{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction to Python \n", "\n", "### Topic Modelling and Clustering documents " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook is based on [this](https://www.analyticsvidhya.com/blog/2016/08/beginners-guide-to-topic-modeling-in-python/), [this](http://www.brandonrose.org) and [this](http://www.brandonrose.org/top100) posts. [This](https://medium.com/mlreview/topic-modeling-with-scikit-learn-e80d33668730) one added later." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "!pip install -U -q gensim mpld3 python-Levenshtein pyldavis\n", "#!conda install -c conda-forge pyldavis\n", "#!conda update -n base -c defaults conda" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import re\n", "import os\n", "import codecs\n", "import string\n", "import numpy as np\n", "import pandas as pd\n", "import gensim\n", "from gensim.test.utils import common_corpus, common_dictionary, get_tmpfile\n", "\n", "import nltk\n", "from nltk.corpus import stopwords\n", "from nltk.stem.wordnet import WordNetLemmatizer\n", "from nltk.tokenize import word_tokenize\n", "\n", "from bs4 import BeautifulSoup\n", "import matplotlib.pyplot as plt\n", "import matplotlib as mpl\n", "from sklearn import feature_extraction\n", "import mpld3\n", "\n", "import pyLDAvis\n", "import pyLDAvis.gensim_models\n", "\n", "from IPython.display import display, Image\n", "from IPython.core.interactiveshell import InteractiveShell\n", "\n", "%matplotlib inline\n", "#%matplotlib notebook" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/rsouza/environments/default_env/lib/python3.8/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.\n", " and should_run_async(code)\n" ] } ], "source": [ "import warnings\n", "warnings.filterwarnings(\"ignore\", category=DeprecationWarning) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Specifying the path to the files " ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "datapath = \"../Data/Texts/doccluster/\"\n", "outputs = \"../Data/Texts/outputs/\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1 - Clustering documents [example](https://www.oreilly.com/learning/how-do-i-compare-document-similarity-using-python)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's create some documents. " ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of documents: 5\n" ] } ], "source": [ "raw_documents = [\"I'm taking the show on the road.\",\n", " \"My socks are a force multiplier.\",\n", " \"I am the barber who cuts everyone's hair who doesn't cut their own.\",\n", " \"Legend has it that the mind is a mad monkey.\",\n", " \"I make my own fun.\"]\n", "\n", "print(\"Number of documents:\",len(raw_documents))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will use NLTK to tokenize. \n", "A document will now be a list of tokens. " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[nltk_data] Downloading package punkt to /home/rsouza/nltk_data...\n", "[nltk_data] Package punkt is already up-to-date!\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nltk.download('punkt')" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[['i', \"'m\", 'taking', 'the', 'show', 'on', 'the', 'road', '.'], ['my', 'socks', 'are', 'a', 'force', 'multiplier', '.'], ['i', 'am', 'the', 'barber', 'who', 'cuts', 'everyone', \"'s\", 'hair', 'who', 'does', \"n't\", 'cut', 'their', 'own', '.'], ['legend', 'has', 'it', 'that', 'the', 'mind', 'is', 'a', 'mad', 'monkey', '.'], ['i', 'make', 'my', 'own', 'fun', '.']]\n" ] } ], "source": [ "gen_docs = [[w.lower() for w in word_tokenize(text)] for text in raw_documents]\n", "\n", "print(gen_docs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will create a dictionary from a list of documents. \n", "A dictionary maps every word to a number. " ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "show\n", "4\n", "Number of words in dictionary: 36\n", "0 'm\n", "1 .\n", "2 i\n", "3 on\n", "4 road\n", "5 show\n", "6 taking\n", "7 the\n", "8 a\n", "9 are\n", "10 force\n", "11 multiplier\n", "12 my\n", "13 socks\n", "14 's\n", "15 am\n", "16 barber\n", "17 cut\n", "18 cuts\n", "19 does\n", "20 everyone\n", "21 hair\n", "22 n't\n", "23 own\n", "24 their\n", "25 who\n", "26 has\n", "27 is\n", "28 it\n", "29 legend\n", "30 mad\n", "31 mind\n", "32 monkey\n", "33 that\n", "34 fun\n", "35 make\n" ] } ], "source": [ "dictionary = gensim.corpora.Dictionary(gen_docs)\n", "print(dictionary[5])\n", "print(dictionary.token2id['road'])\n", "print(\"Number of words in dictionary:\",len(dictionary))\n", "for i in range(len(dictionary)):\n", " print(i, dictionary[i])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we will create a corpus. A corpus is a list of bags of words. \n", "A bag-of-words representation for a document just lists the number of times each word occurs in the document. " ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 2)]\n", "[(1, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1)]\n", "[(1, 1), (2, 1), (7, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), (20, 1), (21, 1), (22, 1), (23, 1), (24, 1), (25, 2)]\n", "[(1, 1), (7, 1), (8, 1), (26, 1), (27, 1), (28, 1), (29, 1), (30, 1), (31, 1), (32, 1), (33, 1)]\n", "[(1, 1), (2, 1), (12, 1), (23, 1), (34, 1), (35, 1)]\n" ] } ], "source": [ "corpus = [dictionary.doc2bow(gen_doc) for gen_doc in gen_docs]\n", "for d in corpus:\n", " print(d)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we create a tf-idf model from the corpus." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TfidfModel(num_docs=5, num_nnz=47)\n", "47\n" ] } ], "source": [ "tf_idf = gensim.models.TfidfModel(corpus)\n", "print(tf_idf)\n", "s = 0\n", "for i in corpus:\n", " s += len(i)\n", "print(s)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(0, 0.4262583060688039), (2, 0.13529174589513532), (3, 0.4262583060688039), (4, 0.4262583060688039), (5, 0.4262583060688039), (6, 0.4262583060688039), (7, 0.27058349179027064)]\n", "[(8, 0.2640668814624488), (9, 0.46382576584030827), (10, 0.46382576584030827), (11, 0.46382576584030827), (12, 0.2640668814624488), (13, 0.46382576584030827)]\n", "[(2, 0.08327819508571149), (7, 0.08327819508571149), (14, 0.2623812867136573), (15, 0.2623812867136573), (16, 0.2623812867136573), (17, 0.2623812867136573), (18, 0.2623812867136573), (19, 0.2623812867136573), (20, 0.2623812867136573), (21, 0.2623812867136573), (22, 0.2623812867136573), (23, 0.1493798172489513), (24, 0.2623812867136573), (25, 0.5247625734273146)]\n", "[(7, 0.10934952319763026), (8, 0.19614512267839235), (26, 0.3445231800303735), (27, 0.3445231800303735), (28, 0.3445231800303735), (29, 0.3445231800303735), (30, 0.3445231800303735), (31, 0.3445231800303735), (32, 0.3445231800303735), (33, 0.3445231800303735)]\n", "[(2, 0.19143057263818053), (12, 0.3433775663260005), (23, 0.3433775663260005), (34, 0.603132667722237), (35, 0.603132667722237)]\n" ] } ], "source": [ "for d in tf_idf[corpus]:\n", " print(d)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Similarity index with 5 documents in 0 shards (stored under /tmp/tmpx5j05j0x/index)\n", "\n" ] } ], "source": [ "index_tmpfile = get_tmpfile(\"index\")\n", "sims = gensim.similarities.Similarity(index_tmpfile,tf_idf[corpus],num_features=len(dictionary))\n", "print(sims)\n", "print(type(sims))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now create a query document and convert it to tf-idf. " ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['socks', 'are', 'a', 'force', 'for', 'good', '.']\n", "[(1, 1), (8, 1), (9, 1), (10, 1), (13, 1)]\n", "[(8, 0.31226270667960454), (9, 0.5484803253891997), (10, 0.5484803253891997), (13, 0.5484803253891997)]\n" ] } ], "source": [ "query_doc = [w.lower() for w in word_tokenize(\"Socks are a force for good.\")]\n", "print(query_doc)\n", "query_doc_bow = dictionary.doc2bow(query_doc)\n", "print(query_doc_bow)\n", "\n", "query_doc_tf_idf = tf_idf[query_doc_bow]\n", "print(query_doc_tf_idf)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We show an array of document similarities to query. \n", "We see that the second document is the most similar with the overlapping of socks and force." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0. , 0.84565616, 0. , 0.06124881, 0. ],\n", " dtype=float32)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sims[query_doc_tf_idf]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2 - [Topic Modeling Example](http://www.cs.columbia.edu/~blei/topicmodeling.html) \n", "\n", "Analytics Industry is all about obtaining the “Information” from the data. With the growing amount of data in recent years, that too mostly unstructured, it’s difficult to obtain the relevant and desired information. But, technology has developed some powerful methods which can be used to mine through the data and fetch the information that we are looking for. \n", "\n", "One such technique in the field of text mining is Topic Modelling. As the name suggests, it is a process to automatically identify topics present in a text object and to derive hidden patterns exhibited by a text corpus. Thus, assisting better decision making. \n", "\n", "Topic Modelling is different from rule-based text mining approaches that use regular expressions or dictionary based keyword searching techniques. It is an unsupervised approach used for finding and observing the bunch of words (called “topics”) in large clusters of texts.\n", "\n", "\n", "\n", "Topics can be defined as “a repeating pattern of co-occurring terms in a corpus”. A good topic model should result in – “health”, “doctor”, “patient”, “hospital” for a topic – Healthcare, and “farm”, “crops”, “wheat” for a topic – “Farming”. \n", "\n", "Topic Models are very useful for the purpose for document clustering, organizing large blocks of textual data, information retrieval from unstructured text and feature selection. For Example – New York Times are using topic models to boost their user – article recommendation engines. Various professionals are using topic models for recruitment industries where they aim to extract latent features of job descriptions and map them to right candidates. They are being used to organize large datasets of emails, customer reviews, and user social media profiles. " ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfoAAAEQCAIAAADXqCH6AAFJq0lEQVR42uydB1wVV9PGk/dL8iZvemKsVAFBozGx99577w2xF+y9K/aKWAERe6epiAIqig07RaWDFKX3Lvr9d4/cEDVWMGh2ftfrsnf37O7Z3WfmzDwz55MniiiiiCKK/AvkE6ULFFFEEUUUuFdEEUUUUeTjhfv79++7uLicUEQRRRRR5AORU6dOBQcHvzHcnz59Wuk7RRRRRJEPDvHfGO6VXlNEEUUU+RDl7eFecXUpoogiihR9UeBeEUUUKUjx9vJau27duvXrt5ibm5qZrVmz5tDhw6/c5ciRI//I2T5+/JjvK1euOB4//t4OevLkSX9/fwXuFVFEkQ9bjjo4tG3fns9nX3zRpFmztm3bmixe/AoYcnRc8qptCkNu37rVvXv3tNTUA/v3m61f/34OmpWZWa16dS5ZgXtFFFHkYxAvT89KlSolJyez/Cgn54STk529fdj9+/wZGhrqfv788BEjKv/++xHZ8Pfx8UlISMjJyWFUUKly5dq1a7OBqqng4CB3d/eJEyaw/fbt26XRgLc3u8AMTE9Li46OPn78+LHjx6OjosRP58+f79OnT81atVydXUQLHleu2NraXvXwkNA2K8vDw4PTc3NzmzVrlr6Bwb1797y8vFJTUvg1MDDQ1s7O2dk5LS2NP8eOHTtx4sQatWrVqVv35o0brImMjORCwL34+Pj81xseHm7v4MBRBO/l4sWL3Xv06Nu3b4VffzVZtIg1MTExPXv2LF+hQo8ePWrUrEknKHCviCKKfAyyaePG+vXrY8lGhIcPGjjQyspqw4YNjRs1AvGHDR/+66+/HjhwYPjw4Qblywf4+QOmJ52cVixfjoYAMTt36tymXVtVUyNGjNDX19+5c+eE8eP19PTi4+KatWiho6PTvkMHe1vbYUOGHDxwYOmyZS1btkxMTGzatCnHPXz4cOdOnZo0aZyTnb108eKZM2ceO3q0SZMmBw8eDAoM/OGnH2vUqDFu3LgWLVoMGTIEHK9cuTKWPv4cI0NDBweHoUOHAvQx0TFldXQ6dux49OjRqtWqLVq0iG2GDRvq7OIycuTIwYaGqjO8d/dui+bNt2+3Nt+6tXbtWrGxMQsXLvzmu++2bNmyyMREQ1MTJdGqVatuXbva2dlV+u23+g0a5ObmKnCviCKKfPCCQxzEBE9ZHjBgAO57FjIzMmrWrLV3z57mzZrhPGHNrVs3f/vtN4C+dp3aGODaZcticbM+IT4eZ7poKiMjo2GjRjusrVm+fu1axYoVz7u5ldPX37d3L6OBpk2a2NrY8FNyUhKa47Sra5WqVS9dvMgaDtSwUUM2a9OmTXZ2Nmuw5Q0HDdq5Ywdb3peN62bNmjmdOHHr5s269er63rvHqOLunbusdzt7tmrVqmgI1E9kRIS4ij179ixfvlxTS+vQwYNoiEuXLqmuNyIiAlWBO57rYhcUEia8cE9xIagZC/OtFSpUSEpMlE5j5kx0zD9yXxS4V0QRRQpYMtLTa9Wqtd3KCtMeb4afry8rHz54AIbi2W/QoEGiDHz4rzt16oTBCyLv37eveo3qIDjro6KicLmIpnB6gMJxcXEsOzo6dujQwdXFhcbZ4IqHx68VKwqvy7WrV9kMIJbAXd53zerVjB769eu7fNky0dTAgQMZQEydMmXq1KnSUR4+xDsUGxtraWnZr2/f3bt2tWjRXGy5Z8/u9u3bc/4cjj852zp16qCWLrhfGDhggF65choaGvZ2dmJj7HSUSp/evYcaGTF8IVbBKdXCH+Xuzq+rV61iHDBmzJgRI0eK7YcYGe3evfvfDvdo6QEDBw4ZNmz0mDGGRkaoU6tt216+y6FDh7a9ahtFipqEh4UZjx8/aPBgPiNHjXJychLsiPcpmZmZIMj7P+6/RB48eIAB7h8QAOVGV1dXwP2KFSuwah3s7cuVK4edC7IDkbh05s+bP2b0aOxiQDz3Ue6DyMhGjRp53r4tmjp79ixWP95/ZJChIb57MzOzPn168xPpQtjpj2UZOWLE0qVLrbdvxy/ETzHR0cDuyRNOoDYQ/0SOJQDZd+/cad6ihRgQYI9Xq1Y1Pj5u6JCh+F5Wr1rdqmVL1hO5BeX37ds3bdo0Agas8fXzq1at2pkzZ9AouKdwENWvV2/L5s3iDAMDArDcUUuMIQYPHjxv3lzMfBSJGECgcjZu3DhnzpzRo0cLtw+OrBvXr//b4R7VPWPGjL79+n373XcTJk7E3QZd6QWGQ0ZGUlKSWHZ1dRXbPM7NJdSTKut5RYq47Nm9u0SpUtOmT581Zw7v1c/FfrkhB8GeF95wbit3/IW/pqen84LxMLDAnyykpqaqfiVIyL5imc0wBtkMM01A/J7de3p0767AfSEJJnyt2rW4HfQw1nTv3n0g5xiPGYMaWLlypZa29vjx40HSdWvXsnG/fv3wk2AR9+/XzxiX+ZgxNvlImSYmi4D7KVOmTJ48ebGJCVBraGiIT1zccQx2dgE3OAr3F7TF2zNv/vxRI0daWlgImMJ3tGzZMvQBWIFnpkHDhoIEibVOy7t27uzcuTNIEi1piDYz5aYwyR89etStazdM/idyBQGUB+0bGg4CvufOnTtz+vQUOQqN3Llzp1jx4kOGDm3Ttu2n//nPgAH9GbW0a9cOFcVFMdrgT38/P3TJ4sWLZ0yfjkNJDFYUZ47kcWNAJJZ9797dtHnzWtN1dBZ/Ei7HhdesefNSpUvxQHA/4PPGxcYGBwV369atlJoaQXYGUGAEv5qamu7fv181JFSk6AiWDqSFp388fkxgDTOKRfyhmzdvxhTCApLeIh+flq1alSxdulr1asFBQdeuXeMBYD2v5Y4dO3hhevfp06Z1az0DA2htoARRNUbZQnNYWFjo6un9UqIEGMFzsmnTJiy72nXqFPvlF4b2tIyJV69+/dCQEN5/c+jh69dfzueKVeQdBWQEi4U2xRQjUBkWHv5YDk726NkTlGfNw4cPxcZsKXw4aOWwsLBnGC9wbLZu3frC7YVBwC6RDx6IP+vVqwc0cyxcNKoWaBDTO0Um3vAwqIxFltkMncQaETjltCkFBoVGbCDIQsLEFBQj/oSBg6c+f6AVWOeBHDV6tIW5+a5du1atWkUgQRyOzbAwROSAFmgcBfCPBGmLKNwbGxujJ1kgTtK1a1coU0AAsRqcgIz1UJWwptiGVxdQwC1IrLxd+/YwnAICAgB9RkzoZ5Qzv9ZvUN/G5ojy7hUp4dGHQcG4W7UG22r69OkSKWLwYKhyIDUKAPoEtxsOHLcb1pq5hYXxOGOsKrY/c/o0jlEgm6DZ6DGjIeTBfKARP0bc1atbmFvA0yBchnpwdXEtU0bt/LlzvXr1qlKlytWrVxcsWMCTw0ifsfmWrVuwyyBLsB6vIFQNFIlygwpViGHS8yIe+zqCMcdjAIK/zsY4an7//fegoEClnz8MuCfCA0YzUoNOW7duHWFw8XLy9gIHvJB3ZbuPYHrjJk04dNNmzRiRYdSLgVVGZib+sj+qVGnatAnDw3PnzqmG84oUnRee8JpzXpEmbCvuF7EyvKJXLl+WjPeoKJhq4HL16tUz8rw03NaGDRuKMT4bDxo0yMfbG1IHZhRG0++VKwfIw/OGDRpw0+vWq0dY7IiNDaYWvl3UA6Y9HG02wJAH+hkZVKlaBUYgD9U3336LUjl+7BjQr4wFC1twxQQFBals89cxDtieQMvrbIzPHc47NrvSzx8G3KPMy8nj8bNnzsCEjZNHZBcvXmCMRjoGJFnxoDBcmjRx0tIlS4jwLJg/v0uXLmJ3zLTr168TJR882LB8+fLAwYO8UZ4iRUQwxlHewtuOQMeuWbPm/n17q9eo8fS5cnQkUgdpGhQWL/wVjysM2KtXrxYlD+ehRqxevQqnKlE4/sRUxA7gwfD19RXEDyB+/4ED586fh7lx6/Ztgn7EzcSTAAEcUiBDRhQAu6ADtm7ZQvygVKlSDAqVu6OIAvfvD+4haRDj5j0E7g0MDKBwoLFhsGKmkW7HeJzMN4b5xF7InSP7GUOPvAbyF7AaoHOxftjQofCcnshR3Hp166r8dIoUEdlgZgYz4fSZM8Dx7Fmz8MOAudxusg2x5XGzwsyDpgY3GWoWtxXmVa+ePRnDcfdx9MO8Ll269I3rN6B1z549mwZJWewhRwIOHzqEnoAKUrHirzhwWLN27RpcQ6j/xo0bQ/rGeMdNdOHChfWmphCucQ8S1rsucyRgjEyTyXmKfHASEBgYEhKi9MOHB/cwLwFrhmPERghhk31HqA32KzEfOFiQn8aNHz929GicPIzviOGQpkHoA04rCR0E6P38fDED+/bpw74TJ07wyMvUUKToCGqbiEv5X3/Vr1ABzIXc9kQOkU2fNo3kSdga5jLpAo52//79xxkboxJgYePn+e6HH/Dn9O/Xv2OHjniESGsUkVvYDoKnwUBh5qxZLDAQxGMzafIkBn+w+kirmTdv3hOZAMpAkKgdnnoy7M+5ucELIHJI5GDZkiUitqbIBydE/rn1hX2UBQsXfgTB/CKdZpUtk21ZSExIwJOLw5eh/dNw/18pdM94XV/T2adIkRJu7jOOV9VthcxA0RXrHTtiXi+ayvZZWdmvvaXisi9ajwHxeYbvIhXriZwx6+npiV9ecFrg7PNrYFCQwIEIOeuVvYj/d+na1XTdOhKgiAlhB8Dy6tGrF1lV/An3H8XANj1792YDqJnQw2D9P5FbgUTPvjDEsCRoCho+NJvuvXphbuIhuHnzJtkDgpRJPN/TywuzUoH7whIsskaNG8fmEaQUUUSRj1KAeAhagCwVCFq2bMHgjJg8lHt8tq1btwaUocyPGzsWHx1/rlq5EqyHjgWfEjo8gz8Y96XLlCGoA7/2+x9+gNAB3x8+7r49e6Blf/7FFxMmTGjbrt3XX38NQ79X796EkWB5MIKE/bVkyZLfKv+GVwB6LvtCoqe1H3/6iRI6GzZu1NbWtrGxoUjDpAkTIIYSTcRJqMB9oQhaXRXcU0QRRT5WAWoxqwF9aLWwLfgmSNOqdSuoWRcvXCATEydeg/r1QXNctdRBI0kKcjbEKpJ4RSSfDaiRcOrkyYqVKibIFH5K1sDqJjODfC7+3LB+fZPGTZ7IWbWkX7icciaAREQHK578XtKjIPIS20+USX3kZMH14igiPkQQiGg/wwuijMSTFLhXRBFFFHlLIZ1i/Lhx/fv2BdMpdgZTgxqWlX/7jTTs5s2bk1sD4letUqV4iRIEfsiHouoZEfv58+fDzRUtUKAG1gb5t4MMBwnfy+9//IHvhfRM6jewhtHDcrmswqrVqwkXsUwqwLLly/ksWbyEWVYg+4mCBxKr+48/cC0MGzaMZGDSqeCGGOjrFy9ZkuDQhxjsUeBeEUUUKRJCCgV0DHwmmM/Lli4dOHAAuXJE7Amu4KyHu0WtY4x9dADOfZzpkG5xyOzduweLfrrMo416GFWzJtk5d9gLaGYN7hfoWGRgUcEYqi5RPQz2Y8eO8VPv3r3haFGeQVWf0vGEI8GhXr164/QX+5J6jZlPfg82PgV5IBTAH2MoAHMXSrEC94oooogibyNQp0qUKLF6zRpiql9+9VXvPr1hXZOWQUGU1atXY/WTQkE6Hn9SJQ3kJbeO7BzKjUms63r14O9Srb56zRp4hEjjcHaWUvlIs+jXv78oaIwW4Seo3owhIOaSggugk+VD9Xn4vrRvZGREjQQUg4tM+tq4aSPp+ljxZPDA8qKuMo3g2EEVEVqgDpMC94oooogibyPwssidpMoFJjzcWSx3LGvwF7bu5cuXRfSOsjNnzp7Fvs6WBcYOpG0SpLHcL166RLiVCmvQ+bw8vURh5HBZCAaIhHxWMnFV7iNJbt++LbbBXcMhyMDIlYU2BbUPF5CYc4rBxK1bt1iA3kNFB9I5P9AeVuBeEUUU+bBdQI0aNtxqbm5vb9+9Wzfy7JQ+ea9wDxlW6EnULNz57CIuMrsfhS+dsVIRVxFFPjQB4vft30+VpPAPkw7/ocI9QA90MrzC4QWhFSIUlFiiH0X5wxlynsly2XQ8eqpMLkUUUUQRBe7/ds8cuaI/ABrg77d3935Li53mW623bLYqyp+tW6y3Wey0ttprc9iGSE5qapqoT62IIoooosD9i/fEKMauJ/eVmqW2Nkd79VTbukHbbK222bqi/ZHPcON6rV7dDY4ddaA67j87BYEiiiiiSFGHe4LdhE2YeMjj8mUzU4tVy4s/eaz2KO3D+DzJLmMyr9J2K2vOH9/O65fkVkQRRRT598F9Tk5cTIy3p+dJR8f5c5ctXVzicYZ6atyH8clKVps/u+L6dWZMj0U5xmylbJYiiiiiwP3f7YlFTNmKa1c8jhw8NGH8zKUmxd8/3GclqafFq2Ul8/3s+vQEtcykp+tZYJv8G2QD97Mqrli64vLFS8T3lZqaiiiiiAL3f7snuc6ULrp84eLeXbtGDp+4JA/us1MAU+kbqOUbnBVQmyMvi/Vi5TMQ/KYfQHzfTj0jw5Lz52glPNRSIT7rbQ+WZf2sadqx4dqP09W3btQeMlgtKVpTtQ1wP2/Wr4sWmJx3OxcaHFwYFdmIB+DvypGZqfRVVmam8lE+/5IPkvE3kpm3Ae9EHi86h/dEzoV6JCjdj2VR8LpowT0zBLmfO7fTavtQo7FLTH4B7tMT1Nev0TIcVGL4kDJ+XprbzcsONyp5YI92apzGtMlao0eqz5iqnvhQZ9/OssOHFrc218tI1Hg7rAe44yI1unfVsj2gO6CvvquTNopErE94qN63l/6BXbpDDXWdHNQig8u2aaXLJ/6hxp9wnyLB/fw5C864nsZ9X7Bwz/PKc0wEGHoqiYJEsxkG4TJSPsrn3/ChjjGG4NPPc8KvbMMbwTTFvBpxsXEUnSd+Rs2D5ETqVCalJKcwjR3zV6MxMoV6yMpSKQMFxP8ZuOc2kM2MdbzDymrI4DHA/ZNMtYggrY7tNSw2lh89Qt/PW7t1y7K7tmk1b6bh76PWtZPeJbdygweWO3qkfPt2mvt3q7duqX7rim5GotpbwD2+Gj9P3X69Nfv2UuvauYLd4dKPUtUzEiV9Ex2m1q+3brfOWkaDNKy26K5aWm6LmZ7hgPKJUc/D/fwzrq5U6qAMU0F1MVYJTydBbB7ondbWE8YZT6We98QJFM5WPsrnX/WZMG4cZc7EZ8qkSbNmzJg1Yzrfs2fymTlj2rSJ48fxmTJp4sIFC6hquXL5in379tvb2VPQmNnHrl654nnrVnBgEOkyIleG95TxAYMDzCkxCFAw/Z+De8mZozF8aNnePdVcHMv6eWs1bKi12az4np2/RASpDR5YITxIe8LY8of2GjRvrr7ZrNiu7SVC/coC0G9n3T8M0ezZXSMmTG/SOIPj9pq4hoJ91ZOiNeIeqPfpqR/mr7tors761WU7dyo1asTPFSuWunxOGz9PYcM9NghGPXYNuX8jhw2j9Db1+SjSpHyUz7/qc9fHx8vT87SLi6v8oTzZmdOn5Y+0cPb0aacTJw4dPHj40MGdO3dSFGH2nDlUM2Ymama7ZHYRyiC3ad3KaNCgCRPGTxg/fu6c2Wam66hpfM3DA+8rg2YGAYwAgH7eOAX3/xm4T4lV79xJY8zIn5cvKennrbNwjt7E8SV27ygTdV9jzCiDsEDt6ZPL37isY7pad+qk0pZbiiXHPBtlfSPf/cql5QwHqI0Yov0wVCs6TLt3Dy2f6zp4dTas0x3Yv8xQQ50QX+2k6DLXLqr176PLObwH6x7TniEqj/tpZ2ce1sDAQOWxU0SR13eE8gZR/BJNwBzUQ42MqE6MmY+GYBbiRYsWMbnVyBHD+cnKctu1q1cpiIbnJ0OeiV7B/fcL91nqAd46bVuXPWGv3aFdOZcTmjBkAu+WDvZVQw3ERmiIbyCeQUDQvTJBd8uw5q1DtWB3SqxG4N0ycZGSG4emou6rC/3Bh/ZjwtUzEp6qk5jwvwQJCg/u8TZGhIUxufbhAwd69+jBBD3KY6eIIm8nBAKoO085Ymoaq2CHeU4YGVDreOSIEaNGjaSKPfoA3ykRuAylLMp79N2rJ0ZpbjTVmDX9Z2tLbbAYqAVwhbsmPf4pRovv9Lz17/KR2k/8sx3VwjPrxeHeD9wzwAwJCnY7fXq75bYuHTv6+ytwr4gi7ySUJp48aRLTHD5vWjHjFRPbUrx+5PDh2yws7/rcSRLlsBQnT2HDPcwcgPVRGh+N3PS399K8kT8nKUYNZH/mWKxPjlETGiUxSvqovPaFDfepqamB/v4uJ09u3rixfdu2zK2svK6KKPKOAnbPnT173949f/crBe7XrF5taGg4a+YMIr3QfgToS+Vv/618nkKHezlhVcpZnTi+lM8Nndx0CXPz8+ufT4l6F6zfYak3eFCpWdO04h78hXd/YHdZ1k+dqB3/QHun1S+jR/y8YokuHqT3APfEaf18/U46njBbt65t61YK3CuiSMG8WcnJw4cNxZx/yTbx8fGOx4+NHTsGLtD+vfuYflYi86SnA/r/Qkv/PcC9huUm/ZVLytesUebMyfLDh2oNNSo5Z4ZmSoz2wT0aUyb8NH2KZnykNqmw7+7GIQwA7/7IXnj3Bs4n/sK779NLf98OiXfvcFidiMKDEO0uHfUehqqpXDqFBPc8UlAwfe/dc3J0VOBeEUUKVi5ccJ8/b97rbMl0VLNnzTQcOIhBdmBAgAjn/ttAv5B99zlql93KDeynFhWm1aF9qeO2Fbp10b3lUbZLJ92wQLW4CK3TTmVaNS977WJZzP93hHuZd68H735Qf/XuXSTefW6qZNerePewdIYYaphv0HnySP3SOc0pEwxELOG9wn2rV8M93Xjo8OGZM2dOnznz6NGjWa9dvYctbWxtz7u751/JVJw7du5MffPL8fL23rFjR2REpGrNzZs3Tzg5ibGwi4vLmrVrQ0JCnt+ROeQcT5x4yXiZzBo7e3tO9fCRIyzc9vQskK6+cuUKrT1d9vBYuHAh01UfPXbs3ctZZ8gRPxaYA+/0mTMEBp/ZgBn14A5yt5+5j0CMmDMPiY2LpQMTEhIK72UOCQ0J++v8Hvg0eN6io6M/VvziMZvGpLUvNfDzC0C/dPHiIYMNV65Y7uPtzfhAxHL/Je6dQof7s6fKGRmWwWMD293hcIWRwwyi7mv17aUXfE9t3JjyUyZqN2uq5XFB+93hHuCOCtXs2U0zJqzcRGODEw5aWUkavp6Y9hrxMu/+vr/u3Bl6NgfUQvx1Zk4zCPXXzO++LyJwD5gOHTbsk08+KV6q1C8lS7LQtXt3Ugtf51hAia6+/uAhRvlXWm7bVqd+ffgMb3rmi5cu5ehHjhxRrVlkYtKsRQsJxW7f/uK//y1RujTzdj6/Y6MmTX78+eeXaClbO7tP/vOf//7vfz//8suX//vf5198sXbdunfsZ2YTrVKtmjifdaamn//3v7RfrHhxLqFT5y4omHdpvP/AgaPHjmHh+o0bOuXKofOe2SA2Lq5+w4YmixfnX8nsqd/9+MO3339/4+ZN/rSwtOBk9h84UHjA16NXL8PBg6Vjbds2aPBgXNVEKWvVqb1s+fKPGMLsbG23bN78RruQBGO6dm2f3r1XLFvm7SWBPn31byDwFLozB2bO4vnllplUaN1SzdXJYNrkcjDix47SvR+gPmOKzuiRZVq20L55BWguGN/9+tXlBvQtM2akdky4xLvv00vi3eekqptv0unft8zIYWUjg3SNR2v26/PTmpU/4+QpatY90yJ//uWXVatXT0xKTEhMBLmAQmFa3rx1C0ABc2/KsyQLM3nzpk0zZs48ftyRA/Ful69YUcA9EMMQAcelt7f33r37aIHjOhx1ABBpcNeuXcLep7j/7t27d+7e7ebmtnv3nuTkFNWZLFuxAniytbVVrTl37jzbYOFyGvw0e/Ycdmc9tvzs2bPNzMyioiQr0mq7tb5BeezKsPAwVvKTvb0d1/Ln+2lv/5/PP1+wcCGm6KVLl4qXLKmnry+munRxdYVOx6giQgbo0Pv3HY4evXfPl83E9fKT6fr1165dz99pvKgdOnYiZ5Nld/cLX/3vf9Vr1rwqU7CXLlvWuHGTu/fuCducKe5Wr1njdu6cuDU+5P7cvcu01zY2NsHBwSpvr52t3c5duwRl9n5YWFk9vcq//44JD6zv27+PBcnkz8hgPmvg20++oYwnUHLuFy6ozordfylRgo7q1r07f27fvp3lAwcPCqV+6dJl5la95+ur2p4b5OjoSAbeUxUSG3vy5Cner1i5k+XLf3D8+HHGVVFRUaqnhRskpu0GqZi979QpZ5YHDhr0w08/oQJ5JW3s7FQPTEBg4Fk3N998B+Xymenb3z+A+/WBQhi9MXHChKw3L2GLDWRquq5Pr17Lly2TLP2UlI+eqv8+mDm476PDpNRWKPAgLNgqvpOi1SOCJY78u3Dtn7PxNcKDykC8wYdDs9j1fAvaJcfiuOnxGtHhlHYoExb4F45/EYF7Xr9vf/ied3Xi5MkAxK28F9XZxQXsaNGyVeu2bYuXKIHjIik5uUat2uXLl+/Xv/+PxYotW7EcAKpQqRKm6LFjx4oVKzZs+HAe3xUrV5YoVRoIW29m9sl/PtXR02MEAO5YWFoCOh06dfr2u+8aNW6MEfq/b7/1yzcofh7ux40fX6lyZU6pdt26n/7nP1WqVr1w8QLNfv/jj7169/n9jz/q1qsPSK1Zs3b+ggWMSCr/8Ye+gUGfvn3V1TUOHTr0J9w72P/fF1+MHjOGi2LwUaJkSaMhQ1hvbm7+1TffdO/Zs3Llyr9XqUK/7dmz9/8++wwYbdy0CQP2Sr//Xv7XX1u0avlTsWJ2dnaqBq96XKXHGHOwPHfePE77YL7DieKmDH1atm6tpa3drkP7n375ZfOWLbzYderVY0c1DY3PPv+8Wo0aqECms6xRq5aunl6NmjXLqKmdPes2Z+5chjKMQgYbGQGsP/z887Hjx2mzS9du//3qqzLq6j/99DP2Pje6QcOGbPMM3H/1v6/Z/ZSz8569ezgx+oEqeYZGRj/+9FPFSpWK/fILqlfWkdtZw3V9/8MP6DPcMhV/+027rLaOrm6l335jviDUQNmyOpw/Z1WtZk0wztzC4udixQwqlKd/pk6bhs6rW7/+hIkT9+7d+93336NQGXB4eXn99vvvixabcAjuFIcro6bOXsuXL0e/Ll269JfixUuVKfPjTz9v3LTpA4UwLnzK5MmUoHq73SnXY7puXe9evVYuX+7v5/c0P+sj9e28D2aOyHJK+yvLXkV+L1h25jNt5l+QWJh/z/EvInDP9hs2bixTRg1o+OT//u+LL7/s2LkTYN2yVSteSyw7gANQGD1mtJVsLW7avPnatWuNmzQuWaYM+FKlenUAnXe4eo0aHJcGl69YgV8IFGagAMg6OTndQaN8/z0Z6hh9n3z66TrT9dw4xv78+kq4L2dggPHIuEHy89gcYTSAbY4Sun79Ou2z0tLK6s6duygSTy8vPDYgDu6gy1c8svI50O0dHBjB4Gz57scfP/vvf0HbS5cl4x0nvi0G7717Aw0NaYqOwhhnYfKUKWD9IpPFNMj5kJ9sUL58jZq1VAbpho0bihX/RbjUAVwuClxmec7ceY2bNGnbrp2VtfWhQ9I5A5F+fr6t27ThtBkrMIriExERgQPt+59+Cg8LX7JkKX1OJwcEBqGrOP+kxKTf/vijQaOGVLhjkPHV11+fPHXquKMjra1Ztw4tYmpqKsIPRsOGAbgqM5PbQZs9e/dGO9aqU3f9+vWcGCOb8+fPs4C+AbI7dOyoraPD8IV71LptG+qJWe/YyQhg5JjRuPIAa9Q/2D1i5Mjl8u1AE3DXGIqBSn9UrcoZnkUjnTtH/3Bc3FkoEpTWgIEDS5Qqhf7Da6+hpYX2jXzwAMU2fMSIhw+jpk6d+uVXX9GIVtmy9erX9/T0YpzxQWf/mZmtv3Tx4ru0AOivW7umX58+5lu2RMj1z7NlS1+B+zeG+3f8YJIzDnjNjWHcx0WqpT6XRSXWY86zXiTcPrNj0QnVIrhleKvxMDRt1pyXfNfu3XhpMBV79OzZuWvXNm3a4NIZN2ECqNG+Qwec+3wDK0QCa9Suzcqvv/0Wq1O8wMAEmgCFARxjO+O+AAIwb7GCTzm70LjTyZNstmDhIgnu852bgHtixfnhHuMaWJGc7598gmMBtwCo/Vvlypjknbt0admy5Q4pYvk0boy7BuP0i6++UlNXB2efcebMmz8/OCQESPq9yh9oERTS+fPu9erVq1mrFq4YkJ3z37tv3/99/jn6jL0YxPz3yy9bcfHt2jVs3Lh3375Cn8nXuBz4pgWWsXNVp43i7NGjB3+OHjvWZLHJfz77rEnzZm07dGjSvHmrtm3pCvCxW48ebLlk6VLM9tDQUDqTWELDJk2IQPArY6mY2Fis6abNm7GZBPfffIMtv2z5CsY3z0QIR4weXatunfxw/90PP4wxNkZJf/n1179WqsRVo+qkYdann2K8V61erZyBPl26adNmBgpW261UTaE2vv7m22o1JG2kpqbWvWcPMF1f3wBlU0pNjcEQBVW5oQwF0Nzl9PWxzVHDbDxI9t2PnzBBTVMzURZNbe2FixY5Ozt/+n//p1uuHKMWXG1c44EDB0eNHs3Cz78UZ1zi+CoIKMqyb8+e7du2vXs7uHfWr1vXr2/fbZaW+PdVpTc/GvfO+4B7OSKqpppXJCVWLTPxKQSzLIxx1XpitieP6i1drC68+fzkcET7locGG8jbSBlSL/HdW2zSMxpUesoErZiIv/Dud1npDB5UesLYsrERWhfO6LZornnWWTd/fLiIwD2md7du3TZt3hIjy+DBRqAVxibvPx5kUkUwnLds3YozB2IMP1FgisfR2dnF3NwCYKpYuTLGLA568AUHLg3izHkK9+vWff3ddwA0zzRwj3XPmQCgAwYNwtDDDwMuP2/dr1ix0sPDg8PRAo4CAfeQaviJSEBcfDxtDjI05KzQIoBmQECgKm6M6xnv+eUrV7ArMcZVLbM7wLd23VoQipPBeQLYcQhcK3xA7bHGxvhwQoKD8UughC7KjvsxY8eixvBWp6WnHz1+nEZUbAobG9tvvv8+MDCIZag4AHHrNm3B7qce808/nTBp0uYtW2kTXg0HhbyEBmVogrupV+/eIgr9w08/E0vAOgajsam53uOy0L2Vq1Sp37CBgHtcXvigcIVJmtJJ0pRoWcYHLHTs3Llnr14qaADuweIhw4ez3KdfP7b/9LPPCEXgvwJkMagZXly+dBmvFP1PbJkgh3DZo0XQZ79Wknw4FA5mQHPx4sWkpGT8Oe7u7nQOTW3YsIHdMf8dHBxq167NOInlmrVrD5bdYmxTWl0do0HAPbEWN7dzdMvKVasp2YSKPXDgADeI6718+QqqQkNTU11TU6U+PzhxO3Nm7ZrVBdUaUZxFCxcaDhq0f+9eRmCqcpsK3L8a7kHzxQs0+/Qq2a9PmXueWuvX6BgNKmVlXjY5VmPkMK2hgzXHjlKPDde12Mj0IyU2riuXFq85wVirRvUfLLeUzkzUdrDR6tGt5MWzZR+la+yx1h00sJTJwhIPQzWfL7cAuMeEwbvXpK49vPtTx7VUvHuJmdNLf9c2ePc69ofVI8O0RgzTPWqjD8QXNbi/ceMmLl3e55Kly2CxfvrpfzDlmPHh8OEj3377Lf5xAo8QTnjJAUoqBeL4xgIt9kvxsePG4S5HJRgNHUo7kDhpBJtu1erVePaJqbIAdAJkwASYNXHSJEFiKaujg6OccT3And+6F8wccBnHCx9McnYpq6sL3D915sikHQLFhEZh7HDaBhUq3L17T+wOsDIc+bVixarVqn39zTcESFUtE1Fkdzz+Wjo6IphpKNFIMrCsWQmRpnjJUhj1vHX4tfnVXaaWXrhwAS8WIdN+AwZA6QGgVQ1ydbp65YT3mTdzyNCh7FWsRAl6AycJy5ixRFyxgtkMQC+joT585Ej8IZxwl27d2Iuhxpf/+yY4OIQRBhjduGnTSZMn4xObNn06vzZt0eLTTz9FQV66fJk+RKOgSxi40PmEYVEPxHWjoqPxttEz+Zk5gPgAQ0OWfe7cETwruKeBQUG0jJW9ctUqOqdr1648IQRlcCKNGjWKodIgw8Gbt0rKycjIiBESbhlcdrNmz+ZOzZg1k8HN199+g7rCv9SsWXPOXLtsWVQmKgftReRGGuJMn86xUM8wZcF9zlxibenp/vprRRRVv379uVnoPO47T8uatWvwp+G2Kowpfd6PEDxfZLKoYNv08/WdOX3awP79Dx86RP19fDs5Hz51p/Dr3QdqdeqgsW1z+XFjDHy9qHSvbbVVo1FDNT/vMj27lbvtoTd0sL7twfKtW2ns3l6mWdMyXtd0He3LzZimLhdPVicLd/rkCsftdEih6tld/86tpyD+97x7jWFG6j26ybz7tD959317owO0hhtpbIV3/0R97qwiCvfCLiYYiPGOoxamioo2DoOe2BpBNhGTRLCdcQHjlsEjL02VlZt7+uxZ8SsHtT96FJ9yUHAwvmYawaw75ujIem4T7oh7vn5gATiIw4SVs2bPwn8CEv1JFAkIwPPAB3+6nYMDzl+c8oA4V8SyvaxvBMkER/bcuXO3bNnyDN3T28dn69atEIEuyZ70/C8nOL7d2ho713rHDtwUIpoaHh6xatVqtsfaBUAh83DyLKho4zi4OJDx+HEA7jN+VRgyFeWQpvAjoVGwcImyXr12FbUkxge0tnixibhkjkiP0ThdLZntly/jURGkeNg1+Lh79+lD5ECcGDpsxYoVuLC4QMxq4cOBVENuRP8BAw4cPARQwtTs2btX/hntaY3ajXS++POUi8vq1auFhw3W0IABA+rUrbdgwQJBs2FkBnDXq99g5qxZOGro5D179jRv0YK4CKdBs1jicJY6de48ZOgQuDRcvsfVqwA6fjz6hC5lF7QCAx1a414bGxvj1+KEwXpuFisx/wmbo0569erFiEQi7djadunalRg1W/IsfbgoRldPmzo1qxDml4bYNmP6tCFDjI4ddUiMj8+ULf0PF/TfBzNnxLCyPXuUvnhW299Hq0ljbettJU4cLf4gRG3QAKnePez7I/sNWrVUt7YsftyuJATKo0f0xxuT+yrlQOWkAvflHe10osM1enU3CLqnBYi/MLrLSvg/8O6jQsuNH6PvdFQrM0nD8xqke434hxLvPtRXb/Y0vSP71IH7OTP1HO0NHqWpFU3f/fsRYJRwH2OIjp06lSxVCuf7Bz1D7zqGKqam/8ihvb194EEl5iObKvI+BeK88ejRiYWWwkbkf5yxMWWWj+KCC48QNdekfMMPDfcLvd59coxGxw4a48f8PGNayTu3dNas0BszqrjFltLUmp86ST88SGv+bAPPa2WttuqNNy61fm0xvPxh/mVHDtcwWVAahj6IvGKJ/mmnsrnpGhabdAcOKLVscckXOnOEj36LWbn+fUrjDoqLlHj3/fto3bkh8e53WOr061N67MiyMeHaJ45qtm9bbOgQzqesauasfyHci9gUwVVwEtM1teDKBP1Tkt+4fp+ilFr8ZwW/3LTJk6Pz0hEKSc6cOT10iNHY0aNdnJ1h8hAYSf/Qau8Uer17fy+p3v0xG+1OHfTPnNKgOiaulegwKeiaLNNjxDdT1EKHj7r/lDyTFKMulvmJ75Sn21AVh21extOXXDfhail5pY/lSvpP942JUONP1sP0j41UiwlnanKNf7N1r4giH4dkZ2UzLWJE4fujeJ1dXZwHDRw4bqwxQIEjDktfOAY/CMgvdGcOIdm9OzWWLvrZ9pBWeoLG33HwVfT855ef8di8kqf/TDt/t/6ZdhS4V0SRD1fmz52jyosudO2SnQ1J2sjQkIDBBXd3mAJPJ1Ep8uyd90HExJfyOF0jJ6XQi92/y0eBe0UU+XBlwby57w3uheDJoaRH3z59TBYtogZD8odQeOcDSLP6F8L9W6TzFdkMQGmc+6oXQLVB0Wc3v/XLrDj3C1UmT550z/fe+z8uHnyKf/Tu1VvUYKDwTlF26CtwX7TgHlcgOTWw48mfIp8oOSUFjh0tMPGmyBsi9woKICRrFe2MZwte3e3bt0nDgetN+zxzkAVZTpbru7IACUdUhXzw8CEs/rQ0Kb+JTCLVcanlQj4UC5aWlsFyWWNqBjyRgmCZEPiwmzgKBEEWYuVaBcR1oe6RdSiqsNF4/ucb1CYC7CDz/2BVUhchSBY2li4nJSU8IoITo0GxvY+3D/xLTtvV9TTtsJngBbIxFyJmHGV3VBrk0TdSbJx2XFx8QgFxZjgxeK705zMlNinoRr3ol53Go0ewV9+lFDNd6uXlTRbem2rE/GwrnhPSuLihzz+lH3rBAHKVX34LClVw4q9ds6Z3z54bzcyYQSW1qM6g8p5q5kCWV3nqVcsyyL6PGQ0/ILiHBu4pF2DhtQRGqR/AkwQWkygruhr2/VZzc3CQfFEBH+Ayhd0dHU+gKqBmQ8rev38/T7+rqyu0d4AStj5JRtOnT4f0Db87IiKSbUAuzkRgOsKwlMwduPZw1cF0Ttt8qzmYm5qaJpoi14lsUvIADh8+jF6hFDCQt2f37tuet+HOc4aqwu5CoJZTBI2EgHhZtm+3BvRJBIN7znG3WVnh8VTVg+RCZs2ajWKgCijld0JD7/PqkncKfZ4WqCGDkrO2tgZVVTXjXlPofFKOodWDklwsB0JT0glZWdlol/xaFo2YJucZ5UjyKDomBo2oel1Re2wPv9vTy5MLCZWLYkqdn55Od0GKh60v6lSjTelzXnjukQqaScdF0VI4SFTg4nJElVNxuNSUVA7ELqLCqMjdZw0nTNc9iHwg2oFNHxIamh9BBBOJIwLWnKHIk1KV9+IQ7Jgkzkp+VCjXw13jbubKkpMH8bSTLPfG6wzFiqaQav4Pwr0QDLIlixdTeGentTX9nJaaJibI/RfBPdlPD0J0Ro3QDLyjQ9GC+wGaw4zUwgK05YqVaqOGl/G5qZGZpMD9UzHbYAbeiWVbWztv+Qkm855MmQtyESgqvYDLkjmzfr3I0Hn0KBeonTxlKogPvpN9euvmTTKYgH6R+Er2JrcGC3rZsmW+fn687bz2T6SSZF6guTgWCUe7d+8CUObPnw94oWx27dy1f/8+3n/sbopcYlyfO38em510KpKkRFEw0og4K+o0UOj4GdZ56P1QGmHqCVoGKLdt20Y2FnDJ0UFwspbQB/mtXZKGZs+RqgigxgRCUe2HpCEu087OHjzi5CGMMoMIBj5JqvQDWofOFAUMXmEay9Whb968BTRL6kouekzKmErbAdZkFFPIAYymr27f9kS/cskC+zhP3t6TJ08C0xwX6/5+3iwibE+NMvSiy+nTXBE6g6umfZbJ7VLBPTnJYAGN3LhOaeqbVE5OSUnN0zTJtBAqtXOWfC6UfWxsnChTTDVj9L0qq+4Zm50REncqOCiY8ySjjYrKmAJcIOfmc8cHdcXJAOI0ix5Cx3Nz6WS0DreMSsjsq5pHgXt36/Yt6dL8/MhlU6miQpKwyAhmF5nWd8SULkMWTJ15+ZrHu7dJvuE/DvdCeBlnzpgxcMCAI4cOcw/QwVlFptra+0izSnig6XSUGsjSdCIhvloTx5VjWWZbqk2eUDbwrpaK/K7APS8nZQl8ff2CgoIpJAnSAZHkuwPikAGAEuqqU24MM1CVcJualka+K9DPIH3VqlXCFbNh4yaA1dzCMj4+afmKlVFRMeERkWFhEZs2bcHls2/fgcTEJLaJj3+amWJpaXXKWcr/BIhpB0hiKLBk6TIQCrvpxAknPpRkACnAQRJiyWuVZgF1dKSeIhXzse6BSP5Ugb77BXeWwUfjceNoBPUDJFG6nfNkuMDlMATJb0iCNQsWLuCtYD2Qh0nLWOLgwUMcyHr7dgxtrHsqvVCmhnauyGV8gFSMfVDsde4CTiFsfDCdMUpYeDgjhodRUaoT4HwSEhLJgGWB+wXCspDfY0O+MWXXqOBPBSF0sCr9GH/UtevXw8LCaRyo5Sf6/+btW6gTzvPP2+rmJhXDodw8S25u+ctPgr+UJwOq0MHcUN97viiPffv2U6Pfy8snOOR+cHBoWpo0Ksh/RSkpacePn0hJTYuJiXN3v+hx9Zq3XLGdq0MTx0THUPlODBF4Q3Fn+QcEsgEaCJ8SpwAGqayKJ3JW6o2bN8AptA5w/xaT4by+XPK4PKheu126Rv6/mURWWnGu/NRxBm3Wmq59x1FF0YF7IdevXYOhP3zYMFdn57jYWAwLbsc/Hpp6384cQbHPt6w4c54VjDU8JyKhH8SRXeSZFCPDdsOwjZN95Rhu+V8PLDXMTJ4nDF7hEABQaAFne3R08L2712KiQ8LDfWU2QUxubvLDB4Fh9+8lJ0U+eZzyWP7cvXPdz99PNvk9OWK4bDJLzp+YGGBLSuK/HxYSEorJKSYe4UykWZ7T0jhKUEhwZm7Og5ioM+fPpWY+NQx9fO9Fx0slKtMhRT9+5HX3juddn+gE6dwSU1Nype+/FOSKiHp48fIlDiTqPXAKvBsY8KgH7HcAiOAEHpj8GPpGd4EeQz9h49M4SgUzNn/ZAJa5lpC8K6In2ZIrfZy3O6fBOSQkJmCks7FKE3DCrEGNYVOj3qi6zpbxCZI8zJf1gz7AV4NuANwjZFH9hC1PfhD97HjCUbh02IYb+lDa0p8K/PdD74aH+0VG+D/Ou1niExBwOyoqmOhJWlq0j8/18+4XhAPHR75fPGY8JyygEbmdlPTBlpcqJj144OFxlQOxgeoJYi/uNY8Q10UnFF568MPoKMNGHT0rzsuouimxyvqEKqapVTbG/bFunF4bx5NOHxPcCyEhi1JrkyZOuH71GkHdjH+auqOEaj9mIuajLIfsdOtHmbuz03fmZOzMTLXOStvBN8t8stOlZfmzPTfr8DNTrb6BxKVmXwnIuRaceSUg+2pQlkcgn8c3Qx9dC2Yh51oQKx/fvM+HbbKlNcHZV6VvsaX4PLoa9CQx48m/VeRI7DMR1MystD1ZadbcJr7z7tSfn5yMXdxNfsrJsA4OsLhz1/f5Nv/mmZS8WypH1vuUbZYWW/QGgPXxVUxVn5QqGzwrzBvVc2BO7qN3gXvP50LQRUHAd4qsUVR56ZIlfr5+qinRFbhX4F4Kx92TZ9rDaaAirry1ZKXbZKZaZqZaveqzLStt75PHTz3pDBHeqDhizp2INHPXNKuzaVZu8rfq8/yfbqnbzqZsO/PcT2dpIefeK2aUxW7NH18tPHkXpgpvge+LpgqhSzG0RTwAKzsib8531otxBpeGUc+v0kJ4+OMnGZmpaOhtr3H7LLLSjooo6wstR/nFDHv8V3UuGFBJrzcNckHJokmzblack1RlfX6455Pwu+mkWt2Ts95eA5lt2EA9vyKrzsU0OL179SSKSwEG4OUfMfMVuC9acI9LGq8xWCPVX5ThXthoj/NEZbI9zvd65+etq9awnJl25IVwn5EsgUhWmvhsl+A+9SncszM+elURyr9ci+rQeYeTasXw7ftAwuud51Wf1B3npO+d4vt8+i53FlJ2uLGQvP1snIUzC2KbPz9WZ3P8Hjx5KfUeQpGYsopXJftN7KNn2hTnn/vc5fypwHJyhEPjJS/kC7GVNdhuRFle+MLjjwLxMauvX78hnHWcA56fC+4X8PiDvDjxiDEQRbh46Up4eEBOxu6sNOlOMURT3Sz5I9+1vD+B++z0Y/ILmPVCrie+KWIez3csDhzvQnaACH7RVQ8PCnyaLF1S+9cqPn8seh7uk39fP61Gz3eBe8rH7t2zp4iP4fCFTp82bajRkHNubslJSe8/hPuvg3uYQkSG4QiJD8tpCWoquF8wd8HZ06fhOhRU7e83hXtipMwzjrkHUQbnb2xcLIZeoDyj9D1ZBN7hx8dCvCELtEJ8x0TeKPDrft6dICFWGxwMJgpPiN2dkWIR92BjqP/KmMgN0RHrI0PWBtxdGuy7gjUpCeYPw0yjwk2jI0yT460FBRE+H/FhXPOcNs7cmJhY6CIwJgniCYSSrFdfP2KVcDHBr6s3r2fdCQesE7adjtrsFL3lpM+SvfdN7R9scvRdcfDhphOx5s4PNp0IWm0TvNY2ZK0dGwSutokxPxVn4RKx4XjoWrtws2P3TR2w+h8HRnvcuI5P447PHVzYOLhxiwOCBBK4aqCVsK3QQ0Q7OTTbJMjR4Je5sx49onuYFDCFrdPS8GLjm+bM78hXhUKF+nJdirWGQc7n1hD5YFxF//v4eNON+Lvh/LMj9+LO3XtUvuSNFSh/8dJFeKv0BuwXQZEC186cPcMuRJtpHBzHTicAoHKFownoTwIATCYscFY27cMAYmLxXGlGZiaRUjkpPzM01PdR5p6U+K2JsVsiQtamxJvHR2+KfcBNNOM7KW5LaqJFQvSmpNgtKQmbs9KPynFjwgbxXAsHFUPDx3KUmBOj1jE3kStCTco00EwxlCTJg04Gd7i5HLdASqLS7MmTTnBthw4d2rhxY2ZnZNJd5h/u0r1b565d9lUYmVF181+wvoqZb8VF43oYZj96exeHpaXFoQMHPgjH3amTJ8nFXb50qZgw632W0f/I4T4zSY0SDjmpGlnJ0nJmUpmwgLJ+nroe7mWZMuX6RR1/b93o+1pZSWWeZJRZOLfSogUm58+6MY/SPwX3An2kZ8LZ2dfPF04O9tp5WShSz9xD4smAgAHJhC1BB1wHvN5QTbAQYfmRnwW+UET+YVR0TqZdWuLWiKA14IW/z9IH99elJVn6ei0G9z2vzQ8NWBUZuhbUCLq3NODuOk6WCaE4W0J5kBSBME6bycGBCVh9ME/OnTv3RGayc5IALqMQesnR+VTM5Tv4Z4JWH0mwdAXTby/cCcQHr7UJXWcvKYCtJz0X7QpcdSTZ+uyV2ZZh64/enL/Df+VhPgGrDgevsQlZa4sCSDR3eRISd+q0K4DOgVxPn5GAD/LPiRNMwh7gHwBaQwoS4A5zRpBhSMACnV9iIoFi0FHoNDFxKwDNE8uOwOtDiZJ4gfmqJL7Tlcv8CTOHiz3vfh7kpQMJFEO+hIwEHDOw4OioB1ikwqEEO4jgrce1q/wqBmSsRwegMuG/oi/Z0fX0afSEKp0NDSNUJkR5eEfi9MTUjGhQkbgg66F73OSUlBis+8jQNTERZkG+y29dnRf3cENY0GqWwX0/78X3PE1Y8/D+Op+bc1OSbIWzi+Ne9rjCiXHC4qCweHkxyecgFM+1Y09wpcKHAy7TyWfdzvL84MG7ev06mpU+fyOTE9oJxjtJEnPmzOncuRMTqWtpa+nrl2P+tUGDBjE9A/3GgUQnRMVGG9Vu51fJJL3qpoSnjnuztKobp2u2PWxz+F1etP379tq9aFBVNIX+X71qFWRNN5kNLJF23ouZ/7HBvZgHUYZ4wF397q2yp0+WttqqPW1ShQF9y3Vsr9WmZaVWzas1b1qnZbP6zZvWatWiapvW5bt1KTtraoXOHXVXrVh++eIlrqKgqMdvCveePt7nL0oUi9NuZ/2DAn0D/eOSEqG73I8IDwm/7xf0lHR40eMyP924fQtL+Jan5z1/f8873j5371y7fg3rHkxEGTA306Ms+4xkC3/vJdjy0ZFmd24twqK/c9sEo55l7HpfLxPWxD3cGB/FRKm5mPBXr11jxADqBQUGYZ/iWwAEgQCJ5S3nFgElQBLIgmEIcLicPRN1ySd9+zks9PhtrgnbXL1MdmPp831v2f6IDcditp4MXmPrt+IgPpxr87aHmR31XLQbfYDhH7TGJszUIWSNbeg6u7jNJx+HxJ294A70gJ60D/s0IT5+h7U1s3ZMGD++Tt26IEi8DJf+Us6wH6E5/sRefolxxMxzKE4okiGSSBQaclNRijAXMflxnTE1IEMo0oxxs2Bx028oBoxf4J7hUWBwEIT0mNg4hhpSqtSDByC4wEqUAelgYDPEeZFUzPNPy9xuVAJb0jiYi8NEoKfQCrzb8vww9NxD9mKQxDZ8o9RpmVNEZ5w6dYqWc3PTs9J3xT4w87+zNCbSzOvGAox6gP5+wCpM+4C7y+7eXsSf6cmWUWFrk+NthK9AGpfcucM5QO0XPYDWYYBCJ3A4Woa9KtKzRTeiYy7KNHxGS2hBLpN9X+JPoz+Z5gl9vHnzZibbatCggY6eno6Ozq+VKrZr337SxIkH9u9Ho4TLQYgXtmBjb9vvt+bO5SZE/bYqvtKa2xXnztLvNG7U6B49e5CYSvGZt2MM7Nu75wOCeyG49oYMHrxs6VKoWZKZX/hZuB8J3EPozE5Wpzg+RTfJ23I4rDlrWrke3bWaN61ar26D5s3adO7UvXfP/kaDho8cNmr0yDHGo8eOY/LTUWNGM5/0yLGjRhiPHmE8acKkQwf237h+HdJ3VgFN9PFGcJ8blZR9yivb1SfTWfrOcvEWyyxkufiwLP5U/crKvI83Oz6O/pPaCPFOqtKXYZOauDn2wfqo8HUpCVtkR7Cl6jsrjW9L2blvkZ22+6nv/kX+6Jdfo/DdCwd9+s7zGbKDPtzsaMg6u0SrM6wXnzT5J7GM4z5ddvH/+dl2Bt89GaGAI9mePEvLliz5rfLvzFPIZLOfyMJMTIGBAW/BahC7PI1qyHmnHEWKbWRmkU8g4FukmEpHz1Et5IgdxXeazH5HHuVtKZLU8tvCnDbYKkplCWTPPwGsQFJWZskedjbm0BwuPS+bN0OmsWLrZUqU+Qz4VLGRpsF+y8KDVnGPEqI3pidbJMdtTksyT03cwndS7CacdenJW7JlZw5jhePHjklqKTJSZa9wRAisDPg4JU6Ab9kz9lhcUYosOJFwduGVer6OL2pJmhHX3n7WzJldu3Zh8kidsmWZLrFWnTr9+vUjR5r0jrt37rzRZAne9+7Mnjx1UpsBE5v1mzBg6IlTTrmPcxcuXMgt/vGnn5o3b752zVpemTeqOfEhwr14JFatXGlkOFjML1bY3PwPGO4x5EF5DHnmt4oI1jzvqr5skV6f3lqNGgDxDTt17Daw/xDjMcbTp0ydN3v2ovnzly1esmr58rWrVq1fu9ZsnekGU1Pw13T1mnWrV29cv56Z7O1tbNzPnfMTLs53KG/y1nD/KCQmzeJ02na3N/2k8m155lFobFp6Wn43VHaGc1b64ex0m+wMW1g6WelH/u6TnXHsyeMcdn+dp01UI/gLM2er67NMGxTAdpmK89z6F3+eY+b43bs3ZcoU5qeVJvX+/PP/fPHFDz/9WKFChdp163br3g1DEmMQrMF8xm5NfVvGzsuN2QIUqTLDmxxICvqmQKw6lJNhmy3dO25ivm/xkZez0tnmrNgH7PjfN9+Ur1ChW4/ukydN2rVzJ16a15/Vj25khMG4ZN3atcOHD2vUpDHzIWtqaTHncOvWrbkdTBJ56eLFyNfIZH71BaKK8v3JXFTMrfZJnvzIDMA7d3z0cC/E8fjx/v36HT96NF04dgrNxi9IuOdEGcSdP3dup9X2woN7gfK5aWoZCVpB99QP7dWZPEGjTcsKtWvVbNOqfd/eA8eMGj1r+vTFCxetXrFio6mp5datkJ8O7N1rc+iQg63tcQf7E8eOOR13BH9PHDvuePTocQcH1pD8dunCRXAZcwY4KygIeDO4B69lM/mppZxnC6v+TLI6wydj94W0PLqL+JVo50Oz408eJHnd9RHzsr6dMPCPjo555Wb4Q/7C6EjKwDDP8X/4KCAqNzD6UWAUC2JZ+gRFPwp4KH0C81YGSetZzpHWSyulff0fPkl5wYgKy3GIkRHTfwMBgwcPPuHoSAmHefPmM+Fq3bp1dPX1mbC7fPnytWrVat+h49ixY8E7O1tbPz9/yUOdmFhEKsCgg3kMcJ4IU/qZXwm2E1p/fi/3CxfxFL3RgXhuxczsKqlRswb9cOWKBzb+s89bTg4F73Cs79u7l6nPmbe2Zs2aZRFdndq1aw8cOMjUdD3DBRws76cbbY4c+eyLL5j8ndNu2LBh/oHR68C9g53dkw9WgIUBA/pbbduGrcnTUkiMnQKGeyaUuXD+PNNODzUau3QxU5MXGMRTdAHyzKM0jcQojbu3NMw3lh0+RKdxw9/r16vfuWOPoUbDpkycNHf2nGWLF5uuWbPN3AJ8x1o/6ehIiO3CefdrVzxu3bjh7UlqJ/me9/yYmRv/9L17oMkdb28qsJABERoSQo0LDByRff6PwH2yxWkc38Q88YfEW7rGbD0FxQVmC14RlnF/C683f8JsSbF24xvQj9x4PGaT05PIxICQYFHYEuub+Crggt8Agx90xh0sPA8EOXFbQyARPA08AGAEA3nG49Rdwcut4iDiwuZXHA44fMXzB/nHR667eUwiyUiKgcZVpVcgGRBpSMvMQFVm5GQnJCdFxcZERj2U/CcohdSUzEfZ0fFxkdFRcUkJLEs4mJWVIxt52blSVTJ88XwTgH0iF3IRSpfbwWNWvXp1Cu/IVMNsgq7gIKcEMwcH6EknJ2vr7YtMTPr27du4UaOKFSuqa2nq6elVqVKlXbt24ydMIGC43cqKqAZR2UjZ0YFGVxFm5ChrKt/ZsnDJeN6FM0RMW0HBCfonRaL2yFVC5fmpVSNa7q9Y/0gW3N8isRmvTq7cJj0JpLrJdRS4IlENlC2F0c2vBBUIIcD9ZQ3HUvUnAXlImblyEoA4gSd/EnOfJgfIZKoMletGSgB++LB2nTogpoSbn35K0aEncnq2cOZwDqddXc3M1hsbj2vVurWBgYGahoZBeYPmzZoNHTZs+3YrF2eXFMmr8w+k+8NR6dCxI2f+7XfflStXzsnpxOvvu3vnzs0bN4YUshAa4dnD1a76RMkZ0cn5RNAr38LlSGtDhwwxXbcOXxztFIYrvyDhnueJE7188eK+3btHjZgwc3rxx+ma71Lzkh3hSuamY85rMpehq6PuMhONXj0M6tWt3Kxpy57d+44eMWrG1GkL583HS7N5wwZGFZCxsNaBeNgCnrdvg+nQbFBCUQ+jeAkZMGLp0JUpeQL7NUl6wxJZSJET3riKAnzW38x3fz8uZOURKCv31zvAaYG2SIQzcqMjdBcILagBFkJN7b1N9gD6oH/g6iNEPkF8SC8MC55EJAD3wk4Es0iXt7Ozu3b1KuFHd3nOHVXAkMo8cApZQ7QTZ8hdOfQKJEGiAGIEdvDIQomhNBtIwe7iySMUSWtQR4gEQm7hBbgtFQR+Go0kxksaEY1QiQFLFjYRioFdvL28ORY/EY30uOoB3Yho4aXLlzgihxYFG6QqY66uUC3RN5BVqMBDCJFRxB1J7lKigBOjEfYFN1mFGwe9RXUdnJ75+1A4zXkJXV1cqLY2d97cFq1aNWosOSVKqalpamuzUL9Bg9Zt2owaNQqXBdhH4PGczH2iWYK6dE6AjM5QNukKTmbP3r0QK1lg5CT1AOUL8sqWEd6UPhcv0S28517eXnBgiPrCF8KHDnXqskQfSqf3GPVaWW2H23r6zGnaof+j5KI9aFmuArinr/CS09XnpChxFF3q4GDPT0EhIfD0Dx+xoU9okI6CTkMHJqekcsJ0I8eiQYk2mpjIM0y8ndLTJUuX/vSzzxgV6ZbTWyhLl27dKlaqBLiXUVNjMEQPGBkNsbKy4mZRDoi7Q2sob0p+vodZix88iD7p5GJv63DvbkB+TLt48YKuri43ZcGCBd//+KOFufnrxgO8vSmit2r16lVr1hTSZ+Xq1SYmJrNmzJg98y+fqZMnT5k4ceqkSXxYmD5lypxZs+bMnMnGa9auJbuKXGIYB0cOHTp54gS4JLi5PFrPozlPuNHgwZYWFjwA3MoCT74tSLjn5FBQ1AbCbWKyYGGjhjVHDdM+e1Kb2cmhQmKbpyeovR51UrLiCbomPFT3OK+zbavaxLF6LZv/2qB+7VYtO/bvO2j82HGzZ8xcsmgRbneLLVv27tptZ3PE2emk+7nz1KaAohIaHEJ/wesQsw3wHoICIjqnyk56