Figure C.1: Prime powers r (abscissa) versus smallest integer u (ordinate) such that
ur + 1 is prime. Abscissa in logarithmic scale, density normalized by log(x)/x and
colored in logarithmic scale.

and q go to infinity, subject to ` ∈ o( 4
√

q). Thus, also in the elliptic case, we can assume
that ` ∈ O(r log(r)).

Finally, we must also take into account the possibility that the elliptic algorithm
fails on the curve output by Algorithm 9. Under the heuristics about the random
distribution of elliptic periods, this possibility only discards one in O(qr) curves, and is
thus negligible.

The cost of the search for ` is negligible compared to the cost of computing the
embedding: for each candidate `= ur+1 we need to test its primality, and do some
computations modulo `. All this is well within O(

√
r) binary operations, using naive

algorithms. In the elliptic case we also need to count the number of points of O(log(r))
elliptic curves defined over Fq, which can be done in Õ

(
log5(q)

)
binary operations

using the Schoof–Elkies–Atkin algorithm [Sch95; LS08b]. This highlights the fact that
the elliptic algorithm is only practical for relatively small q.

Summarizing, we can expect heuristically to find a ` ∈ O(r log(r)) that satisfies
all the constraints for the cyclotomic algorithm, leading to an expected running time
of Õ(r(ω+1)/2 +M(r) log(q)) operations in Fq. Similarly, if we assume that r log(r) ∈
o( 4
√

q), we can expect to find suitable parameters for the elliptic algorithm, leading
to an expected running time of Õ(r2 log(q)) operations in Fq, plus Õ(log5(q)) binary
operations.

Although the complexity of the cyclotomic algorithm looks better, it must not be
neglected that the Õ notation hides the cost of taking an auxiliary extension of degree
O(log(r)); whereas the elliptic algorithm, when it applies, does not incur such overhead.
The impact of the hidden terms in the complexity can be extremely important, as we
will show in the next section.

The same considerations also apply when comparing Rains’ algorithms to Al-
lombert’s. Indeed, the latter performs extremely well when the degree s of the auxiliary
extension is small, but becomes slower as this degree increases.

In practice, it is hopeless to try and determine the appropriate bounds for each
algorithm from a purely theoretical point of view. The best approach we can suggest, is
to determine parameters at runtime, and set bounds and thresholds experimentally.
To summarize, given parameters q and r, we suggest the following approach:

1. If gcd(q,r) 6= 1, run the Artin–Schreier algorithm of Section C.3.

2. If r is a power of a small prime v, run the algorithm of Section C.3.
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3. Determine the order s of q in (Z/rZ)×. If it is small enough, run one of the
variants of Allombert’s algorithm presented in Section C.3.

4. Search for suitable parameters for Rains’ algorithms. Depending on the best
parameters found, run the best option among Rains’ cyclotomic algorithm, Rains’
elliptic algorithm, and Allombert’s algorithm.

In the next section we shall focus on the last two steps, by comparing our implemen-
tations of the algorithms involved, thus giving an estimate of the various thresholds
between them. However we stress that these thresholds are bound to vary depending on
the implementation and the target platform, thus it is the implementer responsibility
to determine them at the moment of configuring the system.

C.7 Experimental Results

To validate our results, we implemented the algorithms described in the previous
sections, and compared them to the implementation of Allombert’s algorithm avail-
able in PARI/GP 2.8.0 [PARI], and to that of Rains’ algorithm available in Magma
2.22-7 [BCP97]. The variants of Allombert’s algorithm described in Section C.3 were
implemented in C on top of the Flint library, version 2.5.2 [Har10]. Rains’ cyclotomic
and elliptic algorithms were implemented in SageMath, version 7.5.rc0 [Sage] (which
itself uses PARI and Flint to implement finite fields), with critical code rewritten in
C/Cython. Our code is limited to q a prime fitting in a machine-word, and m,n odd.

We make our code freely available under the open source MIT license, at https:
//github.com/defeo/ffisom. Instructions for compiling and running it are available
online, as well as a ready-made cloud environment for testing it, hosted by the Binder
service. We stress the fact that our code is experimental and only meant for research
purposes; a subset of the authors is currently working on integrating part of it in a
future release of Flint.

We ran tests for a wide range of primes q between 3 and 260 + 253, and prime
powers r between 3 and 2069. All tests were run on an Intel(R) Xeon(R) CPU E5-
4650 v2 clocked at 2.40GHz. We report in Figure C.2 some statistics, exclusively
on the runs for 100 < q < 220; other ranges show very similar trends. The complete
datasets, together with more plots and interactive visualizations are also hosted at
https://github.com/defeo/ffisom.

We start by comparing our implementation of the three variants of Allombert’s
algorithm presented in Section C.3 with the original one in PARI. In Figure C.2a we plot
running times against the extension degree r, only for cases where the auxiliary degree
s = ordq(r) is at most 10: dots represent individual runs, continuous lines represent
degree 2 linear regressions. Analyzing the behavior for arbitrary auxiliary degree s is
more challenging. Based on the observation that all variants have essentially quadratic
cost in r, in Figure C.2b we take running times, we scale them down by r2, and we plot
them against the auxiliary degree s.

The first striking observation is the extremely poor performance of PARI, especially
as s grows. To provide a fairer comparison, we re-implemented Allombert’s revised
algorithm [All02b], as faithfully as possible, as described in Section C.3; this is the
curve labeled “Allombert (rev)” in the graphs. For completeness we also implemented
the Paterson-Stockmeyer variant described previously; we do not plot it here, because
it overlaps almost perfectly with our “Divide & conquer” curve. Although our re-

https://github.com/defeo/ffisom
https://github.com/defeo/ffisom
https://mybinder.org/
https://github.com/defeo/ffisom
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Figure C.3: Comparison of our implementation of Rains’ algorithm and Magma’s.
Running time of our implementation in seconds vs ratio of Magma running time over
ours. Plot in doubly logarithmic scale.

implementations are considerably faster than PARI, it is apparent that Allombert’s
original algorithm does not behave as well as our new variants.

Focusing now on our three new variants presented in Section C.3, one can’t fail to
notice that the second one, named “Automorphism evaluation”, beats the other two by
a great margin, both for small and large auxiliary degree. Although the “Multipoint
evaluation” approach is expected to eventually beat the other variants as s grows, the
cross point seems to be extremely far from the parameters we explored. However, we
notice that the naive variant of “Multipoint evaluation” not using the iterated Frobenius
technique (labeled “Multipoint evaluation (var)” in the graphs), starts poorly, then
quickly catches “Automorphism evaluation” as s grows.

Finally, comparing the variants as q grows shows7 that the hierarchy between them
is essentially unchanged as q approaches 264. We could not test larger values of q, as
our code is limited to machine-word size.

Now we shift to Rains’ algorithm and its variants. In comparing our implementation
with Magma’s, discarding outliers, we obtain a fairly consistent speed-up of about 30%
(see Figure C.3); hence we will compare these algorithms only based on our timings. In
Figure C.2c we group runs of the cyclotomic algorithm by the degree s of the auxiliary
extension, and we plot median times against the degree r; only the graphs for s < 10
are shown in the figure. We observe a very large gap between s = 1 and larger s (s = 2
is 8− 16 times slower). This is partly due to the fact that we use generic Python
code to construct auxiliary extensions, rather than dedicated C; however, a large gap
is unavoidable, due to the added cost of computing in extension fields. We also plot
median times for the elliptic variant and for the conic variant (see Appendix C.8). It is
apparent that the elliptic algorithm outperforms the cyclotomic one as soon as s≥ 3,
and that the conic algorithm conveniently replaces the case s = 2. Thus, at least for the
parameter ranges we have tested, the cyclotomic algorithm with auxiliary extensions

7For lack of space we do not show these graphs here, but see https://github.com/defeo/ffisom/
blob/master/notebooks/benchmarks.ipynb.

https://github.com/defeo/ffisom/blob/master/notebooks/benchmarks.ipynb
https://github.com/defeo/ffisom/blob/master/notebooks/benchmarks.ipynb
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seems of limited interest. Plotting against the prime q instead of the degree r shows
essentially the same behavior8, however it should be reminded that the elliptic variant
becomes very poor when q grows larger than a machine-word, because of the cost of
point counting.

Finally, in Figure C.2d we compare Rains’ algorithms against Allombert’s. In light
of the excellent performances of the “Automorphism evaluation” variant of Allombert’s
algorithm, we only plot the performances for this variant. We plot, against the degree
r, runs of Allombert’s algorithm grouped by ranges of the auxiliary degree ordr(q):
we shade the area between minimum and maximum running times, and trace the
median time. We also take from Figure C.2c the graphs for the cyclotomic (only s = 1),
the conic and the elliptic variants of Rains’ algorithm. We notice that Allombert’s
algorithm, even with relatively large auxiliary degrees, is extremely fast; the cyclotomic
algorithm only beats it when ordr(q) goes beyond 10 to 50, the conic algorithm only
beats extremely large ordr(q), and the elliptic algorithm is never better. We also observe
that Allombert’s algorithm has a better asymptotic behavior as the degree r grows.

In light of these comparisons, it seems that the absolute winner is ourAutomorphism
evaluation variant of Allombert’s algorithm, with Rains’ cyclotomic algorithm being
only occasionally more interesting. Obviously, the comparisons are only relevant to our
own code and test conditions. Other implementations and benchmarks will likely find
slightly different cross-points for the algorithms.

C.8 Rain’s conic algorithm

We have seen that Rains’ cyclotomic algorithm suffers in practice from the need to
build a field extension k′ of k. The conic variant we are going to present reduces the
degree of the field extension from s = [k′ : k] to s/2 whenever s is even. This is especially
useful when s = 2, as highlighted in Section C.7. The algorithm is similar in spirit to
Williams’ p+1 factoring method [Wil82], where the arithmetic of the norm 1 subgroup
of k′∗ is performed using Lucas sequences on a subfield of index 2 of k′.

Let F be a finite field of odd characteristic, let ∆ ∈ F be a quadratic non-residue, let
δ be an element of the algebraic closure of F such that δ 2 = ∆, and define the norm 1
subgroup of F[δ ]∗ as

T2(F) = {(x+δy)/2 | x,y ∈ F and x2−∆y2 = 4};

it is easy to verify that T2(F) forms a group under multiplication. If we see the elements
(x+δy)/2 as points (x,y) on a conic x2−∆y2 = 4, the group law of T2(F) induces a group
law on the conic. By projecting onto the x-coordinate, a straightforward calculation
shows that, for any point (θ ,∗) on the conic, its n-th power has coordinates (θn,∗),
where θn is defined by the Lucas sequence

θ0 = 2, θ1 = θ , θi+1 = θθi−θi−1.

We shall denote by [n] the map θ 7→ θn; notice how it does not depend on the choice of ∆.
The generalization of Rains’ algorithm is now obvious: by projecting on the x-

coordinate, we work in a field extension twice as small compared to the original algo-
rithm. This is summarized in Algorithm 10.

8Again, see https://github.com/defeo/ffisom/blob/master/notebooks/benchmarks.ipynb
for a plot.

https://github.com/defeo/ffisom/blob/master/notebooks/benchmarks.ipynb
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Algorithm 10 Rains’ conic algorithm
Input: A field extension k/Fq of degree r; a prime ` such that

• (Z/`Z)× = 〈q〉×S for some S,

• #〈q〉= 2rs for some integer s;

a polynomial h of degree s irreducible over k.
Output: A normal generator of k over Fq, with a uniquely defined Galois orbit.
1: Construct the field extension k′ = k[Z]/h(Z);
2: repeat
3: repeat
4: Take a random element θ ∈ k′,
5: until θ 2−4 is a quadratic non-residue;
6: Compute ζ = [(#k′+1)/`]θ ,
7: until ζ 6= 2;
8: Compute η(ζ )← ∑σ∈S[σ ]ζ ;
9: return α ← Trk′/k η(ζ ) = ∑

s−1
i=0 [q

ri]η(ζ ).

Proposition C.25. Algorithm 10 is correct: on input q,r, `,s it returns an element
in the same Galois orbit as Algorithm 7 on input q,r, `,2s. It computes its output
using O(M(sr)(sr log(q)+(`/r) log(`))) operations in Fq on average, or Õ((sr)2 log(q))
assuming ` ∈ o(sr2).

Proof. By construction, all the `-th roots of unity are in T2(k′). Observe that if (x+δy)/2
is in T2(k′), then its trace over k′ is equal to x. Hence, the value ζ computed in Step 6
is the trace over k′ of a primitive `-th root of unity. We conclude by comparing this
algorithm with Algorithm 7.

The non-residuosity test in Step 5 is done by verifying that the (#k′−1)/2-th power
of θ is equal to −1. We do this in O(sr log(q)) operations in k′, or O(srM(sr) log(q))
operations in Fq.

To implement the other steps, we need to evaluate the map [n] efficiently. We have
the following classical relationships for the Lucas sequence of θ :

θ2i = θ
2
i −2, θ2i+1 = θiθi+1−θ , θ2i+2 = θ

2
i+1−2.

Starting with θ0 = 2 and θ1 = θ , we use a binary scheme to deduce θi,θi+1 from
θbi/2c,θbi/2c+1. We reach θn after O(log(n)) steps, each requiring a constant number of
operations in k′.

Hence, Step 6 costs O(srM(sr) log(q)) operations in Fq, while Steps 8 and 9 together
cost O((M(sr)(`/r) log(`)).

Although this variant does not exploit the asymptotic improvement offered by Propo-
sition C.1, the fact that its auxiliary degree s is half the one of the original algorithm
usually gives an interesting practical improvement. Step 6 can be modified so as to
avoid the premature projection on the x-axis, so that the algorithms of Proposition C.1
apply. We leave the details of this variant to the reader.



References 123

C.9 References for “Computing isomorphisms and
embeddings of finite fields”

[AL86] Leonard M. Adleman and Hendrik W. Lenstra. “Finding Irreducible Poly-
nomials over Finite Fields”. In: Proceedings of the Eighteenth Annual ACM
Symposium on Theory of Computing. STOC ’86. New York, NY, USA: ACM,
1986, pp. 350–355. isbn: 0-89791-193-8. doi: 10.1145/12130.12166.

[All02a] Bill Allombert. “Explicit Computation of Isomorphisms between Finite
Fields”. In: Finite Fields and Their Applications 8.3 (2002), pp. 332–342.
doi: 10.1006/ffta.2001.0344.

[All02b] Bill Allombert. Explicit Computation of Isomorphisms between Finite
Fields. Revised version. 2002. url: https://www.math.u-bordeaux.
fr/~ballombe/fpisom.ps.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. “TheMAGMA algebra
system I: the user language”. In: Journal of Symbolic Computation 24.3-4
(1997), pp. 235–265. issn: 0747-7171. doi: 10.1006/jsco.1996.0125.

[BCS97a] Wieb Bosma, John Cannon, and Allan Steel. “Lattices of compatibly em-
bedded finite fields”. In: Journal of Symbolic Computation 24.3-4 (1997),
pp. 351–369. issn: 0747-7171. doi: 10.1006/jsco.1997.0138.

[BK78] Richard P. Brent and Hsiang Te Kung. “Fast Algorithms for Manipulating
Formal Power Series”. In: Journal of the ACM 25.4 (1978), pp. 581–595.
issn: 0004-5411. doi: 10.1145/322092.322099.

[Bri+17] Ludovic Brieulle, Luca De Feo, Javad Doliskani, Jean-Pierre Flori, and
Éric Schost. “Computing isomorphisms and embeddings of finite fields (ex-
tended version)”. In: arXiv preprint arXiv:1705.01221 (2017). url: https:
//arxiv.org/abs/1705.01221.

[CH13] Wouter Castryck and Hendrik Hubrechts. “The distribution of the number
of points modulo an integer on elliptic curves over finite fields”. In: The
Ramanujan Journal 30.2 (2013), pp. 223–242.

[CK91] David G. Cantor and Erich Kaltofen. “On fast multiplication of polynomials
over arbitrary algebras”. In: Acta Informatica 28.7 (July 1991), pp. 693–
701. issn: 0001-5903. doi: 10.1007/BF01178683.

[CL08] Jean-Marc Couveignes and Reynald Lercier. “Galois invariant smoothness
basis”. In: Series on Number Theory and Its Applications 5 (May 2008).
World Scientific, pp. 142–167.

[CL13] Jean-Marc Couveignes and Reynald Lercier. “Fast construction of irre-
ducible polynomials over finite fields”. In: Israel Journal of Mathematics
194.1 (2013), pp. 77–105.

[CZ81] David G Cantor and Hans Zassenhaus. “A New Algorithm for Factoring
Polynomials over Finite Fields”. In: Mathematics of Computation (1981),
pp. 587–592.

[DDS13] Luca De Feo, Javad Doliskani, and Éric Schost. “Fast Algorithms for `-
adic Towers over Finite Fields”. In: Proceedings of the 38th International
Symposium on Symbolic and Algebraic Computation. ISSAC ’13. New
York, NY, USA: ACM, 2013, pp. 165–172. isbn: 978-1-4503-2059-7. doi:
10.1145/2465506.2465956.

https://doi.org/10.1145/12130.12166
https://doi.org/10.1006/ffta.2001.0344
https://www.math.u-bordeaux.fr/~ballombe/fpisom.ps
https://www.math.u-bordeaux.fr/~ballombe/fpisom.ps
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1006/jsco.1997.0138
https://doi.org/10.1145/322092.322099
https://arxiv.org/abs/1705.01221
https://arxiv.org/abs/1705.01221
https://doi.org/10.1007/BF01178683
https://doi.org/10.1145/2465506.2465956


124 Computing isomorphisms and embeddings of finite fields

[DDS14] Luca De Feo, Javad Doliskani, and Éric Schost. “Fast Arithmetic for the
Algebraic Closure of Finite Fields”. In:Proceedings of the 39th International
Symposium on Symbolic and Algebraic Computation. ISSAC ’14. New
York, NY, USA: ACM, 2014, pp. 122–129. isbn: 978-1-4503-2501-1. doi:
10.1145/2608628.2608672.

[DS14] Javad Doliskani and Éric Schost. “Taking roots over high extensions of
finite fields”. In: Mathematics of Computation 83.285 (2014), pp. 435–446.

[FGS99] Sandra Feisel, Joachim von zur Gathen, andM. Amin Shokrollahi. “Normal
bases via general Gauss periods”. In: Mathematics of Computation 68.225
(1999), pp. 271–290.

[Gau86] Carl Friedrich Gauss. Disquisitiones Arithmeticae. Ed. by William C. Wa-
terhouse. Springer-Verlag, 1986. isbn: 9783540962540. url: https://
books.google.fr/books?id=Y-49PgAACAAJ.

[GG99] Joachim von zur Gathen and Jurgen Gerhard. Modern Computer Algebra.
New York, NY, USA: Cambridge University Press, 1999. isbn: 0-521-
64176-4.

[GS92] Joachim von zur Gathen and Victor Shoup. “Computing Frobenius Maps
and Factoring Polynomials”. In: Computational Complexity 2 (1992),
pp. 187–224.

[Har09] David Harvey. “Faster polynomial multiplication via multipoint Kronecker
substitution”. In: Journal of Symbolic Computation 44.10 (Oct. 2009),
pp. 1502–1510. issn: 07477171. doi: 10.1016/j.jsc.2009.05.004.

[Har10] William B. Hart. “Fast Library for Number Theory: An Introduction”. In:
Proceedings of the Third International Congress on Mathematical Software.
ICMS’10. Kobe, Japan: Springer-Verlag, 2010, pp. 88–91. url: http://
flintlib.org/.

[Hea92] David R. Heath-Brown. “Zero-free regions for Dirichlet L-functions, and
the least prime in an arithmetic progression”. In: Proceedings of the London
Mathematical Society. Vol. 64. 2. 1992, pp. 265–338.

[Kal87] Erich Kaltofen. “Computer algebra algorithms”. In: Annual Review in
Computer Science 2 (1987), pp. 91–118. url: http://www.math.ncsu.
edu/~kaltofen/bibliography/87/Ka87_annrev.pdf.

[KS97] Erich Kaltofen and Victor Shoup. “Fast polynomial factorization over high
algebraic extensions of finite fields”. In: ISSAC ’97: Proceedings of the
1997 International Symposium on Symbolic and Algebraic Computation.
New York, NY, USA: ACM, 1997, pp. 184–188. isbn: 0-89791-875-4. doi:
10.1145/258726.258777.

[KS98] Erich Kaltofen and Victor Shoup. “Subquadratic-time factoring of polyno-
mials over finite fields”. In: Mathematics of Computation 67.223 (1998),
pp. 1179–1197. issn: 0025-5718. doi: 10.1090/S0025-5718-98-00944-
2.

[KU11] Kiran S Kedlaya and Christopher Umans. “Fast polynomial factorization
and modular composition”. In: SIAM Journal on Computing 40.6 (2011),
pp. 1767–1802.

https://doi.org/10.1145/2608628.2608672
https://books.google.fr/books?id=Y-49PgAACAAJ
https://books.google.fr/books?id=Y-49PgAACAAJ
https://doi.org/10.1016/j.jsc.2009.05.004
http://flintlib.org/
http://flintlib.org/
http://www.math.ncsu.edu/~kaltofen/bibliography/87/Ka87_annrev.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/87/Ka87_annrev.pdf
https://doi.org/10.1145/258726.258777
https://doi.org/10.1090/S0025-5718-98-00944-2
https://doi.org/10.1090/S0025-5718-98-00944-2


References 125

[Kum46] Ernst Eduard Kummer. “Über die Divisoren gewisser Formen der Zahlen,
welche aus der Theorie der Kreistheilung entstehen”. German. In: Journal
für die reine und angewandte Mathematik 30 (1846), pp. 107–116. url:
http://eudml.org/doc/147278.

