<p>You are given a <strong>0-indexed</strong> array <code>maxHeights</code> of <code>n</code> integers.</p> <p>You are tasked with building <code>n</code> towers in the coordinate line. The <code>i<sup>th</sup></code> tower is built at coordinate <code>i</code> and has a height of <code>heights[i]</code>.</p> <p>A configuration of towers is <strong>beautiful</strong> if the following conditions hold:</p> <ol> <li><code>1 <= heights[i] <= maxHeights[i]</code></li> <li><code>heights</code> is a <strong>mountain</strong> array.</li> </ol> <p>Array <code>heights</code> is a <strong>mountain</strong> if there exists an index <code>i</code> such that:</p> <ul> <li>For all <code>0 < j <= i</code>, <code>heights[j - 1] <= heights[j]</code></li> <li>For all <code>i <= k < n - 1</code>, <code>heights[k + 1] <= heights[k]</code></li> </ul> <p>Return <em>the <strong>maximum possible sum of heights</strong> of a beautiful configuration of towers</em>.</p> <p> </p> <p><strong class="example">Example 1:</strong></p> <pre> <strong>Input:</strong> maxHeights = [5,3,4,1,1] <strong>Output:</strong> 13 <strong>Explanation:</strong> One beautiful configuration with a maximum sum is heights = [5,3,3,1,1]. This configuration is beautiful since: - 1 <= heights[i] <= maxHeights[i] - heights is a mountain of peak i = 0. It can be shown that there exists no other beautiful configuration with a sum of heights greater than 13.</pre> <p><strong class="example">Example 2:</strong></p> <pre> <strong>Input:</strong> maxHeights = [6,5,3,9,2,7] <strong>Output:</strong> 22 <strong>Explanation:</strong> One beautiful configuration with a maximum sum is heights = [3,3,3,9,2,2]. This configuration is beautiful since: - 1 <= heights[i] <= maxHeights[i] - heights is a mountain of peak i = 3. It can be shown that there exists no other beautiful configuration with a sum of heights greater than 22.</pre> <p><strong class="example">Example 3:</strong></p> <pre> <strong>Input:</strong> maxHeights = [3,2,5,5,2,3] <strong>Output:</strong> 18 <strong>Explanation:</strong> One beautiful configuration with a maximum sum is heights = [2,2,5,5,2,2]. This configuration is beautiful since: - 1 <= heights[i] <= maxHeights[i] - heights is a mountain of peak i = 2. Note that, for this configuration, i = 3 can also be considered a peak. It can be shown that there exists no other beautiful configuration with a sum of heights greater than 18. </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= n == maxHeights <= 10<sup>5</sup></code></li> <li><code>1 <= maxHeights[i] <= 10<sup>9</sup></code></li> </ul>