nD9zKU/+Li/xPVn392OjN56Q4B6+ylrbgJWHgHuQHSv+7tJ9GbsuBK2xBfGhrsNxxPy/Od8aAjtxzoiNx2W4T/S84wNihoSGAKPBIaFUf8QEATehd0LKznPFeIFH+GfpFmiIdBT8S+ibdBRwvHv3HlEhix6D/gjBjvxPMEv0Cpwc/CSi4iPVvu7eucsDoDKTwSYgEsS0s7fDTr916yZ/QvQBwlAqjAbQNKgE2IqoEBgpFy5I1HWRMIVywpUEpwXrmBOm2hoACuvmmFyLDYsKEiqnxF6cPOfMBhR9A/4EtfFvuzQ3l4tCJUBXPXSYbPZDWPrwwbt269ayZUt9AwO9cno/F/+lnIFB1WrVunfvYSKLrY3Nzp270FsETaku6eBwlPcQhIUkS1aEv1yC/8FDqTwyyMulccIoCZ43FCGH41oOHjpEN2JWoEXoEIyKLNm4BovRanTOmTNPiZKY9rLJkciO8Hxg6dAIWo0uolmUnKj4z148v6gWNDSnQSYXFE+eJZhU6Eu0CHR7toRoAOt/9uzZv//xh2Qmf/89rvwvvvwvy+i5jWYbyKFzOHYUncHz4O8fAP2JvqU1roJ7ej/sPif87uncL49hgIDDh7Zet7qz+cYeM6a2GW88MigoRDXSCsh7QSwtLIsV+5mAQUYBsaILRKQMv798cjIzMrAjE4VIhaoeYvVy9zGGsBu4I6A8fiprK6tNGzasXrUSTYaGmDhu3Mzp0zds3GBz5DAjVFXIjfsOK/+Yw1FGaZJXp0CHWQUJ99wq3kwcI7hQtm7aPHvGrC6detSpXa1j+3Irl2i5OGpHBmuT1oTnPSsZIjzTlGvIjHjpw0qUQUqMmvc13RMOmpvXlx4zonzrVuUb1K/WpFHLrp17DR8yYsqkyfPnzFmxZCmB1u2Wlrhrjtnbn3ZxuXLxEoY8TwmRA7wxiXmliBhK/+Ou2zcN1SZvcSa2CY09bvOpRHPXRAvXZEoObHdLkkO48eYu8eZs4JZsKf+51TnB3IU/WSDGmxsal5yWCnxEyb4OiWuRnCzmTcaUSM4LZgo3gkio4X7JfIxcsAM8wo3AjtAuhRJMlYWN42WHj+xXyU6QvQ083exLs9FyiVfRMuYhVj/Iw8MvvNWSyyghIV0SqU4I/0WER7AGK1L6Tku7n8fYoyms9cgHkZwBTzw7AtDoX16eeJkJDkLRCMqAvDNaBt1ARsALo/sld1mUMGO4LRcBjqACKOfARbEG8iX4yK8W27YxCFgwf/7IUaM6demC/1pycairYwjjwu7Ro7vhYENKPe/bt++k00mOCxyjoiJlpSh1YHJyuHxKjBJ5/Xn8UJCiQKnoBLpOSqeKiOCIGBSixAJOFeGNEdO2PJFZ81x4hIwU/AN/RYYtIwmGWYyEJB9Uejqt8WxzUyR1kpTsfOrU2rVrZ86ahbWOxipZqhRuEE7bcPBgJtU7am+PBkVljhw1skSJEpDRYuUUijC5bAON0w/cEY7LXUOLoza4oYVn3XOli00WrlrWJilmxpOc+U+y5z/JnHfyWL+B/Tu/MGhEiTFY/HjkovLVm/sIRHpxoqK49RcvXLCytJw3b97oUaPmzJ6NEcOLiRXVo3v3q1eugGb8WYAgVpBwLwDifuh9qOuMXKC+zJszZ+zoMb26927cqGX9urWbNjHo0U1v3JhfTeaVX7mk/A7LUuYbNVeYVOBP41G/9u5p0LqVTpNGfzRu2KhpkzbduvQcMnjYxHETMOQXL1q0ZuWqrZs27ZLHRE7Hj587c+aax1Xc7hQ8QJdifGHIZ8q1h4rUBHhv5syJTpYYlmfuZJ6WvsWHZfFn/pX5P09/dfbKjU7+hx9iWYW8t/7HOf5YntzjHd8Hnpz8NhR/YjcwPMJfRC7MhPHjunXvDu/QoHx5COb65Q3q1K3TrWvXccbGxBJcXF2YXSCqMM3h/EJ4yd39PM4lY2NjaXRSvjyRajKbcFgZG48137qVwROVSl+YJLhv/74qVavo6elOnTr15UOiwpPz5y5MHNc0N2NeTtrczOQ5fLJS5jzJXXh4X89FCxe98DZixtWsXYuk3NtvOLPNhyUMC65dvUYZNZj4hw4eXL5s6dzZs+/dvcudKsCwbUHCvYiqxcfFcYcuursTKSVkumr5CkAfr9bYUaONDIf26tG3S6eubVt3aNu6feNGrZo3bdOuTcf2bTt169yjd89+QwYPHzfGeOqkyXNnzV6ycCHUmk1mZsKQJ+zucuoUyvAmSUAU5g4JRT0myhaiiI0UzVl43jTN6l6AHxHOV8BcVmZKRnpWbk4RuUbwHc/pa7L9pEmUZO+NqG/8EsIrhj+28/PNYoGi3V+nzL2gxFCRP1cm2mMsqx6SNy2CRuiNCJC3txcOFuZ3nDRpUvfu3WvWro0OICasr69frUaNdu3bjRo5Ek8FGbM8pZTieMYLkb/k8is9HtjduHi8vbycXZyZj6x3r14Y7xDeUTkQFjn6vLlzT506yQYMFP6uHRrJP0UlmgwHd+nSpTu0b++ZF35g5csLURSgLFu60NXJ8HHmPIH14pOdOjcucuqoEZ3TM178CNEP/fv3Y+AipsP8uAWS65rVq/v26d2qRQvbw0eY/7YAB1sFDPfyJGoZ5FUHBQRev3oVdiNe9V07rLdu3AThHdoM/Pd5zFo0YwZcSfl7xqwZM+fNmr1g7jyok0RcwUTzzVt2bt9+YN8+B1s7Zyen825uGPI+Xl6BAQG8ciIOnl5k3DUFC/dEAhnUi4tS4ZFYUMVtiOkRXrsv57ii/FU5RKrAg8pWVe2iWsifffMkj0zyyj7Mb7A/40yUAyK5+HBEKPiFPfAMkOFlgvPDXriJ4//GzGQvfCZS6Z68SfVUTeG9wRsuJuR6peAasrW3F/via8r/oL7SwsX3gnPmhVpBVaBNeC/Pnz/H3Fvjx48HlRo1aoi5rS/L71WqtGnbdvjw4eA1LnWr7VbB8oS9Lzwc/rX790MJM2yHxzxkSNXq1TFp9XR1CTA0a94cRbJz5053IgF5M6vkl79DfCI02PvPrPTzvdelS+eSJUowcxnxBpEq/H5eBxOT6SF+xuB7frjn8yRr7pzZnRKT0l6i/xYvXvzjjz8y3vo3TPJO8Ss8igP69Tvl5BTg5ydS9ooc3EtGk5SsmIlCxseCmX/75q2L591dTzkfc3DAD7N/z97dzItqZWW9bZv4sLx7hzVknkP79zMgwFGDOx42JxDv7ekFOIaFhsKr4eVEy4lU4w9oRs03hXtolNS0IjSKAx2wk9zT9MaFC4QHYbuLGBp+TAiRIk+SkCBzFRHZw1PMSuxHPMgsPHXLEhE9cyYgIJCgHLUBKAzA0WXrOB7/Pi5mt3Pnia8S7hMzmUDQDJEnw2KKcBrEgwxEsj2IQNQUr7I090VSEuQfDgGZhDgB6zkfCi1A1MEBQgCQbWiNrAYxVfqj3MeAEVPaihAlJjZ8Gy6KUyLuevHSZR8ZhWmTDWiNy6TUwWN5DS0A7sQJcC4zMwilB+DLohFxoLMefcCB8k9K9bxIJQ1OnRI3At89sVDwlEum9zy9pZm+uV4c2egqQtC4rTklfoW0ysPGedI+a9Aucn2CCKF1cPfjdSU2SyUGVa3jhPgErH5INbyZ3C9m8SUuvN5s/YxZMzt16tS4SWNYMRpaWuUrlCc20Llr12HDh8+cORPCxlEHB9Lohw0bBn2ocuXfpITV2rXZZdiIEdBpzp45Q59wvwQ59YnMfOXC0RnUNeI8IQYx0OF8RLoZwk+sh8/KNVM1QdTkQWlxyWyIwSTxrHJzjxw+VE6/HInKnDaFiWiCgRRkT5oqjMkLoZmie1q1bHbOdcgz1n1Wytzk2BmTJ3bPyHxFbiO9WqxYsRHDh6ckJ3/0iM8EchqaGgR1Tzs735dJYu8OegUM9yqME3RgXjYJdMLCMcwhzMB8J/5wibfh3Dl3kMbNjW94Z6zxuHwZUo2Xpye5lNgv4WESv1WCeJlaI8iRH6JWf+MSaRS2DAqCDwONDwoKgVOgHLcGlp00lVVcXHq+WSlQfkAkC2A6qISqAMGBMwKSkPakkiwyELAv7z9wcNLZGSzgbWdj9sUvIfFM/P1pBGVACTa2F3YitjOAfpqCw7ExYCveCQAdyONu8udhGxuAklPlTkrQ/PgxxxcEDyovgv4c+srlywDfaUnZBHDvmNScuWoBR2AIBginyoHYnSuCPvRELgXKBcIjggEJktIsO1Ik7viJE9Qpk/PLsxnYurmdo2fCIiJoBCXEib18mg4eQhSPiEsLTES7XJGPzjlwOfIkf9kclC5iKMBl4tzgKHQ+rBtpRlwfqfo/NWcw9sUTKCYplJA9PR1qU575CcU+h5bpH7qX7SHhoC/hZrAjjXOlpIniN2/SuMn/vv5a5EDBnCmtpgZ5RvyJv6Jtu3Zm69eTZnnipBO3xvW0q5iq/tat2+Jx4pyPHj0mmeQyVwfeJyET7ANUL0wnYF1Mu8hlco3obDH/F1DOn+IWX81L6UL/DRgw4Psff8A1xJ0TBXwe5BVQKxiUT0tjnkkUW7Vq1dTUNWrUqDNvdqsn2QuyU/OZ9o8Wnjze33jsqNdJjaY1MqubNm2KO/fjhnvuNVzhalWr4tnGN87NynxnxC8UuFedrnDUZsoVObD3eeCkylAREYTCwuUJ98QC3AAsNwnfoU5KSStPqZOFwYws4nCPPSth5ZUrIAVwzGSkADdIAfbckeM22Lz5q9uDR7TPxgA7fUm9lmCpdnEKfU5/Ug1RlBvD+QPQQ1uMl+c+ZBuM9BS5tqVcVMuHnDNQ7PKVy5myrxwPALdAqpkVGclB+WYXjyseJBoB+j537oIa0oyy0kleoimRwQRMS44mShOnpdEyKMmJCd8Fp8cuoq4yyI59ynEZVWDvw3fkijhJiWzDdsHBUDA57dsyrRNKvFSs8epVYI7RAxtQvpixzpXLV4A24OmVpiinBLKzL2dC4xj44sxlduljeoMWpJlsL13kkiGDYuFiyLMBB2KBy6Gf0W0qbxXDHWAUDQEsos/E7eDkwfc02VnPYJST95bT95YsWcL0v63btIUtA+tfW1cXLw20mVGjR2FWQwzlLlP93N7OjmnlJ0+Z0rFjxxo1aujo6pZRV8eNA5+yZevW02ZMh7137OhReoZrgeZ/X55UVlLM7u6cHifzRCbCyvfuJkx8yDy0zNPCnRUxDBIapAl1Q0JVcI9+QotAuofMU6JkSbwlLD8sCA4MXYq+hw9ao3r10mXKtGjeAh0Gr5caH1Mnj9+5rcuj9LkSLScLcs6C29dGjBjWafLESYx7RkjBj3XQEInMgf4v9KTx5DRp2pRU6qsvSkX+mISsCOMxYzq2b0/9qGseHvTJ69fDeN9w/wzqieCY4JBJNaAy8z4guwzuH5aXppDg/uWcQlF28dko4t+EHEE37DVBuXvev//0cH89oorX9ChvGjlxULFN/uXcvFCn2EUEAMS+Io9UVUfs+QsUG6vCBmIvVeqD6qLE4cSZc9WqGIOqeJlc7Sv2dR6YTFnEUUT6hSpinH+bZy5EVR9NOILYT6Vln0+b5GTo8Avu7jt2WM+aNRvU/q3yb+A7HvxmzZqNNTYmkfWU00mZAJqWvzeeiV4I1iyKBCUHWRuUpLxBj54969apQ1NwQ9EEdWrX7ty588TJkzdu2HDwwAEoK6jk/LMjqQIzvFeP/tqlgseZ/7RFtHbTpk0oowb1659+Bz8+t+TypUtz583Dlkd/NG/RwnSdqX9eTdC8xzJh7pyZE8c127Oj16G9/ZYvaTdkcI9bN28T1oZrJI1xPv30iy+//KVECdTe370s9A+lNUqVLoV75yOGe3ioULAYxhkY6C8xMSGlCXM5+x0Q/z3B/b9W3mKuWgpCqqqFyFn1Ehv+7Uq2vT4nMrWAYkEvgABZx7/RLq+5ff65vd5o+zfaUcDloxfkNz6mmh5elw0bNhBZrV+/vo6eLohZvXq1bt26z549a/eunQwsGBMUSLk9lAQMCIx6IGDzpk0zpk/v069fvXr1KlWqpKWtXVZXt0aN6h3ad6BiBLO22tnZUsgs+g3tdMZfzKP9c7FiEyZMoFDAG+0LEkEehztUvEQJzsrEZBGVdh79fVKo522fHdt3bLOwOHv6PKN5sZJQXzl9feBelM3p17//y+8m9Tgpt7Bk8eJHOTkfJXrw4qM4yf0ePXrUH3/8Ac/lyqVLRF/emoxf8HCvMuRVJljRl5w8KfDhxVvAPaVZGJsnyxUdcCbgIiD+WdiDHia3Sy+c3EU85jffhDHN7SDqW1DXK2azwtOSmZGJVxoKCrcDE8lZ8sW/1lR5+HzEAoY5PGDcL8zj0b5dOyq8g7NaWlpQ8rv36LFw4QKCIhzo9aOIXOm7TL0rjZWzslAnzKZCeg6Z9zNnzBgwcEDTZs2g9MDX1NDSrPx75baUixg5kqlcCaxwhkGvIrDyRhO/xVVy8ODBV54DKaMrV65kKgIMbb4XLljALGDvUjyc8gnUTqD8A3BftWpVdNvLt6ccXpkyZfr3669K7f6YBATo3rUrWUctW7Ro07o12bYL582jDAOz3b4d4hcCM0dO2mRoliHP+oYDruh/oA1IAWHZzVSwlYneAu5j4+KJfILyOLjJh/x/9s4DsKoqW//vjT7fzPu/eVNsMxbsOqOOIjoqCAIqUgSko/QuSu8gvRNqCAmkQ+i9hYSE9F4gvffee7lJbhr/3947uYRAQoCgjOP1cD335JR92rfXXutb34JcgWcZoghhTD64YsEIkfsqyCQQVeLoHniNK6QLWxW2JkGR0T2eHDgkrJYkGTuEBHB510imLHsjmsLehDqYTL49c/ZMVENORx3DCZlMW63zZtDrAGSshochR5ZiUJX2VHFU3MTsKlEeThATI6NYWC53e11K/QVIcohCKBFtrqioEWLxYgXYPqmiP8suKy3DXc5RaANOcyVVxkNEMipHFEOc0lLOjiWCPZKUxFZtwWuaCAuIsCqnz3FTUlMQIZDlBnNVCXj2g6pSmUweVhDMqbFneGVQ2hlHL1i4YML48Z907fryK6++8OILr772WseOHefNmwvuC+keR0cXZxcCooooxYcjEiZVbVPlv9U8NixXknPhCtBzcPociBNX0W/mMTVkVnOJ7PJFe1RSbmZj+UN+KmEcbh5sJfYj84QLwyMimwqUshqpjgQ5iDYftDo4c8YPyLBA+0E5DtL+S6+8/I9338W/NHHiROQiIAV4SUoVETWde4oXYaueXofnnx85YiQ6grdB+cAAtCioN/PMs88IlF+3lmBGTTtphu81MnrkkUeIVSCf8NSTT1ISS9XVaekTFBjEEIfG8Jr8wuCex2n82LGIMhDdoQ92dnIeOmSI/s6dcF7I7LsHxG9/3n2VRBNe/mWLFy9fsnT54iX/AtMSpqXQ//EzVrcr4t8t3PMCA9wodhH2xK6E4MGMFKhxJX7rKysIEh7EXqZwFbSNgGsBRD6pY6580xwOBic0SiKl9Bm+fv4AVmBQIBva218RFW6jo9GFI/5J38EYQtJ4wKNy4J5AH8yNq9cC6BVYkw0VMx0A4qDAIjuB9wmywFDk9aaR4DLBQGTMhCxPQAA79PDyJCBMPwQCskOgiifhWiPcw/+RGgMiEEpXxfrQbGDXUAiQlRXusAQyCScopNaCQ44dPw6qciBgmmNBdGEG/g8RVIosUqW3dZlcXhj2dv7CBY6l/CqgfKKkritg5SoRhYafw9nxvX37dsgqn3b/FMsdHQUB7p3eQ5kW+QG821CI6Vl9Gu396zK0zp4FydXNnSYBssScaZ4KIIP7HIW+MF1wPQu5EdwpVuDqcTdZmUArBRRZQp8EtYbzVTR5dksfwGpcEzxCyBfzZgnhID9fCE70VfSCjFT4q4pdc/F5KmQlEy2Ggr9UMFUxAEwupU8A24oqJdjsVAebP38++vXUoiJ0/Opr4h9hhn9++CH2IyyaEydOgqEnjx//6KMPX3jhhZ07d6pRCLee69O9R/fnn3++S5cuGzdsIGzQ7lX3ePvQtlTPHsMplJCf6/C84Z49rYw+cVsx3urwwgsuzk6/JLjnhs6ZOVM9rrh0jPftg+LY9ZNPDPT1yZLDUNDeZRfbnnAvyvRotUpkFXiaOny0/d5D53eZn9tpdn7XQz1d3G1x2ejg1GHfOtjbw3RUUbufBe5BE4CV1xjUA4vhmMPxgI+B8BmdKAY7m4MvICavsb+/n6DT+PpCqNdZ4rztHh6eQA8Yil0JFrA5jBEkxoB49sl+eG9BPXoRwA6cxZAHRLJlIVYYk+yc+wjuZEitSl515dCAD+oqCYvsmRXAI7wudpfthJI7n/j4oJAQQfNPSADupRJkpSB0ysJ4umcG8xbflBolsA5HgUYCLAJtnDKcInoIGDvUqgVDEaCiBm9yairXgRVsL9sxuOEcwWWsb/qJXCmR1PpwGKMP4x3KD7KR+O0YGF2TIa+4uFgon4sWLx4/YcJrr79OCBROJCgPvnw/fTraigesrLhcQcFCcVOUffcUtXnFiComBlNdDaf4u4dUG+ViAsqh8sPtUP56aJq0kNcS64xmszL9peDGJol0CnbF91VRRD7ngrU1d0QIW0qY4090qnQJXBPU8JVWK8vdJYkWdg2r4cMJDgnlLgDuKN4cOXJESSFxvgjeiaclIQEaD0sgaIKeXE+uIeQo1ucU6LTYv6ssr3jQygq27oKFC+nqBg36utP7H+BDf/sfb0OV+d8//AG/CkWsIMP83x/+8ORTT86eNQvm9P28FPDwDA0MFo/9fsnI6asWL/MPvNZah63VgvXPPf9ct25dST5qaTVeW1KdH3/8cZxavyTE37B2rRq18NoM7N+fgTIqoX97440d27aFgfi5uXfF1WlnzRx8OGB9anIKqnvLps2OveAWfMKOKeSk/U82ycPdekQ71RLdpFtZzdPUJVNmICklrN3y8vbSqbhbuAfEsXyLpMCe+JZzWllwTmlX8RH6XJmZYHSupHkIYWehp9pg3UtV9gpEiaGrS4ssQtU6F+4XKe+sQhRSPU24C+hd2AT4U3pnIAvcWOZ1FCDWvOJwRdBR6upoG9ENbFXZEI3KTWUrkWCRn18om62MaKFohlJgcTFYpuNxS0mlFB5QZmiGajwPTLEk6TK2wLN2XRbMA/e5UBUiepGO7lthWUlRWQk1e5PT0xDKT8lIK6+qyMi5jVINI6BmLzzXhP1jAOIWM9i9G+Y7/geF7y++/HKPHj0mTphouX8/TzLdkhBSLSri9JU+trrgqu+HFapcMTSV81Wp7TKnKUXpoMk8tSxONk9I9leov6qsJYTJqqR3TJUT4DIB08UifSwLRxkHYudx8XEegnUaJX1QWk6cw7l7uDeVXlBtE+J0VVV0GgXykynl0enUVaiM5tGvK6IOfh6StCoqquDDkCDMLeKnSFnLyikq5hQ08fGUya1Fsx2PJgp1qnAjH+jRVMKCDvQfv/nPPz3xBIqhj/3ud+A+FjR2fc+ePYcOHz53zhxyXMkGAo9EG9rG1r8adG3ipwNPvPZd7NvrM9/Sc/7bghl/77tTf2frW/HYEA8nx2rmjBkZLdfSojzIH/74xyVLltT8UoK3hGd1Tqqx48b279dv+Y/L+P6sR4+tm7egbavYmW30RrSzIiYPLo8SHmU8mwsmTA88ZuO1/4yP1Tnfg+e9rc56W53zbpg/J3+e9TnY8NOnYTp/z5PapzqWjzxQ4yQO5H1A/Ilv0Z4DZxvWOXBWTcwHHbddMGHaWRSDs3PumQnTLr77dvmAC0plQXmH72dXPEwq1fZBf4C8276lotyVb0Lt1aRqv4bv+mvJNWI+UesTVx2YpFbjwaOe6v/93/91fK8TCRyZ0vzftnXrjJkz8VqQkv78Cy9Q8GTAgAEbN21C3tJXDCYeouRMmU5Y0yyNANO7JXWKNrpG2LGcKhu/qxqnxp/1FfInRiKj83LkGDdu3NSj5+cvvvQysI4PAf0fpdf/+WefYT5/M2IEBiZ+fwqK9ejeHdUgsoVh7lN/ZsDAgVBOKSh26uQpUibprugDmnp7CooKp3wxNOitlZXv7y3uZFDUabemk1Hee7t+eLW3naP9HU8G+U/SF1595RWykVsC9Cv2V/A1kThG6fdfGNwvF362E9QXe+cf/5g3d+7E8eNRgI+VKdZtRPx2hnuAkhxaimUcPXp07tip/ocuuJqdwFty2dDKzeKku8UpD8vTzDuZHFU/HYyP4O1xMT3uYXHac/9psNjzniZ262F5yt3ipKv5iXM7TdmtpyULT6mFHItmnN1hyqHdzU9d1Lc4s93E2fSY2MpCrMDM1cMXqZIMi5mYlWIxP8xwD3+orrat7iYs9dxGxAc7YmTeTdMPVnbC7ZRY7pbp2PYPFrFS1b9h9DX697EYMm9+UdH7LDKyT9t5QVTltRDq0NkGNkoCutzcpfr0VejlJ04cp56qIG0/8gg1PaCvPf9CBzzvXT/pSjE/JILRKsCtdJ9ZKm35ANAtqeLcRc+XnNJ6U9uoCaituFRVvr+q3Oo2k8ZKqzlYpz18ve5YRalV8LWtmzaO7dbtvWee+0vnzn9fv3ZIUKAj9Lpmzwl5APi7qDkVKZN1VSIId/OKvf2B/fs3bNw4afLkzz//7J133iFF4KWXX6J//eqrr+gD9PS2HD16BLmsfW+MA+sLO+3WTWXvG4a8uXLGtxN12R6tdYoaDfEDxJwh6fs2CaI0/dC2Ll06E9skxPRLgnvGW2vXrVNOwr59+0B1HTFsGNozyYmJpaLGfc3PAPeE0dG6OXz48Jwxk7GjnU2Ozhk96YvO3RyNj4C5toZWa7+ff2rrXiD+wi7zgT17jR0w1Frfgj/Z7N7van7SUwI333c10XOwBzfzE3NGTx7yRd8RvfvbGOx3Mxco7yKm44smTB/8eR/+dGGn2cYZi0b3HTR+4HBn0+Ouch1A3+/QhXnjJh8/eiwNufafqTS5YpIocQxdpo/qt5VzSZc+g+sYKktTUNZ935RFJdOUlFwlW+HmAYkoUNXMVUULccerU76RSCW1j5T92zR2XddcIq0Bd5qtoEukuu1p4qdWgmW6raxtbGgA546bvqmFKwDFLarA+Er89tMUcinZ75K+xzrP2F6V6tUe9r626xj6jg2FWX/zG4qY/8cjv1m5cgV8NbwltyUF3gqUupNqmonG5bztVk312ppeDbVE6BmkpLSExU0lOVtagQ9O/KLGmMRtN1FMnpbOogncn9dqzLQaS6aqcssqjWV1xX7m67VW12sPsiTQf5PeltHdur3z7HNPd+ny9trVIwJ8N2pKLK7XHcDH3lJ/NmLEiCefegpVs9sGThTBFP8VoRHM8E2bNpIrCzr/4913XvtLh4j3N5R02tMU7rHxizvuXvTxiFJtW6nAaOLKNjy5fPny26YXYNbAjiXOjC38i4F7Yi3Tv5um5pctW0qcD0mJkcNHCImF9PS2VNhu52pWKCXgZQsLCT106PDs0ZO9959xMj56cZdFv08/F5a1xak138/r9kHnE3pGjvuOzBs95aXnOsz4doLNbstZ304Ei2eNmoitjbXuhdelzRPrs2cwnQPRryyb9MOAHl/sXrSaboBOxdnkGPvv163nwnHTvu75JZ2Np8UpW4P9fbr2sN1zALink6CD8T90UcL9UUhsaDhXt5MZeLdwT5CWylNKWIb4GyoIooAR+pdpaddlTXBeNpy5oqBfVBQuWmgqwSFIu0Qq1Ro8xfxVpX1y3FTJ5iQMy5KMzAzUaXgNDhw4ICTYCpBgSwFblbwo4V8eJjzL5KniwiaTniAwBjikEZAF21/5grHj2GF8Qjz8H1ZmE36yjnBDZ2URCVSVm2gqz6igEvn50cHkS71iHPuZWdkoPfCcEC2k5SrvlyaxhOEgbea4FpaWRFPpzzgRZMu8fH0KLwcUmzpSxovCXmB94JoDFHSkkC/fGiv3OOOL+6lPsmrV6LFj0XMHhoB9IqK63ggFCJiXeLpz83LxmOPaUrr8tCcqOoqQA5FbocsmXd4cF1KQqqqIAJG4SikporAUIVM5QoK5RKsIunIDlKgcCnSyVleuqhdGbBzOEle4THJnlecdhiXkGfbJjcsQdU40+dLtTvgUnzvXgcuielbuO8pChFsIutAMEe1ITeUUuFxMijzKjVCsJy47yQQiZFJSQjsJGivQ5xbgf2NUV1NpXZJvlJuxJy/TsLzYrLzItCDbKC9zj6fbqu1bx5Kk9ddnn3rnnZcXzOvvbL8sP2svfUBZoUllmUVVuWldbUorTzUZv2+9+SZW/IW2FQTnFhOIWjp9bujbq0s6GTSFe6bSjgbLPv5We73url4tnmca8NabbzEov+0ACI1oRDRVtd5fANzzCHw3dYqaJyPhow8/RBEaWfyN69bhUKF/vePgtZ1r1Sq4h4J3WMK9l+Vph72HT+nt7dvtMzAXiHcxOT7o877712y7svfQJX2L3l17Wu8yP7xh1z/f6bhk4vf/fKfTwQ27fIUvXrjg2ziB+OA1cH90k0HvT3qM6vt1v097bpm9BJsdA5+Dnt1uzPJhX/Qb1LP3/DFTXUyObpv743fDR9MZYNrLDua0/2HreeOm6OD+flJF7gfuFRwAHJBkYK1AfYGirvS5rotMn3wXKdLCapAj+WuxLL1LkBNMh5ODGwomtUYGzFlHatp4KykV8AiQBWjg8sOkDAoO4RCikjKKRmVlcAQBQcX/QyYMbiIqiZBtQC6YM7qxhUjjzskBkkAWUMZRkjUpy0DWUpCMGgUHBnFEVk6Ij4PPzp9InKEASH5+nouzM88GgyfYrgTzYZIhAkPcE2Z3fl6uk5MjfRRjUg4H5YD2A1jsllrydd7xlOtK3HkWuE/YTmXHC1lGttFbjlO0nVJflWduCKdwNdAQhggf3FjAlrESbhxa4u7ulpyUyPj3sq1tlnQWFebne8pqumpJSHAQP+nqgGRKiJAuW15WCqAIvaCkJDdJrWEr+DD0eTCUGDNBKAJnYXkC2XTS6mXj4sAz5QLCcaIjVBI09N+wM0VHkigIQggmszdGVBcvXaKH5vZxssoFxE1n5QAp0cNB6QZYgXuBHUBvxChejeHgJtHl0B/Ahrp69Ro0UDqJq43il/Ql7h6UP8yu015KjN5ckG2YmbwzLWG7y5VlPy79+oMPXn/y6cdB+UULvvZ0XRkVsrGqzDw9aUduhkFizBaw/o5wrz68Jj8uW/rUU099M/Ib9HDa8jrsMzI88vq0Zs4cjP34dzaO7jnA2uaSI5XRmRwc4DLxsMU1Co62EqNas2r10089NXzYsAjpX2r2oWT5k08+OWPmjDZm1T3McA8nbMG8eboT79O799LFi7/9ZuRnPXtCKRTpI3eqKf8A4X7W6EnY0fZGB49v3tOry6e4bq4YHbQztPqq+xdmK/Xs9lid2bqv54efnNhseHDdzo87dlo1bc7eHzfYGR3URXfbDvd45xlGnN9h+vlHXa3W7Bj6RV/9RasAesOl687vMDu/3aT3J91Nf9w08sv+67+fv3fp+nEDhrAyhj+IT5fA+OAhgXvQFgCCHR8nP/DwWMhPXbxO1ejgPVfkdOWIx+jDzFSVANiDot80JmflqHV43AEI0AdantKGBB2UR4X1gTBRjEyjiRLVaGNFgDc/H2xCoA0EBIMU2AHl2Oz8FZYLmCI1ODMAaExLB2eX+MzsuPSs6NSMIm3N1fAon5AwZx9krKPO2NrHpmWGxCVecHBKLyi2dXV38w8Ijom77OoREBnDJlc8vW1dPfLKK8VfXdyjUtKiEpLgjXDikTHRwH2RiSMlfCnSi0uHiu2FZo7RW05QvZ1qjln7Ha+34BipqKlLyy+Ky8iKSk6z8/DyDg71D6cyTnpCVk6xtiYwKs47KDQoJo5Dx2dkOXn7xmdkh8YnJufku/hduxoRlVVSdtnZhWuLX0UJUorhl7d3juw4AXvGRoxpkEFmeASjUXnDuCCQUumeQXC6ZCVcDDEGGEM1jQsltg0Pz+f6FhRIRbYyUWw9Kkq9qGyLOU+GlFDgoTh7mNCz4zpzkbm/BJ/VUehoVV34ICkHzUhL1BaPilbOdPZGH19UxDDLIStlh7f76k0bvn3//Veff/6Z999/bcWyYXaXFsZGbEmL31qtscxK1c/PNkxP2pmdph8RtK4wx0i4fdoA9zoPAzmfaHkSILmjXF1KeuqUD/snvLOp4v29RdLGL+20p+J9o9WvDDY2Mxk2bBgjs0cfe4zpt//zP7//3/9dtXJlW9rA80mBQ3w7iDfcGn7Hp0R+GeCYLofI/7pwj1QwNUKUT4/HYOTwYTxsPHjPd+hA5m2Y5JW1buA/WLjHvrY3PHhum3Gfrj3njpmMRY9LZ9qw0eD7ZYMDZ7cZj+0/9MSmPRd2mC6fNAOM/mHEWFz8BE697x7uHfYdtjOwWjFlZq/O3SYMHM7QgXHDkC/6cSzb3fvXTJv7xcfdvu0z8PhGgxG9B/T9pPuUId/Stbg+ZHB/2zEpA/aHoSIjREy8E2D9bQ2l4uo6z+wS75xS39wy7+xSn9wyJt/ccjHllcvlzJf5MJMnZpj88jT89MlR8+Vs5S3/ynd86Y3rX+USqTF3rbBy1xxwr7DyqDzoqWb41li6VZz0vd5C1DqhpNIzq8RHNomjsFua1PBNU2UjVZPkTzGxGj/9RAvL2Ta+rOHlIYCPJwb8pbwcjiPuKenHuhALCEt3e7uQQH3jTRTCZ1KbrV5Jrek2rJEjJ10OEcs1MvNDRDLkX1UAk4UqZVdpnNEfKBd5lZQXVH0As00fGxB/y+YfOr330lNPP0H93XVrvvH3WV9aYFqnPaBc+aUFJmVFppVllqWFJppiMyYcPsV5++4K7q9LarylpQUcTWgznncqO3PZwW5Sxz7Ory/Ifnd78Tv64W+tWfZS/+VLltXV1xEzGzlypIi3P/qoiMH853+STNBW8kJd3Ynjxyk0T4oAup7N/koPimYyCqP/ciKazeCeqlANj1l9/aSJE0NlLProkSN9+/R2d3ElCYtHopUY/gOCexGqldb9aax7W4MDgP7lPVaY9ky4d1h4ec8BG31LgPjiTrNz20wu7jC7uNPcbs8Bwqd4Zu4B7uknCM9a7zQ/u9X40i4LuhOO4mR8hANxiPPbTE7r7T0jpwvbTa3lCmyCdf9QOXOuy0pJbNK+xOGKJjz6B/QprKoBLn3B1vue2E98yQ07UXstsfLctcqLgXIKKDzpVXGh8eeFAIr0Xm+hL0wsrbxjk3yyi70yC2//19xy/6SMH5cuRYUGuuGfH3+cUDBgBC/l1i65HWP7d1yiirzfvkuuqSGMSfEsksWeffa5f/7ztQ3rhvt5r64qM7teu79ea0HkFihvZaqpFJ6cqjKjutq7Y98yyJg6dSqek9mzZpMk0sqaIeGhi2fNnf3FN4u6j547asqZi+d0nByeUtK4fvPII7959FHEc+hC+vf/6uyZswUtF2hs+sGduGD+fOj5Y8eMib/5RaO/hDWE64mowy8B7snA2rjxjDwXnocxo0ebm5gIL2heXivQ8aDgnm55ztgp3vvPKnC3NzrEjJrwsTAxY2coQX+3JWY4xrgCaPAX8L0ruIc4T6jW2fgoDiL2A9Zf0rdU/Yo4uqFYeGGHGSh/bqsxXQvzdDOyMzjq8pD57kVCUF4egzIPT692VH1ipB8iPfjt8rktXV0H936YzE1Ak5+6Sfez2V+b/WwG980+IgLRNjU3BffNDqFroVrumVFwNjDCH3P+lhUw/xPKqtxdXGCXK2HeR//7v4GhN99+G0FKilXxHhbI6i73cA05hVtHbNx3ou7NjFb8OHfsqnn1eMbQ1v+0e3f05T/u/DGjEPw/9bW4L1LEVJdYVxNfV5vAd62cGn42mcTy6jhfn+PlZYhZxpGxdw/nhfYGBPxXX33l8KFDrZssNdfrq1uIzXIijz7yCJR/RBSmT5+OKwbDfPHiRXiu2jLMJWKE6+a5Z59lD03LBdMrc1n+/PifEdF8GIbL9wn3xiYmpEOr+ZXLl8+eOYskbGJjrbjUHhzcHwbufQ6cg4jpuO8oXnJ47spX7mJyzFUSZkBbJgc8PHsOHNqgf3yzId0AsVMvycyRyVPndE58frYI91bnRKjW9DjgTudhuXrb2e0maudMjjh5JOKbr9Q7ttGAIQXzBAwYbbhIIqbgfT4czhxWxgupHsQEWR4PygUuWlmpUhDSdTJedAmqWADeeVEtUpI1cXaDCxrJtlSMlAr5wecLPwRNFdzF6lkBVmiGTs+uQoqriN1CLxGJo4VN67gq74FyL5B1KbJ5c0WOqEr9VVxPRLvyNFXCPZJd4paa551dDFyCpPx0TclxS8tzT8/np3dWkWtKrntanldmEWY1qzknZTEJbM0q9soq8kjPZ2Wv7JKYQurZVgqZPVJzIepoNOIolKGvruad54xoyh0FQ4B7r6xi97R8j3TREg7KUZj4ybxnRiETTTrhF0wjfbJoc8M64hRYM7sktlijTE7kSl548UUw/5H//m/kWQYOHIjWGJLuMEP69O2zdOlSGIfQvbnyOk6XcsuoHGblhNHIDz0EP6E21VTXKN0RXc0Azis0OESxb1nCvVMKFvLu1NwqiUUSLeE7vS1bQPmn/vI0SmEUSCHIWdlY6VDxYKu0COFVSndc04eNBwln1HVtNY4mQbVVyz08fEpK7iuqSZs3b96EN5+MtqBbKuW28YN+py79Aot1/35LOt2n//rXvv36QT8vyL9D6hlXxtTUFD1qpNOcnG4S0qHo5hNPPYVsXDsW7fpZ4B4fDrpGOjRGBMnR3j4uJrZM5nj/XHB/DBA/s91YGPXGR+yluxynuVoOAd/WwMpp35H5Y6d2++Aj/O84c1gNc5vuQTHirXdbkDzlfeBcSya/gntX0ZEc/37EmKG9voJif36nmepUHEWPcnj2txNYOKBnL+LG+otWv/v3N/csWQtT0+0hg3sUUdStIo6HGQsDhPUpUAcLD34IOff8CURG1QCZBP6DjwHNJkRKtaDrghXPQ0xUkNR8KDp0FalSyZJILBwbihEWSPpHpNSoQf2GGXYLysPugNgAJ8fv6lXBHpHsGt2Ag/3jLI6MikSNB2UBF1G1KpaVKWVFXIHoLvxfIqK43a3D4jwzi1ySs+1jU/jGcD7k7nshJNo6PO70tTD7mJRTV0OZORMQ7hCffkkuPBcUybxNZIJDfNpRr6sXQ2K8skqCMvKo/urg5EQ4mqPT89FFpYq6gC4cLlh8Quh1hEx0y3cqqazKKSn7sLvfxbBYDn0+OOpKbCoHog2XIuKPel87fS2URh7zvnY+OJqmXo5JuhASYx+betDN1zYq8XxoTExRg4Wrav6B8o8/9RTQT4iMywtw7NbXh1T+xRe9kBomYvb3N9/87LPP0eFBkl6VroXCxAWEw0OPy91EUIhXRhVupPweXFsgniuvaopxZyPCI1ThRiF94yICxbB0qFFDgF1XZ4qOgdtHH4OOzR//9Cfyy6Cf4zTHnULwlktDDJnNc3Jz0KIQqj4eHoFSOgn6bmpjuJJgMo8WpFK6E5ZTA0smZ1bDhmqXZGNIUNR4Qf5+/bq17QKsnDVNXbhw4euvvfbqKy+j8gaDtnWxE3KAvv/+e3w7kydPTm0iq8mGb7/9Ft78hDvJQT/McA/99HSjSDUvRfduXREFwFwAvlq6LA8sVHtYwD0YDaYTFB3aq98PI8Yd3qg/dsAQPOwj+w6AqAMVclS/QUyXdlte2Gn61aef4fM5u8NkTP8haKuN6j8IIx2y/LAvv5o0aISL6TGldtAi3JudIIUK3v2CMVP6d/9814JVdBUK7i/uMu/breesbyYM7NFr9bQ5eI3GfDV458KVDxvcX5f153imCdAppo3iY5A5jfwhb76SNBE1SMPDeLeJHGJlEzuFucEKvOq46IF4aBvAB+8thiQkP0XK5rVnfVXcKkl2DGAQYl7YjFB34BHCAXdycQEpACFvby+lr6tcN9A0aQn0j4CAwIzMXFc3z/j4JHcP78jI2JTUjIiImMzMnILKOp9czSF3P9eUPOeknLOBUZ4ZxcDoqavhNpFJdjGpJ3xDHOIyLoTEYlPTK1yOTroYGiMgOC7NJiLhTECYX14ZQIwxTrdxLTU7NTmZxnO5oJPCGYWlQ6IApxYkcwVoOdZ9aaN2WEtw75KSe/pqGJh+KSKOxthGJtDxnAsC91OOeQdwdMf4dA7qmVEE0NNU76xS50TReLqcI96BYdkN/rSkpLTEpFTuycmTZ06dPp+cwmjJIzYuKS4+KSoqztXNKzUtE9IkPQHqAtQm/CelWTt0wAvx4Ucf4jJeuHgR427gnvfQX0YL6Txg3bCE3p1ONzYOotTVDMEHDcGqpVdAmg0+DqMBngeMfQgwDG64bfv27SOjEo/Niy+/NG/+POSCYU+pRtIfwO4Pkx2/p/zw+NHNc995BiCGck/VAFGlZZAxIKT0/PwYptEvqUK1/Gwvs1eET0+c+Pvf/vZ+p052djdBTF5uoZOji82ly1GRsXe7W/z4ZPD26tXrL8/8FSVnDP/WC7nAzOncpcuLL72Ioo6OuMLr069fP7RA3WURyqKf5FPaahz1fuAe/jESF4esrBDqQwampUjSA4F7mWZ1iFAtaVZW63a+9+Y/MN4/fOc9y9VbAfeV0+ZMGjQSwgx0HeB4ZO/+enOWndlmDCKT/QR7Z/RXg1d9N2fcgKHndph+8Pa7bNv5vQ/gaEo3/bnb+u5Bdkz7oxt3w6+fMGAYPcfmWUtw6LuZnXDcexjGJ0TMUX0HDv6sz9zRUxz3Hpn49fAd85e7q5TahwnuWR9HTUFjWi9WOS+8UDHTaEBhZfiD6TBkrkuJSsb7eIFxeijlW5HpVgp5HauuLE3acWAHeyuWul1K/+u6rDDFQIGugv0Lx0JBAQNwkewjdHpZvZAuhDc/SUrliBStjEwpOo8QfJ62KiI91b0g/2pSgmNWBul8Hj7eR1ydzDMKInyy01ySYmwjg7wykt1S4jwzkrwyky5HBTslRDknRtlFBdvHhJ255uWXW8AIwD4uzTEx0zUtj28POoCIBLe0/Ctx6S6puV45paE5RYWyJbQfMKIPo+/hpPBH0etwxiDaHaPZCaWVbukF1uHxzik5drGpzsk5ttFJTsnZl2NSHRIybaOTmXFOzma5W2qSd1aKddi1K7FhrsmxdtEhHmkJzkmx0fk4u2Nqa2LjYq6cPrk1PtYhP88/Pc0jN8c3OtI2NdUtPdUtNvpyXq5vWOil+uv1tErn0IAfsv/AAdzHk6dMQVYM0Z6/PvssGpP9vvpqw6aNiLVRcIqBi0iLk/lrWPp05DweLMHAz8qm/nACbzZ5AFjKW6ki0qXL8x2ep6rRosWLyBVAHFToG6OM3/husxX0XDpvbj0jBkY/7JCnBWYt7QE1AHfFC3J1caH8IUV0SS9gTZ4KBNoglYr0sUax/vb6ELZduFBoVaKwr5TrDXYbzPi+/85tQ4x2D58/t/ec2T9w9ndt7NfUMMRZvGgR8pDoOsycOdPLs0W9TGwCxmFo6Xzx+eeMRHULZ/zwwx//9Me58+evXb/+J5jGjBsXdpe6Dm2Ee96U3n36mBkbe3t48vy0RMd8IHAPVfvgQSuRImt28tD6XZ07vr962lyjJeutd1osnfTDay+9vGPecqAZSxy2zIAevXYuWHlyiyE/Mc9B57XT573+0isbflgIg7Pr+x/9OHmGyYrNZMAKgqZUN2uBmXOUGOwXH3e1WKU3+PPeBotX48PZsWDlue0m57eb9vmk+94l64b36rf2u3mXdx8Y/dWgLXOWKIkFeoWHmYj5M35uNUTq65KryvdWV5hD8FDfsDi05WY1FWaFxVZRObYxeWKKzrWJybVR37EsyRVTbP7lsPTzIamnYgtjYour4koqmWJ136VVscUN89FFmuyK6nsIFzePfFZUxxRXiD3Lo8ipKu7mefmnqpg89+hc68am2oizEO23TSs4pS03riqDsLiXk9WUGFc3nnhNhbmYlz+rNSa1lceAIPEqNl41XmxdIwkYkuZOcQJE86dNm/rZ51+8+eabL7zw4gcffkgJkS1btvAe4fpvph0Prw6PUN9+fVHef69TJ/wYQFW7eFoA9AFSeeLJv/yFyi2zZ8/CMdWK0uT9f7y8PClq+NobbyCpr799YFn+sus11CVfXVexyv7S2EkThpJCeG97xkA5fvx4nz59nnnmGQ5hYmyc0QK/nutJpZrHn3icK4lBoxaikBrcKND9oD9Hjx3zauImbUe4F3Wvhg9HVtqNykjJyVUtDHkfINzPHDXRxfiYzS7LlVNnf92j93dDRwPuVmt3YGITKYUcuXDs1IHde303bDS0yFN6RoM+6z1n1CTiqMc37fm6x5eH1u28uMMcI33w532nDR2Nrhm4TBS3Rbjfd5jo65rv5n7ZpfvUId/CvbHWNx/ZZyD9zeXd++k8enfpPrb/kNNbjNZNn082FpT8I5t2Y+Ar2YZ/T7jHyXN3w/PaFEnXs7x10pZbVmvM7zRZ1JQb19e01cAR5bdqbkJAbOCm3htGLdl3WZH19pG9ynNA9q0N1pZb3PZkb5noAAia3YVoNkR+nOwMgufMmdOnb1+YJ9QL7PTBB4MGD1q/fj15/+QNvfTyyx9//PGyZcswulXVnTvmMbUF6AsLRZyTuA80R8U44ut/f/97RZlXNc4exMOGutmcOfPHjelUX7mmRrOqqnQlk7Zs5fX6dScOD8cJdv/RAupK/u3NN7Hip0yeQnTktidy6ZL1Ox3fhaFPyJefp06f9mlBaq3dP4cOH/aWiZPtDvd8UH7duX2bs4NjUkJCSzzdBwv3ribHIFmC5tDqyaXCysYAx7iGYs88jElo8lBlbPQtQOcrhg1kfEXKZH1IkwwILhvsh7YPxwZcbsm6d5dZtWpzOgn2BinzitEhWEDQcmiDOOI2k/PbBBeTQ9MG/vpw8u5v69yTxJga5XVtFr+67UF1ztPWj0Xy/a27asW9qOBeq9kvpor9aqa6caYB9zX7W5mwlGur2wr3JJE2i8QS/Mxpgu8UdQq8V+5H0w9SYlXlZs2aeuO8NLc5r5uXWNwt3Df7FBUUnjl9eujQoULn7dFHAfo/P/HEf//2tz169oD0iQc8TFRSdL5VzfRuP8SNCfOoeYpzPfroo6oOOGrGuitcWvKgdKF3bNdztpt0vWq1wno1VZevKsxeMmfWMLLKmq1fKPWU7vYEYfUQJWZI9NHHH6PIn9zoYdN9cILBxSSMzAX/cfnya7IgxL863FNwbdsWPcg5DGJacsc9ON/9QZFVa34S4L4kENwSiqSawGKmGz8N9oPIkpt/EAhWCVks5E+CRK9vwRLB2DE5pqx7nxvi+OeaaOacZgXWZKLbYD9XjHQE/0PsjYmWiM5glzl7FvT/vWKfD5tmDtYrLEh86LFx8UQmdbrECB4IjkdJCU5YvKtKh1LITWdmkowPoQLgI/Tq4+NLxA+vLmn60A/8r/oLDZbcvOjoGNzfMHwSE5Mwh6Nktj279fH1wZpjFE+oNkFy80UggIpICQnQ1wj3k7PD08ZfgRvkFerr04F79LYyU/RT4raRcI/QSkz4psRoveS4rZoS0jJNc9INctIMYsM3sUJq/LaivH35WYYZybsKcvYW5u6tLG2Ae56WjIx0rkaZrNpK86ADEXUMkvoBydKZTXwYZTfwnTgt7eKs0YrBo03gQfi16+uBP9Zp/eVn+Ky0yci74dRwdnPR2Fz0HJJ4ipBPrfZiWeE+5MPSE3eQVpqdtjsnwyAyZD3nhb5YRYl5Sb4xf81IQnlmR2r8dlYrKzQtzjfOTd/Dd37WnirNcSipiCXQJNrPzkXBwsKi6KhomLI8B0VCzycVP/upkydZqDQq8KrTpSE/MPDrgS+/8jIGPkwSnP5cFgoNImY3mOKkQ4ZSXRZeI31A1+6f4gGnmiBKREgCcFbQe4iyEHinayfYwUFxU+CO54pxCXkMQkNEtTKuIcEbrhhyTBC3xPC/qopogXLpUL2EqMB306YRKUHR4X4Kprf+Wb16QXLsbPC9Kdwz4dVZvXpQRkYugx6eNKsDVksWL+4/YMA33357z0ON6Ogoyiv+Aynm556jShfMBVWR5sYKUVHA/W9/99uwJpV+W/mYmpksXjRp+YrpK1Z+/8OM8cSQHjbrfuvmzVfs7HjONeXlP3WoVkmkgbxOUhkNAr694F8elYxJAc0sZ55JSae5mxFZFYpmrqYn1Dp0AyRPwZiE0gOFxku4XC76ydgsM1cPWzMB+grulfglQpjDen2F3HED2V/SPektDJesHf7lV7O/nQjWH1y345u+Aw+s3YH2vetDxswBlaCjoLoFEsH0uHDhIjFTlhNk45VWamXw8yQmV1G5lP2jspKeAdpnUr7K09sbuOeFF/VsA4NKSop54UFz0CdEaGldxS3A+rIoVZ0cyZ5izIuLwOGKQ35BPmDKT/YJGwSH5pUrDoq64+/nTzTPydkNSRjgPil2K8AdG74xJX4bifixEZtyM/cA97ID2JuasD05dmtkyLq48E0SH7cD/SV5xlkp+kF+q8oKjaq1ofJtjKagoBphcFJQLV3dXDWiIqM/J0ILRTP8/KCsIMAJvYSuiNXQm0TAmWvIedEdAmG4RFqLE+blgZ5wHLkIdGD0KDylXDf6QvbA/glH03kA9/lZBhlJu2TvtbEgxwjEjwrZgLpATNhGzhQTPipkfVzEJuA+KnQ954iuJH8qyt1H9xbsv6K8+DCptcA9IoWgLap2oC1tBtMJjBeIAuIRnB1o/thjj1Fvi7sMkxK/+VNPPwV989tRo9gQVgwMWlkxMVgJeQYEBsC1jYqOgfOKMb5y9aohQ4e89Y+3KS37hqwvOGjw4Pnz5kPXgYGZnJRMRWKuKv0K/Rlt4OyIHtvZ2XPFVKl62gAfVwSTy8vhXyJ20rlzF7wZRJUJJr/51ls7dux4cKWg1q9d6ek8pf5m615btqqiaMX33/WdMH4yjCNy2VT2Mp+v+vWrrKi4nyPixUZXjoDBs889h/g+aVbJN8P0mrVr/NumrLBi5dyk2O9K8xdXlS8z2tPby/vaQwj39pftcNOVt9BhPzi4R+8eIuZZfCz438f1H4L3HJ7MxpmLZowcv2DsVOAebsz4gcNg6ZzYYgg5Z+KA4csmzcC0nz9mypTB3yyeMB0JhF0LV+J/RyaT+ieGy9ZPHvzNqu/monw5ddjoqcNGfT9yHIx+lVXrYnqC7gRZ400zF0PEJLqLX14lc6HigCQybn0ZFl6BHudnH3UhPkwn8bDBPbgAMCG2iGFdrqnAcFOsOFnLOxZQx4KDbqHAWskgAzEYwnQAWMTXAgJZAtyL0YC7h4B1qafGhqBAWER4kbR2ixuZduARaZxQMtRCP38/QAGqT0lpiSi8l5QE1hDlDw0LLdeUe3r51NakEKVMjNHD8gXmQEZEV5Jit2ELY/CyBBO4JN8kO313QrReCsvTdoPy9AcMCDCH6SRy03fmZHqoWCsAT1NpHrYnhyMOSdhNVCEPDcPGzJU81FRJMuF06B4U3Z7xCn0SmwPZnGxMq6KJWPegXoRU+qTrUgLRXDFMSCH/mZ5OJgEICNwX5uwJuboalKfTYuK80AsrKTBm7IJ8GDMMZejGUI5MiNqSlrgDuI8IXscpV5SaIy5WWngQkRt6ILiqNMn+igPZLsiXqiouID7UZBJhlCCMtKY7dHzvvaFDh6H8DGPS19eH6wDOijsSGYm/JSVVQDN9YabkoZZINi3jNs4IJVQhl+bgMG/evGHDh3fu0vmFl14kC+z9Dz7o0bMnJVuNjIx4ikSXL5VBeeScXZwlp9MPpq+y7hk9calZAXJOckoyC2kGrKE//vlPCJOVPxgD3+7yldXLe1/XrsFlf8O0r13rYDvux2VLGOFRGP2Pf/6zSGd77LHfPPYY+VDdunYdN3480ezz586lpCRzHe7N3sfFQU/W6b33nn3uWdCfwZMy9imG7NPI1Wn9s3bdoqzUuXRO12vWWpgN8vENfOjgftPmKxLuy35yuBfWPWlWREr7du0J7bJ/9y+ObND/mnom/YUa5UV9c8GRHzf1yy6fonMAf2bP4rVdO31osXrrpx98tG3usi8/6X5kkwG9wog+A8BojH1isLNHTWTbnfNXwMDp9v5Hn3fuunHWItiZgmNjepwUKtb57MMun3/clf4DHJc5vUfYOd3Ap+9/RLR2wbhpribHpwweuWP+iofQutfdS0XEbOp8V095M8d6M8ZVXaNuFx8kf4WmLktw+svv2qpqyCM1lVomEIipTv6pTltdW6Wtr65l5nqNWr+eGfGN06i6lg3rZRprbW1yRalhUd6ewhyD4nzDyjKTilLjilKTSjlB0VG6KyxXSxpmykw0Jfsqy8TyihLDivIA3Rk1Pc3axo86LzWvsnbVCmqhmlFLlAr/HcKwNVJnrK5OGa06MWc10yA6VnGmpMCA88pJ20E7y4v2yTYb03hOUJwRZ6cxkz8bJnVqmmJjMVO2T6s5IkXkGq6/Oi+deBnKpq+/8TeFYsD9408+SVVkXZYsLaFjSJIuZlVJRiXW6h4D1lRXg+Wi2tfNhcBYk/cOGqKx8b6ly5ZScbDDSy++9MorWOtQywmBggsM9USV4yZ0bN1zUiM/Oj6+jfWlN954vVu3bqirtzvcV1ZULVow+/ih4fWVq69XrwH3gc6I4B8mjOsd1yihHBgQMHjI4Ef+S0QU1q1fT9dFrwa//u9/f5Pa8WQO02suXrLE1MQEQj3CotRjv4sGVFZSXHfChAlUsuz47rvUWVy7dq2uktq/PNxv/tng/qDk3Z/FiB78WW9vyzP4T/QXrhrdbxDSxA5GhyhFMrzXVxjd80ZPxqsOy35k7wGd3npn98LVQ3v1RSwT3wtyCAR7Jw0esW3ej3h+TFds/n7E2JF9BmCnTx48cugX/egJ1kyfqxz3Ikd3ixGyl0fW64/q97XenKU4haQ330rx7s1XbIGSv2jcd057j7D57kXkYZ1+OImYvJltT8fArr+VZst7y5Mt0vcdwyuOeSMb2WTyu/nnjYWVp277Jzkd9a72S6y/XlSj9a7R+tZq/WrE5Kubqiq8NGUeTZfcfqryrq/LahMLSCBRbSt/VbHrdvnUVoc2nFe1Oqmm32LSVnpXVXg3/vSrq/avrfavrvJhuVziU6vl5b99YBzR/GefffY3//VfuCkU3P/2d7/DnL8pVEtx+ao2VdSpuaVGWLOAPA8Pg0IGQ2QVLVm6BNoPpU1BN9CfrOCVq1aR8c5AqhWSD+x4tIiRiCA3uN21ZUgJWbp4wZKFvU8e/fbC6bF6G/tOHD/E3/9as6f3yOHD//znB2GNQk9gC9VRGOAS+Vi7ds3oMaM//PDDV159hfMileHbb74hLwH4I6W4jVKADPIImUB8+v0f/tBGLvyvcH8HZo6b6XFqm5D0RFosBa0gYo74sv/2uT8SMj2jtw+shw4/d9Qky1VbUS0mA+vt1/+2bc6Pgz778tgmAxJxYdCD8hO+Hoapjlim3uxls0aOZzSwbOIPdA8De3xJx0BCFk4bPDZCXdngAN3JsF79+nzS4/hmA8K8HBTqJ4ebMHAYBFCOYr58y55Fa7p0/ODbfoPI4HUTRMyHDu4J35W0mV6NUzjpFu4BXmClsFZpE6SxdKXqk8bKo0E9WM5UHPRomBHznvwUpQEtXBrWPHhjUks0Fq5aj+jW3p+MnMCgsHt6/29/poQNb2XdEElWRjpOEo87ae224yc5OT08ooEVg6pxfn5JXj5JZ1obG4c7botfBScSngp8MvgQ0P+CAhjaTlxv3F+Jt6sz3PQRlFXDEtAHXrF8+ZChQzt27Ahr5bXXX/+yV6/Zs2ejZggFs7iJSpL6EGB45pm/EipIa2+ZeF6KkJCI/ZYHjPcZ29s5wj+47Wp4w1pRb1c1jQlH0SeRN4CWDoY/Tq1XX3+tV68vfvjhB3MLc/xdSa1eHB6nzVu2tB7t/xXu2wr3ioh5eN2urbOXHly7E9jFq3Nqi5AgPrphN06bFZNmfPLeh0snfG+1erverKVGi9cd27D7wOptUDAPrd8JNx8EP7ZxN8Y+2L1v6YYtM5fsX7X16Hp9i5V6Fiu3srcGNTSTo8SEIfyc3Gy4dfYyqzXb7fdYwctkhQs7zaF7slxv9lLjZRtI3TJbvnnX/JV7lqzDoSQr3D5EvHv+Cnbjm5blKYrwDvCN15XxpoJFODZEZZUErjJkwETcvlA+eKtL5QdZG74Ux6bSNpgS3mVW7sWWLsUWzul7LjFTZOGcZ3KldL9rkYVTkbkTxaGoHFJ2wI2CIWVWbiwvMHNknupROcYscedP5ZauWs+Yepm/R/iLfSO6ApBhJamqfkQUcLgnyzIpNEzH/MVCV/prGLDKdRAsiyPi9iiV73NaelqZSJfNU4k2lXLnAtCzs6/JUTaIximxE/bJEZnB5Yy739bWlp93ND+1UhFeK9XhleWI/Vsp85AVX61SqkNzndNlUrGCEpV+zBGVKY22THgjf4MjEkv19PRitcuXRUUwnPVqNebpZemqlVJmjdSy5tAkMOueKMLg3EGdl0ZX6Ze9qZ2I96hE3McqsZGgEql7LffRsJN6acXzk0B0beMVqGxUw1e7UlL4NdKZ1dRVKJlOUVy9NatXDx4yBLI/nJ/XXn+jyyefQM45gNiDi0uqTHPluf2yd28yAm5bHfBh+/AEIQJkb2e3ft260WPGdO7yCdHsF1584Z2OHeFlrlmz5vz589euXs1pTLBSn+MnTvj+Ynz3kpnz88G96XFBupfkesWqhBCp5IhPbTYa3W/w1z16jek3GHzH2D+/zVhx8wVxc5cFxHndpAj1NmIPlqxwVuoYs1vw3UHQ548qZ44QQBbqxxaszDwUTIg9+HNoA0eE+w/1np4D9GeHrC8UOh8yIibWCiNWCCSAC6E2IrdE5/hJ6TsFoBj+JB+BL6AeKxPqZCjKPsEYGAhQMiBNKriMiROFXitsgnIMbfPNHJJ2nU/WP08RqLTdF7P3XqYsVIGZQ7yoBXiRQoDx207lm1yhQGCqwYW4badit52K1jvBQirEphtYx+idzNtrV+URHREbDUQCNFA+CJtC3cG09PH2AVKU7Bf8P5ReOAX0WIAeqH4hoaLIKg2DSCqluxLggypFBEKFGGhQciIlUZIRCWfNDlW0GYaogntOkJcEeRli1zBN2dWZswigF3C+bHjbknU3nCRFRZiuxHvZM9wkQqlCtcbfnyg0F41tiVUyT0u4pMjUED1W9WwJXIuaYvHxkgNaQYcacjt73N6eK5Di7OKmINfDwzsqmrioW0hoRHwCUqZVtnZX4hOSvDx9kPWsrhErubi6s2NvH0hH8QmJyarCraZcgxSaKi7G5eVKcpVgZxGv5hqiRge/k8C8irHTP3HdQG16nWPHjys0x0ooLSunkUR3uYCcFPMBkobLg5SUnEKkmjgwHa23ry+Xl0Eh2hsRQqEhAs7PHkNDbH9s5Pc6vf/iiy++8sorH/zzn8hGrl+3Hr/573//ezJRdSXV/iU+PH54pbiqZC0smL9gwMCBKFcjkoOQUbfu3Umv3WOwBwNl0+ZNbWTm/Ar3d+LdW5wCWBXRHhUEuz0H7fcclEx8C1CbpKfTW/Zibgv43iqw3lqQ4vezieDaC7V6QZzHSyMmI3w1kPH3o6dGuqzqOWT61RFVctZFEjrR0BcHMjzIvLL6xUJZYkXQ/GVBFbmClWB/PmQCyAKjY2Lg84KMvMzQInknQRwMSZiIytmKLY8F7SeT6bHRFPsC1EuUgsmYezzfaghMV+Hj719w2jtzzyWMeiA+zcCaQq+Y7QA6HQDzCTvOpBpc5DtF/zw2PjO5JvaUCQzfeDR++xk6gwxDG4oFZhrZpO48D9yfs74IBKHNAgQD9xBIQHkaAyACrMoHCnce3qdqA30SUo7w/ABNuB9QHukMOLtsQRVP4lzSpJQbQAZakSXg7eNNH8aZOjs7c0YK7gFfoSzp5VWlrfaR1ElVh50Nscc5VmuhOVikV69ivjk7OQOp4upRU9DDQ1UEZMzErvimtVx5GJ9Ozi4cNCgokF6NnpWVgUu6B+4a7GxSHIgu19cV1Nfl1dfl19bk2lw6lpEeFhriXlebd70+38fHLi0tzNPjUky0X0SEV2pKqK3tsdzcGG8vm4J8qk7m19fmXfWzr6rMjIn2sbc7kZsTU1sr3szU1Exvb65MAxa4u/t4efv7Xw0iRhsaGml9ya6iovqynUNlVa2kG5X7+gVUaesCAkOvOLioTeh6uQvcfRfB063gdIB7xnl0VOfOn+dBoldWWWkuchAmsmdramHj0PXyCLGccYkQl87NS0xIQGjexMTk++nTP/3007ffflsVfIdQtGL5CjYRBR1vcf48/B/sFLj2XB905SgF1bVbt1dfe41TC/3Vd3+fcC8UMceI8iYy0UlIHztJG9zJWEhUonwJWMtkV4pYmYHCoraJLEiiYFra3QLEpazNcSalbcl+WOcKPcG+w8yzUEha4ny3PI0LnpWdjaWMvjTbxebm4lvRMVlfiTBLHfyGBCuw/qGCe5AOmiBYzw0DE3mp1HBeyeldl0nwGFnKHaEcHWSmsJCjCEJhXR3gqHwCQlsdO982GD8M3pvygx7Fls5UecVvk7D9TKr+Bdw4JZYuheZOeSb2LGcGAx/3jnLmMOHwYR1cOqUHXCkTWO0Vm5ufp/T3ORxtwMYE0AEOxZBRzDZm1DrqkRAlcMvLcdRgqMrocb10lWCnCoeF8s8ojTb2w1ZxMieQXkTnWmEP4nDy9FkHVGI8LqqQp6WhHJd989i82UdUBZA0HijnuKE4HDNXRMaNBiue68zlBRA5orDoi0tws9BaBhul0iHDm8a2gCOhAlF5JjevtqaiSnOwSnCQzDUlpmlJ2/mGs19ZSlKuRV6mQWGuYW7GbqqB52cbFOUaFuUaVZSYpidtL87fyyZMJfl7Swv2aissczL0czO212hD62rTszNOZKafzEg9Xl3lxFSYdyE/5xxLNKV26aknkhMOV2kcYiMty4pt+Wtl+ZWsjFNlxZc15fYxUZbVlQ4U/qPxJOhxwelBufG0nOwNuiiuEhNXjAePW0C3imMqIzMLPWRWY0yD04xvljODhwdh52ZRXBQWCe2ynMxbpbiAjjykz68HD166ZAmBaBKalEOvjR8KYKIQ98OCRT8sXrpy9eqAq/4/VweAuCbkn6bWvZmJ2eJvv/tx3KwV42bPGDU5OTXlV7i/A9wrvfu546b6HbygYBdgldMpvgFoZYmD2iKNFm+MhHhlpKvVBARbnm466baFvO/WuENWE7VQZDkUvlnNQ64m/3RjW4+m25qfbLatWOeXopkDNjWLblVaB2rMnAFrEbAV326l5s4Vlm7lRGXlT1HudX/DjJaYbeN81UHPygMe4q9qNRNnrVvU9V/EJ0W6dO71jmqrNIerGrV0qisOKDWFxp83qS/oJlUStqnIhFoZabna6oja6kht+T4htVZhoZisWiXaI37Si5jXVFhAD6WTqGqguiLNZi7nzWStwX11tZnNnjqhbFpUrLmbHCX6RXrEspv5ms0+F86ffx2H+AsdcIUTc/560NfkfJEbJcu89IUxaWFuJguvo5x6+ygreRNfjxo9Wd90nVvglmtx849ZfzlmguGePbelorVXSchWPnjDmvruf5w2L6LDj5l/1yt8c8fOp4d5B1/9Fe7vCPehVFoB7q8evqjMZ28Jx7pJydMrfFfBUmGh7z+tw25RzOTmyevmPahJ/UnWvRJTw5q37OG226p1+H6o4F5RoVv6KzlQ+G1EuA9HxFXh6MBGa11HpTYxtyY8rSYyvSYivfm3mDIapoj0qrDUsLOO5UEJaknYOacs95AbK4en1WXeVOJKpbm2kTukYoa3/SvWNL5+deJcq3SpyK8b6+DaurfqgO3GyZF+j5bgvq2T5naichX7k2I3VVWE1tVEISV0dzu8aTKrr8sG3nHf1dXVNn32bntGBD9uhHwbq6u3/QPoDBs69LXXXjt69IjYvr4+MjycArCbNm8eMXLEu++++1yH5998602K5c6dNw8FUPxCvFBKo5GA+5Cx4360cduXWGgQnbU7KtMoPk8/Mr33xGkO9nZNW06fsWjRop07drTLS8j5ioB8JfwCDRhFtjmDS3pE7qyhkZFfE2bOmplLEt9YX9zJoOr9vfteHOsbGvAr3LcJ7ueNm3btsLUwri0Fvd1TIizfuFaU8Y7Bjm8dQ1sCtyhd4tNqTdoGWG9zDdvmm+v20DgpAf2HCu4VtabpSwhK4slR95inFqc2zy0Aih9ZSNuXluKuVXdXFSPUHVdl5dzUl9wyz9rVQnW3XpE9fAOvllVqKqq1TEHcxcjw+iYrl8tigtJ3XMyecYm0UgdDZUjxSLAJ7nX8DDrPjG4FdaZYoGTzKgcOsVzW1z3QkFh0p6YuhS5nSnemd0Sr+saPLodLbd4UDVVyk+5Aqu9Rd4GABB1qXeNHB/eVZQLx+VYaaurnDSjX4XuZJZI7yqKvKGUrS528GiODsMCVlZoQBfeNy8Wf1G7VJnKm8UDlTQ6k0R3LrL4+x9f3KkmzFRWVtxoQusdJfYM4haJjULUTKtVN1F2NtvStPFjY40//5Wn47+k30zRxl+H4unTRWk9Pj2zYzp07Q/tBj77rJ59A+pwyaeKkHUb7kop2R2boJsPY3JX23lNnzBAYotVaX7w4cuTIP1EI/j/+Y9rUqbSwvPGD282P8/T35xtKKxx8dOWOHTtqZGhIe/jHQZctX/7jihV8j58wYfjwYSNGjEB1iAgE2sjkjsHWf+styn+JiZjtsx06/OmJJ5ry7hXcF3UyqPwV7u8F7vefRtug36efXdA3x7dzycDy039+zLdUPjjZ86Mux7bs8Tt04bZ1S36C6WGDe7CbDEysXfytOF5RU8A3TSBEsS949HMEhbEOSslFa+tYqXAA+HIIVkPXDCo6rlsU/qBbyBpV1/DJYi8TiIPhk9JYvw3YRqKLUB5BKiCV4Jug/VVpiWKxQyKTcIGCQkLw5BI4JdwnGhMW5unlGSrTXpAX53BQAFmTPYjye7I4H70RAViODpoofS6YD0R0iYUSd40RIhDpHJN2ggh488V51Qi+YGCwKLaH/MCRo0dxqdNUDselo/gyVb1w0KNzwh5sL1/mghAZZnCDqoxQRMjIKC9vrYI2Z4oKTbSMW1I9im25gOycS6dTDaSFXHb+RMdDC+G0wP+htWxCcILhFFeSHosLmyuoojXaiiPFeXvR1cFFg2gEggrMFOXuzUrTz0zZhWIaujqI7SAMh4JQZPA6NCeQYUBcCIUG/sqUl7EHITaA289zkaYsGLjXlpuiJZeXZYj+WnG+EJVjQrOBneemG2iKzUoLjNk/ohRoELG35LhtpUWmSs0NJw+Za6B6055PRlaysF6JvnIuzKvHiVsJEZZ4CQ+AYEAJhbgULibrcF94wCRftk3DKS4aAArXBRmGFqOjGg1tcHJ0RJnyu++mvf7W22sdfffEZDeFe2x8g+jswdNnbdfTQ9ZfCeaQlYaIwl+eeeZtcsRefLHDSy+J7xdffP11KKOUL3wN1EYRQX169OhBcSsYRNBvJk2ZwjRx8uQFCxesXrUKQQj+0R9QaAyG/n5LS5iaTNSH4cpwf3cbGNxq3d8P3PO0GBnt3WdiwmS0z9jq0CGdafJv4cxBjP78TlP85l4Hzlw2sloxbTZ1aIU/x/zEyu/mUKcQu/5XuFcfzFvsdwAI0IEX6OwiqsK6SfJJvQxUQqWul7uFhAeYgptKYwCqCWviYGFzRgPYQYkJAmHhw4RTZ6OsDG4M3L4CWceSHoJEfH6KfkVSJOG9EL0EdmG9A3AsDA0PZ/OLF21AZkr0oY8WH5+YlSXcGg6OQmPrioNzTm6BtY2dp5dvfn5RZWU10pK+shIe5EJwH50WcvfpA+jAgJJw2UVxaFFS8fJlnCQubq6KPEMPwQp0HkASXQ6QpHLEKKcHMPH+CFK/uzuvCt0MKp582BsfSIetEzGBe6ifnCCXRVAtg4K4hvwskkXV1TpQPOkPlH+MnTMQwWkG95H+jGsLOZKfXG14O8q6r644kp+9JzRgDXI6SAMB0ynx2/kGnaNCNyKyhthOWOAa8BrQDwtcm5W2O8B3ZVKMHkAPxAf6raRvyE7dDbhHhqyqKBdwX1NhmpW8IzN5e1bKjhD/FYU5hsV5RnERG4pyjKKC1iRFb8aDHxO6LiV2S1r81tRYvaSYzbnp+iwpyjEsLzS6fkuiMpoK6L8j+JmemoqnBXtcSg7kkaequjFO0+rgQawBusFTp06hyIZ8ED/hO7VdERNbHvrmk088MXfOnJLi4juuv2TVqjVO/oD7TXAfmbEnNnfE3EXnz5yeNWsWhvejUpOZD1mvGPuyuCNldWOV5JH6cB+xKnhVi0gEQTpZ5FZo7+ENbea7v3+4FzqmG3Yutnabf85xgbVrr/GTS0uK/13gXsVFvQ8Ifz0+elchbHnW1eyk8toD9Jj/AK6XcOb8CvdC+TJI1pVOkQrAisEC+gt5GW01L6QSgAQxWc7T7inFwq7L2psISUq2dSjzdAMikzMFCWVI5QGYtLwe2VlZGHQgqShPmJPDUVgH3A+XerkIk/FG8ebkSf4G71hycrynx0myvlKSvePi3NJSfVOSfepqU2OinbOzA328z+TmBHt7nQoPsw8KuFStTdRWZTAsAJExuvkGpkkKY4eq9HacKI0t6vARDKQBNAPxTs4LyOCkaDOlz5V+p2J2CvsxMFCIIUueDw1mJCHq9IaFBcjMMs4U0ghsmVaupyzal0AAgIFOrJCWjMLFTb/YlM/DGAc+PuRCuhl3D3cuLEMcOh56IFXIl2NxTRpkcuvJzjpYWrg3L3N3XoZ+bPh6lJNT4/USo1GBRkxtW3ri1uiwdakJeilxesRXw4NW56Tvighek5awNSFqIyvHRazPzdAvyjMEsqNDceYE19ZE55ccSUw7EBZllJZ9KDRyb0SscU7h8eBww9TMgwGhBnFJFqlZh5IzrKLiTKPjTSNijKPiTBJT9weF7klKO5CWbRUY6VtUVdN08gwMdrsWmKupDI1PdPDyDUtMsXV1Ty8sySmr8AgICo8TItJ08iojQQnS0UOI8ofhEXdbqxbjnYSmDz543/9O+UoGBrsn65vsTSy4Getz1nuEjJ48Ra3D20d78PxQ5HbkiOEPNDADZBFwbsrMuX+4Z8w6+4StcVKxYWzO3uTibxYvLy0u+vcK1apJcHJkvUDd1FAZ/Fe4b/zw13sTI1Sgf0e7rJnP+o57hfiBXSmIIqJiX0O1QuYFJ6TCQtTwq7RQf4IfUl156V+CmUMfUXuX8clyyT1Vfv7qqivVlTY1VbY1VZeZqitt66rty4vPx0SYMM+kWy7mtZerq2xrtWKJtsJG/bVxxram0rquJqmmOuJaxhX3JBeXeEfnOAe/TE8fKgA3Tr4ZTCxxZ6bpQvEt1nT3SXdzS0vxzi7zzi7RTZR398wq9sou8coq9s0tpzjwqYBw94wCn9wyt/RCykMqDwPONJV1TCRdltCpvjf1Y7rDKZMnU5B2q55eK3QaXHL9x4zb7BtpFJ9vEJUpHfc5+O4HzFl07MiRW1mSdLTtfvcxHbCosMFHjRpFwu2fH3+8fX33wP3MoxeN4vJETxafN3Lhsn87uG8gRFqeamRk3mBDCqyXHJtfnTn3/BFyC/dXcE7FKmWJjAK1K+zram3+XfFDgDAexVyh1J+mWO3QRR42rL/jheIiYN427RTxaOvE2mSGQbNLV0/2LAsRO7jHJtWVBeam+WRn+GRl+GVn+mZn3OWU7pdT5JtT5ptT2srknpbnk13smVHonV0aW1zxIK7tsaNH//rMM/369WWo1NI6l20u9RkzbtHZKztCknZHZ611ufb13MWINtc8SM5laUkJgxgK/44aPeqdd9+llsu773WkUAxerHXr1jVVxPwV7u+XmePZyH1sRqVv+BMsScmJ/BXu7/hRLIVbl5Nzf58J7lTPIHYHFOLtIQCAL6iwqCQ9LVLbULdPscUtm1Xva2SR34B7jGZ8L1TqOH/+HKYZ1TYeLqyvqztz5kxLpd10/YEuK1h98EHZ29mrIRSO/mZcILxS3i3Um9bxXu7QwdRfD8zT+OSW++VqfHPKmfxyy33lz8ap3K/hp/xTjvxrnkatL7/L/POYKXNNyfHOLgbc/ST6s4RJwT0r8H0hNNotPZ+a7A/oClNK6euBA6kWizBDS+PI4MDAJT8u++b7md/MWTBx+veEFuoeQHVc7guOOGNjY0pZvdvx3eeef+7djh0nT54MNCGcqTsimjk+7eq7/zeG+yOXdI4aHS++2aTjRLbvJMK/ahJ9iehOfGSPAjvI/5CaLvLNT7XC1Zvh/t7CPvcP9/hScUwjcIbbnWAahBxAE0ezDEoV4AGHH0JcEVAWRfgyMpSGF1KLQtoeObDqalbDwa0OTco4hyMGoIjt5LEiNYOwOBECkIg1dUJmhEmzpDtbHiUDP77lfivuZE3lAaKLME+yUvXLCk0UaQQ2CMUINSWklZpBTSkvNmMFBfc6rouffIVoGGQergAnAnP0J8iaaf1DCIMyUqptMsCQA6yTSauyahW/Hm4r8glcapVYe12qv4EahJQJadhethX0laLisnKRtgydiaEV6xNqkczXWjYXL0JpaV5+AT1onswlpvvkQCJVOCNdx5VkNMVqudKzFJSPv6XQKSnTB1dMVrFbaq5XRqFjQoZTYiaTR3o+S/jpmpLrnp7vlVXEOpejkhzi05h3Sc72ziq6EBrDOsx7ZRaxE1ZjHeekLGeWZBWxkJ6A5RfDYlxT87DukcBsTGyuVDHt1jlObf+ApJRXRJxg7JgxOS0Xjq8mEauy4nq7JlVgxcfGxKKRgOWO8CcVrKghM2XKlIOHhATprZxdBrUoJ/u3KzPnV7g/+9OY6j6N+K5GDPxUyA4pCJGcCzvNzFfpURqFilobZixcNnnGhpkLmd+9eDV6y6T1zh498cTRo/CIifW3FzDdLdxDiUNFwMXFlUgaoAncQCmBMcJWEEt4LqE8sgQwwqKkJwgNCycVHvxScC85OYlKRoZDIwB7LeAaHB3oLsRLAX2gDRUwltCpZEiZLXVcZGSy5Tw5KGwIFKLf5eFuQ+YnUA75LzVuW3LMVoqywhSEHQgjMDp0AxRDugFqE7KCyAJthHt4nz7isa6H5kEKq6ubO+NlOjDQ9m4vIA5lKQZRoZEfJQ/J9z04rzgv+KmEItED4Kf1pUsEqBnjA8RcZ9p28tQpEazWaqHuEDfGw4ughTLSqaLFiwqmQ2ICJZEBgp4JjYrgOdeQ0+TywoLlmzsVK4PSrAmNVVT6Li2lqjh/cnRyIibMJo3vSw3OLhsbW/r1wLwy26gkPOxX4tLA9yvx6WcDI455BZzwC7aJSDh1NfSkX/CZa2GnroWdCQx3TEi3Do9jiV1MMj3B6auhtpGJhz38cdQc8fS3i02xj00B6C+ERFs4uPJtHRYL1h/zCXCIS2ND4D6yoOyyrY2oC+btDQ2R86IzQ9qIwDe9WLvktcGO7/zxx2/+/e+2NrYPtAvXCNGLKFiWk6dMAeIpgQI1c+rUqZaWltzslnxE3HQyhHt9+eXv/t//+9V3/y8D96pGuS57lnkCBj6yaOLRjbs3zVqMdM+EISPGDBs5cSwqGDOWLlq4ZuXKtatXbdm0ae2qlatXLF8wd+7kiZPGDv+md/ee+CCQoGEY+HPBPZxooFYpYgrCspMTzgf4LWTQAPoB18QHeiKwLkTEEhKg7yAexvrKoqcDwG2qiGUcGq4ObE6WwGLEyoZHD4metTHk2XNiYpLuuOyNd57hgoMwVLmHKVh+uTlx5BNhvFOhGys+PnILjG/K0ibF6okCrVdXB/uvgvqNyU9N2uy0ndpGuEc6zdHRiQbAZWRogpznpUuXVPnsNrrXuWici5KBpOVwh+j8IM4zD08UYAJS8RpxIgQa23gvRFlaWQcKYxxzm2sCylvLhnHTFVEVpxYoDy7TAC5XuXT70FFxOB51kB1NOh4Prp7qein9qBRMOU1cWPLqpZTLMoGKQgrow+Ck/6DlZJMx/CI9TYluAvfcZX4WFBUF5JUd8rjqlpYH6NtExLum5V6KiAfxgfgrsanHvQPOBITbhMe7puZcDI3hTxfDYsFx58RMEP+kfwiW/ulrYbhxRPcQmcDKmPOXIhKOeQc4xKefD45in