[Kum47a] Ernst Eduard Kummer. “Sur les nombres complexes qui sont formés avec
les nombres entiers réels et les racines de l’unité”. French. In: Journal
de Mathématiques Pures et Appliquées (1847), pp. 185–212. url: http:
//eudml.org/doc/235075.

[Kum47b] Ernst Eduard Kummer. “Über die Zerlegung der aus Wurzeln der Einheit
gebildeten complexen Zahlen in ihre Primfactoren”. German. In: Journal
für die reine und angewandte Mathematik 35 (1847), pp. 327–367. url:
http://eudml.org/doc/147394.

[Kum47c] Ernst Eduard Kummer. “Zur Theorie der complexen Zahlen”. German. In:
Journal für die reine und angewandte Mathematik 35 (1847), pp. 319–326.
url: http://eudml.org/doc/147393.

[Kum51] Ernst Eduard Kummer. “Mémoire sur la théorie des nombres complexes
composés de racines de l’unité et de nombres entiers”. French. In: Journal
de Mathématiques Pures et Appliquées (1851), pp. 377–498. url: http:
//eudml.org/doc/235621.

[Kum55] Ernst Eduard Kummer. “Über eine besondere Art, aus complexen Ein-
heiten gebildeter Ausdrücke”. German. In: Journal für die reine und ange-
wandte Mathematik 50 (1855), pp. 212–232. url: http://eudml.org/
doc/147605.

[Kum57] Ernst Eduard Kummer. “Über die den Gaußschen Perioden der Kreis-
theilung entsprechenden Congruenzwurzeln”. German. In: Journal für
die reine und angewandte Mathematik 53 (1857), pp. 142–148. url: http:
//eudml.org/doc/147659.

[Lan02] Serge Lang. Algebra. 3rd edition. Springer, Jan. 2002. isbn: 038795385X.
[Le 14] François Le Gall. “Powers of Tensors and Fast Matrix Multiplication”. In:

ISSAC’14. ACM, 2014, pp. 296–303.
[Len87] Hendrik W. Lenstra. “Factoring integers with elliptic curves”. In: Annals

of Mathematics 126 (1987), pp. 649–673.
[Len91] Hendrik W. Lenstra. “Finding isomorphisms between finite fields”. In:

Mathematics of Computation 56.193 (1991), pp. 329–347.
[LS08b] Reynald Lercier and Thomas Sirvent. “On Elkies subgroups of `-torsion

points in elliptic curves defined over a finite field”. In: Journal de théorie des
nombres de Bordeaux 20.3 (2008), pp. 783–797. url: http://perso.univ-
rennes1.fr/reynald.lercier/file/LS08.pdf.

[Moe76] Robert T. Moenck. “Another polynomial homomorphism”. In: Acta Infor-
matica 6.2 (June 1976), pp. 153–169. issn: 0001-5903. doi: 10.1007/
BF00268498.

[Mon87] Peter L. Montgomery. “Speeding the Pollard and Elliptic Curve Methods
of Factorization”. In: Mathematics of Computation 48.177 (1987), pp. 243–
264. issn: 00255718. doi: 10.2307/2007888.

[MP13] Gary L. Mullen and Daniel Panario. Handbook of finite fields. CRC Press,
2013.

http://eudml.org/doc/147278
http://eudml.org/doc/235075
http://eudml.org/doc/235075
http://eudml.org/doc/147394
http://eudml.org/doc/147393
http://eudml.org/doc/235621
http://eudml.org/doc/235621
http://eudml.org/doc/147605
http://eudml.org/doc/147605
http://eudml.org/doc/147659
http://eudml.org/doc/147659
http://perso.univ-rennes1.fr/reynald.lercier/file/LS08.pdf
http://perso.univ-rennes1.fr/reynald.lercier/file/LS08.pdf
https://doi.org/10.1007/BF00268498
https://doi.org/10.1007/BF00268498
https://doi.org/10.2307/2007888


126 Computing isomorphisms and embeddings of finite fields

[MV10] Preda Mihailescu and Victor Vuletescu. “Elliptic Gauss sums and applica-
tions to point counting”. In: Journal of Symbolic Computation 45.8 (2010),
pp. 825–836. issn: 0747-7171. doi: 10.1016/j.jsc.2010.01.004.

[Nar18] Anand Kumar Narayanan. “Fast Computation of Isomorphisms Between
Finite Fields Using Elliptic Curves”. In: International Workshop on the
Arithmetic of Finite Fields, WAIFI 2018. Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, 2018.

[Noe32] Emmy Noether. “Normalbasis bei Körpern ohne höhere Verzweigung”. In:
Journal für die reine und angewandte Mathematik 167 (1932), pp. 147–152.
url: http://eudml.org/doc/149800.

[PARI] PARI/GP, version 2.8.0. The PARI Group. Bordeaux, 2016. url: https:
//pari.math.u-bordeaux.fr/.

[Pin92] Richard G. E. Pinch. “Recognising Elements Of Finite Fields”. In: Cryp-
tography and Coding II. Oxford University Press, 1992, pp. 193–197.

[PS06] Cyril Pascal and Éric Schost. “Change of order for bivariate triangular
sets”. In: ISSAC ’06: Proceedings of the 2006 international symposium on
Symbolic and algebraic computation. New York, NY, USA: ACM, 2006,
pp. 277–284. isbn: 1-59593-276-3. doi: 10.1145/1145768.1145814.

[PS13a] Adrian Poteaux and Éric Schost. “Modular CompositionModulo Triangular
Sets and Applications”. In: Computational Complexity 22.3 (2013), pp. 463–
516.

[PS73] Michael S. Paterson and Larry J. Stockmeyer. “On the Number of Non-
scalar Multiplications Necessary to Evaluate Polynomials”. In: SIAM Jour-
nal on Computing 2.1 (1973), pp. 60–66. doi: 10.1137/0202007.

[Rai96] Eric M. Rains. “Efficient Computation of Isomorphisms Between Finite
Fields”. Personal communication. 1996.

[Sage] SageMath, the Sage Mathematics Software System (Version 8.0). The Sage
Developers. 2018. url: https://www.sagemath.org.

[Sch95] René Schoof. “Counting points on elliptic curves over finite fields”. In:
Journal de Théorie des Nombres de Bordeaux 7.1 (1995), pp. 219–254. url:
http://www.ams.org/mathscinet-getitem?mr=1413578.

[Sho90] Victor Shoup. “New algorithms for finding irreducible polynomials over
finite fields”. In: Mathematics of Computation 54.189 (Jan. 1990), pp. 435–
435. doi: 10.1090/s0025-5718-1990-0993933-0.

[Sho93] Victor Shoup. “Fast construction of irreducible polynomials over finite
fields”. In: SODA ’93: Proceedings of the fourth annual ACM-SIAM Sympo-
sium on Discrete algorithms. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 1993, pp. 484–492. isbn: 0-89871-313-7.

[Sho94b] Victor Shoup. “Fast construction of irreducible polynomials over finite
fields”. In: Journal of Symbolic Computation 17.5 (1994), pp. 371–391.
issn: 0747-7171. doi: 10.1006/jsco.1994.1025.

[Sho99] Victor Shoup. “Efficient Computation of Minimal Polynomials in Algebraic
Extensions of Finite Fields”. In: Proceedings of the 1999 International
Symposium on Symbolic and Algebraic Computation. ISSAC ’99. New
York, NY, USA: ACM, 1999, pp. 53–58. isbn: 1-58113-073-2. doi: 10.
1145/309831.309859.

https://doi.org/10.1016/j.jsc.2010.01.004
http://eudml.org/doc/149800
https://pari.math.u-bordeaux.fr/
https://pari.math.u-bordeaux.fr/
https://doi.org/10.1145/1145768.1145814
https://doi.org/10.1137/0202007
https://www.sagemath.org
http://www.ams.org/mathscinet-getitem?mr=1413578
https://doi.org/10.1090/s0025-5718-1990-0993933-0
https://doi.org/10.1006/jsco.1994.1025
https://doi.org/10.1145/309831.309859
https://doi.org/10.1145/309831.309859


References 127

[Wil82] Hugh C. Williams. “A p+1 method of factoring”. In: Mathematics of Com-
putation 39.159 (1982), pp. 225–234.



128 Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies

D Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies

Abstract

We present new candidates for quantum-resistant public-key cryptosystems
based on the conjectured difficulty of finding isogenies between supersingular
elliptic curves. The main technical idea in our scheme is that we transmit the
images of torsion bases under the isogeny in order to allow the parties to construct
a shared commutative square despite the noncommutativity of the endomorphism
ring. We give a precise formulation of the necessary computational assumptions
along with a discussion of their validity, and prove the security of our protocols under
these assumptions. In addition, we present implementation results showing that
our protocols are multiple orders of magnitude faster than previous isogeny-based
cryptosystems over ordinary curves.

This paper is an extended version of [JD11]. We add a new zero-knowledge
identification scheme, and detailed security proofs for the protocols. We also present
a new, asymptotically faster, algorithm for key generation, a thorough study of its
optimization, and new experimental data.

D.1 Introduction

The Diffie-Hellman scheme is a fundamental protocol for public-key exchange between
two parties. Its original definition over finite fields is based on the hardness of com-
puting the map g,ga,gb 7→ gab for g ∈ F∗p. Recently, Stolbunov [Sto10] proposed a
Diffie-Hellman type system based on the difficulty of computing isogenies between
ordinary elliptic curves, with the stated aim of obtaining quantum-resistant crypto-
graphic protocols. The fastest known (classical) probabilistic algorithm for solving this
problem is the algorithm of Galbraith and Stolbunov [GS13], based on the algorithm of
Galbraith, Hess, and Smart [GHS02]. This algorithm is exponential, with a worst-case
running time of O( 4

√
q). However, on a quantum computer, recent work of Childs

et al. [CJS14] showed that the private keys in Stolbunov’s system can be recovered
in subexponential time. Moreover, even if we only use classical attacks in assessing
security levels, Stolbunov’s scheme requires 229 seconds (even with precomputation) to
perform one key exchange operation at the 128-bit security level on a desktop PC [Sto10,
Table 1].

In this work we present isogeny-based key-exchange, encryption, and identification
schemes that address both the performance and security drawbacks of Stolbunov’s
system. Our primitive achieves performance on the order of 60 milliseconds (cf. Sec-
tion D.7) at the 128-bit security level (as measured against the fastest known quantum
attacks) using desktop PCs, making our schemes far faster than Stolbunov’s. In terms
of security, our schemes are not vulnerable to the algorithm of Childs et al. [CJS14],
nor to any algorithm of this type, since they are not based on a group action. The
fastest known attacks against our schemes, even on quantum computers, require fully
exponential time. Our schemes involve new computational assumptions upon which
their quantum resistance is based, and like all new computational assumptions, fur-
ther study and the passage of time is needed for validation. Nevertheless, we believe
our proposal represents a promising candidate for quantum-resistant isogeny-based
public-key cryptography.

Our proposal, presented in Section D.3, uses isogenies between supersingular
elliptic curves rather than ordinary elliptic curves. The main technical difficulty is
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that, in the supersingular case, the endomorphism ring is noncommutative, whereas
Diffie-Hellman type protocols require commutativity. We show how to overcome this
obstacle by providing the outputs of the isogeny on certain points as auxiliary input
to the protocols. To the best of our knowledge, nothing similar to this idea has ever
previously appeared in the literature. Providing this auxiliary input does not seem
to make the problem of finding isogenies any easier, and the added difficulty arising
from noncommutativity seems to make our protocols stronger; see Section D.5 for a
full discussion. The multiple orders of magnitude of performance gains in our scheme
arise from the fact that supersingular isogeny graphs are much faster to navigate
than ordinary graphs, as described in Section D.4. In Sections D.5 and D.6 we provide
formal statements of the hardness assumptions and security reductions for our system.
Finally, in Section D.7 we present implementation results confirming the correctness
and performance of our protocol.

D.2 Isogenies

Let E1 and E2 be elliptic curves defined over a finite field Fq. An isogeny φ : E1→ E2
defined over Fq is a non-constant rational map defined over Fq which is also a group
homomorphism from E1(Fq) to E2(Fq) [Sil92, p. III.4]. The degree of an isogeny is its
degree as a rational map. For separable isogenies, having degree ` implies that the
kernel of the isogeny has cardinality `. Every isogeny of degree greater than 1 can be
factored into a composition of isogenies of prime degree over F̄q [Cou06].

An endomorphism of an elliptic curve E defined over Fq is an isogeny E→ E defined
over Fqm for some m. The set of endomorphisms of E together with the zero map forms a
ring under the operations of pointwise addition and composition; this ring is called the
endomorphism ring of E and denoted End(E). The ring End(E) is isomorphic either to
an order in a quaternion algebra or to an order in an imaginary quadratic field [Sil92,
p. V.3.1]; in the first case we say E is supersingular and in the second case we say E is
ordinary.

Two elliptic curves E1 and E2 defined over Fq are said to be isogenous over Fq if
there exists an isogeny φ : E1→ E2 defined over Fq. A theorem of Tate states that two
curves E1 and E2 are isogenous over Fq if and only if #E1(Fq) = #E2(Fq) [Tat66, §3].
Since every isogeny has a dual isogeny [Sil92, p. III.6.1], the property of being isogenous
over Fq is an equivalence relation on the finite set of F̄q-isomorphism classes of elliptic
curves defined over Fq. Accordingly, we define an isogeny class to be an equivalence
class of elliptic curves, taken up to F̄q-isomorphism, under this equivalence relation.

The `-torsion group of E, denoted E[`], is the set of all points P ∈ E(F̄q) such that
`P is the identity. For ` such that p - `, we have E[`]∼= Z/`Z⊕Z/`Z.

Curves in the same isogeny class are either all supersingular or all ordinary. We
assume for the remainder of this paper that we are in the supersingular case. Be-
cause we only care about curves up to isomorphism, and every supersingular curve is
isomorphic to a curve defined over the field Fp2 , we limit ourselves to this base field.

For every prime ` - p, there exist exactly `+1 isogenies (counting multiplicities) of
degree ` originating from any given such supersingular curve. Given an elliptic curve E
and a finite subgroup Φ of E, there is up to isomorphism a unique isogeny E→E ′ having
kernel Φ [Sil92, p. III.4.12]. Hence we can identify an isogeny by specifying its kernel,
and conversely given a kernel subgroup the corresponding isogeny can be computed
using Vélu’s formulas [Vél71]. Typically, this correspondence is of little use, since
the kernel, or any representation thereof, is usually as unwieldy as the isogeny itself.
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However, in the special case of kernels generated by Fp2 -rational points of smooth order,
specifying a generator of the kernel allows for compact representation and efficient
computation of the corresponding isogeny, as we demonstrate in Section D.4.

Ramanujan graphs

Let G = (V ,E ) be a finite graph on h vertices V with undirected edges E . Suppose G is
a regular graph of degree k, i.e., exactly k edges meet at each vertex. Given a labeling of
the vertices V = {v1, . . . ,vh}, the adjacency matrix of G is the symmetric h×h matrix
A whose i j-th entry Ai, j = 1 if an edge exists between vi and v j and 0 otherwise.

It is convenient to identify functions on V with vectors in Rh via this labeling, and
therefore also think of A as a self-adjoint operator on L2(V ). All of the eigenvalues of A
satisfy the bound |λ | ≤ k. Constant vectors are eigenfunctions of A with eigenvalue k,
which for obvious reasons is called the trivial eigenvalue λtriv. A family of such graphs
G with h→ ∞ is said to be a sequence of expander graphs if all other eigenvalues
of their adjacency matrices are bounded away from λtriv = k by a fixed amount.1 In
particular, no other eigenvalue is equal to k; this implies the graph is connected.
A Ramanujan graph is a special type of expander which has |λ | ≤ 2

√
k−1 for any

nontrivial eigenvalue which is not equal to −k (this last possibility happens if and only
if the graph is bipartite). The Ramanujan property was first defined in [LPS88]. It
characterizes the optimal separation between the two largest eigenvalues of the graph
adjacency matrix, and implies the expansion property.

A fundamental use of expanders is to prove the rapid mixing of the random walk
on V along the edges E . The following rapid mixing result is standard but we present
it below for completeness. For the proof, see [JMV09] or [DSV03; Lub94; Sar90].

Proposition D.1. Let G be a regular graph of degree k on h vertices. Suppose that
the eigenvalue λ of any nonconstant eigenvector satisfies the bound |λ | ≤ c for some
c < k. Let S be any subset of the vertices of G, and x be any vertex in G. Then a random
walk of length at least log2h/|S|1/2

logk/c starting from x will land in S with probability at least
|S|
2h = |S|

2|G| .

Isogeny graphs

An isogeny graph is a graph whose nodes consist of all elliptic curves in Fq belonging
to a fixed isogeny class, up to F̄q-isomorphism (so that two elliptic curves which are
isomorphic over F̄q represent the same node in the graph). In practice, the nodes are
represented using j-invariants, which are invariant up to isomorphism. Isogeny graphs
for supersingular elliptic curves were first considered by Mestre [Mes86], and were
shown by Pizer [Piz90; Piz98] to have the Ramanujan property.

Every supersingular elliptic curve in characteristic p is defined over either Fp or
Fp2 [Sil92], so it suffices to fix Fq = Fp2 as the field of definition for this discussion.
Thus, in contrast to ordinary curves, there are a finite number of isomorphism classes
of supersingular curves in any given isogeny class; this number is in fact g+1, where
g is the genus of the modular curve X0(p), which is roughly p/12. It turns out that
all supersingular curves defined over Fp2 belong to the same isogeny class [Mes86].
For a fixed prime value of ` 6= p, we define the vertices of the supersingular isogeny

1Expansion is usually phrased in terms of the number of neighbors of subsets of G, but the spectral
condition here is equivalent for k-regular graphs and also more useful for our purposes.
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graph G to consist of these g isomorphism classes of curves, with edges given by isomor-
phism classes of degree-` isogenies, defined as follows: two isogenies φ1,φ2 : Ei→ E j
are isomorphic if there exists an automorphism α ∈ Aut(E j) (i.e., an invertible endo-
morphism) such that φ2 = αφ1. Pizer [Piz90; Piz98] has shown that G is a connected
k = `+1-regular multigraph satisfying the Ramanujan bound of |λ | ≤ 2

√
`= 2

√
k−1

for the nontrivial eigenvalues of its adjacency matrix.

D.3 Public-key cryptosystems based on supersingular curves

In this section we present a key-exchange protocol and a public-key cryptosystem
analogous to those of [RS06; Sto10], and a zero-knowledge identification scheme, all
using supersingular elliptic curves.

Our protocols require supersingular curves of smooth order. Such curves are
normally unsuitable for cryptography since discrete logarithms on them are easy.
However, since the discrete logarithm problem is unimportant in our setting, this issue
does not affect us. In the supersingular setting, it is easy to construct curves of smooth
order, and using a smooth order curve will give a large number of isogenies that are
fast to compute. Specifically, we fix Fq = Fp2 as the field of definition, where p is a
prime of the form `eA

A `eB
B · f ±1. Here `A and `B are small primes, and f is a cofactor

such that p is prime. Then we construct a supersingular curve E defined over Fq of
cardinality (`eA

A `eB
B f )2. By construction, E[`eA

A ] is Fq-rational and contains `eA−1
A (`A +1)

cyclic subgroups of order `eA
A , each defining a different isogeny; the analogous statement

holds for E[`eB
B ].

Our protocols revolve around the following commutative diagram

E E/〈P〉

E/〈Q〉 E/〈P,Q〉

φ

ψ
(D.1)

where φ and ψ are random walks in the graphs of isogenies of degrees `A and `B
respectively. Their security is based on the difficulty of finding a path connecting
two given vertices in a graph of supersingular isogenies. We refer to Section D.4 for
low-level algorithmic details, and Section D.5 for a full discussion of security.

Zero-knowledge proof of identity

We begin with the protocol which is easiest to understand. Peggy knows a cyclic degree
`eA

A isogeny φ : E→ E/〈S〉, with the curves E and E/〈S〉 publicly known, and wants to
prove to Vic that she knows a generator for 〈S〉, without revealing it.

Our protocol is loosely inspired by the zero-knowledge proof of membership for
Graph Isomorphism [GMW91]. In that protocol, Peggy shows that she knows a graph
isomorphism G' G′ by first publishing a random H such that the following diagram
commutes

G G′

H
φ ψ

(D.2)
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and then revealing only one among φ and ψ . Intuitively, this protocol is perfectly zero-
knowledge because the information that Peggy reveals (i.e., a random permutation of
G or G′) could be easily computed by anyone without her help.

In an analogousway, our protocol consists in publishing the vertices of diagram (D.1),
and then revealing some, but not all, of its arrows. Unlike the case of Graph Iso-
morphism, in our protocol Peggy needs to use her secret knowledge to create the
diagram, thus we cannot achieve a perfect zero-knowledge. Nevertheless, we will
show in Section D.6 that, under suitable assumptions, our protocol is computationally
zero-knowledge.

We show below the diagram used in our protocol. 〈S〉 is the kernel of the secret
isogeny φ of degree `eA

A , while 〈R〉 is a cyclic group of order `eB
B .