/zpcnQSmwP3McUV/r6+SYLsGwwvhY6Kjo0rQKvg7LZXGjOkg8WLFlGMkMyn9i13LqhTYWGmpiZAPHm8qg7tlKlTTE1NoyKjKlqVjqBVh6wOduncmZLlJO4uXbYMHvCvcP9Qw/0NyQRpyPsJt8x56pwc27wHy/27kWNHDxk+ZeJEro7xvr2nThy3sbZ2dXbxwrJyd5dTw4yHq5uHqyvfDkCjnR0U9SxKQsvx+M8C94JBLKOmmJCAI7cNoAQdhHi9lGivlB8la65G3yVSaExXzE/yjxs8USxXIumVsvqdyoZVm2ul8lpTLzMbsibdhkbad8AowltVGhJ89mYkbU+N31JaYFRWuJeSfuqbCn/M8K0q+ZUXG2orrBveqPJy5R+n/RxR/qygp2lLxDhZSCuHhIVHQA0Eg1DBpOoiZRaZ0VZTP7GmSlsDfYQdQlKFhUl/gOEsvS71dyQvKSCA3AqoISkjte81hXIwxxI+zOCB4e8ilSExUa0v1PZLSxWpiVapWG6hrEOgtPJxsXGGdCF44TJlSXHwHeinD+Annh/xQU8/LV0lndLr0FEJZRtJSGUvAXnljolZDomZEGlcU3Mh1Xhg6cenOyZluaTkOCZmHvMLOh0QAd/GI6PIPi7NOTkHmo1TUhYruwgPTwEg7pySw+DAOSmbXbmlF3hmCcTnr3axqY4JmWzCxLxk5lQw6uLq0Q5yLLiYtKS2vQtXqc8la2sKaZHUGtgEVbm3Ls68dA7xcUm33Ype08jQqKl9wOUKlowa/O9I9Dz7/PNAPPNUMeT9KmtDOSDcdaTfUtvr5ZdeWrFieYKEUYZ0WA+/wv1DB/e6AIDSwGEe/7uv1Tl01vYuWz9nzOTRg4aOGzV62ZIl6DRdunjRw93N28PT29MTMVk/bx9/DGQ/fwxkHrvgwCCmoIBAyh2wkIEnCrBorqckJ4N3uqIWD0OoFqy4NTP+J/rUa2qqXLUVznzXaF3Ft5xqtW4N800W1lQ511YH3Q9hBhcTJjw5TbjFqeQnijJWV1cIpZMqoBnFLzoM3Dr8E7RI2PsaSqiXAbd4ycnwCgsPU0Oc9rpx9+zLVtVU6qRyQ5uOxQCiTBtfWhVfUkkQVX0zJZRWJZVX8zOhTBuYnhOalR9fUiVWkGs2neJ08+pPpWImQU5qc34mlmnVTGxxZZZG+1M+RwyexowZ/fgTTyChg7KPqYnptCn9tm4apL9t6KL5/RctmEO4qOn6pFbRQzz9l78yfg0JDjp85AjVZRWjBnfNhIkTzExNGTmVtjk/AFBC0+3lV1+hhhf5vZh0uj+tXr263Xn3/xZwT6Cq/eG+Qd+miSF/EJS/gLTymW37ts5ZNmnIyJGDh8yYPn3Xzh1nTp12cxEmvI+Xl5+PzzV/fzAdMXKG3DHRUaTlJcbHJyWJMnIpjRNXMCEuXi5PSpdDbFUyrb3Gs/cD92xIIky7NINerb2gEEaiv39g+8IBl13l+pfIWlxqkoq+xRjRLMKmxpZnCYCPbY4pmkvkl/8Rb5SIz8SvCGHpR96xWildC06MVgZwuNRudQiwFRZCI129Rmd40ivoXshmI5W2X4HYmOiyW8CLsl4KmHBP81rd8mzVte6yyM7KbNyPhp+E8Mvb1aNyty8CzvTnnu+AY3273sDi3KWyNPnq2oqVNudGTZ40TMV1GKVRR+V3/+9/SKl97He/e/X116m1AqNm/PhxlN5FmLqszUU91QdxZjJ+n+/QoeN7Hc3NzbgIuj9lZ2fh4n/sscd+9d3fE9zXijJ1VJCJCAujsvCCCd8FHbO9Z7hXvJqGoKti1By8gLvm0Ppdq6bOHjd4+MghQxfOn29qvM/+8mXcMljxvsSduAnXrtHfxEZHM1hDawUQx7hA7xviBZBXKEDixkfxWPIFdhQwrFYF4WrbjxZ2D3BfJUvQ4QSgVXiZdTANPAmndklJbaN+Dvbt9UaR2IZvCTHQRYQWTVWV9KXU8i0d32EKBxUMqeCnvGt1qgBs40+Rd1NfJ7xJBC3VPVWbqG/aBrlFB3bq4WsQRNOKsnkNalxK1OxOWV2sDFOIIRahaVnzr5BooZDuLRHMlgZER4Y+K4tbxELW4TdR5cysbFze/JXVMPPpAzD3cfjgnSAYW3in4htOQmnuxpgJb0ZTdHZ1d5dn3ajC1min49NXt0OoBDeuz/319xPUDp0zRJ17XiM/StQRvEWBUnd09Sdi6beWnGV8Y2FhkSw5P6rSi9qW+yWLHbYWr+bohHquywozBG+4pwQeVLWs5mORmpqfDPRPnTo7ddJHdRWrazSrqkpXMmnLVl6vX3/80PDNmzYT8RaaOfJDAXe+Bw0aRMyjolXibEsfJH0mjBv/3LPPIuxDAKxZVwf7E0u/R8+ec+bODWhSEvlXuL8LuBcCtmlpmFinTp4a9EUfa30Lv6acSKtzStJSTTeEKhvkKs/pIF4SNAVvEkMedw2kGqOl6+eMnvTt10PGjx6zbu2aI4cOujg5Ych7o9ji5X3N/yp+PQLx8Fe4KOmyngM2I3jA487J88RUSvd3lfxoGz9KGVV9RFZhE6vtZ4H7DKn5hRVJBSIQXxEZ+cC34a5DdyFUWF1TraAnRC4npInzkTgkJE5ompERkaiPESr0EyIwV4m74kHm0WeezcEUsFJECK9cARmvS+onEQ2KTEVFRbMtAIs4AZujEhMYGIScFEY3MmoMiRKkYgkIfuHiRaV2yba0jb9ifbM5sU3iluGRkTQEBQIiqzGSANqK04NOiNArjmxwPb+gEG9yoURz2pYne2GWkARLZ8AKGPJZ/AmHODc3v0DZ/iwH+EQ3UFwsvUBVeN6RWyDi3cp1Jk7L/hnSAaYZ6aLiLrviVcTGJCoLWYVeh3mAgCgxXnjl2IHSw3XllDlZ6ZQvYnMmyjOKWjTFxWzLHpFbIIqLEgAnolbgiillSmiX/DFahoXVAEIU+E1OIfYLo597ROPZnLGOuj4MSc+dO0fzkpOS8oWoGWF7sS2HCwkOUQVhaAncXCLw3DUsABZyVTmdYFltEYhXe1NPI576SEnP5a7hxOB5Q8hIEJNy89CW4BmjJQ+uUtX2rZsdbSdi1CusV1N1+arinGUTxn45/bvvv+z95Qcffvjyq68++fTTj/3Xf/Xt0+euR581Nc5OTgMG9H/mr38dMGAAAg/NOkXsu5k//PCnP/1x5cqVYMLpM2eCpDBJA9zPWJL2ynrNu3vqOu4zfm7MtciQpnCfnzX3unYVs/stBl69FnrbBhw9enTmcRvkEwxicw1TikcsXFalafAKogDo1UKKxr8k3IsaTFlZ0L29PDw3bdgwdMDXM74Zf3DdDqTtIbb7NRBpdIxJOSlqjVUDvvtJRjxW/IVdZhar9JZM+n7C0G++HTps9qyZ+jt3nD931s3ZGYjHXYNSFoY87150ZBSGPJ4ZrHje0QIRaitRYTQAXUnm6lRwr98S0au/+dPuY9i2wz0rA0NQx0ibQqILDHVydOL72IkTVCbineTV1VVMZU2wlWrLjFHg2BBpBlPAlzSpTkPhQ6kBGQbpgotwVb7YFHeFPRIXH4eB7ObupvYDNIPshBYJHzpIvjmdB+pm8EHpL2kGAAqa8BDLarTeuFmw7hXcR0QKMRyHK1d4YcApDopvHfyiVWAle7a1vdxSnhGbM+YA1ktFHSt6qAKcNtKsLyWSmSGDmQAoIzJwGfBiDcKaal4sz8uT3HaB+oWCBV+uXEAspA149ulvmkrnN/tAPOX6AHnswFGiOWAsiv2mpcHTANO5klR9srG1BTS5zmorWDSUUBdaQMgGOTvBaiWiSN8AG0RXOdLd05OrwU1hW6iuRNoBd2XTcdHIgeDm0hMHNMYtYfhwg7hodNvsn4vPCrRcRsu1qhT7yZMnuZX0QFCA6BX85Ca0k628vbz1d+2iJBOZAWfPnuV+0XgqRdPbhUj5UhqPiaCOxR3k3nFb6bxpM7eYxwM6Jo8WhFH6VG4oCx9cgYHVqxckxcwG35vCPRMdwKqVg8rKG8ZA9Fh4CNzd3CiSTly+jTvnlf//7J0HXFVn1u4nM8mUe2eSL9/NTGYymUyKaSYmk9hiL7H33lAQFHvH3nsDLKDYlWIHsUTFgr3RVFSwIigoHSkqWOH+1/tyjkeagKiYYf92To6bfXbfz1rvWs96Fg8e6ph///vfzczM/P1yaJK1Y/t2JNjKlS17WMnzMcHMQUdz/MSJem7VtKVN+bajKnUaW8ms048N+g4aaPxT6zYthg9vNnZs6/ET2nTu8nPf/k/+ZDojvNzY0rqjzagOQ0Z0HDqqTouWo8eM1n/qYmFhbHD/2sM9/gsOC4UlgC/pUBKkXtu3286aaWVu3qFZywFmVnOHjtswYwFtZmHBQ5QE09HMoRkhrWUZB7jPclo8etrEXoP7dOzauUXbLu06YIRnzZi+Yd06aDPHpH2noDwZV1KsUGjAUDxbMCVa1HTjYD7cUV68JrdoZyrjVU8F9e4FxZJTMFS8dXzHEQPa+ORtB4CYbxqcVhxJbirIgqMnnJI7d/gJDjivCriAw4jrCorx8gNJQAmBkfMXLuLO4vmy/ctXLuvrAzCxKUXCi8d2XleN+oB1WpzzV1w/HZTgMcWQgAiiThwUpGMUOL8HFU7hP6pGqafAJvCFXbAjTiS30ipuEE4ue4T/w4GB7FHRMRrr+eT/gDgz/5QADv+7fUfswe070qMv5Tb/cXHw6+PoUCFfJODDFeBPiZp2I1SgNPA6xzIfDp4jx2qQoxfGZ2goFEl+jjW9Ihfx6jk52ZvCBGUTSq7OEAi+xO6AWlbiCnMrha6qvGnW4e5w+lxDIJXHUoktyxABw8X1eaTk8jlrdiejIkNsjdvEOozntDYcfwXE2awO+FxQagR0J5dWujJd5fBgInEdOAXRswwMbNuunVYMfuuPfyTe/bs33yTSzVFpz+Chuk031AiGcQAjPL7wvnCyur88B4wZAO75CWu9CJka4zRt6vhjB60fp2X17pPjRvbv24J3t3Cb5Sa6ujiXr1D+w48+6tunT1BOvWfJ/NBq8S9vvzNixAg9fOEBHjVq1Ht//aurq+ttw8TA/+6je3ceMqelPXqACXnyp3v379y9T8gQswSR7W7qkz+ZTuJl0hni7h2cej7hyfEaGv9U0FMrvnCv/RGeeLxsHPyT/gFCfDx06IC39xbPTXPt7UcMG9bN0tKiYyeLdh26tmnfvX3n7u3NLNq0t2jbwbKTGbzJIQMHTpowbrGT02bPTbRUP3pIIvISrjlxgmDE2cDA80HBDG+vqbQq6CfCkBJwv615hJrCWBxQvgiZOQXdXT4X5j0RIwIL+CJawYahfZbtcLWl193TD7FxnbxjYrAngXgYluAy+A4gCiUxmYBMMugPlmnUBuJjVQtZ8FxFbG5rKI+ToH6isgJ3VEhHjECKCunoddS/aEV+V+xlTqGJLMdpVI7LwvwzDv6yLzTdiLFrCksIqGHkYgwNsEz7iqifPOmgYvrzzKGl4WD0BtOzKfwY92va4IWck4WFBYj/OzTi33qLz43rN2S3r5nbTE836iOZHomx5cvjF0PHNDjXOyeNq0+SlpD9E9f+4aT9uy1GDB9aiAcVX2f+/PnflC5dqtRnYDfIkPNg7tChsmXLlilTZsf2TGl+ANvKygrqPWPTjGI8FV+4108V4TBeMHwJcJnCZYZUQPaRQ9DbDwHfhGJ27dyxfdvWLZ6emzzcmbdt2cw/d3vt5E+YBzULe1JRa/yh1mCrGQ6HhlyFnIB7Eqd0rnW4Rmv4FVDlsVjDfT7NVR7raAh+TlNhxALdOior60NAtvDhXdxYxhOPHtNS7j54DXZHChE9SqO2dtuBS83S0cEcbQnIzYKkhO9VDEdR1pNFCABkj5fQf0KKHuaIeqVYBRGNuJWoRzM5DKRiY7OnOnWQKv9VF9lDVekmvbduP4vKqesnsrxBOgNfoIkc1KBBg7SP/5d33vmsVCkEhI0he+OpGZPtxvurG4QZF75QrNfjlcGD+mxwa0e2VjFzJmY8mhx8uo9553q0VynQpshCCbfy00/LfPst4azcOtQDRzQ5QaqzV69exiaUPDstW7Yo9fnnfn5+GcV7KtZwL48UXOnUVN5EkqUANJJJ8CDPnA7E2aeQj7QqUA6gm85CjRdSzQnhv588iZHgJxy0jshjOdgUEflEcfFu69Kh4hOuKVq417nkZ49ehQCT87lfvnwpO8fjmZPKu+SXZk40wFREMGsIlaqF3FFD4ks+PipXTmXTHXD5xs3Iq2q6puIhugAKuFe52OToTHBPJA6OJVBhn8w8rSC+bgigYz4SyaGxl/Luk+VTBX+SyUBmF2gkY4l5yP78sDHPzZ6Es4lyyKj8Wbi/O3ffEF6RZuzkMRHzcffwMF1CVD0531xDXoAkg72BBk1n8Dffemv5smW09KtTty4dw1Ero8PfunXrWJOLA7opqaVIiblduRKueiRwssIC8PFRsv6x17MzPot0wkSPGD5k6OC6m9Z33LnVYp5dE0uLVieO++R/C/h/Q22Gcnbly5dftnRJHux7EiQ1qlen9dUmk4sMKFWpUgU+aN5NnkvgPl+/NDLPeLAAaJxxYjtcYpor4e8DfBdUjwvumcxnz9HSgiW8kJcUvjMciwhX1MmYGPy6RKFdp2hH/r7iBb5oB+TVwj2vIuhGWelF1cIpQ9WLE9u9pkIreIJJqvkGIWUMKheNrRHNxbUBDUkq8mSE0eIkLAyoIit4V3E/hC0THMxrnCrN+URVjTUJPd8RUkcUvmSiCnezhJwtsWMITITp9RPDX0BGUJW4PLpppEUlFHPhAkEefTzinsfFJ6tiBYLOeO5EgdJyt1iqYR49uR7imwt9nlYqpA0vXOCoASAMibj2UHGiojh+QJ/zAvFjpOPKdZ2IVr0Po8nlqsB9vIG0A+InaxugwkHCzeekhNsTF09E3tQN56aQeWaroDmXjj9xRlp0iOvmtcuL6wBSgMW61YkkhxMTsXC6WpjAt5QfJyTwxXufN/F9VmB0wr24prCSjUgV7a3EwNPSl+auFIVJvS6xR4anXGc1BhHjyq/Ib7NxLDTXmRVIlvCIcwt4bNgINzRcXwcVeefe8UuOnKMl/c5GdENK1XvyHq8PpHWNYoRmyBK3adMG3jqS7mPHj0f7jx8GSdw/UT9XHNUvO7YD98TxgfvrEREcJAqRL+GlCAgIXLZ0+QIHxz2792Oj8/lDzJVl166Ir9H33MPd/e7dXB0Ursa0adPe++t75l3Mo6KetPqimRddD5HKyW00UAL3BYN7U9DnkZIHlIiqalknWUS8Mx5bUEElj/h/pJq5+iQihRdvoE4aIf51ceSLBO7PBQfxukLqwNWCoZGhevvBMV+jmj+AI1pTAdkcgA/OHAgLVsIzAcF5ack9XlJ6mWTe2AK+b4b0GvQGL/xVpZWPJAPD4PCoWEgy9HPQFkYKqAp75IzqYuq9bz/gC5bxW34IRxO7rNOPHBJmQwTaFNUEogiZTM4I9Ac1IAtx1zgYSaLGx2d3jSW3fPq0KJ6lpekIDEBJUhfEvBYerprZ3oyOlelmZBRb4KhEx40+XNEAvjj56okRiyg2IEYtF09f4vhYJh0O4vFhCXDMY8SR6NCQbn5rvCmgKgirDx69sx1eXvoN4QpDUcVeQlmBxQS5hZeNfSr1jcM4v5AXQUyMAQv5CXDPteL0Twac5Ort2r2HFdhjkJApAyG2cll4jOFIAlUktLhNe/Z6M0Axwj1sHLiaJGlpxEiK+OChgxwqN52LybViR9gD9ogbTk6Vf3ITWQLKo/bD28HN5bpxQVkf4SMuHRR+Hbzi59IT7do1WC9ff/01pUb9+vZFVSbVENoinI9t4zqwEf1E6StTHDyqLFx7KPmMVKDcCLdy3768S9jAdDrXfvivf7m5uZouP3b0GAs7duz4CsvNfp1wbxqdlMZ7Dx4Is12V9nCtU56etLOTalAg0Wml18uLLyq41w05pcN4RIRuUQs04Pbu3rOXTUnv77AwxuD0LAT4CIzx/uOPiwLXOZm4dCFXQtiIUua6qp8MOIKgALeAEUPgmUAQAOINfqrUNwX4A7mIX+KWgjj8EABi75cuX9G/hQQinUIvS7/c2LjYI0qPjYX+ikcoXuEJH44KC846DEow6tgV8X/v389+BxmOiKgZDwPat/doqi4MHE6EkwK/cNgBcRxzjAA0cAnFJEO4jM+sob2VGKsQX5E2VTpXufOyviGIn6DwHg9cbzlZ8/ETk2DpMHo0zdmKAigNGE+fZo9oWxpVU3gOeaQ1v2jv3j0izaZ0MXnloCpxXhhIbigDHR0YgbHK0wtGc+6MwABcrjzhI05Ft4bnTmknHXoM+muKE3XlnIGNFylMzR3cES4pnBlfafV+FpjmLgDi3FC2yaHCzwGOsd9Hjh7B3EGsZPQDJ4p7SjSJLXPArMxhcDBgtw4HhYaG6dg0TxQFKA6OjjRvgojStFnTXV5e7IKXEQo/nwxcQHn2yE33fVYDwpcwcXgdOnTg5SGh6uHhUaNmTUj05l26nDRR3ckNbebOnfv++++3b98+S9oW/cv/fe89Uhr3iqiVRQncPzsTqNFfJ4geGr5ocNcu/GvqxRcV3OvkM2+gUQFN852MF1B/Fz0ZGGNKb11Xip0OPBOkmnTrf6abNDIEgzRR5L6ktR9rzTKuNmtKrgVjrMZPbE3/yfS3+k8PRB4jWe+RT3DznkGFDSyTMLwie3AnNecsx9Qov4VHSOErQC8aZ6ni4N9Wqv0YsHA1dMCWEFdhwMFVIuajbFu4Lh/DTlwPj2AF/gXe4Urr2A7LpSRa4vzJSSq9q8maySkw8e8wSMQ4sKNo5D1DrpjG6BVvOLMyw9gchu+a6v5I6aDpIaYGCOyiBHYIFqkgG8fFCnznZFWBtgihYZnSlGIzzzKbkmzw48dySdPTsb7AObY5URLO8cbUZYyib+pG27q0W0uwyWBIkhDJSl0tkaEMJ8fKmZQ+1VKYA2OJFozTyWf+pJeoByaDAYGupzXeAtJjVlaWBL5Lf/ONra0t4zP9GID+7J3Lp4Nar3CChkcA6je/+53NkCGVK1eWQUm/fgSAn/lDBk9U4f7t/fdXLF+eRUafSte333lnxvTpr50T+brC/X/n9IKImFmMIg9xrKKy5JZZze0dlqf/ZdlXDgP4xk7cEWP2UOdRBYgpJogkWxs6evRoNGwJuQ4aPJjiF9vZs4ePGEFvOfy1adOmz3eY7+joiKAVooZ2dnYzZ84kLjFm7FjUlXXOViL1CZmCCvFagCExCdOi5Xfw8RncFIL4XFSTtrWgv+4N+zKfwOwL8fcnTZr85ddfffH554T7gwtY+/OcU3xc7MIFC4aMHjtw5OiJk6cEnX1Sngpf45NPPtEUoz/86f/wSGDdn52yfvwY0TRYlc2aNbv8dAKWP82aNfOd//mfJYsXv44A8hqkajW9DO9GqxSIpGFxnnGolYtnrL8t/nCPt25anncuODiPClKSmXieOf6JaIyu29LOfkEPA/C6m5rfrqcQckBlupPwE0A/WYTP4rVkAqGkwDNnN2/dunGju62d7cyZs2xt7davX79u7bpNnp4ODg4g/qjRozZs2EgzEDw1qkwJTUyfPt3e3n7TJk/OLkFKbZM1+15z9kF5cfOTU0gG6CQBwQqjF69d2ixHyDCCuDCxlJSnDSfxEwoFcjsvImk5+ox0UtFWFu8+t5uOTQrIhePEAaNm8dTVfvQIj55TAAELJOtkStI3nRiIUWFUizLUf/yjXbu2KIC/hEAHwlZN23fsau806eCpqSeCB63e3NDccvmypfyJIsqP/v1vUcz53e/k4803T+RDYYZaS0I3BKkWOTllaYIICsFPfe/9v6GQ85r6i8Ua7nmwjERMmAD09bl08fLFC5eK80xF/JXLiGKGShM7pK+Qri26EV+BiZhK14yxuSZfa722eCGhJmVk9sVO18N2zY0hEQmagFBEaY1CZhw/P9G3nIE8pJoMA5X+gbo7OggjAV8lz8JPNG8k46mCoHTN1FahicfaHBq/YCW1l6q5zHoLmrl4P6e+j/dUsyT8bQCOX6ZK60Sh0ID3RO2J3oSoVi0wjlRtagrjACWcEKepOAAxQR7ytwT6hcwTJgJBfGcm3q90FDLh3sDSkYwQZ8jSWCWAh7sv5azhma4igXut72/q75OhJQtK1J5Av9FxwVDwK1LixvMyLcjSuU1jYZTpBFQhd8MXUBs1oQxDzZRuOaADmNwdfR/1vcNHMqqxcoRE5003GChKFSKQx4W6q1TSjGbAyKnX/IgMEy02HabTzdaNz7bp0bKEUiMUhmkSUrVKFaiNt56v73EeU9KtW607dxmx1XtRWKLDxSiHC5ELQ+LnnLvetEffuXa2P5QtS9HAF19+QceSatWrI5jjbgJnOU5IMX7y8cd16tQ5fSqrYBnvBarLH3300aGnL2MJ3BdlmRXPFi/fqZOnWrRp0K1Xm649W3ft0aqYz5Y9W1v2atO2QzN/P18dPX9VAsjCxwgMJFmKm8krCncJDgx+Ma86CT3QmZQsrqtO5+r1Tyn+Bn2j+A7aAp3wSRBQI3moh+07du7QLEyEu/bvP4A7ycmRFSRUDlGEXJ+3asTBz6+oFlHGKHCwoqDs3etNupb9osAFmJKKBL+gf/DzKPUr0JCsIBvkOwhFYB3XOnskh6Mi04CdSJU5TYLsFGBHR4u4W3iEiJWFh5ONJEhNEsJxwYLFSxh/L3Z2cSZog2DcuvXrCONMnTZtxcqVFFKSLM3M4sbGJaliWqXBcFtV5Iopky4lKcLMIaups7tYBeOQiMuFqaBzOqfDwRsPEuxmCVnZ8IgbXBxSqdDwoUKyvq+PDzwhBM9Id4dInUBospoYhXAuDB2ylDVx32nPzZ/gNZE+5fqjcsOm2D5bBoPYuGRT/f251JwOe9+zZy83mlwuK19R/bNMNwh51Pg9UQWvsHmnldYpjwg3CHsmj8qZM1xMzo6T5QupV+mniM6dry/hLBZyryGDnjIcLTwJjoQydWQjBwzo//HH/y71eanRo0fB7ypy8HJ1du4yYy5Yj1qkcV5wJW78nhMt27Uj+B6vBK8YdmCHH+VJv4Hg16VLl/fee4+IfHYPA0ehQYMGX5cuHWgif1YC90UsoqAbXsOy37Z1e9f+DT2Pj1/jPXL13hHFeV6zd+S6faM2HRtn2bfptq3bsFXG5lAvH+4BcRgFuCqgp8h10arwwAHIfCJPdvQYLy3O74njJyCuHFVeIS8tHqK09wsKoiEqfixf8PRpdKjTs9GK2MNGtCQZ29ePAqsBPReUOKJg340bcEh0FlRt9pSWVdEsEdBN/G7E7y5ehJEJauBr0xaR5eROOQAMxgEooRcvCrfk7NlQJd1jel4cBqdDtIwMLXOa1NPe1UpnmCI2GC4imozLQ0Fnznf02LFDbIZMmDhxoRNdSBeB++PGj1u40Gmhk9Os2bPI3Z08dVr778K/TMqUxVdRHZ2nTTGSdrgOcVJwe4dEgRHu4XsQxcKYcXY+BloOpg6LxTMM6CPupksc+KsSEToGmHLuXPbbUgiWCHuVi8k15IpxBbgR6GXqdLfeGqfG7hDtIlSFleUOQrUEfMmO8nQB/cA01ghzniAhHeFxeisbL+ucOMHhsVNTOe4NGzey8LFi5XNDOUduH9aakRA/xFhy8AGKjA+dCqDnhmIMZFR08yY2AG4PG+d00LMKUfYqM6AUn8CN45lhI6wJV8fF2Rnn+h8ffECEB0XJx0WnBz528uQx2w85Xoo2hfv5FyLnn4/sMNDmwb38Zla2bN5M8VTFn37yy4lHBLv2JzWFFbzesATuMwqkiAlwkHtxc3az6N9g/cFRzjtsVu4Ysqp4zy67hm04NNqyX7P1a9dRDZCsmvy9ErhX7m2MlJjSiFVKja5rygRuvna3VY2VlIkyos9Q7SC0AhoraJoj3jE4JawVlePiV3zRbFcQH8zSgWk8YEBZlSyJDiK/wwnVwgT6V5q7KTU+mJNz5zw8NtHXG0wRMd7ror/GsZFiRfMrQbUQ4KjYkRRMhYZGqNiL6TXUfHlEcohTgbxwc+Dk6NgOfyJ4goNPHRGgH6vo9rQ9gu+PcA8hG2wb63DkBHMoQeAcATjd2lAHcOIziTm3FcQL3LNA/H3VAEuD/m1VTcZV1dGbAEWcx5iJ+GJwJuuDM4VcL5W9KSli0s6fB1tRjuSUMQxCl1SKpFxnuP26MaHSmfa9pvrkEBWE0Whk3YDmHCSnzfVhYAQBPkShrGbLoGPHJSImozuDE/lkIwR2+Dkr8FuWswK7vmtgoHNrIM5ybTVbl6Ml6c1I6JJSP+bnQDlRI81mZjl743awMtuk4Iu/YsI5EVSUEda+aoBC9i6HFRqKG8HR6nA5IbkD+/d37tz5n//8Z6VKlVatXBkXG1uI55+Dp5rSe+/eVc7OvXv1/L5CxelHAwnjPAX35286XIpuM8DmTsqzu1OhqdG3bx+c+kkTJ97NSQefdnVYgiZNmph2MimB+xcC91DG8NDoMbJ44WKznnWcd9os2tTPyb1Yz4s8+i3ZPMDFy8a8V2Pnlas4fgQbXlWv2mI46TZ+PGMFauaXJZYN6GAT8OulLFVkMKQrodTBJiUB5RD/AXoiG+A4BTUAPbBFGJ0YBdEhVBYI9LCa/tTBHwwPo5YUKaRKVJnYpFtKJ00V096RqH1SshbR1OJrWkBNCa4lvbhrlWO1QY6TUgS5U8R7J0Fy4sQzs7hcLSG/qnLcZ07cuHFjx5YqVerTzz4bOXLkhZwapDwJocTGMYKE+LvAcUH37t1r1a715ddfI2tDJ8Iq1aqZmXVq1bJFb6dVTqG3ngrmXI6ZevRMR0urh8966bx27qQmluZWBwySzlkmlO5JO1taWt4tVEeUErgvCNwriUSgjWbf8+c4dOhee9nWgQ7res9f26uYzws29Fm+bVDnHg2XLl6Mej6OzIP7918J3Au2KtL9AxWFv6eUPgHBoqXukbWNNGnXWdAzClICyFmW4xim5s7SwfNVtbQC8ZygDuZoObPwGxGcKU4rZV9EcgjNe+3ePd/BYezYsfPmz0cG69jxYw7zHcaOG4cmzJw5c2bb2vbu03v6jBmsgJEQ9TRVb4WPL99VUZVC/BTt++PvS+GVklKTvO4Ly0P+iiccICI81WvUIC/a1cLi+LFjjIAJ7uG5E9SCIkWmt2r1al99/TWUefidNWvVZDWWUwws8UDDw3b9WljDjp1n+l0kQ+sgMZybjpdjiN23GDJqzWq3PA6A4dSQwYNROhs+fHhSLvJ8xM3eeffdEcOHv0ye638v3DN4l4Y758+jeGxvO6ddt1qLPfvPXd1zjluP4jzPXd0Dm7R0ywAz6waLFy6Eg0y84P6rgHtWBvjwQImWxCpHiUE6A3ACCGfOni1SuH+8Pyf/KP1p2bXcqt5A5CzymXzqphy57ZHAiG4uqJuMk0flNKFIEpkhkkB4RIISxCjCJOUrs68fSg9E2NeuW8dvFy5cOG36dEL3dNciybl8xQpCzEuXLhFVL6WXyScXCmcfk5LZ4VaJ3usUrrIrEEDTopXaTAl8F3SCT82rjZnv3avXn//8Z1iSIPsnn36qesD+0KBhg549ezo4OBIjogg5747h27ZsadDZ3Mbdyz4wjKj9lMOnW9qMHjJ4UB4OFrGgH8uWReU4D7HiZcuWvf3227Nnz/6VXfniC/cYVfxi4HL/3r32s+3bWRng3tW6mCM+Dj7xnE7WDRYtWAj3hQjxvSKqxymodw+FAixTXfSkEpIgrs4uAviadk3FvFYQI9hKeo0UHCuwCwiLxNNBT13SCa5dVaF5ScCq0lM2yGBf9S0JYCyPug5rErfVag1kRwn+Eoa+pMgbUmGfmkp4mvt7W8X9CRYTFNYa9xBj8NSJ7VxVOg0APRF8LBNsonNKbZiVheFjYhLQFQDlwdx44V/e0gKWWhdBUrV0h7ok4XsOGCkFAvTMSSKHGYsJwTBwHQj1iHgO/9HgMAlfXig3urmV7l+oW5YrRcwUTb3Xn5q3o+M5XIcSuH/mxB3HH+eRW7F8xehRozp36UL4/ssvv4QUTy/ZVi1bjho9mgI3BIT/+cEHRHgK2hGF3hUDBg7s2HdAuwE23fv1A7OyhHGMATEe7DGjR7/77ruIH2gRpxzDhhMnTnj3f991dl7167sXrx/cO6zrlU/Mff6hwLw1PRds6J11j67WTy13tZ6/tqfj+t55wH3aq4B71RwjguAyOmiErcHWa9dFhkUTtMFfcndg8bFjR3GEgWySbyAyGls7vbyEXXf9OvFuHg5eAEYJu/eKmgqxV7YWKa294wm2QAuRXrinTqFsw89xnIVXs28fkVz2KFyRhAToHBykPhhsg+gZ0Bn17Fli6MRbWAHqIduB9AnZgwvFD9kIWUp2zYAamwFSwC8yHQHcVBx5/GvdcxxvW6VYEcCJ51Bx6oH7UNU5NlZx7VlulDsmTC/JZ9Wli+VkbmNU5VSswvp4qTy4q+I2UqPLZvnCjpQMstZNS1R9DWHm3L7wdAL5JUxaEqPYoslj0Xi4zWtLfAbeK9jdvkOHihUrwsX8F+D+ww8Ik1HhTIf03bt2ATemV48nYcWK5dWqVv3ggw9I6h5U7K/87zpNOkWlZKf9kCIeNXIEX2C+wq758osvkLvJdSNpaQwsiNfTlfBXaXpfM7i3c+7e3abhHFeBVIWzvRzWy6xBNhOCXa0d1/caMqX1RIcu89YQWukFFufTSDyF6at7jJrdoWmHSj2GNeG7jCrUzPexczo161S52+CG9q5iEoZMbm3Wq84cF+u5btbFCu5xq5OV8i0kDdgjyMahq0WLcF3iRN6SXFyYRDx8iVqAsFBQQG3dlhbnnVg2fjwhchkVBAfzAYDC9IB8oltLwpgU6Rs0kAMDYW7A2OSuHVRNtAmhcGyE4ImBsDxDUUFOnQ4EykF5EJ8fIrbM7pCK5LfSDC8qis0yIMBDlw55N29AMMfAcJBZ6jM5ZmwVWjlJKoNKulYzc/DHOUIGIsL5UeI5/BWfPVF1sLol7j/5vzjdvBBVTN3YRMsd627mKSl3dDBHC+WrhlaZ8vc6Zyv8HUnhSofbqy+dmceV5w6KjrHqCokCGleG8+KKSRt0REDhVEVGUjTG8IWLSU4Fo3Zdonmx3I78GKdUNWXxi3MG90ePeLDx3ImKLF60CI0KGCxly5UlLEMmln5Pbdq0xW1HcwbM5ZZRw/DMAhSOkK2haPb3f/y9Zo3qhPifJxlOs8f//PDj7//4R2tra0hBJF1v5h4hhFfaqnXrzz77zNfHJ+NXOr0ecG83yw64h5Yze6XVNz+WshzYeOi0dvPX9Bw4saVF//oW/evZOVv3G9u8tXmVnsObgL/9x7Vo3P6n8fM6Yx6shzTuYF2rx7BGBYgCKVjnt1Xq/NBtSOMqdf4zYmYHLAcL7V2tbZ2712xYruvABtXq/YBRAfHLVf3mmx8+t13VvVjBvfH9Mb7GGYZqBr6AwrjbkUrIUNOxVZFkZjllqirUNLIyjJWWeklqmhRh8kMoDcbazgzF5RD5BMUn0X3BWM5+wSPjPdVa1qbgohMbxoW6XFM0YdRG+CfrZOGHYC1QGzbQ7ZM1HBPbIcKCpREBZGg3IoV2U7Tj6WaTIDTLeJEvloCPMOtVC/I4KcS9pbA+Ufc/Ue3Ipc2hEs1MyqTYp9xWAgqyD83M0QW3115w747sE7YW2wnRiFHaWVX+RuqSejepXEPQOCAA6ifZCImhnQviRsPlh9wJER5VCax4fvzl4yqMhuXAmImQOJ2KaS8RGiqlbYFnjh45gufrtMgJJaKGDRtSsPpvsqlffvlTxZ86duo4btxYSJYcEoM/U+YVd5NRo09BYJSk3ciRI7744ouvv/pq8qRJVwz93As01CBoowVz+Mxb5Qbb+fPPP3/77bfn8yQLlcD9y4B725l2ba1qargv/cNn/ca0BIInLTCvUu+7mg3LjrbvaOtsPXFBl/7jW/xY6euxc8ymLrKoWPPbgRNaz1xu+V25r+DsV6heZhLO/ur8Yj0gPsGhc8Wa31So8U2F6t/1HNFk3tpedi7Wdq7W05d2rfzz9+WrflOpdhmLgfW72zRu3K5KzQblZq/qZu9a7OA+R+g3bs345dmqKek5HAyI/0x/TVQw81dUnFtHrRxjGqSbhYh5R8vd31Noj5ZkYqTSRyOAQ5QG3eB4DfQJAt868nNTNTAROQTV11Cx7BO1tL1SuteVtFBFkrUvrwu4dGxHU3T0QtxVwPDlR0syVB1Dkpo4CxAZs5euCJHxqrV6kghwShcUjDNdH+6oe8RZ5tNNln7lISHUysFT3LJl66RJk2Ax1W9Qv1z58v/AQ/7wQ3jo6F+2adu2T5++48ePx8xwDHfypIHqQmKMUkHrDTEbFD/TJZwAC1WvR5SId/aJAeyxI4cPHtgfFvKkZyEdS37/hz8I1ivNnN69e+c2uMG0/Pjjj9WqVY3IH520BO5fINzv26Pg3rKmk3vfGcu6/lTrWzuX7g1bVx44vmW9lhUGTGg1b21PlnTpW79Wkx+/+fHz4TPaOW7oVad5+YHjW01bYlGrYfkZy6zqNP1ptG0n8dDzAff2wLqL9UTHzmD9KNsO9Vv+1GN447lrJBPAjqYutqhU+7uh09o27VSlpXn17yt+0bjDT19/X2qMfSdDKL+4wL2p5gx4dziXt0VXhOaxHaPwSyEOmICMfs204nFua/In0rP537JIvqjOgknKsdfudoLKuIqaTUSEGrtEq/ZVsQQ4pP8NnW9EJydSWwKljZOk2xmqIH4sRiKztwkBHFVJq9vVqgZbkrPlh0C8tgpkFLMAKFjGfhlBvKB3VXPV8JqTTSZRM1YtXLBIeoAlZbq3bmmlqdsqzUAwR1m4xDy8e+IeDA54AefOmQsPsnyFCh98+CExGfz32j/XIQwydcoU0jaMG4jeGEXf8imChj04cPAADecKpyYCC2rnjh0tW7akIUntWrWQvkk2XHmuydIli1tZduswbIzZmEmtevUbOmJEHPLUly9TxwvKv/mH33/8ySdEmWbMmJ7j40fo5pNPP6FRV/KLLKEogfv8w/0e25mz23StuWBjnxnLLEuV/qilebUfKn09fn7nWk3K9hvbwt61O158pVrfN2pX6csynwLE89b2qNnoh/5jW05dZF617o9TnCxqNSo/yrZjZgg+H3BPxGb2KqvaTco3N6v6U83vxs7tNHO5VY2GP46Z0xEvvl7Lio3bV6pU67uBk1oOmNiiY6/aX33/2bi5ZvYq2lN84B4gSFXqV3cktH1LWh2Fh2d35AECnC/eSQmtqGQgfqJ+LHS5LN7Z4cNHNMecN5xjAHd05Fqq4ZKSVASZTKnsjn1xvgiVkCwFIvfu2QsySqNECaGICLv0+VMBH9bUwCGt71JSUBQgYpAZTVIBHA4MICPvmpiNHC2aP+fOgWXSZwp+JMRtKEaqRJY4D/EcaDlAvwSyb97krPlOUCJK+jJK43Lt2icowTLV4jGBuI0Wu5fqKvH3E3Wch6yA7pESK7H+BPai8wEcVZYrCX2I/VJlCrmI3DVdkMg6+PsH8EmO+PnvPtecrWGYieQgYUT2glw6fCq2j/GDEMUBQEI9feo0eyekc+iw5Gaw5WTI8cFZx+hcE/pHIIE2Z4C4WadOlatUof84WsGllJZA23btRowYsWDhQnSA6Q2CV86WuViPHj6idI1d+CrBnBCVeiGjQzIm7yPH9OpUx6PnU1CAmA9fHjI+xM2pU6fyIsyaNavpwGGzAi4vvBq/APb9peg+qzZ06da9f9++QDxMSl05nNsGIfL/9f33cfxfoZZ1CdznDPeOG/rMXGnVd2wziwH1bKa1tnXuNmxGm0kLusxaacU8fGZbqyH1+45pNmVRF5B6+Iy2/InRwNDpbTEGI2a1n77U0l6nW58F93Ya7ld2G+9gZj6grs30NnYu3WausBowsSWuPQGliQs6WwyoS+ZgxvKus1ZZEd5hL5gBflWs4J44LNxK0I0QB22M9h88eEZe+zPxileuJ76zAm8+6VzeXpARQBFRFEWlJ2QBboDCfELoJCYOAhLbhcuoVdX4ObgD8tKJCahlCxfVBLJT0conbxRAAyqFSGm9dLYj38g/MSFo6fCdi0NeF88abOJ0ODzYNURpRCXt0CF+gmpxbLaaex5B1tdyB5olCSKD13jxwD1HAtDr9C9wLpILXAQVihYejqB2TJT0K4xTOhGyRNilcbEqSXtHqJkqc6vkE4Q6mhnrj49nO+xRaKkhIdmtJulumEWMogids3k6fxHIhvVfJB26Ndwr2YMrupaVy8WZai3Ps6r7GDYVe8NhMHzhMkpoKySEq71r9y6QERBHuAZAhyoDaH5Tpkz9+vWRDEJEiNvNvRPJs6ioC6rVMxvnDirBnDDSIEpINZGkPU4DNodry72DmAs9iaxA3kfO5ScmzsYfFYVgDj0oFy1aVK5c+Q8/+KB+V+sFl6IdLj6RzVl0LanrnMWTJk545naghNGlZMyYMUUo41MC90UJ98A6UD7buRufgDiIDyjPWmE1c4UlS2xdAFyg35J/gry2q7qpL6xjxQiAOAw4nn/vXlkRS7bJltV+u9m7WfPJfmcst5ytNj5tqcX0ZV0BfdlL8YN7fwQS/f3x7IBEvwB/snboDYC6vKsRiBaqWTAxMor3FveNdxK0xcuW5J4S/wMKFYn+Oq80GwPIWAKC06JWSzaC2hwDPhSEHNRV8Dfx3wFi0e3yD+Bouaeg5FbVzY6Z1bAu5BhBTIwKYXe0ewNOngJBtF4YPfOwKzj+gBSJQcYNGKrknGptYNdzAveUgoIqhpIELM47cgjatQ9XuWitYakELxPBdo34knFVGgkcPOCGhUBa5oSPNPwLxnxduMgSVksUWyJ1tpiTO9LESpqb8x0QzPGQsgQrjP8skvbIho7ND9JVEENDpymAsgIjFu4IZ7FyxcqhNjZt27erVKXKl199SUL18y+/aNSwIQuR+N+3zxvByNzAV92UR6nSIPQeZ62KsmV/ZEk48SRpI3OHf8sYTqVOnqmHwQoovpFhLsL2D4QprXv2GOi6aUFI3FOCORejZgdc7tyn3/3cJdI4DNoevP3O244ODhn/TdPrEru3bWMpwRzAHZDVs4ZgPfM9x+XGGSDOxPr8B3NW8isgXuyEbEHNGuWxH3au3bE6AD3GQNsStYvuxSd2L51CfXy1VD2vrsKCWzmCFGCEm68DLNeUS8hedKMSYjsS+ZWYOEHwGAAU/GNlXVSVoTKEWh+YH7IwVJGp4Ypo8XqcTSI5bE1ULRUJktV0mRUWBecxNDSM9dkm0Ru8SD4xP1yuFCXBxnfgXrfiy37YbAeHkUQlXCBV6JqaKLVUMWQaFNCrYjCVusT915LFMUK3j9MaOCiJHTx4iKp9rBcNxLGLBGGIXyMRvWXrVjqfEDOhFAAfWfx9VX4lTJ4ESfZeyNafRC4duvnh4YQ+kDXG82WcJBKS58+zEGOZmu/OLXljHKYMM8k5BomItA8DIGdnZ7p0DRw4kCA7CjAE3N//xz9Q6yWa0b1HD1o4LV2yhJgMx5CQ76IwbiVRGvLhWD6MBzRcbCBYf/HCRcw8SlAME/PTGUpPDLkQ6w9TathFOI2cOGniwZPZJdKI6rSzGZmbRBpFWCNGDP/r3/7m5uqa8V82vT7MHMuaC937AqlaqGCOmzXgyyclTkKONLjeslzWsSazCiNT3G03a0g1c1aTZbXWHHzH9b2ezcJ0kSj8kClt6rUsZzGgvkZzNWLobuvSfdj0tvValYdrz37NB9Sp37J871HN7NSvig8zByIjkP3yu/Wyx9yej6fYFKiQS0vx57oyxJ3w5XWHk1Th59zGlwehgNqYTOLNLeJVWsZSQbawdIBLPE1QnnHPGRGMlK4sjGZoq8AGwTiqDFiH7yQYGdAwrAHidWYYo4GNyZ70gzrKGIig1u5duw8fOoypAOiJd2FIgEtGSM8J94AU5akYS/T6rXtYt2nXtkbNGqW/KU35EnOFihXbtWsHhQZhGQwYx48dlaTLdRl7UWmBcaWFVm4NKXPIjqamqt7oByhg5ikC2TkFtgDuY2BQM5UOAflWtWQEgA+RmIs6TaGnCVOmDPfYteBy7FPe/YUo+zNhbXv2TkvNITFLxyFzc/MP//UhUswZ/33T6wT3TgruO/as3dysiuXABiD4wAmtSJnaTG3L8p7DmsLAoSRq8kLzQROpe6rbrnvNWSu69R/fskmHSn1GN8cAEPRv2aVal7517V2snwn3s1Z1q1z7O3iWVX7+DzR/bUhUkKdb9fpluw6sX7XuDwMmtJi+xMJmapvy1b7NzA0UVyImgWs9eGcLutk0Xqd+Y7Uu8bNdy4cPQQ19a8AC44NyR03G1YC556k1xQfMPzJyYfFwbytqPD54mioNIzhDVpagzU0h4cRqaQRmUcMPDyd5AMOExia0V0WVBXD09PT8BU367b9Q8LVu3ToSmwj8gm6IzquP08SmMASgPPEibElo7tVVXGEuxT3pJ55KAIQLxbCDhfcKKJr0SNUroLSOFPu8efMIr9Niqcx3ZT4iJvP559WrV4cqQxvedWvXcnjAaN5XTKsVFahIVbev0l3GclR8KpAbIWXS/v5GMeeimrh5rYeOIUmrNO4z4d7pasIAN89hw0dkP0IGeE2bNkWPM/Dp1jElcF8s4d6jL2H6L779t9WghmWrfD14UpuKNcp07lPvp5pl4MhXq1sWoK/88w+UwtZrUbFGgx/GzzeDvVO59n9sprYGssfYdyxToZR53/rlqpceNr1driwdFcwBuPktRMxyVUtXqPZdjxFCxJRwjXMmEROCP5TQTr1/ZgzBmjUblePYiiHc69uJoABxFf2dyHhcfByoRBiacIrkLaOjaTKVI00ti3jZzl27MlTgGKIOn/qvomSnAsH6n7t27ymQuHGWCb84/1GCDEXRAZQVe1K0y8KuXxdxdhW7j5AUxQ1kc8hkimT/jZukB4B4L69dEMZpot3JrFOvXr0A0779+rZq3WrkSFF0IaQjJUsnBd/xYTXu4/0fPUKC4xgZBW01OVlW07lu7q+0B1BZ3FuitJMSIf1VrvKe6ASwMFsSZUpQo43sQRWITFiYzZ6e8+bPowS0RvXqhNoJuKPQW6tWLatu3aZNnQoBkdsNZqU9De40oiERQniHDC2DFI6VjC6DFVUdHVQI0QUVXkvGyJF2JjH7y/bt/BNLH6wqq/lky8FKGf9C7gmALKGhI0eO+hR1tSqNinv27ddzkcuCK7GKmROHGPJ4b5+mnc2zSyuTqKpateoPP/5QiIqtErh/Nd79jKVdqZ+Cjlm9wQ9WgxuV/s9njdpXrN3sx/HzO9VsUH7akq743SNF+aBa39HN56/rNXBiq6p1vyfHW73Bj33GNKEsa+qirnVblO8/vhUwnQfcE73RvPuxcztm8u4lHIR3323qYnMomMNntm/coXLnPnVY2KpLzcGT2yhWfvGCe/CP9QE7d3d349D7/IXz0THRGADdb0QTbERjUt3UC5KnvAjfDreYn+vW1fizejCO8iWpQl5+b+99Z5SemqZbMFqnqbf2MQFT8q6gAv/ktzqAAA7iaBOdBzeBDNBNmikqygxADPzpAk4iM7jbpJSvhITk/7IEnZfYSxpdPuLi8esvXwmhqJZRglZTiBKgv0EKAe4QJBkwkVNGFJMG5bpN+Zo1a9zc3DAAUDXoY67JRcCatN8KlAl/XzLVfn40/EMNxkhnhI8InqITBz6CjFgIVCVYwvYhzxDEJ/TPTAwEcGS/mA3OklZTRHjIQqMIBFOwS+fOVapUEeGBTz8tU6ZM3fr1gHta6Hnt9OKy56GejZkB2blrkGg5YFoVzp03z87Ozm31anIRfF+3fj2Rn/AClg5xN0X9AlGzs2fJr277ZbuLqyt7oRnhjJkzkYxmAMR3O3v7DRs3LFq8KD+mHe9+zdp12M4ixy+4UwMGDWrWZ1DvpasHOLu3GzetnUXXAL/MplSR9LFRDxJEKQoI6tT5Gd5Rxn/x9JqVWUF5LFv168lO5lXqfDdgYuuajcq2MK/Wb1yz6UstqLNt1Panj7/4F3DfpH3VXiMJpnefvIg1/9PWqgZhmQkOZhVqlmYc8HPTcv3Htcwb7jXvvk6zCg3b/vRTrTLj5plhY7AcqoK3W4PWleq3qgAff+Ts9g3bVqpcu4z18EYEeSRVW5w0cyhc4hPEAV+MFTFBwUFAv7ROjYpia/BecPxxOfWYHWDau28fAWuAEqRD8Qp3GPxlffxoYtksBN3ARDxlQAGY0+nfPQY5WVg3PB94wgRIwBrNrIdMSfgbAGU5yAv2AY7YDzxTaU+oGJwEvkFJ4B6rsO/A/vxHhMBfYRNduJis2p+xQeI5QsrM7DYezWZ3ee2iX6OLswuAxRkRzwEKSXIC8Sh2Ubq5YcMG0H/NmtVg3EZ397Vr13lu8kS6hwOV9o3+/vzkmuqFYpRsxJJhNbVExE01cUYAOukBHacGCjkewf39+wFNFPYbN25c5vvvP/jnPwkpfPf9940aN+7Vs6e9nR0XHK+zcD2e9BUQWuTRoyLoJi0PH6WoiTsLWb5w25QmWWqKUlpGupgA86+jVTrtz2nmp1CWIRZ8MO7+oxdAeYRGSdZl+ZIlc+fY7965MznpSYZgQP/+iG4CZFhTinLzk1IqgfviAvcLN/aZtcJy6Iw205Z2HTaj7ZRF5uPmd+pm0wCuPQyZkbbtEMah7olKWuI2kxbCx4elYznavoPVkAbgMowdePoYjNF2HaYu7porB/8J3HebtKBz96ENRsxqp3n3xOjZONuZ7NSl+7CGcP9nrLAcMKF5j+ENe49qMlvgvnh591AKeeHxrcB9I9wzrIZ5ycLNm7eo1zkON5NXWt941eE6FI/1tkhdntYUHaD52PEThMWxHLioMDQUndwX5x3gppSfH4qepdoFf8JPhw2DIdFamBKiObCf4AbRcxrvIVNFpEEFnZNEPDkggA3iPiP+BZ4CfOzohK+PdMS+cTP/8Qd4n4ppHhWmFHMgTeo2hDQhkZKCEz6gFZlMMBd8nzVr9sSJkwYPGWIz1AbmtbV1d2I7Q2xsBg4aCJWlX//+AwcNwt8PUJlbTBEWwnipOaqEXEpnyaZeunSRcoc1q9eMGjkSkjvlqZ9/IROdmOrVqwcAId5CmIS3KKmoU5dF1VahyCduKCacgeDLFBDlCkO/+c0bb7zxu9/17dPnJWuXlsD988G9FcycPsKGdBbmO5gLxIO2wsF3lu9CjiTY4iKkTE2a1OxM+acstBR2vFqoa1+fDfcrhXE/ZzWBHX4lG9QUILVNSyECOXeDdM/eifMwZ3I9i2Wq1pT3TQpRO1lGjZo8HDTjrx6pTWj1m/sipvZYa6ipxU+Se8aAQHYA0kTPu4rH/VBpn+n1Wc71wRKACHjlRJDICbOkoPoqvM/EH4B1oeXExkHEFKuTkkIMQWLvKgBPyoHZe683tBx6c9PVhDAXBmbf/v2EpyhDJVu7/ZftJG8JyzBMwa3HqyXDkaVdF8Ma3VyTbCpDH6eFC7tZWdWpV6/0t9/+698fQZUp/e03lSpXQtmR4k96ZZBxZVMvTpKFd7iLuXm5ChU8Nm3Kp7BBgSZO32bYsGo1ajBiK0R3J+JOxMHOZ2OvvsApPZ2UjBJR+AOfHTt2LHHtX7/YvZ1mQ6rKKQ27ugZKceE1v14R5F2kxkrz5aX8Sq0vfHyF2hqXnwH3CvEZCgyc1ILaWnsTIibbZPmgSS2UoAKWxnKUrZTs2rlYF1u4z2MyHpvoYj7LA8p+IvfSUMEs8Ag9P5BUuKZxRAyoZcWdVHph8bQoB8pPqbEIhaOkXR0dHZcsWTJ9+gx8/NmzbUF11AIAI0/PzcR2aHrl4uLCP4lN4Y36CRmfgc5drgzVt4x72Mgce3srK6u69eujq0XA/eNPP0XDq0HDhrTpIBxEUAirQxVAaCiCXZiDEFKaSt//prFreR5x89tqKlB+lZviuGDBn99+G1wjOlTQ9iD5GTQQr//LO++w/Tp164YX3GgRT+My5p8G+vwTnNo/c8BvvMEx/+n//t8qVauSkyqB+9dGABnv3smjnyiXLegCvCKQQHHT9CVdR8xqi4ttqwgzJFc18upYzZRFFgjdKAWFdgC0oRLK+gnW5wL3Rt49Upf1WlSoWvc/Ex3N7VwziZjYkuZm1eo0K0tWAPIPRM9SpT9Gn2fumh6vEdwTe9FR9QOSfRUfnJD31dBnIAVImiViAM8nsoDpL9xwwh15ozln6rVr9/1s68CEufysU8ap5zhFSCAmGtcb7Ri+Q1YhtE28CIlHNAMI1xCv57urm2uPHj0sunYdOmzYbNvZQHaf3r1ZPmLkSPK36GrxvU/fPsDcf/7zn48/+fjTUp9Xrly5U6dOY8ePp07n+LHjWkooXRWjpkpj29vZ7RahrTxGUSzH/+U9ZFxCfOyaTBSBhRPpyg/uc61Y89+ffAK6ueZZOnRPdQ1kFBUi01V2A0H1mbTXdLULFBeAzsVLlhaikgMqEoY26sWkSeljsGzZ0uHjJgwfP3H6zFlnTp1iYSczM472k88+I3Z3+ODBR/81Mgm/HrgXAeRV3b76/pMaDX+An4MAMlJlqKQ17VgNkG3SofL3Fb6AlT/G3uznJuWmLbGs1bjcuDlmTdtXqdW4bMPWlQjIIGucF9A/JYBsPcXJvHz10vD0q/z8A1VUmURMF3H5IXc261SVzK3FwHqs3Kht5b6jW7xGcE+SDYLdSfVioGpAHB+RlCDVOkM3ddPixtwC2i6C7wD0bZEzuw1LEsKfPh004Xl08H+hr9xSYWipqr8j8ATqkRIAB4W2rSrwWS5yxIr0yTKQF9TWWyb1J1lBynrZ3b17+vkDOje4u5MMYFY0dukGrtZ8AJpzqHkz2QFQQA2PErcUuD9yGJX2HbNmz8Lp27plK8EZMrG0rt3+yy/ICdDQDg2WOXPnUqYEK4aQxQ9lf0QPktpUeJA1a9a0sLCYOWsWbjuYRRhHSXCK8L2xRJkjDL0aSqB/k+dmj02ehD7ISMPkJ0ENi1G4jL/8Altm27Zfslc1p6iuWFwNzpQxwX0JdD0k3qaqxu5ALiLf/EyEhZnzxz/96f/85S+5iZ6qeunrZLPJiEjbXTCeCrc00D9Bj0Lyjvvz1y9LlwZAGfoU4nnjotEiLT+1HQWd6FzYvEMnS/uFEw4ETDkWNNDNs4ml9bgxY9q3a4fyPg9bCcS/xt493nr5aqWnL7WqUve77kOafFv28+ZdqmAAcO2h0HTsUZuKWcLo4G/HHnX5JGFb6puPWnSpWqbcF6PtOmW2us1bR8HAu4eNA7O+ddcakDuthzUC7vm5CCAvMod3j4P/c7OyHXrWnr+uR5P2Vfq8VnAPV4TGUp6bN/OdhCqUG8AI0CFOLeqJZ84A5SgBgP6wZYiEsBAuI5FuxNGISBxSmEJkA9cexzlA6YJhMIxKOydP8iOpVOJPWqYRGCJFDI8ThmXgmUAqM9kdPjgxllNq2r5jO/slhYsjFq/akbi6ubGyqP34+0NtFMrj8ePa2wVD7+cj1IM7Cabv37d/LK1QS5X696ef7N+3D8Fb2JH4g5MmT+KZbta8Oe2wYW4g5k5OFYWZ3n362M+xp+gfw4Y+DLhoqsOPmcF6QZ0HLskwG2PTgPsOLy9ITes3bMAsEQua7+jo7OKCaWGEgUwNB7/K2TlLv3WYLVCe8P0fPnr8UBIh6Wz9njQIkyLhh7IgHUOIz5834sMmAovfe//9HEsWsEbcHcoOJGnDLu4/kFmMiijhsF0uN8TTPKLbOAF4yuxigwki5H/C2CA3V+RJBTSSWncxH7ltP3R7pBQcLkQuDImfc/ZafUvrA/u8S8D9NY/dewjvHiIm4I5n3WsE8ZTS3WwaEs8Bheu3rthjWGMyqOB1rxFN//XpP6mwhUiDVHK3IY1G2rYncF8gzRzUNCnjGjajXY0GPw6ehABnd6vBDXH5iQ7R5WrQpNa1mpTrNbIJeeC6LSp2t2li7/p6xO5xeXC0efEPKqlLIBj2+wlFNr+gJhCKz3ildMYIAEyHKU8SFbImkR8YeKCtdEaMjib+A6DjgQYoMjv0myTlvSJeBsrTZAkKo9TmnDsnUgR+fkA+ewf44LpAvacWZtMmD15a9HhBegTHgWOgiO8hVy6TNfX390O683xwMLEYxL+Cg4Pi44SqePTokfycKfvds3s34WxpcPHGGwRzUfqF/vjPf/2L+cuvvvqxXDn+OnTYUAYBVNtibG7cvJk9jiE5akOqG48YNxwHnH8TxaZ61jSGrvTlU7i211TLXN0mTD3MIOtD49hFT3jYDFPSZB2w/jEePWuxaa0CxELt6dMdButyI/eue0yYKLC4dp2fs/NPAHaSBzpuzlmwcSBeGiFosNdmJh0z8wDqVG6xI7bAWIddkL7OI/FgLLXLbi14DPAYCpp+z3tyWbXKfNb8RWG3nhLMuRI3bvfx/kNsinZfJXD/kuDelHc/c5llK4vqUxZbtO1WEw36bjaNajQSWj0VrSjbDJ7c2k6JZRLZp/MJMsV87zumOW1P+BVjAvuCwD0JXmI4Vet918aqJkGkGUstGUCMm9eJ5TRHrFr/uxZdqpGnpQKr0s/f/ty07Jg5ZnPcXgO4l4ZHqpMDg2vCDryE3E6kJbEBuMMiOXBL2nPfU5EWvQ7IhbuKgw7AsTJMR94l/qolJ4muaFU1UFvnA7TAMjvCN49SDBkmkJR9Qb6EK4n/G0po597Dc6HXL4TfvBaXGHz9RkRiyvWEpIR7D/k8dDLwyKmzYXG3Lt2gIVPahYjIK5ExgSFh1+OT4tMeng1Ftk2+mM5xaQ9THjwJ0ZKxNDMz+51qXPeb3/72d7//PYS8tm3bLnB0ZHSC0NhNVTgm4nHaA03P9KyBQZCX/6lzBAoF6h8qINMIidSP0TcvtDAA28S+gsLsQEVvHmbu9742DXIAygGXJUA015BgWo6b4i58+NFHnCWlT9n/ijHWobZ09WY/0KQso1SnFljQ5ictjeFUjoRFMthcyb/+/f3LOZWk8kiQdLiuJr6Q085qLWiFePUq1rdoIXjCtGljdhxyvBT9lETahch552+27Tco9U4JFed1hvuFoogprEpys7OEEtNV6yHPMggdi2IlDJwVIlwMl2bmiq6yphA0u+keswUVQNZiy5rYI/prq3to4WUjI4jts2t7EcLsoQSWu792zJz8TAABIGSEuSKZTsXfPRad4hN350TM7RMxKSdibx/nMyblWHQyS3zj7zKrP6nlsfJFr8MKPrF3jkfLF9P5SFTy+cQnvjaFwcRwYOPVrVePfkZv/fGPxtDzQ6Xua4q86fKpqaWPHwnHNBMPHyuw13D/MJN3Kn9i5qvq1lLI3lUMngDBx2pTwDpON9GbR+pQpEmvgnuW3FNOOAElwjvoneW4KSiSnNr/++tfs/dZxdwqdSPCXztIzlNpoRuTgbyEdxCHA52J3SNAzQiP1UT1UyVvskyDbWzYRfmKFbM/yRhypEAZ9DwZPqKcGh5hiuyUngH3RSjYR30DQbnWZmaTD+WgiOlwKabd4GF3XiIRqATuixruDbx7UTlebgnO6hnQF/xdYTXbqHtsUMBnNvzVUmsgF1QAWe9rpv65QQBZNm44AL39mYbtv3ZETNJ3+Reo0VR70yV4/am5DP/BlDxYJTxip+MB+hSfnGbf2NteF8IOXY/N/qcTYH0uv8IAXExKNUW6i0rQjcgITzaylOglbNu6NV3BPRiKG50qLFJ53lWQnKbtEi7P5oYTpnisghViCW5Lr657JDv5AtbH5gSOeUzGdCUVcGwEWH+osrLM+O/oNoRcDeXSkfvQO0qVfYm4M/lVxknZXzwHR8e33nrrjd/+dsLEicaFRmED8itshHNbsXLlkCFDRiuqqK2t7ZKlS+3s7RBf45+DhwyGj0Th8UMJHz1gNJDFByem97f33wfuJ0+ZYghbZYI7w0TGhSRyOTDVAj5BP05kI/DzjVAC1hMGJEL4PN491oJMDyoRzZs3o5uV9LT66su+S1ydQhNMsd7xUszUY2c7W/d4WCgibwncF4/YvVUm7362wYXPVLdfkYnymlCvZwPuW+lGV0/p3eevNbmdobB2tuHnT21cb3mF5vI/2X4xhHtTf0p/4+V88h6GhmrNnPxMaeLjP/UK+fr5Zm94rcMDKAzH5QmFwD2uvV/cHV/m2Nt+6lPPfPcIOAviH4tK5J8GoE86EZ2CDdBLTH+SI9wTaSG1IKQgadItTrkuCaPglmyqhxJIAKGIL+lcKJlMIBgKDQuBSxxSIi1Et+CuEIACcPntPaUXlKLE9RW5JS3aAN+6HwgWjrgWYSuIlND2odtD1yFVyyfzCV9fS6tuOt4FH1+lZFM1+wicvXjpMgxREBmpzu7du3M8bBCTADWKCJvqzUJD2RiurZYwI1/SpYu5RKveeOMfH36Idn+wmsh4jx4zRh8YCKsj9egYH1JKzqLzExREbTPpE/Lp5GzIkSCQR3qAh4KV+SGjlseq4SXmnPTyxypJC+J7e9OHUmoJxo0frzsQkFHgkYBcxNAB1hYqPexaPyQEdoyPPVcXS0YQr0BPO5bwWlgYzS+hTjVs1AgpUDTjKlWuDLeSOnASTZcunG9kZj775JWFIXHkaQnjOF6OIVvbavjY1W6uJeD+usK9YubUgpljbyS/m8w6iqLR1mTOskL+epsYHXzXJxvJtvHuOR2DtdGcFB+4531mwA5REqwBl8E1HN7jJ44Too1Uvf34J3JXiCVoHh7AJGQbf39Sc8ABwAdsMcwXLLwZCRoSCgAXwJrwiHCCAPBwQkOvgjskYI0xX4AMpg1trXCoqWiljBbguKo6FxLpBk1YAU/2XNK9bWcve/if3Xz6gtfFMI+Ac95Xb+4NieDzeFTi2mMBnqeCd5y/uj8scm/IDaB/zVG//WFROy+EHrmRcPB6zJ4rEZtPn2eF3Zeus8KBsGjGClngXpc14Z7rUAmgSkiEY+7Xv1/PXj1nzpyJn8vnIqdF9vb2aCpQATtu/DgI9RMnTkRfYf78+VOmTp0ydcrwEcNd3VZnCC3nwT1FLGVjmoipY/eKTXSL8AjWgp8gwNC0WVP0zt57769S6WM6/+Y3MD65VlxSiREp1/6OcF4f4tfDewF53T02rVrljC+fpg74rnD5ReFZeuTGxjLI4EquXLmySdMmv33zTbLQv33rLeY3f/+Ht5j/8Iff/0HCVpMmT2YvRHKk+XBqGhoVIDuPAXdcMvAnT2LmU1LuQKwC0/krREkpFaZHQmRkrGratXz5clQffqvMCZ+//+Mf33n33Xff+3//+957b775JmfB02hsynjx0sWtW7YgNbF8xQrNkeV5i1cVCWqod5G9xOUjz0ECn2NGyGjAgP5Vq1Wjig3SVIMG9adMnowDcT1bgxQQqp6Z+fDNeyHkzAu+MfngqZbDsDhj7v139J79dcK9/Wz7dla1Fnv2B0w1S9IUf58oIhhmo0zCs4uqnsW+N27fPttmsxyDcRfFqHlhgP9V1XgIEAGewCPEA+hIhCgm73yGKr6n4okXSfPB4V0A6JpNzyvKct1wNUQVakLTxCskZwt1B0ECUrGgBi482+TF1hoJEiAKv05rDdYR2s/+/fAvGeOzNXpGYQNg9eDrwbME7jf6ndl65hJg7XHy3PbgkHXHAw5ci950Mgg0B8rd/c+ywgafQAI4oDn/3Bca6c4S30B8ef607vjJvVciNgUEyXwymLGCKdzzjEIGVTrv4uATNtEa9BA6ly9fhns4YcIEpNAWL1mCwaOedtCgQQudFnpu9rS1s4M3aT9nDt+hEq1dt27ipEmwmHQ8R0fwdZRfd1rXcE86NOzadc56+owZVGzR3ZtqrE8++fTt/3n37f/5H0hBkOKZUXABKLE82E8i9QAx4Mh/urFilGp8LopGsdKbBXwXirwi4HPwSckpNPgGkTGdTk5OrVq1eu9vf/vTn/+st8wX4wzcjx47lsNj7PJQHRuFxJwv0kAoZVJfhr+MPcDkwEZlPDFlypT5Dg44AemqSI0ZXaAlS5e0bNny3f/9X7LcSBEw80WbFrZP/IfbDdyLHL5QlR6kqemByvBrlXxjnBDP4JQq8shx4tkjl7BokRP1bhUqVPjo3/8mVtOmTRsuFEytZyoLHT92dOCQwR369G/Xd2DXnr3cXF0eFFftoBK4Lxjcz1VATFOquW4aW+W7EeXVchMV+6dtQAGw/mnQz+9s+FXxgXs8WTKWRBXAZanmv3wZh5f6I95SxAOuyBTCm4bfpwMvwD0SwYARDHreVSLIuPlAOV4bowFGCYwV8PsoyISlw5HgFQpwBwWxkG2Fq9cbBDyvKPxgjW57SxiXjQg1k6bk/v6YHzDobGKae8A5sPt4dPLOi2G7L18H4n8Juox3v9HvLOC+9czFzYEX3P3PbDlzEb9+8+lg76s3MAZbz146FB7LamtPnOSTNRkT8HNyuaZwDxgxuElTXRs115BQjqbWENshUIPpIlqC1wzg0u6KUwNaQTqYMHBgENdUmVnJ0xK80ZZMbSZdx4V0M0hjwErxJiWswZAoXElGY+F05QEMVK4GhFe4nnQT5OUBCuGwPFSNZzkYDgAxYdqVgKELFqDMPGfUqFGMPMaMHYtTzGqAPWGfeGnAKNaF7wyndLesfdJi8YDpTAlFd2trbK2SmI5URNKMZcuXYyH8fP24NVRa8TxQCMbpY7qPqGpjlOAY/HHKfEp93L373D7GebyS6PCYTpSbdepkxuPByjgTnJT7RnegmeXQ/xEIWuVMhdNKrkOKIVlKTIk6hpsGkqvud3bs6FHOtEPHjlBjKWorW7YsPVvQj4N0W4jOXyKonZRYEq//dcH96p5kUM371YMWSX+SmcusLPrXly6GKr/adUD96UssqYcqDLIX3Vx84F4zq/k0CJpl9uXQFBNeqseGSf+JSI4OgKiSHwE4XRoDS1s772pTmbpmho0LQGhRM+NbqgppM3edYRAPMB6AyJ+lp59LTNty+rznyaCA+Ls+JGCjk/1ibx+7ecsvNuV4ZOKJqESWEK9XCxN8ic5HJ8mSKFmiV2Y135hktSYLJXx/KekpmDgnCH6X5/mBsCrTFaMmXV2BDH2Oy5evWLJkKY786jVr0NIBsJxdnFetWkVsh5j19BnTCUmbXPzMWyDUHXVGINrdOwVrHmLsOiBicLBdVdkxR7LJc9OECRO3b99BaRsBFjrlYiEYDIUTHFclzQSREhOJHSXki/ajwiZcfIZl3EkM/IEDB7HZYD0mnKuBeWPUIBlgGTaQeZW+j9RMsHKCQb05j0nLIXApsGrIyS10cmL0Q+COMoKDhw9TOMaLnKWpGTaPdXbv2jVjxowWLVpkBuIrVabFLsbhau6U/5Lpvxfu563uOWu5VTOzqnQpmb+mB5o5kN9nr7CaK0Ge7i27VJ+y0Fx1si2B+8JMSvGgwP5R4QRJHjxOT33w8K6YkfS85wfPWiFzfpT+8PFTPD9GJDq4/Ngg55lucPwzpInjbSIbw5iGDwf0ly5bThhn8pTJ9nb2VMPiDg8YNBDAzcgstpIcQLre1OPMqqvnufiMuojM4NrrpAIlbARyHhtYmMLuv/9AV0VpXOYL6ROQukB7YXDG4ZKyRm2fPDAjhqXLlpGqmTZtOt3MR44cSRNHpOKGDx+OtVu5ahUnBYcy/48rQCAi+NmMEDZEmxwwZZOHR5++fZHc+ev773/+eSl4sYxd6NuFs18k7dpLpl95MMfREMyZm0Mwp7BxmxK4/9VNOIyELDLZ8qJPQCnpgzTNgyHdmnYPz5TwfYwo4yfyiXsrfJjUNC30Q/RcWEwK67XSs0rS3teMGkSBbuZZ6fpMoASL2SyHo4mY7NQI7ip/m3pPLeE7C/HHI25EFNioXLsGxYgyZoYLu1XSBd0eugGMHz/OaZHTmjVrydwQzHF1ddurmhSy06u5d+LNbbzCQ2ikfoLgVFDPmz+fhpDlypfTgfh69et379aNUA9XLL2k2LUE7vMP9/YuJilZl6fm5wrT528mmgSaO6zr7bi+t4PMvWiRaDqzZKF735U7Bnfu2XDxwoUcf3QUomD3SuD+lUwEqSOlGZMgtS4WA9EkPHL79pYtW+epiViEu4cH6cQdO3eSlyaIT1aZQBBBCYLjxsAFG1FEmjSdsCVAf+f5JNTZI8cmOeTUVKF2KkPEnCaziGveUxW2LCHkIgz6gvvCmCvy1fdF8oHO8pmDMPZDXJ7shSouy6yw1Z8kgbOLuD1zokcgbM6Jkya2bNXq69Kl//nhh8gQIRrq6OBAmwHYo0rj8xrmreSBLIH7Anv3+c+aFslMm0PGDeA7M5zLsXM6DZrcEv2cDt3rtjKr3aR1zaZtaum5cesarTvXtujfgLZZzdpXX7p48cXz53nci6rNUAncF3RCwYaEbUamRsIDTUJ/rMpH7ezsYeMQ0yBHClmFNLWNjU3z5s0lxDF16oCB0CkH0RNcC8lpH9/YkoUENcH35zw2hh0Eu8m/PlIjD11D+2RWwwit2UCOPbawfQ0hdOoSKqzHo8wK4cdsWCR6RKfhgaQPZI/3bxpiX/mZ4ERC1aWnbrPmzUqXLv3ZZ59Rc9uzR4+NGzYGnTuXhQdJ2OpcsPQTLqqq2pKpBO6LEuu1F++4oTdAT8fzodNbd+5dr1GrqvWbVm/StEGH9u17WvcYPHDQ6BEjp0ycPHXSFD1PHDdh5LDhgwYM7Gpu0ap1c/cN62lAinzMgyIiDJTAfSEmIJWod4aRV2N4vokvQzOFZUQJErRIVptta4svzD9ZDvBxbaGlEuQxduzKMIT+YTQVSdyZsD0pzRtKXcAYMtLcIfx69olfT7q1oAVKWSbC8XSS0hoYupbKIAgh4xUt28Al4pTzgGPGHdRY0El4qI0N8XdUehBNK1+xQhfzLhhLUJ5rdTXkarASc+aqwte6ZUj5QuNh/ERb+JKnsQTuCwL3RgXjF4P1ypHvvWBD79mrutPe1rxv/QYtKzdoUqt1q1Z9evUGzR3nOixxWuy8YoWbi8tqF5c1rq5r3dzWua1mXuu2mn+udnXduG7dlk2ee7y8/H39KAuE5/AK4Z714QtyDJo1GPNqJ8XpzrIMvnm84hgaDxKqzy3DpJcniCSyTPFKwY2JddhUdJZNRUdnR2H4Ib5wLlNT0w2J3IK6mMbVNepLyVlkUXbqgDSJhiinSMWuGoI8hifDPSPaQwAksSha2nJl4NHGqaYCpmeEBeTSo+QcnpOWBg8PDzBCQ71796KcFd2Czz4v1bRJkxkzZ65bt56gPzguZN+wMIJgWEoyARBtKc1DAZvej0mGuJBWD1XqPSXefQncFxTuizgcLyivHPnetC6hO1Ur85o/N6jcpEmjHt27T54wyclxAfgusL5mjfv69Zs9PH7ZssVr+3ba3u/dvdt7z94D3t7M+2Egkw7btYslhw4c8PPxvXzxUrSqyC+qZjqFgHv43bCeQQ1o4KcDT/sbJl3W7/8ypwB2KJPqLSX/1F8ACKgjQcFBHCSHypCfGi58Xr5zzMFqOfRQrc/MmlqlmXXYlN/Te6CON8egB0aCdCXRjIx0HZPJzL6mi1SAVGApdkymJLBGw0wGjuFlSDd8Em3nhSly2GLPqnpZCPtw7UOUWEFyUnIR7uiBKrI9J1MQl5fryTe+ZBmpIEN9+tQpdENp0FiuXLl/ffTRt2XKtG/f3sHRgT6/pmvqAQJHTkpc0uAio88Y4N5DxcqF+FTSDbwE7vML9zwr8XHxaJ2/ILgH5QnXLNjQh23SBaXb4IaN21at17Am5XzDhtjYz7Zdtnixm7MzKL+JHtbbtu728qJO5uihwz7HTwCTgadPnztzFmt0ASQCmJh5dWgScU5m/snVJEmbkpxsqlFTEsx5VRMO+ZGjx9JUGYFu1K4ldMApzX0EDUmZPlLtPjIylX8yhwLGuwfWY2YevMhaHg2gL/RSXLl8hVbdNBk3PpbknPd5e0PTbN26NQ28yLVWrFixd+/ey5cto/dAjrwyEgsXL1ykQI+WYVwTSvlw8DGrWGJpRHPsOPycQmR9S6b/XrhPSIi/eP7CwX377G3ntLOquXzbINzw54R7ceQVqQbpm1G2HTr3rtugRdV6DWp3Nus0btRYh7nzceSJyWxYuxYvfscvv3jv2XPsyBG80HNnztCO4+qVEJJUNyIiopAWiYlh/EFoXmRwpeAxQQIRaiGzUo2Xtny59XwogfuXjfg3b1LsQ2xEJ0JVlPyxrnNiySND5a3Bu0/PMBD2FYMlnRgFI47XvevpJncPAB0VBERpvHbuJFPdoEGDz0qVosF6jRo1UM1cu2YNfQuemZkA7gnjoHNJqgMrSKUudbmkQyLCI6i1ZohGRwHT3i8lUwnc5/VLKjIJ5bKzIwcPLV+8tPrPFfqMaYY6DWCNV14ALx6IX5vJq6HglnZUfUY1a9m5+s8NqjZp1qhXj55TJ05ZvNCJzjhrV692X79h2+bNu3d6oe934tix0wEng4OCGVeD70SGcV6SkhIBXEavuDz372W2YjVO942T+hOnYNI94tXAPdGJBwZvEaTjZhfOOVXlqel65J7bOo8eFYxSbazyJUl4+/bLaEahhCRPQi2/r+qVtOSvKmt9bHCuc7hfFLUSRALRXusGSeQ20JIU3f833kD95i/vvAOjpkGjRnQF2P7Ldvim9wvSXJB7p+j2d42PE6+CfkIeySP3QEfDShC2BO7zB/ePHvFyckw+x49v9fQkutKmdauadX9q3702SVTUcoT/rsnvEN7XMvdUcy8jaVIvx4uHOtlnVFPCQQ2aVa/f6Gezjh2H2wxngyuWLiNcs37NGgnXbN3qvWf34YOH/H18z545C6RS94gLT94QbT9U3e8pHajHmtDwijJOhYB72HKImmWochh0wVBxYQnbIfLEpjg1huFYJsYlFLJzgijgh1wJEerew4dw+EJV0Q2nPHfuPPKpfn7+bm5u/EpV5z8i/0aajl9dFfZIJEk/3n/cvVhRnrlPwF2nGTGD0DaksV9KCrvDcyQPqRxD4TLyBQU3uteyQQLK/ITfElBmZdbkMNg+ewSPWIE0Kd9ZyAYLR29lIzzx5C2fuQWuklB3roRwIinJr3OvjPR0HPnSqre4cYJXc+pkQAkClsB9cYF7giFUcBA93Ltrtwd6JitWzJw2o2f3Ho0a16/TsEqLjrW69K3Xb2zTIVNaj7bryDzGviOWYPDkVn3HNrXoX6+NeW2I8LXrVWnavKF55y42g21mTpu+dNES5xUricirpOumndu3k2JFrelkgD8x95ArVyLCwyGLEJzRcFO00ZiXD/dcQ61UdfTIEQAOPxrFcxF6XLuW6C09Wg8dOoxcGuIwqJ4Rft240R31XS8EVnbvWr9+g6urK2Ma4JWFENi3bN2K8aCnK7JZwLSrmys/2b13LwVKKHUdPHQQtsYmT086mJO0Zi9sX/uV/BBiOxsH1inu5Dv98EjdaoPEjnC6SbSuWbOG2ku2ycb4CUdBQRCKm4jrQgWBBchvIcJTK0vqlTAxAZZCSjg8eECRKvplRB4wWsR5OE0ea4yNZmFiwAhMs4siIca88okcGFGayZMm9e7Vq0XLlnDk0RYmTV6CgCVwXyzgnuPAoSYCzmFBuWDH+OBwH1cuW0bsxXbG7JHDR/Tp2buzWed2bVq3aNlUz61aNe/Qvp1FF4vePXsPtxk6ZeIkx7nzly0WiF/j5kZEfpO7O448/BnIM74nTkBCICIfevUqZDhIgqitcm4UiYgWWLFB+eeBe+OEKw1WQsZwWrTIw90DRAZh9+7zxoWnvpRMHfEK5f6fPHjoMJwY19VutAFBJxk6HTdi506vjRs3omsIXqPktXnLFsTZ0UcEsj23bPHx84OEt2XrFkTWAMp9Bw5s3roVVx3RMXZNnSoF+pgBKvUB061bt4HjkGqClBwbgMsYAqBfvWYttgfQh+LEEIFdoHvOai6uLigSsxwFG0B52w7ZOyMJRGbYwnMmNtNoCqjgPkLU/6lnusyTANwzQCnyux+SnHY+8e7Ln4Nu3b39dBSKABav1e2S9n4lcF9M4D5DZWvxr8mFAseBp04dQVFv584tSLCuXbsaDMDhpJnC0qVLFy1a4uS0ZKHMS50WAe4rly13WbkK20CgRrHgN23fug0i/IF9+08cPRrg5x909uyVS5dJuiJokxAfT9RIyGRK5fEVxmpeKNzzW4ISgq1hYaSWoWFC+4O6rqqNYsFo4jzxit4OmZ0LwifYh8yhVrKEUco6KKQj5gVNW9pl+PouWrQIw0BTFKAcMX0l0S4+MpjOchauXr0mQ5G+keVC9xjTwg3lr8TBjx49lqA6IuGh02gJOgc7heNBTRAbYQyBJrD04vDxAYs5cuAedg0/Z31I4owt4grYOPCVT6fi7tCe9/hLn+niG5VaogxcMhVvuNeZH+LmYNCNiBuXL10+GxiIS36YaO/u3V7bf4H/vhkPEzfTMHu6uxOiId26Y9s2MHG/tzdGgug/uuPnzuqIfKjKu8aQB+Y00opZuObFwX2RT1w3/OIMxWpPzhba5grj72MbCrdxMiTXw8N/ZS9boGrPq3su5tZx93lm35icN0vf9ugSuC+ZijncG4P4cAbYJaBPvg6XnCMIRsHq9Gn8dF+h/tLQ5ijz8aNH+c4Sfz+/UydPQp2Ex0k4/vq1MKT48DElIp+cTDg7M+9ajB35ooJ7zjojF41itkYohriKqfwLjah0aJvUa4Yi8xA6p2lGlphJbhIuDAj4TDA04ngSSlLLc5vI32I58NyNHTCyTLGqFheGDJlk0+UMUJ6HLcNmiVbFSEfATHvP1oztZ00nrkYejCYddcwP3B+PSvK6ELrr0nVadPnpVr2q6a7pd2MDXqNVMG3ka+zTK1/Ur4wrHL15y9jbXc/HImXJidjbpnCvyTOZR24oCoGKWogLaOx/UDKVwH3RwH1Gph7hY943EEGrAkBsj1LdVuEIU+cttYhXr/K/63SQu3YtQkVjqaknUCPheEWd1BD/ujjyRQX3EiIPCiIoDxUaWCeGTigmM5QcErLTS9oWhsh0lYQt1WH0oACy3d3dabuaoYk9e/fCsL58JYS7c+KED1eapobEamDpeHntuqCKM4nbXFN9ROHtEGkhT0sWFPYLcR7WP3zkKKqTbAewRkqFQE18QjyB/kRDW3NaWtNU5Fp4OHtnX+QV0F2B80M6AfkVbhlnjeYiB09TPVqKM27A8JMKZnespkUrCwFVcBDRe3F391iwcCFiyJzIyVMn6Q/FuZBmQB4yQp3LNWn+tY9YFgKZeBdQhaghoqZX1x9JOsTJae26tbCVaC3FUxepensRIuPYONSDinTEmmdvpdKSd73PKc/T5/dcCacJl2q9G78j+OqO4BDmwxFx24OueIfcYCGG4XB4nMvB4weux/xy7srB67G07aWrFyB+ICyKJUD5rovX+BXtwOjZS99HNs4nhoTt0OeLXo/sgu87Lly7mSIU+LuqoQ3RPK4n7w6GjegZITU5X29vTpZz1HadERsGWKhQNxhX39CvDNEz1hSLiOd06xYPDPf63r17JTBaAvdFCffZcZ9IAnEYQFzT+4zTbTXjvxupk8U8HP+i4R4GDslVGCYQXfbuEQjbabjIxN91C1bKwiDikJ8kE8trD/CFhoaBXPwJxiQY57Z6NTQesJs6o40eHuCs0Gzc3WFzrlm7FsMABKOIwPokU8BHPkFDNk78HQ4PbQLXrl0H9nm4uwOmIAjr0OXO6Bju8d4LjBKWgxHk7LyKAQcHCUUHFGZgobESKg6JX1iYbJZAP3vnGIB7eosXjjzD3ulDO3nKFM7OwdERC9e//wAOwMHBwX7uXDhFY8eNo60V60ydPp2FLi6us2bNGjNuHM1P+CctXnVGlw4htrazaX2FwhpEJqTebWfb8ls7O7sVK1eOHDVqzNgxXCj2eDr+9prjJ3G3AxJS6dC73uc0AO188Pjqo36LduzZ6Be4ZKe38/6jtOFdtf/Yvqs3WcH54LG1xwNcD/us2Htowdad9GjEkaevL2Zgo/8ZFnoESJdHz9PBK/Yd3ugbyE92XQzDoqzYd4RGj5tOBdHi0eWI35WYeG37uVMkukmJc1/4Ip0Ljx3bt28/TU64+2TRdUaENbkdfoor5eGxCfRHxodLsVNNfDmjWqaQdMEAvHZJlBK4fz3gPkf0zzKlG6Zf390qBNwDl2ANKVjgGAqm1y4vGJD6V9xFLjiwDhzjjAPE8BtZB2DdvWcv31nnvPL3oeVgLRA1BBxOnj5NmZIWqOE9x8VjBAA4gtesv1tx/MFB2DgAKGSenV67wHesBUxNBgTHBFz2YX7gfRKf0UgB5FDGBVaC4LjwYH3kzUiAhjV91GYzlDAZCVuGd+yCk8KGcV58cki4qHishfDuQXBak9MRm96q7B0Q58hB7ZmzZ2ONRo8eA2TT1Jsu3rNtZ7MCLv98R8dFixejkk8PLAwYcD958hSswpSpU6ZNn04PLGDU0sqKMgXEk7mSS5Ytg1WgG7XTnne9/1n3gCDm9b6B606cdj8ZtGL/EbzvtSdO0YN3wbZdbkd8N/qfXeF9xCMgaNmeQxsDzq0+5r/O5xQteZftOYgjfzQqac2xAJdDPq5H/badu7I9ONT54AnXI75OO71dD/vuvHDNEd7TlYgNrO99mOX0+115yMdfxesYiLi6uXFUIDiDJcZqEHAZdTGWwmZzBzds2MiNw75yF7D65MPxCeiAy/iJoQAoL/fd15cbhF1kiENPRNY3IkjJVAL3RRPMyew0+jpMGS/M3hQuVWs8luDzwavXrA4WQeDMEDmDJP09XYWntb1kSMRCXYKUrpgz4DLEG/A9SYVfdBNanfzgE7TF4dVS6TrArbrfPtY8H90cnE82wqXRXzTa8kWHvPWvNAWIAL22AQzOdK7e6Izr7xyDbCo9XVcy6yXhhcrrgtdC7Y+IYI9wOgE1dhoTG2Nnb4+xYZsYA/QgWQGwozMt4M5PAEcE8Xv27KWDSKg/4h1z9c4HnwcEOcHLqks7YS4GmtCIJOQYEcElvX73QXB8yuGLIUevhF24dcc3LOLYlbDA6ISg+OQzUQlBccm/+AS4eu0JiIgOjIw/EHzJ/3qk3/XIUzdjD10MYSFfaMbL7BN24+jlMN+wG+dik4Jik07eiD188erRy6H+4VH+16Ncd3mz8YPnrxy+FMpPWLLnzPnIWyJfwzHgs/MIJSYmqZqDs9wj3HYGcMA6pW2HlNCNdHU/dYqshtbj5DQZRvMkEFsD60F+LhphHx4kflISzCmB+yKDe901WxqaKoyRMI5u+VNcZ0kPGMJHjwwNvl8h3IM4HBI/BBOJcWVPsfKn5JRnS1kxnM+tBpVDiskpvfn6TsYQNs3/smdoiYBTCIafW+QWHR5BYj5SvnlMZA6iVI49xwmyU4lsWQncF1O4F+eRvqB37wJSe/fsobRy65bNmzd5FueZI9y2desv27YxEIadIoaq6BC/EHBP5IFBN7yWaTOmcyVxQu9JYzwRJ9DwTQyHy64fAkg4ADepOSPPhDgP0AbhffuOnQRkfvWStlyT3EhHhKHASlgtKIKRcM5jI1h5OsQ+c4P5RfCYmCRDTju/5io0NI9iY84iS7cpnit64ZagYQncvzK416N1HFLYk0cPH67Xut2IOQtsZtnbzCzeM0c4e85we8cGrVof2L9flNReqQCyh6cnME1wnMJURt985yIfOniQ75o0SXid0HOwKnAl80mknkzsLhWUYAlBdmL97JQ4ANb2hWr/vuSJc0GPgVSzh4dHoJLwJZBNNIO4PGi+SfLVwkklJsMVIPNBhAczGXz+PMnYOXPnsgIvzJ69e6j1BVu5XGyNHAaxe37OS0W8ni3DhkK6n/LgdevXkQsNOhfE0IE6MqIlLHT3cCdErkmr27dvp4yZn/MnSE0E00lXkBpZumwZS7hxHAO5U4z3zp072LLWxmBdWEPEnYi2b9+xg5AaKZPly1fgZGAkyHNwZ2EHkdkmMiPB+gMHYRCxPkwn/uTj6wNriwMm8cApcIIoVZBBgVbE6XAW7JpDwmKR0T1y5CiRPXbNb6FXcQA8JzQuIHhFliWlpEa3BO4LDfc8r7qklsOiOVSPkWO9zl/1PHl2k/+ZTQHFdZZjO7v5VNDO81d7DR3OcAQG+t27d4rKwS8E3JNVAwXAkZ27dh08cBDkIuGG+g0lybze+PvAFghP8pOVceTBF9Kz/FPTXQhq8/4TfYbhA1lTFx7/Oh59riSmDmoKKV9y0UeOHuHxI4HJ52aR5cHHOMxqEIS4FNvVBKzja3M9idHDDoJuRPoacEyWaHgiG+ECMggAwUVzaPdumh9CMEVQCMEJ7ChsJUD8iBIvWr9xIz88/P/bO8+3qs6sjf8J7zVf3mu+z2Qm5Z1UE7uoFOlFRBHsgvRmAZUmSO+9S4dDB0VQAQvGJJbEksSusUVjLIkxiU6iM76/vR84okZjnKiYWbfr4tpszi4Hjvez9lr3Wqt/O6lmMqhcqLKyEm6FUteu0xoTQdYokciXkAstKyvr1IGIiAUYboV8ySLweaBPEX9BrsVJeAHSGkLtSG7u6EUJ3IauwGnnc0Jeuqenl6Acd0KuhbfJVehWRJabt9bT16c/zO3kt8EbRFtFDr9bz+RzZv76XJflob7BwBvkQBYSrgLvq/Pwm7zw8CCSQOj+V45UamsqYD/bf6C6vGJOYIjh/V3lm7aUbdxctnHLM7HNQzbu236ordm0pbK337Bj9/yAQKZfcf/0TH6Owwtxxwg+HD12FFeR/8n0tIHr6XEGG6kT8g28o6I3fBQgEQSXiN/V4ay4eII4pMSmaGmgmvj/MT76LHVoUXB1UZHjNbMQ4ufikkOdZCnxbU/plQT8fviRNjlr927NZf7uO36kN3s4i6gRZmSBJHrDfwl2qglcaJBwqA/quV/4l985YD+lIfSu4HBCkjxG8DzBhBA94an9ESFxzsnLEEFyTih4/4FPWWtZKnixNut11y4ibzjaPGFo+fYLF/g/wpKA5B/5LNdi5UD7xLvAl7+jF6+xzPPEtmvXbt6jRtDtHaxhfAA4D8sYG/wGyEIjcOLpgb81iWU+GOhfOSGX5nmCzwxPDDS1w/jvyXvRB5h8xhvkWE7CekmxHusQLZh4ahFKFbp/QrqnQor/Ibs/2llSUODmG1DZ11+4dkNBRxdWsr5H3+42WtG6jewcuuc/tPyOrsJ1G0q7e4vXb8rXLjqwU9te213S1VvcuSm/fX1x50ZeU9S5Ud1Y4dpuXl+1+f05vn6V5eX0ysefGm6jySGCa5Kyu3OP1IuUxo8//KAUR5pA6Pvvjf8T1LbxEY1XGis5buq4c68meGDu95B0/VCV8A0d96mH1QdenUTpkVROlfCKujpfVR7IeCF1A5yKBVhl49UZvtNb2qkTchQFKMYz0x+JBxG1jWzqxs2b6kd8VW9KK2fr7GSRYA8NMNQVFThQHXt7EGxTlqHVqP/0E34AWQ2ZVih0/6R0f+sWUftjR47wUJ2XleXq5Vu6oS+nuSO3ZS0k6x8dm1xZq+g1r62TnUnlNcuS0/k2u6kjr209i0F+2/rs5o6clrW/1TgDxjlXFZRM9/QOXp2Q27pO7cxuaucFscVrpi/y8YuMyWlZ5xsZM93De3l6Vq5+IHfI7eHjz/b2LSsuZvoq7tjPv5NYTaZZCZ4qIHGkmb86ykogdH/n9x9eeOUKZf39W7Zmp6fPWOSNB53V2B6ZWxi0Ku7VN9+KyMoNjE3A61+WnJbd2D7D0+vl19+EfLMa24LjktgfvDqR1z+JNbRlNrRmGFpMLK3mBAaPNTULz8xl5chgZ0Nren2zqZ29u2/AOHMLFphVBaU+EdGjTCamVBu4NJbbsq60u2+Wl08xDSMPHkIb95PQvUAgELp/2JHaiKVLl2hG379lS2ZaGl42dB9btGacxRSfFRF/f/0f4Vl5EblFHqErR4wbl1hROy9k6YjxE8LSsjPqm6Pyir1XRr41enT8mqqspt9K9xrXYzGFpSMnTh5jaj7SxMQnPAqnngUAro9fUzPG1GzUxEmjTc1mBwTj4MeVVrIwJFcb9AMH6N7dy7u4sODQ5wfpsfyLw52F7gUCgdD9PXS/bcvmzLRUFw8vYuIB0bEm1rZ57V3vTpi4LCV9dkCQqYPT319/Y3VJBSEXc6epeR1dqXVNs/wCpzi7sD8ypwCv/AnoPsPQSiQHul+SmGbhNBVdULa+bKTVNceVVY6ZbBoYE2/j6ubuF8jrZ3gs8g1fxU9ZD4TuBQKB0P2T031Gqkb3+R3d0QUlY80tPENX/PWVVwnfvzlylOPseS+99tqqwrLlaVnvmUwMiIlfXVL+1ugxU+ct+Msrr67Myn0S797QklbXlFLTMNHKmqeK0ZNNV2bmJlXVmztOJZSUUtNoZu/gPN9jjKnp0uQMLmRiaR0Sn5Ja2yh0LxAIhO5/B7onAZtS27giPcdnZeTCZcvJl+Jiz/QNXLh0eXxZdUp1g3/06ln+wXGlVYsTU918Az1CVySsqc5qbNVD6r+Z7qHvyJzCGV5+QbGJafXNyVX13uHRq0srUmsaCRa5evuRJ0iqrCOaxLXmBi9leRj+dK/a1zBkXFUGXdf7iTKbF/kQkk0Ki7RhrXoVKFoLfkQGheZl9LGhWTEKPCX++8UzIwhRah8O1JQeP/1ExxwUIyj3H/y46N10vrlx4ybn/P77H/SJWl8/rBiN/ZcuX76unwQBifEGOERtf6sPK7+jd+e/o4/n1euZf74x+Gvns6TSj9yVqnpTclI2nmy+uUAgdP+Uvfv2LuLjydUNmtU0EK9PrmpIrW1Kq9W4GO8bjk6vb0muMqTVaht6WhX+bfnNdK/nY6FvDPomgMOG5rw3tPGV87O0cGbc/MSKuvS6FnUgh2Q0DHe6h2RRUtMhixocWtdyQjp/sQeip6KHcir4lL8CXeZ/0iecUIqJCI/X8+L+bf2wpJFt4XE02sYOWZwZOTa0e+HCV8wm5C2zB606JUUP9i9jdUG4zWv48F27pk2ORDBulKuyclClZPyQcZP0daAEiQ1k48bu9tT7oFJnJ0p52JzDuR9WJhaGHq0D5XljiQCrBQVE/Oq4ZxT02nDaCxcOHzmsur8JCwiE7odd7B7Ze2pNg8b4VYakSo3f2dDIV+flAdPouJ7cqSLodEMz3I0+MqtRj+APiCl/JZoPZeOna8xebYjIKUgor9ad/Sbl8qfo9xCRUxhbXMF2VH5JeHYBF+WQDH1pGc50j1ybmhoqeqjlUQNJ7ujVVZTSQIiUFEGaDKSldoZ6K1qvUB+kXsOfnOrQodOmKKT83z//+fSZu+Ol9mqzMr5FnU1lv3K3qQaijeKDM6q4iirsws3nl4OGHHff+MmD0//nT3+ibMf4ep4DeAhgNaLO88zgFaFsCotYOahT1UbgXrpEK3amuNzRCwtoYWY8nDWA/uxwPX0fOQPNIKkjo5KI4uFjx44/7NMsEAjdPxe615Q5SOkh3KTK2tjiclx7qJZYysDXakNCeY1mFbWaemeKFYzP2pDZ2IaPD19D+loqtb4lva45sbw209D6SLpv1cMyrdPme5hY20y2sYsvq9LYvL4ZTx8v3nWR93hLa0L23MmCpctJF1tNm5Ze36RfZVjTPQ4v1fkQHw2N8ZfxzaFLGJkPAcW0ULz2oyNHmAoD50LTu7Wmx99pXXAvXqSlDK1UjO48PjiUeuvnu5U1PDGoIScsG6f1XpIUc9JlF/IlusJ11WeL5wNI+YLupMPX7KQUlcJd4ycP7uY8N2/+0/hJ4ITffKPdA30CTg2uUtwt5cHcLVWdvAsWA54SYHDOQwmxsVG+dqvXr8Pv7GeFYLXgxjiKiBb3z2082XQUgUDo/ikKMQvXbcS5fmPUqHEWFiZWNvjd1i4uELGpvYNn2Mr/e2cE9sbIUV7LI15/991p8+bbzXRjJXBZ6Dl+itXUufOR6Ez39Hp3/ATHOfMTy6sf4eMrZQ5xf3K/iHzGm5sHRMVquntdiEkAByX+TC/fCZZWC5aEUYHFCjR60iRWoMwhuvvhSfc43UTYVUAGn5eqSOgb4tZHAWtRexhTheBVOSjMCBtqM9xv3oRtccYf0WpR5QP0Z4h/qW6gKpCitU2/ds0Yq+Gn7FFRFFYIvrI2PKJhPQcS4iegpNYY7nAwdn+JZYmfQtzMRlfj0aFv3iNv7cqQgn7uSvXQV7fHG/unfm+87IcffvxDTsIRCF54uidm8vbYcauLy1G++0VGm9rid1eONTVFkTnZzoFvzR2dkMqgiE+pMVg4Oc8NCnn1rbepgP3HO+9E5xXZus5EUUMtrqqHekQwB8aPyisaZWpm6Tx9rJnZouXhlMsi8knXhJhVXN3MwXGijd1MH3+9sHaV46w5mXoR1jCne4FAIHT/ItD92g1JFbXvmkwkaDPe0so3PGq8ucXKjNw3R42e7R9o7ug8xWmqxVRnx9lzqbeKKVwzwdJ6XvDiN0eNQjazOD6FzKr1dFfP5REUTKmoyyNTtS1c5T0Tk+i8YmpokQAhzgmKTcDlx7tHd891WU68VkRSWGvjMgNpEA8EIsQUCARC909O93dTtWu7EyvrrKbPhFsdZs1dkZFtNd2VQM1Y8ynQ7rSFi4jb8HV2UAgB9zEWU8wcnRLW1HgsDRtvZTN13sLE8ho3H3+E+VoQn/LXR9C9LsSE3xcsXjZykqndTHdysxyOOx+RXUD4flHYSvZbTptOhsDcyXn0ZHNbtzlSVSsQCITufye615Q5jal1jchyUqobUebgsLONLjOxsp6VgOh5gm6E7BM0maYBTzyJr5V1SsmTVtsIWZNxVZnbh3v3LQPiyxpNdslXBD96FVXroBCz0Xhmro4uk7Swdmbx7gUCgdD9f0j3BHPw7tN0HWSKUYs5xOBfje7LNbpP1Kxu6E91jjbA2poeX1fdPDJ2r+nuNc1ltcb1qRrvawJ/3bgBg5Les37oZ65nZ6om+W9+2rH7O7q05vix4/wZ8nNybK2tkKPIh1ggEDwO4mNijA7iC5CqzdBY2Kh/NyhxvVoAjNJ7gipw8T1ifP1lHKhxdEVNph6dh5ezm9cqfc5Ac+PB7jpKiKmJPqvql2fkELFhkYDN0zUhZpPS47M/pmiN5vhXG6ILSgd1962kc9HqPD26R5fyxYkTW3p7y4qKbaytPDw9lyxbunjJkuDFIaFhYXEJCWJiYmIP2uq4OHd3d6ODOHzpPit9gO7Ry0O40Gt0QRn0TdAmIrcwSYuoGGJLyulwEFtSwTaNMGmapvxuYu6QMl5/Wn0LLZFNbWygb6WiQTXPCyBoPURTT7MdXY8/0P2YFzjNmTfJzp7OOXGlFYNrgCa9d1ngQRx/whTLmMKy4NXxf3vttaCYONUh+WnTPfMuzp4+wwyAuqrqmKgo95kzLczMRr737kt/+cv0adOQG14SExMTe9AuXbquD6h5YegeLnaZv3CClTUtaxLKqiydp5k5Odu5uvlGRL/y5puvvvUWivtFYeGI613mL7CePiMyrxi5DtJJUxvbqDxtVslfX35lpm8Aa8a0+QsR79vOdIPEHWbNHjFu/DQPr+SqOiPdcxS6e1cvH3T3/pExA7r7umaCRejuNTm/peWCJaGcysrZxT9y1bOhe2TydBHY98lexpIW5uVFrlzp5eHh4jx1wrixXp4e8rgqEAgeB8M9mEMD5KjcQpoS44xDqSHxyRMspiCHn2TnALPTrtLMzgFxJBVVoyebpdU1sj2HDsm2drjz48zMw7PzaWxp6TSVuE1MUdk/3hnhvMDz5TfeWJGZN8XJmXIqUsGZg83uycpyrVGTTW1d3ceZm3uGhWdpYR+tfw5nQ4iJLAfHf6a3HxEh1hu/iFUQPevB06Z7VfdEDepHH37Q0dpanF+Aj+/v42tva+O9yFMqhgQCwYtO95oyh2m0sUVl700woZ4Wn3ppchq0G1dSgRbT3n0WunsLRyd606O7R5tP00o643uviECbH5qS8fqId1dm5S1PzRpvYUHchkYL74wZO8s/iN6ZBH840C9qtfLf9ZFVevVsee1Ik4nhWfmTbW2DYuMhet+IVbj8qqo2NCWTSiv64GcY2vDumbiiNWww6D1znibdU5JKj4ErVy6fPHFyz67dXes6y0tL42Nj586a5evlJXQvEAheYLo3dsTE+yZluih05bgplg6z51PxxE7a48z09g1aHe/i6c2AwxlePrMDg18fOdJ57gJmj0DNNMTnNczAisotRlHjMHue+VSX6Pxiei1MsLLhW87j5uO3JCldNdjJUDF6TbLZtCh0xWhTc9YP0sLkAMwcnPSVptlnZRT7GW+Crp/zjJhgoknycwr0QNDTVebc0Rsh3Ljx47fffPPluXP79+7tXr++pLAwwNfP39dHPsQCgeBxcOb06eFO96k6C6N6VEJMpbtHP5NYqWntNX19VX1kbhGNFsjNajqcyvrUGgaVaHJ7dQjfJut6eV2xo4no8e6pqMKUa69nce/q7pHYa5KemsZ7GiAPHKjp/ZMqDXrj5eZnoLtX4C+Ej6/1cP/xx/Nffrln567WpqbwFSsWeXiwBlz79tvv6Gp27RqD3a9cviwmJib2oH2yZ0/okiXDusxqQHc/0AbZKKuvG6ixKteM2HpATAIbg4p7ZQbVOXnQBn+kKzihdaWazxy0Ad39gKzToHScd3X31Qaj6F51YNaaLT/9fvf3B3b+/W9ahh09fJi/SnZGhq2N9VQnJ3s7O2trKzMzM0+PhSvCwlaEhYqJiYnda2FBAf55OTlGMhmWunu9Df2A6dVPd8X1zDxRVF6tuduqEipFVUgN6O6H2EDxVKN6XDBy/WDtVdsg4zcpok9Xvr/eEVNJ7wduYOCEQ87wlFO197n5VF2dPnVqR/92Q21tUly8r7fX9GnOFmam//faa40NDf8SCASCh2AomQwzIeYi76LOjYTX03XaVcw71HRFfJOR0NMGeVxZxiBf66Z9e3dnwy8W2bZlDsbxVRXugGLHuFMdPnjaTONq8WzpnjNf/OriZwcObNqwoXLNmuT4+MVBwfNmzxo3dkxLc7MEKAUCweNgGNF9dnr6jEU+CDFVyWvWoFwyU+90ljkkCGMk6KEc/QjTTvWIXml6n2TiM4MNk7U9gzvvP8/AgvEM6V6lbWn0Ttf4A/v39/X2GmpqM9PTV4SGWllYdLS1yYdYIBA8DtpaW4cb3fcMTBasbzHyL6763W2991nmEFIeYu3PyJ4t3fNERuEVg6IunD9/5NCh7du2NTc0ZGdkurq4REVE9GzauGnjgHV3daHhERMTE7vPNnR3Lw8Lax0SDxgGdN/VQ4VUMqOjTM2YcJLX1hlfWvnO2HEMtMpu0rx+imlpUEym9NmR+/Ome6NKh14633xz9fixY9u3bmuoq6falgZqJuPHjXj77Vdfefmlv72Un5dXXFgoJiYm9qAVFhQM7bc4XLx7XHvmTBGXh+KZQeju7UuYHv+dWDwCfNTxvzp5/I9E90PdfAI7iC+PHDrc19NTXV6RsHp1oJ+f24wZU8zNRo8ZI4+rAoHgMTF8gjmtlL8ag+ZqNJXKoOZofv2zDd0MG7q/M1hw+9WFC8TxydxWV1SkJCQuCQmZ7e5mMnHizcGR4gKBQPD4dP/D86X7exQy99pg4vS/ke7VL40CKzK3nx44sKWvr6G+PisjY9nixVMsLaW7gkAgeEwEBAalJSf3bdp08sQJ1N7Pme7vIf0h9ui5JX94uleZW2qvLn711bEjR97v728yNGSlp5ubmQUGBODphwQHhwQHiYmJid1rMANTM4KXLA5ZumSJuYVFUX7+ts1baK1DXvC50X3WL+kg7xVEtv/X0r1ifLpmckUaKpC57d+6tb66ZlVE5Bw3Nwc7W+L4ppMmTp5oIiYmJjZ54kQIQZm56SRLC3Mne/vZ7u600zHU1n24Y8e5s2f/+RD6ehbKnPuk8VnPS3DZ2DEwA0sfgzVg+nZea+dzpHsFFDuQ/tXLlw8dPNi7aVNVeXlqUhJ/QoqwAv18A3zFxMTEdPMbMJQdIYFBK0PDEuPiy4qLuzs7yQJ+ffEiVDxM6P6ZGldH5Znf3oVpve9rtVYN8eU1RmPyCW0beFlFb/9cP38aVR4+eEj7fT2PNCluPkG381+e379vH5lb1Jn8CZlwS3cdMTExsQctNysb1qqrru5at273rp00aCEX+POtW/8tdM8V8+D3tvVs0xBtWVLa/MXLpi3wtJ8+w9bRycbO3trO3s7BURnb7LF3cdGmG06xKi8rO3rkCDPDHrY8Pm0HX1Vg8Tj2+WefffjBjq19vZu6u7XCik4xMTGx+21jV9fmnp73+7fv27v31Benrl69itjvvu46fzy678ht7cxrX8+kqoQ1Vf7Rsc7zF1o5OFra2Lq6ui5auDA8bHliXByN2wpycspKiivKymD2irLSkoLC3KxM9ifFx9OReGN398njJ/iVEVd5Lun127dvw/h0Wbj09dfnzpw5efw4sqojhw/zWxUTExMbajAD7umJ48fPnDqFnptW6nD9rdu3H0YvLzbdQ+55besxBJ3LUjLcfPwtNYq3cXN1XRYSkpqUWFZUVF1RyZNOfW1tY319U0NDi95XqLWpWbcm7dvGxrbm5u51nVS3Hti77+yZM/jXz4vu7wyWX0H6zDQntsNsYthfIBAIHgT0QFEVgzRgDFjrYX79C0z3FGcplqcZQ8CqOAc3dzNrm6lOU/19fHDhofiaysrGurrmxsb2lpbOjo4NXV29Gzdt7evr37ptx/btH7y/g/y1Zu/v4Nvt2/r5uvPDDw/s2//FyZOXL19+xNPQsw7v6BEegUAgeBgen09+T7rHJ7165QrPF/1btkL3rl6+xd29vxfd48gTriHjipCGlgyeoSusnadZWFu7u80MW7qUgAzNhOtranDh8dnXr10Lv2/bsuWjHR98vHs38wIJhbMOERghPEIZArT+Bf9Onjxx7Pjxo8dOHDvGN1+ePcfIGArSWCRlhKxAIPiD4XemezrAEEuiy6M2qsltNupG2qI9MeNzoHLk8zu6SLqGpma6e/uZ29lbWVktmDc3JiqypKCgpqKyQXPkG+gevGH9+s29vWQtPt69B36nagkSJ+1JVOvrr7++cuUKt4e2XZsUOIhvv2WHBsJexEzw63/1gUggEAj+2+n+9q1bsCd5gx3b3ydWbm9vb+0yIywtK8PQilcOcSvN+8PLnbSf5uhePNIa8q4Mn4rKL/FcFmY/032Kja2ToyM6U/pCkGslHN+gO/LEano2bCB8RDSG3PTBzz/HYYfi4XcyrjA73vqPN24Q2Lr1M/IkDbeH4Na9gOjFrxcIBEL3v0b3t2+TOCDVuWfXLgT/dVXVy5cts7OzM7e1c/P2DUvNZEQtOVX8fWbYKi28Mr6l0IkKW4YXri6tWpKQPD94sZ2r2xQ7W9aMBfPmRYeH52VnU3lUX1PbZDAQkUdk2ruphxGAe3bt/nT/fh4pTp06df78eTSUuOtkOFXiglv6reEtgUAgELr/dbqnV8PFixcPff454fuOtlZ8/NKi4sTVcb5eXg4ODpbWNrbO0xxnzZnu6TU3IHheYAg2xz/IZaGXg9tsXRfvaGunieD9fHxWRURkp2esKSnVHPm6OvQza9vbSbpu3byZLOsnez4++NnnPEmcPX2abjNXr1wlMsPVSRfjpAu/CwQCwVOke0gWtkXFePbsWepC6f2yft06Gn7VVlfhmK8pKcnJzGQ0a0xUVOiSpYRlgvz9MTZWhoXFRkejfKc1mC6drFAUz5injtZWHHnavKGS3PnhRyRdybiSa/3y3DnCNcTcv//+ugq4K0de/qICgUDw1OleOfiq1RfR80MHD+3euWvb5s245Gvb2pBFwuCIZ2B/hJJwOsYGxp666hr6+6CLJ1Czrr2dOlIongXjow8+/GSPnnc9evTM6dMM/EPryYpCuIZ28BJtFwgEgudD90bG1zv6XqSBA+NY932yd+dHH23v304/996NGzd2dRPZ7xo0tqkDpis/pcCEgAjUEPrnECWtOf3FKQZ0aY781avfX9ccebrZcAkRzwgEAsFzpvs7gx19KfRC2oj8EZf89KnTx48dJw7z2aef0rMNNt/3ySd7P9Zs38d7qW9iuAeimqO6dJJkL4dcUtIaIvI48jdvKn2kOPICgUAwjOheAWrGDSear/H+9etEeChYxU8nswqbn8dpP/clX9lGF0+CF1GN4ndVE/yTHqsRR14gEAiGO93fx/twtxriQUAGNjeCbXawX4lqbun8Ll68QCAQvHh0fx/1/+edHwQCgUAw3OleIBAIBC8q3QsEAoHgBcJvpvstW7bIb00gEAheLPT09Pxmuqd0tq+vT353AoFA8AJxPe3FfjPdCwQCgeCPB6F7gUAgELoXCAQCgdC9QCAQCITuBQKBQCB0LxAIBAKhe4FAIBAI3QsEAoHgCfH/vcVMVeVKm7QAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Image(url='https://www.analyticsvidhya.com/wp-content/uploads/2016/08/Modeling1.png')\n", "Image(filename='../Data/Figs/Modeling1.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2.1 - Latent Dirichlet Allocation for Topic Modeling \n", "\n", "There are many approaches for obtaining topics from a text such as – Term Frequency and Inverse Document Frequency. NonNegative Matrix Factorization techniques. Latent Dirichlet Allocation is the most popular topic modeling technique and in this article, we will discuss the same. \n", "\n", "LDA assumes documents are produced from a mixture of topics. Those topics then generate words based on their probability distribution. Given a dataset of documents, LDA backtracks and tries to figure out what topics would create those documents in the first place. \n", "\n", "LDA is a matrix factorization technique. In vector space, any corpus (collection of documents) can be represented as a document-term matrix. The following matrix shows a corpus of N documents D1, D2, D3 … Dn and vocabulary size of M words W1,W2 .. Wn. The value of i,j cell gives the frequency count of word Wj in Document Di. " ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJoAAAB3CAMAAADM+6l5AAAAPFBMVEUAAAAjIyMwAABHR0dMHBxpaWmFVVWJiYmbm5uioqKlpaWnp6fDw8Pd3d3js7P/GBj/w8P/z8//29v///+HjiDyAAADxUlEQVR42u2b3XKbMBCFd7NV161QE+W8/7v2AtuArF0QxlOSiplMLo4lPgv9HR9BAHDBGS/qaN8M7XK5XE7caqBTXUu0NfZ2bUXdcMeO1tE62pdHkwAgEICBEgANlsZEbJcMROJUuwctCgDmAYgMQCkYmiggYpVUAVjNanehJQISawBCAIgkWBqASHDUII64p6/xgBgSAzwAijnaUsOsBarqvNUWogoTxXa0oAgRnNL4wQVaoYGDXVKJLVFpgHI7WgzghBAHeUQrtMBeSSgZovKtL7ShJU4MxKD6iLbUJrJqSSQa6uJeNLAGIEkYHtEW2oysWnKJNhd3owWJs260RJtpyl7JIICwU3QXWqSEaYwv0WbauBVMVkmh+TD4zIhvf4D8MyBn5Zwj5c9TLFT5/ePjvfzL51hDH8HeP/rO49ujdbPX+1pH62i70Yjo7ng0uHUI0WDWPxCROndnqyiNO/AaWsTND909U72OyKMDqN48UUKiaKKx9a04jqbPQgMNc89Uv4Ho9XPmQ5FgqJHEaXDMv9IDmoS5Z6rXwXH8c9DUQkvJ7Qteq103fS4axdG1mWiD06YOGi/66GvQvGHgtRo4eA9U19HWHigpdqIp22hXx/PUMBjJDkeTpQmu16He5LH87aABjSIS6eqUK/un3HirpxUtFVN1X0M7Wkfrjqr3tY729WxLGee0eI/7BsJQneW3kGo7j4c4p8F7XAuZaI7jKaWqbUER5zR6DwQ20ZytXilVbQvKOKfJe2AQ+4E6G+RSMrxBEee0bVUl2WiOrSglAy2sDAMPLQa8Bk0Uj3FOExp5I/SJB5poqMU5DWjDbY0+ehiIVOOcpr7mtZrjeNSZPG5TbiXOOQxt35Tb19CO1m1Lty29r/2HaNTRjkCbHNXsCNzhQVCR9lR9GtmbotkRuKODoDLtqfo0ch1V8MzeE0HQ7Ubk+TRyHZXbak8EQYDZapNPI8e2qO/enwqC2O6IW9CmI3DHB0HLtKcFbQyC7ufMjg+ClpFKA9oNyUV7KgjajSayPAJ3dBBUpj0b0e5Trqz9iLU/CErefGyi9TW079e6o+qOqve1jtbR9qHNz3ms1uFnVI7qOKoNGdUGND+jclTHUW3NqFw0P6NaS7AsR7Ulo5reG8KejGolwTJbbUtGNb03hH0/zvtH1Kyt5JaManrN5BVopqPaklG9Gs2wLVsyqn+EtjWjehWa46jMjOozE729keQM/ZER3/JL0DxHZU25ufp2zjkWquo7TX1572j/j6M61xXH64xov8/bar/Gf38Bt16cS6JtEIsAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Image(url='https://www.analyticsvidhya.com/wp-content/uploads/2016/08/Modeling2.png')\n", "Image(filename='../Data/Figs/Modeling2.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "LDA converts this Document-Term Matrix into two lower dimensional matrices – M1 and M2.\n", "M1 is a document-topics matrix and M2 is a topic – terms matrix with dimensions (N, K) and (K, M) respectively, where N is the number of documents, K is the number of topics and M is the vocabulary size. " ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAIkAAAB2BAMAAAAOzq02AAAALVBMVEUAAAAjIyMwAABHR0dMHBxpaWmJiYmnp6fDw8Pd3d3/GBj/w8P/z8//29v///+O8/S+AAACbElEQVRo3u2YT26bQBTGX1sl2BuUTZPdqEdIZCmrijO08h6B0rWFu+sGuRdAnIAL9AZZ9QQ+AxbiT6T2O0MXBuZhMQONJ1WrDt7Mp/f00zDMfO+NCQaenEBnPi6QE1xOdRVjvbCUf5GSxwhifJXjD5RJERHP0lHqBZpX/bjyKrcXjVt6MktLSWPc3skxnhZM1C4TOsolsAnlGE9LJvq5XOrXZesDCNm4FFI03SJtfT2FHEkhB0CUMdEsmNBQRJD1FBFkqJc8gGsuNOtSiJ4SF+I4lT7QUY5Ct18uJAUXzZIFardasiwtZedLym5N5MhAILfgzrdn+k9RbCX5fyg5kQdUPo8fEjkuSCXatCMlxgoIBpQrlruthUK0aR0lT/I3nBLdMso9FgrRpnWUwq8KTvmSMsoNbhSiTesopY8BBZzi4Foh8BKUYqOhqN/ohJImGop6dU8oK2goIf+4AzGgEHk6imbXMYo907YGWPfGgYTKvSetXJ7pe6xU7j1p5dK9gUjl3pNWLt0b2Krce9LKme/ircpfJk2YUUpxNqXY4CNmUXRvlCalmEfRre4KIeZRxqxc7joiyuZQlLvOnmnr3pZiqAaU5Bno4B/au/95HTywNtDBYzCXZ3fwgTDRwSMw0cEjTQx08GrKb3Twa9wZ6OALEraDtzXAfqO/41+cYfwwYfuKe8AJRVkDxiK8BmBWDRiLyBrwcOXMqgFjEeneQRLOcu+xiKSEg5vN8yjFRkMZs33FPUBDGbN95T0gmlUDxiI5wf35/fW79/tP+8/7OTVgLJIT3B/fHtvfWSeggzzurTOYrgEGHkt5UcovPlF5yBS49yMAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Image(filename='../Data/Figs/modeling3.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that these two matrices already provides topic word and document topic distributions, However, these distribution needs to be improved, which is the main aim of LDA. LDA makes use of sampling techniques in order to improve these matrices. \n", "\n", "It Iterates through each word “w” for each document “d” and tries to adjust the current topic – word assignment with a new assignment. A new topic “k” is assigned to word “w” with a probability P which is a product of two probabilities p1 and p2. \n", "\n", "For every topic, two probabilities p1 and p2 are calculated. P1 – p(topic t / document d) = the proportion of words in document d that are currently assigned to topic t. P2 – p(word w / topic t) = the proportion of assignments to topic t over all documents that come from this word w. \n", "\n", "The current topic – word assignment is updated with a new topic with the probability, product of p1 and p2 . In this step, the model assumes that all the existing word – topic assignments except the current word are correct. This is essentially the probability that topic t generated word w, so it makes sense to adjust the current word’s topic with new probability. \n", "\n", "After a number of iterations, a steady state is achieved where the document topic and topic term distributions are fairly good. This is the convergence point of LDA. \n", "\n", " \n", "Parameters of LDA \n", "\n", "Alpha and Beta Hyperparameters – alpha represents document-topic density and Beta represents topic-word density. Higher the value of alpha, documents are composed of more topics and lower the value of alpha, documents contain fewer topics. On the other hand, higher the beta, topics are composed of a large number of words in the corpus, and with the lower value of beta, they are composed of few words. \n", "\n", "Number of Topics – Number of topics to be extracted from the corpus. Researchers have developed approaches to obtain an optimal number of topics by using Kullback Leibler Divergence Score. I will not discuss this in detail, as it is too mathematical. For understanding, one can refer to this[1] original paper on the use of KL divergence. \n", "\n", "Number of Topic Terms – Number of terms composed in a single topic. It is generally decided according to the requirement. If the problem statement talks about extracting themes or concepts, it is recommended to choose a higher number, if problem statement talks about extracting features or terms, a low number is recommended. \n", "\n", "Number of Iterations / passes – Maximum number of iterations allowed to LDA algorithm for convergence. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2.2 - Topic Modeling Example 1 - Gensim" ] }, { "cell_type": "code", "execution_count": 97, "metadata": {}, "outputs": [], "source": [ "# Here are the sample documents combining together to form a corpus.\n", "\n", "doc1 = \"Sugar is bad to consume. My sister likes to have sugar, but not my father.\"\n", "doc2 = \"My father spends a lot of time driving my sister around to dance practice.\"\n", "doc3 = \"Doctors suggest that sugar may cause increased stress and blood pressure.\"\n", "doc4 = \"My father never seems to drive my sister to do better, but i think he should.\"\n", "doc5 = \"Health experts, as Doctors, say that Sugar is not good for your lifestyle.\"\n", "\n", "# compile documents\n", "doc_complete = [doc1, doc2, doc3, doc4, doc5]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Cleaning and Preprocessing\n", "\n", "Cleaning is an important step before any text mining task, in this step, we will remove the punctuations, stopwords and normalize the corpus. " ] }, { "cell_type": "code", "execution_count": 98, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[nltk_data] Downloading package stopwords to /home/rsouza/nltk_data...\n", "[nltk_data] Package stopwords is already up-to-date!\n", "[nltk_data] Downloading package wordnet to /home/rsouza/nltk_data...\n", "[nltk_data] Package wordnet is already up-to-date!\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 98, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nltk.download('stopwords')\n", "nltk.download('wordnet')" ] }, { "cell_type": "code", "execution_count": 99, "metadata": {}, "outputs": [], "source": [ "#stop = set(stopwords.words('english'))\n", "exclude = set(string.punctuation)\n", "lemma = WordNetLemmatizer()\n", "def clean(doc):\n", " stop_free = \" \".join([i for i in doc.lower().split() if i not in stop])\n", " punc_free = ''.join(ch for ch in stop_free if ch not in exclude)\n", " normalized = \" \".join(lemma.lemmatize(word) for word in punc_free.split())\n", " return normalized\n", "\n", "doc_clean = [clean(doc).split() for doc in doc_complete] " ] }, { "cell_type": "code", "execution_count": 100, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[['sugar', 'bad', 'consume', 'sister', 'like', 'sugar', 'father'],\n", " ['father',\n", " 'spends',\n", " 'lot',\n", " 'time',\n", " 'driving',\n", " 'sister',\n", " 'around',\n", " 'dance',\n", " 'practice'],\n", " ['doctor',\n", " 'suggest',\n", " 'sugar',\n", " 'may',\n", " 'cause',\n", " 'increased',\n", " 'stress',\n", " 'blood',\n", " 'pressure'],\n", " ['father', 'never', 'seems', 'drive', 'sister', 'better', 'think', 'should'],\n", " ['health', 'expert', 'doctor', 'say', 'sugar', 'good', 'lifestyle']]" ] }, "execution_count": 100, "metadata": {}, "output_type": "execute_result" } ], "source": [ "doc_clean" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Preparing Document-Term Matrix\n", "\n", "All the text documents combined is known as the corpus. To run any mathematical model on text corpus, it is a good practice to convert it into a matrix representation. LDA model looks for repeating term patterns in the entire DT matrix. Python provides many great libraries for text mining practices, “gensim” is one such clean and beautiful library to handle text data. It is scalable, robust and efficient. Following code shows how to convert a corpus into a document-term matrix. " ] }, { "cell_type": "code", "execution_count": 101, "metadata": {}, "outputs": [], "source": [ "# Importing Gensim\n", "import gensim\n", "from gensim import corpora\n", "\n", "# Creating the term dictionary of our courpus, where every unique term is assigned an index. \n", "dictionary = corpora.Dictionary(doc_clean)\n", "\n", "# Converting list of documents (corpus) into Document Term Matrix using dictionary prepared above.\n", "doc_term_matrix = [dictionary.doc2bow(doc) for doc in doc_clean]" ] }, { "cell_type": "code", "execution_count": 102, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 2)],\n", " [(2, 1), (4, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1)],\n", " [(5, 1),\n", " (13, 1),\n", " (14, 1),\n", " (15, 1),\n", " (16, 1),\n", " (17, 1),\n", " (18, 1),\n", " (19, 1),\n", " (20, 1)],\n", " [(2, 1), (4, 1), (21, 1), (22, 1), (23, 1), (24, 1), (25, 1), (26, 1)],\n", " [(5, 1), (15, 1), (27, 1), (28, 1), (29, 1), (30, 1), (31, 1)]]" ] }, "execution_count": 102, "metadata": {}, "output_type": "execute_result" } ], "source": [ "doc_term_matrix" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Running LDA Model \n", "\n", "Next step is to create an object for LDA model and train it on Document-Term matrix. The training also requires few parameters as input which are explained in the above section. The gensim module allows both LDA model estimation from a training corpus and inference of topic distribution on new, unseen documents." ] }, { "cell_type": "code", "execution_count": 103, "metadata": {}, "outputs": [], "source": [ "# Creating the object for LDA model using gensim library\n", "Lda = gensim.models.ldamodel.LdaModel\n", "\n", "# Running and Trainign LDA model on the document term matrix.\n", "ldamodel = Lda(doc_term_matrix, num_topics=2, id2word = dictionary, passes=50)" ] }, { "cell_type": "code", "execution_count": 105, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(0, '0.116*\"sugar\" + 0.064*\"doctor\" + 0.039*\"may\" + 0.039*\"pressure\" + 0.039*\"suggest\"'), (1, '0.079*\"father\" + 0.079*\"sister\" + 0.045*\"dance\" + 0.045*\"lot\" + 0.045*\"around\"')]\n" ] } ], "source": [ "print(ldamodel.print_topics(num_topics=2, num_words=5))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2.3 - Topic Modeling using Scikit Learn" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer\n", "from sklearn.datasets import fetch_20newsgroups\n", "from sklearn.decomposition import NMF, LatentDirichletAllocation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Gensim is an awesome library and scales really well to large text corpuses. Gensim, however does not include Non-negative Matrix Factorization (NMF), which can also be used to find topics in text. The mathematical basis underpinning NMF is quite different from LDA. NMF sometimes produces more meaningful topics for smaller datasets. NMF has been included in Scikit Learn for quite a while but LDA has only recently (late 2015) been included. The great thing about using Scikit Learn is that it brings API consistency which makes it almost trivial to perform Topic Modeling using both LDA and NMF. Scikit Learn also includes seeding options for NMF which greatly helps with algorithm convergence and offers both online and batch variants of LDA." ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAHBCAIAAAAelUgxAACAAElEQVR42uz9eZAcyXUnCPsREXnWXagTBRRQBaBwFYAG0HezD3azm3eTEg/N6BiO9EnfcqgZm521tZlZW1v9obUxm9mxkY00pjHZiJqVRitSYpMUSZHdJPtCNxuNxn0VjroLqPs+MzMi3H39eURVZWVmREYWCt3N3nCCaOTl/vyF+/Pn7/g97Z9+10RhC1vYwha2sIUtbGHbuqZlhBZyIWxhC1vYwha2sIVtKxWsKBEIyT8472+U9TK/5byf/TKnh7U3g7zM78drROQxnM9cCg7tNZAoRi0qNGUvSnzoRwEoKdihz1xyBvV6WZAq/7mUSklAwjbBVf/1iQIM7T8XL0oKEl/0+Rb8bVFKgu81f8L8t16pc/FaKqVy1X8uXnP3kRtBJJjXfgwuwYJ8GkSCBVmQ9yLBUGA2Io+9LLyXZUnnQvC5FBVowScbRBoH3LP3Q4KVtNe2ShoHPxf8BcW9S+NSz7j7IY29ZHJwaVxcluJ//hPmvZeyh8xpOe/jjYzI7iGbO0Vf5vfjNSLyGM5nLgWH9hoIF6MWFZpy0Wfm37woKdihz1yC7EYvruJSduOmuerVQ3Cu+q9PFGBo/7l4UVKQ+KLPFxc7t4RHtwH3mj9h/luv1Ll4LZVSueo/F6+5+8iNIBLMaz8Gl2BBPg0iwYIsyHuRYCgwG5HHXsbey7KkcyH4XIoKtOCTDX6CliqNt0SClbTXtkoaBz8X/AXFvUvjUs+4+yGNA+rfPlupuCzVltLZX8V5fSGPe2eQfe6jmiDvd/zJQMXuxP6/KvrYUADBhAJPB3s8Eq9LRkGu+j8LFMzYUCqTfbrF98zVraIkyJIIsj6Dj1t0kfg83+Br3ms6PgIUlc7D4GQUNeLi0rkqNsXVrZpOcK7iYvPFwU6RzcmN4BIsiGqyuQUfXPiIYmws6VwQmz0X0PtyLmzJXiv1XECbOhfE+3suBJQb985VVCJXgx+dWyKNgRL8Gy8JFLawhS1sYQtb2MIWtq1rmoF4yIWwhS1sYQtb2MIWtq1UsBIGDrkQtrCFLWxhC1vYwraVClbaCl2EYQtb2MIWtrCFLWxbqmCZKLRghS1sYQtb2MIWtrBtqYJFcahghS1sYQtb2MIWtrBtqYIlwEPoeAl9ELRwANCUnI/8k0tzWvaXS0JXQh4Ei2AJ8wHn4j80CgA+FhDjpyAlPlPzoaQobI/X0KIUeNjNcRUFw3EISElArmY/iM1xNacHtFmuBlkwXh2iYsg0aFPwiaUufq/hSlohXsOVtEJK3fUiQKK+KLGH4BLMB1/Day7yb+67DQOyzh/aI591JO/5loS/FXCF+LSS5hJcgnmhU5Z6xpUKVZqzQlDpeGlbK42DnAv3Txpv7Rm3OWlcEHO4JGlcfGoaFwUhInChzV/wpddHJRnGcLDOfQRESUg8pc7Ff2gUAIxElNh/SSA6BT8VG/8RfOjggFv4g+ZqSf37Q+8E4Sq+h6nh+zY1UWysgDulpMe0uQVzjyJlS3Y9DkxJ8B6CSzCxqefiz1WxKa4W3Wui2ArZnAQLfi6UNJdSFyQuZa8JX2UalS7BNrfXtlYaiw9UGm/tGbc5kYXfh6lpccE5FhhhjgRBWMi/BWbwjuxbvZT/lf/Bzu/gm/Jd5ycwvupKviRODwLDv9XfyO0BrkJ8dUjnV0K9dH7ijAIvs3671ht8eXXo3JeKMIcS+VJ2QVd/y7LmkkWJ261DiMtjgXKGW6chixKHvLWhC8xFfTmHkjWuuqNk9bDG1XVtfH0uiGRxlaGsZ6EeDVl96sKbq/lzyXlM+ZQ4TX5Kc+ayOgu22n82JQWfrz9Xc16WytU1SqjHXORfzrrKpoRtfBAbVnjWIvGhxJnvWg8BuSpcE4SgqjeHMOflGle9ni/Om4sz3IapFaLEay75W2+dErcH5yKWPRdltfOmxFNu+HLVR254c9X9q6DcyJlLDiVrxLsPojQJtoGra/NdpcTl2CYl2OqSKCg3fCQYzlokBeXG+lwKPd+A0jiHknzxG+Rc8JDGRc4FH2nsz1V/uZH97NYJ85YbHpTAQDSY3ChASWC5kf18ebbQK+VcCCSN8yjJkRvBzwV/uVGQkk1I44JHiT9Xc4RA9o72khvZlBQUv9nLtSAl+F+/bAuBpbohebb6txDqG9i1omUp7MIZTXD1E/UufKpewrpwf5vXg/sy63YEb2NnYyLHiOb8lrg9wJsEO/5LxVlFGF59uUbYGvFrPaz+vXFoD0pW5+IS7zMXIGyVkoBzWeOqM8paDxu4KnIoyeXqGv1rj2Ytas6Hkuy5OFx1eIXWmJxPyWqf2cTncLUAJaVw1Z+SDZrv6lx8KfGaC1rd0euUOP1kv8ydy9oa9+Bqfg+BuKqerzPKGmFZDPR7vqtKxfpcVjmZO7UcSnKIX+cqWudkDiU5e23jXApQIrK2npfc8KHER24EWCG5e60oV3M4vyY3crmqPs1ZITlzWZuvFyUF5pLFVZQnwXzkhhdXsx9oQGmcQ0mpEsyT+ADnQnBp7C/BAp4L/nID49zv+MsNr3NhvYdicqPgGRdQbmQ/30DSuNC5sAXSOPC5UFRueFESUG5kP7t84otxNU/8ru9ob65msVFslBs8i+xsuZFNibacQb51KEuydYtSfoW9vbmidEsgLsXCHNzc7WVQxQHmggrFXZVKRhDjqk+YTsFZBHel4WDOeFS6E0F4DB2EqygA00TpXyvK1SB29aLm/SDLNThXvZ5v8Llg790U8GkGlxs4sNzwWSEoQDyKTyc4MFd9ehDBJBjarAQrWARtcwLNZ0EGlMa4lC0vSvf3oWJ1Eks9F3CAJYHv+VzAJUrje9/y+B7OBVT6uVCqNBaB5UYQ+VzqGVeSK3mrpLHIC+3K/aaWsnEw32TRdi9VBb16KDXDEXt7x7eckiA9bIKf/kED9+iMv5cwHbzVTN70c/EJpAiyMO6Fq/fCeRyMJFRK7cVNBCd5DXcvBS7xZrm6iZ2FAoRe4VKWXPD16b9+PpISrNSNVnRtvD/nQnBpjO9hH+F7lmCbkNj4fTwX7qs03vIzbtNhtVsujdff0TjGTrqI8oi7KSskSz3jG8cXq1/O1oHJ6q+y/0aFEi2yNUa+2k/2y+w3c4b2oSSnQ5+5kDwdPmc4r7nwvIdQdC5rlGSTlDMXHICSHPr9r/NrZOfMJeelV4YS9n0u+ZQUfL7Cd2gvSoJzNYewnCWRz1UOEQMbHkTBVSECUCJK5CrOe6ZODyzA883P5sp56UUJKlacOWeXkY3k4UJc9aKk6F7zsfAU3Gs+lKAAe60gJV4PImcu2He1o7yNnLP+vebiJcFyZlqSBMteJEEkWP5YJUmwkqRxzvOlHnMRJUqwgOdCkLmgPAkmAkvj7BMhuNzwn1rAc6GoNPayt9+jNC7pXPCXG/4iqyRp7DUXL0pyhED+jvanpOBcUCG5kU2Jtq0iRHIPW9jCFrawhS1sYdvKpqVW7JALYQtb2MIWtrCFLWxbqWBlLBpyIWxhC1vYwha2sIVtKxUsHfQrkYcK7ZUftNZ88KB5XqINCvxSFEIQLjhizvs5BBecS8GhvQYSvtEvKK9P7EsJKoZO609JwQ5RgKwf4fuyIFX+cwlIic9cfCgpiasoAJKy/9D+c/GiJHuFB1mfOZ8W3WteT8R/rxWcWsCtV+pcvJZKqVz1n4vX3H0WfBAJ5rUfg0swUezTgBIsyIK8FwmG8soYoNKlMS5xhfjs+k0sTi9p7E9J0QUZUHr4nwv3KMFK2mtbJY2Dnwv+guLepXGpZ5yPyBKblcZB1oa/NM6BnC0gwbRYhGy10nbvJrEPT3lE/GElLGwfYKMhJSFXfzkl2C91C7katl8yCaYtptH7VYvQR6l8n2sRitIreaEPRy3C7PQIf0rupRYh2VT1q+BcRWEtwmLXIK8O0VbUIkQeNe/Qh74WYZBLtteu9yIprEWIPtBahMI36/7DXIuQBJbG6D7XIvQ/F7aqFiEJRklYizCrFqGF8VYjZOD7bDfC76OZaguH3irgKHoPg+L3kckf2gWDP9wLhhbrYauA64pObctBnjY9HH5/bRIfNglGP6AFiT9ke+1DKLLoh2ZqtPSpbQL2Cf9/TBrf69Q0I0RpCFvYwha2sIUtbGHb0qbpoYIVtrCFLWxhC1vYwra1ChYPFaywhS1sYQtb2MIWtq1VsFgIgxW2sIUtbGELW9jCtrUKVlmSewGeCO+kAv8AehEgvh8FAM3wqdGfPzQult6TkyqwlhKW8zUUGHzGn+aidbrXyirhvJ+IQiX7cQD+eH1H+PLH/00f1JHg2Z7+CCrIA/YkIHiLf/NBaxGlU4ICZITmU4WLgQsJj24D7jXhsfW8wGS8evCiv+gz3QRX/efiNSLyTYgqukJyeLUJCRbk06IPDgVbkP6Lv6Tnks9GL6HnD9e2VSvE/4Ei71VRlBIcYC5BpMd9lWAB5QbyXSFbJcHutzQu+vjuqzQOzs9SpXEQWarZKXut0iHNq1Eq8uodFqx87FPlVGS9zKGJqD84j16h/mHDp5yoAeUbFhJEfcOLEvk7GwsqiAFdwoBYEPk1mwgTQ5cGX0u0EDYiDCMiuK4Ikb+14AdEdcU5Epog8ssWdoYTTv8ECV0oqoVKWMUMiMfE+Y78rhAwEpM9YMwR1hDSFSFyLPlfDX7DLSzkR4YgquIvtwjQGRFCvs8QinCgQah/2xhpwvmV/FR+TchfCeymbasvYIdAl8+YcJefQsCPqPwRx5KHDB6B/CXB6gPoQuPy+8BkOYqkjgrFHOhPMkcwTIAuGFRyR4hCxTXZxhKq2c8QexRGLfhSeAtZshHz0atQaM6SQHn1U9eoxb7rE/tSkt+Dz1zIRj2eryb5FN1rLGsW2GOvFWVy/lwKVuHNoQQVqh2bfQ8pSInPXHy46iM3iq6QgquiqATjhR5EqRIsexT/9UkKFYv1kaWi2OYqyFVUrAqvV0XegHut4ApBJZ4LRedSkBISYC4FKfF5LixrOeUQhgJvrrX6/TSY3ChISUC5gQqVY/eXG3hLpfHaO9lFuwNKY1y6yAoujUuaS87z5RufXUAJVnAuqJgE0zK2tqZ22cGQWXExoR8Qr1cqJvL81tRqwnDMC+efsgfQSIjUDLBSjeBrDL6B8zXKNYI54iaWigKV6gSX6pNUR7gm/5OhIgXaFHxD41JBgW9yqfxAn6bUdeSPZAcWPBAKXREuBJPqiOzKIlLVkPoQdC+JoUhwTqUWh0HNkV/hoJohYkvNRb7LQf2xCZcqXRrDtCJScbGk6kLSziSlPoVxmgrQdTjRQIHDplR6pI7GJAGSfqnaQNqB1IrSUvvDyBDIBhKlmii1JyHnwQjh8i8sKaRSwVL6E0yAS1oIVSwFtUiyQn4dg7oJk8fOmKBBym6AkZyB+im5KucoJ6hLdZAhDRObmDaSNGtqjsB6pV/BT4IjB3utkPxDhWwEJ0GlIweTYpcV7oHCjjaFgozz5pJT9N7LrmnnvSwVOdhnr+VQUhJot13iXNDGAvXB5yKKSauiXC2KOG4HgM22A3PVayw7MI67jyqQv7rQpnDc/aWxjxZSFJYth6s+a6zori+1oEdBueE1F+yNcSSCWV9QKXNZw3G3S5EbwtdmEVCCoU3huBeVxgH3mr110jifkoByA20E1Ef3II2zF0MQCYYLKb6omATTIuv67vve8JrWDac3/EGuSYiAPiAEXqVZEE0gv2cHlhyhgb2LgcmHMKkj6FhYQkSp1CtkvywClif5f6l+yZ6xLeT35ddtjYByJ38ldRelUnAsXCtQDKiSig7nYN1SWpxmg2YldSxs28QCc5uQao0hySNUgD6EREaqLKDGCF2qZ7pUk6iBwWIkB7JhUkJOz5Bas8A6hnlJenTKpNamYamXCcUSSbP8JmhDBGxJUoFDlMp/2RTodG7hwpazJqo/yUiKbFCFCJitMNOJ1KDkR0hX6inHyhQlPyFcpTVwA3RC0OF0AgzCwjaQJkmSb1M5Q4EomLvUwsMomHc0bGELW9jCFrawrboIy8rIBzi8APuQ46XCjmtQ6hXyjJdqg/zDCF/7Hugpooi2phQTxzuoaRwrHUt2osWE0BFYflyFDlNwjUmNg2iaVCTAVANWHBs7yp7UlIgN70l1B/4oAxMoxLIrZR7CyvpFbdB9lFMQ/H1CKj1SVZHDRuX3lR2Oyv+BjctxyYGOI+BTcGVqnEiVSypeTIDWBbodBoKR68KjeFUJBruVYpHsX5cjgLYJFMqO5ZscqBXKQKaYRZRiCGoS/Ep2roPjkrrqPMYmVl/FxACTILKkygY6JNawThgY1RjMGKxXjEuFj6z5PcMWtrCFLWxhC1sJCtZkCnvFHxBvw2NBr3+2VS3feoYKOS8hfAmDziA1EqJUA01ZcAioR+DSgqglAmqTVCaILyXg1uJg3UmrWCONc6WYEcaQRsAFBm5qFdVEMTMJyiAqB6UQbOTYlbAtB0JYF4Rybisbmq5UKq5UEKlyMdCYhPwZAtVE0iiVKjAhyWEcZ6LUYAyOdAbaoQXfF5wwjmwN9EUn5EyqQRBuJRUoXQjD4jolGcQWCTIEkUOb2AkOQ1GwkwE9nMiuEIGxwERlSRLA7iXUZDEDryiOSCLhZ1IbY5SYGuEWp5bQuQpg0xEzkCVZm2HIopqNwJsZA+YSm4oMGPNAEzTAUSjVQJOBrmbIzmV3VDCpRwILQQd1nxrfWCQClxgXgvI85WvWV5TnC/CJP8gPyPBZqzzLwVeww/y54DxKcKEwgvy4pXxKClqwi1KS3UPBredFSX5JIJ+65V5zQcUi5YvKjRxflciTKgXlhg8lXnPxoYR7Rwt5UcILhV94rcB8wgLOBW10V/Fic/GSpQGlcX4MVs6jCcJV5L3CfSjhxQ6CfCYXlBv+XA24uUihMjebOONEYLlR8PkGlBs5TEDB5Eap0rggJVsujf0pCSg3goisohLMR54Xlca80DP1kcaazdyf5fyd/Y+Cjfu+DNKAFKGMQsS1TkEMElhlVOg2luc8hDLJgx3sUkRw736EY7iROgfHlgYKglRNGOJSC4EfS8VFKXMRYevWomUuCEoi8coMStpcqko4JiC8S7ICvi5ElMvfgu4C+pHyU6pRBFfuNeXABFegit9SnkzQEeU4VL4jlTOdg+9NQHC9/BT0FBsMXe6CcXyhJmhHNmLL1tKiFjH0aKUN0V3EhAgt8B5KvYwCAwRn3MAZnl5gIq3FkoiW21LRgzGRzYUNvQinU8okk5Z4eg7eidZITY/AjCQhGcuckv8ikUqGEhD9xYkNChYy5fSpyiaQqpnkhL3EzDlNTyC9MsPAgEXBnwpKYc6q4MGeb/7Lov3wwD+5R0q2cC6b3i+boMSfRZvYrfwetvP9kBub+wIPzFUemCf+892SuaDAc0FbylV0D1xF9/9c8N9rASfL72GVBhno/ZEb6H7KwJKWzfsjjTct9N43aVySLNWiKuAI+6pm+Tp1TghYUQtWTnTY6g0AMt00pSu4/asUPMjdgyAjTrBGlPZEwWemwtPBUSYKUiI/0DBYoSCfAgLXndhtx9mGbYwMyldGb7/7479dnBnmlFTtO3bkyS9Fk9VSCzJscE1SwiBcHUgS4CyDgWFmVPkEwcaFLegbPI1YJypUnjjj2hoYn0Cdi8hBCWOyH6mdUKRLtQu+woRSrpTeCGmHQiPp5bkzr/79TNeZWGXNno9/ubHtiMNn24m4cqLtCdHZyu0Lr/efeY2l5+v2H+t4+lfjyQZqIUIkkdhyHh9GEUljZvn6qe/dufJ2tKxadtjUfgwclkKM91y69PL/LUlvefC5/Sc/YwHVTpYgMoBMyVZmyJcrsxdf/tvxviu0qvnkC1+t2bEvDSY+CMUCLU3Z3vzvGT636iBJ4CLw/W8LLVg+c/GyYBWcS5A7k/8lWxQKAkWloxLkW7D8DVr5ty5/rIecaFP/K50XV7fWgiW8b6L5dbDJpiRYzvrJwXoIYsHyB3coeBsO4g0IOJccSkQAC5YoZHLwt7UUpMTHguVDiddq9+IqCiY37p8FK6AEK0lu+Ns4g0hj5PEQvSRYTq5ASdI4iNzgHkwoVRr7sHFLLFg+0hgHSExZt2CVRT5ID6XggnIVea1MRCoQSwW7q0ghileNM6oiNfaFt4BvcVCsoupbSn/AEGkkkAXaE44Sdv70P/zi+/8FoQU5WtnNo3s7OutrHqKIxDSpRXFOiMJT4DqTegfhyI2xVwQpU5VSexikDfI4BRQGoFuAFxMjkoAepEIDPkMwWRFkqNArSGwE9ye4Q+VHlAt4U8dLKTR262L3L/4aoXikctuRA4eXJCXYyWjgmopxl2oQXVzsfeN7XW99C6F0z41zbYdOtDQ0pFMMYtSUYY8pnlRSPDYxfOaVv57tfiOSbN9x8uPxCMYMwrxuD924/OpfyGXDtMhDD3/SjqggdrBsqXRCDDa6GMWZ+cXbp3400vsW0lsOHHuoY3/HTEolcjrsxSHkf9jCFrawhS1sQZuWyYgPVsMCaAPMGHVDqQlEo6uQcAjT5jaCiCDHgCUwKoIrKTgDjAGp0fAMVhYyDh49E4PSlFoa6b74BkKzjp66ONV369wbDW0HOEqmVUQ8IbbUnCxEba4hJ74b8CKwximDECrIJeQCLGGJSNpamEktpPRIPFJRZYqIaZsKWIqA1QsjTbOihGCmpS1uOfohB+2KUVvjEC1vmiIeibXv2dd9SqphszN951OLk1as3gLIKmFDpqPU97AhxPzdvpWxWwitSJqtmf7p/hstbUczNiYCyhxB8BUY7YStk+k7NxdGrsufV26rbmhqTFvgNMQiLawVxR0W4WlhW/KJM1D1GHHC80HF4rpkciZlEFtlSlpRO22bskklTMN4A2JN2MIWtrCFLWxhK65gWfYHmkWoEgQtTGwONifA1eRYB6AqcO1J7caSWgpS/xdF6MQKFxQp+AMHwQmCxKFbZIKXjnffuDQ1fBthUV7VwG1zaWFmqOu9pblfERUJk2GIROJEBUZpUi1R4fDKFwgR7giim4BAFKM8NTV45p0fzXZfT80v6NFY9Z7Ojic/XVnXkrGFwh7FOuKpmdGLl8+Xxypb9j/A45WCYccapjL7VCQX+Oj08qY9WmWTPXdrauz28PDtyrZ6plITmaAmhgRLhtjYyMDU1B13kix159bV9pPP88Q2YAtMkChrmVhJLY0N3eapaUz0+tb2SLIqjQA6C0NcvGuEkqxI2yIDep5CzQILF+ig4N9UvHKQXOVPGOMZi5mApIUpw0EA08MWtrCFLWxhC9u6guWil39A6hUYTyASXMQQoQppnShsJ6nMmIxzDXQmpoKrlKajQDS9dTVHBSMq3hxgQ5FgFLL5NCQi5uLY1dOZmTEjUd355Oem7/TcOPfa5OD1uz2X2x5sXbYBHEIIChRBxD2gQjjgWAo3AbQ1qe3FMMtM9/zsL/9j16kfIjbvOm3P/Kj31nsv/ON/2bDzyBLnlIgYTl278MZr3/yj2u1tn////28VZZ1pwAB1gpkUXCoAdDGG9NrGXc079g7O3ZoZGxgZulmz7wkbosGAYPklJpiBM7MjfUuz42v+6MHbl+ylKa2yYSXDNYjQAi1Kl4xanBjqvSpH0PRk+/6TsXjlktTjIEYfbIEuh6QmRjHXgOsAeQWM4hDaxqglOQaJm65DHEAjNE2qZpqD7o5xCNQQtrCFLWxhC1sJCpahfZDDQ2QZwbqw7YVpZGUgwjyWwNFEGgA6AU1KvqODyw/QC9yiOd4KlqWyESkXtnJrQQ4euAlRVKDMyMiM1D9YKlGz9+Rnf+vSz39049w7qen+ka4Lhx/+LDcc2CpClZKmqWRGqVUYoKSBkid7lp9FhX3q1Pe73voOFmbdrkNVLW1To4PTAzeG3/3BKap//rf/bUVTm1QDY+bKRPdZPtcX39EQjRJdB6ehruKeOIV4fRU6D8gU1Y0tjTs7Bq+8zFKz04O9GrGxoUuNUkeYwYg0vTA7NtKPkGmUbYvEo4vjw6mJoaWJO9t2HkYRSZGIKrDRuIZmF6cmem9A4FpZY137A/FYmWkC6igElWmrUKFSzdM1TZdKII0y4CWj1EIqgp0grmvCAVPFnGqy6RFNMh8XrxkZtrCFLWz37yJ+TwLo/smvreo5YJ3bsP0SKlgmu5/OH7xhBa29h4XjHEQRbKPFqZ6rp2+fe21ipFfXjR17Du956BOVbcctkrA5AJFrHACsLKjd5+Ybeo7FneJ6AK8AAVyYpRxjDBdjt29M9N9EKFa790G94XBd+2hFTdP8dN/gtfNjQ32VOw4tWwBb7pTukT0AtqeAoHdJqakJUyCdofmJkTtX30X2UnPHo1/4+h9Etu+bGx869Xd/dvvN7/ae/tHricTxz/xmdXX9cP+VmxdPS4oqGtvjFU0pS45vg94iiKUQVTETtoJ8ICSybefeSHJbZmlkaKBnfGy4pqZdal5U7VyBrbnJ4YH+HoQiTftPVJUnL45/30rPD92+VnHwaaHHLGYjpkEqQCY1fee2tTApf1az65BRvd0ykWRthgoNcZu7XJPftuTQtqBC2AwQSgW4ZqH8jqnwKVQNRwhby3D5Tc4Z1ESEAC/qPrWwhS1sH5m2lu4kcFYC1GppVbfuh8gV4O8bYau0uREK2C1Tq5BxnFAGhNbSbxwwZCLyNBcH4FlsMVUOKLWiwQ1eUYUz3JpvaGO8cH7xK4e9q1Q5X94A5yzwqtoVjPLsAVcfK157dtld4/UfiA3vZz33MCJkyxQsCPjJW0Y+FeyRR0Fpz9Lr8NwgI08hFDgPFHyACihK6OnZy2+8dOq7f7Yw0YNEWn5l4NKb3dfPPfuP/lXzgY8vQiIdQ8RSUOkUF1q1ay+pAo6CMnzU5iqAikGdPlCMxPLi0K3LywvjerTi+INPGSLWvLOjasceqWCN9Fwbv3mhvnVvWmUJqrgrYVFb9hZnUnXRTMA6t+T7ZRxNT48tTo3K6ew9+XRj27E5WtbUVvupr/xPbHm598xPLvz8b4YHb9TU1I0M9iwO30jWtrYff0JPlKeZQlIFcFGnuiLsQIWZLlUgUrdrd3ltw+TSyHj/remRnu31u62MnCpUXyTYTk3dXbzbTY14xwNP6xq6+NpPLHNhqOfyocxSQo8DExVoRcZc6eu9apoLkivtHUfj1bUrHApOA0wDdeo5KoQFwXWR0Xkcu/Fpyqamsi8JFpzbDliXkANTpoBXIWwfijUKp+6z5xooqaA98i1X7r8U76UIPNpU6fWc7+BSCtr77KMglPiUO0XBavUHYawXgkBwSnweVtGjHd9bQXuvuZTExlKfS5D16Y/LEES0BuQqLhHII/uHVKjyqRhlVCF9VZ1rtbQrxGZgVWAezmmT5J68JZ0LJa0QrIS5igcB6c9UIViqnAocKqtCaXwipIBiFtjniSrADxdY+QuNg9OCYzeyAy6LEFvLnan5U1t0c8nOlbbnQHNDhIVNLAYl0eAOL88fsAJgpkGVWkjTkjd8rACHVDjxOtSAwnoUq9QSCACGAxFByVkQuXy9ugmnkICOGcoqWFZoUwgwK4C3x63k6xyzGidOQRTgIXZBdlRqvnyfOgHQTgyIOo4dBcs5ZXGp0jig3CgqsoJL4+Ani9fzvfe5FD3ytFjsvgS5r8GNCHDTYRfyQGDqKlhQNU/DfKT75pkf/veF8WsOsgIYUNjC6NVXL/+kceeOzpq6+gxEUBkOcKiPEdVBcqcKMIFKpUItHFP+E+OEVNzGJ/q6zgphJlv2tB8+mTS0aGNzc+eDQ13v8MzU3a53O596oTxZxxnTEZbaWUrDcg9HGIEyMhCsRCMcV3C8qEeMRE15495dhx/BesJQRDe1H/ni7/6b7+lGz3uvjN06O6ZixhK1O5/61d8+9tizaUM3IJ5LU9oVOCupwxy5meQbGq5p3Z1o3j05cI3P3DGHe8oefjYtNCZ3gEER44vDvciciVc37t7/IBdmRX3T/Oit+fEhc3GivqaOa7ApCCWZhczYnVu2uaQlG1v3HkhWxZdXuOZsUQTePse+l4iQxgptxdCgTJBKegScKyWEpE5npyIG1ZTo0IgRicUMIZjrb3XLRob3mrCF7SN0vVbVL0wVjyl3uA5wM+qIVfW9TBXymrAhNkNJmvfVhwVYga66IJTqAPLHJABFGOFIvpTE6upA05VaCIXOONZhFlAaX4WHgI6okKohAuLe6QeTv2svA1BpwIummiQvygECUb5MqZtxTP3bhjIbxKm+r+Jd8RoLVSE1IA/iXjl27rWqFhxVCpCqjaYOCVWB1w0p9qGfQHUQcLdEuFsPjUPGGDa4Qy4Ey1gEkzUh7lb+RW5Bf/fyjBUsNxAWFkfbsi2WSt8fBUuo4sJO/WaIGcdOlTwH31LZJoVpm93Xr8xM9Lknt1srENT33q4zA72X26qesm3MwNwj1ysoap5HPHbitRkUxoGFpZQGYpvgj0sP3Do3Pdolv7Tj+CMr8Yq0ZRERbdnz4OWymqXMYtflU8f6uhv316XTNI1UvBfGKwgtUrg42ExqKoJxZAkcbdr7yd//Q4bMyvqO6TTNEPhyGmGjtv3F3/k/uo49c/P6hUxmua6u6fCJj23f27mIkuk0dKLBHUZhpmJkqhh2Z/NzKlWsqu07jt459xrLzA/fvjA9PoESTTYUaubm/MTtq+ckQyLVjSRRXV4WbW7dCwrWzNidnmtS6TJ5BKLaiTVxZ2Bh4q4ktqllb1Vd88oSM00Asoei15Jwy3Ics4uzE723zplamSTJYLC7JVd12wJBJbk3fTeVmoFnYSNmCmtFpFNw87OJhtybbbjrwha2j04D0S84U8W4pKbAlDJgq5NYZwBizCmXoo9AidVg238r8o2V8wGCPXQEwQyqGhggJUqhKUlKOaEggiiNAQQUV5YippALlXPABjgctKZOCGV8IvcuvsAuAAebY3xSd3gNNDkp23X1MgWhFBBdK1lqukCKVEE5QlIRBfIU1g8cZJSB4RDsbVCSTP4CNEXHSwPRMPJpyCNAXvLlkPBEhKeCJVzNDw5WC6mUMccGKbCpjlWwgCk3hnKWwsNkcBxjCqEfNuixclZEpcBDhpVjvsQqzyts96xgmUpjzcY2deHS83CE1x32AcrxqMotzhMFG5ZN3GKC4LCD/wmNINO0JqenGbOzloq7O5eX5mfnp+SSZCZgNDCFy27DysSFYX8Flr1YTiKcHA4i4uHiItUzZKeuXnwrvTxpxCoPHX5UkIplhmMk2tCwp6ppz9L0nZWJO3e7Lm9rfcDGMQuqM0udQ24PYao6gxTSCmGjSAVLRJPx7Ufkns5kpOBBVN6TbKiHw3FEq2o98vEdnc98QVWR1nWaXGHIsrkL5blaSdrZ7yDIuI10sHEnaWJH2+EL0fKVzExf9+Wp6fGqMqlgQcLf8uLsSO9VjPXtrQe1SHmivLp65yF0+pXU/OREf5d46DkLRwB3npkj/T1z01OSGU27DtbUtc5msGOglqNwYonVB3vj/NtXu/tA4MB+hLKKoAATG8Fk5L0phebGnZpACH6G00IDxrvJm2KtiNvaIuGbAlNGAUrvOeuNZfWT/TKHkiCwv2S1pBIptMJp1uLzAiB2vsNLBFPGq4OyjS+z2Yjyth7yKMKFigGX+0AY441COZswr7lkb3kvOHgfueFDCQ8wlyBgyigLG9qHkhzOi2BcLeiAyF60XsDlPuIReQOX56xwXqz0XkBp7FOcQw0BwZ4cdAChDCHKvOGUX4UisNQSYrUQv0AepffWKXFQl7HgHivEH4Qdq8qzUFkCO6qBCmWAzGeQqlx5uyi2OQd/AIZbKBh7LGV/MZ2q9ELKbap0FOI4RUDPkWfNqgTjG3c0LwmEHQSnlOSMqowo8K5CGTd5rQetxsLysg119+UfSZqtYrKIk5AuoHItaLGuM0eBHSKoh0aEEzCDFN4zsZS2RUEBknOEOA8VDSyUw0HkCwonBIypBHzNLf+/FrGmDBKyFzgMsSPGHUWNK4OeIpCCSqXq7TInhgxBFhZbNdVl4+zniF8faewjNwqeCwHlRs65sAlo+xyhh4rJjexzoWANDFRMgmnKTOOS4vyAbtw5tFDwBMr7NPslVaE9yjbrRPzB41KgAFA+DwAUHD+wQRLVlYSAspK15VUPifJEWZnc2zYVMVUH2qJyFUFxmIKUqHqG8Kmz7pVBS5XaoWh29O7w7YtyA25vP1pXu0sTOgV7DaqorjvQ+chI17vMtm9cfLvjyRfwtlbLhpsDpYYkSkM8CjcVqEkjt7bcBSkOlwnOiaHB7QrwspxliLnJKCY61sqV+kRMGwMSKAAzgOyCr6p6z5xAYBg4M+GeZSJdw1Sv2b4rUde0Mj+4PDo4PzFc3XpMPSQ+fnfQnB3TjciO1kPxRLWNorVtR7XKFnuuf/nu7dTCDKquklJRWJnZO7fN+Smk19bsOkTjlcIkDOrsgBYLCh7FTkVGllkgU6aymqu7DdaUmsXdoAL5JncELJiKLYLSVG5aoaua1htuvasPmmx8EAX/vbZCqO/Lgj3Qje/kvCR5PfhTQvL6wYVe+lNCCxGPA1BCCxFDC80F+84lf6/lcxX5ziVniE3MBXnPBXvMFwWTG/6UoEL8oSVSQgJzNX+sgj3gQksaB5gLzvsH9V4hm5bGXo/DDWAHPYpoAIUjdKUccJW7vepLUkqF8kTkeDpo4YcCZfazWOQYVtyIebJ61DrhXHj92EKr8DuuaT+ignad0E9rFZsHbuqYG4gZEJILvUoplqEQH+aA8gCdAIZDlCuESamtK2ORjYXj+coXAiVJMDBOgfmHAU+IZjC4eqtys0Q4JTFgIA5A09wp/U8d+5TAxPG7SWlNlcNPSRKuYQhKMeBMIE4gvq0xBcFIlRfPqcqmEIQ0LNZZp2KNV1+qpwPpX/KIsUCdZDrobbqctUWlFifZIw/5CCB6I2WKJML5p3IdQigwhjONQW67M1cOrg8XTPK+SWPqK41RAGnsdZTcozQu6VwoKsG0yuh9so1hx/vsVLlxlWHHegUHO2jnWjzacfjgtdqmpdH5VTXJDU7c3XGw/cBhLaJV6jwKQeLcJn7mZ6VCAlSV42snSqOXI0c1cu3KOwuTQwjF9j/wWNOO7UtQBwfrQlRVVu4++ljk5W+vTPVMDVxcmehu3L4jSsFdRlT+HFXVpqna6hyqHCowB7irgM9SbmrNsWYr9R9ue5wLZ9nDYocifsi9gYH5ShmLuJI3gjtfImAQjiOUaGjavf/oVO+7wlqeHOw6/MjHSSK2Yqf7eq8zOxOraNm2e095VdxGpP3gsYbmnXfneseGb68sjNTubONM8Kn5hbEehJa3tXTsPnIMR2lSUzFuUAuRQACZ5uB5obrmvTs7nzTlFIWtqSwTrvC/nBpBdGW25/wbC7PDhJJ4hFZFHVgyrEI7Q1tv2ML2UWvCDabmBCk0HA5OAOVLAliZiHIdcjccPpCDTSlTPG+QnL9RIUGenRYlmFPpTIn8mHBiVsGsRYAwqvwi4GszMIoDhg6MGIH6ryqLnKjaqRhC23UlwBkFyxzZGnZBVBX418Dgx52sRqjExoUl5bxyIOpKl8KO908daCo8BE5D7vjilFnEiUaXSq1hw0wVeVCI3yQoyThUkANLBJwdyvXJC/Fz/aVz8jhuPYju4nBiqmh6jSoZj9xAWlW+Q7lRhAqqt4AkTt2MB654J8LKaFvmIrTM+7Jvs5ZAlo3QMV2q1FbYiEQ0tR48+fyvn/reN9n8kHKuybUR2ba78+QnvkrKti1kbLipMEjBsLGjMnmPqG5ZXNW3kQvahoXOzcWJO+dOifR02bY92/cdjEQ1i1kaUhcgmzS27d11oPP6qVupxZGbF9+u3XsS00ob9DkVJQkEUaZiwcEMy5grfIRTwwdM08onT2xBANsKKtCAn51Dwgu3YY9pSF2e1hN3wRivENgVlrsFy5mXR8q27z50lpZxOz3YddGcGYs1NNuLU8NXzkoSKhtaE9WNmYydEjReUVfVtPvu9TcmR/vGh3uq9j7IBZ0aGRi92y07r23YWVm3fTFlQVVF5/YIdyZJOHeMoE17Dj//a99Ia+UAXQGaIYObmEKf1yi1J/on+wcXZsdVLJvFLcYzynWAQ5yWsIXto6ddgfhSERDg2IM0NCnChMqNQRxSbMBRRBGYsOX7PBuRuqBAcHxSBdKsXDSFLNwBnNMJXivh7/i9BHUOemVlkfqJ8hZC6Xn4FJIHofgHsaQWIoW5bXMKP6BceQnBTwJ5c+BmNORlXv6L42Ah+q5ZCAn3pCnoxHTtaYAF5CgjEBKmjGRQ1s2JFuOOXYErvyIGAcyUINUgaYop5QVUVhWKjLgLrQ2aaVrFujDbPTVtwgDoUBAHAQLnMnXV0yrUKHDt11VWGYfzSoEpcnAmSSZgxwkJxUrAjoWg0ppkqTznIMoNmXAaSw5SsF4y95wOJf4WKFhLLEhqMCoJqEE+Wl0g94zPtgcrPQO2qwPVYGNdqz3x/NeilXW9Z1+ZnrwbpcmGls7OJ15oPnhi3tZTcGVRRZilEqPShskGSjYQpjGqpIUyyqpLTDxCeq5fGO69AnHisejAnf6ZlR9C7h7SqDIkEd3isJ6RnVnsu37hwPRksqqSS9kCGR2wc6Cus1NNmQPCAgG5o/LvoKo0F44jW61nxt1SiuoOpyC7oCIi4RT2C0TDK7uasvY6li25lKVQQyuC6xEt3tShV+/KjHctDPUtjo/o1XXzwwPWSL/cU/UNrRVVjbYpbAZm6ea2zltv1ZrpmZHum7uOz0STFbND/TN3B4hW1rjnsK3FMyZcUzJEXmIIVTFkqjSPSibRYpF4DdNqbKJCr+CiCBnRGCl7W3SB0pi65HCTW6ZlmfA5yAUVJI8JCoEaUAjU4DE79MsP1IC9B/1oAjVIGRejkGvthE7JI1/HIPiYKgmrDC5YI9i08QqUD0N87Y677ugTWdoJX3vL/ZYTG+LiVTmV++E/jvvJebmma7mfOvqN8pFRZSFKaxDYJH9uCRKXKgGllGgW6FuMKJMLVcKWQVA8ZBESCIqSd1cp2LgpoKysg+9XbNk4BLtON5cQlyL4P4eQVUjNU547DAVgmYoZdxC5FJqCKuUPUSCg1Lj5g/A5U/VIwJuAqbzK6ojpkjxOli1kg6mJu84dREyOdSr/IE3YkpsmJRlb2LaqpeF4azHOUU+lGqxCboAonRPHK6sOXsCQQMATKFjrOJNMoBscl4bAURiFIa6bnGYI1NuVlGpQ2xYz9yArSRoHlBsfPaAGPwmmRYSVZXLKD2EMrmCtfwTRYZy66Qx4HfxtbVeqmwJo+XApiVc89PHPd558cH5uRkOxmurmWKxyUWoGoO8zBRxFKNQUVGlv3pQIaitAcoaVdiV1CLnq+i+fXZoakL+aHul+9W/+GKniN2g1QxVqDGZmnV/P3Omd7LlS8/D2DIpSDCCbgH8AqAq2BUoYqIzK0w/GYYVs4qRJCjB3QbiZqgro2KGVXUtZtzTBpWRicI1wGCIYXBqQTW2I3MSQCMBtjhobW3bv6rgxfnVleeLu0K3KffsHe65kVqaJlqhtaY0kypbkLYgC2uquvYeSVXUzoxODt688sjhCDTFx9xZic+V17Tv3HbGw8msiMKNDOiQCYHhNKbROXUWsUMUyUrXDNiiLsM+lniUMNxwUiiVK5hnC0rGtreYMUxVKRzZcXLPjCIue35tTsLxikXOu0EV3Rfbyxh4Bx/5Z3NmhkP7HpxclYiPOhc9e43mhNfdVwRIbQ58DghbhjabqIHPxUrB85hJE4OYsEi9KcjiPA3DVi3hRbNnjTWlU+Su86Fw2r2A5CJzYWrrx3qnx/lsq/EaT1z8Dbn5gyzLhLXn6WrbNG3YdPvTws6YATGM3CAIr0AGxUcFSsfIbJolXjVdu6AecBtx1QjpWfawqXCD3pbqaKpsOKBTKYIUjQoXVyn9QtDLaf+3sa9Nzs0IHtSuKWESFbptITzNKpa4iMhlmdz7yyaY9J1cg1wlK4ks9Tc/lau765Ks4pgCtIMTa1IhYU7Ak4ZqKjYJnxKF8LiQ5wh0aLqkAJq0hKUghLQBkKjgG5deYUxtDIzS1sPT6m6/i5ckymsKZVEXljgOPfx4nyy2pRykfoDzsarGYutv92jsv69y0KZ00SfPeY51HH8Ga5mioGG/w3ql4FccdRKRuFFHZnjbE0kIAvQ42PxWRJo8OMGtBxFgaAq/lKbbQdelU1+s/3bnj0IPPfQGVVy4raGuIfpOXb4cT4v5J45y1uglp7KNgvW/SuCgSFtKqy/X75N3nrh6zOhrOGjZL5ZKrwxCVyfKq+hZws4G5hYkKLGIYZ8AEA/nDGiwbSn3H40o9l+vJUPkmmga+s+Ge6yr/L0K0KMqYgGUKy5OBNg+mLGQQ3dKS3F5Zmro733+17IkXInGAJRBS/VfpshjuRRrKsmMTZ+OvxhuuzobYOKKSQdz8YA65wVKc6DbVnRo+OmTH6Ja6XuhqJ0jRYYHShuor23Yf6Lzx7ksrqdnRsZ4HY2Ksv8tOzVRta93V0ZmsTDCbGUr8lLfvrWjeNzN6Y7z/WpLNxVl8CBDqUbJ+V0vHUVQel9clQ5nKVeAquCn1iOEgzOl6JJGM4hhNg8tVk+w2VACB1LYMis2liArP40QjiWi8qiyJHMuysniT0NobtrB9dPyDoEmwhcWhi69effeN3YdPlJXXLM5P9F5+216YMpI1+x95XovGF2aGuy+ePfHCV5967pO20FW9e2XMUeFQG/Q1V/Fwb9FrOXpS14CsQrxqnxIQKeWkv6loiTUPoquRUfVbC0pIQMS9PABMApgI8lprRMnw8MKFn307lbabDx9JRPTBnmvjPRe4na5q6th5/OOWbY31XR4fvLH3wIH6qgfn0zrEGym3JQ3IFkfRWzWl5XgWlU/DPZ4Z1M6VAlIZzKBuLIoQHgGnAZG3XNORt8qbwVVvBoQelz3e0f76j95+87X/gdhKsnZvbXPT/qc+sWAZCjRB3uyJkVl4+42X3vrWHyORilQ2HP/cPznUvrO+MqocPzgLZ98FLXIAS+X/MlhqoqiMQR59muBlqgPOhaPkCucmTSDkVgWEYIOkZtNnXn1p5I2/mWo4cfLhR7ZtrzWA+7TMApFvbkXIWthAwVpYCWCkz1fgfBwv6wFXKllB7ROskv3XLbFOxCJcD5iNhQEGFwIGVwq2IJUEqzAGNMrAN8cNBUGy7hPGeXoz7F9kKVOpBlHkpDzCuq+evnP7qlSiqrcffuRz/1gka4XSjQhYnimgfyAmL0KXr7x17fWXRGau+8rZQ4N34y0dNgPnHoOcWw0jtyqy0qwY7MBVSBWymtCJse2EWSkEXjkE6ExMmYQoLGzMiLzkUKlU2eAWhFQ9eVHQwLYNUCRMCHkRq9y+L1rRkp6/MzVwa6Tn+sxQNxJmRVVLTf2emUW0rDJRKOcRK1bfenDg4mt8aX7g+tmm3YdHem4glNi2s5PhcnMZFFsbSFDZwICRYmdsByKApJlYSLNlJvc/hdwhVVmIgAeQpaQAy9gQRyB1P6alTLKQQgspSI9RsxYkW0HOz7HOwQAo6przWnKo0L+LGoP9LQVeQ6MAo+dctAqa3nAASlAQc3Kh0QO6oYSHr68oTsMm5iICOMSKUiICzyU/3ifIXLDvWCUtSFRsBZbKVS8PQ3CXafC95r1CwAmUETbTd3Q88vzX/udEWc1U9/nJW+dm5pZjkebnf+0bpKpxZujm/My/jyeql1a4hVejfVyhh7PtgchF53HsUa7JyvEHOi5CRycTq+5CJbNVXNaq09BxEzpXU6fWvsqGEyacE1BwIs3xCoRWRY4//cknXvx1irU3v/uno7fPcrbS0LT7V37rXwtGzv782z/+h78gsfLpFbSckUcH08FNggknAufy01GncLY5aPUjotwN6g6Ms1kn34RYKwVgwTkUIlMYVER5Q8z5peHpiZny6u2xmlruRImotCvAa+ciTqK79z4wfeDitZ/9V3k+LE11Xz79w51HO02tWjDIm7I1sXS37723XlFFTdLxaOzIA89Ub2tbXHERIhDO9su6eiBRh6tUiSx7ZWFyKLWcKmvcnSmvMDmOqiA7gMAHwC3AjNfk1VoQmkJWRmuqb1/cdnhb62FslC8uoxRc4AmxQV2zHEyxVc/l2iN9X6WxjwQraV97SWOvHRdEGhfds6vf1EyLCBdJShCB1/63qs978GqtLtTqS7yqQLlbTuF/OPD83ElcwNmRgsjFmAWFB0zCRCGGQ3g1JgZXlMi1AfFhRC5SU2GUrlelKsg61zyN06BZaAuz03cvn2HL45hGdh/72LFnvmrGqyUpVIFAQYKJKuFDKa9o2TPSdX566OJQ94XR3mu76vesQL8EMHZBNVR6oJOegZ1MXJgvI66X3Z2bKoHjmHBtZb1jbsUsyC4EqzsHjDl5e7CoXMOQLssVPL3NVMFDhupa9zS1tPXN982NDVx+6ycKONRI1LfFq5oWbCkJsQbqGWE0smPPgUvxZHpx5PLZNzMZy1qYjibKdu09ZuGkaQEcs9RNGXZiBSDkH0LpFZ/A329xB9fGEW7Kfi1sVWqCgKvfraZlM562RMZU84JbJVjgBF5NUlhbJKtrIHvBrL2Ds3Tq3Jcbv5MVY7qhONb6p/lDZ7/097Q7oRDq7/VBN65wkTd0AUpWYzOyifeaSy4lWV92L6D5e20jV4NsPbEhDX6dkry5oPVKR2usy6Mk6FyyTih/ueHDVS+54U9JDvE+c/GSYO5VoRBX8ykpOBd3FK/16TGX/DWQ+3w3LmnuftldFrmUBN5rhbnqLAhAHTAi23ZXtJZX1O+XaogWrxVElXahERyrpfFt0TpRtffBysY9GVuzAbOFy1se1dwyNELV21rzNyopqNwq3NFR3MEcE44DssmcihxEvQO+CsRUarWmuSoDUyHezgxVTXx5ZQVhC+NwnCKJeGtn0+HHaFUTMxGPVoIfTHYYjbGyainGKnZ2Nux7PFm5Y0VBZ0UgSF/e0kVG1baHcDOFQgDBU3BhXfV+ACizipjRXKYxNTxnYi0I3zHbaU5VVu5a46TWSSEmnER0zDPpH/3Nn904f+nT/+j3H/r4ZxctpNLfVcaTQifNMMUUI07iFche5mam79o7d3pvbdv7sUxGqliA2Xj63VOZheny6tqFmTuE6qYWnTNVVTVVUxfQsRQchYvMzVytC2amodmp0Vf+/I/GJ6a/9r/8YaSi2pSnO+NQR4QiuFEzCGtXUbVISnpdr3ju81/rfODxiupmVN2wAKkEUMfDdsLyIZMeMQbWR4dLwA1buAtJGcVwtsgqURrnrtVNSOM8oRdcgq0Jig07uhgluNBc/He9U8LFhVJwAg7X/kareR8eYQgY49yXGxQ77KpUCGVX4Fx3Z6olp7zuqn4OJcjAKKP2HoEbAQQNUuWco0LpJeqBUg8F1Ok7xpXzj1JdQzMDd/qvnwWs3WhVx9FHaaIuI6RSBa52p2gAU4HzsvOaHR1N7Z3TQ5dYaqr/6tttxz+mJ2vknjbcAEcs1m5r2KnrB9l3FgS/QywjxBaqjFzlHMSOuqpwzEBKCgV4p5yGoNVQ5RCXk9UE0p3cGLV1ZOc1TTsqdu5D196Ymxi88YtXlmZGSbSiYW+n0GNSKulUKnwAhkKpUdPcUlbblF6823v9QiZly17Kq5obWnZTLaIDbJVzG1SZhCpVU7n3VNlByAhSEfzOueiuVqiorVQux+AI6b2UCEkebDi1hIhCDstaFetLZW0BoI1JntlLotBLhFFOD67TFRdeVLlDZ78s5g1RTF6Ppy2wwn0ocaNIssbK+UnBHrDHfsn+csG55M8oz2axge14Pecpi1cbic/hav7EC27nosFHReWGPyUF5YY/JTnLzGcu+RKs4FPz4OqGJbc+Fs4exV0VHpQEmUsuYdnLgKzNpdA0C+61krjqCuNI7IHHn9f1CLMcRWPVbiElrryNWShmJJ949sVEWSWnmhQXBkU2W0ktLKZXUlFDh3pa8TIb6zZkvVmEZ5BlZdIpqkeiibj8Z2oljXQjEYsKW17ZLHM5k0wmNY0uLS7atoU1Gk9WJCIJi1mplXk7k5ZyKxpP6vFy240XUkRpQmU4ga+trLLx05/79craHZm0PDJsBYwKqpeF7BV5/nNtW0vrZz/zGziSXJwZj1NI9JHjmLrUF5M6uMdS8iJPtbiJqaSOLq/IMeTdNRYpj+q6lLB2enllacGyTCMaTcQSNJI0FaKgfBw6wQaRF9Tl1KIk1aJGNJJIxqIxeZDI7+umPdZ/ufsXP6RLy3pqTF+eptzAkQjXqA2HhoKYAFkszw6toqYxntBGe3pmBm4NXjnXsvdJACLV0MLcZP/5d/cc3JOZGZMKlhC2pQK7AHFHMl9ee9PLmaVlZlry2IxEY9F4uQkxZpJC00wtjdw6N3TlZzRWyVOjON2gcal7Ul2eiBnTNtPxeCJqRJYySynTLo8k5YKIxJNNuztWbL6ILFvTZecstSKPD01hHZkInqJtm2wlzaWqRfVorAKKDhEHidYpaxhIGm+0BBU8F0qQGyJra6Bge63giZC3o4ucCwXnslFEFJAwmhG5T85HNbYv3D5ftWo5xidQUIiKjKKIrlYAd66bFLv3IZ/ulAUJnnpcLh2Uud1/cXGiR3bQ2Hpk+67DVIdKClK/0RToGyEu7hz0aEQPnnyi+72X00vjvRdPv/CFkYrq2rSN6Grdqaza6WpJcUDa1cEKBqWmVElSvK5ROyj22JkdXlMwIVNEcxBQQSUDRFTFHOWDVBj3RnL7/uNXTm1LL45MDKwwlkrUtrUfPo4MLcpVTAOjhirRWSM1rN37pwYvLs9N9V07Iy9iLbs7t9U3Uc2xpIE8kBQ6hkApGQEVVUVEaHJKMSJHjAhkAhkKawWSXEiEaELTiaNSChahwtBxBOpNOOmRWOihPz1sYfuINaNh1x6hIqSk7NU0oo5ycKlJYUANJGi0uf2AgvBDCcrnJnrOvP73N69fi2bspaXJqqaWJ5//4s5jz2S0yEj/9e4Lr8/0d03cGWzvONC078DlC2cmR6ePPP3Jjt27rl04fXfg9srI2ONPfkJEjTOnX0vPjmqVVY987NNHHnzu2o1rv3j7ZevOTXn929354ONf+XpZ/R4wzwCeANbBuEUiCAR4tKI8VnaIcZyhSNNRREcqPw/pmFboOG0hWttQVVX9+ls/PvPuyxUrM4a8xyfr2h7/1PHHnk9gcfVnfz8xdffhL35NXqHv9t3qeuWl2empROvez37qyzX1dYPd5878/B/G7/Qyc3nFtPfsP/LoC1/a1tZpWhALnCD2yODFt9/80WDPrWjank+ltrfv+9invrSj4/j04ux7Z16+9vZ37JkhTPVLb/xd743zyYa9j33yS9H6JhW9runKkpYgNIq1pF5x6NiJ1Ex6ZuJW98V3jj31pbKmnVJUX77yrjm3/NhXPvXqD/5a3WtFVJfnAqRG6SuLA+ffvnHuzeE7PempEdldddOeR1/4cuvJ55CRmBwaPfeLH/e8/T1reYKz1Ksv/bkor62q39W6vXW4v2tk6ObinYEjH3suXr3t7OlXV+zoi7/yW8vLU303Lk4N9Ejd6enf+v2dR54a6B84/7O/Xxm6pYuVDNY6Tjz/3Ke+2NV79ZXv/608CTsffOKRZz9rYUNT9QqZazJAOIRy8I/Bskz2ISKH5fw3eMymU1IaalRpRJjLozcuvZlJzcsJHj7yaKKibj4l0lA4R+X2YZXeAfc1SP+ghDS3HUlu2y0VrOnJ7q6r7xys32uhqAWu9oD03nPMqeCcie17OqtrGyYXRzjLyDejVY3Vja0pS14LoXiUkx6SllImUVPbvI9ocWaa8laoGdW1O9oi8fIlk1lgEOSCMRvLW4eUSgDXIq92Ttg9s+X9Ul79yixAQHbAWMAOpypk2+A+dOI3MUlZsm9km071Rx5uo7CF7aPWlJ/HUr4CUKA0lOGW7TpRpCywbJNj04SMfoSjmjXaf+F7f/4f7tw4e+K5Fx944rn3XvnehZ99f/zmuRd+5//seOhZbKXGh252v/NDnp5ZWhwbXphb6b+5MrtYRj9pryz1XT83eu0txKz3KK/f17mtblv/8PXZO5df7r958fQ5WlNfWV42R+ypgUvTQ9eXROQzv/kvY7HajCrYBYVcFLYUBXBRtKzCSCzAeWYWiDZFsS14htsmzYBPQHvkxKOxuYGX//Lf2SuTrUc+cahte5TzzNTE9de/Pz7ev/fkE9W7E+1N9XfRoslmX3j6ieaqxJXXf/CDv/yPmaWFZ3/tN6tbtv/4r//8ve//6eCty1/8xh9saz1GWOb6udd/8N//r/mJsSe+8NV9+w799Lt/deXlbw7duvDlb/xBfVtnZW3F3MyY4BbW40a8LFlerceTUlZj0wLQamwgKZOJvUSNDLORFmlqP5zs7puZ6Ou/dvrOjdOHGhpXFqb6zr1Z1bavrG4PY9Q1GUiRnLalQjM/M3/pvSs6jxw+dHJ48HrvlVNTg1emRno/m6zasf9hIxGpq0peWRhDIq1p2xKJMhyvjMcq5PkweOPsnUs/F8x8j9Cq5l3zPV2J6h0RwWbmZ2+ef2t54HKyukFbnmOpdEtzS/VTH/vhN9/rufQKIvoDDxyPilk9NWrP3n34yReOPPSoZVo20UxVk0SEClZABcv+aHBI1VpyK1UKPrc4PzM8TJBOK5ubDx4n8TLm5HWAL4/YcvmAqxAi/qBKqIjEKpp2HHl4dvQGs9mZm9d3PWNjSpkTYPD+NAz1gsrrWqp2H54avEEBZy++4/DjJFJmAVAXYOhBcg2krUi9L1G1+0i8pm1l6oacRqxmZ83ew0yPWlAZFCIewRqNAR9Y41izuKbFEU1gbGuRck0YplAQWJysQutTBUBHTKwJmiTym0YFMxK2CtpXnwoXij/cS2EL20elqVAacC9BITCiYXUR4276HCQhUQihNeA+SvDK4vRP/+6/Dp7/QV3bkaPPfq7t4MMxQS+/9qP5id5Lb/5o156j7fuPpZaGRi6+spi22vcf/ZWv/8HQjQvf+6v/p3FHZ8fejt6e2xO332GplZPPfOLhL37dFuynf/mf3n7pT82lyRhiv/H1/1WrKL/yxkvf/aN/k1mYHDj/C/7Zf6In6k3GDcJU2LVKolPiXQpAkzsZ3sRel9BSFYHKOapEBo0Y9Sce/MzVN38weOON8YHu1Mx8Yz3u7b8+fOfmwvzE4LWLO1oOLS6lpybH2x44Wb+jY7S76+Vv/fHc8Pn9j7/Y8dTnt9W33u3qe7XrrYmeMxdO//Tp1kMz473/8K0/mew7s+vo88ef/krrjraZ0bGeCz+ZHzj33ps/fKH9yL6TH3vtx9+e779hxKpPPvWl489+YZppi7aQwlZTVQAZoQ7Ue4qSlCC0urHjgY+NXH3Hzsx0X3ht3wNPjPXdnhnqfuFLv5dI1CFb1d7AhHFNim2CSLxm5+d+79+WaaoOtD3+k7/5d299+08Wxnr6r19s3PWAnqw6fOLEuVfqU6NXY9WNz37x/1feenTZJoa9lJ68OXb9VZOxEw8/9+xXfucX3/urvv6R6ua9zW0dfV1Xrg1c1KS6J/U/ebiQeFVb56Nf+MdT47cWR2+ffvW7DS31b//iFw2Hju1/5vM8UptRcTBQCAXgW7FTWUeEkO/+CpYg5KMA06ecjBZz4NZwItn82Of/2fz0i1X1O2r2PLhgU06QRqA0n1DoJQzqPTmOVgXcFat5+JNfa2w6uGKZFS17Ab5AA6iTQvkJ3vJqM5CY63gVEBqlVz714jf2738ss7KsJ8pbjp00NcgcpHDRBKeeU5zdRKz14PFP/e4fTI/0YUyqm3ZtP3ByBRKBnSBTqN9JlJbFCERhbu98/FO/9+/lfa9+39G0UcYUKp6BnWBa2TtUu8pwA5dtP/mr/2zvyPPRytr6XYfTNtiooVQhxhbBG3M4RQg0+ssGNBoEnBP5buGAlATk6i810KiXTNgqoFEcGJAMBc5ryl0hYLxHTvI2qCsYEEehhJ/TKcgQzS32FdfR5ZuX+i69CwGaVIz131ienFke7WU6QWlzcujWSmo+RhsQihCsQs41I2Mkavc/dPTzellzx4JQ8J9OoQsjsUwj8m5b03rISNamZxeIbnMNmcjY1rgnWb8zszCup+YEW2EUEKHMheGYynWSF0ItVl25fQ/Wk0Sn8vKrg23NcCu/SSVQc8tWy3lZDMfKaqXWcqf7bGp+vPvK2fa2fcODV+Yn+qR6Nn3rYuS5z1zq7VpkeN+RRxmiZ957bXLoCoEax6meq+/dvXVzZnIEIYOb6cn+PppZ7r745nTvewhL1Wh58NZ7E4M3h4a7QT7yzGjfLbySiuhxCjVRBCXEptqyhdLcqTeNGZS1FeqSKvUjiBrHForo1R0HH323umVhtKv70umJwa6hm9eNRFnTvv3MkueYyh2A3D8KIbsqBZJG0LKZYpllgyy3bG8B4whjywuzmoo1AXeqyha3qL5MqHyYaZV3YBNdKPhVLRKnRk3LyU/pbXOksj5tzmHdcBPSHHRSRDNwq39y/+OfO/f3fzo1cPV73/wvZOfBL/6jL9Nknbzna05lIBVv7OaN0hyYKBECjeYCjVKOChVDLFQFofDLfJCxgj344w0WZFyQFO2sTyHdjTsZHlqi9sCTLxK1GlIWxM4r8HUXqQ2pmu3q9uNkhACwbcWOw0dbDsuFTTUwykKVnPUEZOwxdNG5oGI51uu4FRaYpvSm3Sd27j5hCc4oMSlLM0uHAqMg/Czly5PLW1JOEpV7H/0MVyWkpZhMM25D4WlMHSxigVQBQag4YSKc3N5+vKVdKMTfFZgXsII4aKkQ8wbRo7aUrZHyjkdfENyU29O2qWlDRDxAJUNFLCeE32eReC0Y7AFDl79gNsFVnx5wIUpQ6evTSycIMhd/wlAASsTGYqPCe2rCu0N/TqJS5oI9XqLSueojN4KsEFwiV31+sjkJhjclwUTgnnGwyQZckAVWiJNaDAXplHVI4RJjwtHqfVVBZBIoiifP6Inh3vTcHELRdIoN3r4t0F1sp3afeMa00xVVu1AsCsHYAFmgEpKRWLLsWKL2+GOfwFrEspdUNWQ1rkritDiPxBKGoafB3wDuSMJZREtWxKqmVZEPKLBB0fk3X+09+7MoBijsjIUadh564Z/+i2hlmYDsNhKRnfBVKFMI5wBUT1swDrCJhGqx5kMPx1/dvjR2u/vSqRMPPTA43K2VVdiL46O95ycHL/TeuJRs6Shr3ieF7VD/TcGW5Igz84s3rt9UFZxp20OftblobOuMYDTRf9My5+VAC8szXd3XmKUxk+1++DOC86qmgzrRNMsmAnwNqmqtYKqGPmCqqgwnqrLLOdTShtJlFKDVaW1L++4jj1wavbU8M/zem98dGZ472PlQvKZhYWTIgbtUtWsBgx0q7lvL4z1Xe7vODExMxSixR24o0GwwAVDBNCYPBff5ckIyKgELhlVHgdJBJYPtFJOX6H2x7QD/yDJzECkM7mGuDC1UFdXVtMS2k0+/OHzt9PCNd6Qe+fQTn26q2z5vq6w0VdLQKSfMFOwZ5biQGCkqN4qKrIDSeBMnCy5l36Fgc/Hba5rGUeCjJTiV92a69uvNs3/mVNiEkg9yKZMMpLZCQSZV+QkuaqqGOSRIqIRXlYsKGx5qQsnlYqn8YalKmJaDL0FJrn8Z3/OkPHnFlelb3tRSNoKLECEW/ANSTqDcMhTpYRq2bYEtKM6gUSmWbKhmqupgCxfkBSBBHagIFWqmzHU6Ymrvwew5Q5pTKFVlYzOpXmEKiCcckMY4FxbonBq3hJuDC7CvkEGoyumUBD0XfIVs7YIpaelu+fq831PDpeyU+zfW/R5uy8dCH9YVsuX0l7BCnOBKVRIYQmqiEBKwlqeDHDhmUypNBEpkZOy0qrWqNTe1f+oLv21F6oWwhQaolVQYRqwSQVbQKuyoUxQQSb1Dc4CanCovKpIDanQZYDzjTtk9hdGjzOlIXugMZTsDWz2x0PY9ndGoHsFQji/DSLy6CRlx20Ez51iVHuMKWAC5QOvKoiKVAZPYGYHLd+7bvu/EzbHb88PX33vt+yKdfuLjnz7z8x+MDN84/dNvr8xHHnju17RYtZlZEHJ2gPqs7T342CMvfsNmSIfai2A6E5G4qemW1O8gcUjsaj/y8a9+3cpA5QsHWJVoBo2VmWxGHTSUaVpaoxbcXaESrdReoxCLIjKyK42pKm4ZqFTLrWhFbfvRZ66detlK3b30+nfiTZ1NB04KUoYh38BNNqLCssFiYF099XfvfPdP5ieGdz78mY6TTy9q/ObpV6BLBYbtzNop6EwhMR/uxVCGRF7ZmZP5DsBBFlgZIGeAw6OUzAN3q/yZzrHB4IZvKeU40dAYqWoGBU5YA1fPTA/crmw5klbVrBkFNdHJmRJ8rUb1L4XIQh+INNZUobmPhLNTlQ5EsAaQKmpOIQcOMnV5BJQDovJNLIVoAnoVc3MCoeSTJpe9cK4AUHmAgjJmi/dDuK9Z35BKjoU0SqpKmlOsAY66grCTM9MAMQ+MULZCVSEu4gbTnURLKJeoSpqC7VwhLlC4Y2hy5zgAqFi4s5N3Q8AdFkzBrSKomcA1havKVfiWlKjMtfGpGH9V80sLfelhC9tHroEc5ASwYwSOAuDzKtCmQIZCi4I7mbxiMVxRW49i5Sg1vzI/ySyzoqEujcFiYwgVrCqEIWwDiq4Kx4lkwP0MUooAaoeZOlalDpXHMSYYQHRy7oBbIaVsqWAeqTspOz7oXlIbMA8cfyB2/AEN6noBWigUeIbwdhMT6M9CwgQp7qTKc40jwHxSSU6WYIZUsMobO/adGDjz08WZyXNv/Pyx537l5EMP37xwbmVo9Oyp1w889OKutjappEldqrau/i6RFNmLs1NRTBLV20x5mSU4DZGxUpEz6+qaNZqw2XxqZtZgduW27Us2uAQ1XZLloDrKk4QBzrQUp2A1opDAqGrgQEo3AFzLOXGDmBQqi0DMhW2jXR0P7Nh7pO/SgLUwt+PR3bW7dlnAcZsp7ClwQSDToGZ6evT8K9+aGbxQtbP9M5/7Yvuhx7ve1tBq8WZ5JlDMVstlY52LBLIT2M7AtdnUwTnh6NLy7EsrT62Ayzu1iAK9ggAQZMqBoNKt1AXt1IU3X6cC7e54sP/WxaGuX5x/8++e+9WGmFEtAKIUCk8DaDakGqijJizy4a+WJCvoR2UuoEdoEJXJVYacuviArQq2NnGwFjFl2MXvZZAuh9yyomBLdQruqfoMALkOn+L3V9pJ/cYAaiEiwlSADsyNIyQGoD4IJ/jUCU7nLjAY1HR3cHq5CqJ0kJa5Ak+T2yCiwF6VGxSumERBsqSIgvdVcDuGFDEcIPChIqlj2VOInJpj9FotzhS2sIXtI9YclEqigGRiUvDENQcjUd7lapKGVoZSNtRZNnT80CNP3X79aP+5gTt9V8///KVPfLUhUVnDpZAUNvjkdFpG6XzMUCXyUcRA25I6jkXkWR4RKGpG4rrjN+FxA9cm5fu0PBZxgD4jGqktS5CEwZOEGk4tDBaPkfIKI5URhBGdyr8dgxC4J5TiBkQmDGwYjiVOCn1cW04jllJewGRjyCMggSNHTjx54bUfDPWc0jX9yKOfaG7f17Tv6Njd65nlzKEHHt21e9eSLYx4+ZPPfPrGmZ9mxnv6Lrw5eOgfHnnm0zwSTWtU6R9alR5//GMvXH7rlam7lwauX+x6/XuPf+7XaLzSBMuUPHJERIvGzGRFsuquPFOWZ8jydH1ULMmLsqbgskH7QlF59lAtpuFkVF5qWSJGE3Fctbft0COP9116JVlZf/TEU3UNddSg+jyUT0SqOHRFPNqUjIyOmji9CKe1bsTi0Xg0Kih1guArYrSuIspJlIgyLVElj4vlmbEEW2qIsLQGmlA0ojlSPBbRGspjaZukBceRGJedORXfEItKblcaUckxhLqvXL18+tSLn/lc87Zt/+EP/9Xs8JUrp75z9PjDB4+/kEJaBpRXMB2qmYNpUyAU5j75KVip1EdEAQWkdNAqwGzl+D0VVodQ9c4hsh1UkSz4Mg7QeGCg0WA1w1p0sLEs99PssO77LOYc/UptA3mPgMseRJMC0juVFw2l92VUaBUAuUO5K2orXD+lLGKdgbNdwZMASKiqM68iEZGQtxlTFU61VdlULEWhKkNqY1UUBxGNYYBvpwoqGWx+2IGmgDsoVJgAaeeUAEIqbydsYQvbR8V+JZRXEASgYbPp6btDV8+kFqH4fWpp8cq7r9UdfDheXWfRCM/w8njDM1/53R8vz473XDr1g292X3+vZc/heMW2DI3Q6u0PPfpkCvG+nuup9IL8+dzo3cGuC1W7jmlSC7Ey0xO9U8N9nEEa9PDgreG7g9FYYuTObXNlSUqV+ZmZodu3Kna2373bOz83K+VZeiXVf/06L2/V47UUgiK4igbTHKFNsa1zk1krd8Z7xruvC9uUWsXk6MjV829UNR024pVQGZCgDHjlWKK5tbLt4FDf6Zrd+6paj86SSPPhB6+89d3yHceq9z2wmMHLaQB8rm9/+BNf/hdv/e2fzk8OvPTf/vczb3+nqfWAnqieo1pjy/6Hjz9dsfPIU1/556996z/NjvX8+H/850vnXm/c1Z6sqF5GyWh96/HHn6+IRNpOPnH74qt2auzsD/9ieW6qrLFjx/5jFbXb0wrBWaqO1E6NTPb03742Pzcx0N8VadoXjVW0dj5Us+NoLFbd1v4gXsLL1vjQrStL02OSjeby8tjlq8nYdj1ZUdnaOTrYNdnX94P/9p93d54fvdOrGVE7Mzt2+/rd3u5ocwdBiX2HTk7efMecvfPdv/ijPcefKavfVVVVNTw8pDiPRwe6JVcr6vYK3bAXF6aGeuZGRyTrTNPq6bmpNXbG9MjYYNeP//YvoonK+v2PJRLJI4986o3vdM0N973y7T/XSEVZaydO/L/s/QmUHMd5J4jHlVlVfd8XutG4bxIAb/CQKFIUL5tjWfLIlmT5b/1HtuXV2Dvj8ew8+c28fX47b9+ba9feN7ZXsi1ZkiVZerJ1UaJEShRFEgAJHiCIG2jcfd9HdVVlZkRsfF9kVld3V1VXAw2ZtjJEt1FXZmRk5Be/+I7fr8HgM1gpbbwHCI9iD1a5xg986H+XZtFFEQOzF8F/04J37Jtk8XeKvqTL/pLFhyXL/iv6tSV/Kzk1vAwU9TRoxEgJv81hzEzB+zrQytcGerMcRv58TaKfGOCiJHwEuCNQLJDwBQ80p0Nhh4JOlrqKFa+l6MDS6B9a2ZcS/uEbDIWnDvB9JZnpoe2PuUDTzwC+AzTLAf4KKZdRt1ET8yR7ynwffgtBQ4k/gWEBpZ0AUqxAmQcvH86u8ZjGEuG4mXOhxxkEgrCfEn7lQ1ImeLfUCteii43GkptY6uVNGdWKf7LinS06DVa8lqI9uY6OVfisLfmowpFc0pO1uhZS2fNS4bWUml3lr+WmWrBSNuGGLFhlD9dqn7XSMySAlx5mL/mZ4OXDL105fbqttadr0y2NnduvjmUmAtHc3qNEQmljGFlDa/um3ftSDR0iWTWfU3OTucyc74vqjk27W5q6Tpw83XfydHNbd/umW3lV55UpmWrpqa5qmk9nj7z52vjQcFv35o4N+zK0Pp1sntfk7KkTtfWt5h23oWeSJEl13amTp1wpOjfua163bSxNWHVHXUOnWb8zYKDAVhsrpCEL1WyG6djo+MsvvOBPp7t6dq7bdKdb03lhdJJUt9Y0dPhQmUNVgGYNqvAEZalbHniqsXdfmnHmuNnJ+VsOPL7ulvu9wDHrQgaMa2LDhu0btt6Sqqqnwp3KeDMz2eys4jUt3Zv31NV2eCTR0rupd/ceXtPoOKn5jDc7nc7MZFlVU8eW3VUtXQHlLc2tTLip6iZFUrMq4TR1trRvcJwaPzBrCoDZ3Hz25ZdemhkabW5ZN+m5TmN3sqapvrZBBaJ96529u+42Z7l89cobR15prGowd6GhfdvIpM6mGpt7N7R3b0jVtybc+lxOBKJ2+/57Gjt7KashvHGa1dV2bUwmapoam5WbFDVNOe3Ms2qebL46PDE1OtXWvall0x5J60ZmdH1rb6q6ZmR4+NVDh0ROd2+4pbFr10ia6apWs6K8dvBlL5vr2L6vYf2egKTGxqeTVbVdvXs4a+mf07y1QzQ2Slg4zWoFUwKWhhWmbhlrXMpkVW6NK19ZSvWErMaC0RJHKPes0U9/T/6zSCZAsk4kVkcqF4yJaS4UEmxy3+p2KoqFs/gpeK8UDwCCAxLjkEzgQFgbko/Mrg7+FWli3PTGULsQU/Dh345WVpkRNnAMamxcUE2kqPMDaMd8QUjOtWAGOTGgsMO8dIiOorQPZCTgULAwX92qDkK80VLiKyuhJAn1sI40IZkD36Y+19KmsIFKKMTtzblcaf1f8YYkbnH75+LAsuI4YCtAdzUjM1TLpOAOJ56SHqS+s4RISkwnMLYoqaXLzQ7Nn8vNzaZnHI/WJGsMoCDJlEEozMtSs+wagySIHyhf0oSbwhplEsgsJYGLtf1m4YHIGgdp5AQzNg0WaLPxY8wlKkhggjalQRBIzZJaOArMnUa1OHC3O9qWhlNPSk/nOFXmJwL4BfwsaP1Xc5owvU1pbaxWFlPKqe/xXFakqjI8mQX77iXm09xxZSJlDuib19BlkVS0GpK/MzOZybH5KUaTtTVNIpFyeYIahMRxNTCbU+Xl5mfTc9Mi0HXVDayqzndcY6sh7wrlBDNz0zLnJavqdCKlQCEQIig5DvyLroGyfhbyNATxzJ7YSRAqUjoQgQcEnswBYgWZc7UHKm3mLlCgelbCMRBRcGPCvez0hPllqrreSVV7fnZuaqLKcXl1XcATDmXwY+pNzk0b4NNU3eBoJwckZ4q4OsPNGmhWO4c5VVAsChStAWegRxIQlYN4Bq8yFj7wM8JMCOFApooIoKLcT5qxD+isJuaGEUETijgyEar4MazMj4OEZZ6y//JTtRoSoOUvS5FD3NiDX/zgJY6PuqGYimTrYiAVCetXqQMRLx1Y5R1kIsVpgfSaCsjRFaR7Q+o7BNtROUZSm8AEgn2LT3Yjl1aSZsOCQZQ6h+vIcStECvlkZvamAtQl4GGFpM8J06FWqy18tsrzOkJpUASoQx17rEyEDEZQA8Ion4SQnzGmBjMh9QkipnkHCWrMWAH8hNCkBFBF8dmBjFNKw2RUtorrpxVz/6yKB2u1k5NURrKyqjtb+eS/jglzHUQsRfmWrnOTUvG13NTTrblJuZELX1sLdh3jtmJ/Khy6pacOrQdYTmMJoazGB2lYzAlA8QahzC4L/f2oFSughshsWqHwUDEsyobSNUjZhGx3MDpgMzAtB9NEIYAAASSQoWCUS9jeSVtSiKe1JIQMtP5sSSFki5rPk+ZAAaoMWn5jlEjWxJYi5iWlQfFMYmKp6btEMygCZJ3QpAqYDMk8UzkwXyyFe+55bZNVqYsLRQBZEHCtktuSO7g6sHscIZ0VyoXKPwilzhuYCOJmwGSFyasGZEBZUgY0x0APJKHhJzkXqvkMBDH7WygX1MDT5RA1h/KSroE7nEkF4vocGegDDdUAphtm25zG7LME1cYOJynJYea5gzmySqoshw4ISpMSGYe0OQjmz+NQS4ViaubaOWywgcNRWoodWNTMNZtOJqGwyxwWhlGASYcVQFAoWjdD50idQM6fNCThm1ugze0zy42DBZsM820CwGEKFw4ObgwORQ3WVaGvx/zeiA2pkGTuZlvjlS9NzM8FeZHpAjYBtYzoZVUA6/qM1IpsjeV6YuaRwOcEn8wAcr4VCxSWxto9GHwBqD98ap4pM3chxRI2Fag6aI7jIyaBgkKr6mydP5XeocJPdQEayZNnlOQxU1hF6EDfgIwYIA4zzzhzpEDiLonS+mGCFDImgG8JwoYAyoBJwVyXRosF8hGY0E+hyNpsPICEQXKzYZE2vR3TE6kLJhHkEM2bntnOAHG8AVhgsvCZoR6AMGa5cIDRHu0BW0o0ospSLpUhciSVEY0uGUay7CVdzbxfciNUxddCFn+nPI2krmBKLH/WSGWP3o0QjZKVBvm6AVYZu6FXCWsqGdUyk63MqC4Z+RuxYHqlaX+dFqyY3ahkVK8TYCF24VhGg4VlApNVgdVYW0Z3V6M2jQEP4IkyWz3I/kTpGgI8gczs+wA9QZ4C07NQf82BqpNKgRQvoBEClUMKvfIMucmBI8ecUUstmIO5nRApoKiuYdmMlZa+5gZ0+ShLi34Z0I6VUF4HORFoqqVDkGyKMg8r8qBIRzMP6cVBTVHSrDboSuU4GHwP2MelMXQcWXk8jRDFYAvMdjVdNlbVI5aZnJsFAxUxACSZKwMuKUpzYCSpkFwoWC4NXMyCaVY4LsRVDtDl0CCXM+NIzaLjYF4HSPrAQCkfyCyYB+nuMGBmZFyEjh7ELw3Agko/j4VT1pcki1VKvoFKiufMQqB5jnk5NMI5LVxApKDGoTHD2IJMLJGyZVDSMWMliLH5GsoGAJz68FPHDFnGWHQOcRyzbHD0OQBogmRfBpI8CMXMRfkgoQaeLiAiNyBTE1u3zrBUEggWYWE1x7eaOddhjZesC5XbjaIm6x/LGpchGQ6/ST/9bV3skS6/W33HASwdKkFrFY6cplEaJ7WC0lgzp7CqMBrgEHcrEgk/h0fTJThOr4NzvCKApRdfW/4/rkOqFQznUb3ASgrPE3i78RlDMpLCPYTWkXMMQFUBImGhsjaxe0c8iGVxsNW2FPUZLSu+5gW8VxLHk65iY70mAOv6/E+VvFxzJvfr9vr8zJjcy9+gtQJY18HkfpMAViXs5//oAKuMab3Ba1mRU55ExdS2mAeqlNGhAy4sHT7v1NoSRS3HFbO+cuu10qHZpOgax4+1/YIuON+igQL5HR1+HAYTrLIGIgOsj8Y131qqPPEABggtwaX11nNtrT3SHtre2tdgEpEKkWBwAs5IUZ4fuQGx7odFJKt0YUTgsAyBHoY6bNesvq2OyHpA0IJZlurQGtuFAyEdsbkkVNnxsYr7UGxkyRdtBICyiEDfystQuzzZocYv4xjmsUN4NE7CgUJkQ+xY2WVO2eWLhOgHj8kQHVsVf3Qq4pCq8OwLS2R+y6pwWPAW04jcyq5KmGwSXiOl0eqkw+u1MSGtV1gXKgRYa8vkvtqe6IrR4aoBlmBMqoW3tV64c+GbrJgNUIupM/P3u/AvKQELC90RqqCb+d/qApBJVnpZiDDZ0sPC/C64FpV/yZb9RC+6Fh1dhWYFP9GlrWPRa8mPKi17aYWjxBf3pOBjXThEYWA0/FCTYsNIrNu88CUmYeV7EqLO6HnLd8Z+R+dFM6L/lswKVfr+0sWTgZR9WXRUyeKzLLk0VWLC0MUYeUlP6OKXRa9lxftLK7uWJU/Nkumqiz0py3tCF8/w5S9L9aTUSl50uhYeQRfb35XvSRm7UaYnZewGW7yxXbLTLP+sFTy5Sy2YKvay/KgWvZb89ZJi/tVS17KiBStqN1Yc1cqt8ZJT50dYLHQGcQWQLud7YgEFKN2oSEUn/3DxCJ0QPIj9bb4nrGDvmr8iexy7tSMFFtiCrrAntKDDtOCuWWhlP6JL7FXeCOrojsiok2g2eaERCEe18Im20so8lFuVdPHcC2Elpq+Gb9LwqhEdLn3G8/eCRmfh0UBZS8sK9sl5j4C9/PzI6BCcEbXwwwXMm7fqrGDBoiGIXVjUwlEp2H2zpbNC2n84ltknutjwztKwb2yxodDRGObvSOH8LG83ypssXZkFK7OyLLcby9eFYo+Vvg5rvBzkLOkYzGonFWeoxS1ucYtb3OIWt7itZRNeEAOsuMUtbnGLW9ziFrc1BVgyiAchbnGLW9ziFre4xW1NARbT8SDELW5xi1vc4ha3uK0pwHJpHCKMW9ziFre4xS1ucVtTgCV17MKKW9ziFre4xS1ucVtTgKWYikchbnGLW9ziFre4xW0tAVZtVTwIcYvbP4GmSSz6Fbd40sYtbv90AJaXiUOEcYvbO7uFRNVEFdBjx7H9n8Ww6xAlLP9oAUHErXQrZGuMh+pnP4HjcV/jEaUF5LMVjK1QSuhlW40lMjHXIfW8XGimzFamlJRRZVLPRU5X5lqWfHp9yr269AGL9qQSfZZSPSlzaWVe3ohKU5lrqbAn1yf1vKpRJTegRHh9o1qhiN2aTJhFR7C4yupiIuGw1TtCodWQ4bqock2pUxc93Y0L5ax2hpDVSz1XPiGXP/WlrFBpC6Y0SscwqyUTNRUiXc1AMMZKidAKLViZ9a7MfVFlr/r6lAhXnJBFNRFXtMaL6fItvTjq1uOMpYvNUfl1YVWqipVbsKKG8TrWOF3BtejSJousXtJlxcmvCxRKcIbC/kCh1KMGHWe6qnXhplrjtV3jrs8aL5kMlVhjFUkRaK05aDGB7jUKGS+isC/sieDUj2Fp3OL2TnUAgFiueap9CvptrpSKcJ8xq1mG8rigbkZK4Inr2/EWPRot++Wbejr6s9rqL7aPILKuOacBC1U4ULmTWpU+phhRobrdsg7S1bxcsfHVdH61N7Hyw658LhTJL1zxKVUs1Ak2a7wy0xal/BTqDa7xhFzb2fgzmJBrfGmgpYjaQji4VpURRAOtbiFFNaAIA9BlGP0fZRhv9ulu8FzMKjOaeWvQKUodWYVHyTU3Vti8j7M5oAytQHFflqiuYmWUBBeD4oVeqiL6fYtkgMpoEdIS6n6s2HFIaX23JcJbpIQCV/melLqWJT0hy16SilXzaDF1pMpHVRU7ICnWkyJahBWr5i0Z51KnLt+T5VqERUeVlNUiZKvvSflNVRktwkpGdcn9pZWpXxUdVVJai7BoT0DbVYNSrc9IwKh5qhMovJplds8UHpXFmS43oRkTisiWMUUBYUmtEc9G04OjonCIuOKGkvQFzzKo6lONgEujCxD8KKCXbBXs4zFb07GHeUlBrzucjUyHWt4Ieu0egBIa24lVT2kQHzcjKyyWIiTHaECpa0yxpo4iPqESVTO5jSosWxfEjM9X1Pcnq3SfXoegP1m9Ej1ZpdA8uS4l+jK/rfxE1x0iXHOd8RUHmVR20kpGY7U9We2oklU6pcl13dkl36EVX8uKz9GKvWVKu7Cs8xyK+btSM+UHmnmcKS6pWbh0KPDP87r8cVsT7wKGWAzAMuPLYHeq0IpqCW8yYn0EKB5vc7T0z/26hfHrwv0DTEtJQ7eWVtbNijrHZssQg9I1RQKAA8ygcmMSJMApVIRmGMECIwLORA5bA4pR7xhjVTywSluNb2NnJYPB5B5jPmNSwWdSGbBFzO5XRTkCywOvIuvF4xi3uL0TlyzzRAe49w9gZfIdHTRWce4w85IagEXQmEIQxqryx3ZzjUEWrFBaAopSgTa3AnaxZrTdEE0QdBnAWqb0AoT+OW1RFJWE1RcaVnvw/YH7CmKtBq3C8g+NxHj0JjixNDi7ISfIMdZCIaTSGKWF9V/bhE2pYyfWqixAmHDHBGVKspmM7+cCSpPmA09TYxEswMLYoS66TRduPI5xi9s70maCdx9SVwyWClzqrW9x96xLJDhkBriwT9WY2wJLW8xldzOGX2OimzGmghuUJTASDPnC4B2ApBbO7NJGYt9huG6zqMAqzLkG558OY4fcLPncjJQMF664rdnIEwy+mh2XwbNBwDnYjYLEzHDp52bSxvBqtQYYzavNaKNDU+SNc+kZJQhxzDBKBsbZfMIV53a3tRxgtdTHxjlucXtHPuEaC7E4o0QkGNu6zr164szffPb73KkRxJYIkbDCbWHzdB3x+QorTclK9XCrDaqTZfHVCsPI5aPrepWdL9kTLMPSUgX1NYkPf+SJobFrX/+7nyTcOqI5RgMU7lttGhZd6VoqHMabkeZQtCflp0SpE5XsPJYKLgSgtI0TwujAqu8rr3d914c//OgzP/jJkVf7EskaHLlSM6TMNKhkVMnqUwOWs25UMiFXlVyw4qWVv5aiSQphU1pXV9P3v//x8YnxZ595USvH5mNDcBZvhba5cNYHW2lPKr8WvZpHr9SorsqCXV8iDFmpynB5joYxAlRo5ans7ffsfvxX7mltSdEcbG4Zerh8bjYMTACcVUXj3iKbDuKVLG5xeyduTPHJN9snTXyzS9KBOz4y8+pLZ1zRSrSDOyvrMViGsuJ24w3wqzZ7VOXPN7dWP/KounJp4uALfVVum8G7GnwEikGJp7GwnP18u2QQbGquNeb9hFMxoJRjvSAlQcabmtlHJx4jp04OvPzTi6lkczxZ12rkJSVceTUN6t4DuYGBmVcOXtJ+VZRqXYB+MAFLaWET4eK20sBqCanrAsgYVE7T2er6locCP+3nZrMJQhNcUUFUwJSZ50JRvpjMZQFgZQJeYpdASqC/SmBjhZnHZVDkqvZ/pVKQK888ruRaymP81aL7VY1qqSPom4nuS526kp7cSJo7XX1PSNk6whu8lqKT9vpGtfJBhr2mAuvJoDwInCk5z7zlsGSN6wqXK9cWZmMBPMWq7Ngqrj3GolRJX1cnEy4n5v9qqpMpJwkWFW6N4pDrQgNId4mHHzb0DNKCw1TfAMJWhEOWu8+dVCIpHE6SCaeqKpFKJWOAtVYNmfFYVUo6grgJXlWVpH4KnavGaGCFMY1MCiUS5mo8VSvb4gLLILN+P6m8VALSqfxAZgPwyjoKyl98bgCWNv92VJ7rbdG6IBS3CVpL/5KoAlkvZtmxL6OvFXkZ/V1Y4Za9JCFZ10KF86LT5Y8QHTy/8hTtSeEFFV4FCUtYyvaELPyk/LXQwjejquT8VM3/hBQMnS64ikWXQ1Y3qksPuPxaCtBE8SMUjFXh9RYZVVJ8GlTak0pGtVRPSME4LxtVUqYnJPLhLBvVwp4suhHREQonSf5aSt3fJdOgyKiWur9k6WTWFYwq2E1b7M4Id4lwFOGScsWEhOR2ZU8CFpPl8yzitqabWKiG0xLd/+ieAUobm2xhzamE+8NpPPRmZKglXgpZGjBJzWwNYFbDCAmmBLW0AZDCpmMdgjUb+ZCVAXLcGVQKmumKvCIUg1Y2DS6fJEdjT3flGwZiS1soJgMYi8sNYGJUUC4oE2ibDQJjZtw5eLOLrgvCccDFLcz9WPyXIMFdIaOP3SNbDpMAv5YP6NqXCunMJL5pj8CiI9iXtICaCLxn+BNa8NL81ik4glNwXoVfyNMq5jtmvow/zB8h7D+PflK+J2xx58tcixP1VkbDl1/FdfFrWeiJPYuzrPNFR3VJT+zZCw+Y7/mSaynsyZIjONFY5Qe2VE/04nORsi9XO6r2/uJLKpb1REdDZ/dcUU+K39/8y1LXsqQnhTdi8RFIflTtf6Xur/0OX9z5SkaVRlNxyUtZ9v4Ch4qCpxsGRPMEdRwGyzrQ3TCOyFDirpSF/Ayx2VzT7SuOLSayQMYV+hARG0DYEGkcsBoeUbiOU4dJyHGNKe04E+1SbjckQCsCw6ghadjyMcWgdO32AdY5ZcaZ2aoXaV1XyJlH7bwFHzeWxdB4J7YaI0BVhGKZQLPrMJZgwsApQYCY0AxwQJnHbCF3kXVBaJ+WiswVjRvpxZEMtTh8ogpCJoVHWFGegiym8VxC6Vl4drIsCFQqClWJLIOq+FpUiSOQlbJM82dRxUaVLNNeWNKT5QekFfRkyRHU4hFQJe4vKdb58i9XNaq0dMfIavIh6UrXsrwntNjLSq6FLB55tcpRXT5DVry0/DsKyWyQHkAFRHm46EvkDmbwCZeIvZgy61fAmAqZ8UoP5vIOYJqRFd7BbQwNC5MZcuvkD0WjlzQKneW/XHgECR4eCAxFB0ePX7GeLD9d4b9L9WTp6KG7jynsXUFPaJSdxvSy2YLfKbzRtHhPNHA1A56GRcnYSEWZ5FoyAqlG5hYA2IUL1paOLMyIX/laQtSxfBrjJ1yxFUd1yVDQsqcr9dHyJ45W0JMlnacFt4blPdVIKaq1AnkWBkRCBlsFysxbpZBZBLjEkJypfE8WOoz/W34ty3sSbodoYefhvcJZwQoekMIJQ5dN+PKjas8i8TylljPAObrIqBad4UVHtbAnlmxp8Qy3LylEqvEUEmcm+A3tEaj1weKVchVmvTMFUcWVerLEbiwe1VI9WdluLB/Vyu3Gkvtb9OGqxIKVmQaFdsP89RGnMimIhspB87GZyb7E2EG0SQA/IfK00CjoUbguCPSAL1xAGRL9Fd8vc4Tyx6Glj0Mq6wm93p6s6gjX3RNSmsKfVtaTop1Z8e6s9ggVDt2KQ7Tm1/JPd1Sve35aM+FRS2cTeNSXLBlABoXNbEH3oZKWChNSLMGsEkoWbVFLS62FX8NyOKqjGGvEAB3SPhf8HGOVC1Ib4ZejI4Q/4ZItLPwLgeMiY1JwuvDshf8u05PCztP8y2U9KVQFiRIS8t+xAGvpteR/i/9maG1hdC3MBd+AtGfCxUDlafQpifwCZa6l8KrJ4pfRjbDhbPvb8CNabFSXuCDyP9ElR3XJR8WLAwumxEJPlozq8s7nbw0w3lLLgqXNZgDpWUPyUdTSVBxDLQhQAYJBynXZniy6Fl3kMkmJUV3c+fClTb6nBUH8/CSh+V/pwuV8hVG1h83fmtJrIi12f5cesNSoFvYk6nz4k4IZTu1LhlXFNNR40fnECWIDh1JE2SSMLRy2ZE+WXdeiKVGiJ0XtxvJRXXp/K7QbS+5vkc6XsBtL7m/e6BGygt3gBMGUwVBKEAMDoaoQCrtlWFuEaW3UPuCqqD0XnMc1BXGL2zsv4hJaNRUaJg7BFWM3Q+IGCBRC3J+BJrECZbyF4iC6ithCua3TivKD1/EFssqt2c3ryYoiZsjijL5lriBtyCxgPOR3gn8AjyYQOyHGgmR3Hd6T/EGibTHACWpzwMPXhZtzZNXC7K4wGkFDQemIzIhZobMoGknRDYH639Gv8i45HY0hC/fyLFpUQ/uf97bgkmSTdGj4Ch0uiKOjhZYWG57i42aJ2zEPSwlIEdSh20Ojjy/kZSUAAmA8Ma1lsZDZQu5hQfgQquQZDSV2bUQcQuOK0ryiNJ47IuBikb8lciiEgifwZ8HbFFFIsPx6mk/QjDBvwVgwFaUbmIdRs1D4x+Ia8z+ZzztbuA9Ly1eWbC6u359QbC+mLcKHLnGseZHEMuRZrW2O2IKyMABUUFxYACd0eEFkYVQLtjM6GlkN2udLgkJ2x6IURT1pbbPxrBdKR7cAi+zy57LbEhplz4Z4Mp9+qiyk4VpHgWd0E0XTNNox5bNVaZ6HYqH/qxjGEmYBD65wKFFCE/cJnDLTHKq4AuksnBggVKjMyLOihxMy5nyLW9zeifF/EnmiUZQQsBRwBeIn0tKwROJXUYJQ3Nb0DthohWQIYdHSKuQeI+A+VBYISeX7vgdG3eGQYUi5A8ywfhD4xjozLoRj3tASbpFSKqc9xbjLHYeEMiYiwOgit7AJiumR1JAHsKAocD5A3leoj6wDBNUc1zy7JKJnSEsqAbT4WgaBOVhCJBW38nShfCKq+3CMIitE7UBcZZZLaZbjIOeY/yeEdlxFlFAM3XfWVQNrmkK9EFo2eUctJKxYFAPDoxCEYjjbJq7Z8YSgiVmQmFTo1NJSST/wzaUmHBfCijSw2tCenzXdSPEUEdxyjnHTTz/IsRwTVIikBadmSMwYMo5nlwa9OSgXY5Z8WwgSjhCMpQp9FyhBDYy90HMm7cMDgTNzE7K+CjziCO46koUc/QY0MjN65jzMet4gGQ+uTpnvBliw55uFllPhcLgExMHMsntrGrFQ0SXL/5pZCo1HN0ZBIhWuhSUKg9gwaYNABjnzFVckmJme5mMOGfBmihJfcuFyLhQOClQsB4H2Ama2cGaKEgFUG8QnTBrwrNAK6ZBai2IYXeNmAfw4Cjy8EJvkoT+HIvY0ww4Ym4EHE37jm/sXSDPOTkJYdMQwwiYpE3B3cFCBEBV8bjDaENEElXCBeeYYiBdwdASMGtFdqGlFFF1DYdAQvTEsHiAQ1OZ2qO2sighcNUa+NSklQSSkiolG4xa3d2gDk6HgAUdjBVt/sNtmWbQKurYwCCWz4nYzli4z3gGzRSh2nQwTLew23VjX5vbUju2bBGGn+/oHx+Zhb0t85vjbd7Z1dbScOzs0MDStICnJLDz+xk2NG3rWjY6kz/cNebko3ABi/WaBkqB+hO6qQEsOmieQOosrpY2y2eWIYf4PICrsB4VF1UwNamZHrmdz66YNbZm0d/ytAYMTTIelZfyHLJdIE5zhBYCOolm6zNqZuf2O7p3b289dSL9+7JoBL4oiauc+LorCOqL0yu7IfPm/JcAPnRc6rA9g0cemn0iGb7qMrldNg87euk1bu7x0tu/UwOykJAI6lqhit+zcmEw5F44PTE5mJcjp8kRK7bi1o6Gt7sK1kcsXp7QP8S4EsgzlYGDFRdpt+x8hIWBlDDm5LTjgEKXUsH6jlwrdH3Z3YgCnt3l3a09P88Dg5OlzI1Jh3NNGPgErSHtd+Ib0/fn65uTuWzY3N7uEBeaIVy5Nnz1xxc86TCTNDaXW2YhdC4NWNK/tvmgZvzETEQlihhBY2+x26xeSKtfYWr1793ZG/At9A0ODaQDv2jNQdtPmlp51zVcujAz0z1qGfYO+ejfUblzfMTY6d+7CcDYjOUOgDN5XDIYhWoD5FErxQD4XZyGGtF4rmNQA6iFPFNyN2vpnNRqybMf6pi3be9JzmTPHr3lzCKmEhU0YjQcxpbDKWuNfvAOAnbWSBuKg38hMSoNbAtwnhHASNxu6kmm6CssLswmFM7XEDQfmB2CAEK9XWd436zuV4N0scmrBmIwNadzi9s7DVrj9t+ti3s6TyEluCy3DaEWY7R2P2drCq6XUIwWhLGR7Mmu32rC59X/5N4821dV++cuHPveF5zAy43V2NvzWJ9+3Z0/nt77x9uf/+pl0xsAhXt8ifv0333PgwLanv3Xi6rWRXM4gK24XLPDiQBo9hqy0FGbPLyEmGVHEK6AyNPc3UJz6uF2mDsNImUbXjVn5NYQnH3h4z8d/466+c2P/6Q+/lh3zCXWx2NEc0UYULfLRACQ0l8qnPHPgQO/v//5jG9a1Pf39i6fO9GfnzKEFoTnQsYXiWPBn4QSzIb2KHK+FA0ZtKabOF3CATwVgD1wyBldpdvftOz/1r5/MzmU/+yc/eOGZs4ylfO1v397z+//usdq66i/+xXPf/fYhTao9P7d5a+sn/90jHV1Nf/m5F65ceoNQB+JS4F2B4CHDvHp0ewQYuAE/mMYHCM4lbWI3OrkI8J2EQpL5uKn2kynvX3zwjl96/95vfvONvv/2rAog8gN9hFisGb0AY23CjLjnz+3du/5DH7337vs2NjU4kCap6YXz0z957tjTf//mwMg8YUmrcm0xlQ2gVZYHu2o/i039ZhiEtS+gRAMQoelnev2G7k/928fr6+U3vvrql7/w00zW9MmvqU9+/BPvu/vu7n/4+utf/psXZtOA9JM1+l9+5MAjj+z/+28cuvD5gSBnpyCEvokMi52phchQdgNeQATsFPjPUEyK2tJbpJahATe3wAVwBv4+8730/PS99+393T946tzp/v/jj745OJ3hrpDa05E/CHin8KYBilGac8Eks9ns4H80UAtClGa2B+AXg26Yvgh00oKDkYRDTNfGgWUjxRjRRwwebhQ4OJg1pg2AY1ni04HQuQhcFnVVPDalcYvbO9B5BTt9aXNKaRUhjmNJbZYy5VIS81zevJuwfGSjlFm8DxPj45n0xDVHwnwAAIAASURBVPpdDXfc1fHFL+YMIvGlv76nYf+t7e1tifsP9Hzja2Quo5RULY11B+7d2NhEx6cH0/NpppI2fgWl3RIpozCdHpGBwQncViYxsxoyUJS1IslmHcfwC1Q5QKwQttcQ5LPhmMa6RHtzcnKUOCLAknxcDSEQmY8o23iSWQ9yPDX/rge3fuJ3Ht2zq3P8Wlb6OcEDXNDAuSUpMNkCAqQ2W51W7Gwp/y2F/bc+V26rAadGR6U/s3tby44dzT/+fkYTN6Detq11O7bUVdc4992z8fvfeVFq6ge53g31t9zans2p0aFB3/MhKAdjJTBaZcmKCLUJPxC+4jZVB6o+A59T7iADl8LxhuQkFmA0lIPPUEphQISmjfVufR2rrWM83NTYnGZmH0h7Epnzt29r/1//zeP33N8zPZUbGsx5WdbaIXbf0trb/a6UcD//pRdmZmTEcad1lE9PF7gol7iyrn9+qlAFEtUIo2AVYknzEdDpT02Ozs4N796xft8dG77996/Oz3lmQGpq1V0HOrrb3Hvu3Pj0Nw9Nz3mMEdeVe29p72pn4xMD6fk5lzUT8JM6DKk2DeLBOhozN1EdRtlsPYjEsqhc01JwoavPTDyG7wfwWwnxXWPO6mt5Vz0bbRBcoDOKQg+ltIUPmEyGZ4HYtzSIF6Z6oHLgIYLSaYpPg4BTasDJmGYG+A28vzYX0oZv18IvGBYzAq