E E/〈S〉

E/〈R〉 E/〈S,R〉

φ

ψ ψ ′

φ ′

(D.3)

Peggy can compute the diagram as follows:

• She uses Vélu’s formulas to compute the isogeny ψ : E→ E/〈R〉;

• She computes R′ = φ(R) and the isogeny ψ ′ : E/〈S〉 → E/〈S,R〉;

• She computes S′ = ψ(S) and the isogeny φ ′ : E/〈R〉 → E/〈S,R〉.

Now, the natural question is: which arrows of the diagram can Peggy reveal without
compromising her secret φ? It is not hard to see, and we will show it in Theorem D.15,
that the knowledge of (ψ,φ ′) or (ψ ′,φ ′) allows anyone to compute the kernel of φ .
However, we will argue that there is no obvious way to compute φ from the sole
knowledge of φ ′. Revealing one of ψ or ψ ′ is no problem either, however revealing
(ψ,ψ ′) altogether is more subtle. Indeed, revealing the points R and φ(R) uncovers
some information on the action of φ on E[`eB

B ]: it is to be expected that after a few
iterations Peggy will reveal a basis (P,Q) of E[`eB

B ] and the respective images φ(P), φ(Q),
thus allowing anyone to evaluate φ on the whole E[`eB

B ]. Nevertheless, we conjecture
that this leakage does not compromise Peggy’s secret either, and we make these data
part of the public parameters.2

Finally, we present our protocol.

Secret parameters A supersingular curve E defined over Fq and a primitive `eA
A -

torsion point S defining an isogeny φ : E→ E/〈S〉.

Public parameters The curves E and E/〈S〉. Generators P,Q of E[`eB
B ] and their

images φ(P),φ(Q).

Identification Repeat m times:

1. Peggy chooses a random primitive `eB
B -torsion point R and computes dia-

gram (D.3).
2An alternative solution, that intuitively leaks less information on φ , would be to publish random

generators of 〈R〉 and 〈φ(R)〉. However, it is not clear that this idea would considerably improve the security
of the protocol, and we will not pursue it further for coherence with the protocols that will follow.
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A B
Input: A,B,sID Input: B
mA,nA ∈R Z/`eA

A Z mB,nB ∈R Z/`eB
B Z

φA := E0/〈[mA]PA+[nA]QA〉 φB := E0/〈[mB]PB+[nB]QB〉
A,sID

φA(PB),
φA(QB),

EA−−−−→
B,sID

φB(PA),
φB(QA),

EB←−−−−
EAB := EBA :=
EB/〈[mA]φB(PA)+[nA]φB(QA)〉 EA/〈[mB]φA(PB)+[nB]φA(QB)〉
Output: j(EAB),sID Output: j(EBA),sID

E0

EA

ker(φA)
=〈[mA]

PA+
[nA]

QA〉

φA(
PB)

,φA(
QB)

EB

ker(φB )=〈[mB ]PB +[nB ]QB 〉

φB (PA ),φB (QA )

EAB

ker(φ
′
A
)=〈[mA]

φB(
PA)

+[nA]
φB(

QA)
〉

EBA

ker(φ ′B )=〈[mB ]φA (PB )+[nB ]φA (QB )〉

‖

Figure D.1: Key-exchange protocol using isogenies on supersingular curves.

2. Peggy sends the curves E1 = E/〈R〉 and E2 = E/〈S,R〉 to Vic.

3. Vic selects a random bit b and sends it to Peggy.

4. If b = 0, Peggy reveals the points R and φ(R′). Vic accepts if they have
order `eB

b and generate the kernels of isogenies E → E1 and E/〈S〉 → E2,
respectively.

5. If b = 1, Peggy reveals the point ψ(S). Vic accepts if it has order `eA
A and

generates the kernel of an isogeny E1→ E2.

Key exchange

The key exchange protocol is a variation à la Diffie-Hellman over diagram (D.1). The
idea is to let Alice choose φ , while Bob chooses ψ . Although similar in spirit to the
protocol based on the action of the class group on ordinary elliptic curves of [Sto10], a
main technical difference is that, since ideal classes no longer commute (or indeed even
multiply together) in the supersingular case, extra information must be communicated
as part of the protocol in order to ensure that both parties arrive at the same common
value.

We fix as public parameters a supersingular curve E0 defined over Fp2 , and
bases {PA,QA} and {PB,QB} which generate E0[`

eA
A ] and E0[`

eB
B ] respectively, so that
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〈PA,QA〉= E0[`
eA
A ] and 〈PB,QB〉= E0[`

eB
B ]. Alice chooses two random elements mA,nA ∈R

Z/`eA
A Z, not both divisible by `A, and computes an isogeny φA : E0→ EA with kernel

KA := 〈[mA]PA +[nA]QA〉. Alice also computes the image {φA(PB),φA(QB)} ⊂ EA of the
basis {PB,QB} for E0[`

eB
B ] under her secret isogeny φA, and sends these points to Bob

together with EA. Similarly, Bob selects random elements mB,nB ∈R Z/`eB
B Z and com-

putes an isogeny φB : E0→ EB having kernel KB := 〈[mB]PB +[nB]QB〉, along with the
points {φB(PA),φB(QA)}. Upon receipt of EB and φB(PA),φB(QA) ∈ EB from Bob, Alice
computes an isogeny φ ′A : EB→ EAB having kernel equal to 〈[mA]φB(PA)+ [nA]φB(QA)〉;
Bob proceeds mutatis mutandis. Alice and Bob can then use the common j-invariant of

EAB = φ
′
B(φA(E0)) = φ

′
A(φB(E0)) = E0/〈[mA]PA+[nA]QA,[mB]PB+[nB]QB〉

to form a secret shared key.
The full protocol is given in Figure D.1. We denote by A and B the identifiers of

Alice and Bob, and use sID to denote the unique session identifier.

Public-key encryption

The key-exchange protocol of Section D.3 can easily be adapted to yield a public-key cryp-
tosystem, in much the same way that Elgamal encryption follows from Diffie-Hellman.
We briefly give the details here. All notation is the same as above. Stolbunov [Sto10]
uses a similar construction, upon which ours is based.

Setup Choose p = `eA
A `eB

B · f ±1, E0, {PA,QA}, {PB,QB} as above. Let H = {Hk : k ∈K}
be a hash function family indexed by a finite set K, where each Hk is a function
from Fp2 to the message space {0,1}w.

Key generation Choose two random elements mA,nA ∈R Z/`eA
A Z, not both divisible

by `A. Compute EA,φA(PB),φA(QB) as above, and choose a random element k ∈R
K. The public key is the tuple (EA,φA(PB),φA(QB),k) and the private key is
(mA,nA,k).

Encryption Given a public key (EA,φA(PB),φA(QB),k) and a message m ∈ {0,1}w,
choose two random elements mB,nB ∈R Z/`eB

B Z, not both divisible by `B, and
compute

h = Hk( j(EAB)),

c = h⊕m.

The ciphertext is (EB,φB(PA),φB(QA),c).

Decryption Given a ciphertext (EB,φB(PA),φB(QA),c) together with a private key
(mA,nA,k), compute the j-invariant j(EAB) and set

h = Hk( j(EAB)),

m = h⊕ c.

The plaintext is m.

D.4 Algorithmic aspects

We now give specific algorithms to implement the aforementioned steps efficiently.
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Parameter generation

For any fixed choice of `eA
A and `eB

B , one can easily test random values of f (of any desired
cryptographic size) until a value is found for which p = `eA

A `eB
B · f −1 or p = `eA

A `eB
B · f +1

is prime. The prime number theorem in arithmetic progressions (specifically, the
effective version of Lagarias and Odlyzko [LO77]) provides a sufficient lower bound for
the density of such primes.

Once the prime p = `eA
A `eB

B · f ± 1 is known, Bröker [Brö09] has shown that it is
easy to find a supersingular curve E over Fp2 having cardinality (p∓1)2 = (`eA

A `eB
B · f )2.

Starting from E, one can select a random supersingular curve E0 over Fp2 by means of
random walks on the isogeny graph (cf. Proposition D.1); alternatively, one can simply
take E0 = E. In either case, E0 has group structure (Z/(p∓ 1)Z)2. To find a basis
for E0[`

eA
A ], choose a random point P ∈R E0(Fp2) and multiply it by (`eB

B · f )2 to obtain
a point P′ of order dividing `eA

A . With high probability, P′ will have order exactly `eA
A ;

one can of course check this by multiplying P′ by powers of `A. If the check succeeds,
then set PA = P′; otherwise try again with another P. A second point QA of order `eA

A
can be obtained in the same way. To check whether QA is independent of PA, simply
compute the Weil pairing e(PA,QA) in E[`eA

A ] and check that the result has order `eA
A ;

as before, this happens with high probability, and if not, just choose another point QA.
Note that the choice of basis has no effect on the security of the scheme, since one can
convert from one basis to another using extended discrete logarithms, which are easy
to compute in E0[`

eA
A ] by [Tes99].

Key exchange and other protocols

The key exchange is performed in two rounds. In each round Alice and Bob do the
following operations on each side:

1. Compute 〈R〉= 〈[m]P+[n]Q〉 for some points P,Q;

2. Compute the isogeny φ : E→ E/〈R〉 for a curve E;

3. In the first round (only), compute φ(R) and φ(S) for some points R,S;

where the curve E and the points P,Q,R,S depend on the round and the player, as shown
in Figure D.1. Similar operations are needed by the other protocols of Section D.3. We
demonstrate how to implement efficiently each of these steps.

Computing 〈[m]P+[n]Q〉
We first observe that it suffices to compute any generator of 〈[m]P+[n]Q〉. Without
loss of generality we can assume that m is invertible modulo the order of the group,
in which case R′ = P+[m−1n]Q is one such generator. Computing R′ by a standard
double-and-add approach requires half the effort of computing [m]P+ [n]Q naively
(see [ElG85; Sol01; Ant+06], though, for better ways of computing the latter).

However, computing P+[m−1n]Q by double-and-add has one major drawback: it
is trivially vulnerable to simple power analysis (SPA) [KJJ99]. To avoid SPA, one can
use a Montgomery ladder [Mon87] to compute [m−1n]Q, and then add P, but this is
significantly slower.

Instead, we propose in Algorithm 11 a much more efficient ladder, computing
P+[m−1n]Q directly. The idea behind it is simple: at each iteration the registers A,B
and C contain respectively the values [x]Q, [x+ 1]Q and P+ [x]Q, for x equal to the
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Algorithm 11 Three-point ladder to compute P+[t]Q.
Input: t,P,Q;
1: Set A = 0,B = Q,C = P;
2: Compute Q−P;
3: for i decreasing from |t| to 1 do
4: Let ti be the i-th bit of t;
5: if ti = 0 then
6: A = 2A, B = dadd(A,B,Q), C = dadd(A,C,P);
7: else
8: A = dadd(A,B,Q), B = 2B, C = dadd(B,C,Q−P);
9: end if

10: end for
Output: C = P+[t]Q.

leftmost bits of m−1n. The function dadd(A,B,C) is a differential addition: it computes
the sum A+B knowing C = A−B. Montgomery curves have a very efficient differential
addition [Mon87], making the implementation of our ladder as efficient as the naive
double and add on twisted Edwards curves (see Section D.4).

Computing smooth degree isogenies

It remains to describe how Alice and Bob can compute and evaluate the isogenies. Let
E be an elliptic curve, and let R be a point of order `e. Our goal is to compute the image
curve E/〈R〉 and to evaluate the isogeny φ : E→ E/〈R〉 at some points of E.

Since the degree of φ is smooth, it is best to decompose it as a chain of `-isogenies.
Set E0 = E, R0 = R and, for 0≤ i < e, let

Ei+1 = Ei/〈`e−i−1Ri〉, φi : Ei→ Ei+1, Ri+1 = φi(Ri).

Then E/〈R〉= Ee and φ = φe−1 ◦ · · · ◦φ0.
The curve Ei+1 and the isogeny φi can be computed using Vélu’s formulas [Vél71],

once the `-torsion subgroup 〈Ri〉 of Ei is known. This immediately suggests two strate-
gies having quadratic complexity in e, as described in [JD11].

However, we can do much better. Figure D.2 summarizes the computational struc-
ture of the problem for e = 6. Bullets represent points, with points on the same
horizontal level having the same order, and points on the same left diagonal belonging
to the same curve. Dashed edges are directed and go from top to bottom; leftward
edges represent multiplication by `, and rightward edges represent evaluation of an
`-isogeny.

At the beginning of the algorithm, only the point R0 is known. Our goal is to compute
all the points on the bottom line. Indeed, from the knowledge of the point [`e−i−1]Ri we
can compute the kernel of φi using O(`) point additions. We then apply Vélu’s formulas
to compute φi and Ei+1. From this point on, we can forget about the number theoretic
nature of the problem and purely focus on its combinatorial structure. Lemma D.3
guarantees that any solution to the combinatorial problem yields a valid strategy to
compute φ . Before stating it, we first formally rephrase the picture in Figure D.2.

Definition D.2. Let Tn be the portion of the unit triangular equilateral lattice con-
tained between the x-axis, the line y =

√
3x and the line y =−

√
3(x−n+1). We call

Tn the discrete equilateral triangle (DET) of side n.



Algorithmic aspects 137

R0

R1

R2

R3

R4

R5

[`1]R0

[`2]R0

[`3]R0

[`4]R0

[`5]R0

φ0

φ0

φ0

φ0

φ0

φ1

φ1

φ1

φ1

φ2

φ2

φ2

φ3

φ3 φ4

[`]

[`]

[`]

[`]

[`]

[`4]R1 [`3]R2 [`2]R3 [`1]R4

•

• •

• • •

• • • •

• • • • •

• • • • • •

Figure D.2: Computational structure of the construction of φ = φ5 ◦ · · · ◦φ0.

An edge is any segment of unit length directed downwards to the x-axis connecting
two points of Tn. We say an edge is a left edge if it has positive slope, a right edge
otherwise. This definition yields a directed acyclic graph (DAG) structure on Tn.

We equip the vertices of any directed graph G with the ordering→G defined by:
x→G y if and only if there exists a path in G from x to y. We use→ as a shorthand
for→Tn . The leaves of G are the final vertices, and the roots of G are the initial vertices.
The graph Tn has the n vertices on the x-axis as leaves and the top-most vertex as its
unique root. We write |G| for the number of leaves of G.

For any two vertices y, y′ of Tn, there exists a most final vertex x with the property
that x→y and x→y′. We write x = y∧ y′.

A strategy S is a sub-graph of Tn having a unique root. It is full if its leaves contain
those of Tn; in this case, the root of S is the same as that of Tn. The fork of S is the
final-most vertex x of S that is comparable (for the ordering→S) to all vertices of S.

Lemma D.3. Any full strategy yields a valid algorithm to compute the isogeny φ =
φn−1 ◦ · · · ◦φ0 by decorating the DET as shown in Figure D.2.

Proof. Travel the graph in depth-first left-first order. Upon reaching the bottom, apply
Vélu’s formulas before going right.

At this point it should be clear that a strategy that passes twice through an interior
vertex does unnecessary computations. Another waste of resources is a strategy having
a leaf distinct from the leaves of Tn.

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

Figure D.3: Two ill-formed strategies
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Wedefine awell-formed strategy to be one that has no such useless edge3. Figure D.4
shows all the seven well-formed full strategies for n = 4, the leftmost and the rightmost
ones corresponding respectively to the isogeny-based and the multiplication-based
algorithms from [JD11].

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

Figure D.4: The seven well-formed full strategies for n = 4.

It is clear that some strategies are computationally better than others. From
the figures, we see that the multiplication-based and isogeny-based strategies have a
number of edges quadratic in n, whereas the middle strategy in Figure D.4 extends to
a family of balanced strategies with asymptotically 1

2log2 n logn left and right edges.
We are thus interested in computing the “best” full strategy, according to some

measure of computational effort. We first observe that any well-formed strategy has a
binary tree topology, obtained by forgetting the internal nodes of out-degree less than
two and by keeping the same connectivity structure. Conversely, to any binary tree A
with n leaves one can canonically associate a strategy S on Tn as follows: if n = 1, then
S = T1; else, let S′ be the strategy associated to the left branch of A, S′′ be the translated
to the right by |S′| of the strategy associated to the right branches of A, and r′, r′′ be
their roots. Then r′∧ r′′ is the root of Tn and we define S = rr′∪ rr′′∪S′∪S′′, where rr′

and rr′′ are the (unique) paths from r to r′ and r′′ in Tn.
For example, in Figure D.4 the three middle strategies share the same tree topology,

and the middle one is the canonical one.
In our original problem, left edges are multiplications by `, while right edges are

`-isogeny evaluations, and these steps have different costs. Thus it makes sense to
assign different weight to left and right edges.

We fix ameasure on Tn, i.e., a pair (p,q) of positive real numbers, where p represents
the weight of a left edge (i.e., a point multiplication) and q represents the weight of a
right edge (i.e., an isogeny). For any set of edges S of Tn, we write (S) for the sum of the
weights of all edges of S.

If x→y, then all paths going from x to y in Tn have the same measure; we write (xy)
for this measure. For all vertices x, y, y′, y′′ such that x→y, y→y′′ and y→y′′, we have
the inequality (xy)+(yy′)+(yy′′)≤ (xy′)+(xy′′).

We find optimal strategies in two steps. The first step (Lemma D.4) shows that, for
any measure, only canonical strategies are interesting. Then we determine the optimal
full strategy for a given measure (Proposition D.7).

Lemma D.4. Among all the strategies sharing the same tree topology, the canonical
strategy is minimal with respect to any measure.

Lemma D.4 follows from Lemma D.5.

Lemma D.5. Let S be a strategy with root r. Let Ŝ be the canonical strategy associated
to S and r̂ be the root of Ŝ. Then r→ r̂, and (rr̂)+(Ŝ)≤ (S).

3We do not know much about well-formed full strategies. One remarkable fact is that they are in
one-to-one correspondence with certain instances of Gelfand-Tsetlin patterns [OEI12].
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Proof. We prove this by induction on S. Let t be the fork of S. If t has no children in S,
then it is the unique leaf of S and the lemma is obviously true. Therefore, we may
assume that t has two children in S.

S′ S′′

r

t

Ŝ′ Ŝ′′

r

t

r̂

r̂′
r̂′′

Figure D.5: Proof of Lemma D.5.

Let S′, S′′ be the right and left sub-strategies of S with root t. We apply the induction
hypothesis on S′ and S′′ and use r̂ = r̂′∧ r̂′′ to derive the following (in)equalities:

(S′)+(S′′)+(rt) = (S) (definition of (S)),

(tr̂′)+(Ŝ′)≤ (S′) (induction hypothesis on Ŝ′),

(tr̂′′)+(Ŝ′′)≤ (S′′) (induction hypothesis on Ŝ′′),
(tr̂)+(r̂r̂′)+(r̂r̂′′)≤ (tr̂′)+(tr̂′′) (definition of r̂),

(rr̂) = (rt)+(tr̂) (path r→ t→ r̂),

(Ŝ) = (r̂r̂′)+(r̂r̂′′)+

(Ŝ′)+(Ŝ′′) (definition of Ŝ).

By summing all of these and cancelling all extra terms, we obtain the desired result.

Now that we have ruled out non-canonical strategies, we proceed to determine the
best ones. From this point on, we are only interested in full strategies. Thus, we shall
call optimal a strategy that is minimal, among all full strategies with n leaves, with
respect to a measure (p,q).

In practice, we can compute optimal strategies using the fact that, for a fixed
measure, optimality is a local property. For a full canonical strategy S 6= T1, having i
leaves to the left of its root, we define its left branch as S∩Ti. We also define its right
branch as S∩T ′, where T ′ is T|S|−i translated by i to the right. Because S is full and
canonical, both branches are full canonical strategies too.

Lemma D.6. Let S be an optimal strategy. Let S′ and S′′ be, respectively, its left and
right branch. Then S′ and S′′ are optimal strategies.

Proof. By Lemma D.4, we know that S is a canonical strategy. Hence, S′ and S′′ are well
defined. Now, suppose that S′ were not optimal. By substituting an optimal strategy
for S′ inside S, we obtain a strategy with weight lower than (S). The same argument
holds for S′′.

Define Cp,q(n) to be the cost of the optimal strategies with n leaves. Lemma D.6
says that

Cp,q(n) = min
i=1,...,n−1

(
Cp,q(i)+Cp,q(n− i) + (n− i)p+ iq

)
. (D.4)
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Figure D.6: Optimal strategy for n = 512, p = 4.6,q = 2.8.

This equality suggests a dynamic-programming algorithm that, given p and q, com-
putes C(n) in time O(n2). A straightforward Python implementation computes the
optimal strategies for n = 1024 in less than one second, indicating that the dynamic-
programming approach is very satisfying in practice. Figure D.6 shows an optimal
strategy for n = 512, p = 4.6,q = 2.8.

However, it is also possible to mathematically characterize the optimal strategies.
Since the optimal strategies for (p,q) are symmetrical to those for (q, p), we may
assume that p < q. For simplicity, we will also assume that p and q are integers: the
generalization to the case of rational p and q is straightforward.

Let (um) be the sequence defined by up+1 = · · ·= up+q = 1 and um = um−p +um−q,
and f (n) be the function defined by f (1) = 0, f (n) = f (um)+m(n− um) for all n ∈
[um,um+1]. We check that f satisfies the recurrence relation

f (um) = f (um−p)+ f (um−q)+ pum−p +qum−q. (D.5)

Proposition D.7. A full strategy S is optimal if, and only if, it is canonical, both its
left and right branches S′ and S′′ are optimal, and

um−q ≤
∣∣S′∣∣≤ um−q+1, um−p ≤

∣∣S′′∣∣≤ um−p+1,

where m is such that um ≤ |S|< um+1. In this case, the weight of S is f (|S|).

For example, in the case where p = 1 and q = 2, the sequence (um) is the sequence
of Fibonacci numbers, starting at u2 = 1, u3 = 1, u4 = 2..., and a strategy S with um ≤
|S| < um+1 is optimal if, and only if, the left and right branches S′ and S′′ satisfy
um−2 ≤ |S′| ≤ um−1 and um−1 ≤ |S′′| ≤ um.

Proof. We prove this by induction on n = |S|. Let n = n′ + n′′ with n′,n′′ > 0 and
let S = Sn′,n′′ be any canonical full strategy with optimal left and right branches S′,
S′′, such that |S′| = n′ and |S′′| = n′′. Then any optimal strategy is one of the Sn′,n′′ .
Therefore, we find them by looking at the sign of δn = (Sn′+1,n′′−1)− (Sn′,n′′).

Let m′,m′′ be such that um′ ≤ n′ < um′+1 and um′′ ≤ n′′ < um′′+1. Using the induction
hypothesis on S′ and S′′, we have (Sn′,n′′) = f (n′)+ f (n′′)+n′q+n′′p, and therefore

δn =

{
(m′+q)− (m′′+ p), if n′′ ≥ um′′ +1,
(m′+q)− (m′′+ p)+1, if n′′ = um′′ .

(D.6)
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We find that δn ≤ 0 exactly when n′ < um−q+1 and n′′ > um−p, and δn ≥ 0 exactly
when n′ ≥ um−q and n′′ ≤ um−p+1. The optimality condition follows from this. It
remains only to check that (S) = f (|S|): this results from relation (D.5).

In particular, there are in general several optimal strategies of a given size. More-
over, with z being the (unique) root in [0,1] of the equation zp + zq−1 = 0, this gives
the asymptotic equivalents ∣∣S′∣∣ ∼ zq |S| , (D.7)

Cp,q(n) = (S) ∼ − 1
logz

n logn. (D.8)

The relative cost of an optimal strategy is therefore asymptotically − 2log2
log(zp+q)

times
the cost of the balanced strategy. In the case where (p,q) = (4.6,2.8), as in Table D.1
with `= 2, this gives an improvement of 2.1% over the balanced strategy.

Choice of the models

At each phase of the key generation it is important to use models for elliptic curves that
offer the fastest formulas for doubling, addition, isogeny computation and evaluation,
etc.

To measure efficiency, we count the number of elementary operations in Fp2 : we
write I,M,S for the costs of one inversion, multiplication and squaring respectively,
and we make the assumption S ≤ M ≤ I. We neglect additions, subtractions and
comparisons. We refer to the Explicit Formulas Database (EFD) [BL07] for operation
counts of elliptic point addition, doubling, etc. in variousmodels and coordinate systems.
Contrary to the convention taken in the EFD, we count multiplications by constants
(other than small integers) as ordinary multiplications.

Any curve used in our cryptosystem has group structure (Z/(p∓1)Z)2. Hence
either the curve or its twist has a point of order 4. Consequently, it is isomorphic to a
twisted Edwards curve and to a Montgomery curve [Ber+08].

Twisted Edwards curves [Ber+08] have equation

Ea,d : ax2 + y2 = 1+dx2y2. (D.9)

They have many interesting properties, but what interests us most is their very efficient
addition and doubling formulas. Using projective coordinates, one point addition costs
12M+1S and one point doubling costs 4M+4S. When one of the points is scaled to
have Z-coordinate equal to 1, these costs drop to 11M+1S and 3M+4S respectively.

Montgomery curves [Mon87] have equation

MB,A : By2 = x3 +Ax2 + x. (D.10)

They have very efficient arithmetic on their Kummer line, i.e., by representing points
by the coordinates (X : Z) where x = X/Z. Using this representation, a point can be
doubled using 3M+2S, or 2M+2S when it is scaled to have Z-coordinate equal to 1.

The Kummer line identifies P with −P; thus it is not possible to add two distinct
points. However it is still possible to perform what is called differential addition,
i.e., adding points P and Q for which the difference P−Q is known. One differential
addition can be computed using 4M+2S, or 3M+2S when the difference P−Q is scaled
to have Z-coordinate equal to 1.
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By using doublings and differential additions, it is possible to compute any scalar
multiple of a point using a Montgomery ladder [Mon87]. Also observe that since P and
−P generate the same subgroup, isogenies can be defined and evaluated correctly on
the Kummer line. We shall give formulas for this operation later.

It is shown in [Ber+08] that the twisted Edwards curveEa,d is birationally equivalent
to the Montgomery curve MA,B where

A =
2(a+d)

a−d
, B =

4
a−d

, (D.11)

and where the transformation is given by the following maps (in affine coordinates)

ψ : Ea,d →MA,B,

(x,y) 7→
(

1+ y
1− y

,
1+ y

(1− y)x

)
,

ψ
−1 : MA,B→ Ea,d ,

(x,y) 7→
(

x
y
,

x−1
x+1

)
.

(D.12)

Hence, after the models Ea,d and MA,B are computed, points in projective coordinates
can be moved from one model to the other at a cost of a few multiplications (and no
inversions).

Now we detail the cost of each step of the key generation algorithm.

Computing 〈[m]P+[n]Q〉
We have already mentioned two algorithms to compute the value of P+[m−1n]Q. One
solution is to express the points P and Q in projective Edwards coordinates and perform
a double and add followed by an addition. If we scale Q to have Z-coordinate equal to 1,
computing [m−1n]Q costs 9.5M+4.5S per bit on average.

Because addition by P is performed last, this approach cannot be used with points
on the Montgomery curve in Kummer coordinates, but we can use the ladder given in
Algorithm 11 instead. We first compute P−Q using point addition in full projective
coordinates (either by using the standard chord-and-tangent law, or by using the
equivalence with twisted Edwards curves). Then we scale P, Q and P−Q to have
Z-coordinate equal to 1. We can now discard the Y coordinate and work on the Kummer
line. At each iteration we perform one doubling and two differential additions (with
one of the scaled points P, Q and P−Q). The total cost of one iteration is thus 9M+6S.

In general the cost of one squaring is close to the cost of one multiplication. Thus the
ladder algorithm is slightly slower than double-and-add. However the advantages of
the ladder are SPA resistance and an implementation simplified by not using Edwards
coordinates at all for key generation.

Isogenies of Montgomery curves

The literature on efficient formulas for evaluating small degree isogenies is much less
extensive than for point multiplication. We now give explicit formulas for isogenies of
Montgomery curves, and optimize the degree 2 and 3 cases. Our goal is to obtain the
most efficient formulas for isogeny evaluation, and thus we seek to avoid inversions
and square root computations as much as possible.

Let E be the Montgomery curve defined by Eq. (D.10). It has a point of order two
P2 = (0,0), and a point of order four P4 = (1,

√
(A+2)/B)—sometimes defined over

a quadratic extension—such that [2]P4 = P2. Montgomery curves have twists of the
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form ỹ =
√

cy; these are isomorphisms when c is a square. The change of coordinates
x̃ = x/B, ỹ = y/B brings the curve E to the Weierstrass form

ỹ2 = x̃3 +
A
B

x̃2 +
1

B2 x̃, (D.13)

and the point P4 to P′4 = (1/B, . . .). Conversely, given a Weierstrass curve with equation
ỹ2 = x̃3 + ax̃2 + bx̃, together with a point P4 = (1/β , . . .)—with its ordinate possibly
lying in a quadratic extension—such that [2]P4 = (0,0), the change of variables x̃ =
x/β , ỹ = y/β brings the curve to the Montgomery form βy2 = x3 +aβx2 + x.

Given a point P 6= ±P4 of order 4, we will need to compute the isomorphism of
Montgomery curves that brings [2]P in (0,0) and P in (1, . . .). Let X be the abscissa
of P and X0 the abscissa of [2]P; by a straightforward calculation, we find that this
isomorphism is given by the map

ι : E→ E ′,

(x,y) 7→
(

x−X0

X−X0
,

y
X−X0

)
,

(D.14)

and the new curve has equation

E ′ :
B

X−X0
y2 = x3 +

3X0 +A
X−X0

x2 + x.

By precomputing 1/(X −X0), and sharing common subexpressions, the above map
can be evaluated on a point in full projective coordinates using 3M operations, or 2M
using Kummer coordinates.

Let G be a subgroup of the Montgomery curve E of odd cardinality ` and let h be the
degree (`−1)/2 polynomial vanishing on the abscissas of G. With a twist y = ỹ/

√
B,

we can put E in the form
E : ỹ2 = x̃3 +Ax̃2 + x̃,

and this does not change the abscissas of G nor the polynomial h. Now, composing the
twist with Vélu’s formulas gives an isogeny

φ : E→ E/G,

(x,y) 7→
(

g(x)
h(x)2 ,y

√
B
(

g(x)
h(x)2

)′)
.

We now need to express E/G in Montgomery form. Because ` is odd, the point (0,0)
of E is sent to a point of order two in E/G, and the change of variables x̃= x−g(0)/h(0)2

brings this point to (0,0).
Now, φ(P4) is a point of order four lying above (0,0) (possibly in a quadratic exten-

sion). Its abscissa is rational and is given by

1
β

=
g(1)
h(1)2 −

g(0)
h(0)2 , (D.15)

so we further apply the change of variables x̃ = x̄/β , ỹ = x̄/β to obtain a Montgomery
curve. Finally, we have to twist back the model in order to obtain a curve isogenous
over the base field: the twist ȳ = y

√
B cancels with the first one and leaves us with

square-root-free formulas.
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Given h as input, the cost of evaluating the whole path is O(`) operations in the
base field, using the formula in [Bos+08, Proposition 4.1] to evaluate g/h.

Let now P be a 3-torsion point, let G = {0,P,−P} and let X be the abscissa of P
(and −P). If we specialize the formula to the case `= 3, we have h = x−X and

φ : E→ E/G,

(x,y) 7→
(

x(x− 1
X )

2

(x−X)2 X2, y (
x− 1

X )((x− 1
X )(x−X)+2x( 1

X −X))
(x−X)3 X2

)
,

(D.16)

and the curve E/G has equation

E/G : BX2y2 = x3 +

(
A+

6
X
−6X

)
X2x2 + x.

By precomputing X and X2, and sharing common subexpressions, the above isogeny
can be evaluated on a point in full projective coordinates using 11M+2S operations, or
4M+2S using Kummer coordinates.

When ` is even, things get more complicated. Recall that P2 = (0,0) and P4 =
(1,
√
(A+2)/B). The isogeny of degree 2 vanishing on P2 and mapping P4 to (0,0) is

readily seen as being

F : By2 = x3 +(A+6)x2 +4(2+A)x, (D.17)
φ : E→ F,

(x,y) 7→
(
(x−1)2

x
,y
(

1− 1
x2

))
.

(D.18)

It is not immediately evident how to put F in Montgomery form without comput-
ing square roots. Let P8 be a point satisfying [2]P8 = P4. Then we have φ(P8) =
(2
√

2+A, . . .), and F can be put in the form

B
2
√

2+A
y2 = x3 +

A+6
2
√

2+A
x2 + x,

with the point (1, . . .) being the image of P8. Any other isogeny of degree 2 can be
treated by applying Eq. (D.14) to move the generator of the kernel in (0,0).

By precomputing 1/φ(P8), and sharing common subexpressions, the above isogeny
can be evaluated on a point in full projective coordinates using 5M+3S operations, or
2M+S using Kummer coordinates. Unfortunately, this formula takes no square roots
only if an 8-torsion point above P2 is known.

Alternatively, φ and F being as before, we consider the isogeny ψ : F → F/〈(0,0)〉
given by

G :
B

2−A
y2 = x3−2

A+6
2−A

x2 + x, (D.19)

ψ : F → G,

(x,y) 7→
(

1
2−A

(x+4)(x+(A+2))
x

,
y

2−A

(
1− 4(2+A)

x2

))
.

(D.20)

Then φ4 = ψ ◦ φ is an isogeny of degree four φ4 : E → E/〈P4〉, and the point(
1,
√
−4(A+2)/B

)
of G generates the kernel of the dual isogeny φ̂4. Any other isogeny

of degree 4 can be treated by applying Eq. (D.14) to move the kernel point to (1, . . .).
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By precomputing 1/(2−A), and sharing common subexpressions, the isogeny φ4
can be evaluated on a point in full projective coordinates using 10M+4S operations, or
4M+S using Kummer coordinates.

Unfortunately, this formula cannot be applied twice to obtain a degree 16 cyclic
isogeny: indeed, a double application yields the multiplication-by-4 isogeny. If a chain
of degree 4 isogenies is wanted, as for the algorithm in Subsection D.4, this formula
must be combined with the isomorphism in Eq. (D.14).

Isogenies of composite smooth degree are computed by composing small degree
isogenies as discussed in Subsection D.4. We focus on the fine tuning of this algorithm
when the small isogenies have degrees 2,3 and 4.

It is important to remark that, after a generator R of the kernel of the isogeny has
been computed, the algorithm does not use its ordinate at all: indeed, all the previous
formulas for small degree isogenies only use the abscissas of the kernel points. Hence,
we can throw away the ordinate of R altogether and only use scalar multiplication and
isogeny evaluation formulas for points in Kummer coordinates.

As usual, some more care must be taken when computing cyclic isogenies of degree
2e. In principle, one could compose either degree 2 (Eq. D.17) or degree 4 (Eq. D.19)
isogenies; however we have already pointed out some caveats:

• Both equations require the kernel point to be moved to some specific coordinates.
This can be achieved using the isomorphism in Eq. (D.14).

• After the first change of variables, Eq. (D.17) can be repeatedly chained with
itself; however, from a point of order 2e only e− 2 degree 2 isogenies can be
computed this way, because the formula requires the knowledge of a point of
order 8.

• Eq. (D.19) cannot be directly chained with itself to compute a cyclic isogeny of
degree 4e. It must be composed, instead, with Eq. (D.14) at each step.

Having this in mind, two obvious strategies to compute degree 2e isogenies are:

1. Use degree 2 isogenies as much as possible; use one degree 4 isogenies for the
last two steps.

2. Use one degree 2 isogeny if e is odd, then use only degree 4 isogenies composed
with isomorphisms.

Table D.2 below suggests that the second strategy yields a very small improvement
over the first. The experiments of Section D.7 show that operations not accounted for
in this analysis might give a greater advantage to the second strategy. However, for
lack of time, we only implemented the first one.

Finally, it should be noted that both approaches, if implemented as described above,
leak two bits of security. Indeed, the point (1, . . .) of the image curve is a point of
order 4 in the kernel of the dual of the computed isogeny (the secret). It is easy to
mask this leakage by taking a random change of coordinates. However, for practical
purposes, we found this masking more costly than simply adding two bits of security
and letting the information leak, although technically the leaked information alters
the complexity assumptions needed for the security proofs. For ease of analysis, we
assume in Section D.5 that coordinate masking has been applied.
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Table D.1: Comparative costs for multiplication and isogeny evaluation in projective
Kummer coordinates, in number of multiplications and squarings, and assuming
S = 0.8M.

` 2 3 4
Isogeny 2M+S 4M+2S 6M+S

2.8 5.6 6.8
Multiplication 3M+2S 7M+4S 6M+4S

4.6 10.2 9.2

Table D.2: Comparative costs of the balanced and the optimal strategies for computing
a degree 2514 (`= 2,4) or 3323 (`= 3) isogeny, assuming S = 0.8M.

optimal strategy balanced strategy
` 2 3 4 2 3 4
Isogenies 2741 1610 1166 2323 1430 1033
Multiplications 1995 1151 921 2307 1288 1025
Total cost 16852 20756 16402 17117 21146 16454

Table D.1 summarizes the costs of the isogeny evaluation and scalar multiplication
formulas in light of these remarks. Because squaring in Fp2 is faster than multipli-
cation, we also report the cost obtained by taking S = 0.8M (a factor that roughly
approximates the fact that squaring requires 2 multiplications in Fp instead of 3).

Table D.2 compares the total cost of isogeny evaluations and scalar multiplications
in a balanced and an optimal strategy for `= 2,3,4, based on the costs given in Table D.1,
at the classical 256-bit security level (see Section D.5 for our complexity assumptions).
We make the following observations, backed up by the benchmarks in Section D.7:

• There may be a small advantage (less than 2%) in using isogenies of degree 4
instead of 2;

• The gain in using an optimal strategy instead of a balanced one is consistent
with the predictions of Subsection D.4;

• The difference between 2e and 3e isogenies is more significant (about 20%),
suggesting that degree 2e isogenies may be preferable for constrained devices.

D.5 Complexity assumptions

As before, let p be a prime of the form `eA
A `eB

B · f ±1, and fix a supersingular curve E0 over
Fp2 together with bases {PA,QA} and {PB,QB} of E0[`

eA
A ] and E0[`

eB
B ] respectively. In

analogy with the case of isogenies over ordinary elliptic curves, we define the following
computational problems, adapted for the supersingular case:

Problem D.8 (Decisional Supersingular Isogeny (DSSI) problem). Let EA be another
supersingular curve defined over Fp2 . Decide whether EA is `eA

A -isogenous to E0.

Problem D.9 (Computational Supersingular Isogeny (CSSI) problem). Let the map
φA : E0 → EA be an isogeny whose kernel is 〈[mA]PA +[nA]QA〉, where mA and nA are
chosen at random from Z/`eA

A Z and not both divisible by `A. Given EA and the values
φA(PB), φA(QB), find a generator RA of 〈[mA]PA +[nA]QA〉.
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We remark that given a generator RA = [mA]PA + [nA]QA, it is easy to solve for
(mA,nA), since E0 has smooth order and thus extended discrete logarithms are easy in
E0 [Tes99].

Problem D.10 (Supersingular Computational Diffie-Hellman (SSCDH) problem). Let
φA : E0→ EA be an isogeny whose kernel is equal to 〈[mA]PA +[nA]QA〉, and let φB : E0→
EB be an isogeny whose kernel is 〈[mB]PB +[nB]QB〉, where mA,nA (respectively mB,nB)
are chosen at random from Z/`eA

A Z (respectively Z/`eB
B Z) and not both divisible by

`A (respectively `B). Given the curves EA, EB and the points φA(PB), φA(QB), φB(PA),
φB(QA), find the j-invariant of E0/〈[mA]PA +[nA]QA, [mB]PB +[nB]QB〉.

Problem D.11 (Supersingular Decision Diffie-Hellman (SSDDH) problem). Given a
tuple sampled with probability 1/2 from one of the following two distributions:

• (EA,φA(PB),φA(QB),EB,φB(PA),φB(QA),EAB), wherein the quantities EA, φA(PB),
φA(QB), EB, φB(PA), and φB(QA) are as in the SSCDH problem and

EAB ∼= E0/〈[mA]PA +[nA]QA, [mB]PB +[nB]QB〉,

• (EA,φA(PB),φA(QB),EB,φB(PA),φB(QA),EC), wherein the quantities EA, φA(PB),
φA(QB), EB, φB(PA), and φB(QA) are as in the SSCDH problem and

EC ∼= E0/〈[m′A]PA +[n′A]QA, [m′B]PB +[n′B]QB〉,

where m′A,n
′
A (respectively m′B,n

′
B) are chosen at random fromZ/`eA

A Z (respectively
Z/`eB

B Z) and not both divisible by `A (respectively `B),

determine from which distribution the tuple is sampled.

The ordinary case analogue of the following problem is trivially solvable in poly-
nomial time. Its supposed difficulty in the supersingular case is at the heart of the
security of our identification scheme.

Problem D.12 (Decisional Supersingular Product (DSSP) problem). Given a degree
`eA

A isogeny φ : E0 → E3 and a tuple sampled with probability 1/2 from one of the
following two distributions:

• (E1,E2,φ
′), where the product E1×E2 is chosen at random among those `eB

B -
isogenous to E0×E3, and where φ ′ : E1→ E2 is an isogeny of degree `eA

A , and

• (E1,E2,φ
′), where E1 is chosen at random among the curves having the same

cardinality as E0, and φ ′ : E1→ E2 is a random isogeny of degree `eA
A ,

determine from which distribution the tuple is sampled.

We conjecture that these problems are computationally infeasible, in the sense
that for any polynomial-time solver algorithm, the advantage of the algorithm is a
negligible function of the security parameter log p. The resulting security assumptions
are referred to as the DSSI assumption, CSSI assumption, etc.
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Hardness of the underlying assumptions

Given a CSSI (respectively, SSCDH) solver, it is trivial to solve SSCDH (respectively,
SSDDH). It is also trivial to solve SSDDH given a DSSI solver. There are no known
reductions in the other direction, and given that the corresponding question of equiva-
lence for discrete logarithms and Diffie-Hellman has not yet been completely resolved in
all cases, it is reasonable to assume that the question of equivalence of CSSI, SSCDH,
and SSDDH is at least hard to resolve. For the purposes of this discussion, we will
presume that DSSI and CSSI are equivalent to SSDDH. Concerning DSSP, there is
an evident reduction to DSSI. However, it seems reasonable to assume that DSSP is
easier than the latter.

In the context of cryptography, the problem of computing an isogeny between isoge-
nous supersingular curves was first considered by Galbraith [Gal99] in 1999. The
first published cryptographic primitive based on supersingular isogeny graphs is the
hash function proposal of Charles et al. [CGL09], which remains unbroken to date
(the cryptanalysis of [PLQ08] applies only to the LPS graph-based hash function
from [CGL09], and not to the supersingular isogeny graph-based hash functions). The
fastest known algorithm for finding isogenies between supersingular curves in general
takes O(

√
p log2 p) time [CGL09, §5.3.1]; however our problem is less general because

the degree of the isogeny is known in advance and is smooth. In addition, the distri-
bution of isogenous curves obtained from taking kernels of the form 〈[mA]PA +[nA]QA〉
is not quite uniform: a simple calculation against Proposition D.1 indicates that a
sequence of eA isogenies of degree `A falls short of the length needed to ensure uniform
mixing, regardless of the value of p. Since we are the first to propose using isogenies of
this type, there is no existing literature addressing the security of the isogenies of the
special form that we propose.

There are easy exponential attacks against DSSI and CSSI that improve upon
exhaustive search. To find an isogeny of degree `eA

A between E and EA, an attacker
builds two trees of all curves isogenous to E (respectively, EA) via isogenies of degree
`

eA/2
A . Once the trees are built, the attacker tries to find a curve lying in both trees.
Since the degree of the isogeny φA is ∼√p (much shorter than the size of the isogeny
graph), it is unlikely that there will be more than one isogeny path—and thus more
than one match—from E to EA. Given two functions f : A→ C and g : B→ C with
domain of equal size, finding a pair (a,b) such that f (a) = g(b) is known as the claw
problem in complexity theory. The claw problem can obviously be solved in O(|A|+ |B|)
time and O(|A|) space on a classical computer by building a hash table holding f (a)
for any a ∈ A and looking for hits for g(b) where b ∈ B. This gives a O(`

eA/2
A ) = O( 4

√
p)

classical attack against our cryptosystems. With a quantum computer, one can do
better using the algorithm in [Tan09], which has complexity O( 3

√
|A||B|), thus giving

an O(`
eA/3
A ) = O( 6

√
p) quantum attack against our cryptosystems. These complexities

are optimal for a black-box claw attack [Zha05].
We consider the question of whether the auxiliary data points φA(PB) and φA(QB)

might assist an adversary in determining φA. Since (PB,QB) forms a basis for E0[`
eB
B ],

the values φA(PB) and φA(QB) allow the adversary to compute φA on all of E0[`
eB
B ]. This

is because any element of E0[`
eB
B ] is a (known) linear combination of PB and QB (known

since extended discrete logarithms are easy [Tes99]). However, there does not appear
to be any way to use this capability to determine φA. Even on a quantum computer,
where finding abelian hidden subgroups is easy, there is no hidden subgroup to find,
since φA has degree `eA

A , and thus does not annihilate any point in E0[`
eB
B ] other than
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the identity. Of course, if one could evaluate φA on arbitrary points of E0[`
eA
A ], then a

quantum computer could easily break the scheme, and indeed in this case the scheme
is also easily broken classically by using a few calls to the oracle to compute a generator
of the kernel of the dual isogeny φ̂A. However, it does not seem possible to translate
the values of φA on E0[`

eB
B ] into values on E0[`

eA
A ].

For both ordinary and supersingular curves, there is a natural bijection between
isogenies (up to isomorphism) and (left) ideals in the endomorphism ring. In the
ordinary case the endomorphism ring is commutative, and ideal classes form a finite
abelian group. This property has been used by Childs et al. [CJS14] to solve the ordinary
analogue of CSSI in quantum subexponential time. It is natural to ask whether their
algorithm can be adapted to the supersingular setting. Here the endomorphism ring is
a maximal order in a noncommutative quaternion algebra, and the left ideal classes
do not form a group at all (though they do form a groupoid). Since the algorithm of
Childs et al. depends crucially on the properties of abelian groups, we believe that no
reasonable variant of this strategy would apply.

The same correspondence between isogenies and ideals can be applied to DSSP.
Indeed, deciding DSSP amounts to deciding whether the ideals S,S′ associated to
φ ,φ ′ are conjugated, i.e., whether there exists a left ideal R ∈ End(E0) such that
S = RS′R−1. Although it can be hoped that deciding conjugacy of ideal classes in the
quaternion algebra Qp,∞ is feasible, we are still faced with the problem that the best
known algorithms to compute the endomorphism rings of supersingular curves are
exponential in log p [Koh96; Cer04; Bel08]. Hence, we deem DSSP secure given the
current knowledge.

The fact that it is possible to obtain a zero-knowledge identification scheme from
CSSI comes as no surprise, since it is well known that a zero-knowledge protocol can be
obtained from any problem in NP [GMW91]. Nevertheless, the generic construction is
not very efficient, and many efforts have been made to obtain efficient ad-hoc schemes
from NP-complete problems [Sha89; Ste94b; Ste94a; Poi95]. While the security of
most of these schemes is based on two solid assumptions, namely that P 6= NP and
that secure commitment schemes exist, our identification scheme stands on a much
weaker ground: the CSSI and DSSP problems. As performances go, it is reasonable to
assume that our scheme will be some orders of magnitude slower than the best zero-
knowledge protocols. We can thus conclude that our scheme is of a purely theoretical and
pedagogical interest. Yet it is remarkable that an efficient identification scheme based
on graphs of supersingular isogenies simply exists, while the analogous construction
for ordinary curves is trivially broken and no other identification scheme is currently
known to work in that case [Sto10].

D.6 Security proofs

In this section we state formal security reductions relating the security of our protocols
to the hardness of the appropriate underlying isogeny computation problem. The
security proofs are routine, but tedious, and contain little original contribution on our
part. For this reason, we only prove a representative selection of our theorems.

The statements of the theorems are as follows:

Theorem D.13. If the SSDDH assumption holds, then the key-agreement protocol of
Section D.3 is session-key secure in the authenticated-links adversarial model of Canetti
and Krawczyk [CK01].
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Theorem D.14. If the SSDDH assumption holds, and the hash function family H is
entropy-smoothing, then the public-key cryptosystem of Section D.3 is IND-CPA.

Theorem D.15. Under the CSSI and DSSP assumptions, the identification scheme of
Section D.3 is zero-knowledge.

Proof of Theorem D.13

The proofs of Theorems D.13 and D.14 are easily adapted from the corresponding proofs
given by Stolbunov [Sto09]. As an illustration of the proof techniques, we provide a
proof of Theorem D.13.

We recall the definition of session-key security in the authenticated-links adver-
sarial model of Canetti and Krawczyk [CK01]. We consider a finite set of parties
P1,P2, . . . ,Pn modeled by probabilistic Turing machines. The adversary I , also mod-
eled by a probabilistic Turing machine, controls all communication, with the exception
that the adversary cannot inject or modify messages (except for messages from cor-
rupted parties or sessions), and any message may be delivered at most once. Parties
give outgoing messages to the adversary, who has control over their delivery via the
Send query. Parties are activated by Send queries, so the adversary has control over
the creation of protocol sessions, which take place within each party. Two sessions s
and s′ are matching if the outgoing messages of one are the incoming messages of the
other, and vice versa.

We allow the adversary black-box access to the queries SessionStateReveal,
SessionKeyReveal, and Corrupt. The SessionStateReveal(s) query allows the adversary
to obtain the contents of the session state, including any secret information. The query
is noted and s produces no further output. The SessionKeyReveal(s) query enables
the adversary to obtain the session key for the specified session s, so long as s holds a
session key. The Corrupt(Pi) query allows the adversary to take over the party Pi, i.e.,
the adversary has access to all information in Pi’s memory, including long-lived keys
and any session-specific information still stored. A corrupted party produces no further
output. We say a session s with owner Pi is locally exposed if the adversary has issued
SessionKeyReveal(s), SessionStateReveal(s), or Corrupt(Pi) before s is expired. We say
s is exposed if s or its matching session have been locally exposed, and otherwise we
say s is fresh.

We allow the adversary I a single Test(s) query, which can be issued at any stage
to a completed, fresh, unexpired session s. A bit b is then picked at random. If b = 0,
the test oracle reveals the session key, and if b = 1, it generates a random value in the
key space. I can then continue to issue queries as desired, with the exception that
it cannot expose the test session. At any point, the adversary can try to guess b. Let
GoodGuessI (k) be the event that I correctly guesses b, and define

AdvantageI (k) = max
{

0,
∣∣∣∣Pr[GoodGuessI (k)]− 1

2

∣∣∣∣} ,

where k is a security parameter.
The definition of security is as follows:

Definition D.16. A key exchange protocol Π in security parameter k is said to be
session-key secure in the authenticated-links adversarial model of Canetti andKrawczyk
if for any polynomial-time adversary I ,
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Algorithm 12 SSDDH distinguisher
Input: EA,EB,φA(PB),φA(QB),φB(PA),φB(QA),E

1: r R←{1, . . . ,k}, where k is an upper bound on the number of sessions activated by
I in any interaction.

2: Invoke I and simulate the protocol to I , except for the r-th activated protocol
session.

3: For the r-th session, let Alice send A, i, EA, φA(PB), φA(QB) to Bob, and let Bob send
B, i, EB, φB(PA), φB(QA) to Alice, where i is the session identifier.

4: if the r-th session is chosen by I as the test session then
5: Provide I as the answer to the test query.
6: d←I ’s output.
7: else
8: d R←{0,1}.
9: end if

Output: d

1. If two uncorrupted parties have completed matching sessions, these sessions
produce the same key as output;

2. AdvantageI (k) is negligible.

Proof of Theorem D.13. We adapt the proof given by Canetti and Krawczyk [CK01, §5.1]
for two-party Diffie-Hellman over Z∗q. A similar strategy was used by Stolbunov [Sto09]
in the case of ordinary elliptic curves.

It has been shown in Section D.3 that two uncorrupted parties in matching sessions
output the same session key, and thus the first part of Definition D.16 is satisfied. To
show that the second part of the definition is satisfied, assume that there is a polynomial-
time adversary I with a non-negligible advantage ε . We claim that Algorithm 12
forms a polynomial-time distinguisher for SSDDH having non-negligible advantage.

To prove the claim, we must show that Algorithm 12 has non-negligible advantage
(it is clear that it runs in polynomial time). We consider separately the cases where the
r-th session is (respectively, is not) chosen by I as the test session. If the r-th session is
not the test session, then Algorithm 12 outputs a random bit, and thus its advantage in
solving the SSDDH is 0. If the r-th session is the test session, then I will succeed with
advantage ε , since the simulated protocol provided to I is indistinguishable from the
real protocol. Since the latter case occurs with probability 1/k, the overall advantage
of the SSDDH distinguisher is ε/k, which is non-negligible.

Proof of Theorem D.15

Using classical techniques from [GMW91; FFS88], the theorem is proved in three steps,
known by the names of completeness, soundness and zero-knowledge.

Proof of Theorem D.15 (sketch). Completeness is obvious: using the algorithms of Sec-
tion D.4, Peggy can always compute the diagram (D.3) in polynomial time and make
Vic accept.

To prove soundness, we let Charles be any polynomially bounded adversary capable
of convincing Vic with a non-negligible probability. We use Charles as a black-box for
which we can control the random coin tosses. By restarting it a polynomial number of
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times with the same random input, and by asking each time a different set of questions,
we learn with overwhelming probability a diagram

E E/〈S〉

E/〈R〉 E/〈S,R〉

ψ ψ ′

φ ′
(D.21)

It is then straightforward to compute the secret. Let R be a generator of the kernel
of φ ′. Using the theorem of the dual isogeny it is easy to compute ψ̂ , then 〈ψ̂(R)〉 is the
kernel of an isogeny E→ E/〈S〉 of degree `ea

A . This contradicts the CSSI assumption.
To prove zero-knowledge, we use a cheating verifier (CV) as a black-box to construct

a simulator (S). At each iteration, S makes a (uniformly) random guess at what the
next question by V will be.

If S guesses b = 0, it chooses a random primitive `eB
B -torsion point R ∈ E and

computes φ(R) (recall that the action of φ on E[`eB
B ] is part of the public data). Then it

constructs the isogenies ψ : E→ E/〈R〉 and ψ ′ : E/〈S〉 → E/〈S,R〉

E E/〈S〉

E/〈R〉 E/〈S,R〉

φ

ψ ψ ′
(D.22)

and sends E1 = E/〈R〉 and E2 = E/〈S,R〉 to CV.
If S guesses b = 1, it chooses a random supersingular curve E ′ having the same

cardinality as E, and a random primitive `eA
A -torsion point R ∈ E ′. Then, it constructs

the isogeny φ ′ : E ′→ E ′/〈R〉

E E/〈S〉

E ′ E ′/〈R〉

φ

φ ′

(D.23)

and sends E1 = E ′ and E2 = E ′/〈R〉 to CV.
If CV does not ask the expected question, S simply discards the attempt and restarts.

If CV asks the expected question, S writes (E1,E2,b,R) on its output. S stops whenever
CV rejects, or after m successful interactions with CV.

To prove zero-knowledge, we must show that S runs in polynomial time and that its
output is polynomially indistinguishable from the transcript of a conversation between
CV and Peggy.

To show that S runs in polynomial time, it is enough to show that, at any iteration,
for any guess b made by S, the probability that CV asks question 1−b is exponentially
close to 1/2. Suppose this were not the case, then CV can be used as an oracle for
DSSP.

To prove indistinguishability, using the hybrid technique of [GMW91, Claim 4.2], it
is enough to prove that no polynomial-time distinguisher exists for a single round of the
identification scheme. It is obvious that no such distinguisher can exist for questions
of type b = 0, because the outputs of S and Peggy are identical in this case. Suppose,
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Table D.3: Benchmarks for various key sizes. Alice uses `= 2, Bob uses `= 3.

tuned 2/1 balanced
512 bits 768 bits 1024 bits 768 bits 1024 bits

Alice round 1 28.1 ms 65.7 ms 122 ms 66.8 ms 123 ms
Alice round 2 23.3 ms 54.3 ms 101 ms 55.5 ms 102 ms
Bob round 1 28.0 ms 65.6 ms 125 ms 67.1 ms 128 ms
Bob round 2 22.7 ms 53.7 ms 102 ms 55.1 ms 105 ms

now, that there exists a distinguisher D which, on input φ ′ : E1 → E2, can tell with
non-negligible probability whether it comes from S or from a conversation between CV
and Peggy, then D can be used as an oracle for DSSP.

D.7 Implementation results and example

To evaluate the performance of our schemes, we implemented the key exchange protocol
in the computer algebra system Sage [Sage] using a mixed C/Cython/Sage architecture.
This allows us to access the large palette of number theoretic algorithms distributed
with Sage, while still permitting very efficient code in C/Cython for the critical parts
such as the algorithms of Section D.4. The source code can be downloaded from De
Feo’s web page.

Arithmetic in Fp2 is written in C. We use the library GMP for arithmetic modulo
p. The field Fp2 is implemented as Fp2 [X ]/(X2 +1) (this requires p = 3 mod 4); using
this representation, one multiplication in Fp2 requires three multiplications in Fp, one
squaring requires two multiplications in Fp, and one inversion requires one inversion,
two squarings, and two multiplications in Fp. Our experiments show that, for the sizes
we are interested in, I = 10M and S = 0.8M.

The computation of the optimal strategies as described in Section D.4 is done in
pure Python, using a dynamic programming algorithm.

We implemented the key exchange algorithm in C for ` = 2,3, and in Cython
for any `. Our experiments show that, in the C implementation, the ratio between
scalar multiplications and isogeny evaluations is about 2, which is consistent with the
predictions made in Table D.1. We used this ratio to tune the optimal strategies for
`= 2,3: starting from 768 bits, a gain over the balanced strategy, comprised between
1% and 3%, starts getting noticeable. The performances of 3-isogenies are comparable
to those of 2-isogenies, thus contradicting the prediction made by Table D.2; this is
explained by the operations not accounted for in Table D.2, such as the computation of
the isogenies and of the isogenous curves (3-isogenies gain a factor of about log3 2 on
these operations). This suggests that well optimized 4-isogeny formulas may eventually
outperform 2-isogenies.

Finally, the parameter generation is implemented in plain Sage. Because Sage is a
collection of many open source mathematical systems, various of its subsystems are
involved in this last part. Of these, Pari [PARI] plays an important role because it is
used to compute Hilbert class polynomials and to factor polynomials over finite fields.

All tests ran on a 2.4 GHz Opteron running in 64-bit mode. The results are
summarized in Table D.3. At the quantum 128-bit security level (768-bit p), our
numbers improve upon Stolbunov’s reported performance figures [Sto10, Table 1] by
over three orders of magnitude (.066 seconds vs. 229 seconds). This is the highest
security level appearing in [Sto10, Table 1], so comparisons at higher levels are difficult.
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Nevertheless, it seems safe to assume that the improvement is even greater at the
256-bit security level. Our results demonstrate that the proposed scheme is practical.

Example
As a convenience, we provide an example calculation of a key-exchange transaction. Let
`A = 2, `B = 3, eA = 63, eB = 41, and f = 11. We use the starting curve E0 : y2 = x3 + x.
For the torsion bases, we use

PA = (2374093068336250774107936421407893885897i+2524646701852396349308425328218203569693,

1944869260414574206229153243510104781725i+1309099413211767078055232768460483417201)

PB = (1556716033657530876728525059284431761206i+1747407329595165241335131647929866065215,

3456956202852028835529419995475915388483i+1975912874247458572654720717155755005566)

and QA =ψ(PA),QB =ψ(PB), where i=
√
−1 in Fp2 and ψ(x,y)= (−x, iy) is a distortion

map [Jou02]. The secret values are
mA = 2575042839726612324, nA = 8801426132580632841,

mB = 4558164392438856871, nB = 20473135767366569910

The isogeny φA : E0→ EA is specified by its kernel, and thus the curve EA is only well
defined up to isomorphism; its exact value may vary depending on the implementation.
In our case, the curve is EA : y2 = x3 +ax+b where

a = 428128245356224894562061821180718114127i+2147708009907711790134986624604674525769

b = 3230359267202197460304331835170424053093i+1577264336482370197045362359104894884862

and the values of φA(PB) and φA(QB) are
φA(PB) = (1216243037955078292900974859441066026976i+1666291136804738684832637187674330905572,

3132921609453998361853372941893500107923i+28231649385735494856198000346168552366)

φA(QB) = (2039728694420930519155732965018291910660i+2422092614322988112492931615528155727388,

1688115812694355145549889238510457034272i+1379185984608240638912948890349738467536)

Similarly, in our implementation EB : y2 = x3 +ax+b is the curve with
a = 2574722398094022968578313861884608943122i+464507557149559062184174132571647427722

b = 2863478907513088792144998311229772886197i+1767078036714109405796777065089868386753

and the values of φB(PA) and φB(QA) are
φB(PA) = (2519086003347973214770499154162540098181i+1459702974009609198723981125457548440872,

2072057067933292599326928766255155081380i+891622100638258849401618552145232311395)

φB(QA) = (53793994522803393243921432982798543666i+3698741609788138685588489568343190504844,

2853868073971808398649663652161215323750i+1869730480053624141372373282795858691139)

The common j-invariant of EAB ∼= EBA, computed by both Alice and Bob, is equal to
j(EAB) = 1437145494362655119168482808702111413744i+833498096778386452951722285310592056351.

D.8 Conclusion

We propose a new family of conjecturally quantum-resistant public-key cryptographic
protocols using isogenies between supersingular elliptic curves of smooth order. In order
to compensate for the noncommutative endomorphism rings that arise in this setting,
we introduce the idea of providing the images of torsion bases as part of the protocol.
Against the fastest known attacks, the resulting key exchange scheme improves upon all
previous isogeny-based schemes by orders of magnitude in performance at conventional
security levels, making it the first practical isogeny-based public-key cryptosystem.
Unlike prior such schemes, our proposal admits no known subexponential-time attacks
even in the quantum setting.
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E Towards practical key exchange from ordinary isogeny
graphs

Abstract

We revisit the ordinary isogeny-graph based cryptosystems of Couveignes and
Rostovtsev–Stolbunov, long dismissed as impractical. We give algorithmic improve-
ments that accelerate key exchange in this framework, and explore the problem of
generating suitable system parameters for contemporary pre- and post-quantum
security that take advantage of these new algorithms. We also prove the session-key
security of this key exchange in the Canetti–Krawczyk model, and the IND-CPA
security of the related public-key encryption scheme, under reasonable assump-
tions on the hardness of computing isogeny walks. Our systems admit efficient
key-validation techniques that yield CCA-secure encryption, thus providing an im-
portant step towards efficient post-quantum non-interactive key exchange (NIKE).

E.1 Introduction

Isogeny-based protocols form one of the youngest and least-explored families of post-
quantum candidate cryptosystems. The best-known isogeny-based protocol is Jao and
De Feo’s SIDH key exchange [JD11], from which the NIST candidate key-encapsulation
mechanism SIKE was derived [SIKE; Nat16]. SIDH was itself inspired by earlier key-
exchange constructions by Couveignes [Cou06] and Rostovtsev and Stolbunov [RS06;
Sto09; Sto10], which were widely considered unwieldy and impractical.

Indeed, the origins of isogeny-based cryptography can be traced back to Couveignes’
“Hard Homogeneous Spaces” manuscript, that went unpublished for ten years before
appearing in [Cou06]. A principal homogeneous space (PHS) for a group G is a set
X with an action of G on X such that for any x,x′ ∈ X , there is a unique g ∈ G such
that g · x = x′. Equivalently, the map ϕx : g 7→ g · x is a bijection between G and X for
any x ∈ X . Couveignes defines a hard homogeneous space (HHS) to be a PHS where
the action of G on X is efficiently computable, but inverting the isomorphism ϕx is
computationally hard for any x.

Algorithm 1: Key generation for cryptosystems in an HHS X for a group G,
with a fixed “base point” x0 in X .
Input: ()
Output: A private-public keypair (g,x) ∈ G×X s.t. x = g · x0

1 function KeyGen()
2 g← Random(G) // g is sampled uniformly at random from G
3 x← g · x0
4 return (g,x)

Any HHS X for an abelian group G can be used to construct a key exchange based
on the hardness of inverting ϕx, as shown in Algorithms 1 and 2. If Alice and Bob
have keypairs (gA,xA) and (gB,xB), respectively, then the commutativity of G lets them
derive a shared secret

DH(gA,xB) = gA · (gB · x0) = gB · (gA · x0) = DH(gB,xA) .

The analogy with classic group-based Diffie–Hellman is evident.
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Algorithm 2: Diffie–Hellman in an HHS X for a group G
Input: A private key gA ∈ G and a public key xB ∈ X , each generated by calls to

KeyGen
Output: A shared secret value k ∈ X

1 function DH(gA,xB)
2 k← gA · xB
3 return k

For example, if X = 〈x〉 is cyclic of order p and G = (Z/pZ)∗ acts on X \ {1} by
g ·x = xg, then inverting ϕx is the discrete logarithm problem (DLP) in X . But inverting
ϕx for other homogeneous spaces may not be related to any DLP, and might resist
attacks based on Shor’s quantum algorithm. Similar ideas have occasionally appeared
in the literature in different forms [Ko+00; MMR07].

Couveignes viewed HHS chiefly as a general framework encompassing various
Diffie–Hellman-like systems. Nevertheless, he suggested using a specific HHS based
on the theory of complex multiplication of elliptic curves, in a sense generalizing
Buchmann and Williams’ class-group-based Diffie–Hellman key exchange [BW88].
Independently, Rostovtsev and Stolbunov proposed in [RS06] a public key encryption
scheme based on the same HHS. Later, Stolbunov [Sto10] derived more protocols from
this, including an interactive key exchange scheme similar to Algorithm 2. Rostovtsev
and Stolbunov’s proposal deviates from the HHS paradigm in the way random elements
of G are sampled, as we will explain in §E.3. This makes the primitive less flexible,
but also more practical.

Rostovtsev and Stolbunov advertised their cryptosystems as potential post-quantum
candidates, leading Childs, Jao and Soukharev to introduce the first subexponential
quantum algorithm capable of breaking them [CJS14]. Hence, being already slow
enough to be impractical in a classical security setting, their primitive appeared even
more impractical in a quantum security setting.

But the Couveignes–Rostovtsev–Stolbunov primitive (CRS) has some important
advantages over SIDH which make it worth pursuing. Unlike SIDH, CRS offers
efficient and safe public key validation, making it suitable for non-interactive key
exchange (NIKE). Further, CRS does not suffer from some of the potential cryptographic
weaknesses that SIDH has, such as short paths and the publication of image points.

This paper aims to improve and modernize the CRS construction, borrowing tech-
niques from SIDH and point-counting algorithms, to the point of making it usable in a
post-quantum setting. Our main contributions are in §§E.3–E.4, where we present a
new, more efficient way of computing the CRS group action, and in §E.5, where we give
precise classic and quantum security estimates, formalize hardness assumptions, and
sketch security proofs in stronger models than those previously considered. In §E.6 we
present a proof-of-concept implementation and measure its performance. While the
final result is far from competitive, we believe it constitutes progress towards a valid
isogeny-based alternative to SIDH.

CSIDH. While preparing this paper we were informed of recent work by Castryck,
Lange, Martindale, Panny, and Renes, introducing CSIDH, an efficient post-quantum
primitive based on CRS [Cas+18]. Their work builds upon the ideas presented in
§§E.3–E.4, using them in a different homogeneous space where they apply effortlessly.
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Their breakthrough confirms that, if anything, our techniques were a fundamental
step towards the first practical post-quantum non-interactive key exchange protocol.

Side channel awareness. The algorithms we present here are not intended to
provide any protection against basic side-channel attacks. Uniform and constant-time
algorithms for arbitrary-degree isogeny computations are an interesting open problem,
but they are beyond the scope of this work.

E.2 Isogenies and complex multiplication

We begin by recalling some basic facts on isogenies of elliptic curves over finite fields.
For an in-depth introduction to these concepts, we refer the reader to [Sil92]. For a
general overview of isogenies and their use in cryptography, we suggest [De 17].

Isogenies between elliptic curves

In what follows Fq is a finite field of characteristic p with q elements, and Fq is its
algebraic closure. Let E and E ′ be elliptic curves defined over Fq. A homomorphism
φ : E→ E ′ is an algebraic map sending 0E to 0E ′ ; it induces a group homomomorphism
from E(Fq) to E ′(Fq) [Sil92, p. III.4]. An endomorphism is a homomorphism from a
curve to itself. The endomorphisms of E form a ring End(E), with the group law on E for
addition and composition for multiplication. The simplest examples of endomorphisms
are the scalar multiplications [m] (mapping P to the sum of m copies of P) and the
Frobenius endomorphism

π : E −→ E ,

(x,y) 7−→ (xq,yq) .

As an element of End(E), Frobenius satisfies a quadratic equation π2 +q = tπ . The
integer t (the trace) fully determines the order of E as #E(Fq) = q+1− t. A curve is
called supersingular if p divides t, ordinary otherwise.

An isogeny is a non-zero homomorphism of elliptic curves. The degree of an isogeny
is its degree as an algebraic map, so for example the Frobenius endomorphism π has
degree q, and the scalar multiplication [m] has degree m2. Isogenies of degree ` are
called `-isogenies. The kernel kerφ of φ is the subgroup of E(Fq) that is mapped to 0E ′ .
An isogeny φ is cyclic if kerφ is a cyclic group.

An isomorphism is an isogeny of degree 1. An isomorphism class of elliptic curves
is fully determined by their common j-invariant in Fq. If any curve in the isomorphism
class is defined over Fq, then its j-invariant is in Fq.

Any isogeny can be factored as a composition of a separable and a purely inseparable
isogeny. Purely inseparable isogenies have trivial kernel, and degree a power of p.
Separable isogenies include all isogenies of degree coprime to p. Up to isomorphism,
separable isogenies are in one-to-one correspondence with their kernels: for any finite
subgroup G⊂ E of order ` there is an elliptic curve E/G and an `-isogeny φ : E→ E/G
such that kerφ = G, and the curve and isogeny are unique up to isomorphism. In
particular, if φ is separable then degφ = #kerφ . It is convenient to encode kerφ as the
polynomial whose roots are the x-coordinates of the points in kerφ , called the kernel
polynomial of φ .

For any `-isogeny φ : E → E ′, there is a unique `-isogeny φ̂ : E ′ → E such that
φ ◦ φ̂ = [`] on E ′ and φ̂ ◦φ = [`] on E. We call φ̂ the dual of φ . This shows that being
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`-isogenous is a symmetric relation, and that being isogenous is an equivalence relation.
Further, a theorem of Tate states that two curves are isogenous over Fq if and only if
they have the same number of points over Fq.

Isogeny graphs

Isogeny-based cryptosystems are based on isogeny graphs. These are (multi)-graphs
whose vertices are elliptic curves up to isomorphism, and whose edges are isogenies
between them (again up to isomorphism). The use of isogeny graphs for algorithmic ap-
plications goes back to Mestre and Oesterlé [Mes86], followed notably by Kohel [Koh96],
and has been continued by many authors [Gal99; FM02; GHS02; Mir+06; JMV09].

We write E[`] for the subgroup of `-torsion points of E(Fq). If ` is coprime to p, then
E[`] is isomorphic to (Z/`Z)2. Furthermore, if ` is prime then E[`] contains exactly
`+1 cyclic subgroups of order `; it follows that, over Fq, there are exactly `+1 distinct
(non-isomorphic) separable `-isogenies from E to other curves. Generically, a connected
component of the `-isogeny graph over Fq will be an infinite (`+1)-regular graph (a
notable exception is the finite connected component of supersingular curves, used in
SIDH and related protocols).

We now restrict to isogenies defined over Fq. If E and E ′ are elliptic curves over
Fq, then an isogeny φ : E→ E ′ is defined over Fq (up to a twist of E ′) if and only if the
Frobenius endomorphism π on E stabilizes kerφ . We emphasize that the points in
kerφ need not be defined over Fq themselves.

For the vertices of the Fq-isogeny graph we use j-invariants, which classify elliptic
curves up to Fq-isomorphism; but in the sequel we want to work up to Fq-isomorphism,
a stronger equivalence. If E and Ẽ are not Fq-isomorphic but j(E) = j(Ẽ), then Ẽ is
the quadratic twist of E (which is defined and unique up to Fq-isomorphism).1 When E
is ordinary, its quadratic twist has a different cardinality (if #E(Fq) = q+1− t, then
#Ẽ(Fq) = q+1+ t), so E and Ẽ are in different components of the isogeny graph. But
every Fq-isogeny φ : E→ E ′ corresponds to an Fq-isogeny φ̃ : Ẽ→ Ẽ ′ of the same degree
between the quadratic twists. The component of the Fq-isogeny graph containing an
ordinary curve and the component containing its twist are thus isomorphic; we are
therefore justified in identifying them, using j-invariants in Fq for vertices in the
Fq-graph.2 This is not just a mathematical convenience: we will see in §E.3 below that
switching between a curve and its twist often allows a useful optimization in isogeny
computations.

If an isogeny φ is defined over Fq and cyclic, then π acts like a scalar on the points
of kerφ . Thus, for any prime ` 6= p, the number of outgoing `-isogenies from E defined
over Fq can be completely understood by looking at how π acts on E[`]. Since E[`] is a
Z/`Z-module of rank 2, the action of π is represented by a 2×2 matrix with entries in
Z/`Z and characteristic polynomial X2− tX +q mod `. We then have four possibilities:

(0) π has no eigenvalues in Z/`Z, i.e. X2− tX +q is irreducible modulo `; then E has
no `-isogenies.

(1.1) π has one eigenvalue of (geometric) multiplicity one, i.e. it is conjugate to a
non-diagonal matrix

(
λ ∗
0 λ

)
; then there is one `-isogeny from E.

1There is a slight technicality here for j-invariants 0 and 1728, where non-quadratic twists may exist.
We ignore these special cases because these curves never appear in our cryptosystem: the class groups of
their endomorphism rings are trivial, and keyspaces of size 1 are of limited utility in cryptography.

2The situation is much more complicated for supersingular graphs, because the curve and its twist are
in the same component of the graph; see [DG16, §2] for details.
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(1.2) π has one eigenvalue of multiplicity two, i.e. it acts like a scalar matrix
(

λ 0
0 λ

)
;

then there are `+1 isogenies of degree ` from E.

(2) π has two distinct eigenvalues, i.e. it is conjugate to a diagonal matrix
(

λ 0
0 µ

)
with λ 6= µ ; then there are two `-isogenies from E.

The primes ` in Case (2) are called Elkies primes for E; these are the primes of most
interest to us. Cases (1.x) are only possible if ` divides ∆π = t2−4q, the discriminant
of the characteristic equation of π ; for ordinary curves ∆π 6= 0, so only a finite number
of ` will fall in these cases, and they will be mostly irrelevant to our cryptosystem. We
do not use any ` in Case (0).

Since all curves in the same isogeny class over Fq have the same number of points,
they also have the same trace t and discriminant ∆π . It follows that if ` is Elkies for
some E in Ellq(O), then it is Elkies for every curve in Ellq(O).

Hence, if ` is an Elkies prime for a curve E, then the connected component of E in
the `-isogeny graph is a finite 2-regular graph—that is, a cycle. In the next subsection
we describe a group action on this cycle, and determine its size.

Complex multiplication

In this subsection we focus exclusively on ordinary elliptic curves. If E is an ordinary
curve with Frobenius π , then End(E) is isomorphic to an order3 in the quadratic
imaginary field Q(

√
∆π) (see [Sil92, p. III.9]). A curve whose endomorphism ring is

isomorphic to an order O is said to have complex multiplication by O . For a detailed
treatment of the theory of complex multiplication, see [Lan87; Sil94].

The ring of integers OK of K =Q(
√

∆π) is its maximal order: it contains any other
order of K. Hence Z[π]⊂ End(E)⊂ OK , and there is only a finite number of possible
choices for End(E). If we write ∆π = d2∆K , where ∆K is the discriminant4 of OK , then
the index [OK : End(E)] must divide d = [OK : Z[π]].

It turns out that isogenies allow us to navigate the various orders. If φ : E→ E ′ is
an `-isogeny, then one of the following holds [Koh96, Prop. 21]:

• End(E) = End(E ′), and then φ is said to be horizontal;

• [End(E) : End(E ′)] = `, and then φ is said to be descending;

• [End(E ′) : End(E)] = `, and then φ is said to be ascending.

Notice that the last two cases can only happen if ` divides d2 = ∆π/∆K , and thus
correspond to Cases (1.x) in the previous subsection. If ` does not divide ∆π , then φ is
necessarily horizontal.

We now present a group action on the set of all curves up to isomorphism having
complex multiplication by a fixed order O ; the key exchange protocol of §E.3 will be
built on this action. Let a be an invertible ideal in End(E)'O of norm prime to p, and
define the a-torsion subgroup of E as

E[a] =
{

P ∈ E(Fq)
∣∣σ(P) = 0 for all σ ∈ a

}
.

3An order is a subring which is a Z-module of rank 2.
4∆K is a fundamental discriminant: ∆K ≡ 0,1 (mod 4), and ∆K or ∆K

4 is squarefree.
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This subgroup is the kernel of a separable isogeny φa. 5 The codomain E/E[a] of φa

is well-defined up to isomorphism and will be denoted a ·E. The isogeny φa is always
horizontal—that is, End(a ·E) = End(E)—and its degree is the norm of a as an ideal of
End(E).

Let Ellq(O) be the set of isomorphism classes over Fq of curves with complex
multiplication by O , and assume it is non-empty. The construction above gives rise to
an action of the group of fractional ideals of O on Ellq(O). Furthermore, the principal
ideals act trivially (the corresponding isogenies are endomorphisms), so this action
induces an action of the ideal class group Cl(O) on Ellq(O).

The main theorem of complex multiplication states that this action is simply tran-
sitive. In other terms, Ellq(O) is a PHS under the group Cl(O): if we fix a curve E as
base point, then we have a bijection

Cl(O)−→ Ellq(O)

Ideal class of a 7−→ Isomorphism class of a ·E.

The order of Cl(O) is called the class number of O , and denoted by h(O). An immediate
consequence of the theorem is that #Ellq(O) = h(O).

As before, we work with Fq-isomorphism classes. Then Ellq(O) decomposes into
two isomorphic PHSes under Cl(O), each containing the quadratic twists of the curves
in the other. We choose one of these two components, that we will also denote Ellq(O)
in the sequel. (The choice is equivalent to a choice of isomorphism End(E)∼= O , and
thus to a choice of sign on the image of π in O .)

Now let ` be an Elkies prime for E ∈Ellq(O). So far, we have seen that the connected
component of E in the `-isogeny graph is a cycle of horizontal isogenies. Complex
multiplication tells usmore. The restriction of the Frobenius to E[`] has two eigenvalues
λ 6= µ , to which we associate the prime ideals a= (π−λ , `) and â= (π−µ, `), both of
norm `. We see then that E[a] is the eigenspace of λ , defining an isogeny φa of degree
`. Furthermore aâ = âa = (`), implying that a and â are the inverse of one another
in Cl(O), thus the isogeny φâ : a ·E → E of kernel (a ·E)[â] is the dual of φa (up to
isomorphism).

The eigenvalues λ and µ define opposite directions on the `-isogeny cycle, indepen-
dent of the starting curve, as shown in Figure E.1. The size of the cycle is the order of
(π−λ , `) in Cl(O), thus partitioning Ellq(O) into cycles of equal size.

E.3 Key exchange from isogeny graphs

We would like to instantiate the key exchange protocol of Algorithm 2 with the PHS
X = Ellq(O) for the group G = Cl(O), for some well chosen order O in a quadratic
imaginary field. However, given a generic element of Cl(O), the best algorithm [JS10] to
evaluate its action on Ellq(O) has subexponential complexity in q, making the protocol
infeasible. The solution, following Couveignes [Cou06], is to fix a set S of small prime
ideals in O , whose action on X can be computed efficiently, and such that compositions
of elements of S cover the whole of G. The action of an arbitrary element of G is
then the composition of a series of actions by small elements in S. As Rostovtsev and
Stolbunov [RS06] observed, it is useful to visualise this decomposed action as a walk
in an isogeny graph.

5In fact, one can define φa for any invertible ideal a, but it is not always separable.
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Figure E.2: Undirected Schreier graph
on 〈x〉 \{1} where x13 = 1, acted upon
by (Z/13Z)∗, generated by S = {2,3,5}
(resp. blue, red and green edges).

Walks in isogeny graphs

Let G be a group, X a PHS for G, and S a subset of G. The Schreier graph G (G,S,X) is
the labelled directed graph whose vertex set is X , and where an edge labelled by s ∈ S
links x1 to x2 if and only if s · x1 = x2. It is isomorphic to a Cayley graph for G. If S is
symmetric (that is, S−1 = S), then we associate the same label to s and s−1, making
the graph undirected.

A walk in G (G,S,X) is a finite sequence (s1, . . . ,sn) of steps in S. We define the
action of this walk on X as

(s1, . . . ,sn) · x =
( n

∏
i=1

si
)
· x.

In our application G is abelian, so the order of the steps si does not matter. We can
use this action directly in the key exchange protocol of Algorithm 2, by simply taking
private keys to be walks instead of elements in G.

Example E.1. Figure E.2 shows G (G,S,X) where G = (Z/13Z)∗, S = {2,3,5} ∪
{2−1,3−1,5−1}, and X = 〈x〉 \ {1} is a cyclic group of order 13, minus its identity
element. The action of G on X is exponentiation: g · x = xg. The action of 11, which
takes xk to x11k, can be expressed using the walks (2,5,5), or (2−1,3−1), or (3,5), for
example. Note that 5 has order 4 modulo 13, thus partitioning 〈x〉 \{1} into 3 cycles of
length 4.

Returning to the world of isogenies, we now take

• X = Ellq(O) as the vertex set, for some well-chosen q and O ; in particular we
require O to be the maximal order (see §E.5).

• G = Cl(O) as the group acting on X ;

• S a set of ideals, whose norms are small Elkies primes in O .
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The graph G (G,S,X) is thus an isogeny graph, composed of many isogeny cycles (one
for the norm of each prime in S) superimposed on the vertex set Ellq(O). It is connected
if S generates Cl(O). Walks in G (G,S,X) are called isogeny walks.

We compute the action of an ideal s (a single isogeny step) on an x ∈ Ellq(O) by
choosing a representative curve E with x = j(E), and computing an isogeny φs : E→ E ′

from E corresponding to s; the resulting vertex is s ·x = j(E ′). The action of an isogeny
walk (si)i is then evaluated as the sequence of isogeny steps φsi . Algorithms for these
operations are given in the next subsection.

Using this “smooth” representation of elements in Cl(O) as isogeny walks lets us
avoid computing Cl(O) and Ellq(O), and avoid explicit ideal class arithmetic; only
isogenies between elliptic curves are computed. In practice, we re-use the elliptic curve
E ′ from one step as the E in the next; but we emphasize that when isogeny walks are
used for Diffie–Hellman, the resulting public keys and shared secrets are not the final
elliptic curves, but their j-invariants.

Computing isogeny walks

Since Cl(O) is commutative, we can break isogeny walks down into a succession of walks
corresponding to powers of single primes s= (`,π−λ ); that is, repeated applications
of the isogenies φs. Depending on s, we will compute each sequence of φs using one of
two different methods:

• Algorithm 5 (ElkiesWalk) uses Algorithm 3 (ElkiesFirstStep) followed by
a series of calls to Algorithm 4 (ElkiesNextStep), both which use the modular
polynomial Φ`(X ,Y ). This approach works for any s.

• Algorithm 7 (VéluWalk) uses a series of calls to Algorithm 6 (VéluStep). This
approach, which uses torsion points on E, can only be applied when λ satisfies
certain properties.

Rostovtsev and Stolbunov only used analogues of Algorithms 3 and 4. The introduc-
tion of VéluStep, inspired by SIDH and related protocols (and now a key ingredient
in the CSIDH protocol [Cas+18]), speeds up our protocol by a considerable factor; this
is the main practical contribution of our work.

Algorithm 3: ElkiesFirstStep
Input: E ∈ Ellq(O); (`,λ ) encoding s= (π−λ , `)
Output: j(s ·E)

1 P←Φ`(X , j(E))
2 { j1, j2}← Roots(P,Fq)
3 K← KernelPolynomial(Isogeny(E, j1, `)) // e.g. BMSS

algorithm [Bos+08]
4 Q← a nonzero point in K // e.g. (x,y) ∈ E(Fq[x,y]/(y2− fE(x),K(x)))
5 if π(Q) = [λ ]Q then
6 return j1
7 else
8 return j2
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Algorithm 4: ElkiesNextStep
Input: (`,λ ) encoding s= (π−λ , `); ( j0, j1) = ( j(E), j(s ·E)) for E in Ellq(O)
Output: j(s · s ·E)

1 P←Φ`(X , j1)/(X− j0)
2 j2← Root(P,Fq) // It is unique
3 return j2

Algorithm 5: ElkiesWalk
Input: E ∈ Ellq(O); (`,λ ) encoding s= (π−λ , `); k ≥ 1
Output: sk ·E

1 j0← j(E)
2 j1← ElkiesFirstStep(E,(`,λ ))
3 for 2≤ i≤ k do
4 ( j0, j1)← ( j1,ElkiesNextStep((`,λ ),( j0, j1)))

5 ER← EllipticCurveFromJInvariant( j1)
6 if not CheckTrace(ER, t) then
7 ER← QuadraticTwist(ER)

8 return ER

Algorithm 6: VéluStep
Input: E ∈ Ellq(O); (`,λ ) encoding s= (π−λ , `); r > 0; Cr = #E(Fqr)
Output: s ·E

1 repeat
2 P← Random(E(Fqr))
3 Q← [Cr/`]P
4 until Q 6= 0E

5 K←∏
(`−1)/2
i=0 (X− x([i]Q)) // Kernel polynomial of isogeny

6 ER← IsogenyFromKernel(E,K) // Apply Vélu’s formulæ
7 return ER

Algorithm 7: VéluWalk
Input: E ∈ Ellq(O); (`,λ ) encoding s= (`,π−λ ); k ≥ 1
Output: sk ·E

1 r← Order(λ , `) // Precompute and store for each (`,λ )
2 Cr← #E(Fqr) // Precompute and store for each r
3 for 1≤ i≤ k do
4 E← VéluStep(E,(`,λ ),r,Cr)

5 return E
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Elkies steps. Algorithms 3 and 4 compute single steps in the `-isogeny graph. Their
correctness follows from the definition of the modular polynomial Φ`: a cyclic `-isogeny
exists between two elliptic curves E and E ′ if and only if Φ`( j(E), j(E ′)) = 0 (see [Sch95,
§6] and [Elk98, §3] for the relevant theory). One may use the classical modular
polynomials here, or alternative, lower-degree modular polynomials (Atkin polynomials,
for example) with minimal adaptation to the algorithms. In practice, Φ` is precomputed
and stored: several publicly available databases exist (see [Koh18] and [Sut18; BLS12;
BOS16], for example).

Given a j-invariant j(E), we can compute its two neighbours in the `-isogeny graph
by evaluating P(X) = Φ`( j(E),X) (a polynomial of degree `+1), and then computing
its two roots in Fq. Using a Cantor–Zassenhaus-type algorithm, this costs Õ(` logq)
Fq-operations.

We need to make sure we step towards the neighbour in the correct direction. If we
have already made one such step, then this is easy: it suffices to avoid backtracking.
Algorithm 4 (ElkiesNextStep) does this by removing the factor corresponding to
the previous j-invariant in Line 4; this algorithm can be used for all but the first of the
steps corresponding to s.

It remains to choose the right direction in the first step for s = (`,π − λ ). In
Algorithm 3 we choose one of the two candidates for φs arbitrarily, and compute its
kernel polynomial. This costs Õ(`) Fq-operations using the Bostan–Morain–Salvy–
Schost algorithm [Bos+08] with asymptotically fast polynomial arithmetic. We then
compute an element Q of kerφs over an extension of Fq of degree at most `−1

2 , then
evaluate π(Q) and [λ ]Q. If they match, then we have chosen the right direction;
otherwise we take the other root of P(X).

Algorithm 5 (ElkiesWalk) combines these algorithms to compute the iterated
action of s. Line 5 ensures that the curve returned is the the correct component of
the `-isogeny graph. Both ElkiesFirstStep and ElkiesNextStep cost Õ(` logq)
Fq-operations, dominated by the calculation of the roots of P(X).

Vélu steps. For some ideals s= (`,π−λ ), we can completely avoid modular polyno-
mials, and the costly computation of their roots, by constructing kerφs directly from
`-torsion points. Let r be the order of λ modulo `; then kerφs ⊆ E(Fqr). If r is not a
multiple of the order of the other eigenvalue µ of π on E[`], then E[`](Fqr) = kerφs.
Algorithm 6 (VéluStep) exploits this fact to construct a generator Q of kerφs by
computing a point of order ` in E(Fqr). The roots of the kernel polynomial of φs

x(Q), . . . ,x([(`−1)/2]Q).6
Constructing a point Q of order ` in E(Fqr) is straightforward: we take random

points and multiply by the cofactor Cr/`, where Cr := #E(Fqr). Each trial succeeds
with probability 1−1/`. Note that Cr can be easily (pre)computed from the Frobenius
trace t: if we write Cr = q− tr +1 for r > 0 (so t1 = t) and t0 = 2, then the tr satisfy the
recurrence tr = t · tr−1−q · tr−2.

We compute the quotient curve in Line 6 with Vélu’s formulæ [Vél71] in O(`) Fq-
operations. Since logCr ' r logq, provided `= O(logq), the costly step in Algorithm 6
is the scalar multiplication at Line 3, which costs Õ(r2 logq) Fq-operations.

Comparing the costs. To summarize:

6If the order of µ divides r, Algorithm 6 can be extended as follows: take P ∈ E[`], and compute
π(P)− [µ]P; the result is either zero, or an eigenvector for λ . This is not necessary for any of the primes in
our proposed parameters.



Key exchange from isogeny graphs 169

• Elkies steps cost Õ(` logq) Fq-operations;

• Vélu steps cost Õ(r2 logq) Fq-operations, where r is the order of λ in Z/`Z.

In general r =O(`), so Elkies steps should be preferred. However, when r is particularly
small (and not a multiple of the order of the other eigenvalue), a factor of ` can be saved
using Vélu steps. The value of r directly depends on λ , which is in turn determined by
#E(Fp) mod `. Thus, we see that better Step performances depend on the ability to
find elliptic curves whose order satisfies congruence conditions modulo small primes.
Unfortunately, we can only achieve this partially (see §E.4), so themost efficient solution
is to use Vélu steps when we can, and Elkies steps for some other primes.

In practice, Algorithm 6 can be improved by using elliptic curve models with more
efficient arithmetic. In our implementation (see §E.6), we used x-only arithmetic on
Montgomery models [Mon87; CS17], which also have convenient Vélu formulæ [CH17;
Ren18]. Note that we can also avoid computing y-coordinates in Algorithm 3 at Line 5
if λ 6=±µ : this is the typical case for Elkies steps, and we used this optimization for
all Elkies primes in our implementation.

Remark E.2. Note that, in principle, Algorithm 6, can only be used to walk in one
direction sλ = (`,π−λ ), and not in the opposite one sµ = (`,π−µ). Indeed we have
assumed that E[sλ ] is in E(Fqr), while E[sµ ] is not. However, switching to a quadratic
twist Ẽ of E over Fqr changes the sign of the Frobenius eigenvalues, thus it may happen
that Ẽ[s−µ ] is in Ẽ(Fqr), while Ẽ[s−λ ] is not. It is easy to force this behavior by asking
that p≡−1 (mod `), indeed then λ =−1/µ .

For these eigenvalue pairs we can thus walk in both directions using Vélu steps
at no additional cost, following either the direction λ on E, or the direction −µ on a
twist. In Algorithm 6, only the curve order and the random point sampling need to be
modified when using quadratic twists.

Sampling isogeny walks for key exchange

We now describe how keys are generated and exchanged in our protocol. Since the cost
of the various isogeny walks depends on the ideals chosen, we will use adapted, or
skewed, smooth representations when sampling elements in Cl(O) in order to minimize
the total computational cost of a key exchange.

We take a (conjectural) generating set for Cl(O) consisting of ideals over a set S of
small Elkies primes, which we partition into three sets according to the step algorithms
to be used. We maintain three lists of tuples encoding these primes:

SVV is a list of tuples (`,λ ,µ) such that the ideal (`,π−λ ) and its inverse (`,π−µ)
are both amenable to VéluStep.

SV E is a list of tuples (`,λ ) such that (`,π − λ ) is amenable to VéluStep but its
inverse (`,π−µ) is not.

SEE is a list of tuples (`,λ ,µ) such that neither (`,π−λ ) nor (`,π−µ) are amenable
to VéluStep.

In SVV and SEE , the labelling of eigenvalues as λ and µ is fixed once and for all
(that is, the tuples (`,λ ,µ) and (`,µ,λ ) do not both appear). This fixes directions in
each of the `-isogeny cycles. Looking back at Figure E.1, for ` associated with SEE and
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SVV , both directions in the `-isogeny graph will be available for use in walks; for SV E ,
only the Vélu direction will be used.

Each secret key in the cryptosystem is a walk in the isogeny graph. Since the class
group Cl(O) is commutative, such a walk is determined by the multiplicities of the
primes s that appear in it. Algorithm 8 (KeyGen) therefore encodes private-key walks
as exponent vectors, with one integer exponent for each tuple in SVV , SV E , and SEE . For
a tuple (`,λ ,µ),

• a positive exponent k` indicates a walk of k` `-isogeny steps in direction λ ;

• a negative exponent −k` indicates k` `-isogeny steps in direction µ .

For the tuples (`,λ ) in SV E , where we do not use the slower µ-direction, we only allow
non-negative exponents. We choose bounds M` on the absolute value of the exponents
k` so as to minimize the total cost of computing isogeny walks, while maintaining a
large keyspace. As a rule, the bounds will be much bigger for the primes in SVV and
SV E , where Vélu steps can be applied.

The public keys are j-invariants in Fq, so they can be stored in log2 q bits; the
private keys are also quite compact, but their precise size depends on the number of
primes ` and the choice of exponent bounds M`, which is a problem we will return to in
§E.6.

Algorithm 8: KeyGen for cryptosystems in the isogeny graph on Ellq(O)
with walks based on S, and initial curve E0. The ideal lists SEE , SVV , and SV E ,
and the walk bounds M`, are system parameters.
Input: ()
Output: A secret key (k`)`∈S and the corresponding public key j(E)

1 E← E0
2 for (`,λ ,µ) ∈ SEE do
3 k`← Random([−M`,M`])
4 if k` ≥ 0 then ν ← λ

5 else ν ← µ

6 E← ElkiesWalk(E,(`,ν), |k`|)
7 for (`,λ ,ν) ∈ SVV do
8 k`← Random([−M`,M`])
9 if k` ≥ 0 then ν ← λ

10 else ν ← µ

11 E← VéluWalk(E,(`,ν), |k`|)
12 for (`,λ ) ∈ SV E do
13 k`← Random([0,M`])
14 E← VéluWalk(E,(`,λ ),k`)
15 return ((k`)`∈S, j(E))

Algorithm 9 completes a Diffie–Hellman key exchange by applying a combination
of Elkies and Vélu walks (Algorithms 5 and 7, respectively).
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Algorithm 9: DH for the isogeny graph on Ellq(O) with primes in S. The
ideal lists SEE , SVV , and SV E , and the walk bounds M`, are system parameters.
Public key validation is not included here, but (if desired) should be carried
out as detailed in §E.5.
Input: A private key kA = (kA,`)`∈S corresponding to a walk (s1, . . . ,sn), and a

public key jB = j(EB) for EB ∈ Ellq(O)
Output: A shared secret j(∏n

i=1 si ·EB)
1 E← EllipticCurveFromJInvariant( jB)
2 if not CheckTrace(E, t) then
3 E← QuadraticTwist(E)
4 for (`,λ ,µ) ∈ SEE do
5 if kA,` ≥ 0 then ν ← λ

6 else ν ← µ

7 E← ElkiesWalk(E,(`,ν), |kA,`|)
8 for (`,λ ,µ) ∈ SVV do
9 if kA,` ≥ 0 then ν ← λ

10 else ν ← µ

11 E← VéluWalk(E,(`,ν), |kA,`|)
12 for (`,λ ) ∈ SV E do
13 E← VéluWalk(E,(`,λ ),kA,`)

14 return j(E)

E.4 Public parameter selection

It is evident that the choice of public parameters has a heavy impact on the execution
time: smaller Elkies primes, and smaller multiplicative orders of the Frobenius eigen-
values, will lead to better performance. Since all of this information is contained in
the value of #E(Fq), we now face the problem of constructing ordinary elliptic curves
of prescribed order modulo small primes. Unfortunately, and in contrast with the
supersingular case, no polynomial-time method to achieve this is known in general:
the CM method [AM93; Sut12a], which solves this problem when the corresponding
class groups are small, is useless in our setting (see §E.5).

In this section we describe how to use the Schoof–Elkies–Atkin (SEA) point count-
ing algorithm with early abort, combined with the use of certain modular curves, to
construct curves whose order satisfies some constraints modulo small primes. This
is faster than choosing curves at random and computing their orders completely un-
til a convenient one is found, but it still does not allow us to use the full power of
Algorithm VéluStep.

Early-abort SEA. The SEA algorithm [Sch95; Mor95] is the state-of-the-art point-
counting algorithm for elliptic curves over large-characteristic finite fields. In order to
compute N = #E(Fp), it computes N modulo a series of small Elkies primes `, before
combining the results via the CRT to get the true value of N.

Cryptographers are usually interested in generating elliptic curves of prime or
nearly prime order, and thus without small prime factors. While running SEA on
random candidate curves, one immediately detects if N ≡ 0 (mod `) for the small
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primes `; if this happens then the SEA execution is aborted, and restarted with a new
curve.

Here, the situation is the opposite: we want elliptic curves whose cardinality has
many small prime divisors. To fix ideas, we choose the 512-bit prime

p := 7

(
∏

2≤`≤380, ` prime
`

)
−1 .

Then, according to Remark E.2, Algorithm VéluStep can be used for `-isogenies in
both directions for any prime `≤ 380, as soon as the order of its eigenvalues is small
enough. We now proceed as follows:

• Choose a smoothness bound B (we used B = 13).

• Pick elliptic curves E at random in Fp, and use the SEA algorithm, aborting
when any `≤ B with #E(Fp) 6≡ 0 (mod `) is found.

• For each E which passed the tests above, complete the SEA algorithm to compute
#E(Fp), and estimate the key exchange running time using this curve as a public
parameter (see §E.6).

• The “fastest” curves now give promising candidates for #E(Fp).

In considering the efficiency of this procedure, it is important to remark that very
few curves will pass the early-abort tests. The bound B should be chosen to balance
the overall cost of the first few tests with that of the complete SEA algorithm for the
curves which pass them. Therefore, its value is somewhat implementation-dependent.

Finding the maximal order. Once a “good” curve E has been computed, we want
to find a curve E0 having the same number of points, but whose endomorphism ring is
maximal, and to ensure that its discriminant is a large integer. Therefore, we attempt
to factor the discriminant ∆π of Z[π]: if it is squarefree, then E already has maximal
endomorphism ring, and in general the square factors of ∆π indicate which ascending
isogenies have to be computed in order to find E0.

Remark E.3. Factoring random 512-bit integers is not hard in general, and discrimi-
nants of quadratic fields even tend to be slightly smoother than random integers. If a
discriminant fails to be completely factored, a conservative strategy would be to discard
it, but ultimately undetected large prime-square factors do not present a security issue
because computing the possible corresponding large-degree isogenies is intractable
(see §E.5).

Using the modular curve X1(N). Since we are looking for curves with smooth
cardinalities, another improvement to this procedure is available: instead of choosing
elliptic curves uniformly at random, we pick random candidates using an equation
for the modular curve X1(N) [Sut12b], which guarantees the existence of a rational
N-torsion point on the sampled elliptic curve. This idea is used in the procedure of
selecting elliptic curves in the Elliptic Curve Method for factoring [ZD06; Zim+18]. In
our implementation we used N = 17, and also incorporated the existence test in [OKS00]
for Montgomery models for the resulting elliptic curves.
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Results. We implemented this search using the Sage computer algebra system. Our
experiments were conducted on several machines running Intel Xeon E5520 processors
at 2.27GHz. After 17,000 hours of CPU time, we found the Montgomery elliptic curve
E : y2 = x3 +Ax2 + x over Fp with p as above, and

A = 108613385046492803838599501407729470077036464083728319343246605668887327977789
32142488253565145603672591944602210571423767689240032829444439469242521864171 .

The trace of Frobenius t of E is

−147189550172528104900422131912266898599387555512924231762107728432541952979290 .

There is a rational `-torsion point on E, or its quadratic twist, for each ` in

{3,5,7,11,13,17,103,523,821,947,1723} ;

each of these primes is Elkies. Furthermore, End(E) is the maximal order, and its
discriminant is a 511-bit integer that has the following prime factorization:

−23·20507·67429·11718238170290677·12248034502305872059

·60884358188204745129468762751254728712569

·68495197685926430905162211241300486171895491480444062860794276603493 .

In §E.6, we discuss the practical performance of our key-exchange protocol using these
system parameters. Other proposals for parameters are given in [Kie17].

E.5 Security

We now address the security of the CRS primitive, and derived protocols. Intuitively,
these systems rely on two assumptions:

1. given two curves E and E ′ in Ellq(O), it is hard to find a (smooth degree) isogeny
φ : E→ E ′; and

2. the distribution on Ellq(O) induced by the random walks sampled in Algorithm 8
is computationally undistinguishable from the uniform distribution.

We start by reviewing the known attacks for the first problem, both in the classical
and the quantum setting. Then, we formalize security assumptions and give security
proofs against passive adversaries. Finally, we discuss key validation and protection
against active adversaries.

Classical attacks

We start by addressing the following, more general, problem:

Problem E.4. Given two ordinary elliptic curves E,E ′ defined over a finite field Fq,
such that #E(Fq) = #E ′(Fq), find an isogeny walk (φi)1≤i≤n such that φn ◦ · · · ◦φ1(E) =
E ′.

The curves in Problem E.4 are supposed to be sampled uniformly, though this is
never exactly the case in practice. This problem was studied before the emergence
of isogeny-based cryptography [Gal99; GHS02; GS13], because of its applications to
conventional elliptic-curve cryptography [GHS02; Tes06; JMV09]. The algorithm with
the best asymptotic complexity is due to Galbraith, Hess and Smart [GHS02]. It
consists of three stages:
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Figure E.3: 3-isogeny graph (volcano) containing the curve with j(E) = 607 over F6007.
A larger vertex denotes a larger endomorphism ring.

Stage 0. Use walks of ascending isogenies to reduce to the case where End(E) ∼=
End(E ′) is the maximal order.

Stage 1. Start two random walks of horizontal isogenies from E and E ′; detect the
moment when they collide using a Pollard-rho type of algorithm.

Stage 2. Reduce the size of the obtained walk using index-calculus techniques.

To understand Stage 0, recall that all isogenous elliptic curves have the same order,
and thus the same trace t of the Frobenius endomorphism π . We know that End(E) is
contained in the ring of integersOK of K =Q(

√
∆π), where ∆π = t2−4q is the Frobenius

discriminant. As before we write ∆π = d2∆K , where ∆K is the discriminant of OK ; then
for any ` | d, the `-isogeny graph of E contains ascending and descending `-isogenies;
these graphs are referred to as volcanoes [FM02] (see Figure E.3). Ascending isogenies
go from curves with smaller endomorphism rings to curves with larger ones, and take
us to a curve with End(E) ' OK in O(logd) steps; they can be computed efficiently
using the algorithms of [Koh96; FM02; IJ13; De +16]. Assuming7 all prime factors of d
are in O(logq), we can therefore compute Stage 0 in time polynomial in logq.

The set Ellq(OK) has the smallest size among all sets Ellq(O) for O ⊂ OK , so
it is always interesting to reduce to it. This justifies using curves with maximal
endomorphism ring in the definition of the protocol in §E.3. When ∆π is square-free,
Z[π] is the maximal order, and the condition is automatically true.

The collision search in Stage 1 relies on the birthday paradox, and has a complexity
of O(

√
h(OK)). It is known that, on average, h(OK) ≈ 0.461 · · ·

√
|∆K | (see [Coh93,

p. 5.10]), and, assuming the extended Riemann hypothesis, we even have a lower bound
(see [Lit28])

h(OK)≥ 0.147 · · · (1+o(1))
√
|∆K |

log log |∆K |
.

Since ∆K ∼ q, we expect Stage 1 to take time O(q1/4), which justifies a choice of q four
times as large as the security parameter. Unfortunately, class numbers are notoriously
difficult to compute, the current record being for a discriminant of 300 bits [BJS10].
Computing class numbers for ∼ 500-bit discriminants seems to be expensive, albeit

7This is typical for isogeny-based protocols. No counter-example has ever been constructed.
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feasible; thus, we can only rely on these heuristic arguments to justify the security of
our proposed parameters.

The horizontal isogeny produced by Stage 1 is represented by an ideal constructed
as a product of exponentially many small ideals. Stage 2 converts this into a sequence of
small ideals of length polynomial in logq. Its complexity is bounded by that of Stage 1,
so it has no impact on our security estimates.

Remark E.5. The Cohen–Lenstra heuristic [CL84] predicts that the odd part of Cl(OK)
is cyclic with overwhelming probability, and other heuristics [HM00] indicate that
h(OK) is likely to have a large prime factor. However, since there is no known way
in which the group structure of Cl(OK) can affect the security of our protocol, we can
disregard this matter. No link between the group structure of E(Fq) itself and the
security is known, either.

Quantum attacks

On a quantum computer, an attack with better asymptotic complexity is given by Childs,
Jao and Soukharev in [CJS14]. It consists of two algorithms:

1. A (classical) algorithm that takes as input an elliptic curve E ∈ Ellq(O) and an
ideal a ∈ Cl(O), and outputs the curve a ·E;

2. A generic quantum algorithm for the dihedral hidden subgroup problem (dHSP),
based upon previous work of Kuperberg [Kup05; Kup13] and Regev [Reg04].

The ideal evaluation algorithm has sub-exponential complexity Lq(
1
2 ,
√

3
2 ). However,

after a subexponential-time classical precomputation, any adversary can know the
exact class group structure; in that case, this ideal evaluation step could possibly be
performed in polynomial time (and non-negligible success probability) using LLL-based
methods, as discussed in [Sto12] and [Cou06, §5].

The dHSP algorithm uses the ideal evaluation algorithm as a (quantum) black
box, the number of queries depending on the variant. Childs–Jao–Soukharev gave two
versions of this algorithm, Kuperberg’s [Kup05] and Regev’s[Reg04]. However, both are
superseded by Kuperberg’s recent work [Kup13]: his new algorithm solves the dHSP
in any abelian group of order N using 2O(

√
logN) quantum queries and classical space,

but only O(logN) quantum space. Given this estimate, we expect the bit size of q to
grow at worst like the square of the security parameter.

Unfortunately, the analysis of Kuperberg’s new algorithm is only asymptotic, and
limited to N of a special form; it cannot be directly used to draw conclusions on concrete
cryptographic parameters at this stage, especially since the value of the constant
hidden by the O() in the exponent is unclear. Thus, it is hard to estimate the impact of
this attack at concrete security levels such as those required by NIST [Nat16].

Nevertheless, we remark that the first version of Kuperberg’s algorithm, as de-
scribed in [Reg04, Algorithm 5.1 and Remark 5.2] requires O(23

√
logN logN) black-box

queries and∼ 23
√

logN qubits of memory. Although the quantum memory requirements
of this algorithm are rather high, we will take its query complexity as a crude lower
bound for the complexity of Kuperberg’s newer algorithm in the general case. Of course,
this assumption is only heuristic, and should be validated by further study of quantum
dHSP solvers; at present time, unfortunately, no precise statement can be made.

Table E.1 thus proposes various parameter sizes, with associated numbers of
quantum queries based on the observations above; we also indicate the estimated time
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log∆K logh(OK)
classical
security L|∆K |(1/2,1)

quantum
queries

NIST
category

512 256 2128 256.6 > 256

688 344 2172 267.0 > 264 1

768 384 2192 271.4 > 267 1

1024 512 2256 284.2 > 276 1

1656 828 2414 2110.8 > 296 3

3068 1534 2767 2156.9 > 2128 5

Table E.1: Suggested parameter sizes and associated classical security, class group
computation time, and query complexity, using the heuristic estimations of §E.5.

to (classically) precompute the class group structure according to [BJS10].8 Whenever
the quantum query complexity alone is enough to put a parameter in one of NIST’s
security categories [Nat16], we indicate it in the table. We believe that using query
complexity alone is a very conservative choice, and should give more than enough
confidence in the post-quantum security properties of our scheme.

The system parameters we proposed in §E.4 correspond to the first line of Table E.1,
thus offering at least 56-bit quantum and 128-bit classical security.

Security proofs

We now formalize the assumptions needed to prove the security of the key exchange
protocol, and other derived protocols such as PKEs and KEMs, in various models.
Given the similarity with the classical Diffie–Hellman protocol on a cyclic group, our
assumptions are mostly modeled on those used in that context. Here we are essentially
following the lead of Couveignes [Cou06] and Stolbunov [Sto10; Sto12]. However, we
take their analyses a step further by explicitly modeling the hardness of distinguishing
random walks on Cayley graphs from the uniform distribution: this yields stronger
proofs and a better separation of security concerns.

For the rest of this section q is a prime power, O is an order in a quadratic imaginary
field with discriminant ∆∼ q, Cl(O) is the class group of O , Ellq(O) is the (non-empty)
set of elliptic curves with complex multiplication by O , and E0 is a fixed curve in Ellq(O).
Finally, S is a set of ideals of O with norm polynomial in logq, and σ is a probability
distribution on the set S∗ of isogeny walks (i.e. finite sequences of elements in S) used
to sample secrets in the key exchange protocol. We write x

σ∈ X for an element taken
from a set X according to σ , and x

R∈ X for an element taken according to the uniform
distribution.

8Computing the class group structure is an instance of the hidden subgroup problem, and thus can be
solved in quantum polynomial time by Shor’s algorithm.
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Our security proofs use four distributions on Ellq(O)3:

Gq,∆ :=
{
(a ·E0,b ·E0,ab ·E0)

∣∣∣∣a,b R∈ Cl(O)

}
,

Wq,∆,σ :=
{(

(ai)i ·E0,(b j) j ·E0,(ai)i · (b j) j ·E0
)∣∣∣(ai)i,(b j) j

σ∈ S∗
}
,

Rq,∆,σ :=
{(

(ai)i ·E0,(bi)i ·E0,E ′
)∣∣∣∣(ai)i,(bi)i

σ∈ S∗, E ′
R∈ Ellq(O)

}
,

Uq,∆ :=
{
(Ea,Eb,Eab)

∣∣∣∣Ea,Eb,Eab
R∈ Ellq(O)

}
.

The assumption needed to prove security of the protocols is the hardness of a
problem analogous to the classic Decisional Diffie–Hellman (DDH) problem.

Definition E.6 (Isogeny Walk DDH (IW-DDH)). Given a triplet of curves (Ea,Eb,Eab)
sampled with probability 1

2 from Rq,∆,σ and 1
2 from Wq,∆,σ , decide from which it was

sampled.

We split this problem into two finer-grained problems. The first is that of distin-
guishing between commutative squares sampled uniformly at random and commutative
squares sampled from the distribution σ .

Definition E.7 (Isogeny Walk Distinguishing (IWD)). Given a triplet of curves
(Ea,Eb,Eab) sampled with probability 1

2 from Wq,∆,σ and 1
2 from Gq,∆, decide from

which it was sampled.

The second problem is a group-action analogue of DDH. It also appears in [Cou06]
under the name vectorization, and in [Sto10; Sto12] under the name DDHAP.

Definition E.8 (Class Group Action DDH (CGA-DDH)). Given a triplet of curves
(Ea,Eb,Eab) sampled with probability 1

2 from Gq,∆ and 1
2 from Uq,∆, decide from which

it was sampled.

We want to prove the security of protocols based on the primitive of §E.3 under
the CGA-DDH and IWD assumptions combined. To do this we give a lemma showing
that CGA-DDH and IWD together imply IW-DDH. The technique is straightforward:
we use an IW-DDH oracle to solve both the CGA-DDH and IWD problems, showing
that at least one of the two must be solvable with non-negligible advantage. The only
technical difficulty is that we need an efficient way to simulate the uniform distribution
on Ellq(O); for this, we use another Cayley graph on Ellq(O), with a potentially larger
edge set, that is proven in [JMV09] to be an expander under the generalized Riemann
hypothesis (GRH).

We let AdvA
IW-DDH be the advantage of an adversary A against IW-DDH, defined as

the probability that A answers correctly, minus 1/2:

2AdvA
IW-DDH = Pr

[
A(Rq,∆,σ ) = 1

]
−Pr

[
A(Wq,∆,σ ) = 1

]
.

We define AdvA
CGA-DDH and AdvA

IWD similarly. Switching answers if needed, we can
assume all advantages are positive. We let AdvX(t) denote the maximum of AdvA

X over
all adversaries using at most t resources (running time, queries, etc.).
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Lemma E.9. Assuming GRH, for q large enough and for any bound t on running time,
and for any ε > 0,

AdvIW-DDH(t)≤ 2AdvIWD(t +poly(logq, logε))+AdvCGA-DDH(t)+ ε .

Sketch. We start with an adversary A for IW-DDH, and we construct two simulators S
and T for CGA-DDH and IWD respectively.

• The simulator S simply passes its inputs to A, and returns A’s response.

• The simulator T receives a triplet (Ea,Eb,Eab) taken from Gq,∆ or Wq,∆,σ , and
flips a coin to decide which of the two following actions it will do:

– forward (Ea,Eb,Eab) to A, and return the bit given by A; or
– generate a random curve Ec ∈ Ellq(O), forward (Ea,Eb,Ec) to A, and return

the opposite bit to the one given by A.

The curve Ec must be sampled from a distribution close to uniform for the simulator
T to work. The only way at our disposal to sample Ec uniformly would be to sample
a uniform c ∈ Cl(O) and take Ec = c ·E0, but this would be too costly. Instead we
use [JMV09, Theorem 1.5], combined with standard results about random walks in
expander graphs (for instance, an easy adaptation of the proof of [JMV09, Lemma 2.1]),
to sample Ec so that any curve in Ellq(O) is taken with probability between (1−
ε)/h(O) and (1+ε)/h(O), using only poly(logq, logε) operations. We can consider this
sampling as follows: with probability 1− ε , sample Ec uniformly, and with probability
ε sample it from an unknown distribution.

Now, if T forwarded (Ea,Eb,Eab) untouched, then we immediately get

2AdvT
IWD = AdvA

IW-DDH−AdvS
CGA-DDH ;

if T forwarded (Ea,Eb,Ec), then we get

2AdvT
IWD ≥ AdvA

IW-DDH− (1− ε)AdvS
CGA-DDH− ε .

Averaging over the two outcomes concludes the proof.

Finally, we define an isogeny-walk analogue of the classic Computational Diffie–
Hellman (CDH) problem for groups. Using the same techniques as above, we can prove
the security of the relevant protocols based only on CGA-CDH and IWD, without the
generalized Riemann hypothesis.

Definition E.10 (Class Group Action CDH (CGA-CDH)). Given Ea = a ·E0 and Eb =

b ·E0 with a,b
R∈ Cl(O), compute the curve Eab = ab ·E0.

Stolbunov proved the security of HHS Diffie–Hellman under the equivalent of
CGA-DDH [Sto10]. Repeating the same steps, we can prove the following theorem.

Theorem E.11. If the CGA-DDH and IWD assumptions hold, assuming GRH, the
key-agreement protocol defined by Algorithms 8 and 9 is session-key secure in the
authenticated-links adversarial model of Canetti and Krawczyk [CK01].

Similarly, we can prove the IND-CPA security of the hashed ElGamal protocol
derived from Algorithm 8 by replicating the techniques of e.g. [Gal12, §20.4.11].

Theorem E.12. Assuming CGA-CDH and IWD, the hashed ElGamal protocol derived
from Algorithms 8 and 9 is IND-CPA secure in the random oracle model.
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Aheuristic discussion of the IWDassumption. From its very definition, the IWD
problem depends on the probability distribution σ we use to sample random walks in
the isogeny graph. In this paragraph, we provide heuristic arguments suggesting that
the IWD instances generated by Algorithm 9 are hard, provided

1. the keyspace size is at least
√
|∆K |, and

2. S is not too small, i.e. the number of isogeny degrees used is in Ω(logq).

Proving rapid mixing of isogeny walks with such parameters seems out of reach
at present, even under number-theoretic hypotheses such as GRH. The best results
available, like [JMV09, Theorem 1.5] (used in the proof of Lemma E.9), typically require
isogeny degrees in Ω((logq)B) for some B > 2, and fully random walks that are not, for
example, skewed towards smaller-degree isogenies.

However, numerical evidence suggests that these theoretical results are too weak.
In [JMV09, p. 7.2], it is asked whether an analogue of the previous theorem would
be true with the sole constraint B > 1. In [GHS02, Section 3], it is mentioned that
many fewer split primes are needed to walk in the isogeny graph than theoretically
expected. Practical evidence also suggests that the rapid mixing properties are not lost
with skewed random walks: such walks are used in [GS13] to accelerate an algorithm
solving Problem E.4. We believe that these experiments can bring some evidence in
favor of relying on the IWD assumptions with more aggressive parameters than those
provided by GRH, although further investigation is required.

Key validation and active security

Modern practice in cryptography mandates the use of stronger security notions than
IND-CPA. From the DLP assumption, it is easy to construct protocols with strong
security against active adversaries. For example, it is well-known that the hashed
ElGamal KEM achieves IND-CCA security in the random oracle model under various
assumptions [ABR01; ABR99; CS03].

All of these constructions crucially rely on key validation: that is, Alice must verify
that the public data sent by Bob defines valid protocol data (e.g., valid elements of a
cyclic group), or abort if this is not the case. Failure to perform key validation may
result in catastrophic attacks, such as small subgroup [LL97], invalid point [BMM00],
and invalid curve attacks [CJ05].

In our context, key validation amounts to verifying that the curve sent by Bob
really is an element of Ellq(OK). Failure to do so exposes Alice to an invalid graph
attack, where Bob forces Alice onto an isogeny class with much smaller discriminant,
or different Elkies primes, and learns something on Alice’s secret.

Fortunately, key validation is relatively easy for protocols based on the CRS primi-
tive. All we need to check is that the received j-invariant corresponds to a curve with
the right order, and with maximal endomorphism ring.

Verifying the curve order. Since we already know the trace t of the Frobenius
endomorphism of all curves in Ellq(O), we only need to check that the given E has
order q+ 1− t. Assuming that E is cyclic, or contains a cyclic group of order larger
than 4

√
q, a very efficient randomized algorithm consists in taking a random point P

and verifying that it has the expected order. This task is easy if the factorization of
q+1− t is known.
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Concretely, the curve given in §E.4 has order

N = 22 ·32 ·5 ·7 ·11 ·132 ·17 ·103 ·523 ·821 ·1174286389 · (432-bit prime) ,

and its group structure is Z/2Z×Z/N
2 Z. To check that a curve is in the same isogeny

class, we repeatedly take random points until we find one of order N/2.

Verifying the endomorphism ring level. The curve order verification proves that
End(E) is contained between Z[π] and OK . We have already seen that there is only a
finite number of possible rings: their indices in OK must divide d where d2 = ∆π/∆K .
Ascending and descending isogenies connect curves with different endomorphism rings,
thus we are left with the problem of verifying that E is on the crater of any `-volcano
for ` | d. Assuming no large prime divides d, this check can be accomplished efficiently
by performing random walks in the volcanoes, as described in [Koh96, §4.2] or [FM02].
Note that if we choose ∆π square-free, then the only possible endomorphism ring is OK ,
and there is nothing to be done.

Concretely, for the curve of §E.4 we have ∆π/∆K = 22, so there are exactly two
possible endomorphism rings. Looking at the action of the Frobenius endomorphism,
we see that End(E) = OK if and only if E[2]' (Z/2Z)2.

Example E.13. Let p and O be as in §E.4. Suppose we are given the value

α = 67746537624003763704733620725115945552778190049699052959500793811735672493775
18737748913882816398715695086623890791069381771311397884649111333755665289025

in Fp. It is claimed that α is in Ellp(O); that is, it is a valid public key for the system
with parameters defined in §E.4. Following the discussion above, to validate α as a
public key, it suffices to exhibit a curve with j-invariant α , full rational 2-torsion, and
a point of order N/2. Using standard formulæ, we find that the two Fp-isomorphism
classes of elliptic curves with j-invariant α are represented by the Montgomery curve
Eα/Fp : y2 = x(x2 +Ax+1) with

A = 41938099794353656685283683753335350833889799939411549418804218343694887415884
66125999279694898695485836446054238175461312078403116671641017301728201394907

and its quadratic twist E ′α . Checking the 2-torsion first, we have Eα [2](Fp) ∼=
E ′α [2](Fp) ∼= (Z/2Z)2, because A2 − 4 is a square in Fp. Trying points on Eα , we
find that (23,

√
23(232 +23A+1)) in Eα(Fp) has exact order N/2. We conclude that

End(Eα) = O , so α is a valid public key. (In fact, Eα is connected to the initial curve by
a single 3-isogeny step.)

Consequences for cryptographic constructions. Since both of the checks above
can be done much more efficiently than evaluating a single isogeny walk, we conclude
that key validation is not only possible, but highly efficient for protocols based on
the CRS construction. This stands in stark contrast to the case of SIDH, where key
validation is known to be problematic [Gal+16], and even conjectured to be as hard as
breaking the system [UJ18].

Thanks to this efficient key validation, we can obtain CCA-secure encryption
from the CRS action without resorting to generic transforms such as Fujisaki–
Okamoto [FO99], unlike the case of SIKE [SIKE; HHK17]. This in turn enables
applications such as non-interactive key exchange, for which no practical post-quantum
scheme was known prior to [Cas+18].
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r 1 3 4 5 7 8 9
time (s) 0.02 0.10 0.15 0.24 0.8 1.15 1.3

Table E.2: Timings for computing scalar multiplications in E(Fpr), the dominant
operation in VéluStep (Algorithm 6), as a function of the extension degree r.

r M` ` r M` ` r M` `
1* 409 3, 5, 7, 11, 13, 17, 103 4 54 1013, 1181 8 7 881
1 409 523, 821, 947, 1723 5 34 31*, 61*, 1321 9 6 37*, 1693
3 81 19*, 661 7 10 29*, 71*, 547

Table E.3: Primes ` amenable to Algorithm 6 (VéluStep) for our candidate isogeny
graph, with corresponding extension degrees r and proposed walk length bounds M`.

E.6 Experimental results

In order to demonstrate that our protocol is usable at standard security levels, we
implemented it in the Julia programming language. This proof of concept also allowed
us to estimate isogeny step costs, which we needed to generate the initial curve in
§E.4. We developed several Julia packages9, built upon the computer algebra package
Nemo [Fie+17]. Experiments were conducted using Julia 0.6 and Nemo 0.7.3 on Linux,
with an Intel Core i7-5600U cpu at 2.60GHz.

Consider the time to compute one step for an ideal s= (`,π−λ ). Using Elkies steps,
this is approximately the cost of finding the roots of the modular polynomial: roughly
0.017 · ` seconds in our implementation. Using Vélu steps, the cost is approximately
that of one scalar multiplication in E(Fqr); timings for the extension degrees r relevant
to our parameters appear in Table E.2.

Using this data, finding efficient walk length bounds M` offering a sufficient
keyspace size is easily seen to be an integer optimization problem. We used the
following heuristic procedure to find a satisfactory solution. Given a time bound T , let
KeySpaceSize(T ) be the keyspace size obtained when each M` is the greatest such
that the total time spent on `-isogenies is less than T . Then, if n is the (classical) security
parameter, we look for the least T such that KeySpaceSize(T )≥ 22n (according to
§E.5), using binary search. While the M` we obtain are most likely not the best possible,
intuitively the outcome is not too far from optimal.

In this way, we obtain a proposal for the walk length bounds M` to be used in
Algorithm 8 along with the curve found in §E.4, to achieve 128-bit classical security.
Table E.3 lists the isogeny degrees amenable to Algorithm 6, each with the correspond-
ing extension degree r (a star denotes that the twisted curve allows us to use both
directions in the isogeny graph, as in Remark E.2). Table E.4 lists other primes for
which we apply Algorithm 5.

Using these parameters, we perform one isogeny walk in approximately 520 seconds.
These timings are worst-case: the number of isogeny steps is taken to be exactly M` for
each `. This is about as fast as Stolbunov’s largest parameter [Sto10], which is for a
prime of 428 bits and a keyspace of only 216 bits.

9The main code is available at https://github.com/defeo/hhs-keyex/, and the additional de-
pendencies at https://github.com/defeo/EllipticCurves.jl/ and https://github.com/defeo/
ClassPolynomials.jl/.

https://github.com/defeo/hhs-keyex/
https://github.com/defeo/EllipticCurves.jl/
https://github.com/defeo/ClassPolynomials.jl/
https://github.com/defeo/ClassPolynomials.jl/
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M` ` M` ` M` `
20 23 6 73 2 157, 163, 167, 191, 193, 197, 223, 229
11 41 5 89 1 241, 251, 257, 277, 283, 293, 307
10 43 4 107, 109, 113 1 317, 349, 359
9 47 3 131, 151

Table E.4: Primes ` amenable to Algorithm 5 (ElkiesWalk) for our candidate isogeny
graph, with proposed walk length bounds M`.

We stress that our implementation is not optimised. General gains in field arith-
metic aside, optimised code could easily beat our proof-of-concept implementation at
critical points of our algorithms, such as the root finding steps in Algorithms 3 and 4.

For comparison, without Algorithm 6 the total isogeny walk time would exceed
2000 seconds. Our ideas thus yield an improvement by a factor of over 4 over the
original protocol. A longer search for efficient public parameters would bring further
improvement.

E.7 Conclusion

We have shown that the Couveignes–Rostovtsev–Stolbunov framework can be improved
to become practical at standard pre- and post-quantum security levels; even more so if
an optimized C implementation is made. The main obstacle to better performance is
the difficulty of generating optimal system parameters: even with a lot of computational
power, we cannot expect to produce ordinary curve parameters that allow us to use
only Vélu steps. In this regard, the CSIDH protocol [Cas+18], which overcomes this
problem using supersingular curves instead of ordinary ones, is promising.

One particularly nice feature of our protocol is its highly efficient key validation,
which opens a lot of cryptographic doors. However, side-channel-resistant implementa-
tions remain an interesting problem for future work.
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