6SXPkGTgmHVCXdGmQPBeIG9I6aZw8eQ8KLklQLLxt7sOIWt3cmwlJQJwyuBMWZL1UCjfRyq8yKcZLE7Sa4sxbdH1htBq+NXr0wdODOTXW1iXVdzf0X08b8trY7NbXwcUtjsnd9y9DosLmVNfVOQ4Mzl5bDg1PZTC7lVEP4Ss0TEdRVVVebrbznz81nIEFJC0z2AscAc/wkAxqpIMg6KVJT6+Q8NjsLAShMa5KOqxrqRKDVzPwcJ7mwt5j1A/4xFqB9RzcKs9tszXjQ1Mo+8Gvve+r9dzc2JH0PkA4H9G6+71PmmK84UHSmF7iLtWVov15vQEHjmO8OBZphwExcOt8/eHl4R29Le2dTfYs7Np1NplhbRyLlArFQV2dNW0fTlX4pOG1qTlQl6OCANzo0ZUCrSHAlDeJMG0BZU5twBM/mvPScwVaOBuJCYnvuOEFViirfV36uqs4Vrjs7r3PzVsszYCSbSPHq6oT0TIfmEcLaGCeu9gArELcBVAO5ail9kVL3PbLz9gM9Q0PZ73/r0Pe/d3h6JtPd2/CJT/6Luw9sfvypvUeOXnrppUuAaDEDKWS+LjMoN+ZrIaSweC/0cCMJFk+I1LWrw8ffPn3fHevb22rqG2tGhiYFZ1s3tDVUg2+lqy3Z0VZzuR+maFtHnZkPE5NBf/90EHCH2qI8n7BcXaPrmClqQO5sLhuYIXEkejhhsnKZTFAzAz3fc6sS1dXJnEdm5n0Ip4HDNZNI6erqKmPDssM5pjyCNZWYwy4BWpnzQAJdoK2vCKktGJFOEsJuOS+TqtKppNAySM8HAUJiFGEKkT84KqUtPilIm1/Lxx6ri+BkZitjeuHnMp6Zi1yDD49gFD4AWt3i1LkiF8SRhbjF7R25qJutmLQplTLBAxlgjknJdS5GVzfPjaWLrohmAfIyZGTQrAKqtalh9+4tl/oOt7RU79m7kZtNdaBqq5w9t2585eigk+K792wzu/XTZycGBmchxgDLe9DSwvbdtfm223d3tTWOT0y9dezi669eGbgyy5gLvP3aX7+u7t3v3iG94NK1K7tv7d23b/tLB89+4XMvCZLiwt+6ufHAPRu37e41a9Gxt052ddVbJ0aAWS8c877BfaXN7h9SyjURBkAIV/3yrz7w8U88ODGVO/rGxc3rW5LUQehlC9Iwf9lWKubL8G8AXOn8YhWyGzBgdQ8VoAAGzM+QyYHArOMbezrWrW8aenOgu6N9566NgBKkbm6p27VnQ9/lE40t1du29WZz+uRbV+fGc+BhgkQcr7vXvfvurbfcsrWuru7a4MjRN68cOXJlaiwreMr8nIngttt6b9/fM3h5cGZm8t4H9zW2tX/9a4cP/vicI9xEUu3c03b7gW1bt66fm5s7c/JUS0sVCR1CmhY+VrB6C6V1Vqa3bmu57737DYR4483Rr3711cuXJhkXly5dUvrbt+79vUQyua5nfapq0PeUdf3phcq7vJODrRXGsl5AcABhynfIZIW5SZCWTkRmRo1eNcCd1KVSmzZ2nj877jjs/nvvSLoukaS2NrVzV/frJwalCnbs6G2srTt7Znh8IOfQaoxFZ5ua2f47e/fdvq2zs21mYv7EsXOHX714tT9tAJPmTGi9fmPTe969fXp28syFS/fct3fL1q2HD/Z9+xtHgmxAeXbTlvrb7928c89ml/FXDx9Zv6ENYAey+RN0Ay2U7izokqj2rrqHH95q0MyVy8O929p27N6YS3vHj108/NK58SED8JLM+q8iH1pBYSRdK9hKF8hcGJ7IoHkS5KSxw0EYcodgoYyKG4s+JELwOMk9bnF7J67pyNROUDyMcs6wECyWGPnHALqWG0EX82Ep9/SpkbGxue7uup3bW78dpOsbGnbs7oUaKqnqWlI793QnXCg7vO2ObY4rLl8ZvNY/xh3XD9Kbeps+8psHHnlirxAu076b3PTwY3tf+OHFL3/huVNnBymvkspft672o79+N+didj6zrqc55ZLxibQysJvLW/Z2f/KTD919x3pfai8I7rt/tyOshAUAF8qixCeKid804l4wO37OGutrRwazX/+7F/v6+j71u+9vbxYS8qKg1Mt8blOOmBVj1JpGxfDXsXhF8iwUQjzofKBhiT44sCRk9zDl8bOnhmfnvB272rt66l45crGttXbr1k5IcqOka339zh1d3/7uK82tTTt39wou+k5fnBrPoBMhvWdf9yd++113370d6XelSGx9+NE7v/OdY1/54g8nBucYS3IW3H33lt/42F1jA1MG1q7b0DSbIQdfOquDTDLF7r9v28c/+dCWnW05M4K+fu9De1FxjijIb5eUOpjhH914TGjj1Jmb9Z/78bHR8S0HD50fGpM01WgeT+npyZlMEACuMcsqSKgoy+/E7abITqEwn36tPFj2DiubXmcZFixfu9RUGptBAu3QxOXzs9euzrd3Vm/f2fHss686CWfvvh5HUC+n6poSe2/r/btvHpLZ7J5d6+qa3KuXBkeGZoH5ieZau5xf//898MST+5xkkpPAYc4jj+16/sd9f/1XP+q7OEKJq2WwZUv7Rz52f07Pj0zM7djV7eXI6EiWiTeUzuzc0f7bv/vYXfdvMnjdbBIO3LMtldDaFkeH6IVpWzZLQg1Ly5rW3d34qx8+UJVMZHIyUZsSQrkOf9+je7+z5fW//syzU5OBNqfGAg5tqwjyDiRLOkz0GkQJdShVYyaDVuGZuGCQwOiEpdsQCdUQoi6lti9qqmMPVtzi9k5sMiRJggTWKsJdEGugNHZU/aMg3iLjDiEgqfjJU5dGxqYNMmhrq2lqTjS2pGrr3av940ma7OppaGmp7+pqmp0a7V2fcCgdG56eGJ/jtNpNBu//0P5/8cE7RkYzL7zw5unjp26/bdcjT97+4ENb5mbSw3/19Ni4b1YOwX3OdEtLVZ2qOndu/O0jZw8fvmxwVHNL4pd/5cDtd/WOT83/3Zd/fLV/+F0P3vHgu3cBSRroeGDVPtRIKEunBbkrCpOCTZcleen5c6+8eOHQy0c7e1skSQRIUhmgR8j8nFvSLmSsihYbdp1L1oLcaZ5KBCkFuBV64qaLntQnT5ydntnf3du6rrOhppZ3dNQkEuTCxf6mptbmplRXV2trS6qmLtfe7mhJrlwZm0tLkRLNbYn//7+6/74Hdl69NPv8M68NDva/++E773xg+5O/uH9sZPRbXz3iZcxZPEay3NFd6xuzGf/Qi2dfO3b15ImL3CVd66r/5Uce2LG77dz58a9+5QeBpx977MBdd26EZR8oJgMJWWhOSIYSrZ4Jlpoa8b/+xUPP/+BEdl57mhPzZRUw7u+9fVMiRdJpOTkxlst6BVxPIQXr2j+8NKx7yS/wVlEAvJ8EU5s4dRPJc2euXui71rNhW8/66to63dnV0NCYuNY/OjOV2bVnfWdXY1tbrZmHnZ1Jc4TB4dnZWd9YnmSVeuSJWz/wK3fNzckffPOV48dO7du748lfvPOh920fGZv93OeenZ5AbW/MuGpta6hpqj9xYvC1w+deO3jVz2Sra+ivfuTBuw5sSs9lvvH3By+cv/bu+/c+8p7dhETkvEgXAjPLcvVbznlqcwchh7ypLZGek889d/zo26f37Fn/xON3PvTw3jdeu/yjZ9+mFAAWtQxxWKcg7RYolHVYC08WMlOYvwJpB6GehBEn5Sapa6ArJxBKhxwsVMhhJRCzmMnEBjtucXsHe7LM2me2wsLzAxf4lFR5r3bcfqa3R1I2PesNjeQ8j7S2NG3d1rF7z5a6uvpDL5wYHZz74Afv6Olp2bmtY7A/01DlDF/JDV2aoAEPiH/v/Tse+YX9EzPzhw+d//xnfzg6lDv44jVjxJ/6pbvvvW/T8y+sGxu7zC1OIspxyOuvXfvT//6tyyfHAz+ZcpxdOzu3bmt3XfLlv/3J5z/zU7PWnDo1WOM673lklxX9ZciQhTE4hQQQkNdFGdBNBTn9+qGrMlCZHGEMldM0ygMAnpcovMJg7QN0FVh2TUyl5jfsbImcN3B0iRovBmA5KpDjk9mpCb+jg2zY0tW7oXbv3i3CcV85fK6hdvrxJ2/Zsrlj+/aOxg7qOOLcmemh4QwhBgrQhx7ev//2LSMD6R9/762/+eyz2Yw6eWzUrRK37N/86KN3vPKT8xfPTYK4LdQVQm77M987+ld/+cORST8bOE5VctftG3o2N+dywZ//z2+98NxZQUR/31Tdv/+lvbetU2Eqk423odcNGZGYttxMNMjRoatpSLKCEKoMcum9t/V+9GOPGEx29szghXNXIToJSBXyuDQOH13QKV1LJxaiEqBqQ8Km6E2FbMQYKdSMT4zODg5OmfebG+s6O6ruvueWpsbqo0evHnnlUkdbW2d7286dvYlErq29YaB/vq9vxFylL7Mbuus+8MH7leIvPn/ibz7zo8mRzOEXLvmB98EP3f/IY7f+5KW3Xjs4kORcQdMuI68evfLf/8vXrp2bVTKplbf3ti0bNrYnE/q73z7613/2vJdTJ968JLR+4hf3ExoSIysK+wdMc2NhJmk4NhrVK8mzP3j9//2f3x8Zybz28oXO1oYDB7Zv397zox++gWWZ5mABZmxRy8uBzyNKuK6R1whKVNEjbD2wSpFsTs7PayUgw11ibp5PI52gogAL5LWKSBEW4aAta82XG/clR1h+QF3s0zK6cKXWjyUdXvFayvdkza9FlxUPrGRUSx2w8mupcCSX/2T5qdeqJ2V0L+nqe1LJqC4/9WqvZcXO09Xf2fI9QW49jRtoVUbQWUV57nFbu6YrNcFZP3j72IUH7u/dsbNl27a27Vtb2+rFwLXp737r0Lsf3Lxxc8fWbfUbe3Y01NUdfWv0wtl+wRPznt+5rqajNXW2b+KNV89NDJs1ummgf/R7T//0/b98Z3WN6OxqSyUH5+czUN6gaRDoQy8dO/7WoPBrmWZOgm3Z2tbUkhgdzZ4/P5HNpnjSvXRpcqB/Ioy3ACcq8j4qAftwA5uskpLNH1Ys66GcJRMSt/p5PtLQ2aR1qHQTZUwvUMDf8DQDpyzE2pCUwgZ3uJieladPD23b1XHbvo0/7K7eua2puso9eWpwarzv4Ud3dG9I7trVsW5DQ1Wi6uSpo0OjU0y4BtSsX1fXWOf2nZ44dOjEfFoIUfXWW5cP/fToffdsrq1x13W2Xrk4nWfVmJzIvvDCmUsXsypVY0YhkSS7dm9OpZzLlyYvX571/SrKxIXzYyPDBoisw8QphnlNoPQZKhBinQDHFDfoP1LQMuorPb3vjq5//x9+tbuneah/7gfPvN53cZixWhsgJfhDasWvdZ4Kc+0YMS3dl+VbX3gXaCkYsH4aUMgC6p46Nzwz52/c2LxhY9Pu3W3JJJ+e9H/03Fv33rvrjrs2bt3SWJPs2dDTeebswKXLgxDRo35jk1jfXTs1kn7j8MmJcQPIGyYnZn/0/cOPPrqnraWpZ13DUaefIikUYzoXkIMvnjp9dDDJ25E4VN1y66ampsT0VOb0yeHMnDBQ/tLlkQsXrxG2X4Xc8EABgpQdgGMQIdl4p7Ic+gbQHDn09mD/HCUNY0Pe2NiU4KS+zlEoCqrRrahDvhrLpYClhGztDEAoqaMXhAZU2KSyQpNYKYGiD0UNuHAWmRNdwsYs1xgtAzt0USuVTxmjhYUPxe2YrvhlmB2gi4yMXvxtvXhe50luFq5FFyhVRcy7evEV6iXXsng4dKlNG12g2S4cAbq4V1QvjEmBAEWRgy8RIyt6pXSlRWO5fm6pL+tiL8lKE4ZUANMrud2V9KTMtdDFP6Srv5YVvUQVjmrR45fsCRZgwyJpwxM6H6kCYYa8DdFh9TiN3Vc3J/iyImDmxAuCI0feymTubahP7tzZvm5damaWXLs2ffHC6NBwZtMm3dvT0tBYk2pwZmdnLl0ZprSGE+kCkbVOidTk6AzUuTPYjOd87mXNih3U1lUThwMOgb0+nZvJDfTPBcQFRk0MyzS31TU2V129ODQzmaYsgUnDPJNhSEoLgUCUSdbUEsBD/CTgmiOlEbhVFLJAmHXCZu4wTHyhBnAhzSgsr4yFNhK4Rm3mtNYrk42u7G7BSJDgyOIF2V4QGuJT03NvHj37xFO7O9rrb93V1dLsDA2m+6/ODfaPTUznmhoTW7d2btnRWV1FBwdHRiemqdvgMO4mqIAAHRsenZbIAh8QmvWgo4Hn1TfUCAfYwiSklZHhwamhoXnNqyUUsUnOyLr2xvoafnx0cj7ja2Z6pANNMjm8CAG8pqHfCdZO1KEEgl+uFNA74cDBoLk8e9c9m373957cuat1oD/9lS/+9NkfnpBBwoIq5LILOVBJqFQUMYKF4OCGvSyYS0Cs6nC43QIydEBcSmCgUAtHHD/WN9A/tn1b577bNpkpmp6Wx4+NXhmYvTo4fQchPRvquroSVTV0YmpucGzazJ+kEPU11Q5gNDUzPRMAE67przOfptLT/rzXWF+fdLk3B/4jLtjo2HRfXz9hNVbnwHSho6Wqva1qfHxydHQC2Egd7qVJxpOhiw2gFWfwXSSfZ5E8oAaufxvxS8/qmZkAOeZdH6QR4AITCY5suwHAM0vLEdAwDl6w6Oi1QK7aEpxYBne7OQB6D1tToKh1nmG0UxQpW4BXAggtVt676cpWlOU4ZmGd0aEm4iInaX6LpIuDPF0Io0gekOmlOImRglHVBWtUHljqyP1IF0kW6QJYwqIYdkh6Fn6d6OjIqE0egia21BmiF8t+FoKxkB2S5d2fkfoWXbQL0WxhdmhauNJGerHRFRSBkyGJ4DJAuRJ0XvklLf6i2OJDy88QXUHHlhxe02UId5nL6/ovbTXOiqLdvo5zVYo1oxliVbqYA9mV6FrIp4hGYDFPRB23m+DD0nqRpYkeuBDkQphLSzE2kp2ZlHVV8rbbtje3tPSdGbp0YYjyxNHXL9yxv3vv/k1ulTM9ry5em8jMB0wwZLBGzVqpINuH+JwlObKcQV2/pFJi+q8BDAxYOjwvyGSDwN5pzlDvRRigbQ6FYihIf4gM2xTFUnymfA7UQVwJiLSwcOWycyqSdENmLAVkRRRXO6D30YgkqArNFHQJpAWZlpW4r8IEILrwuOpFIob2YyTfhox6gC22CiwjvYGhqXRGugn5vsfuNWN4+OWLo8Pp+Xny+huXHn9s9x137WxsTI2PaAM0/UDxBOSMRauBNmA0iDLzVSgiZHBVgFsPoBQ158hmsvPZecIkIw4GmEwfDOgkrsBFEsM8wCyPplbikhqxzmEmDrqztNIGZ0jkofdVurGBPfG+3R/72Ls2rG89f2bqy196+eln3pjNmdvi0gXIYF2CBQlYmHYUqZTTG5+mqNYHXZfh0Sw9MQshMVdSBQaYjo1ndhDywP23NTbXjwzOHTvWl/Gcc30jc2l/396tBn3Pz6hzfVPzOaUtiX/AQUQAK5cDUMsBaGnJjZkdI0R3oDJhplzOm53JMiIkMqqipAHgHg7qfaDIh4Sh+SJoK4sgzT1wpBWSDPOxNAsZPc3mwve0DMw8ZwaHaRaWdULIFQs1lJYhsLIwGEcTUihsxrxeg8cfGewZPGEg4QO7XYdzR3CDDBmnQoX0u5HIQ35RXDi3CGRBaJywxWGL5T6AMi8XxziizDuO1GwGYkoOlLAMJ6wgAEYVynzjF0jpAJ9dQnTBSqvBKJAItGKUNNJFVWG6n7IYWKFHNyxkZUDfSz1kXkVZN7glMlRWZajxDuDUt3BaocIj5IVSiVoHFLcDZocnrRoDoljbo4Bpq7YVkujmdUmtBqm2ezUllO0FPJwsxInUVk0EFDXGYKdJbGopx3sRMIJSA3DeMAMQD61Qw5Oj21qaqY+PLBpKpmlR7yMtEZlafkOXRuIK5Ml1gbm0LvNFaEeztfIdRH5fq/3J8mfkUS1uIbpafi1FL18VgHlagQOvmEOjXPC3kp6Q0s9akY7pvHosEvUpG/1hVpSBscgjADK2UYgnbmvbrOKZdQtELNzgjQAWdlwuzBcEc3Jz4u03h3p7N2/cuE44zutHLl+5OqSIOHTw6K99+M6udQ05pfr6Jk+cukpFUkPuSCZnNuTarFu55vYaB0iazGqmGxuruEOFI6anp4Osz4GUyVeQ++FATAqRnY+aKONj6YnRXEtjfZOBdd5AwkklXFLfwFi4TdRWrQb9WIzYjHXcc+PGHJ8gZdZApNiyefAa3ViBlQ208ALNy6KJW36OWegWbfdt4hFuCVS49mhbI8aQsxKjlpglRkwnnPGR4ML56Vtva9y0qYtRMTQ0NjYxl8nIQy+99dSTe3p6Gsw1nTo+dPnyOBfgHwoC6XmwkDCXtLXVXTxzjTOeFLyxKQGs4q4zMTHlB9JxGbWFjBqWaVgW0OFrlszB0cmJ2a62jobaBGG+ZxbNVIJU1TG7iqvQ6aQhhQ1sEaf2TWC59Hx/pnt9/a9/5F1PPbWvJpU6dPDyV77w/OGXrs2bm5aEIj5AbVIhvbwuUJ7WoVB06KyxDFn6BvGVzgdtEGNQK6EIETiIZaHwEc3meN+5mTtv0909bY5gl89OXbg46Pvk2NEL42O39/Q0mX6ODmXPnLoaZKmgXPpydi4XQJ0nb2iqcygcValcc2uzmxCum5gan/WyEgpPw1xw8yvL9I5JS0SNj2f7h9KNTcmurhYqz1MiqhJOdV0KnW2oQkDDolWclrB64QRFJULEdQqnJTCeKAMfQuloiAHaTLgoq10hOykcFDkTLC64YXyFuYeUhnzxZveDL8xTC560ALoTEBR/DJ02uui6IJYtk7SEr7dyfW/4G5DIp2IDrAAsoTdCA+MKhkpBPxI2WYqx0sexTS6USCNURNZaFQbVKFLWw63iWDaNtg+fA475msqy9sItlRz3TGhqAAeDWx6GCRzjmqAvTxu76eMG1QH2MIDSEhESR+YW3OphfgMqhDOLHXVIzYvCU3aaA3G/xM0i+pIt2VykzUtDVTMvEgHVqMgNvLZYecrxRHaTEISi7Ro7CchcWjFV4DiDTpjv+AZSS2O5mS1SpUV8iOWGt8wN1Qs2NSrzjlzcdBmj2xpRCGhm0YOOROyjfV5YHrKoi5VM1yiWU26G08qCRkWPQK/3wSlznLCOWaNMPRhsJHuBzZ7SkRM2tDc0VIuLvVhr7b4CGiEQrqPhkxctYzQfkUGjwLmBQ4cPHX/qA9vMbJ2ekxevTs+mPa7F8Pj80Eiupb3WZdz3/NMnLxOdMNDFdcS5C0N9l8e6u+rueWD3awevXugb7dxQ88sfeCCTldeGZocGR2XWLCqusTFBmCalbIU7yCMqcv7s1bnpvT1djbfdsfXl58/MZ0f33bN1zy2brD6No7kIOBPAqW354RH1cBY6U6T008Yk+7l56dUEJPCpsXI5z5uVvgeLgnA4rUWHWmDzswKtaOkIOUVvkgBvXojDqAV4TIvIaw/af9pm36MUMaYGIzcEXJRgqWuXp08cv3jX3R2w0g9nL16e9mE1kwNX05NTpKlJc0ZHR0evXh1xaAKXYn7q1PDoRHrDxsYH79t59vVLk5Ojt93d8+CD+0anvf6B6aHBSZTjIcyyQjHMq5cMdLYZy/nkrRMX73/vjs6exr23buw7ftDcr3vuvm3rtnXWBlFb/g9WXANtaWhYgW6S08xt+9p/+3cev/POrWate+nFt7759YOnjo+maqpTQmgWZHMy6/nmqjCExciCK2vRUxrKSN4ApQANaeZBsoWFU9LiOJRYAlV4dDZoV+aEwVJP/sK2luaqdFa9fXI4k5ZCsuH+mfGJYF03LE5ZJfsvT8gMJPlxg5DG0ifODm/f2X7vu3YeOXh+6OpES5v7xJN3pWpqzvVNXLg6FkiaMOCH6HAthqAdgGdkyNVH3z5/zwPb1m2ovWVvd0s9GxsZvfuBzXfdtydLQt8jgniDXi2Fu03Jx8dNYRoWQWchOkJQtlpGqkNY3ork6SDgbcN4koYy3qgmTm5YgQg8oBSVyqzSK42eHBDywQA78IuGazGqAeQpuBbZc3Do3aQEBgtWoO4CN+vo1wZQCriKhf5LWwIgVz4ay6cxUVQ2NRcJnm9FAgWqkwJ3Q/AGvItFI8jpL5QSnAOnrESZVKLQoWUsD8SoA+vfgn0oxSc/cmLDXgWsGIdeU2SMhcwFZEKmUcWDOZlkGGcXyDRjSWOsfhjm7gEuVIj1QBcKcBjeLlCwt4FZHV2YTafU4e+BhdB0DFS60T0Jlp2BAhamGHDqaQJiB7a4B0kEzV8HshrB2aboGifjcJJ/Yhf7uuhNmjkUdY1JATFx0TP+XGQdwXYfdxA2+sMsRTOJ6pIi5VkaJ2CtObwK1yq6gKYwMkIL8yi1pZlycr53ZWBoNqvrqtnw8OzpkyNUwk49PRu89nrfjl3N5rGdHs9Oj2WYrAFRXeGefOvS88+d/8Rv3Xv/u3e4btW1oYkNvTW33751cjL36qEzZ073C5pQyoCrhAIFNszHAwMhEOLJvjMDp473d66rfeL9+xo6amdm5vbd2rNpS0cOuAU0apUYS+CghA7YeeuygkU9yLZ1Vf3Gxz/Q1sH8wGuuq1q/oUoyde+713f3/IovVSDJc8+dffnZ814grKactrao7PPOlz7EoSpdNDcpC+WqmfWomZfADYE02WDxGE+n5/r7xyUO8tX+yb6+YQNGBXeHBuePvXX5oYc2mI6NjM7MzWQZq1XAmKoPvXjqzYf3Pfz45l/4pf2tHXUzU5mdezq6ezuGR7xnv390ZGje4DYq0wEugKgepzAmikFARY6/deXsqcn6u9Z97F+9d/eeTeZb++7e0NZRk817JXDjrcIFCgy0WdKln928vek//OEH9t/erTySy5He7uZf+/C7NXPMTDAjFfj6hZ9eeeZ7r2ZzAQ0jLxDXonkTirsh2EeG6JTeWA5WxNse5eMqgIY43nZvEO7V6IVL/XNzWQBYs/LN1y5omRBMzsx4bx/v33NLq7nOa1enJybn0KQIysTwtdlnnn592/Yn3vXQjlQqMXBtqqOz6va7ts7Ns+d+dOzihTHBXK1zzCBywlQYB8X0P0DQzvFjly+dn+zqqrrvvi3/6T//6sTY7O5bO3fs7kx7WSnBXyukWTqJNOuzdT4AMrNwBJd02NJwM6QA3zgjhVoCFMO11ltqKcZsJQOyaoGg4VqsDdzKTYfLL7MRFQYxT8ALmOSIXLyhu6t4E/rmRBas5fHsJhwjzlhtDmMPkTPAOuBcRCCoy+WrRKUvMPgYWla4HwuYRIeSubcQZJwevTI3MWD2bb5E/XhQ6QJVLUylE6SmsbVjI+Uu5Cko5ehQusDcMoGa7hq3qjoiaQGdUzwvhOcsxZhlxMe4jvnr48PHQ38m44r7mFKqUTucQYUpSm3BRRtoBxjYQJ+AA9ySGG4E7xe6cC37B+6VwVXmoOMGNyUKwTnXgblqb2ryCk2n4ZLM9+saqpq6AuZwrT2zx6RWyMxWqoLyOdNrRBNsJ1hI3aaWRdP0skSwtVGGt9JWxYLoizP3qPrn7LWxeu3mbiLnYSh2oqKcPLx6DHoz3DjGcoRr3NRC/hAmu9qNbMizQ0MyJ2LzMwjnbGIyd/Lk6P797em57JW+UZmDBN70nDzy2tlffGqvVu7bb1wJchDvwDgZM8vb1/72Jx0tTQ+9d8uDj2wxh8wGZPDy7BtH+r77DwfnZ1EKGvBQKpcxx9cywByUsBrNGR2e/eY/HGxqrd+5t+vJJ3cbizGf9oeG5xNVKT8XMk/b1BbMRwKriaVW1JN+qoo/9OiedR0OECiaParZpErVva55Y2+L+cbsPD17bvplftqYbyTaRocPI2HCSbkkRjDxNmZNwmR2VIWzmuU6VCKWof+bYawQiS7CBYNfuTJ9+fJMd2ft9PTctUsjgU+FkxgZnnr9tZP3P7Dh2rX0qdMjkKYB2VuSMT49kf3MX/ygrv6Xd+1rfeypW01fp9Jq4Nr8M08feenHx6XvUtCtSwS+k84oz4MFG05o40eaXr089c2vH6qpemTbrvoPfOg2X5GZWa//WrqhqUZ5XCjhQ3cVykJjRAok+JgBvQ21VV1tjbkMHIZzsXFTz+ZtJO8mSKfJ+QsZoFVVWMeJATQWhp2i5FoEI7hb5+WWv0qWWm0dLpi3FBK4QgyAhkJB2sYezPxNz3hmeLu6mtKZzLnT13JZSpJsZib75pHTv/DkLsact9+6PD0zz4VjBsrcn2yOP/OdN3q6W973xP53PbTdrJ45RfqveYd+evwH33ktO2NugWtuqx+ITMZ8mWEqT2DDe4JVz4zNf/VLzzU0Prl7T8v7Ht9hujo1GwwOps1N9bOM2HIKSJExRkxYOgkzSyAln3AViGxGu2Y59AVkisP0FeYO+pL4Pqx0uBKG1YdWbjJy5nNi5VtvGMGERQjI76xsEnWUNgAxSvyCCyqJygdAw2ixCI5gN2eJMkuftEx1YQ5+eLdd6JOUHgSnFRN+Qd5UaU99iFE5ij5A/BH9XphfCiwursy9+cO/+8m3PqNBlwqcrszmNmn7VCc69773N//gj5N1bTkDl6G8NswPcCIUHCX+SDwuTSDyQ4QqZXhyc98kxzNaCXhwRIF7DjnSdKgNifcZjUbI8wq5GgwQmDFWynrbNSYQ2qkEnvIA7J6PeDiBmzyfWtcxFgZrUuPQqaErf/snnx4/9SrHPKt1dz7y0U/9caq6PfDhORKY4OBAiFNDIQysu2uUDaUjP/bSiH8+QhXtUGVY7L0my7xQlfXsn3dMTNu0GYE4S/IQNcMiIaAEimOFMMagbWZLHCJcW3zL8wifhnkeCLpCNd0wswaV9cwD7CbGhjOf++xPXr1140D/yOC16Yiv2z17YuYv/uxISjiHD54mykVqRAnbMpWYHPD+x//5jSOv7L3z3s31jXR8NDhy6MzhgyemJo3dTMKSzvjAtdmvfemEwUVXLk4T7hhEBFkxyjzvVW+9fu1P/sc33/PwPQYf+EHw2qGL48Mzm7ZumpxMz8zBHpFjPgJsuhjLpwE7Ijkz7n/mT3/S2l4X6CyCdYFMSkjrA6KHzttvDATSUSCj5zHqgqNfaqzZKjPHACwAJYDKByzykYzCvRezYAO+h9lXNvPZdDDhVJ85MfjZP/9pT1fH2TPXZqYD4MwGZOAceumqw1+dm8kce6OfOq6iPnjMlMN0wvzkP/7RFx565M79t3W7CXX1SvblF4699dpZL+tgHwyCZK+/elkGYmBwcGra4ywJqbbMRx0e8dILb5vhevChfb0bk3PTwaGXzmUz3pZtm86eGpJYU4A5ODQMtMGGJtBJcWkg8+d/eaS5JUW0T9C/TGydgAZR7kCyUydAi9oyqkfgChODWFS7YxY/hX7RG86rgGUWSikRB8LY8/waHLLHIyM542R8IveVLx0+dnTQYNbRkazBhmaCmX4fPzr+13/+ppt0Dh0+N5+2Et8AeykXU6Ppv/jTZ8xP7r5vW10DmZogr71y4fBLxybHfQLJPrA8Xjo/+rdfeM3L+cODs4y7mFWizaEdkTp7evj//q//8OAjt++6pU1J8uqh84MDI5u3b0rPeRMzUgpQEdTIgmEHSOLyaYZpYHD2K397VAhxtX8c/IKYsffi81fGh9npE1cEr7IBJ9z+o2OWS1g1cMVkcm38CzRMm7OTHiAUIzZpMPLQYGIGQD+pdQkNRPrfnvFujn0yewBwFprHlNBQ61wwf3ro0unXD2fGR926xp17D7St3+ZDwHZFtwbDaKOP0B+KQiTkXZnRFAnNqtT8D7/xZz9++nMk8M2TkJsbz81Pc8etqe9QzNzvROet7/nYpz6dqm/NQs4e2EQ7PpAhANYRo+DwJKLHGsAPiQS5goBhnA+4UKQrMamA8ADeB2DoQOo+gUSuUK3APkyYsKCx0BkqL4iZIBlGfLNb0Rx91T7Xni1tNPbLWBrPzA9pAJYw9swP60ElhgK4gcCXTrzy7b/8z3NjF+anx7KZyU33PPnb/9ufJWrWmc1VYH1mxBwFS1d5IG2CqiZrU1mGdQB6IT7H8mwbmM4fLiN2U8/WMv+FFhBQFH7w88RHgDVjeMnZah7cta3uzME3//iPvuQ4rWbmG5MvjYGCRZ9zHRO8r/UWkdliFCr9+aZW5w8//bHLl07/P//XdxNuJ0YPIJ2WYwKRrVDRULcjqfAhQBckjW1QuNLg4xgIMMQgpGxd+7AmUkjikNKstOYhN/t+H7JUfaGkQ0VCYeYCuoQCiA/CNodLIqQV+6ZAhM4giTprtpgMt/TaEwR+SzDCDjQDlFqCD4wbYEYVtRSi4CYwWz+JiawMrRADLUB0sDBldsFJSGfgEr37AqoUdVRcUXJHjTaZQXoKw2J2Mw6KY9jHbBq92d17ev/tH37oS1/6+nPPnEmlWgA4mZ0uWBeMwqHODQXCr3lOHTTSUSoNbDR8DF8ITOTVSgSYqJ7ATYdUMmuMJHUhc4QoHuQ4ZG0IZFcNIwlmDKWvza+STBnkKhgzK4WnkE0AYhGOQopKrTyXSmHMOrxtBoFanV+MfGlMjrX8F8buEjgCZv+i1bd1e5TYjFzcF7ngE1C4VbZLdEGld5T6vAb7IrSJfk29+t1PfXRoePhLX/ie8qsAbmlrmDXySWFVHkScfUhmgj5VSaBgBzkdHtiAicQy1IR1fGpY1jCHB+5RIFwpETiZvZ6UjHNHYjIz3G4KQR1wtUPGjYPEWLbqC6suzQR2lMAKr8CjQCDhqgCWjhSGXrBeS9tKVon+CY7p7+ZZmceNY1IFLngPuFlrs6YnCkr4EkoJzEWF/QMiCFCftpt/rvja+YmUwggC8+cfeuz2j//BI69fmx9LJwVJoW1QKEmkLA9WUT+RSN0sqRyWxGGzwQuFsGX02sXvf+m/vvnC94LMNE/UnLz1wV/5nU93b9vnVxBwRDzDkbEe7itKVENRiBuQBEne/8gHd+y7kwErn/fiD7/2/Lc+v3nPgV/66O/RVL2xYE5jW01To8F3tY5VHgl3oAKjjMYo4hNALeUMJo6Ddx7TLhwSelrhKeKQu475koQFUGutnQB2SVks2zQfwKRD8hm81xQT3CDj3vw4yYhneerMzZqbPfjs309NTe7Z/8Cu/XdltHJhVwrfN49BgoWp+xwLLQShvRu2/fq//o91Ivf0V//yp89+NcmTNYmEU8V92GjYWW7MC9xen/EAg8UiH9BbA7QT+l/zR4zUnnj+AWdkDYmY0EDZQDstRwD285AIFNZMaidFqHBwu0SBZS9yvWqr4UBigLX2g49hnAUeOm2TecP1EfeyzBIi4k0hnMNuzBccNYx5RH4I+MaYKIkODgc4mSLOFix7Eo5ZKmTOAec+5HYIIqxvx3KCGrPJgScIqRZsqjTsqsCeI5KhycBDD7ZBNhq8+UqG+VIKk/Zs9m3eSa+sOwOyKhjEEpTN3bHlzhzDHlgojwxONi2GReXDkpSPNFjpXSoxz5Tbah7YtdowlYIk9yiMiEVLmhby5JlVP6xmSQaYR0Kt9CaxUM2MkmaY2YzDZmkpsd4bojMpiBjkpKVHZdTB+h/Iy8Bib0bM7jUArx9oExOrLmdOwW2hnVkE/RyOi4F4OkkN4FXzABFsBanO++XzKw8CZNMlyW3BEs4HpNggtmI+r68Na5aNMVkMumDAGFkTdLUQJWQq72TNT19ib2M4khqTVgwgdSB+ZGu6sIoJQriBgL1/WIMVBm4BPEIKqDALlJfF0Ii9L8LAcaha43jLlXIgZwvcHcxynoc1ORoOSWnC4Cnf1/YXwhwykJBzTFyzqbAJ2OiDYugggqRqBxATV0ECva7Ilor3R2qXIiubr22eFabF5f2D1ApdU7lmiIZG23yFxCmSOjqVdJJaQD0HIrtQQLH0Wity3s2ID2LpHCad+RAmg91cUgevvfC9I899jQQZCDzlJs68+b1nv9v9gd/awpJ1Si14sdjSNQYeM4ETRPLIS41+W47ZBYHmVc0bNrStB5zB5k69cQjgXV1H944HnFSTLT0OPMI8cB5CLhRmCADNvrmdCBgCipx7SK5nxtPD5zoAbOgYeyDs6agldrChTg7RSAoqkGam+BItC2wM0fevcEoriRwQcAcEYmHrBxKMp2dmDz79lcErFx1es33P3R70CitrFNi9ULfCwEcFkM6gT6emvae2qaE6qG75vg3ambsW5EjOepNACoOrcGOlfYaZFqoEol79rcScfWsQWainZdP9ljzjbK0yovDRxLhjVOScZ5KmC9nFPw9OlNA0wuomzOZehvEELFgG0A/RohDshlSGdKFmexEgXUYHHAZ6bdW4JiHjiF38kUMiPI5exF+k6YLhib4cnZKFNACLX+riPSk4Ap4dt4EslGUp2ROyrPM2RLJiT3Se046GpDWq6LWEjN1hT/CRDen7cBsRTkNMGNB5uVdgWrd5xlAyBxbD7KFsjifDbAGsY8NsAm1/wzBCFi5vFHdhmJYJtxp1OULWdQuNsJjZPngozBKVLFtvFubdgFHA7AbY1lEsibB8npEMnoUr6BBFkEKQ0chWR0ImAwRnOPQRuU3DvA3L3YD+eBVx0hTMCkoXv2R5KgbrK7MqPWGBGLr3Qg5MpUPSbobcBzZgEISJ2pDCCoCMy1CcALgRoHgJTyKZzfSnlrSK2OGy2juQfQMBAzNeAbKDhclHeLEgXWwL3dBOh0Ef5OE0FyaAWwzwr0LdXg7UX+DuwVpty7Ea1pAjvQCiAVCjQ3ttk7Cp5SaHGiutgT4CzxDCgDCiZHOICbPl9WFiiVr8rIWjqgueFFUw28Pk7pD61c5srIIJoRGgaIkk7lYqm5JISNIOFEAbCpEYXAWpzd83w+tC8lSYUYgpwdo6R6QdNKzZA2RMMMOFhfYfNxpYnIU8YvChoiHmCdkXkI7VovxAM4QpyqzbrjFp9gCSsDAWCwwAmMgMQ23+lwx5/zCgjN4z5DICvxGGb0kUwsWiQiz4QhciepeLWbAFI2CNBlmwCUXshmU+g0oRYMHillEq5wWe5yhig8YU5/NSG7sIYPmyqDSNXqUDpGA+wOMKydpY4kd8h+UkzEA5NzNyuc+gKyzpgFRxFWRHL56am0un3HqF3Ci2xpgsaFNbmgDzxMAxYdhUxEsDUotI06LA8wu2EG4fr6HI0YdTPQ05kgwptzBiJ1jSoZ5v8DRS6WH5pzaAhGFNI5BPwe1EYjHNk4jnclpiGjEkYJm9Jbe+Ys6k4/kG3zCfw96MWVe4lSvRBuSZbwbEsdlQrsFPviIeSmK6mqQETRgI7k/52TGiZxNcZ6VZPHkOwRhw46GlFYiuAluDAEaaJx00BkjLISXQnvkaEykRY/uYhesjlwiCayIXAayiJEzlb2W0otokf2UZ4JglxglvUpQKxS0spGuwFbMOLJtGhrm5dldUWEHIFumarU4qJ0+IVVSWh5R9qZd59Zek/Fc2qksPWLIntm5Go/sCyNikLRoEXiQ09FjeiiyQSufpwRYxs5baXi0Mp46qz/FZKyRMWVxzTBdn0dM82s0fIUpayCfcUKqX9oQuPn6BDotdimheppUt2kUuuRa6mOstwvplelI4poU/WXwtNNxOLPSEWZwLK7pgoFqDDwGaKch+tnddoenAKAfUSJuvYT4S0bhxChljkVNHCesPwcWaKSSGLEgC1dbKI/eDdR5Q6y63PzGGkFuQo7BcmlgSAZoXQ9Oo7Q84ycIKLPOxxKHWlUFRXBlPKBEeIA0i5pgaZMK1TVtiUXql1lEdZd6HXTArlrzEvDVFwg0YOknw8pR1o6E2IoYdoGdQ9RNWGlqmeBVyukmLfi2UodRSz2OoKRwnhhzaIQZh1idELbs9rvPIY0KtkgoiGuwDgCaJAtbosGEh1ynUQhFJIvIkG+ZTOs8IA/9m0XwQkI6BFeosJMBHKoSo7/8fe28CZldxpQnGcu/bcl+UKWVKSim1oR0khIRWdmwDxjS2ywa7sF3L1FS13e7q6Zn5vpnunm++/qq6v+5qu7qr3GO73LYLXAYbG9sYg8GAhITQvoEW0IKEdilXKZf33r0RMXFOxL3vvpfvZaZQKjNxZxZW5fpe3LhxI/5zzn/+30hUSBP8SBqofLLQfiiMAqwaq8otfjJgVgc+KYH7R9A1rHJ/gncYOt2AYazMbADbGEeCygXAq6JY8QRIio3JZsPGXjC4dGkVa4FHR7HxwPhxhzLhtpJjWHbB4BkuTssExzVPMNBGjyErIuXjRDKFmQoAc4pZBTDTi4+90cw0k0EqzERlAKaNPq4dJ44RBRmAPKbM9mIUwbFMhF1nsDQ4gsQBm2HeJjBgTyjcN3DRIssVAAHFoirCWI38PXwSc0pGgFJVnmpR7lxwuBqYqBzyO0UFFXMfPMSAmHt2cJq46/JUGbGNqVZlkSbKOQe7HmnuSqEDDTVpTWOvDSA6V0PCDhTIGek9DbJNeg25oQ4LPAMGL/sc+jRgrb139GD76WMt02Y0ti5iFHwV9HzFqHf86MG6uum19Y39EjpTYkR2XT5z4J1d9ZObZrTekoglQQdU9Xxw/J1TRw/2tV10Y2WTJs+ePffm1KSpfWhGoYMtbsA6pFPFhbPHTh7f037xpK9EbcPM1tlLG5pbszyufyuT7j94ZP/5I1u6e9oIzZw+vmvzyz+uapzb0LpIz4NRLCESlZyp0VijzHijCGw8NK18KH3q2KqFrdBRwxUlyO4gtjhBS95NMsz7i9DV6klgIQoiOdO2yEiowZTbQwacp6X8+4qKc9q+eI41DGxFIWF7M83J4EehFR1KNXRIYarrnKJBUsRDlgCG+BNpTHIYRpM6kIKboE/Qfkp7iIqrwDCVSjUi7QWjX2Tkpd+djt3AcuGFzeJkie9yE9QLjzhpgqkqfBj1I6uPDeEafzIEB5B7hoNYB3YyUISCfAIgJdT/wx2dIcNB2vwHHB/E6nESlGU3gTFkC5TRFUeAJQLlI3hGELwIPBHhDIXeW9jTOCATSNK4SMuFsMvoElLcSg3fwaaaEH4hkIHCnjDYDfAPZnrgr1Bg0wgRDUN2XFkXCixg6F2Z+mYdM2i89lAb2acyw4Bcb9rAgjWM1S0FXYvwxhCNUt/0iYHMpzQiEcqygrDeoVCBAJEHxyyoMPAG0aaVoObKpFs4pk9QXdR6eqD+gqRGTxWbmgIUg8kwazxoHEBpQHMENjMWv6ADghkEJnHmYSEoGjWIRrFPFtnuwrjOaAqg4CEBhu51rnB8AR9DXOhZp/C5h7KdCirOpoymDBwJ2sXQPIBB0QYSQ2gOThD+4FwTU/gWeEHcdOmhybx+OW7VN63aFOYXgyyQ1U3QoQiGgRzuog4EfFzTQSwGd9ejysM2NWvRbMdm1EQxv4vJWPMVdqYyk8/kRhMLNDYK+CpI0cOCon5apOG+0eulHytrGKWXouzVY0bpLcf0oipMauK6RI15VdRbljhlKVUsdzUw1Cb5f6kGhO+0IKmAkYoJpQC1xlKJZbfdcXj7K21n3vGwNa2iZsaq9Z9saKgCSbGY4gZeqULCDbUtx6H4vX3SsDxoXbStTA2I+saIG9Nvzt1YKuWQMuYKElckzknvpVPPfe+vZs2d97V/87dO2SRPqqRLT584/vzT33j4oa+0tjQydCB3s5lXNj33/I9/9MgX/3TlomWxBLna1bbxd8++9usfXXz/XeL36uuJVTQsWLbm45/98syla7Msri9PP3kJvSaz6T3bXvvNc9997/AO2d8NQ3WrZ81fcu8jn7v5jodkqqa3v2fbSz/Z9co/Ek//VO3b8sL+bVvXfvyLn50z262o1Ducg8+o1Yk2UanNGRGW4mBZTkiMJVMJJ1auoMtaGfhvK0r62eICcz8056VY+jYVHOpqAJdcsdBJGKYbFfWtY4RkoW3piNbrjIAP46aLAYXzDdu3yCWQAZ8MslZJiaRXqVcgxd6oqE/OMGd14PM1xEhwYWPfoKQp0PcmtfWJxcsaHaeKAR3BuOgY7ZcJlYaRrs/ioQKHiZ+qqCyrriaNmbKblze4sQqjkkGN5QviW9D+pCbVboo3zFKeAGGYLzFLJ43Km5KhbRiE7ehRA/URX5k/VowEVSRjYhHIBBh1A5NbUgiaoAGHI3NdMIG5fKgoxiSSHwy33ShOm6QLUsKwec3BqFZSyxXjIR0Dw1h0eQOmjflNZLgTNWQfizS4yZok+5BoM0ojfqZ1ZkV5pZrZWrNsWUMsUUmUDZnCwB8DN2pKn4b4gjKTCn1uqEQ0rvGigyZCSOTHYhdBpQOMwIPEmxE+kIbPwaRj4RczWTCUk0OpcRO4U2v2yQP1DWl7HOBHyBYzDjQgee8IED+UppHcpEdsjEtNGY1Y7hYztniM5LZIFdmLuEFu+GvyOruDcBJFMkknNYDC2sLFdULEAvcWm7Ng1lIPuyEwB27oNkYdQaIwkfGhdjGeRhqTYLYayQKAyAJ3DYX2JZZdEzgsKuPKR22jF6ZxATQJRPlmVWCwoUyDlKkUm6ZDxgy9lJmuB2bsyk0l1GYGzSsQrqJhNrWqyzJI4mLVlY5IwGkwJQZOQspEy8zyeIwmU7wcS79WcszmQs0NL3IuOFlP3BCKu4nMJAiHwCyjk9Hsxbc/8Pi/fut3P+ntvhBPVt6y7pMr1n7cg843vQXAVgQ9yLSIcIS1LZVGPspoGfgSOuaYfn6Y4Mg2BCJjlnmm/C196WcFSKAh2dJjYt7ihc2T69/bs2nnlpfW3PtZ3wPxqr27Xj2x46W3G6YtWLpMpcp00HT+1KE3XniyrioxZ/4i13GyVy//5tnvvvTsd/xsuvWmpQ1TZ2V6rpw/eXDfpl90d575zJ/9P9MX3J4hPAtJ2vTBrb99+rv/8cL549NmtNa23BlzEhdOvHv8wNbL545kfH/NvY9lhGpumtY1b9EHx/dm+3tr65vqmmZXT54MmfqMtAVrYrL42BasTKwBaxhInHBlji9JVg80K4XwsPJATUodAlChYhJjAUrUSBy5QRoU3qan5+qlyxcy2X7I74dGW5RFWJU0whuQzDq2GY5LwZcGumF9K8ewMa0GhhdA62rqGyZNgh1ShOwEGild0v8ZeNbYn4y2alwvwMSyZa1/9dd/CkS+/Gy2mkBXN2L2AxtSzll1TfUCWb5s+TRiZKUjEbRSNCdZEgjoBH4KMqwjkCAQUjT4A2qzv0FWRaGInfUJwZwAet2YAq7hUknzymgNYvUZc6wyc9pgAxd6VVCTIlK2mczYsdpjKFcVC0/NgHgelKQsH4WqXBRFhzdxNrMdXrz+v0Tcra1JfeEP73r40VUM+2NwULa/XeWJ5dLA7xVp99YEKvBJUwGYoiTAo5SEHrK52xLKUBqdJDnAOEEVnjE0z28/9FMPkl7Y1WDwrlJh2dS0iQbTRIJrjxrmRsdGoqUoRdX1p2jN9DJOq6qrhD/p9lVTrYB3hBhCc/ZiWF+lFh9wAyYxRWjI8NwKmFn0T3OlL5VLF5mMkwzWNw0Ne4N3YSTyKoamZfN6kVqoUgFOCl809LwjkcdG5RYFJQUFN6ryo1UV4ZDQEWgeUKYKDOMqK0t6ZU423S081N9EIr9RwrOKkSVI7jeoi1AhBwia4KQNw5XjVi7d8OmZSzb09nSmysurakFGIZOxNVDkC7ABziGwegQzkjPUlcYkBxC35wIRISYc7GWAPmcPWvSEFCbVLQGygIcDdN1ITuK1U27/2GdP/M3Bra88P3/J+rL6lrOnj+3dupFkO9/Z+fr6ez7VMO/WtN/z2su/7rr4wbpHnqibN79DqLe3bXrtl09JL/vwY3++5uNfSFY0cJk9e2Lvj//Hfzq6d8vGXzzz6UlzZOVk4qiLZ47+6uffuXDm8PoHPn3/Z/+ibFKrhn89F97/1dN/t/2lf/rN099rmrpo5pxl93zyK8tvW/P//dUfn/vg+LK7PvuJz/5ZhpZ7vNz34C5CIGziCYT0pk0Dk+GgFwEZKqIyNNsn/BiwrhwXg0QPM/i+aWAU8KdyhACWIQIBNY2R0x1dm3ft6bjSAal5RjIEukfC8EsRGRFfp4Evc8CyLf1lgceLvl8JBVpl9dV1a29bObVpKsFeWKbsWRB56NlgBTn10T/hLbcZDl5f+b6UVZVlk6rL1ES6agzuhr4dbm1t+XhaH2NT2L2elECqrKaR1IzU5U88BYXAlsTr68s/6mupdE5vjO/52X7Pz/p+Wpn2QaN8yRQbJJ3h8BtjxK+waZUZE1FmKGlY7+WxqknNlZOarAOFCtFm6BsjBxJrjPgSt/UyaXLuDiZ7AgsGaRzUUWCfm7wKJIKZaZaAcM/x3SUr7nxz4S9Pvb3ryN7N6z425ex7u84d3EOI23npxMHdm6bPXnzp9NEDr79U3zB95R0fSyRTfVe6D+1/62rHyalTZ6e4em/fGxnBsUOnd/KU+mMH6Km3t3afOVa/sE7P8ZF33z13/J1UdbK8Jn70vd3iyBEiRNz1qmriyerKiyf2Hz381vQ58+Pl5YmKOpDvI9xJpMqrG0g2JkA+UKAWBfIxTf0XM9uY8+cxSl2m8VaGEOFASw2QRiVS/4FZCrVYME/Uk+Qga80LIf913ke8dULaALxbpS8rrzxW5jHeC7ZqFuUEfgBKXN8bZgkpQyE34XkdHZe8HdvuWLmypbmF+6a1CRC4MP1cBHEHCTu8rClyhOHF6Ed9wzTBE9DbBerDwFPgY5+FY0sbxtlN5ZHCCwEmjcZ3dAyugn4UD0qlonNnmSwkt6hopBueWGINzR10JEgKBVYU0XuClcFAk78wIlBBBibM7BrPeJPzMvt6SDyOmobiu5ginf0JLXICkxJl6eB9I4tIXS/6U5GZZFTabjzKBgmCjPm+tL17BUkgQgOdYxXEasp2eUbDLJv/kpRQNfCRCEmcjET7VrDgE+m6J0G+JBe92bemuWGES0GyPKY6Ke5CoUJFzRsR/mFGSFrVEENzDicn1I/PQSkaLmIZXi4xnsmWwo4lu6B4oEoUOIJmvIBfpsJcjjQOcgV9N6XAHcl7HZlLbrHwxkWMsZmiJCIEPHC/G6EP85bK9kaZiWHGhQBSPbY7k5UWaHSSST4q+xWzLLoR268NbyBk5sQUtqPEoccP2lKow5yUw8sc8ClF0XaXkorJM+57+A++8+83v7170/wli4/ueT2T7l9290Nnj+w/tHfTPZ/49Ntv/vZK25lVDz42f/Fq14mn0xcvXTyrQczltkvPPfNj0PQ0TDy9bIVHZKy/3+vsutyadIiQl8+fzWYyJJt57flfS/oyUSBbhGqF2f60HlHq7KXzgmTKyip4nIOjqka3nLsxlqBY8mc2QWp3cuzG8Tkz9zYpeCLOWAyuN8b05zyRpBJoAQrKdQCw0FkD5HVRGIKOTBUN+6o1LAa12LhLOZM8xqtqa914edbWJeHtYsqS30fkXNPX7KX729ovH+u+zLe/lVjtzJw2HTt9WRoF/2C3RtkMgwDRb8hqJpqKI5OUBY+d+IhWE80OzvBIcmjcUdxlXZ09bW2XFUiySWb02yn61OVcuW3tggYJP9twBfNAjf0ZHZEYMzS3L9V9rAKpWKpKbLHKMlFogSpuCWGH0Y+jkYjFUBuhcXKjfrrb2tqwu8PwbYLzKfQ1YJGTNOxYJZETTeYuTtISLnQyv4tMRb5DSe48jEQSZuWbggu1SlHE+urQvPM9pFwN/b4fcm8Whh8bJrVtmZWqWCzW0FDf0dHd09uLkke0EHuQwgEoFbBLI/bmZtnT618R0dtkN56Apl7qcZRICEMWS1DttWtA0Ov2FLyeS9EnAef1dTVe1u/o7sT1wCwcp4E/IaFRzG0oQyzwIAkfYmoFcoZ3OSVuXAF4osNJx5CAEVcI/2Vuc7CNBaM6sYpYK+qy8ipZU5FIJjIaW8Bx4xjBLSYHu0Innf1onT6DdRfh0SsFdsP4UvZlBVDA8Ecett86Dp25+LbWW9Yc3LX99Uk1+7e90jx7wYOf/bNf/fjbx/btfelX/7jnzd+VV1esufvBrExmMySdET4IhbGpc5fUTV3UK8H6UChQS49RGpPcT5T1VUzqFop56Z7sVSm95qnzps1dlWVcOkxh/wTDX+5XvG7qkt4Ml3HZL4xfL0it+FkpPAn9HxRNrA3nA7uM9OeeD/I2HAwswKrMR8KpRnZ9wDCD/AZ6QtMM6o26GCJmjYY/HZnKr2GYCAHuQ74nGOj9Uddx466r59qjGtHCfi2KyK4X7aoo9WUuzjEShSnHradE49qjnZfIjs13ytubG5so6NW4Ingg0bGARbkvyjBkix3iH1GIZQqvDGTb9Cpx9Xro7uqhzEHpaPNkG3ZqAeM+DL5VLtuSR1OgAxo5h2OkrXJutZQUewVVkDMrlS4pDBJpqbdWg/aBDnItBT8iJfpYi76RyvF4sIeIc6euzs9kst3dPTp+i+7xymYvSo1hSO0PUvq5oIP+qEQeIAocQlZRyXYKWmIaP9QKCWyEAt6NJecYfdNkKun7pL+/v7v7qo4rS9Smhrxrw1khahjXQoq97HCyrSSCo2mJ/rDhzOpwLm3gFRV/QRCC4qS6siqd9a5e6Qtyqka0kRbcl2G0eJMSCnrD3NLJoGt++LnscOSRNCYdzuCHzIsPd22ogEYI8QpPxSppxhPZjKc4w94Li1Cxe6B4wcTx1e+JZqPtSQHIiR6pRGhQ5aLiu0+RLqw0XiGJuim33f3IM9/8f1/9+ZPp/p5V9z3RNHvVkpWnDu/e+cLP/kFk/VX3f7pl1pJeH1ZmLFlRO6nxBBFzblrwz/7wX8nUpIyHfR+u4ul+V4h0ItHLYv2ClhE6qWEydZzG5umPfenPyhumZqBVA7TouEjTbJq55X0E3Am8LCoZY2TqKVDt8oX1Y5TQGaSUkYxHSO+h3ILAju+0lEYgzwNbQ+ysFdhOzTR8pI40ZUHUmCHGm5aOyKyamEa/o48xDxYiwejHQ3Ey30C5QI6u2EFIh/el/RDBqZAqr2yi5GzbxX2XL/h73lq/7LaWyTPB5MMmuk09UIU1l1y+IFIKMUhWUsI+kggLAbqeZwnOEMAtBFlj/T8EWKZBOprHze0dMiTdkpzRUShhWGrfvJa6Hh2LkmnxY2CYAKsorCkJsKgxcKFA6US9dZhqjQwwQZ73V6wk+rkm2DqcayFRuFzslUMZUp6rq5Q85wa5/A8FsEwTS46UjLKxJsEjfQdsY8H30OExxnmuIFocYJHS6/P6AVaJl70G2Ud63aDkmkrkQ8AaijYjoBcA7deOCs5DzmiRBaOGHwCMBMCiH5YMYJoZBkrpqREEWHSIS4MmQmVa6DnoToAQhpAm20lRm1O5xluAFm80ciiVvw/wyohrgYxx0CKLSrvMqNOCaD9MmecL7iRn37x61pKbj+36VeO0ZUtW3KV4xezFq6fMvOnkgZcrJs1be9+jxC0X2IKSqKycuWDx7o1Vu998bfbC1QtvvTcZr9THWm+6Y/eWVy+dOrHs3gdrp9+kwLw1Pmfu0ropsw7t37tj62u33/1QrKJB8ISOKA7u33Zoz45lt907d+F6n9Cg7QV6p62IhhEvRCUQh6ADmrkeYgRMkRhgZBvMvQcJOSwCohYMZn0UmvAYobWgnn79p6BVyoN/OPSCMx89qG2O3OoVAhaUoQLMdZ+7RjoY9emYBriTJpFz7RcOXDzn7XrrruWsdcosUAeUUkV0O6xWchiG0sKtjn00q4SmvMZA5QQgovHrDXT1SSA2N1DITpIcWSGC1ZRpkI6exCTCdyyV5imRYBjObomBTT7gZh8aW0VaxAswR9FrUfnFOTKgmDEw31DkGMbIBwU4jcm7otZKMIp1Cgc2HBG4oqmOwQFWJKyP1k3sK0RJeDyop5DSWZOBSUE6jJGUnEbkJLFcztKQNyNMGtT+4tgZa/LrqrT+3CCH39AjGepaBv5OwZJWpYsnUZeEQTSHhzOrpMQtLoo1B4M1FFtNQSYWtULxycduL2O3i6s4n8tGh6dKOOTDNXhyLpwxmc8lKFWDUvncCDog5UZy379mhcWBs1p0MUR7Fg27gqFrJ7b2Yw8/MAiRzYOENdTLN2JKJbjsTuyjGdsXfwKM2ibsLBp+uBxLKYAFAkl7B4WU6yc3L799/YkDO6ctvH367AVK+NX1TfNvW3vy4FtL1t43uXURWCb52AjtOMvWfez4ge17fvfsj/7u/5618BeLF95Omfv2sZ0Ht7zqy0RF7dT1DTdxR8M3Nq1l/ob7/uCXP/jbn/3wm7u3vjpv6W3V9Q0fnDy0/62X289d7Ov3m2csrqoC6x4XRVkIirBRsMiEkw/FZ8Ch01D0jR4uR/tpUBFGNw1UyI9R6eovY4zgnTdCJRZHSmK58SODKGikzm4FMqAlU6gwUAVDVGL9QGg/s9ZA1wMqEGyiphtIDzrxZFVDnTqv1OH2S3Ln1ntvpXOmzzaKPhFHGEoiKSsZQVRUfYTXt9HBEkBvB4lmVI00ZgNWfJuElToWiUyxLV9FBKBlALhNr8mg1faiWcaSRfk8ugKxde3oNwOTSruS5FD8aUoHdF4XJp7oUAMrxdmiw/gyIr8Q2JpToxGOhDhbcFEBpV0OoGETOuzc7XBHUvALKKGYd1Dl9FFUGPUHsv6KDCdtPOyRlB68UnRAFSiAAKiGbUpZlFlNyuGOhF7zSIa+lmK/Q21WnATaS5TSSCKZ0hBG5rEhhiOIS4d9acNc0vlfIg01dwkge4n6zFY9kljv5rz+a3pDRlL01tAwSUCs8BnNLRZia672G2E5jQYGE1RFlKUVvcbCyHCupcSlIYEQ1U6NDRbKeBsRNQ7632Cogj7p1pC0RMDpSPn7USJUhnoUk8QDd0WR7jd2PNhZh/aSuCc5CO+dOUtXL1r97qKV9yqekr5ynFTrgpWNy+5ZtPrjJF6TzdpGHSFYRWXLQ5/7lxrP7Nn8i10bf7p38281xBHCc+vq1t3/mVtW38GcuJDC48SJl992z6M9vf1bfvPjw3tfP7L/TcYc4adZPLn4zo/f9fCnEhWpjA9G5L6g6X5FfD/Tj2o1wsg9ExGQQo1sndX+A+1gax/qZaAu6PWhHJuQoFQPYu9gpGhsMiSacxh7+qFOxOFnD8IeJqg/olQcKiriojIGY0YexRmJmlhQOpAcuIQsrUg8UdVcTy60n3+386Lavkm/9cymWVj2NvayNPD6CgBaMGhBUT1Q0o+iTFTgSEAFaFDb1DROtNVWNto7xpZfWraFUdVgVmDJ6N/QsOZlVZPpjarRY2AQPo0SGzmCsJCG2RfTqYVhj3Eas+NWqN+nJC1a8QmD4NG9lfjGAk3VbWqQRsV6KIlqDY1e4Thn/2HnzhjhIHUchEallWMa3emi5gDPFe7N/cXjXlobRuz8pXT8HTqWCkjDTQjrQuhCjDljsKOzT5Yad/lwGrE9Vtb+kOYhQXtr6GApuhuyiyka5aXnMltGAdE89blGRqssF2hq2TtiLHcpHYHu1mtLLxg7UhLspcRY7AElGVzcTHeARHMhVeKwdX5vfHONjmyasFmLV2548OuT5y1WrmvV+1AWywdoD8LHzHdqGm9a+8/+tHnaTElcEJwSqmnawke/+JdNU+f6yoVoCx0MQUjcY5OnLX3sz//9rJtXnT70Vm9bZyJZHZ/SPHnRLUtuWRuP16XB8FlmObgypyZNffALfzFj7uJj+7a2tZ3TCKCmrmnqnEXzb1tXWduUhjcXoLOcrLrj/ie6Oi7PXbBC+dQBo3lm1EGlvU+msmKiaOvIlPH8+TevlN5XG+YudpykyfsKJVVee5Kxn6KUkBFZi8pIMwfap6Zjz5bd9JBQWTqmoA4dLdhd97Im1nHWxGGUp5IVzbXqQtuFC93tm3dspsvl9Kkz0UqSBL9OTZ0y5Buj1S52gpnc30c0KauUE5gxmwKbdccLbWHDxnt0L1KgsIueUzgrgLOhLYEb2gCqJ9ORIOepgegKbUNwIFIyo8yMcR/NxdlhusVoNYI9CrPiB8aJD+64oNHttEA6f/TuJDM6ntbDTwUnE1yS5Dx/VGR0BmYeCQ42iNguzpAholAHx+4CgRwEUjAjWpOjEA4Ej10ouGl9gDEdxKzZgE1UMKrGmTyHAfvCrDxrDmOSWMZHGb4psUKAdtjjCGTZBAsLJVuxLYbbgKDgaVV0VKcdzYOpFfNTkaSgSVvhMpYovEPDncGGDUpa3kwulBnNwQd7D/oCWdt1qlTQcZnrn5RRZakir/PN1+XQtMqST1SpL8mw2YuFwPZ6KKJIAhblnJW7POOJLtD/AgIFR9IK6K8q6uA8gTOmQz0pXaHiinkAIKT+mT4ahDR9WVDYhj/H81nPbzyu49irvR2dyURZrLI6TfRbQBsghzQJkNOzYA+mEpKUO1zx7OUrl/QSaaycxFS8R5CsVB5U8eBBiClWFacuI/0+tDoq5kjLadJwKzADw1ofRZhgiN0xKhIxlnRpxie9GeRyUXCDBjdGplEazIUIDEsHTM6HJAAiYwxWv36Lk2dPPr/llbZMdsrk6TxR3ktIBtRNDcBSlNLSLU7XlC1TgcSAsM5misWovk1+pq/7UscF2dc/q65hw8q1Lc0zEDqgLhql4XEuI1EazSXzhtO0NfhavX5aZdEXLD0SU+gDyCzLeHppa3JK/Oq5D86BZSZYexhyA8PaHDZU2pRQaAWKxiPQAQpKAxKzCKbgNRLVyzyMBQEdA0cJa6wOwYzNqlgcqKCyHMiQm11XP4UUGHUaVAnBwaMV/sZ8km/vHWzJo7W92vQsQlJoMHD49OnT+vv7z527AJIlgdFvcISN0sCU8ewzKuLBIkc4axECVJHBCkfSQJl8JO718EdXIEoRnqx66fmpsmRz89SLFy9hF6Ez3iIZaQvugesLpSyAp2ZZGgNpK+RAx1fIps8t16FTmpqymfTFS23IkYiuyejTOqqmWlLlZLHCbCsxrfVBnyPq0GBIoHITa6MwzB2O1Wzj2ISBpXoElbV1bkPVlgM9XekySl1gy+SIGSUPAgdtLof0WRv4x0Ud1oryy4rYFJb46cDXGSRoLnwpifCCUKcPtBWEcZgBaVtpjCMMQRUQCbRl6WDFx4AeHe88Tj19ivs6evbQjIHjugC44nOahaiReGl9o8ud6kpPkkwazFwhs8mgk49J5mJGR1ChX+eqUL5LeHkjl+RqhhsjUTB6DQwyPEW608poqQEJC5NRjsVYVBpnLGMOCw046NGE3pv9GT+bIR7Q4yFqFehObVzIJe64PrhRmtYRWfpuDt8Oz/qFMJsmlZKE4J1KEuaPCozErzN9Zd2tkIEkOMJdX+kV7cZTlU2UtqsLJ9svq51b1yvaMq0FyUiIyRQNiKrWuVBZD1I5QMiAFFtypSwLi1g0XsusDv44DDUSZao9xjPM1D+lxu/cyu6ZHItMZzO2TkQCX1yby6OO41DuytB/ZeSS7NF4kgZiC3jGK0M8MNtojm5julut0QzkXfRHV1en7/tVVVUqcKJVqnihYdQz4oSUUN1RJE9nclRHFaTUwvWMdrTSANmurg79iNbU1KjIIlKjPGfWFSUviV7KOnQcJYFsCcg0i8Jk9sBHbyIRr6ys1NusEBAPmL1kvA1+6Ayz5V+pUZ9VwwHIFbL1/qCnV3/V3X2lr69XT2kqVVZRUaagoV7Z5LcK1ETVWM42tfrs5kgRlj0GUByYORjJhMYiKjhiCrd6R8nhFwLUUHH5MG50yVzX9QzDmpTCvpf1wWEVHHKUABF7ZsIPCegHUh0SFeZNadVsU0JkhYY3lAsr86nvMyBnDk1zzGcgoQleqZIzhe7V+AroSyV9qyOPBj7BCaZxmspKVCx2PEk50IkEOv4EVlqMZXABwh1CRSNz10DvCqGYQClTjo+7DAQIUDGW+caS3EBDIjw4r2BYBAvB0qjloxGzusYqT/HvAFoRPrZM6GlwbPcaHJMOrr40Xr+4hrs5VGnGqCqgGJi0Xm4AiH0gfrlOoqJuEj3ddunwpUv+trfWCzm7ZaaeAuxJwP6AXCOlUalTuXzENauKq+uvnQ1zAZceicBeYeiqlHbJ5pJe2MjCOtvbfvn8Ly5fvIBlI+ZwjrpqaFYs1MqVq1avXhuHBGzg5D+g21PRa3XspiEP1dLpDYMZ8sVEBg+XKhAOj5Rf9L+u6xw7dvTJJ5+sr5v02ONfrK6uFgJLmrDJ8vy6BhmTXTYySTQqOG3N5ogtwo1qogUhrAyMP/Ff2HU4p4cPH3n66R83N099/PEvpFIpS64d1VIWtaKMKo8eHixmlkNdapx29UInCaO9vVffeGPT3r17z547X1NdvXDhgrvuuqdhUqNUec2j4woehlW0YiM0XehjwkWlOb8v0+7ASGdnx1tvvbVz547z58/FYrEpTVNWrVy5YsXKsrIK3/fw0ONhSXHs4FUQGRitVqlsNwFQMAT6fFptJVzmrNSicJA7NHwVmWGWPGiJEiEZtggbuUaZPoL9d1A6Mfr8jJkaCmiPQ28eLC8wouHKWBHrs8iAS6lAkdU4ilqXeXCawcYGDbuYQHIJ9ZHEi/gFsJWvX86FDgKBVUiNe+A7+HMVo3oYrqePCySim1PINRb4yEUAEAcMYOVAA750JcA5B3UkDBDmRHA0GHegPVD4sNRcZh02sBAMFkECXo1ILDESF8qUID7pQL6NKdNgPixBuUFUZCCBYrRMkf5j5MSUpZLj33khqVaNQAaLgFuOnisZ2NuyLHZO6rfOwCfU0xOVrKipIR3k8umOS1ve2uJQ2doyE5a9NVYPvS/MDBgKG7v2EmGptUrIh59Vco0ykqG9BlDgqD2ZJOjLKhV2N2UymaPvvnvq5AnHcXt6e8+fO5NMlTc2TuacC19OmzaDmZmRwUsomydiIXk8yEwGkk6WzRN9hg3vywSVhYnrIIJrb2//9a9/PWPGjLVr15pIlNI8eGVSuHqTdV33+PGj/+W//OetWzdtuON+z/NM3g0zMdh4TmkRjxOiRrXkZa1xojLqtnucqgKr7VEamFVsN00LyhRSQVrqvffe/bu//69b33zjnns+HtY30NJjNLCMoQBLRsPUlcmdyZBFmpNAyP10XIEUQwdilPX29Dz1o6d++atfzGhpmTN7zoUL57///e9r8Pov/vnX6uobsM5O6HgavCmFBAI1ViODBgKzKudETQMWkxrFKhtaO1Gr18c56+vre+bpH//kp8/MmN6ycNGCtrbLG19/9bVXX/niF7/86KOfTiaTZtPQpxq14oVq7GbVCgfaWTPZTdM2yKTJHVOrR0gjR0zeVu9UlnHye/FhDJhA10va58VHK8SYoDFJfMZctJIxeY6svnmSu1iBkY6bgOwSNVoHDt7aDBaxNfTCP3Lh2+CCx4z5smNMycOwTOMvrpDxBULj6EitNxvmc5nFteVghidhkC6GvgJxfQzpsubQwQYbOFjAPRFex3gdEZ8zaIEUQFuUyHEV2KnvApQCuKdfW7+pA7havyO4xIAwFWVkJIoYeI5w064aj8c44EA/tFkTOSsqPaVMXne1XKGLYorIGAKALGFp0zKN7AdPsTg+p7GyylpGesnFs1fbX9m++eNxdlPrLGBiCZWznqYgwcrlR1imwRDVGVLW45TGXLAljGacGVKE6mvr/+J//efpTH8ymTh48OB//A//YfHiJX/0R39cWVHpe6Kmpi4Wi+Mmy1TQXsg4lpjBD56hdwoFLiHSeU0JT4MzGgj/CJMYJeZP4ZVAKJLazlIJMQJEIfpdrl698uKLL6xfv2Ht2jX6FXzfp9SaeZuz3mACz8u+8spvf/Sjp/rSfdOnzUR3dhIkvSwftkg6SY0ifcT0MalovZJFHNysSLptHlKEjMoqCw5H47uam8zfvbrxR//0lEYG9ZMaDFfC9l0Z9d8bPGshX80Uoe2JiFRwqnLjKESu4+u5VMzISQpfn/c///nP7rzjzq985cu1tXVXe6789CfP/tOPf1RTVfm1r36duTFTLBonKbhg8oVtPldBDCDN80kDKmHU4GEUYxT7HCENXCnXcTe+/vqPf/xPGzas+/ITX546rbmnt+/Ysfee0nvBUz9saZm+du16Q90zaSFpVRjHZlaNGqUlsGO8pw/1VDwpaML40gmohQGZZxDM6vRlfk8AlllZaYsfuVEQIGiO248RsbDdZNIG01J64K7MJagkmLQWnDYgQQUpK2VPpKDD1RoLYzN0VoYJG25dqsyShlQW6cfHFf7Ss46lgVwn0KskttEj81plIGFmZXWMf6hJtel3yeJI4DuegfTmhGIyeI6ySOZGbg2QusxzI0Z+31KYW0ZZ+SzwkvXIIckUEGaqlOkdo3rjYSPjSqMwswJTqmFWUkIEZKrfDohCgfG0Bh2xsgqHkIuk7XD3Vbr1TV+I2VOnx1QMK8EwnwL5wA7ackkrYJADJ1TR67ZeG52oASh2ENBx3/Pj2PUbzYTBWnHjsektrfqak6n41d5e5vDKqqpZc+ZUV9UKoVGUf+XKlb7+vsrKqkQ8SQGFiq7uDg1BK8oqwHRcUZ/4HZfbEolEeVk5YyybzXZe7uzs7JLSr66urqurj8VcZtKn+ObtHe0dHe39/T2VlZW1tbUVFZX6jS5ePHf+/BnfT/f1dZ0+/X5FRY0+n4KeQTtgfec8L/3MMz9+6qknFy9e9OlH//TJJ5/0AIepYFc15C1GIl1F9o4xVSizdWMrGwUgQAQia1SxKJubjObAbJZWGjoLTNEPfvCDZ37y9M03L3n8sceeeupHWKEVZosx+9YoJAGCxDGLAhYUXwppywZVybCCpYgcX0cHbqqd3d0vvPSb+oZJX/zDJyZPmabjk7q6KY899oV9+/e+9MpLDz780Nw5C1DaW6rxk8QyjSMgGiB9OzAVNpBGbo0a5bUaPPZG6UBx1+ns7tr61psVlVWPf+GJufPnp/v7a2pq16xZn816//bf/Zs9+3atWLEikShT2DEjR2XpDr6kpU1W4i7MgJ/T72V70zFozaHUg6McxcBLSyg7GUF+vz4K1cNEYb0mNxG+efIFi/xy4e8Ue9mBAmVqwC8MVK1VA14WdTvzSkhhGYJHf6fodYrIq4kbW5WwnBMf8+PC6nlSRIqAYKBsCnT0kSqSWNygEB4ZfbegwACJQYFQVF9+PFlRW0cznW1H2jvoWzvICtLS1MKIw4KWZRwt0IJkjhZCB+RFrBzmKDcwD2siciR4GQMCqKl6hiKvNPCmVb4P1gM8y/ysj3ki6fu+3rawHU/t3b/nyX/8x8cf+8Kdd96rN6++vp7vf/8fdGj+1a/+i5rqBn1/Pzh74Rvf+E8PPPDAvffe193d/fLLL/3mNy/29fVC8taN3XffvQ888FB1dQ12+8k9e3b/9Kc/O3fuLIU2C+/mm5d+7g8enz59xre+9S29RV64cPa1ja/u3bfvlptXfP3rf+m6rsrrMIWCZk9Pz/33f+yPvvLlTCatlBX+ML9j5RpI+B1CcvqIo9thHil7R84kFahgRXXmRnVg2GpiaoOsv7+vu/vqvffc9yd/+idXr3TDGoHvA+3TulWPagdWkNGzopIhS1iGPYbUjoqMu9gGh/vuu0dOnTq1Zu3aKVOmZLM+xB6+0OHK7atvP/D2/ldfe23unPnUZpHpuBm4ndUwqYydx4Xp3tF/iAJ+A1BCTWFNnyDLlt+6aMnNU6Y0ex4of0sfQGF1VbWe5N6eHoHJbBrcDkLHmK1nJBqwd8iq5OuN1vMFYy7a40jk4ij9dalpdRgjv+8f9Dp++qHfgo7FMG7ECjOtsqClhFY81jzHUSRDQvu/8MkeqadXhTuCyhnD2U8cK1KjcRFPpcqnE3JZqJNtbRt37Vi/gsyeOgOGAyiMuyhqzGyaERBh1NwdTWdsy50YVXbPNYSAWBfDziVg3xZS9VVAuA5kj2mOumRPOcW5M7mxUR8b+/fvW7N2fVlZ+dn3zm7a9LoQ3qWLn6uvbdRn8p5dO8+ePdPc3KQ3uJ8++8zTTz+9bs36u+6+S7/A5s1bnnzyKQ3UPv/5z8di7rbtW7/5jW/WT2r80peeqKmpPvLu4V/88rmeq/1f+9rX77zzjpq6ql/+4ufz5s5btWrNtKktnPNCGhah8Xji0Uc/U1lZUVVZceLEccCMLg3DhGJFZkpybMLRO7SCU5dExNDtf7SI/c6opTRRrBvEsAg0M1Hn85//Ql1dTUVFRUd7JyUulRxttBwFCXpCR12YlUQsTlRhiEiDNo1xF82g6pI6e/asFGL2rFYpg6cK5QPmz1/gOs6Rw4dtCVuqcaXUoPI8ZEI1QFqAH8fiIUIJP+DiQRa+vKzy4YcfQfN6iAlBtIg5emc/d+5iV1fXzJmtiUTSsIxprpGEjt2sBp34qDTHUA+IWiF3s/FSU+BipQfppFJk4mPiY5BVZrNI+hyMc6NliTGoMqZ4DMG9JDSX/x+5fZrmfU4LzzJIUHE3WTapnl6ml4+3tYltW+PrnLmtM+AEMmVdpgIBgYEQysR0KpITHm/olliBbuUmNKh1ScBoCqeClrYPCaWkVEPD5AULFhw/cfzSpQuzZ83+4IOTFy9dKitLHHnvyLx5C/Rv7Ny1Y/LkyS0zWg4eeue55342Y+aMf/Wv/3JS/ST97qtW3d7Tc/UnP3lm/fp1VbXVv/rVL6/0dP+bf/tvV962Ut/9tevWlJen/v7vv7Vu74ZPfeqTU5oaN218ff5NCz796c+4TkIpm47KZeI0PnZijY2TUZo+R17IcyUZLxHIsNwWxwR247zC8BKx+LTmqYJI3/esrTmq4Ut13Z5VIxZwqqJzNe600FF1qbu7K+t5lZVVJl8RiCCx+vq6WIxfudKdTqcTidTopy1H6I7QUX94UNCR2WAPYAkzFCvLuHEc58KFCy/+5jfJVGrB/IWuG/c8wRmqG44D2MpQhACVffVu5XNOE3HHgx5nYLA4SMPnQEEpuRicbFpMoIiJj0GWGegWMnB19D0/K7ECRVUJOEJHZ98xtYesgnIgUU4yWV5fJzuJOnGl64Utm9LZvptmzYO2AGSFCdReLrGtKyt/MZ5vAMAQvel4QsTgmaYqzBuSwTo3qaW6SJFKpZYtW/bss89evnyhsXHSgQP7FixcyCk5sG/fJ+5/oKOz8+Sp9++4c0Mikdi1e3dnZ+eaNWsuXDh/7uw5SDglEtXVNZcuXTp6/OiUnsZ3jxxqbm7y/czbb7+ttx7XdeKxpO/JQ4cO3XPPPcKHNgyBtUyF9SroJQwqR0hztNqYkFnnpgubylyeQ42n5jI6LheD1cE3vXmCoAoeNDzTQK1RGCmy/EynopRO7GVDZgf16a5AV9ZBBwRL29CfxOMJzh3f1+jLSyTURw1djdnDY/JmAqVEjWg0hgbGcorGXbejs/2H//j9XXt3PvGlLy9YsEgIq46rhHH+GdP6YNBsY7Yps0J8L5tJOyYV6zEJJG57pcVbcBylJhbDxEfpHIrJl0jioYQYYHYr8D6Wx5LVtKQUbWGgUT2ZquBKnekQR7s66fbt+nfmTJtFJdfYUDIetrYzdBoJcYvJB3mMjEszHRooduqpF5ILoUI/PlnYKh4GjEERMfRT09tZPB6fM2eO72XOnD7V2DDp7bf3r1m9Wu8HO3fv7urq2LdnT8/VnttuXeEy3nbxgpdO796+/fDBw+Z04cTp7O5MJpPdHV0pN9bR0dHb2/Nf//abYOGDXWz9/WkhZG9vb39/v+u6ZisSQriuEWIOHH3QnJAEVr80Uqi15rrWi4ESwiYevEHSVyRoBQiOK4JxduhZINE5UUWSghGB2QmkVXJLgWeqoqKCO7yn54oKXDMVmqL2ZzK+L5IJHaqklKK/N/5yNzowxLqGsfky9TZFrYUDcxx29sKZ73z72y+//MpnPvPZz376M7FYXGBWW69gsHPIi+JHG9Ga2y+N9iCoWOtdyQFld2gbIowbixFuZP6RoMWKindMAKyJj8EfEmX28/HSNaPCFmmU5AJZfOrD4e06ZVVTKDnffvGD7u5NO7Y7hM1snsGZy5Qh9zDzIARVKOvqKq3GyTidfEO7AqkxEygZ2VySr8MZCrAYAW8jVJZTT4aNoql5SsuMlgMHDpSXl/f19C5YsNBx+OYtbx45cmjf/r36my0tMzSWS6fTbjy27o4NrTNnW0sWCeo13OWzZ886dep9KcSSJYvXrbuDsRjk/LlVYpo8uSkWi0HuyigwUduandto84TRlTEiQU62aYXO5a6KO5dNfIQZgXBig5UcmOZxVGjkpqaPqayc7IWVbZyY0pJQAJZyTU2Ni1EEnPHEOvzpZ66jrc0Tsra2kXNHqYk5HG58CDpCigll1LWZjrsArcCzTw8ePPy973133759jz3++BN/+EQqVZ71BUedKV/4FEWTDMBFthMLQ+LR4e8Zu0kj3S/ttovaSyzcVs1RArqWMsxEDARYnE8sl4mPwZ8TY3LJYLkZ656xIywZUW9LijbiWBTcsvuJcgkvK6tuoqyz7cKJjk531w4dJc2c1sKk0QU2xmzIJrM0XHP8GJuxcTv5QbqOCGjLZ5TSIgF0gK6ANWqaiJS08o/m2iY3Ns2eNWf79rc8z6upq10wf0HW92Lx+Kuvvnb69Only24pKyvX219NTV0ikVqyaMmDDz3sC2jA5ZT39af7+/uSqXh7e1tlVVVz89RPfepTyWQFbJd6WEJdvdKrjyXXdaAJiJq+T3hj7GHMiXeHIpRQN9TQittPjEoyWBkK+9tQlZ6AAiUOrdASKpDyJ5jMzUEuasE4CdyTcqksMv589MYNFIDNYdas2RXlZQcPHfS8LI87xkhb/8b+ffv0XN9224ogcpj4uAb0atLtpjPAcZxMJr1165s/+MEPrvZc+dpXv/bAAw9C+RUsUwFPCRW65WD+i0btcowMHx0ta3XLIcUtzVqT6fdGkjtgRMFMEzpURYDpXuxVHCUmEvITH4M8HjJIQ1izYOPMScfKviTy3OpjJIMwKwGkJC6ITCsST5RPrmu8SOm7be1ix/Y7fNXa0sqVrRJCMAU6rFZ5XARdwOM1jWuiZSRaMit6hruViZpybVrR/CKq36HlUmBzqX8Yi8XnzJv30isvvb5x43333dc4ZUp395XW1lmvv/47/ZdPfOnLiWQqm/UWLV76q+d/uWnL5tXr1pWlyvVu1+eln37mmffff/+P/ujLU6dPb5kxc/fuvadOfTBr1lwk55Gtb2598cWXH3roU7feujwWS5SXVWSzWXQcg5SACEBT4KsDJ5bruBT0fbnGZLBZcf2J/nBMw6rn+SG4nPgYuOtLW2E1PVYM5w3MKV2XM+jL0vfaicVcfWjpyfd9n0Rs4CYmsMRmokwj2PSWlltvXfH6xld37Nhxz933w2bB6fvvH9+4cZOOK9atW4+kxgmQOty8oJUntnGx1GtVB2kvvPD8Sy++OHX6tH/12NdvXb7c4Y7n+y4FDoR+9pWQYEFhc65Bk5XKqbWoUUFYgV4/s8IXcBnQ8AhWKeAYB0wToazXLZLdS1jlWJKHdS/N/RvZ4QosRIrYgwR1m9w3C14h/8vw72nUCnTgK9BCt92SX4avELmKom89cCQ0f/DFr4WGB5kNd4a+lvyRRN+l5KwWHUkwYDrAZHbwkZQ0dRl8JKrwRgCmMhYm5jIclGngJdO0NzZ/a69fGTIP6MkizQfI01mjAqC3xHj5pFp6jvCjlzv8bdvuVnTWzFapUPccBi8ZGM+ADq00WuSmEjDUrBYsg/z1OcxZzftyqPtrsBR4KzFDX1YB50YFqDBi22Gqn0DAEb6Qpu6JsmEAgyAGmzd3fnVVzenTJxcuWqyDrmSyXMOp53/9XHPztBkzZmCxji9btnz16rUbX3+1prZ+w7oNnPFt23f8/Oc/v/vuuysqKlOp5P33f/zv/+6//f23/vsnH3qkvr7u+PGjP/3ps2VlFXWoKar/nTd3nj6cbl22vXXWnFSqHF2cc5KHehlduXLl+PFjPT1XHU4vX77U3t7OHHfz5jeqq6v1GJqamvRgsBAzcUSVeLioDG0du7q69C3o7b3KXX72zJmOrnapxMZNr6aSKSH0ZDZrSIxId6I4OPik4mMoSTKefPDBTx45cuhb3/pW2+WOOXNu6uzqeP5Xv9Tz/Bd/8c9ra+t8X+SbOE18DJZ9p0Fwrj9zHXa57cI/fO8ffvWLn9fU1a+auur9E3onOGq8R6ViTU1Tb7llmevEhER/OcosxgrPFDrKuWIaqjAiNR+QFEiFg7OFREu+cHSKKpUPJ+zCcphD8ns4B+nnHCi2SYt9WfQV6CC3ocTL0kF/ZzivQIY3kuFfC/2w1zLI39Jh/8mQlzbw+0Ne2tAjgQwoUPiA+gNFaNNZQ4uCqhtfHQ9YPRob+YQmAG2QXoIK8wT6ZT0Q2nbjifIpdeyMuniqq3PTW29KIufOnhP4cUHJ0Dp0BZuA0cRS9EbP6jXdbissxg1BhGm0Aw3PYRNZEHsHRmPYVaz/dVxT97d2KnBwoPP4tGnTZrS0agC27JblPmrlzWydNalh8i23LK+rq9ff0b9ZXlH+J3/yp4lE4pfP/XLja69Ryq9e7V23bt1jjz1WXl7h+/5dd96TzYinnnrq0MG/rqgo7+jsaJk+80tf+sr06dOFEPo76zesP3zk0Df+9ps11XWPPPLoI488kslkbMIfbYkvXbr4gx98X8MCtErMdnZ16tWlzzMjmvWJTzz0la982XVdoPQrMoEKCvKZxtrZYO1YLHb27Onvfvc7Z868ryFpNpvt6u7uaGv/5je+gfbP7gMPfOoLX3hcTyyeYWyc0drGSSOenVSoTKH8+bx58/7F1//l9773/W9/+9sVFVXpdH9lRcWf//mf33nnnTTU+J34GN4djuSwpV6QFy9e3LZta39/H2nvePanP0VSLCMIVvQmsGHD3XPnzqutjYvQrmTAZjmKJcKAe2xWCKAp8G9RXHEH+e8EnGGYDfVppOkobz+n/+01dcOeH1LM8jZn6T9s28no+Z2vkG6taEILiQHpjkjCKziXjDpm9EVsf0NEglLa9sycXF7+WxehwZQytyYFg4/kuuiA31ZhLiJi6xW5UvtqlFp5oTwJx0gb2cigfSurbSiKlBw/c+r5La9fzPY1NTazZGU//pibPhFFA9bMaOybRmTbQWThga8RanGBrDyEGJywOJg0ynR/b2f7RafnanNV7YbVq2e2zIDcFWR9mcEmKngqwDvStmWNowAwsMLT1ynKeHbpzOSUWM+Z02cVODVI82DLwBrZEBj6+3vPnj1bVlbR2DgFi0QghhBmwPQGl832NzdP5yymgXI623vu/KmKyoq62gZKYkg5V45De3p6P/jg1MmTJ9LpdEvLjFmz5pSXlyNHVTqO63ne6dOn9U87OtoaGibNmTNv0qRGzhzko/pCeBcvXTxy6Eh7e/fy5bfq48pUqdCbimDXYd+5c2czmX5YPJhb0YPElnh9WU51dU1jYyOCLVr0MRu12WfS5tyk9B0H4Kk+a8+du4BjG5taW0hXN0+ZRtz6Tp0/fzad6TO9BgihuFLW3Vzj5kmTJpn0VUjAKmH1eKNGa/YQPYdlZanm5uZLFy92d19lliquxsVzRpUx/we9I+UxBlaynZ3dH5w688EHZ2pqqmfMaGlqatTPnBDcSHaP2hwOe6vQ8IU2NTVlMulLl9qI7ekZ6xlGhze93aIsi37YWTrTf/7cuUwma1LtKDYGSSLs1VMazupdy3GccNkEq5Ua7GvlgdQoXgBwRW3LTkVtfbyhesuBq93pMkrjsFpg/NJG6iVGRf/ra5IOGlkUBQ4Dv1T5/xb8YoCnsJhJWFgnMYpjA6tZKm9ztciGGRNT9GE01U9JrOsyeslSe0JioCGwQYwGGkf6ueAKbHN8ZoybqKGHQo+ItahjQVFGn9BSYEKDw3kMrnZYlJKwsRrbQSQAsTwEV1A/jXyhgiGiExQ3lWlCfZozxBFY7cJPrMIaeDZb/XH0ebcqgpCr0astjo+3jz+VRsMf1dXhKLYlSUpo3qwOvE2lgHDBTzn2SujZev/M+y9sef1cJt0wudlNVvSjIO8AgDUaH1GAlWHShey+yppOO8pcxIQM15nXe6Wv/bLX29dYU3XvqtWzps3g1EH5EoKzpkwfLsMymhoexqcfdlYLHhxa7FnL+1KFK8QvY9klM1ONsSsaYBHHeJCH7XnWxQ+bhSGx4ftS/4ffYcAtZfb9XTeuf0FvcAY76AfAjcH2h/I/3GrVgBYoh/SS8PUX+nMNgNC22YJ7bLF20DZHmLQTICQThSIp1XEdSKNLGgqNRq9JL5MY2lYbtYZAcMAeXL4vslmPjgMrFaasvYu+PtdlU6eGAIsRwsZ6eOhtgDL9GvwxbjMr2FhuzBy5sUsK0O0oAwJDvaHWahjVuRBgNV28eKm7+wpj7jhMtwTLEE4ZVz8YwAqSRlTM87JBb+a47DeGlQDldc/LXLhwmUQaHcbDxGI/nl238XgsiAZVINdmcvLSUAZlTiVfhgmFscp4muIgsu9leW0dAKx9V7oz5QR6qClyr1RIji16LjiMKnLtFbjBqya28YxiIKUiEAsFJeymGpqA0uFU5kzDpzIvhxwE5VNsAYOzHwzqAkMNPPYNgINjX0fwwGzWD45LcXenxkAXMuaONWmWwt5GauqukLVEug7UZIygH6QHJcdmOmDxIMrj0no8E6OjH1Ebk8gKMn9r/sQ4xHEEWPodhMZDCBEN9sVbBduRb+pvChrzATcw+I7PhI83MrDyt6+sv84CXhSKSS4dZrNxBsYy+mGrjDT/mGFwlcp4LhN0p2bmqnPIko6axGgezMJVHdiB0JgKB6SwQA55SJ6qqKb0PL38Xle7s3Ob/uGc6a069nfheqS0VsRWNYAOXpkcbH1e26yS4dXRuQXKqCZBzR032lIQ1PFAWwoPM7sr6YArnbaHgek3pMzOj/4fnhPWrMSsyGwGOxf0cmM5N0DUevHMl9msMKAqHKAGZNlsFndJZmAc/gINohTlZWVA+hlYk4IvMxnPegCQnKkHdh5gPMvGBcfFSJPktksa5LQpzWW7x26YCs2vlfKznr6vJGi1ogOTCAWfjA66wuSFiSTDY5KErex0HHoRmioBtZG254Gxt172+si3lSwyxs4tQ1YbSGgAGXS/WW0mWiKAG82xBcNLpzO5bcFSG1S4KjBEDNPDLG9TpGODXE1TNkTwOFLUQQHsQcCOCvuJECooQoueC05Z/EYlXkkObOXciG3DPNqRm/B8yDIhDap6XCFUITbxYApDDCs+HIkqwmR68NUhe6VDbQQbPr6CKxFRwXnDjbcvtmNhtghaLhFdYbSvTxsftytHGvQDquD6RzFcCT4mnCCDYlhvCJ44Zsj8IEg3lB79uibLBRkzyIdxFehluETaRB/CtbhRYmS2fMUkdaUB/dJneF2KuozHUVMDQI9Ps0JmHJugc/QMCBT8ZjQuR9TSE28Ww/mJOTDLPqYGeZFbpEZt/zYMd5xBxbGrJM9sM+hZ95FdwVPldUQJqt7vaGc7tsVcZ97MWS6gaNOTQi3MUuNvy1dhCMITwKpBLiUkBIhtFsemMppnI07zRZIIGSBhplRBTs0SNAui8+gr5P9JsPUU+YXcUTp4NzvNhwMq776R8VA8srVjA8CD0r1pImPBCBUlY+iqpwrPV1r0hBibc4kEKqiQH6ahDtdYjmq4c5qbRiktOhwna3KQ+Q6kZqKO6XpnA25qXsMXG9PHqWCh0kLoX2ye1RguBgl4AQ2d0Z5KA9Z43E0q7jkID2wuebA5daA6UKI2N0jVo0hzWv6/NPIKiDT0ZiSibVQa00ih9KPHw2bMYq8TXe+e6Zkk0nKk4Mr1MUkdKgjodQtXn6lQQyMcK3l6Vhw8XLKM6oAkIx2Qj6PchVqf9CBNBYU5N8i1+QbwwMkA5zH0C4ANMMd2MxoTyreyScomc5Th7mDtXgMvCYAKpMNtLszY7UpmUxEaAjGfCKl/mUUIVcJqSQqbofABTEruKbx9GpriqVrmOiTT191xqT/d4zhOdVUdL6v0fOVBIMsdoV/c8zQQpBqZKX1FgkX0J0vcNVLs/hbWvFRgws4pyOxi4oHn/eKox0M5W8LI/yuRMtL3Qk9LLFHWVMcuKHq8o52++YYU3tyZc/RkMRBjwoIjLMbA+Tk/n6TyL5Vex6yS0nXwAWXxoI/UEgFEjOvN3jXZXEaD5GiQAKJkoutuhD/CzH8eeKQkr4mMTlimlE6n5GHp6OPCJibthmBaYlzMLIixUIbSfILQxD5xDScNTqpkypwRmCryfc/zBRJ3VEDFV6XPBccTTAYpIhYsfxGm+4PYOI9iHbDEw59GvzSfcySt6h/5NOeNbVKwlEO5DUi6Es44H2EKMrPsGApeHEgeQfIWr4lBygkAGjcsHCGzJw7tOPXuXkcAdQryQCDebaIPDY9isSktC2/bEHfj+DVkYzT+8NEdmyNcggEI4Fr5eKw5BICLfmXXgi1IAEqlx62xlgIkhAQNqZijOA0CWV8F2tdImlTAk4HslSNpQkJKLENNQMcxureatBzTjD46jlOrxy99SEL6hpUSUzwuxemjR3Zt+s2hg29d7jidSpXNnbP0tjsemrH4dshYCY7WrpC684GKDNcg0A4+nM/wNrHIjSbF7q9JLIa3AMShgx5VDbBQXxcVjj8SzwdBRpoiDnXcRPmUenKZqkNd7XLrZt+TN82YB57QWLrViyobFFUHQiIzD6GNy8BZDZfrwKJp2FXBI788yLMmInEFM66oVAkpfLylzNDLIHPqSLPaJo6qG4fjbRuRvgUOzTUdQHiWa6mZgFgDw5oAelLbw2ooIWrijL9xgNYALKMzbjxA7VyzSNZ5wuPnGlErh+750LUakile1tfHs9l7pbFdt4QL2BQGngsOIVZplEeeD174uJACWkR+dTTvy0ixQpocu3lL6Hsi1IHnrV9CUilGVFwqVyBjKfq3BaVXoM0aWrhVp9ev4EOdT3GXcGQlZvdt+e1LT39TX37ktArgAXGblt238ObliXi5n4UT1dTTrYQjkM2Zi1JPDs6XBpyCEKOHDUCQCsQYzEAYZKoY7xU939KLhgZWvkAf1CKAveB958JLSeSJwxQ4QiM1LBhSzuGk9G2nGPEduCgN2qAm6DFAiw5kw/zDb2977vv/7ej+TYRkoOdakfff4Nwp7gAAgABJREFUfnP/7u0PPvHV5Rs+yWkSnyPJcYIEM4Ba4oWq6B0ZOL1D319FA+MzgMDGxVd9FB5TSOEq0wUGZL00EfFEsra+rr9dvHvlqtix3aGxOdNbCRosehp0B6CoFC+KF5vGovM5cFYL/naQZ43nA8SABhrUWwxd1GRXwzo8VfmwUF7LmR8iQ1osj0lKf0ny8WT41iT/y8E1L4qnTQcdycDyARvGSFR+epEOqq5ndEBowBy3UZ6Vbba6gsGrUTVgJHQ40n0Dru5DXMvA+Rlk6uig4KYgQCg1kiGvJYc7bXMrTl0QKcvg6BHDxmqqVHq39JfDuZZoNmDIBV90JANfYfizeq3P2sA+qrxVESTfpZlqbHUURqSYFnbRDHziSk3yNa2QUutzmLM6/H2j6JZFr3FWC+5dyWcNTKelIboCjcgq+1MrMEosjlAB2afIaetUpPgNOt8M28q8OSAd5ThSHHv37ddeea77/Mny2sY77nxkwS2rMq7jKxnmMSGZFTnjTG8HyJBZ91JspkXZXf0dKPEASHSnTp85bekqRbIuJ13nznWeP1Ve2dA4bTZnCUF4y7yb6pPJVNLxXds3pgwQwV4bKplry3nEB7oVek8EkE8BBYpyYbVa9d4qAuKg6Z1DihUN/kSZtgLkihmAha+GLGUXOoDBI1djLL+/l2gEFUuymCPsKwCcc4F9T3yuYijOH6Pq9LGDv/jR3xzd/0pdQ8vNK+6Yu2hJx5Wuba+/curInmf/4T82TZs+75Y1wtevyeKUuA4UOvXbuZKNiFqIyaGAvhIn8bgLZLePSMRunhWFdWCB99djjCfL6usmtZP241e7X92xzXH5TTNbYoy6xHCGx9eVybBJlfIkdWMaEsZ5eVkZcleZ0U0NhESGA0dIiV17ZAEWHd5IrgdgDXICDTmS4QIs21GJnXmMMdfVq8gpL0+CIEWevsrAkQwfCgyODIZzYg0HChSd1UGWxCCzOvi10LwZVkHsj1tuPBFzYyyVjPsixYfQlB/y7B/+NJaa1SGX64gArKLn+pCw5loAVpA/oZzF4pBnraxMge5deNDTaDKdjA+ANfCth79vjCDAKtgTii0JbDgzTW2JhMs1niiLecwVnBktA2OSOEjng+Nn6SDPYqlrHXwxWsqslUOETm4J+RV57N2dT37nrw7t2kRILyHuyXd2Pv6//F9zV90jpG3SNh5kLFLUDEqEBt9wrIhC158Co2vJNcBSGh4lbl398Nyla32qXJrd+PN/fOEnf996062f+7P/M5ao0eNwEynFy7oz0sRUhqFFoDcf2wJA7wCpRYBVic9AQAF5XBI8dpVykUQoQXKJiWBJOyZqwKQa9vyDMAS1/HZlmIXIxNeDl1gHhB3HR8TV193+0jPf7bx4acUdD96y9p6MohxSb8yHbj1IO0kfG9sgVZTe/8Yb7+3ckqptfvSP/rfVqx8pq2nw/MxN89b+03f++uihXS88/YOW1gU0WSPRH1MIKRhQpajgLMzUD0r0USX2tmDhA0IXgug5F760omsfhTwzMOQgPUjNXfFwP3KIk4hX1tc6naTtUOdlZ/sWDcpnz2x1FQeuFqFDktLIMDbFQc7AIZ+16G/idDOoplMUD5YqlUw0N0+mSPxjA+0RCl+ADOocoD4Uo4wWe7vBZ6jUSIaEAnQYLMFS16IGPUWGvpaQb4t+GRragtticmosYlypis25KiHcQUp/ea3XogadxmHO6kBoQkfiWvLutQq2EL1UHQCpTl1dVVVVOaV0eCMZ/FpKjWQ410JK66vQ4c0qGWqFDz6Sa3rWBl8G1gEiHovLuEomYvlNI0WB9TU9a2TQyx+Es31NszrMfWOYz/Vw3n2otWFggjULoSTm9ijiZzzfjwnYklGvgMqAqEELTlsLsLJ+XiQb8kvIoGGLzP+pzE+OW7oCRQFhSA1Ak50U3tbNLx3a9VLw8t6Jo9teefEnk+evdMpqQXbMSvlYsyGZ42ARKzhhOiMQMfrUJue5gNJevLKhsbpBv0ScZisrG/SfxpLVtVNviiXqOCar076GB1avLIMiA1DCU5ZWo7CSZOzTAUwQlFSSkODCRkLMuFIinJjAvIKGYh666WLVENrQpG3eBhUGjkpcglANp3wpMIdIHQG6TR6n3OHpnvTuTS+dOXW0oXnmsrX3+EC5AmFYjXU9vEyzweu9vLer+4OTF2lq+vI7H1i2/lMqOaUrqyFhau4t69fdeejM8fc+OLz3/Knjk2avUB6qf9lR0Gxwc2ikKqzyCUCDRH+5+6vQsk9POyO+D/LaPupx8Y8IGwTFnVRWgZywAcAazSYSFY21pFOJE+2X/K1b0p6YN32OQ93wSRy4Z7OIOq0a9qySYly3os9aAQEx5LFIKyGrstAwrqN/JAEgd5AE5f+JjxuTPgwtOkAjkTvgXZ0FUQQW9JgrOnyx5P85uEAkaIkx+FQG6lzALHAc7oDrnJf1Jnx7RpAIQQOtZAdKRCChEkr2B8GAkaKaYAte88TCeSEtd5zrM5xT6UvPk4Ib4AUbPzgAQIbISk8WnAtOgZ4LLZHso8WK7UVj0pAVQpEvYurtDmX96Wx3x8XgQDEfoqP9fCabdstzyhgi8L2jkRIhQ8KvyZzYS8MMk8ZwguvLczzQxYJrdGmayAwhvoSTyCdCOJDlgpY8CsIVoMXbB5wvOJw4MKs0aMgC2ZkxQdBuRak4wIeMT4xUFtQsuZ5CqA36ni85c5gD8+4hP8nXa9dFEVJI0oFwtgskeE8onwrpOvoodKSPTwCoQ4BRZIqCzjhVHldpl+n/HP0GBPsZBZM+AmampL4gnojf+YlHb113z9SZrSRRe1UjNA4Nh3q0cxYsqaqs7Om9cvn8mclzbstyaQphKPUAv0JLCIjQQckaNO/+5jhJKKyEHuKUfCRSWJB4UyjIgTfF8ON8Zb3cyhNJt6rycjZ9pqNj99599ZV1UyZNkULSYsH4cDSr6KDZ7aISWUP7IhkTdwDo4FHEsTsi63mKGpal6aYYSyG+3+stNnTwh36ZeDwupEABMG6rB0opqvIdGf6nRqREb4DhQ0PzmJqo26DiJO57XsbLcsbUxHIdOSxgImm9QoWUvvCsslSOESQLlQonJn9Y8MrGDMw0emlMAQwZI9dFQ6s1o8QZ1VTPKxEmY+yGHG4oOI5ibQC0NMopq0xW1zfm/xqrqqmvrEjGY8BHwucwlCiMamMoGuqWqlDfHIjnHrMK0MbqDLUJNJLXX/nKFTzBeBKMuWOSOlxu2vraod2bb11267I1n8gqrs9duHSReXPzq62zFkxtndXjgehDOSenT+x74fmfzFqwZOXqB+KpSodxr797+5sv7965ufP0yXiqvHX2/BXr7p+2YLlgrp52ge1qLiFJfSuy/Yff2b7jzd+eOnFE+GLqrPlrVt+zaPHt2XhZllHR3/PmKy8e3flaR/tJRTK7d73c3X+ldcGqFavvd90Yhxoiy3BkfUlw1ksmKmtvvc0IifVJD1TOHEf4isc1FPN8knVcUlZVEUtAbdEoIsUhVYai79ffM0JDByEoUzk6kEeM9RGRBIAZ6AfyGCR6XcxJ6JmJERnXnwov25/RG5Keu1kzZzRMqklAiwEbP402kDk01v1QMucxxoulDUOFE0omWoRG+gYE+leByUyQElahg4P5RFIypr4+42O6OMmzqw9qqwRV/lkY7RnLDRbx05z4uM5NDjKFjhUgVmaZShmJEJHUYfyArBDWxF4x5KxKo3wlrTEK4Cyo3PA4jxHLwcIdAKjgKIFOiwopOn7Wl/kVyGiJcGBpg+YzwaIlwui/poABZTIKSlJC6meN3XLb3Qd2bDl5ZCdRGX3T65rnr7v3Eccty2YE2tBA5wMPOs8jbw00JjSEoaD5ZBn8pmMQMl4mM20DfgIongDC8tMaifhKZMFs0ie+lL07fvdP7+/d1Dp7SXn9VKi0uO7RQ7t/9eTf/rPP/HHT1Gm+T13u9l9pf+XZ//HGb382tfn/iDnUEeLC6RO/ePa/b3/lZ9nuDmBGSXHgzZd3bH75gc//2fL1D7JYhTQFQuZf7b208Tc/+d3Pf9h2/gSuc/7urjf2/e43937ysQ2PPBGra8z0dR/YtmnHy88SclVfxbH9O469c3D1x7NLbt7glCX1cH0K1SwfFe8V8ftgWiARo0dPHahq+hpWMZLpvbpj58aOrktTZiysaWwGcydfH8fCY1DQQ489eq0yDSTyHZlX5DLdkxrB+6aLUCrCSwL/0QgvVNQkMmRO5ZvZovorNh+gUbVeYZBLZERDU+Jl2jrberq66p347UuXLlu6zFGul/HJgKweifA5ZWTxf7hZJQMETQY+a/kzT6SV/fJdJiAPapo5MRuNtHzMYFltf0KHlNO/cTdIlRDzL8qFGNxUaPC/Ha0QNhBSlQYcBM5oNJTCgiSz+UwFeysdndh6qAkZk3kznEel7GxQ29gmzP/Hu2ysysMEwLhLogxiEjdecz9BHQrtJ9HPG33/9K3ggWC6SUwYoku+ne4Yzu3An5IBJKuxm+2QOiRREJ1gbya4fxHiCZH1shJ1BPDckegUx3ig91xwLjjZG4NkmTmDNbKB/mZo+5O+M2PubZ/7k3+3+ZXnrnacipdXrrzz0cUr7vEk87HNxK4PpfKRINThsHCmcaNjND0dSYjN1wAsR2YVRV9rcKJjWA+E49XnAphJTkaC1c3Cm5fNWbj8wJtvbnz1+U/8wR+D7Kf0dm3feObI5l3bps1fuZZVNulXPHrs4BuvPje1dd5NS+903PKr7Wd/9sP/vPXFp2oaJt1830NTZy7Kdl55/92dh97e8ey3/33STS1b/UkXFCCl8Htfe/knz/7gbxwiV6y8t3XOEuq4R9/be3DfW8/88G96GXvw8b+I8+T8JWucdPbAnl/39HW1zF7UMm9Z65JbCOdZATjN18BRGrl2Ix6rQCUVtnmu9ypOHGAw+r1733p562+f0+HIzRs+WdMw3c8SRxh/RaCI+YGN2ghAeSN5T4Hwb5qsUYeChgsxDONpiHtu9OqnkfSt2TsCReDQXdZ+TZRrHxUUKaF6J/KzXl9XZ8fV7u7GWGLN4qXLFi9N8ThYj8rxSWgyuhgaPvuBA7ndLA3GClEmCXreBpHJvoHcl8CcteDdo+LdUcvh8NcC9XZVerQqB6NH7VTOSTSwYJen2MxinoYgiRWR/h6lsyBQPBrkRg+c3lGaMaJUiPGjn8EpZNR8mYWtbFxWqWj+OjT7jMqb0nC5jhMamdl1YZNAbrL5z4QAgfwYDfYHRgLCx6jRsXITRcmQ+1LBDJOcX/iY+PtglCW5CejR0cGBSfbQ5xg0A4AARdGUTeG3i3447AaMXuVOX6NgwIH2oieLJxYuXzt74ZK+/u5kKpWI13rQCKgCET88oFn+JmqjIcWNz59xDzUqdtb8z7q0GVHVoB0VJBQckLYyXsUabfBkef2GT3zu8M4du9749e3r75o8fcHpdw+8vWMjIdnDBzafff/gvFuas31XXnvx2Wwmu2LNfdNnzFc+2bn1d3veeC5RWf3wF/98wz0Pl8erXUVOnTry5Pf/867Nv9700tOt85eV10/Xt+LCiWNbX3hWpvvu/oMvP/roE7VVjRr8tXddeu6Zf3jl5z9444Wn595869Lla+97+HOrV63+q/99f+/7vbff8eDnvvL1q1meETGQ2aEMHcalcTZCp3Ek2ysf7CYkVuhU38E9rz3/w79tO3v29rsf+diDn/NZ3FPGlJQ7qJJKDf35uoNEK7ps6RQ2+pRB/7qKNCvTsOg/WovfLHWGYlfoXKQs9d5sNSYhih0J6GkAlWqI87L9nd0dXd2dTbHEuqU3L1+wJOkmqLCGHmT8RdQmZyVVYC1oDc4ps7rNNl+scr27KtySCjDNjd5GB75v9EvznVJuPKWAl81WKkVG3b0uGImlWoXsIhq2aNmenFEdUsGRg8I8LHrTC9bA2Jz3gQCuspo4ZgEYOysWnrjj6EGLPCl5cUKAs8MpHYWn6ZqLWSZZgpZf6JTMCh46ZAvlxI/oKLIGC8KAgRBKr97Aj6hIhDbmyzgSKiiDO5hNwCpj0RskCEsets6NCmZo2B6lp9CYwIAagq+HkqhOJar1cPtVGAHS4kRis4/BDx1HBquCBpmU3N8p1F4EDpYLMoCQvwOBUaO/ha41YEor3JsWrVq88s79W17Ys+31h5pmnjq44+yxd9xUTd/V9n3bXpu/cO2Z9/Yc3PpqU8u8Ves/5jpuR2f7obd3pHvbq5vnnjp5+mdPP0U9fYpzxQWSnPgHR/eePXd4zpQG6qvj777Tdvr9RKq8u6P7ued+KiHpxCnnV7uuxBKp7gvvHT+4c+GSFcKt6mUxCe0FLENiaZLMImmKYA1Uj5YHuAUlsWCVcRTb0hMZY+LIvi0/+x//6cyxt5euuP/Tj321qra5FyCP8BgaAOP+zyi1bTwjcB+pspr4lquHiR70ghzrUr7IqboZ1TVlMn8iajwAjZmwGJP6f9m0RlfdnZ1T44k1S5cuW7Q46cTBuAj01Mg4ZCVQFXh3QYmWB5KjUYV567xZgFfCfcronhSkjkZ8z4oeTqX20+h2mfc7RA22I5voig5SR7yBZ0N4hBmDZ0tphbA1TAaM9pAGznP0k7HPrwS1+7CIH73j45b2E6L/cOqYFVU2Gx+XAV4xD9R4C8NMUiIoXucthtAxJ5K7GoNAJWo6Hi5jExsUwMHoHRnbZSxzzzxIRUl94DB0/6Us4qBBBx8kdsmRvBT38HX9yLWLLucC8wH+pEPKyakhtQshYWeYNJCw4IQhVUgYsQopVFVlw133f3Lv9pf2bntjwU2Ldr/1koY0933yc+/seP3wrq0X7zmy5dXneno673nk883TZ2WZ352+fL7tFGDBrnPbfvespwgXCUpdj2ep7Hfcckmdjo7LRAnuy8vnP8h6vRpN7tv8qjBFcYVWm1QIoUi8orOzO9OfLotV+TgkfWz0OiJNhAZYHNj6kG1xUC6WoE9iBuWPGAVqO5cyEVPvHXzrqW//9dkju+fcfNejf/yXDbMWZzzmgCGiAqUqJn19yYyg/jszkhb0upSDAa9xw60gNqRzQmG1EOarMdhT9BBS1sdEBWx8PQl2j8kpJihVDgBKUc/r6ujs777S5Gp0dcttS2+Osxh4NwZLRxZRcR/wptciiEmLKdkV/bL4jTCe5dRG0IZTGS1ghHkVlQ+tJH4YrwxrWKIKIvUbsseatzbvGwK7QUpX+qngnAchk6GT0YGFrRzAGsWi0oBgmtopsxVCm1qkYX3WasuMHhqIJgWjZ//Y1AcLOErGi9UeplR9FJpizDSahIqEdjGcUujt4WGtLcy1jLex///svQdgHMd5Lz4zu3sNvRKNKOwNIAn2ToqkSElU77IsWYn1t2MrthQneXJJ/NziOLHl95wn2yqWbKv3bokSVSiJYu+99w4QHbi73Z35zzczu7d3OICgBBKgjTMF4w53u3uzM/P9vvb7YWdLPIu3fGE9AndmeqGVHMMEPyFuvSfbBHoKeEuOJrGTilARFl0aEPHQ3epztRWrbiOcYBd00iXVgotigfBbZ4skGxPayczGpkZAcsZhMUWWbQ8aWTVu+uzNn362+EXfto0fDa6ccNn1X25pbVr1/pKXn/t/O7eszivuN3veIujho/zjzNAgyDdt2ryhoye32dyv8SGshTVTYywIWjbB8tJKzTI0ZPJ3ckdn1Igxk6ddyXwGlFJhHAXtQ+yjOIqMvJJBiPg5FCaWZFQQiXJgVLCptCKS2Exod1OlzsEXOfFTlqqhgzvWPvHgj49uXV42pPr6u/6xZFh1G9K5ndKorUmCL8BzFGSvZcOATLd+4Y1TuaPYGWXmqOf0EFlDTADCUXtWHcmYWFSpMyGndklHNMgv2TLP1Na2NtT1M/QZ46onVFUaGBjPNJFhFmV/oo6vl9WvisYOJoooZX2dysZ6dPDEd8cENLOwIhzSDInVhYMo+ouxs48p9Qx8vlagdEkTYmbtw0LynZowYgKNiTXrbL5e51WWjigVU9wD4atOoITrH3qVxy9wxMVrjfx+v8TW7StaLsyi7OCXi+MRH+WlImTFHV+dALm0EGMVzkOvBItOQybrpUOaGLQWy5+olgfu+ZoJ7oHXhejBuCAQIqnwoJS6oyA/BFXtto01ScwpYlnSACX3//SQj3S9ixB1SjRKO6YqpfFrLqEzy/uUJCNyRB1QNaLYEaQDgoPIAB4qkGlE/gDx+bGOdItxuAHjZDAayi+cc+nVW1Z++tG7LxDDmDhjXtnAUTPmXLnh06WfLn4W+wI3/v0/lVQMiWI/x6hF2cUDi4fs5qOUXrDwqq8EMvMigpfVgnxTmxGxgv60ZhuFEdNto3/FQL8/1dBTZ867qrBiqElRlJ/Xj8KRVtxsBlMzTIQiUaoTkhowRCUCDhF/KggcAEEctOlxdwlECnUk5HxBBxEjP0IhRk7u2/L0735+aOPHFQOH3/XNf66cdkkL4t8TFHI0W/nPVND2E0HhbquCNPxFughZrNwNWwgbPg2WheTIQLHC4w4M0AXxmhVhiSjScVQLnPQJ5P5C/K/R1vozta2NTUXBwCXjqseNGes3DGRaug/y6RzbWgj5CdB2kFhvYmIAtee6CGVNNfFxFKVjh842tldBormtbfe+3a2tLQ54Uu8QnjcrKioqLi6G+8YkoxxuH6dpXzLVecrJGwOLAQ5vSqKDzVEeikOrhoaGzZs3Hzp0iL9SUlI0YuTIrMxskkxBRYSMHEl11EetGodT5ThHIpH9+/fv3LnTsqwhQ4cMqBiQkpKSMOZ9g3bWaKXXwMsB3r9/3+rVa0dXjRkyZIjEWN739A1d14c3IaDV2tq6Z8+eXbt26bo+dOjQARUVgUCAtcNhPRvHkp3E2CUrwkBbbfhIAAHjKIirQe0JllIhUlcjSRdhxI0nd1kX9CypjQ6O0PU8Y0fHPIsDRTmS0qCo3tFosk3E4YwJkQDuI3OEoFkUyp0rBo2vGjd15fvPlg4cP6J6VktULxkwrnTouM3L9/UrHDl5xlURFmizoUY+aKSPqpz86eIXlr73Rm5RefWshSmp+dz3PtNw4rN33zi5/8DC6+4qHTEuSogfaRVDqkoGDNuwfvlzzz10yeU35eSU6XqwPly7cvk7m5d9NnP+tRNmXIaMgKBttxGBbgRIUZmiNg3UdFTPkqTe4NevA3267cP06MEdTz/yi81rFqenZMycd0V+/4p9h3ZHIb5F/SSUlVmE9VRZfM5hQlREYxyqC9aVm9XJXyFLJbVvgbCeSvZ7p8HKaeYT/ZsUXbjuFLVWZUEYU9M6IvT5EAiKw8KQaMSKRtrqzrQ1NhYEQlMqq8YOr/QzHUWAfdeGuKFQNpIlep6YHD6bwtwXHdWu5RkJc3uWufusYuteCAtuFtFO1dT85je/2b17lwaZZBoOh0EzKxDkb7As87bbvnTHHXcEg0H+fUmyzcuLsVB8CWr7Pc7ZLtVfkBPdhM5wgvm+uf/A/pRQSv/+/eXFJI1grV+//pFHHtm6dathGFEzyv8NHjTw7q/ePW3aNAzaVKxdihChnigf6bVQwM2t8EE+c+YMH8z3P3jftmwZCRg7duy9995bXFxCweVm7ety+h4dBVrUuoPwKtm5a8fPfvazjRs2fv/7/8YBlluO3TeMn8MZ8IZajx079vAjD69csQJysQwZujZ56tSvf/1r+fl5zFaVoxoI7PVkRE5xUYkyACdELTY+G6jJKXK0ykSJFSOq8DdJBMs06V/H3gOVSBRFNWQKjgqLYstkBjB5M26cbIkUbMJxVkp68fhJc7euXT+ganZe4eC2Vqan5ldNmL1j3bKps65Nz65oNJEFHGMQyqyaMOuSy29746WHn3zoFx+8/8bgoWM1rO3bu3nf5nWpaYVDqi/JHFTFfAZ/a3Z+6aVX3/nk8Z+/+cKjq5Z/MGTY2OyMfgcP792+aVmkLZJfOmTo2NnB9AC/ENsybduEiGOEoQijFrUErFK8kkxpdHOIaGjW0cPbn3nsgTVLX+UQwjTbPlzy9gdLPwFVQMJxmpVdOPwrX/9edslQG7izqI/ZYQKc9jrtpvgqkHPCRKIa5js4JN4ECqSu1iRUL1GPiPgFCVxhlfUSWx0kWS0I2kmpRNk2yAIIRaPhU3U1tL6hKBSaNGr0mOGjDOKzIQgpJMPFqrElDy+jDPfGWY0lwRCzNN3ms4Q5TbXObgU3JD01ddasWcOGDeUo6sCBA08//fSAAQPmz5/PnUIOqoYNG87dRDEbiGTNSiw9FhF7b+JJ2hh3/ti2nWCNRBxT7TqMuvkU7eTJEz/96U+mTZ32ta99TTd0TBPxAd839+/b/6tf/nLHzh033njT7NmzOSb7aOmHf/nLmz/7j5/+x8/+c/z4CVCx6LVhuAfKR3o5zJKhVD6YTU2Nv/v9b/kdX7Ro0RWXX8FfWbJkCX8ajUa+/73vFxQW2bblrdPqwwcdDanET/wXDvojkcjSpcsefuT3a9eu0XXDi6v6Ru/zDa8cYUxwfV39b3/34DvvLL7h+hsuueQS7g2+9957zz33HDeI9913b2ZmNmjL9YK6PYGaIMIhO2HdyL1tWjSq3F1p/yikdCjtYFLo2kVP6eq00iLGoQ9FwNyOUMCy/VLSTxO1LCLPAglUYVyNYZXTp8w/WDVtHtICiI+ioQ0YOW7y3OvHTrqEBFItkW3jHwwzFkrLuuTGu/yZ6R+8+dShrasObV0j9jZSPqRy4VV3j54xFxv+KKGWzQwSmDTtSg6Q3nzl0cPbVp08uBWYM5CRW1Q677ZrZi28xZeWaVLm04CHAYFkjl/jH6JCnwcjS/DeU8WOaeuCWPT0icPP/un3az58k6MFft62aPOhvRuRovkE3km70aaRVkOwumoqUWaLvLBOuoHeG0sODKlfBOlL2bLukv8oek8lduXin/N7vwUjAxMEHPxMJmOW6qUV0IrafoxgQKKRM3W14YaGIp9v0ugxY0eMCup+5HTiSWIG6lJ7CFq5XsaGjmUrrsJYgipbcEmwGGegqOLLzMi89dZb+aikpKSsWLHi7bffHjVqFIc4WVlZ0ajJtzVZ7QQctEyRbMgaCBtIeVWQifvs1EE23MbwX7iZ4X/loI3bGG6nXTOjcySlaVErGgmHQ6EQNFnI43AIblvHjx9rbmkimtgkPYXf8qTRaHTJ+0tWr11z//+6/7bbboO8AEPTZ04bNmzID/7tB2+/w6+80ufzeQuJ+uxZArqVsk+g2RAIfvjhyief/POCBZd997v3Z2dnczdhbPUYPvgPPfTQxIkT77jjTrdyKAFm9T2SBrH4WJ08efLxP/7xhReer6wcedNNN7/37nuU2t64b9/jnP0B1TCIQoHgG5++9vLLL375y3d++9vfTk0F2e8xY8ZEzeiLL744Y8b0efMu9fab9uhc9Xiy7h6mqAyo2NkYcQrMgFK8gySHnp6i/5UsEkH+xbB//lU3V46qzsgvyM7L0KCqCVlATcqxF1AjiIwS9pcNuOb2r6fkZAWDBhTDIzRo+IiSgu+kZeagEOAnbo18lgprFFdUXH/X1yfNnHli//5TJ46GUlMKysoy+pUWFgzWIeXHbTwCi8KwkZ4795pbBo0dd+rIvuMH9zHLqigfnFNYktu/3BfKpLaokeIGrLDoH//tN61tLf36D0ZpwB3qpzgEunmyAU7WnUAFe5adv+j6OxZdea0gdAe+VmEiIX4Jcog29oeySgcO1FJQgBFNqC5yi2oDOsS4u2IykBnElkZ8frCtWBV4OXSBbi0OvlBJHNe/AVZ9DkmhZk1GdPlN4LM5wAfatk7Wng43NeQHfPMmT5xYNcYPARWIE0KxleCKkbV0TMhlEop64zJQSArASRBz31o0FlJZAqe5GWBwBuAlKBv3Rp74U4GU2LJlyz7+eOmVV15TVVnFB8w0zZdeeikcjlx3/XWhYJB/pK6u7o9//OPECROmTZ+u6WTHju1PPvnkzp07OKwaNHjgrbfeVjlqlOxM1gz9TG3t88+/sGLF8qamptzc3CuuuGLhwoX8XL/85S9Xr159/NixJUuW7N+/n++bd9/9/+m6LsKyKk3AARbHbTOmz+APEWADSBcMBMeMGVtS3H/Xzp2NjY0FBQXe5u0+E9U+dyFSw6S+ru79999vawvfcMP1+fn5LS3NfLjS09OvueZqbq44kJ03bz4fTMuykNME1zeeSRGAt8h6+/btr7/++qXz53/jm/+wdOlS7q5Ydl9m8AuhK4lfuS0+XXPqvffe0zT9iisuz8xMj0ZM7plxx2DRFVe8/c5fPvjgg4kTJ6WnZdhU9e/04IA73FeSe5BKKjRNR8Ggnxo+G2rcme4gKtZxTEGPhO34ghDWTvm3g70/eeO5p8c/7gjtD9iRXgaOF+bp6kMEbMDPzsgvLSgcwN3xRtPSUFjIy4FoD0dBFnAJAwqzsZaaV2zRaEtbRGfYAmDjS8kt4oNohsOWrnGnHEp6mAYsnyiCdF/RoAmFAyaYkTZuxwyfz2RaxGSmGRUTSDdZlGqoDaQSSUFxZXFx5aixYWpHQ8EQlCHbVmuriTEQroqAo79s1Az+fsu26iMW3zB1oRFEBGc9IEDGDSOOYtsIpA0bO51A8lOgAbe7iiG4xcCkiUxqW21AJKtRWY8EkQMLu+yTuIMOAdbpnY0NPoWAEaJEt/hygL5lweQu5pSNpMy4Z1ZekIeqIuQ3i6NVrMk4mk/8DEBVe+RMQ11rI8SuZlZXjx02ijASbQGdH4MQ1VkrhtF22j80ptoCOp3eLF7lPGEYuzKqSQ/IPNM+buSFACeDMLXC07qkbGTeHUxW9csYIkOyf1DdOACffFOAaNJTTz2dnp7JARbHYCdOnHj66adamptnzZyRMXAAf9vWrVvffPONMaOrdENfuvTDn/3sZxzozJo1i3+Qg7Nlyz/7+c/+Y/r06fydhw8d+sUvfrFixYrJkycPHjxo3br1P/rRj7jT/6UvfYl/pL6+3rT4VG89c+ZMQ0ODnCSqOUDwMgSDQf7Om266KSMjQ6Ir0f6IWltbmpua+/Ur8Pv9HBAkVBz3GSrvtJFjwzehkycPbty4ccSIESUl/UUaFwg4OHouLCyaMGEiB7vHjh0rKirqjfSYvSx85c1kFRYW/vTHP54waUJqaoqYikgnmrdasW/Euo6unMQrPPMF/Id3HNq8eXNVVRUfZG77LGpLlv/S0rKhQ4asXr2G7yHcQ5AF4r1g0jq7vYP1QFLDMqNhw9IgMabHwR6XaDvOEOimheI7AnHXTCXu4Ck72xuSvtJeAuqczTVRbM+4OWxFRE+7CRlBojndRxTJ6nFR1Iw5AAO+MIMSm6iatRbKDFFexIGYxvyQgkW2rdkW9JrhMBP0rTgV8ZnRBrNGQ5IeHJo5QSNRdm1xOGXZMDsgoBBsaoUUoAkBUmxAyEV1pre0miLGxBEcgDtKgGJAaHfZWNXJQA9ZFACUJTpGMWWW6F3QJYG35HyCon0OvYBqQIuo70sE05GNk2BWlOxp0vuC49/KqEZtBlVAkGEVwqGGYEv35J5ZN1W5J5FSc0m13QiZpP4zEHK1N0BPnt+8aLS2rq6tsa446J82ZvT44ZWardEoUOHz283XtLDb2OWulIezpdzUWab3ObGJdWW9JKy1xKXnfFUAWBa2LSrTPImB2/gjyKVORNpZ6JExbUDFoKKi/tw1rz1zuri4+MDBfdt2bPEZvr3791YMrOCH+PDD90MpwTHVY06cOPbAAw+cPn36f/7nf6ZNm8ZHdsOG9ffdd9+DDz44fPhwjoqee+65xYsX33///XfccYeu67W1tT/5yU/++Mc/jh49+t///d/XrVv3rW99a8GCBffcc09KSgofc2/URP7CHVa+7booip8iHImsWbO29kxN9bjqrJxMM2q1N369KYDUw7ks2Hps7g/qzU0tp07VcNCcEkoFLhpB1UJtFAqm9i/u//6SJdxcte8S7QvGdAKz+HQdOHDg0KFDuV/DTSlSOjQ0qQxU3+Psk5XFYiXcHPIJeerUqbFjx3JHCwk+HQZ1xzQzMz0vL2///n2RSER5lqiHp6gUYRP6c6o0FfTWbG5eGDcmgvpG2hyp9khZB4ZA1wmLFaWo/uu4ehpPmYpsAXdjYt6/xn3WcwT5sUR5QfdQ7d+W8DPZuZJfiRRisATBOqVCGZowoQ/taJCqKBeYUg1wCdWYholoO8SCbUgQoQnYJF4GqgSot+J2QldEYlRS4nN8IVKCADhg5qjOKiIZTQmQczJbUorr8AGfaveUpUpi9giwxXGTBhEyuAAgRQVZI01dJBYaKViTvFM6Qn6REuOvU0FvpDEph2Tz76Ih2S7KL8HGFtGxU8zcbiTb36CEUfXcF0dCWbDkK6UWJLXZgAIEA4+rI9UlDs66p9Y9NkFFBEeSvAmkIQt7lAqQExcRVYi6wJrMNI+fqaFNDfnB4NQxldVVlQGiCwJemXhlsgeSj5pb1O3OSJZEr5i1GxOUdH52NKre6DGODyZ3tNbi3+DEooSSD1SWK7UiFitT8Ko6xP7FKta5p8idwimTJy9fvuzEiRP5+flbtmxJSUkN+ANr1qyaPXtWW1vbho0bOH7KzMx85ZWXN27csGjRookTJ0ajEf7x6urqOXNmP/zwQzt2bO/Xr9+77y4uLS2ZN2+uJLDhr1x99dVvvPHG8uXLOSCTRRV+v5//ImJRdgLmhOuxLE99FbRrLf3kkyeeeGLcuPGTJ0+SUbdeycXAYgIBPaejx4fHIbNgkUi0qbGRA1mfz8cEP7Est+LWKz0jI2pGGxobvA0Kfeiqiw9gZgJaSZJwm/sCq+cSvkIYJ0gKkpaW5sbGhrS0VO6b2dTlp6T+oJ+/GA6HGxoa5Dt7QUuLV9ZWSWRBQEXI1UlYpXncWoGxktgF3e/XOkkQdpQI7DzhgTtIEKJ2gtmdnK5z8uuEK2FOEAvsv44MG9jMCdRlIxHBwk4TvgBEqnwNqPAFTTkULVmCS0oToEZngttRwDZbdGIKuCXHmUiJRxsa6wDuIClrzSQhGVRXE9G9qRPISFL4K+AzmbkRCUcs+QQEwBIgF4swlmBT1Bx9HFD8wTFiJB/Ejbhp1UwOqQBgQZmrIB/ncAqqr/jX5bjK1JhPB6DHpCJVOy4AfDatfZaElQAmFCXY8PPvpDlKfxAis8RF24IMknWP6G2ijyiDTYx5ROCcP1kQRIQlSgRcNqPh+jO1jU0N5YHArInjJlZVBnWD2EgzHKiCHVJdHKPQ0pzrpckiVCjZ5Pzco9r5Sml/HFH6IevFBA+WmLiixN/xMRRsdzhbkrHI8F9CoRDHSRw8HT58uLCwcMWKFZfMuYTva5s2bW5padm8eTMHXnfeeSd3Mbdv38Fx1ZEjh3/60x/ZIAeFDcO3du0abnL27t3Lffpjx45yHPbQQw/x15FTFMw/sn///rq6OlkID8rZti3TKzhBuN2RnoAkF9Cjko+WfvSfP/+PQCBw7333lZaWqlRXb+S76mFopbxqEayWpotjU8Pnj0ajIhqPiVrxSHbD8bH1+fx9zYPnlNLyihHFBy37YlfnGr5CLKYYrIaUbxqGoXMgxXcIYHAVaQMhs8uE56DxGavGulfkB8VqUj3XwtIT7PPrwK0JQEE2lQHAYKKtLKld0KOmElRxmRKJU1uTUHXCPG4yjS/t6Zw+EXcNYHk/iztmFvXWZ7lXIk+nQVqQW1r4aQtmJo5sLMED5mWyZ9gJAQr4BXk54oYWsDC6RMnMiDCWDTaOOWdnTlQQ2ULJmiFpttU3I0wJRYhCKFHoAzSnKhllewpoCIsxrVtK/AgbjgwHf256jAxUV4g/2UIhSRNhG2FpMQj4MAXImA3RNUECjhPuSMJtShhG5nlF84yqG4mhGjYtZgKTOzIFPOT2Mywukq8JA8CiC9u7wY64gpaGuAqqhDYhhmO6ZlsIBPkw9kPLYGtdXU2kqbG/zz+runrM8Eqd+mgYQFgsMyKKrtzMqfzuGu0SwHIXBUlGNNr5qCaw5uJ2hLqo3dLzxPEgqokF3YpFlYg38+T+KYpFIB3Ftzh0Is1GRUVFv4J+W7duzs7OPnjw4GWXXcbh1J///GcOmzje4m8bO3YsfxsHSfz3UCjY0NDs2Jvm0tIy/o8js6amlqamZv5La2srIRF5Op/Pt2jRlSNHjvREWSQhOxLSs94Ustx1YcD4PstB2ysvv/6rX/0qJZTyg+//+7TJ0xhzhqN3mgwmVTJ6DPt5Qsuw+kMpodzc7Nq6021trdkkG3xoBmQZkUhbfUOt3xfITE/nd9nNxvZZ/S6iK0xU3QGTCQeHbqSvmu1zwCxR4sAElZ+dlpaWk5NbW3smEommpWFBfgzIJNwWbm5sTk1J4/9EbYNgKur5hCwT2uQKIEq18ohlA7OVqL+SkQVdCKiwZLTeALAsGkNezFm7HUWw2nvkNN4vp+2OgOIRVSdP3c+6L9L4M9KzRbBkOYrMFco328zrfGKX0cF1S2zHUMe64RTe9pooKHiiSYZfJbBYfGg04RJV2TGLXSFyro26xt45iBX/cfeZrS5V4UTmFJY5x8GuMqAV95XjRtV7mzqJtTBPEpeCaKItpzsVZV8uiykSctqCHz+m4IK72WPHIm4o5auxBY2iAvxikfTGWMfEpJbfirbU1UYaGotDwZljx48bPdrHJ7YpYj0asVncikm4WaxdbCIpwKIePPS5R9X7ZtZu6jLPWVxzyqTmKB97TYTUqTcmJLch5SMqMTUxEyiKVY3IjFL//v2HDhn62WfLNc3w+/1jxoyBqWJZH3/88abNm0eOHJGTkwMtAoFAWlr6rbfefumll8pACNxlw+B22rbtDz74IBRKmTlz1re+9W3+TuUnQKTExw8lK6s88TOXEUDR7RMJlPld0/WGhoY//elPv/3tb0eNGvW9736/qmoME/0TApz1TjYBiXOxR4EQ91z6hd9gOzc3p6KifO3atTVnasoHlIuGGxByqG9o2LVrN0fF2Tk5/I5I2kZ5N/toGjrHWJB/0Ai08sR0iBWlC3Di2HZSsYG+R0cQAaNYEYlovygcMGDg9u3buSPXr18//orYQKCU8+ix4xXlFVC46VUp7cnVHqsCcyPx2AbKcluopjoZJMhl2cI8YZbELsiyDtz+p/dp+3842dOkR0Dn8hSf7RTtnyZecPxbUaxgx/NOz1FQ8hcR6vhqY68nG6DEN6B23xQle72Tj8e/rq4v2fGTHKGDsepoVBPfI2cVkSyVydn5cWJYtbtNicrwYpObFCbaTjCkVg3CDEw1ZpNopKa2tq6hsSiYMn3C5LFVVTrjL1NRsiQCJh0Maftb473duOPJ+blHtStrLfZZNQu9sjOqJs2bRZQBuRjXkXiuqZI5VeLAN6zMzMwRI0fs3Ln71VdfKSsrGzp0aEFBQVFh0SuvvLJl0+ZZs2aHUlP4OwcNGsRtyd69ezlm4riK/wwGgxs3bnz55Zf5npifn8+3xb179/EDBvwB/gYOs06dPv3qq6/yj4jWNl38A74Iuat6qsokJzJc6r59+37yk5/87ne/W7Ro0QMPPDBx4kTkoTbt/QgA95hspSxSgOlhWzQvL2/mzJncOK1YsSIajUq2Mw5e+fCuWbOG4+Dy8nKJrvqQQdfCLaD27DbSSO1nsfjU3tc3hucU/JGlHY6ILZDkFRcX82l5/PixDes3cOivEbVR7Ny1a9/+vZfMnZuVlSWZ27yypD21yL26acxRvVVrH3Za2yORihFKvtXrmPRll/seZ7ElVDbdYRKjF0XnReyZOZZYIAkQO+auQSsRwVjoGWT8lyhIHyE/on7uTphtTXV1kcaGotTUOePGjR05wocEVRfQn6lVQTDDF/NGpdaug8S88TEZRZHdq9K+wsYk6N2R03YuP8b3rMpRVRwt7dqx5+qrrhN9Z3TcuAlL3l+SmZ5VVTnap/mjdmTG9JnPPfc8B0yTJk0aNWoUPx2HUz//+c85lpoyZcrgwYNnzJjBMdm7i99dsPAyjrHqG04/9uhjS5d+/KMf/XDY0BEZGZllZeX79h44dbKWozGoU9B0rzI1t/Sr16z59a9/vXXr1jvuuOOmm27iPuvBgwdljpSDg4yMDP7T3V77FmD7NBZVnRoQrL/kknlTp7z9h0f/UFE2YOLkSdxi7d695//95sG8vH4LFiwIhUIceKE+foGuR7BA/iESjoRlGLWlpYVPxba2lvr6etuy+czkHgVfC6ivpq0LESBRYAODqhEgHwJ9OENbcOnCd99997HHHisqLqkcOYrvznv37H388ccHlA/gewsfYW8taY8PsiJ3ZE4ySe7FRGQOwc0XuRvZRtcRkzvtW3h9j04hjyZ6BplIRsvZQgC9ywpr1t3L0ulHVHlehzdeVIZZTi23CE7ZdqSloa6+pbGxJJR6SfX4McNGBJihCS4DgGBYLg2KzwcSvFCDL4CsjEaL9KbsYVKVcm6iUXXvI1H/FGkLc7PqpghdVa8hQ4YU9CtobGgUHYKm3xfkEIqDpMqqqn79CkGZkaGKigHf+Idv/Pr/PPCd73xn8uTJ3JasWbOWH+173/1ufl6+puu33HLLoUOH/vuX//3hhx8XFRXu2LFj/759/MXRo8dy8JSXmzd96vRH//Dof/3Xfw0aPGjSxEnTpk0zTVNVrmikrqbuwQd/+8EHS1JS0j766KNly5Zxv1bML347rcpRlf/8L/9SWFgoAVbfo32IxfkJd5bfxP4l/b/znX/+z//8xb//8Iejx4wOBoIcuUYjkfv/1/3jx42X00CGXmzJ/9L36CR8hbFlWe+9+97bi9/mMIsP2t69e48fO/b0088s/2wlXx452dm33/7lMWPGtO/N7Hskcc2dSJDQ+oB5GIlEBw4ceN+9//SrX/3ye9/93tjRYyij27Zv57jqX//lXwcNGtR71B69evawu4q0PBV7LxWUA4RKGkrRVi/yiUkxlk5o36rre3QK4pk0dxo0nSpMn5RUtttcHwtB+wABqlUUxczPsAXJMFA9IkxGpBj3M83aupamptJQ6uxx40cPGxHEPsFIRgQNlOLvADoMii7SEJYswQL+NsEfihW8TMzEEqfiSVY5fP3rXy+vqPD7/TIxJC0rf0tOTs4dd9xZc/r0yJEj5YvDhg27995/GjxkSHZ2lmkKTEbwwssuy8vP5V7myRMnTdPmaOzS+ZdOmjQJ9D1Na/jw4T/84Q/ffOutvXv2HT58uKCg4Oqrr54/f34oFOKbI98oL7/icsNnbNy0cdu2bcOHDfdulPwNPp9vzuw5FeVlBPJWlvouou+WUrusrFyq9PStus6DWO4Q8fs4YcKEn/70J++8887+/fvC4fDMmTOnT5/Oca3MDLqfcouK+h6dhK/4Iy09vbioxLKhPKikpGTWzJngXBJMbZqVmRkMBvuG8VxdAhcwyXk4Y8aM1NRU7l8dPHCAP503b96sWbP4PiMD8F4ujB69cg/jgiqHVmXngtOJSe4rp2iDyOajJMd5clnfdOl7dGrlhfdhE7zn0MHXP3rvcFtbXmF/GkyPAOsXMzHzMeSH37vB6RBlppKTDJCWiTRblZUJlnbY6qgPW22RcOOZWtpYlxsMzps8ZcyIUQHNp1lMc7CUJKqzoJVWiJ5fpAALRoNSDbowQpo9vNhfmhFpbmkCcjYmKfsFBZjyoGJyH26Y3cvZ09HOJTv/ZYxSkCkBuzqHVo0NjbZpp2dmBAIBScfM9xSiIanX1NjY1NLSmpaWJutSvWyW/GdDQ0NbW1t6ejr/q/cCnEuiqjhLtVZitwsy4VJ7idHlZoCbBI4Im5tbgbKl16ABt4mB36Dm5mbLAs4zDlK9IcCEmXAhR9WdD1JEmY9ha2trJBLphcVMCRQnWIXOhSoZ8A1KH4dh58p7TziQyRi3hlJTUiyL8nXXS1ZQgjPgHWFZZVVfX89/ycjIkE9drlfvNtWDX0EwR4iYFTTnM8OfEg74Vm9ubY6GENH5FzJFDbvOlBJu0ocsd0iQpsEemgUUH6to/zQpvfXnEM1lntb1Tg6OOrgSt5s+6XfBnYYy2x8/6bfAnQqhkE6vpCsH7OiLJ+gI0a7VknfE2XTWU8cx/TMRMQLieAgzMJmA1iS7eGfKMF8EVEBxCWAs4SWYjAQE85NP9MsFGbWi4aba2pbG+tKgf+7ECWNGjjCA8z6iCcoFoGFFMi9IZZeHw0GWcCPouYwq8/CH4M87ql3UiaIJ3O5QdMPdZ2aLegbs0SCVjhZ1S67dLdW7K3mpERMUPxxWKvE2InvkBIkyZbpGcnJyZCpKnBagqmiblU2xOAMeme6mmXDGzMzMrKwstwgswaMVtCfCO6RejmOFFfqqW7oSGEiATXzoOLSST71S2d5b0zeqXYICoqZd8PzIigS+3RFBfonbA4W+x1nDV0mfygHPzs72eoMJb+tx/jaHKNUVzEHE5lsWFYFhyOdoCtxiKjgGcBz+UTurTml7aZqkbeYdPU36p88xBZPmm1inl4HOBsVQF5gBk56Ode3sXUScXTxgR1+8E77Vrnyvcz11AkrgRlDMEWC8p5KX4nzXNBGhWy6/qw3ykUgXrqOfWhxINdbVms2NZSmiqn3YSN0GMQI+x22mOufhIkFyEOhYBQ190htxTqPaHk59jlFFHTztjE9XcKgxQbfAPMNOkx0wCZTp+lOHqoIIGQhxDsI8dH9SXAgDEZQIE4qiBNYeWrkbaHsHNPY7i3XlOHIBrA8HfBHrlTDmfYwMn2Mwvf4GNCErZmkk6Q5d/rO+Uf3iE9UFTzF13Q6Wf0/qPWNHp15yIoGWsMOAAyYRWBg1RCShJvIQMcVJ5fSGiHffoxc7d6KgmsgABzzzAfhxSVvPx7RmjomHPo0QE/SOCPn4+aNhjq5aG+sLQikcXVUPH+knOgMaa001OMr+KkedkyRjL7voPGtBJcw8EC+mSOQqkX5xinGsAt2COT9W3YnchlHmqIy72KiTk55lW8Tt9Bd7vdFiF5Ul6wMBX2whMNVv49x8jHqletNFDrkuAkIWdycUG7EN+RzQdRH6ekjyyhC1byY/gh70/3XdvI63QtzrN0r8BbZ1fB4sgbTfVEhNM8G+zUDfQPKKyk0nLjvGvvgmBIcUHYDKxeEuAsg56siOtrU11Z2xGxuK00LzJk8cO3xkUNNF1lKzlawgliiAxO41vng1LiSzP1VUwtiHqaFjqXcda4LGjNCO5s65jzxSjrqzp7j3U9K9KH0CD1Ev/puyu31yKWd3xnD36L337MLDHt5m5AhSXRxbRt+jO91bR67W7erSkOEzAgjU6UBXXRROxHzOZDuEblnsAtzuL3yOBEoAL991XDaOxivqeAmXO9ASYx0AG9xFAHcuXzOOpjueSAquk2JPJQ4TmbL4y1Ccbe0Wk1eVpdv10phqldBkuR7BsgwLUm8mwlHEDPF1MOsef0SGxzimswRrpoiw0tZwuL6uljU2lqWkzBg9ZszgYT5E7CjSsGYhoDiHKlSmrkAKocfSUeii3PKxlGCSGTtma9DGJLAVzAySgIZwd1oX72yL1+++aEzN+Yph4T6MdRbvKI7hPlai57g7F80AJi6EXr1RQIMLiknA99GedVf4Sol9yWpR2eZj2aZFpVVCwgKCEHDHPRvnEWAxT1BFFEhLAkmiRGBUbS1FrFP7hyW2UkUFjt4dE9+PCAEOKlNCommS2QQoJpk6DdgmSgRRhdAP0bDbU8Y8ojYOITmm8Uo6TqmLypoILCtqHd1tQvZquovQQw2liuMEABbmkDlsnaL/i6qlwIhQL5TRCIvfD3leLAPVTGf83hEhPQ01MRTZDGqSgFhdqWZBhFLylcNXIkwqOTFvIfQXRsmUwnmoxewItE5w6MMHGRsYU6XawyzUbXxTfDQswG0g4ezDLIBopLWpqa7WbmouC4ZmTBhfPXKkzrAZpVK5T94xxb4IbT6qFfEiiVp2GsGSLSyCnsHQmCT4crRwlGYyhZtO2XkMtidUFbC/Hf/VMyWRKOaDekTcx2vTQYSPSWJrGhfsc/oZpZMGYyiq8PsGrJvnKiStRM+IS9Lr9jr0PT7vlAbLTNUGDKafAF2fbdmUUOIEO/igE9bxfD5fNVhUNJEDRoANyRF0AolEInl7DNUMBZa7MzcB1qOQMCbIoFJqTVBQiP/n88oG22IRkQ8VmovYxJK7W2RNBUcYha40EdUgfICoBkknCi0B8gKYOLpUdRNIhsUkgMGYcdPGTyBSVw6OEjlYDQk5ZwUbiWxxZ8ilEHcjKVBCI8kUdapzaGIL5RkKEkZQKSdeAcFpfiwbSaY1gQH5jbNtEIwUwt0Wv7cG2FJ+cgG8NOh2gaMAgrawyq8hgTEE7uoG58sRPaVS9pIDqQgmUUx0Aex9jIQEvaWFaBQLMTn2hYuBEIpi1MbsDIKA1jfcGqmvxU2NpcHg3EnjRw0b4UO6TamGpRiL4zAr1na3ibOjKvKL6UGEz0CxGH95J3TN7w9SZ9EI90q0W2LUlyE4LwBLEAxiDXICOiZCgbHPbHUEsKizEh2NJOX5wG8gioKZ4eN7bwD3ac5091zlmwQfYT6ugaDfE9uIF1vv2yLOZT5DEES00EPvPP/VZ5gE4ILGsaswscQJ73cyrLrfT5LdgO66GQKLOOEELGERQQ67EpZE82e1gtAdKbrwlbI1lPMLBkxpYyhQAYneWghnycwoETZW5tqkop1IbSkRFvF23cmASFggkIkTZnVUhsC8Iaiwdq6RxQVF/IxvvM5LAktSrMVCeI78MRVKtwS0XuCTuop2aU6US0hUY0nOrcnQlC3CcAQp+V5I0cFQabYgEdIIRO4kwBIoFim/kRGB6cR4fP6IRUIfB4wSh5ig+UsgFm0ACrSl9LMcXVuwYcVpWX+RyA2i6Ril8CNH207U1qCmptL0tHlTJlSPGmXw8QZUS8g5n4glS+ee04T/IouiizQNKDGPjIXKBCJ+bBs6IhowsxMo6qfOXaZYZV+6cP0MXTBOMNZlNpHeGhMjUq8JCXE0DRY603Xq3VS7Tpry12/jpavqaDHEDAw3R+CeSfMPw8gMLHk6+h7dudawkPS2maH7kOJwIsibxyBMVab0jXxXLRGEbHSdgOqghAeY+f0+UzOoQCBdWfgyRZig649R3H1IagnaUwHF8QNhtUXJaJPM3yg8wagpAk8M2T7GNBKL9+BkP6UTTyXVIXZIKaBbUqxlTaTYuJWxJSGlABu2U4wjaIIA9iCQvGa2agy3PRVctB1hlYxaibwkltk69R1FATVV8TkRlzWoCEYpUiVREo5dU+ZWjoFnJzgzmIVlMpd/a1ugOSLMI9WBbQVTmb7kd1KGJjAzRepQ4jPYpExCBJK0kIWwABpATyXSYiIKBgcEunViK5a8zm9T0vuLEt4pMTy/XGZRjVIfBf4PsUHSMOMXIZ8C0tXU9SenijrrdciL0aGoixmM2eFw/ZmaaFPTwPSM6eOqRw0ZSWzNjPB7qxGnVKsL3wXHT+n2H0mY8B1Z/KRHONdR7WiQO7oSsVWKCKKtW3xUGhvbTp88KTgrHLF2mHvUqexnXYY0Xp420q52sT3JGU7GOtEZfx5zObqSg65YEt6R22fJqigTroQlG1vSbu8i7XjOEga5/Z2i8W92sJNw4jg4KCwsaAuHa07XEKwzj7wiihU+onZMfiyxIvTzM/mhTkkKvRePnDFk8d8l4UraI37ShSvp8Ls41ts7FQX6pxD65xM4GAz265dfU3O6sblVI3oHN7T96ei5j2rS70LbrVnSjnOOJTp6nV1J+yN0cVQ/x1qjnheTzHC++2vEzs/PM03zzJk6EdDGKp+hyslYu12r/Q5G2621rnyX9hfWle+SMKqdsxJ2dCXtL76Lo5pw7zrcN2yRHBN8NXZadpYvI9Om1DZtS8AWLblTGXdhumkyz57eSaVFR2bAfTH2Bg4aDCqJIvklElvl3WIFSgAaiKq/0pCjpBg3Op4KCFnKKxCEjD9L/ISljwkn4n4SQHgLvEwNLD6WmTYwRDYFsGFRamJsi3CZrPxXDOEqoO3tBICIIBVJSFv80RR/0YEuQASaIEgGf6IAOYgumuokOnIUjFSsXBQlyG0aECUfEFOTGTe4k1AcJyJDopyZGoC8iK1iEZC25Me3CTYB5CGOOQKYBACkwlBGOcaiKApRJKjQ0qAeDcjP+de1ZPcZlnSbKNlt7SKHk+oKwKL6zQY1dGowHAASPlsHDTkRihMROkOcVHcyVbJAW3N+ok6fUo/RQOKYBqKWGWmtrYk0Nlakp88YN75y+Ag+qyJRE7xgIbsH40hULjXZ5EQdTM6OBqErNUYdUYuxDo6Du0Z11smVSFojqH7jzimQjdqsrbWNEtAXRNgFWMzTOtn36L7Eiyrmo4ahWzafk3ZbS4QQSxRg9OUJkz5c+6QWJjAJca+UcodQs2wWidrhNj6GfVp+3ZwiNAiyLGaatK01IhiJRTMSTrg1uG+XOKeHBaae6dDgZflSTG6FragVNS2Laph1xAEUt4HrOMnbuk7vmfzNmuBFlELaov4J8kpYliExiWuAxg3AhNDdwB0afk/OCRMFhgQ6kWpzUMEONUl80dZGo/Ui3a8TpSIi0iuUb4bEMFICwQyEDVGTbstyIicYJgaAyP5zpvKYgKMAYYlkJtbF1JRZPJk+xMAwBqfn8MiGz0MBujSGGpXuOxFMrzaFQ1Mht4tFjEeXZVJwbaJA3SflfDlgEmldqhhYbAiVYUgEQTzKj8PNtbu3bjixf0+0pS09O3fQ4BHFA4ZgI8jhsQWU5YDziGDtl1rJOMYtyzo152e/v0SUkMn8Lp9oJBpprqu1SEMLxj4kImmI+tyi/tiSj1Nz6vQp9p6SQPgK8c3Yam4qSUubM35C5dDhAX7vwG3QZEaSiMpBpWhxDmyf6NwpZDvHQ5/j1OgcP0KkDA7BQrgd0sYaEsJyokGCOG0YpC/w363ZAeATBMeCMD4TIaUF3pwmGNc0zc2/q7YVzP7WzZbKHXi2HCLHUNNkCw+DvLYYUCjHgmB336Obhp6JLjbYGvgIa0AyjiXPDSFuf5a8NbIWpW/IugRaRS+m0BHjw6lDQZGIe8CgagQnFL12aF51qD08PxcoEnmCDhf+J6jlGTP4b7qBRDYpamkQxCCkS0YOi3Sd+FI2gDKRBbUg1syNzZLFr3309p8ppOBEp6Dgr0eyugv7Bg6f+vd3/1Naek4bRL8IZm7MDN5AKFI9ATJ1KJKClMjCdMjWGcK2UaRKyJzUDNK5T0aYSEAqxKDbRGRvsOT+FUFaMIMcdVkAmrAgJQcAakJiF2JpGlRuaVDFr9TZRNQPUwLyR1C2kELsPbs2vvj0b3ev+7ThTA2lzG8Es3L7TbnkyqtuuiuUU9IKXwpZNjLA3moaaCIjG3db84JYo/xOEh8mAUBylLW0wLBiFUQURZW0HUNE0qqjjnKGagLYSNbSQTl9QVr6zKlTxg4bHhDnxJou7ZlH55z9LaxzKM6DvZNJ5T6g08dO7RtVVC3MHRTZtApdpY7Zx/EaPz2IWViyLJCTIKRM9L942VR67oKZQ4xvx/TIpDcAvhBhqq1ATUiEelLt0pM6k5aVukQu7IJdgIj2EemTxlS2mCx5hQsjriAKk0zFrNeTH3hGVRErq7Lh3rTxqKoqJrs0qewnFLuClMNAzC3EksnE3j3aved6Yp3oROaDZOc+d690Tbc1TXQXnd1F10WbWvdvT1iWsou7a4NkiagiYjQSbThz6mikpV4Lhfr1G2gYGRZxGAuUmWg/hUUvpOrh00SKkNtbWzKAaUizqV1z+tj+3ZupbYq5ZkJgBUYmAINA/Hpavm2HoYGVWaLxUheRDyrFUoHVAk4sg1si9kUFzROxAKdwyCLkWvg2axJp1CAHqYlsnSZsg0aI/K5Y7RyQ3iOih9FmNv+kheAs8oZBT6QsUBfrAYrRGDFFcZpOLeDglzzCVMNUMzA9dXLPsw//cu3S1wyfr6RocE5RRe2Z40f3bnr1iQeam898+e4f6Bn9olCiBl9GR3J7lUnIbpm2WMb5OZwMBdNGDRlR2tpChRvqrAuowZIKzTj5ijmHKiyhHijjiax/Sf9hAwbpfOhMW1b6U8XZQbFiMyR/1WwvSqhDuAOU6tT9slL9WpHriy4HBbqc4ZSUKNIwwDZL5EeEz9FzpNRCsYtIRhJlruK7IoQCBRUM/Ezh7B60wqI5U3iwCgLKGksxlqr3WtVg9XS2UFBHiL1HcvYwGb0GZHiBUkJY4XuK3Q4hxbBDFScP9WbSCboIUlW21IQSoyoAtQgTMzmwvWufoNKbj3M7YSYQ136KBnD+i97TuW3bYSuUFFPKKxQbFulVc0JepMvnxESeCMqooVbDFraIxeoPSUfKvPr5gI44VroqAsc2vxqbW0qz5fQH7zz31ktP1Z08GMjMXXDFLYuuvyuYVWTJimWMk2demIvRZUOiBCdy0jOhQEeGV0+3dezHlsHM7etXbVj/YWHF0IkzLke+lCgjA/oPIz7IplFR/U0kHgA1YIsQ6GkR+T0oJrbBWkH0B+qfVMhA1biLbkSlEsNE3aYGfpnIh1Ikya6YjICB4rB4P7VFMocpOTmHhduKhPcd2BKJhIv7VeTlFluyhp1yWAcBM1G0DH2QYhTMVcs+WP/pEo6cL73qy7fdfk8gK+9Mw8nXnvj9u6/94aM3nx45avrU+ddzEMdxmziIxlSa0UNA+4XikFIvCg6Ym5MzOSuLEE20BSmjIzgiYrXKX9QbY4qxlEL2WhNlbjYkFBTNlVyFqunzrz2CJWPATniAMZnLVo3DHpQq+WkdVS813RwFHaoAmbC7koqux2IHTGpFx8TyXG5YFcQS/XqSPZmhHo5xYOawngiRa4wTYgaxGdie+PdCj6uz/CT1kQP44MmFDUE4TH9YUvAIL8DdxFmsvpbhi2HpirVHNCLnKlU9kmJV9rICPA8rg/opU1iupllM/AF3h1X4wuFOJBikWYzThyLUCwnmRKGv7Op3lSqFnDpzWIcVIlHtHckiWOcLjTOZ8hLlIvwG29SH7ZUr3n3h8f9uaTzO/958uub1Z38dSglcdvM9RA8ypSIsVikm7W6Kq4CiytKBHAjbchMkVJ8wfs6UibO4J+fH0ecf+78b1n9SXjHmS3f8q5aWHSWMWBzUkChcBxFaQo66lC6Gjwh+BRGNEokYZlMLQeE48E8Bn7im6NtEx6D0vvhZCcQDoMZLUZ5KgCuC4baKKhPZ/MckFYRPBK0Motc1N73w6C+PHjpww83fvPrGr0RsZILRJKBEI/oKLUXahVrNiIVR8eCRAwYMuubGr6UXDGlBOLsw69Ir7ty5ac3unas3rl8+a96igBa0qCzAx1R8PdJNvitzG0VEPtoPTavIjYPIwClhMa26bjijQLFMlWgxKW6PnKS3SELgv5FWY+k7ix9QSujIjsa3LmCH6iNmxiR2oTIejFVeNRYexj3EiNP+nrlISwU2RLWAhFlOEq7Hhj7GI8c6MWm9onCYObIe7pASGZTvDpHKc5ywUhY+VuTucrlLq+8GWvDF4N/E0XUyFRruhRfvCaXQ+Fnq3AVo/pKdXFoP0mF53CoslznyaD/j3nb3vfIxWLG7geQzFGESLIkvpF5Zx9euI3TeON+YJYKUEO/Ric8KN+3YvFaiK/kwww2bVn8yZ9FdocwU2xY13VijLLZZxC9dWVMle78lS6lIF0EGhCMgzbI1aE3RseVkJy3b4LguDDXmyAfgAIrTLIZME6rvQcOYScIwwfAJFA66oHyw+O4U8GtRC0VtwHIR6FIkPg37NcnjjkwLhS1m85NrVHK8QlzMVvsxByE+n2o0svlBLGRSCODJ1o6gD4d10nzyQMOxneGWM6kBjUWRFQV8BoVjTs+B6sbRgpNmLRo5blpaalpGXnGTZZvQk0NyswszMrP5uyLRNibrGSk08dlu5qKb4A4WXGuilUpUlkFOk4laMuHZqxoLCbG6MXbgcqcJ6lJbsvhjT07xb6KoWMZpZYAKe8MlLu5VHetMxtvdqoFY8FpVvcQiQz24lSVgKdd0yav1LvleSELNVE2RDA+6VU5aL5Hea6+O4kQH8QWzRyhWQM0SI1tq9V5MXWzeyZnUH+g96ApjFM+VgFncXZAmnuKeJhv1zlJ3eNsv/96z/TIcK18TtQ1YUQ4Kv1WWeONO6wl11N2qBRL2ie1fk/keQXAOMMu27fiYMrZMSm1BzU4FdCIyW5eoeiYqdpnj0Su+dPEdgR1LlG6ICg5oIKSiVNqiIhLCT2hLmRpGa46eaG6uzczND2UUgNidPJHOTp0+HgqmpAYzgc9UNA1GIk1H9xxKCaZl5RVTw+DY36fjltpj+4/sb2s8o+u+jNyinJJyXyAtatkiuCnzCBAA8/tQY/PpI/sO1dfUMptmZ+XnlZT6MrKiEX4qjdrW0YOHjx7YbEaaMTbP1B7csXUNCWWnZRcz4hPJQTie5nJsYD09vzi1oIRQFAUCKpTmIz5kr9u9/ujRfQj7hlWNs4hh27GWcj4clqyV7ya74lgSLIJ4RKWtHETlcMdLJo1uc8flzgEDKlIfTpJVTidnW2F/3eErRavrFrR498zYwmeSJltzUkOxyIFwE0W+lQp62lhi0SPQqXzKBEB+1n2YuYWgrn/vUcpMboTcF+WuyjGWz+eD1UNt0zTdP0ns1cOD7/quKmyIFU5gohk61lCgQuEX2HK5w86cwnY+AXQdWFMsCxQfPODVudbziwxczrzENlilCc+wx5PvvZQiCaPEp2IgEOBDaoJTzrxeQW8CgkrEzRtqxQwlMlRhdOHrr7whq6Sv8OHlv0cikV4Jsd1mOMWXyVzecqaEaGJItgODq9PuR1heMitqCyp3i+GgL1Q2eJQeSLPCTcLXIZruHzxqXCA1RZIYSB0lgjGKXb9rLMA+EKesiMqyEzC3mkx/ysCPBWxSESpkRKAOXQSCCAEUaWjWpnWfvP7iH0ZUT7zrnu8zHILQlc7q6o6/8Oxjs2bOHTduRrSFEuAdjnz26VvPP/bI5Zddc+UNt2OUxo3U9jWr33n5z7s2fdZQe4Tovv5lwyfOvnz2FTdn5BdbFAJh/Bp9hOo4enj/jrdeeWr96k9qjh5CdjS/sP/YSTPmXH1b/4HV/KojTXVvvvT4Z++/cubMIcasT997ddOatZNmX3X1rf+gBw3QzcG2JGU1oBkQW9iywDwCv4PGiB1p27pp9faNn6z6+O3jR/ZUTZw3dsIcC2lRZOpwK0F+R8ox026sYKFCEw9ryMk1iaCoG1EBcGUrz75bcEXM06W27RTnUUdtiVCU6Cb/1WIs5SRR5EpeAphX9QoybMgXDN//GxoaolFTNZFR5pQzwn1LTU3hD0I0VUoQD6Y8mx3zbH/xRqQd/kLO8nTrpVR1tfokdmGW+iOLJVzAfxBooLm5afv2bS0tLbm5uaWlpcBDTWlCzKAjYHdB/FdVxqgcbMZHEIteF0JlTYYM3cYQxgU0WSoSoEK9fDDr6+sPHTrMb31JSVFOTo4t/D6nbJV5AwbJ8EG3jKrDxkyJyywoygZdxXrMOmOP7C1RK7dWjK+wxsaGPXv2FBUV9etXIKiuKcGkd24UAAehXR2E+FXemgk2I1Xewc5jqups4+lFVM70Ewp3lr127Wa/PzBo0CD39V4zK5jDZ4mJQjVyqxPNcJJloAMuxDiAFQri87cTyFyVCGEhA2mXzL/i9OlDS157LtraTLTglLkLrr35y+npKZbFqCF3LOmQkfgv6gSXmQMrhbGHTkIETAbSS5Km3seBiMjOcfBkBFkwyAJi7vm1wMjRo195qnH5klfmzr+icvyMiMnSA3j90hUr3niiNDc0fnx1ICWkE1xTU/P2i4+HG4+XDa7ISc/SCVq8+PVHf//LU4e2+VJS88qHNjfVH9y3bv+eLccO7f3yN/6lX/EQG1oBsaGxvdvWP/Lgf2xetdTQfVl5ZbpBTh/b+5cXd+7etfVr9/64atz0062kmRuWxhpmQ5SvtanRNI+1tbRwcBUIAPOVDXwbUE2ly3I6REzgbZc6O/hUbc2zjz6wdd3r/D3T5lx71z0/KCgbaDIU0EXxGFRi6m7JbXfo1kjnnbjxMbFWJOkSpqqC1WEU7J4VrKjGVEpBFGYTMYOwh2r/b+SBZfuECCD6uZ+gY0crSkVWbJG8Pnmy5uGHHz5y5KAcKvEhIpEWv2eXL7x80ZWXG3qQo3cKAktUKB2oWIPc12xwg4QyBDTnQkcMTGmiFiRztnDJC6NMvPi4DVS4os5SyU/bTY31GjFSU9Ph7bYiUZMLVHj/cMYjR468//6727ZtPXzkcGtLa3p62rjq8ddcc03/0nI3YRi/07mlTvjC54icIDoFsjvYWW1JRtAjNWJg9iXEFm21IjNA3/rLX95d/N6xYyf42OXnZ0+bOvXaa68LBFJEZkChK9u2nTSxi6fZeaCole3jNBZlFf0VcirGQzvc2wJXMrAqB4cbkfqGM489+uhnK5bffffX5s9fgOROqFpKknodPRnEknke6K9XERPCXMZrjOKpzy/owCKnqtIJS0MIkG9l4UjkL2+99cQTf542ZfK37/0nogdsu1elX7Ggt3SYBgW60jEO+A1b00Wvkfwy7oRI/tBtyzp/CFBGOCT9ZRTZoax+137pm8PHzqo7dTI9M2tE5ejM3ALueVMVpBAwqn1IDcecIJTQ3C+KnFQ4VzITOEKHFrMjLEzsKLaBUirCUEn54JmXXvnC4w8uefPZIcNHaf7MulOnN332odm0f+XHf5k5/7KiklHUjK5b9uGh7RvHz1s4sHoixcb2Tauee/xXpw5tmjR74aVX3ZJfXB6JNG9b98krTz22bMkLxeWl1932TZ+eaSO7of74Gy8+unnle8NGVl99098XDhypafjg9vWvPvfH3Zs+evnJBwsKitMy+13/5a+OnVz9xIM/OnXi0Mwrrl94+W3p2SXEHzAtm6kGJbEpSm4uKa0DiVNb04xoNMxRpeEPmZEoEPeBrYzaYoA0qpuxNkzK3CBxt0X/1V2ATL6VBLN3b1Of7RF7s+Op3v+mHlS2zXIrqlmUGSJspQnOEycgRZFG9OyMjLaWLJ/fOF1zauXKFbk5/UaPHsNdQzNqBwMBsKtOW7TIl1PJ+ihzylD9h2V1o9ORDPyQ2KZM6nkyAGTEtSgyKCKaOZAB4pg2CJ8hTdfJ4aNHHn74t5Ujq666+jpD9zOnx8Y1A/xfbW3NE088/uFHH1aPHXPVVYssy1q5YuVLLz1/8uTRe+65r6i4xLbbN2nJyaX1hBfrCcdjphgxPFEZzJx2ogsTqMDIYbTh+zzAptdff+2RRx8uLa248cYb+J+WffrhQw/9jjtxX7r9zmAoVahlME9K0WvDur0PV5Z9xemTYJXLB2mK3kx+746SXBdHDh965pmnX3ntRcPQI5FWCFqIpmZZfop6UymWox6i5qdD4pYY4u8RyhM3eur8oiB3XV3dO4vfeeqpJ44e2V85anjv3d1Vo5CkGhdMY3x7Mi1HXQasofS3Omq80qMmO187k9MfarlifhYKpuWNnzaXWpZOdGqzljDttmSW4E/yEysqMoQ2JRETOFdBY4ejZ9sOGWTqnCs+eOf1dcs/2rRuzfjp83dsW7929TL+5iN7t69bszw/b2j9yaPvvPpCSihj6qzLUlJzalqb3lv65t7dq7OKS6fMmFNcXE6RnubPrKqcfmzKoXdef/LjD14bN21+WdkEfs4tWzasWrbYH0qZPGtByaDhzPDx0e8/bMyEWfOOHt278pN3q6cvXHDZbRUVw9NS014KZWBiFJQNqZ4yvzGMmk3TAcWCdgJyglDdbIP9BPIIfmtNC6Vl9bvh7/517/bZqz7+y4pPPqypb7r1a/cPrprAv7JuYyHLCE4MhTAx7hPz+Ct4OM0EjM8CyJdqTnObMPHgltosOyf3q1+927KjwZTAhg3rd+/aXT2u+tvfvi8zLcuyqD8QMAyDwx+wybagJYZGWgBdFjhXIrpEsK7xJcP4OoFwGYds3Me0TOAiAZUYsVNa1KniwD6fj5/ftmxiaBDbATF2ZBi+aCS6efOW3NwCXeeGyRe1oi7JudypbNtav379unXrbr7xputvuCEzM5Of87IFC//4+OPPv/jclCkz+peWUVlXGTd7cU/lCGLQMNYDhxXflAqvX7i4GlY8JpJKFvNB3rJl85/+9PiAigHfvf/75RUD+F/nzJ7+wAO/evqZpwYNGjL/0su4+6r8zyT1Q+R8XGBi9DGmntV7oZWTvIYp2traumzZxy+88LwZjcyYPmvb9q2iMZLYlLWbF70lfOUEfbHbv9muU7NnLrp9ipA7h1u3bn7++ef37ttTVVllQ/ElRt3G2tjd4WLJOMUcajm+C5q2GRUOqlBaBhuNnEhhUoBFzkOpsKyrp24BGImRb1Duh9sW93dNPqNNBPLqCnd3w2mJcLl1qaEDdeI+IF7AQNkJclg2KikdPP/ya556+BerPltSMWTYhnVLT50+PGBQVe2Zo+s/e3/OzEXrVr6/b9em6glTpo6bHbSNU/UnDx7YiZAVaW169bk/o+efpWDjNJ1oba01/PWGU0dPHdtfXlFlUHpk746WpiZ+vg/fefOD95faMPJMI5oVbYqaUdtsPnBgS1u4LojzomETRHT4CETscDhicrTJsSekdTTJ6C43biCiEJLoRIWxbD1ojBg7YdToqjFjqn//q+9vX7v0nZfLRowaTbWADapJlkGJ7A/Q5GzGfboIF/UDO+RpyCG2cpgckcuBDmm4lNQ0Puf9QV8olIKJZhj+9LSMtIxMCrPM3r5j2569e8aMri4uKRHUIvaqVSuj0ei4ceP8/gBfgm3RyLsffVRa2n/I0ME+XT9Vc/rjjz/et+8Ata3i0tJZM2cWFRXZEIGA8qlwOPzJJ0u3bNna3NKck5M9efKkylGV3Il67fVXNm9d39xcv2375j/84ZGysvK5c+cSiF/Lii3lPfDXv/GNb1ZVVWVlZYPJR7iwsKiysvKZ555qamqS7BKSpqEX5Ai8v+BkcA/3TFCTmykdbsTSTz4+efLkvfd+Z8DAgS2tbRw2Fxf1v/HGm1cs/+zjjz8ZP2FySmqKjCupbHPyK+9G64uThb979xrz1Abxibd79+5HH/5DYXHBV+/55t69e7dt2ybzmwqKEQVdMLu4qhVwj8BWF2PJp3z3aGxsfOqpZ3bt2nH33V/lu8e2bVuRwzjc65A3djkXRShfZOSBeYmIVitgiUKKJE8p7CUpG9DTgsZ5ujwby5XtCnaBv60jqZMAJR9AtN6dDTgAJwziN3Q4pk/TUwOGLyQ0BJEhC//9esacBVctXfLihpUfDh02eM2ytwuLS/7um/e++Pxj+7eu37Di3c8+es1noEXXfik/r4gPZB222lqa+eVlpWenhUJRy9YAwABVQVpmztCMKYG0HN1IDYV0bJttzQ22aWfn5qWlppow0ppofEMBIy11eLVJWWpGtu7HwVTsD/gEt5YdMrS0kE8zMQX9PdGNJ8i2pPYO/y8Fg1CPAaKGVOhVQ3bOh/3V42dOn3npgd2bj+7aEq6tzSof1GZboEREsUcZrS+CddEHsKjTTurDumbIYgAq9JZcjAVrzLLBCBhUFcMDRwmF1J0FMgW4obHx97///Z133nnzzbfwNXn6dM2zzz7T1NQwcNCAosIS20a7d+18+ukn7rrrrqqqUbt37frt7x7cuXPXkMGD+bE/WfbpZ59+8u1vf3vY0KGmZdXV1T3zzFNL3l1cUFSck5u1adPaJe+//fd/99W5lyxYt2712nWrGpsbDh7Y11DfMK56wuzZszjAign6M9hhBw8ePGTIYMl7Zxg+vm3V1zds3LQpIz2rf2l/QY1jM9bnGHQaWgP1CP3E6WObt2yqGFDBH6KKDjZYM2qVlpRWVo3ZsHH9sWNHRowYITrgPPyjvcD69sIIlhvHCoWCt3zp1imTJxUXFuzbt48pqhhJ5OUq52B8sSGsHolduWPrDjUf4alTp95ww/Xjxldv2bgRChdkNCimsNSLsq/OxYtCUkaJhgIBv637kORrEilCCyvJu+QRrHA0VmUQJwuHEsueknol2PN+FKfgxJ1TW2pMypJ7MYY0DAToRGg/w4tevvyzHvysDhEfg4BmUcEFwQ1Mq8msCJbEDUJLhERNkpE/YObCm575/QPP/+E3x47sm3Pl7cMmzq3cd3D7pv/58yO/qqutHTlm8vAx0xrCxAb6eSM1M4MfeOacRVdff7eJfFFMozhKoEZFB7UcpvuCqU1RKE1Pzc7Duj6sauKdf/edQGqGiQ1RLwydieLaNL8/xFhqYyuLWJb007lZbItEI6ZPcHUJFR9ELcxMQRysa8isrzm2Z4eOaEFxaVpuSYT4bWg1pIaupWfn6z6jra3pxPEToYJBYWjss3VKDCjeYgJdM+Thjkp6m9o/7WQatH/akRfc+Qzp6Eo6OWAnV4I7nSFecQAc/7SL3wXFy/rgrn2XL/LVvO8UcVBgSGOgCKVJbSaMPP3DxGVBZszp6JNU2XKD45imtLSUQxnuNTY3N2Rn5x09enTTpvWaxo4dO1pcVEoIXblyBV8xo0YNb2hoeOj3v920ccN99903fcZMfqjVq1Y/8MCvnnjiz//6v/41NSXlvXfffumlF6677tqbb7nV7/efPHni//yfXz/5xJPlZYP+8R+/tXnLhl/818+nT51x0823pKVmQPgqtl26rEIc+CHbtjlWsywrEomsWrl89erVl1566YgRIyEPynpdcpsx1BsiMR5zBZtmc0vzqeMnyivK09NSbYGwiWgyTU1NLy8rW7d+TWNjgwpkiyo++ak+258UCrikl+XlFQMGDtJA5JtCfaEQH3ApDrAinuhzXz/PIPPVnZKSsnDhZT6fzh9UprtjaoksGQVmD1404WBC5pWQTUATzmbRqBWJ6oL2GfZYAAkioCEpDrwzQ34l3bTO18YBzrdk+JaZKiq7MARbl6KSEAEb2m0U+fw8JqKmaO23kG2CggwSOsVwC0FZEGmGnlI5fs7S8tcO712dnl0+espc3Z9bPWHuB6+/dPTABl8of/4VN+v+9DaTjycNpWaXlg1dRQJbt2y9ZEFr+aAhLQyZuo1p5OC+vY11jQMHVRopGVHTIsgoLh8cSs/cuXv78ZrT4wePsFEQpJ+wdezovqNHDg0uH5GWktcmxNYsKpW5SNTCEY6x+F0EcMw3QVDysQmLCrZ0A7ETJ44/8v/++8juDbMXXn3nN+43MkuwDR5Va2Pd/n07o+FwoDAzq7DYtiCugfnHGcAvnTn5WdQXCbioH1KYUtSl45gWYZKYr6Pbh4mXDgfL9rHU1NTq6tH7D+w9fuJ4Vlbu/n37OaxPSw1u2bJ5dNVYftiNGzf0LyvNys7+bNnKlatXTpwwceHChZquY0IWLFiwbt26V15+6cabbszLzV3y/nvcnF991TWFBYUcC+Xm5N10080/+MG/rV274StfubOgoMjQfWlp6Ry3GUZA8N4x5NFNlUaKb6+nTtX/+Mc/PnDgQHNzPaL2gssuv/POr+TmZPP967zJz3+eUFGcYj7reSvl3GvYBMJt4camJn5zDZ9fAikBBTAHvqlpaaZpNjU1ScDaOzkRemEoCyyiqFaUAmAgs86k7qdgXJRGpm8ku+wMIE+JG3YeogAA9iUsSP/BcpFYK2tCpWBP4i0mtVuYyK/LBnq+VwF3kNs5KFk3hZpL8jynrhFGVTWX7E0SbhByepSUqlms4QSrli41z5zTKGY+4vwuKKqIEsskCaEA0fstiMtFZ7hqNiLONVBHspZ4lCraPU28EqcnWJOSIuI3qolmPE2I5QCPDbTdkfKKkVOmzX1x76YhIyaOGj05EsX9CgeOHj/z6MFtI8dOGTl6EiWGTaFOPORPnTL90tXLlmxa8/FDv/nfU2cvKqsYwY984OC2v7zx3NGjx27/x+/PmnetQXwa8g0dNnbstDmfvP7MHx762e59WyoGjUlN73f6+L4li59du+rja67/+pe+dJ8/LVOU/EtpPWRrGqxfzRYsX1hTnEEcWokt1GYl/YoqR4zYt3XJsg9fy+9fPHnmFTm5/dtaW1Z++NbKD9/GyBg9fX52bhG/434g6UEiaigk+wTrvXs35dA5t8lpQnM4J3FcQ5H6CHa5jpxp4H3qeY+6WWo5OJPEOyXkqROuhMSmnLqSGFRw6LASriTphXmOEIswMU98yzu9sefUCd/FvfhOrkR2qbb7LrHpmnRUsYfbk8WvtaSj6sYdkVvsQbAn+oBRPEM3jkk8SxI8UC9XtxIqHGkoFKisrPr0s09PnjpZWFC8fsPaaVOmUGZv3rI5akaOHD564uTxS+beomn6tm3bopGooWvvvPOObcNU9fuDtbW14XDkwP79kXDboYOH8vLyVq1atXHTJr4TGoZ+8NB+y6IHDuxvaGiQ9en8qWnagl0k1v2OPCyHtk05CJg5c+bw4SNqak4eOnhg544dTz/99HXX3VBWPrD35Acd7kZZ6Ip7S3rQ4R5T84sxby4GZhEhEiVIMncsoy5JJMj6HglxwfgUFYtpRsgpDI0CzGls6Ht0xRmIf+oZaoZF8QNDroRqIvFFj+cKlfVyma8lrCASIzos0HJRSR1wnMQu6H4fic+BsEQG2OTZDBb/18QjYE9XZlzWxPEFbRW7VjoK8adjKEltVkdPPaTSBPmAVVTwUtqMf7WAHwl6QGwTbGIqW1l9AJvmb1q7vmrqpbl5BZQSLSureuqsVWuXz7vipozcAj40QZlTJXRY1bib7vqnp/7wwJrli9et+qB//4H8gk+cPGyGo2MnzysvLgvqWlB8jbTsgttvucc807Ji2eL921blFpYHU3NqT55obawtHjhk4KBBwRTDMJBBkF/XrYjJqMnhetBvIJDvUdWThqRGh8Ae3LlAVu6VV9967Mj+1cvff+6x/7vqo8U5BSXh5qZdW9a3tjVNueSqG2+5w+/3MRNyltBpKNXcZB0Wxp3epk6yVR1NA9bxbWrPuNj5qVkHsythgnXxSpJ+l7NeSdIDdn4lKNn8ZF24kg5XSgdXIhe45FGArchHsCR4cyjvYkONVTe8YuhQoiTYdRy5YdDLysuCocD+ffvycvL27Nl91TVXc+z17uLFJ0+eWLV6hWVFRo8eze1H7ZkayzK55/D222+LBn/on4pEoiNHjeI2u4k/mpuCweBHH34gCWKAsoOaAwdUZGamc0AmSGHkqamUQ3S3TJcvXu6woVDo1ltv5btTa2vLieNHlyx5909/+mNzc+u9930nIyPLsqzekSmINQli3ItiasLec9wcyszKamhsikYjkjVDFgpFo9Gmxkafz5eeniHyG45Qeh8yOFv4SmnzizQgiXHFyZ8yjNE3VJ8ngoWc/DRVoF/9SQwyuGW6In/BvUHIIZYWcEj8JNEY3/J0Q/MhjTgceYKmAQAG6WCr17m76TEqCXmlpGmmjv6a5Ag42QeZimLF9t7YXzq8EnTWK4H/gCWR5RaWVQyZ3b98hAVyhEC6CvzoFPgLIGTHsGWzwvIRl95497CqajPKR4daGioZUHnt7fcMGjHJZAa1LWmlTEp1XaueNi8jN++DN5/dt3Vla1OzYQSGjBg7YsyUmfOuKxowggNWCzgIcYSxkrLKr33rf5cOHLFh/QcN9TWRtpai0opBg6+aueDK4ZWTTeI3QZOZUBIcMmpqVnb/nH5lZpQiSPAhCwuKWCTEsSUBFqJtmBVXjPzKP3y3oGTAhjVLDx8+uGfPDkPzZ+cWLpj9lQXX3pKe0y8cNTWobta4TbOUaII3EnPWe8qSbePndKM7OlrXj4O66QjndCWdvN7J0djnvZJzPoKiD6IAVDTD5pNRUUHhOFkMppAYQw7VkEOcjh1RGlxcWDRk4OD169b5fH7+ysgRIzWNvPXmW+vXrd22dUtxcXG//H4cm2lYC6WmXHfddWPHjIFSRqIxmxoGN9ZGMBhYu3aNoelTpky5/vobDGBqICIISwKBkK75/P6AYDlkSgUcq2YLj/oYksI4FJaVbppRTdP8fmPgoAF+3+WrVq9avmLF7TU1OTl51nkj5ztnPzxmX3tHTE2VY0OcMj09vaio+PCRw40NTYWFJBoViuAEt7Q2nzxxIienHwdYUkdMluIJ0tE+gJAk1uJGVuL0ManruiPsain01bafy6g6uuMMOWLZ3r1OsXrI6L2Dw3oLuvKG3pjaxQRbMrNMIe0qc1BAjAdF7o72TOKurpvnI/SdmK2hKI6G2ysJ6hTs4i98RhgMYlps8vxrps65gtsG0xcK2wQKsSBFCuoxkJCjADmNlNzJcxZh4P4hUl4oK7ds1txiXTeiFn+rrBMHugO+bSGiDx4+YeDAysam2ppTp1OCHNXkY8OPdSNMNSB7lcygonUzvf+gG796/xUt/3Cy5oRlmQWFhanBdKz5w1iPQjyA8qsJpOf+wz//F0E20oPhsGpKsRGzoO8QQwW9MFKCXYhFsNZvcBXHfnMP33Zw347GpvpgSsaAipGFZWVawN8KKUFK5CylEKODr8sEoTImfaUXF7kbKKAUoGegsKJxxJBxJfVqr3L2L5WOpDKIBRYiJyd/0MDBr776clNjY1FhwdDBQ1pbWzPS0t9+660zdXXXXHNtakoanz9F/Yo4iIua0YGDB4XDQJFnGP7Dhw8fO3Z8AISpsrJzclpbWgoLi1JS0yk4C6S5uWHPnr35+UVZGQZfMwRporRCkxx4gnZB6efwJVJbW/PSSy/365e7cOFlHLEJenGIE+iGDk2SmLj5xL5HB1kLkWJm0CWQn59XPaZ6xWef7di1Y8jQIdKS+XzayZPH16xbM33GnJKS/mLSkJh4emf7dd9DrSlu4zWCubMhXBsmRCuoMzn7ooDnCk+Q4v+moiOHOk6gEvWzSTyTnIvJOm98vVAODWT8RN0G+IsWlBgJVMWIC7YZ0FUiCycXI9QxxecplM1cGl/lcBPGnGC7xHuEORIc+AtXY2Mnn8vXRaqhQzdNmPv9GhZNhXIoBCcPHybRUaj7QMoDmDyJRsBUaIbfB+uJry4sFY2Feojg74BYpm5k5aTm5A3gBwR6Ie3/Z+9PAOwqrnNRuIZ9pp7nSa3WPAshIUDMEojZBs/Y8RATD7GvY9/fw39zb+J385z37nVe8pzr5HpK7Djx7BiwwQaDGSRmgUASAgkkIdA8tdTd6vH0OWfvqnq11qp9+vTcDaLVInu5LfqcPmfvqtp7V3211re+pbEkImwRfQS0yK2xkIszLx4rS80pa7DH8TnkgXGqYYVfgWWJy3iyzAKsABMJBQV7jUiomI8Jl7aFEuQ2JKUG2UZ6ieKZ85bPm7/cfhAU2wMPmPIk4WrfsR9A55w9t8+UL7SnhNScs4jmfm5P9yBvRhF/zkeTtAxVhQtYlibUwzTcg3tMebHYwoWL7F+2v/jCRz78sfLySntXL1+2/Cc//bdEIrVixYq4Fw8Cc+HFF/76njs2bNy4du262tp6ewALiX7wg39pbT3x3//7V+fMmbN02bKtL7ywe8+uCy5YA1Vac5nf33/f7+974DOf+dyMGU2p4mRdfU1X1+lsNgMK8iAVwcKJEtrU39//xBOPdXS019TUXHHl5RhmNCrIbd783Cuv7Lj0srU1NdUjCY2ePYQ7UeQxFRiFzqEQ1zIWSOldfvmVD/zhgTt+9YvFixbPn7/IDt3p0+133nmHhV9XXXVVeXl5NpsrjNSMJOPOI3SF7hYdqp4IaQ1GTHv46KEkA/xjh12paF6arBPL+f8EFc2zC60EhjuUpxdh/oWA9ZfqsQ3RwAsR7VkSSs2nBVL00imoG2KXO+8Qd1zaEaGUhxtIV4okz8bSg/kvBU6icQg1IvyuDmt7DoQHsCIhC4fLYGajCRNf2bAjTDCzPU8iJpDi8BC6qSA8qiC1XbthMYI0oqDiGvr24FJKn7M4D0tegGwjHko4dCU4+f9c7TcdoB8eNoYGnkKES5ClqGmf6KE2JJQsczkIqGrl4eMao7onWPlG470XmAAilOhy8hiU6rRNDVAGC3GXkMwgAgMfhq9BSNV+OkDpUQnvAxzzNS2nHNNeQZuUFjMZltYoYJoPvBxNm8MMvg3YmC+HCyUUUMsHSRvoCbRkiGemsCVmzIaxMXUcCm9vXnh/FrRwjL6YwT0SwxpvJjyqQxoz3qgCgwlvNhow/H94uLCcsmFhdRK8CYS2t3wA94w2+XFzs9iCBQvr6+r60r0rV67UShelihcvWebFvPnz5tU3NKJullq0aOH73vu+n/3ip1/7v/766nXX2CV806ZnX3rppU9+8pO1tXWxuHfru9/92uuvfeMb37juuhvr6+t379n96KOPXHzRJUuWLFQqV1tbZbHaQw89fM89d86fv3DmjFkts+dAsXJXgoc1NjZ+9rOf/fa3//c3v/n3Dz70wMKFCxOJxP59+5/ZtKmpqdmeury8wvf96aQmoMdxmw+6WabCwULljuyznsv5dgA/9alPf+tb//j1r3/9yivXJZOJF7Y998IL2z76kY+tWbNmyEgWVn0uwFhnsBahYdO+nPNojaaBtQv/9u3bX9rxkoLSGmzHyzs6Ozsee+yxkyfb7CNTVlZ+2WVXzJo1ezrtASaL+81UFiZHuWxg7iATUFtsdeTQkaeffrK7uyuRiB85fKjzdMfu3bt+9K8/ZCImhHfBBRcsW7YsP7AUDR82l0+Rr1iHQu4sn5/kFEU1UbNQyd1gDS/uBL6HrQuecmUAcW80eC3Uw2rA5V+O+D4Vqcv/yeQZoqaAxc4LQqyojhWuKHzIEUY79YgtIaejcux9ReANZw7hFBEQjCo+UDOW87Cgm3EIT4f+Nu1qwBlGGJu7yUmHNTWd+iNKpod0Y/Ad4gKMRczJc4iUYyNcDW7MDCTZD+ZKlsAL2uMDmlMC6o6E3jzUssLPOu80E4ErhSy0U26E6CBDfyVIVEi3oHouXQ4+lB/VIZdpxFFlw24DNuZLPfhPhcvRkIs45NQjtqTwCOOeuvDl8L4MwUn525uNcocPyZMd3pL8J/XE+jKkJcPPPvao5jclxtHaNd3dRLhEV7AmR5XA4LfCXYB9tIqLy1auXD179jyLjYyjQ6HGj2E1tfVrLr1ixszZS5ae50NsTs6ZO+/KK65eft75FRVVgYLaAnYGfP9tHyyrKL///vvvu+8++148Hr/99o/fdNONdlcf+MGqlav/y1f+2y///RePP/6oPYJdkNatveYDt32wsrIqCIJEoujqq69tb+t6+ulNzz67+T3vef+8BQuzWcVDHeRYzLv88suKi4t/99t79uzdc2D/fs+L2QauueTyd7/7PYsWLXa6yaEoUTjVirMRHRgheIQtEQMar/DwTn3zTD5x117x9euvS8QTd99zz8aND9ttYTKZ+pNPfupdt7wrlUoFQX57ywsT5UITZ7JJho9UiPAcgFjuCcUqIHZncvzo4e3btuZyWYY4dtGSpX09fVue32KMqqmqXb7svHNGS2xg88Wm/qLgyYnggPwFJ9Tp9fR0vfTSC+3tbeiy0gsWLbD34ZatW+36mEgkm5oali9fOuCGyadxDmr8lN5VYdIjuFQUYhZI+2eCylg7EfOw0OYI68KvNvlvy+DK8D3mcBg8hqLpmW0GG+X43GFlxgbT/yZ+8BGVLXkUGHx7mKE8FSOMintqTktJleg5evCohMkJyDUBFzH0ZgXSEXUt4kmn0xYM2fUVnO15KQ2gn+tsJmNBUklpqdtOGJ3JZKSMxRMxAmNQSloKpfzu7u7W1tZsNldfX1dTU2vfzHOl7cH6+npOnmzt6uouL69obGy054IKzVQij5n+/vTx48e7ujpbWmbX1tYbnd9wGVdrghvbyPb29o6Odrttra6uqaqqtsiAEAAI5IR2ViJxebxA07vWyvO8lpYZ/f2ZY8dapfDCLAIWFk3gU9cqxvMsljwGtbiqu7untfWEbWptbV1ZWamUcfu7vU0KPzb89zM2qjReZsiRaE8P76LCZFFz8wx7U3V29lj0P+38PMAWBLpi1s/2p9O8oEQ5dADqnUMYq6ioOBZLTDeMBbXgJW9qaspmMydPtlGg04RLy+B+5i/KWx/RRocFyIk7bwXDFNesnR+g5inpz2ClPOecYDyVKkokEvlMDkRZonDZdgWOp+Rpg/gVJWfbCZar0qqqyrrqHbvTPdmUL2KoNGlnZlAb51A3ZxQl92QsEkeZVpgwssgGNkAK/c3CQN0AD6FJqNMOHkos5I755KGepwVA5eXlDIm6BUspecLs/FXMU5wQDKy9wispLiPVXyAjYpQb86hlZWVNRUU1SixiGiOAJJgNKc2qpKSsuLgUHeYIvLRtBviLlbYNEEXFpfPnw1/hiwFWxXLKLVpAsQKYc4uLS4qKSmbObOHcUTMpeyjMd9Nn+zEhhw8fsQIheZmNyNfVNVMIBFhezJ2IIZQbWFZmL3s5ph3YdwK89KIwQ76gY/yMj6rjoJghfj9j+JB933QMIJqwdrrBuziRKk6mShxrkIUijUy7cJV22WLTdb4WQzKRgaxSsB0Pq9PyqfINciLREMay/08k7HasKASueXDrIlw4abmJizYvYSpyfoNRIJswBZ5N55cS5JCz73mejMMkx3CXwz1kkivG46P4RzwAj5FFFtn0M8z/Qzk+TCSEOKJ0xT0VpD4YkmChhYyjfozOV6Zlrl5aONHiVlIBxLE/gdISM41B6RuKMkmqthUK/3EF6i3gbtK+ysuHoywWcFHtl2iVFxRXd5ks6NLRJM4cZg7ywmkf+QEWFEoZlsThrggxH9BOHZB8PPsgN78GDErgDKECrRlTyAvJCwogFrXrloKMHNBfwGQIaIaPOeSFdKupGUYnZcqHw5cBzkMBI9GY6QVREDXhuGm4t8FtiZxmTf5X7rTmgEsk2fTLHeJsCMfB5P/Ah3xs6hrvFJWxABzSY6CMnZ1YgEDj4oYFu7+8b9U4aQycbXiBmKYrrTzcMfdWjSjuNrWj8jhikX0HC7+SHw3ppZBWKEYTcvGml+pEZJFFll+bDFch5QcAlKHIPxb1dU4MyqdAFURI2GOSRNxdcq7hYZ0U50ICh5OmRB5cPUAiC8SrYJ3m2q3JsIeELRq+oBT/kA5GGgEakivsPOnihnlFW5Nf0FEtUBWu8fl5EqnEATMUiwRimeSukBewNGCzC04yYczZrU1jqJK+82AgDY7gJ4QO3EeENiO5Dd7aVsHIC0pztugbQyyc/AOG0DNQb7FJHKkjfOpGbBjJi/Iy+JA2mPydOW12MgQFAWPRQioxVcgujrQPIceK53kcCrxMr8Y7kCLyuxKD3kRH7zSD0YhzNE4h8KO6www2dUoK7qYS2n5pp4hJig148wKk5XhXu4vCBwqBEsCZsmdNujsVHzG8BQzWU4Qq+pA5BxVicPPrKueM2CwvCk5FFtn0NEphFZiKSjgFMVboVUeehaDdISp8UvxQ6wCYUgWOFVgwEPZgKi93uS9CUEVo6WqDEsOBMqVpNwlproSxVDiB24kGRUyUQHYSd3jPYTqPVJgxpCILnFADTHWIRTJJIhJQvJq+CjhNkGCTfZP020bIVC6ctydYWmDcWgIFcHbIEUy+7pFx0Qkdir8ang9aMM5GOfvYWv9sAqUFRugL5EHDfE7eLMVcSVf3JpV3hcrgXIdhRDZ6GQM2LFN23JYMb/zA1/mwq+YqRFE9AlYwnmZsHuy4lQ/GrvAxkb4MelNgypEWjnUXFsZmiAew0jr8U9o+AACAAElEQVQEw4XRzqMx4QoQbDI3JJtA1v4oB3QgFu5RbgYdlhs2+s0/wboaZgLPHRvpacUoNVLA0RtOe4CB3eOAEqY7g526lCc97IORoUZmQYzQTPi5HiO/fML3Bt4LmJUGMy3JSoBQJVHaDacahByrKw++9AUAK5mMFrLIIpuG/iseCjoY+0DHpPQ8lo/7Uf6qfbK9cL4nZxMDlnqMnvQhaXAD02eePx7KFPOBYBLOgKHDSgg3c8hQIN5l+YVV7chTTuo1LC+2FGYQjyDKyF0Cblg8UdBpJXfdyEfcChKPR5y5RvsrH/bmiJ8Z+4BhKTpyAUDoSCDcpYgFHzjLoImVj3yccc7IhsEgPsoxWVi0R5DmmQjDJcS44gN/dlVzCsZ/si0ZY1SHXw4+4jCG+V6U2y4omxpkmXHDMOZlHa1JYzd+sqNa8JLqpINzECmDoY8Y7k8NSfihHBKW2B3y3TfVknFHcsTfhx7BZbLA2EosT8zzMwUf68pOqiVm8A1pRh7JIV/nTgMzhC2OOTB0Zgi5epT9QOVp+CB4NJqKzgS7xsa7pUceVUZinTjj0Y2SSiQUl77kyv0VSBqxMII5ggdLB1GMMLLIpqOpUCKOQdKN0jweMLvHw1KTqMUC4g3EaHCi74aNnhKb98nwkRSchvCe8mJ1bJjjaDgUhOldDZSsdoQcM/Lnh24SR/eonH2Mq8Pi9JAXoBVTPoQHBlWkHXHb+pZj77BdA0M6mCFGZSTP+hYBY9jIxAcBQWD7gZIgRFj0tEx0BvdgMLDgDxUJI5+Gmo6bMYiza3Rp+sqF5tFbZKZH6wo8SNC84dJrmo02Iw2gHzPF+fG4uUUpf+ACAL3VtjuncoEGdBVgtpGFX56bA0eu/OZBHb7IIotsOs6bEMzjGkL8geE5xcqL4mU15VCtAJlAOcHimNak+LjV8szZyNsyQ5bbkRpgGBPT9gIQeAHWWlLGeKKipoKLAcWDkfbxUzPzjzuq7GxwP8yQq4laIo6iF08keJwny4vLJLD3puHFhlpqbmPAh6gBh8utCZBPNP2aDr4fmfJ4nJXXlg+qjMTP/mbgzNmUNt645CG7vYXfU2UJJVhgtI96HpRnYpAmi4XpRnkIf7MpEv+PLLLpubwbcGOhFoMyuZpyMac+FpdSMZdtYx/dBAIsn7OpyV1+s2Dl3DHUcEY2mYt2UqkIFyOMRnViS9QQPKhRzmOalvPTITZ0NeZGovaoabkbwNIfjq9E0hIMi5BM473LuWGkz4WlXSBk3NETHDuey6p4APU1kGZqpHBq82JkknsqFQ1jZJFNQ3O8dqw4yj2WSOeCA61+TJhAAy0EqZU8gSItAdfTeKFFd4Dh5xbAcnR2ULfHrH0GzHGOEy3jsmBpm54A66yLDQszkH6PaafIbZekiMTYdHQDOThiBsQtRwdh0+1eRa+Vq6WI2W7c5cVwPlRkJLKJPVmu/hiWc8Gi+Sqb48xLxuOUDYnMdwMeTT36g+j5fjT0kUU2TaGJsHt+LgOAU3ZRF0Gmn/MgEG6uV5zHNfOg8qZmnI2RkY96eW9dMIuSACnvevgpRFjdfbTGGcOn3SyEpVTR3YKZWdpFjSgtTheqOik+paJOJKfBGB8dR1E2nJ7iUR189bUpEOoULPQHGjNtq0sTg5CPg0bcrT7dTGhitRsSaDBDcjBCAKCnUrdjyL066XnjbE4UhE5hEwsi+QyqZsCrhN0jBFBzz2DNLMe88p2gy0gAK4gihJFFNg2ne1yOUCfBLuFYrBB+jUFZBtA3IP0V7muuaAkba+J01ZiAHS/OcFSJU0rboOTwIToIVKJzZMdFWAl0+q26xpULRXl0Kk2EIp8mn1Lmmq8HCuZM1eY6P1xmlD8NFIKdsoaR9JrIi4Q5bx82IAAnFjCFBZd0u0xXfyb1gpuRopiumqOZdvcqXXVBtaiwmS5bjxfW0HS+xLPReD7qpKTE0Ft6dHA1tRNFWGrIIFsANNsVyeJpx2nnCqc9BRvdUW9oL1rJIotsOs704eJIRVlcYIJ7rnI5vkB9ZPqFjz/B8ZHrpLzpyZMXwIvhOdJmHHYt59N0rc1LpJJWRV5CeiA1yxUhmXLW8/CU9SF/MmejBHVe+GMgtX5AJQL1OCR4YQuL/09LNxYbnc44Xe/VgbQ7J+LCC++DadB+PkpZYD6BWzr8AJ9ililngxJI7Mk92tOIPALjTh1vjE2MN0jXI7LIIpvWNjAlyTO5m3wrdqhT6T6ZDlfkP9SpJ9gqfu40O7o/p7gZk703+LQd2DFa5mH4M7LIIossssgiiyyyM2YeNxHAiiyyyCKLLLLIIjujAEuIKIswssgiiyyyyCKL7IwCLM2jUjmRRRZZZJFFFllkZxRgkeT74DfHKlY27APDC4m/4ZpBfMxi7+O2hI2SrWAmcNIhxx+xF2Mfik+gYXzCjR+x9D2b2MBOsNL4mxnVSY3GxFsy2VGd+MhP6kKM3RI+SsH2ybZkgl9hE3vWRrthJniB3kBfJjJvjH1lx+3LG3iE38C0cG7NYBPsCx/pX/bmnrVJ9WUid8i4gznBKeuMzGATn42HTAVsMjfn1MwbY9yW02c2fuvWuCmbjc14g8z4b5/JRTAzssgiiyyyyCKL7Ex6sIpSUbHnyCKLLLLIIosssjMKsCIl98giiyyyyCKLLLIzDLCyQTQIkUUW2eRsRIaOGJA9fpuYcT9mbG5RZJFFFtkIACusaMVHJ/HxgtmGTYwlxydGfhztdGbYqdnoL8c9wojnYpPvy9hcy7H7woaN5KRGdbSzj90SNh63ccSWsPE6PpGWsMnQKoefnU3s1MO5jW9yVPl4LWETYIyy8fo1qbtrtDvfjEdynxQlc2zG6Agtwd+MDOvJGiyHqLCEv6ECPmbsEjnnArqioslQyBXq6lHxHI2VXvjINOcJjupZmcFG5BRP/FmbLPY+I+vC2H0Z7emYyMrCRjngxNc4Npl5Y4wpa9xhNG/N5mjis/Fk14Wx5o0zOhvziS00o61KE7w32Oj3mxn3qfdKUsOLiA2vEMSGPdJjf3i0r4x4hBG/y4fd6MOHaeLHyf/1zfRlxAOaCXyYjzQbTqolo519sn1hw6o+8dGLGEzwgGekJW9gVN9ASyZ7BD7SvTduw8yYozqpu2viRxixp2ak94d/bNKjagBnMEn1ZaGoL9ec7z585LmXduayvhFSeQJqUKMEzLkrtBcIJpWZVVd36aoVZUUJLPpK1cdgBLxRR3Uidwib8hmMv4nZeLLr9xlZF8bty2jrwqRm4zc8qpOaN8ZeUscaRnPmtyh8YuvCaH18i9aFNzAbv5mWvJnZeMSpdeTjeNkoRhhZZJFNyrVjwQdnnjES/DpaMB4IcaKt7fndL3dlchnhdUJ1X4F7N3Uu+rCkYf3cBEZXar0mN3/F0sVFUhpl+yIslKQKrwpXP06/ROUwIjvDTxgLy3VH4ehz2Dyto+sXWWSRTXTzS+4rxYQwXBhjOFcWcIC3Stg3eSyeKC4p4haP8DgXb9QLcrbXN8NKhNK5DOvvY4Yr+6syEjxYoBtoO0vxQoFjYf9gzNv+sttrzceWSELNah26B6JlZVwIBaFm2J6M9FcYRCPwNjOhGPgY0Uw2LA4w0pPL8c6NrsxUAiwebb4iiyyyiS+2xrGQmAF8RbO/FkJxCQArkaiprqtKpgzAL8G4OBf7qBiLa9XTdaqvv98g68qA4wo6g/8IWtHAk2WB5Nt8Ch0ATHxgXWfDiUR80LWOlpWJjKodtNGYlwiymA65f4WfGYM0Nsa2yB5GEKkwGv2pA1hCetEoRBZZZBM3SbM1gA7EWgg+mJABkxnDM1xqIzh8iin45Rxd/yx25IHtmxB2kpTS8wS4ZxBO4apoKHESHBH/ASrmm3H107kbj8gmNapsPO7/EF7UG64ywiPYexYAVqCjMY8sssgmAT00gg+LMIQGaGWnEPhhGD5jXBnuG4Al9p0sM+IcDBdxZpQx2pgAg16QEamNRlSltVHoycL1EZILFWdvd4A1kYIhb5gU/1a3mU/jIRWjNJKPB8KGQysxJtqKVvmzBLAiDlZkkUU26fXBwirjAg6cMyUs0jJA8iAnjxDg2zLGEw6KnVtmcVUSCTASuwQUK/uLnSs5RA9NSLmyHyG2+9ud10JXlQ2mmg1P6TLTaSAmXi5wGuG/wYNsKPiM75hhHxiUL4yOVYN3JseoIh8PKEc2JQBLygjbRhZZZJNaHCAyKLQRIcLy7A/N/yYkwhvQatCunjw/5wCFYtg7hItcMDtPcnDY0V/BbwcOPOOEKhwp7W15rQFfwnrNB2kjcGOGkM+mheoZgY88CqEWhjSmaWV8lKFmnsBMAeiCG3EhOA04ISfqS+Hgo5dE24/hNeFIkxyx19FaP/UAK0K1kUUW2YRNuyghkWaNi5UB+mAeMx5EC8GnI3CWj4ObRwyb5ScliTmiaPwYnBUzgTL4bGwBWMl4knk5EEzF1hu7hjEJv8MCpmjZ447VIt7WMg2UzwbLvTahbgC8FkOXazMdCFjQWm3ylyP0NZ4j1wfi7PbBMh5sXpQA2V6uaX9iULzXonqt8tAq3ykpaD9AjixjlMvHiPRDzj7AMlpHoxBZZJFNfOvtQkEwk6Popl0P7MoASMpIN+9r0nGIjbzoTlwPczRmzxiclTfwlaGnA5yFa50GXQZapSFjEnSwCuNkodfmbSbTwIeBFqoXREoNbsmADIchAGu6hAgppMsL0u7OlQskGEWkMd5uXMAdUgkNppNQCQHj6iSYQV+kK6Wdb8vBMmOitIOzC7BE5MGKLLLIJr56uZR9gS4Lju4Mlz8mXNITCZ1DHC1zbvbRBy9WqM/g1i6NyAscVwaX7nwWITNvt9gLHwxWKHFSQSCK4qUEr0d0j+izfncCQNEW3XN0ZhEUnM4jXaDLgAwqjwtFaMowif8YgLQY+dNGYu4IwkdeeJ0IVaGfUfN8AHeE0HXkT5lagBWPRQg3ssgim6iRmqRdv4TmUIuQS+GI7RA7M5R/F/JANJ8eoaNJLnqOyc4xXoNEipgnYpLKEjLqlDQuTEZK7mdgEXdKnoYNVzoi2o0pSLUfFOEcKTBK3iZ0xmEhxeG9LDiEGcycNvllWwjJiIBlsaXvh54U/IgUjpJmnLNIC+Y27AO+Iz7s6g8unV0AAMYkpA8+7KjQ3zh/oudZKAK/KQVtHk8sZFKqB2N8xY2kcTJxBO6GHwoeDhwEpFeFfdOQewvuKu4YVvBM6UBxGmjOpQen8X3spyv7iYWq4LWWUoKXVXHquJOHdUDYDHJ1RTZlACuIKuVEFllkk8RYqE2gOWgWYOQI0gaBBWLBR4CMEfuxmDE5RtmG56ITB5oNUljgQDBcmQD+Q8mRwgkzoDdPTQhdmWHOIZC3EIY7iAL0GhhJC2hEXKB/EBuguT2vCgA5COOUIgkTwTIrAMxyE9ZUcTrdxMQxCHDt34TGmBMfJGVFGNjRdOz/Y57tovYVgmcNQMnCZ639js7O7u4ue5qq8spUSYVd5e0XlV3ODQuoEDZ3cpjgfSEikOSeBEeX0jqnADeE+pYgSy4lQFUJB2HKKF+xUOWCEC0vAJWGgCKOkrADZKGDjJFgpgaFkHzVbQAZPCTFqawfpHvT2aA/l80WFZclEsWQ4JoHhgPgKCSEYxN46BkiYMpN6BdyeRv0HzqFptxYPqilLpvPDryCux7hZgH2Y6gXFwJFreESK8ibMAPhafQSukFNxLytLz134ljrunXrPen5mXSQ6+/P+RWVtcKL6YDuHQv0Qd932/PPMR6sumCVJ+KBgj9hkFHSPcCNeOtqR0c2FsBSkUxDZJFFNknogWuFndo14icBQQzFArtCMxbnYS1kLmLMJDQ/5yJogsKcRmjieIMjROfT5TmUYiRcgUoNfIKgtNAdBex5YNdYUCVcvphAr1i6u+dI26HunpNBkE0kU8mispLy6vKKJs6FB1pjHrMrqzSkOGb/UYpJKRHiGEeRAoQjkX5j0aFtIZSMtH3QSPBhKKEhdaCFZwGagmoezO/tPdh2OFmWrKhuECZuDxPjxk/3bnr2sQ1PP9HZ037y9d2Llq35/Bf/qqq6Nhcoh5lw7bCDBCDKtoJJTG/gbadPdnUcizGVKqqsbJxNamE0irYDp061pttPFXGe0bmiyuqKmpkGlWvJEya5UpilaTD+bE1yrQxUXvKM7E93trUdyeYyEDczSiBQszgm0Mw30sIKaYJEnKeKqrZs27rhkd8cPHTo81/86iVXXO/7FpzBYHPHzTIBjL9AV5NGYQMYXOGKIFn4ZA+oLNrliAwFFTgHKCOJAgWpDoClBDHPhYJPKokw0LCcUHaw4/ZbQFVH/5KFpBbk+AiwhP2kUUhli9vh95kvEWvD4QScVuiEYHt3bLvzFz+4+LJ18aR34sixJzbc98Sj92Uy5ut/993a5rl2mEjl3f4TV6a0OPnzn37fz7RftuZaxpP2pL7h1BmkDUKSBvqSoxDh1AIsLlQ0CpFFFtmkMJY0RLjijpIEyz+TLEyLR7V3u3fOCUORknOrdwqxDnUt4CYMsem8u4KjvKqnw3DQ6P3jeQ8LHZuCWPksewQ9dkW3S7mFNHt2vfDwww/sPXioOJVKxb2e3t4TJ45cdtU1H/njL3ipFLNIQ2vpxTXFmOC4FjfYldnnglwtAQe/E1OAS8DBSAkHeAEAT6BnC0VhIXSkNOb1x+PeU4899t3v/O0Fay793Be/mkqmBACB3KYn//DLX/74pg988Pobr/unv/9bX6USRR6eQgs6nwZ0g6u4gKuslRZw5BMnjz54/507Nj/c0DDzE1/4q0WLVvpBoHiAQ8iPHjuy4fe/eW378wuXLl9347sq65rDBAJEC9Aj+K8mnhu6DBHnqnhS7tn76re/+T+5J2sbm6QQvt97eN+rTPHmeYu9ZIkKVMfxI9ls3+c+95XG+or21tdPHd+vdRrSWu0WwA4ywCsM9AK8NYH9JjjBNNL2IT5nUO5MgNsS1GQNBr3BnaiQDiUU4m0pmAuVGhD3x45L+y3IyMcv4O0gLOxDUIVS/xLDlVjAEtxWyuJI+La9FL7FxwEgZO32LoJ5QrWdOvrzn/xTPKauWnulUaaoqCiZkscO7ZaySOt+uLYQGrSt5B7co3re3Nlz57X86uf/Ul/TMH/hqiyOpoZyCgDE8YoB8mY8EhafWoCViEdB2cgii2xSGARXZpe2JHFrzKVEYjEvSDPkBEj4uYggGfrlYkzHBIvFWTIhEJsIE6bP0QKL5a4ZG0PL3YW/ZN6VZWDFA4Rl12smCKMKzxOv7n7xf/2/X8n4/p996a9XnndpSar45PHDX/vLL4psurwoxmJSYelHQfQwgDbgxrFQJ9BKOqeKkOBC4cR7w7gYCSfhWs65dqEwIekaYaHuRNy+lU14urgokUrE4zERT8Rbjx645+6fzWxpuv76d9RX119z/ftFLFFSXsLBVUUOPkILXGL6qI9YyL4XCHP+hStT8dzzG3++5emtRaUlX/zK/6hpbPah654dsYsvujBIt+3Z8fS1N1x/yVVX5rSngcNN9wk4Ru1tpNA3CKODgWfohmZekvGY7ujpvPXd712//gbfDw4f2P0PX9+Uy/p/+vn/X9PchYLJDQ/c+8Sjj1TU1S6cM3vRokXHjhwqinvxuEA3gkBlDYyqQmFyC7U0UsTQm0hXCf4EimcxCxiRD4UohVPo0uMxpJ+TNAcxrDh4MCm3L6RVYT8kOvgA0gHmhKNLi/B4nCHYMXFoBniXPJT/MKjHiwelC+Q/+eSDBw6//mdf/ouaqkalWX1d3SVrLnv4dzPaOruTSZlMCp6zPRA+Ju8mgXFWfPPNN7+45ckHH7h71ry5iZJKi7EV3HYCo832QosYHF/yKEg4lQDLguxoFCKLLLLJGDgYKJvMUWGQFu6iaOic0YTCBD93k+zQTYUuFFJroOR3EgFw0l/ckXsmsWoJZPPAYqwcMcl4gmWzuUc3bnx1z96PffyzV131zlwOYjnNs+YvW3XZ4mXLJE/4PnCewLM2QGmClRm8KjD8EjjmHAJsIiwSLCzeMnZdNwp4UUIFLr8fBepBUQlcXYLl+vnla66eNWNWWU2NFAl4m+v9e159+cUXP/nZ/1xWUtHb5Z+3dI32pFFC6UBapAFRR7gD4OwYsBQIujS4heyIiOKSypLi6t5E+7OP3nfPjLkf+cTn46XlfmDBi8UDPJUqKa+sTpVUKR1XvhLo7jQ4MOAKgwYAD0wZxybT4BezXbNvJ89fdfnFF189f+7iXAAI2B5KiNzc2Qtb5i+TUh47dOzkqc6a6qZ0xmIhj/MYQCaFpQZQUwqwEqKZQDufE1HgQQsBg4S2O8COwqiwxLCtJtq6hVv4FYMxN7wvCOlSzU0lHBqEQ0qN8NaTPqR8KA8ihxwLg8NXKNxpL1cA8BwOCxFZ9G3aI8ckP7jvwOMbHj5v+fnLll4Y5KBiuu27ykluYsx48EkV2EuukMSO0Ws7XKJ5xoIr195w1x2/vGLdtRdcfG3GcQMtWJXoOuROKiuavaYSYCk/GoTIIotsEugKZK6EwS058n5Q110puzmHDbJ9w3MgDFm+5y7EggghxJbs8uYHmKzlxBoElV+EQmMY+OFjlQMaIhVg8gCLkzq3UTwmc5ncwX2HhIkVlVTYk2Ry4K3K5cy6G95TWWmhiQm4lnGeEMLP4bKf8AD12UZkWdaXLgAJ7hfhJYTFQgCzLB7qZxaIGI9l7dUB9ryMxxn3oEcx5lnQlg2AQF9eWtOwqsbX5nRaA8sr8I8fOxzksmXlZSWphH0vGY/l0DsTBCzIwoWPxaQXY8IDSKVzWvn2hmABRq0snstkgqLi6muvvfWZ55+5+84fVtfWv/M9H+OyOFAAIpS25ze5wPi+hXlA7ba3jUwKz+MeoqwggL5z8LsA2tMAXCy8EGUl1Tfd9J76upauLmNPnc1qLM/Esxk/k7FIwjTMmLP++luKisoz6R76ikU4CQA4HDS1A5HzjR0KBCdARYOa5J6IxziEDi0MswOSQXK4vRKeiHnSNs9CNdtTaQ+ihA5Yf05zj8cSQOMXGj6vAgjx2k7ho6BsP4pi4Mey0Mh+HboZKIyfg3qEHbekPXIAF7HHjpdFncbCVnB22a7GAKWqPS/veH3PK++85V3xRJFCop0daN+COKRUKV/D6GgvHk9YcMvjTGS1n9VeLLlw0QrP/PyJjQ8tXXYZixVrUKrDZAgMY+sh2lmRTYUHi0est8gii2yS2MPk1UYdfqLccpQfEnabHzPMB+EGABLnrJOck0YB+C8AFIkAY0XchOloqLMKISzGR/cM0KfDRD+iohs3dHQWpIjL+ro67WeefuKhy664ds6C8/uzzGe8Zf4ii+XSOnvq5OGjh19vO942d9b8ZDLx/AvP9PV3VtU1XHrhNTPq5/ajwHeC8Wwu/eSmTa+9tiubzcycMfuKi66sqKoFJxZXMSl7Ozq3bdt86PDrff3p5uaWRXMXNs1ekMvmXj1w8Oix14QXu2TdzfajO3dv3b79WSPV7n17HnzwwbaOXuXn4gmQDKiubVqx6iIh+Ivbdx4+vE9zVVvXcP55F8dlCUaLES1Btp8QOn7xldfOXXL+9771t3f87Dszm2evvvS6LLg0NVKVqCY4yGnGgCTlb9m25ZWdu9Id3SWVJcuWLVu+7HzPS0IeI9xUEC/Mab+qrq62vpYpaUGhR3R1CP5p4i7lfNUwo7lpxgyl7bsG/XvAVn/hxWe3v7g9yAbz5yxZtmxlqrLU4iRu8SG4pdTr+3e/uHVr24lTRUXF569atXTpeVLETre3HT382rGjhyoqa2bNX7J9x5YTR14vLS65aNXFCxedt//4see2PXf65JG6qprzV1zS0DhPWMwN/i1AZvv27d3+/Oa2jrZ4UcnKCy9avGS5ETFIEeUs3df50qsvv/ryzlxPd11Dw5zFS+fPXxITSSTyCfI69vae3vHic8r4lbU1dhwD0JmwVxfSLimTUdrni3vHjh99Zc/Lnf3dga/mzpizfPnqlCerqurKK4o3P/PIhz/+Z1X1xTlAbyaUXFWOvR8VzJlKgJVMRsMdWWSRTQ55gAgigixw5CAHK+5JwamICiWjQ8LVOZ1Bg2QrZdFiPGGSSanB0eLq4pBmNiIJzMsai8ga6g64iZYiq04GHXg+EOAxXsJbf921z264Y+fWx//261/6wAc/fenl15aVVigeMybWl8nue33Xz3/0nQM7Xl685LyW+UtPtLft37+7u+3Ykyt/97nP/8XSlZfao54+ceQnP/vnV1/fe8matSrn33PXz3ZsefyTn/5C85xFOab37N5+549/1Nndu2DpeXU1tU89ueGR++/+y6/9XV9f5o7f/vSZjb+bu2Dp5desl4nitrZTBw6+zoy/a/fO7i5TW998uvPE4w/f3dI884v///9RXJQwwhQVyScefzDDsh/708+JYi8hkCzOhbL3Q4x7Mc+XJllS8a6rbz5w+MDvfvWvP/nxNxtmNM5ZsDLgPBaDwJqMi0TCvvDSnW13/vonz255buWKi2obal99befDD9517bU3vP8DHy0pr4kxLHpJ5flg9BQGJYXnsbjL01N29OxPAhxSEKYW3DPKkzGZzfbdffddReXVx04ee/WlbSXx4rXXvvP2z/7nqvomSGLws089/fC///pn82YvbmmctX37ticfve99H7rtpps/0NFx4te//sUzT95fVVO/cvU1Jzs7Xt6+Kdtx6rxVK69Yd/3egycOn2g9vO/lbNepiy+85OOf+fNlK1YzE+NB5qmnNtxx17+3zJ43o6l58/PPPbbxvg9/5OM33PCeRCp++NCBf/rBP2Sz/uKFK0xR6q7f3rVi/8oV//V8ZqRnnP5DwuOd7Z2792ytqKmsqqpJJmPMYkkuYx734iTgYOIxryiRKC6KPb/58c3bt69ff9PKpSuTSS+REA0NjdWV5Qf2vXSq9UhDy2yO0liopwIhSkzmFBG+mlKAFQSRByuyyCKbnGkQPQJiEnI7IPc/MI7XTsx2pP5gOt453UtMcNPagEAUaD6iM8pYGIHUK+0kwSYTBqBjciePjghUo39j2ZLzP/VnX/7Fj7+3a/vmv3t1z6oL1txw07tXX3RNeWVTPJ44f/l5TzU2HNmxZdniObfe9kfJ0pqO7vZ//9n3Nv7u5z+I87/42reqymvu/NW/PHjvL770X/6PW279mDbs1/Xl//iNrzY3N9z+qS+dOHXoB9/5Rm9Hx+c+/99WXHBpsqQ4mZAPP3RfEORaZjWfv2rJ5ifulHEV6MAu3qtXX7j96UX7Xt155VXrbrj+g0XFlcdPvLZr28N9p49VlRVLTL2rripPeGLdNTevXn1xLsv9HChj2YFQID0bVzrgWmd9lSqpff8ffebI4QPbNm346Y/+4XNf+D9rG1okJswpMK0y2d/fd8edd/zwto986oMf+mR5SfmRIwe/++2v/+zfvlNTVXXDO97PZZE2RHuCcKEhYTUO8UilnfvKDqBS9hqBw1RiloUKQL/MIoxly8+78qrr4kWJIwd2/et3vvngvT9bsnLlTe/8gNbBgb3b/uW7f9M4e/Yn/vj2WTPm7N13+d/831/++Y++tWTpirlz51yw4rznn/xNRWls/TXXNLbM7uxuvfsn39vw4K8tbnvX+/901vxFOuj91Y//98P33zd38dKFCxYVp0p37n7x29/8n3MWzPmTT3+iacbstVev/dqff+bH3/t/zlu4dMH8pff/9o5nN/72q3/1P9df98GMVjKVyvb2Qu5okIVW48ZEC96X7mvvONbcNDeRLPV98ItB/iMEGxWqRgAcz2bSL2zZnO1P/8ntn1i39qaqsspcLsjmdKqktLSyUqng+IkjS+zSDuIpmP0ITliFGg0i0hqdUoClggjQRhZZZJMykFIMZc0Vrn0clktXPQ1mdYkeGkmkbn5ObptJPtt2yQ/sDxaEQ66VQS+KXaxyUJvQjoAYv3d5CU1KsgR0Buscuq/sHwUkg/HYuvUfnDlr+WOP3rf5qYc2PfHQC88/cdXV7/vI7V9sXrCoqqqxsqpRxhPNLXOWL7so7fPmlrnsj9j+XS+++Nyju17ZVl1V/diG31aUl8+ds+jQgSOciarKuphg21/Y3Hri4KanH9q55bmP3/6F1SuvCpRI92SWnrc6mSpLpSpSRWXNjbOTyRKLnFRggoAVF5UWp8o4T9TUNM6ZtyDTF1SUnr/mknX3/voXjz/6UHPLYuEltm/dmvX1pZdc398nAmVAcQu1PgOgwgeAR0G0QWSz3PboQ3/ypVOnTjxw7101Fc2f+PRXpI7xIGYCaTu9/8DBB+77TXlx0dq1N3Be3NmVra5qvv6G9z618cH7fnf3BRetq62fBTQxQKQSFbIwKgtJfSaAvEoPoocB6JurAKOuiFxtL3xQCEssX75y6fKL/axqaZqzY+vWPXv/7ejhfRZd+f29Gx/+3cF9r1593c1+Jtj1yl4R17W1dduef3bnzpcXzF/W1DQjkUg01jVdfNFlvKh0vje/t/X4Yxv+UFFatvrCS6trG2LCpN9x2/NPP7Vvz87evi6Lw++7764jh/be8M6bstncnl2vliTjNTWVe3dtfnnPSy0t81pbTwZ+9tixA63HDlfUzbhh/Tt6urpy/YixMVEEtfKZ35/t7Tpdc15NKlnuZ2WA2mKBxUcBULWk4Ol01wN/eO7Jx5+6/sZ3XHjFNYyn0mmQwAXJCCmrqhvsjdR+ss3iK3tZPFTVCCSjkt3MRCHCqQVYPBruyCKLbDLoChwI5MDhJi8FzpirkGbRVc5AvpPLqToHpxhDlDLIlZNcAw5gIITkVBo1Cn0j1BJhNZqx693hJ2k8kJQGIpeQMYeENdJsBVUqEHGfueiCj8yZd+11t2x6/KH77v7ZQ7//hYVxX/yLvykrLrHLqwVz6UClMyodCJPj8+YsnzNnwcHXXzxx7FC6t6O9/Wh19cx7f/t7Liw84t19p0pr5xaV1maz2Re2PhtPiFlz5qHIqO2TnDlzfn3j7JgsCnyQFccqN5xq3WgQrQfPkB8EuWzWgpWYiK9df+vGDX/YuuXxW279o1Sq+pnnN1906eVVFfXpwGIczVxmJUEgdJIIrOTIZNbwFRde/qHbv/T9//XXv7nrRw2NM+fMnetB9EpIyU+ePLL/wKsXXXRBKlFmBwj44tpCw/r6+sb9r+/NpHs9wXIwxJKSClEpFAvAGMfsx4ArlWsSwsDXEfECf93ijv5sti+bU77wTKy2tsliJj+XQ9n8YPcrO+yF2bN7b1fnLyE9Q6jj7T0NsxcHXOR0gD4zL1Ask/GNB1SoqsqGsuJqFej+XC6dYXHtz2hoKS0pT/enc37GnnD79k2xhHh1996e3l/6SnqSdaVN/Zzz01rnBF99yRWPbfzt97/zj1s3P3fBmqsvu/KGObNmgQo7KWtgoiqJnwoULWOog4rcLNi5eMDTE8aohx+57/f33nXpFTdcdtnlSsQAy6JaiEbpDCmkEF5YklyEGqp4zLB+TjSFTR3AivIKIosssjfg3qGKJZSjBMpCAghJKgyACZPnHZ2TSYTgKEFlIoXUYE4MYe48ULjy0Y8jsZtxnWFuKLBeDCovYbgHRgqlHkygUBjfk8IrnTVv1eyWJXV1M7797a9tfe6RY0c+U7ZoOY45fMKXQqFgZFFRqihZTOmD6b7ebKZ3VkvzNddcIxKVkFMnglve997yVGl1RXnr0WP2uzLuOY10UIaKeYkkRJ8s3IhR6RodIkXhoRIpOFYkCj1otnDpqqWrLnnlhSf3vLK1vGzmqbb229eu04bFsHieRTgYh4JcOaBXGU+QjoErzhK/5rr3dJxo/fE//90vf/7dK6++Wul+zQMLQfr7u/2+TkwGBIAHaIMZz5NFqbhS4JUyjMQRwvLFpIqBdWoEJ4QKfh0JTHlgtUOrufEk+R9Rw4IbX3BPixiP2ROATgPEMk1PV3dJUeqC1RcuXroaKtdwtu666yyKqaxttEBWAzNKEMvQjksANYysgRoZROyQhCdEHNhktjleTGl9uvNEaVHy0osuWbL04iyUEtJXXbOexxNVVTW+ERdftu6zX/rLu3/zo2effXzL5mc2/OH3t/3xf7pq/c0gP8FIMR4OGY8nS0oq2to6+vq7y6sagwCF+UGJNIfCovZ4XmfHyWef3njZ5deuvuRaFEZDRyiEAHXbqVYV+NXVNbbHCvNewcfMPbhlcV8QrfhT68HiEZ6NLLLIJm0o4iMoaIMBiEGbYyyaolG6/NybY9BZpQOmssaHlDdgCVtIo9HxBLAr4C470qnZcz4qxEKkxp3akglFQrESNoRQodwQgja9Z8+O3u7ONWuulDxmF924l7py7Q33P/DzV3a+1N/bE8PqQwbVMgNY77nFQD196d50RojkjKb5fX3t0kv192cWL1uaLK7P2CUd8xBAzCnTV1xc2df3eltHu5K5AM5v0YOnDAApDuILWRABwOrC5JAELSoeMyBW7wFuNoEXL1m7/uYXnn1oy7MbjKxesXJVbV2TstAFXUo50EAA/1fMxGKKx4CaJygeBQcWIhErue22T7QePXzfb354968PVdbOiIHYpykpKvLiRa3Hj6b7+sqqGNRi5Dqr0z3p3trquniyWPAYdwKgQLEyIO1FZYy9MGPAEBjGAcbcCoOFaATdh3jFgH1vNN6QAlAcJOKVFpdnc6qquu788y8MlIcRTkBfWQu+IL8+Dp+VAvlR0vbFB+F8uOVJN8KeUmNlc5CZV8KLJ8sratuOHiyvqD5/1cV92cAXUlONRggq64QXu+76Wy++5Iq9r+y47ze/fObJR+65q2TukvOamuaiaxTgpYVuXixZWdF0sq2zq+d0owggH1OhMCpEo21TvKsuvz7bl/3hP3/nJ//2veqG2c2zFjuKvGG9vV2nO9uk5PV1jQyLPmO1ZxRzBxcsd6Uso5KEUzZJCnReRz/RT/QT/Uzwh5Y03MQ7cVFaRexi5uNLj0JpxtUJOUcnx4CRfjdpTzghTXJkSUSV2pViNFjZd5ThQqFShKG4OuMqh5Rme2RU+jYoHsb0zpe2PbNpQ0KqGOcW18TgdCAiWVxW1dw4A4vucTpXQhq7+Cc99trBV/btf232vOVz5yyYOWNBbd2sl/e8/NzzT+gg7YGgEhCqlEUBgi097wI/67/w/JNdnUfiXsZjuYSFGBwrwzCdFBCBwnx+bAx30V3PgOKGPYACYXNv+fJVLXMWbnzsD889/+ila66wB7BnwAQ141H2qMsvhcGDWCSUlbGgAEoe6kClSqr++BOfX3X52kxfV7qv0+KTIBfU17csWLTsdHvrqRMHQb4rAN9nx6m2zvaeFSsvKi0thwqAjKKNpAjKtYtCOs0L0CkzAXeiIYRgXZVmQSFeKtDoqhpBxUSLHOMytWjZ6ky6/9lnHmk/eVQqO1I+4DI/AOceyrzbIwV4kphiCSxxBMWzEXRxKDyo0UFBvdZFidSK8y/t6+rbtOnx1tZDDGtnQygSCGpwkCc3PbVzx84ZDS3XXnfLf/3Lv16yYvW+/buPHt6fiAm8QeyTFDDflFVULFywpKv9VCbdLY3ysC6jZPkaiqqoqPx97/vUumtufWnLM7/6+fd6uk/EQeJeeEyc7jjV2dlVXtcwo3mGh/UqFWjJYhKhe07dPRlNYlPz4wkZebAiiyyyyTl4sMKzC5pJdH0I1GqMo4MHo0bwMsDKMNM1kdAgmaqgX8b9n2joAaziwkM3jyeg2AgiLe7hCg88Hw/WLan5BOSxQ7GwsHQOd8EzWLDtcX3DDh3Y/+orzx85vLexukUrffLEqYc2/u7wsfab3vux+hlNCA+AOxT46aCvyyKKo20nf3vnj3v6e/7zl/+iubmlprr++ptu++VP//Hb//D1IwePLVl0QbK4Iqt1siQ1c2bjNTe+Y+vmp57a8EAiKa66an1N9UwmywIWa5rRmIrHe3t6M/2qP53LZXpkWUUu29Pd3a2DTH9PdxBkWQwEOLhmTTUNa6+89vvf+ptLl62aNXO2ZDEjfSyTJGIQa4ReCRDjzLX3nepN95/u7FHZdMJLgqvKgFesceb8T33mz/++/dSJkycsjBRazJo578Zbb/vX73/j0Y0PzJm9qLy4or2z47GHH61rmPuO99xWVlVhcYeMQWCPUZ0iRirqKqdynZ0d6XRfLpfr7DilcllpMYbEck1G57KZvr50fyadTfdZoBOX0vi5HvtGJpPu7QyymVi8ZN0Nt27Z9vjGP9wjdeyqy2+qrKsDryBj9fXNRZUV/b2n7Yf7+zMmly5JVAmlspl0ur+/rzcd9PclQWk+6Onry+T8XF+6t6utsb7xXbd8eMfzWzY+cq+9U6646rrKqjoZT1kM3tg4s6Ki/LnNmzpPty9cMKe0pLizq1sFZta8ObNmtTD0uqH3EOBiWWXlsgsveuyJh9MdbUnDAgF5A7ZT/X22Lek+C7vSmaXzFn/sk184euLAQ/f+qLqq4rbbPl9dVivjoqvzZEdPz+pL1pZX19qOxKCqNNynUPlHOrG6aPqaSpMf/+xfRaMQWWSRTQaYUMaYK8lH9fSOtJ166fV9GSHjpWXMi8cN1fZlVM9j+vWBEtOgQMsA8KEyzBCQgprJOtPvp3tmV1asmD+vKBYnmUdQqzessNziuAUXzeD/8pCKhVgAxeCh+p56bd/e1uNH9+3dvWv3rm3bn3vyiQ1HT7Suv+HWd7/nIyXFFRZYPffck6+8tKU/lz16snX79u1PPPZIOtP3wY/eftXad8R4sZTxlnnzikqL9r2298UXtr66e+fLL28/cvxoZXVNQ1NzTVV988y5nR1dL2574dU9u/bs3Pnq63ts51tmzz6wf9+jD/2h+3RHIlHkJctKSkq2bNm8/YXnE54XmFSsqLS2ockeXBqRiMkg6H/xpe033vS+FSsu1cJz1CiKRAkOogJSvPb6ngcf/H3b8aPpbKa4rLqpcQaJphkUK6+vrS8qrmw/3X/pJevraposumxsaUiVFr20Y8fBfa/vO7x/89ZN6f70hz56+3krL+ACSgMpiOkhHQrjaCickdvx4vaND93f1X4qmSzq7Q94vLi2vt6LWVTP+/p6nnry8Ze3bxFGe4mSqvqZ1dXVr7/26uOPP5zr6+YyHi+urGtsrm2sb5rV3NXV+dLWl3a9svvlnTv27N0dKNUys+Xg4YMbN9zf3dmWLCoqq2xobGhua297+JF7Tx47HIsVl1TWzZw1u6uzc+OGh44cPCi9hOaJ5tlzmltammfP6jzdtmPb1l2vvLJr587de/YERs2aNbOkpGjXrh2v7t3devLYi9u22Oalikve80cfXbJkFdOeoTAyOM1sR4FytXPni4FWF1xwiScSivNjrccfe+zBYwdfi8fiyaKqhsbZs2fPTZYkjxzce+TI8b5+2+a5ZZVFjz95/9btWz/8sU/Omb1Uo6AtG8gcNATqI4Q1pXvRDVuDaBQiiyyySQEs9GBprO8BLB+7qm16ZddPHnrwtEgUNzWzZHFMcygWB/KG04+D5QQXQjX6AiNFywCcU366q62/9fjaObM+duONVakiBVLawqLJmAJ3VCAcWtLjpWZpXsDPIqoaJ7EGVH4UVDnHdHef7ulp72o/2dVx2q6NZRWVtfXNtfUzhRdHBnj6u//4P+696yfrbrjxsnU3aR6rrqyyKKGqusFjCYOeCi50Jtd9qvXQ8eOHek53FpdV1s2YVVk7I5kqjUGwT3WdPnXy2KHjJ4/aFtQ3N1XVNZWUVfX39PWebmcmC7HdRGlZWWVPT0euv8sTMa29WEl5RU29/d32PiGDLVse+uG/fP9PP/2VlRde4YPKEnTBBReZ49v19na0tR0FmrxiJaW1VVW10DKOLDRlYpzlsn3t7e2VFQ3JRBGXgeFZP0gfP3Hi6JHDuSBXXVHd0NBcU9MAzHcMORqqyMxINN9gqFZ1nm7v7WyLAd2f53xWXF5noSQVos75udNtp3KZzhiK5JdUN5aUlPd1d3R3nPSECpROFNuTNMZjnjGZ7s5Tp44eO3niZE7z2sa6hsYZFeVVPT093V2tTEA6ZVGqprqy0ff91rb90vjGeF6qrLK6TivdYUdS+cBOl/HqxsZkIsZN0HP65NFjh1uPn7SotKauqQ4OWC6F6O7u6uzpbD/V2tnRblHsrNlza2obDU8IEKVHOpdQHih+ca6zd9zxwwfuu+fLX/7qhRde5Wvem+ltbz/Kdb9ROhkrra5sSqZSuaCn9dThbGAbkJjRMKvj9PG/+fqfN7XM+dyf/beS4lrlikzTHa6pPjc7VyVTzlXzlMkT3swgpZYRYgIjvuSDNmlvij7HwzaMcXA2ekuGO+Qn0p6J92XsQ4324XxowIx3QD5mT/Pv64ltQnjB2c1kumZC6ui4xx+jJSP2ZUhLRhyTsUd1UiM/xoV4Y2fRwy7lpEaVj3R/jj2qww84/HQjtmRSYIm/oZvfIE8bU8XIIwPiAwKXQu4DDQs0yHNOgHt6TeqEruxPjgs/RH8WVJUZU0BWR8420qad/ACu7Sas9qwd+QZDVmPe/OR6cQclt1eYMI+1hlGt1ZjysqryirLZM+doX0G6PY/Zc/hQDNgOJiXbQ1tmzV6wfv0tOd9g1R7IFPMZKHECkFVCeqUzZy5tmrkQU8sk82I5bQLsszayrKqhsrJ+3pJVWmJ6INSqY2VlqarSGg9KIGuLiS1uKC4pRRYdSKjb1RsSEkFMXaX7u597dlNpUVl9w0ytqZAiqoSTCoV2MvclZRWlZSUk8s+0pxXR+pGNxFlgdCxe3NBUqqEGn0L+ekx6FTObK5tnLlA68DgQ+hU+B0TjA2U1fGm/i+mNwEWvqK6vrqlDCj2GqZHohVLnLOElGupnCDEDlN01JCIKIUtKqyrLKpGNZO9PCxeFD7mbqfKKlqryxgVLTQDqDphqx3h5RaqsqoaDxpvtYRyilF6iZdYiLoQdad8ged3jM2cuIFKdAraWUUp53KusbCmtmrFwKdWB9gg+B0yXVDSUVNQ2z5wPYXMIrAptRxxvKlfywPDAXjMBRPer19+0c9vW399798JlKxPJimSquKVlAVD9MJuVadzYeCUzmpeAQLttpO8/9PADfZncTTe/u7S4CnU3GMnS0cUnb6viw1fbCS7fE18XJrvGTWqdHbvxZ3w2Hnf6ZWPPxl4yZQo2b2aUadqM/tKM+cnJzvWTPfhopxujL+yN9sVM+DiFL0U+mjCZ45vxlkM24X5N9tQThMhjt8RMoCVm8qM6qZEf40K8sbPwYc2e1KiOeH+OPaoTOb55c8+dmHxf6JUgBVEFHiyI3EgorQsrVICAI2CQ/SUQsEw3D1ae7xxjITZkrrxiQW8hixAStyT34jyZslhHEkKKI7NdYoU8SuPng67w8Juf68L5F2CcIGoaRYXQnwU5hfSb9OKSONwMeTkMw0YsYf+1Z7Z/TCZTTIJ2uQAIAIs4krg5SDnhmppA7QfSNIAix5JJCLORPoHtdRyoUogYUdubPg1KBzAIFiMA4QrOjNJJ2mMiBkmL8pWdrz+28f51a9/R1NTgJUCfIOAkmYCpD1j6z1AskCcYVEAWICzglnfU8gAGvDKhLJNBFQwOUq0CA7NJLnUQ2A9Juk6BkxnLO06lwCrWhOcBcXJKjoNL4YWf8qTQvsZgIuAVSfoEDAhWJL5vxwQpSRh3VKgGyQEhofqZyPt8BPjm8veHQOEDbiRPCiDaQwkbe3jtKhhIuqFQ3szeMhQ8N9RWhnw90JsA6jPha3s4AK54iUGrFwKsIMbgAZoWs2bPuf1P/9OP//X7zzz7xC3vencmgxmkkGOJvYZzC0SuTnvhtf17du1++aMf/+SFq9fYK6bCOLTzV3HaKhg9oNhmJrnG8TM6Gw9fCN7AnG/e6KnFmC/fGB4YeTb2ICP1DGCjaRjEiFoS2bS9EOfy/RmWiKEqZ5q0H+2mGgr3m2w+RY5RijqbzjpYBZE74zOWoLnWgApDDDtiXKkcreBHodNJAOwCdKJDiosw44YkC06IaYcKs/PsUTR6khSqTSri2KNvQ2N8R6M+BIsDr6irp7c7yPntHe2dnR2eV8qE5wMmUAy0Jl1FFFI99WGZNxKXVIAuCnGOQYqZQYSiMbFNgM8H1Z64g5foovU1wjSDjDOAQqo/k247fuTHP/qn1lOtTbPmWAgIwv2MWGsCGwH+JouHJAJGDesKtxgQ8QqHREYJ5V5sQwTQqmCMUcsUm4PVbiSu/FCOSPBAI27HXEEFZYQ4SUBxYMpDO1GKAZC7dky4QKOWGF00XwUgLxYgTIUvwHekphuTKfgSeI4wz1HCK3C7BqgoYkc+cFcBABAVpAxQagPuAQNuWUYlDOjCBnQPIJGO7idDPk8M69rriOwxE+4zwFmFMrNcYQUEg443jb480Liw1873EVWLFStWv/e2D7V3dvems4jMIA8V1DQo8ue7PAlA0UK1d7Xf8s5bL7l0LVOepjsJO0siI4w6wiIVrDPuFRovRMiy0YBHFllkkzDKsJPkwQJ1IqC5a1zI4swUGZ2F3HpO4bHprYJFIAKsBDwosCoqbhLOHcJjoHokQPAyCymTEK4DdIQdF1j+BuOFfLzhUqEqax5kCRMCLyj44rIXOcghoPADQ9KSiyiqnkzvli3P9Peklyxaeexw64ZHN665aG1FWQ0jqEfpdRiq5KSLgZIZGdRSx+gavBsQunKyZega0siRQy0uXP+5Z5yMqnLiXRpFNOXru/b+9p5/P3Zg/7Xrb1yxfKXyDci/k6YnMNhFXlJWaOqXu/jhADDta3LpUGaEwaqFzsmCw6hdDqJgwMoCD6gLXRvKRTXOC8QBzaFH0F4Ci32gNCQqOIRRW9KSB8AvKLHRUAlyxQIcJiBwhaQ5jjFIxR07CVGbEJTm4LxDxqEshh4oHGIIrKJ7z4dxciIS0A5klRM4xTfQc4lQ03HMcZgBXePQSBwrBe2RwsmaAMgzVK9SmtUrr+jP5lTGFSqECKkh5CQcf9AOo4ByhYsXnVccLxImmeuHLyokG0DrBQUfkcQGdYVcbkpkU2NepDMaWWSRTXYD6JShKAbB3ZpNqpQGg4Z2gffMtBYZDalnJFUF2l2BMWGRHPCRSFSDknZVQ9ILJ71s1yeXlgUhJT0kRDhsrEJhsEJuHQ8DizwfQoWAlhZhLMZpZlk0wVUsxpYtXbxw3lc8HssEgUzEi1IJowOMrEGwknhhpJ9PmlHcoIjEYPo9kcWMKxlM8A1AGjq/ULiHJJMQhbgXdngUm9k0+wMf+LAX+1BNVX1xURXGNyUR9UPtSkN6n47ExAYgDI0BnRKp6pzgnXTcf0JZSGYDnOS0GGQ+6RLBDYlA2b9LInRhN2wLJafuOg0CdNoALQzzXA0KiWh6E84qnTC7h5WK8N3AwVxXUJLE+QkJkpoWMy6ERLVrNCPxe0bUQk33AIRTSUkWxUiBz4ZNEg7PcOc8Egj20InooCBqoXHjOWScz7sF/pkWIl6cigeAwbRLYqV4JfqNEcwq/LooSZXBmIIuKfbasdcMqYZRySpSuIgW/CkFWLGEjEYhssgimxTAUshGgt0/kmLsguAJqKUnkIcLutvaxVHEdIaJJI+OQJBwUyhfCYt5nJk06JPrRIIlExKXOGk/EFNUr0Wi04JLM2lUN7o/Lcysd7wfC68k8JXioqS4BHhQ2kIwdDhpcjrxOJcFsViIBtESKm3DNHOa52GIKP8vAiGJypmwWAcOXgjPkEqF4M7TZa8jFJmJV9ZU11VyqqcIpXNI4kIaV8Q67xcJ0SEBGsRcZqDfImwm0uGNzKNN9z6Nu4gxRGlsGGcHLhBS3hy8BbcU8avgH4HACqJvKGEOVfxQ4l0i/8u5o/B9h7gcaKPTA7dJGIeyHCTM++GcW5BR2ixm/SHiBiqbppI8SNfiVEJHkkDrAPlQOGdpSNHBBhsTZkdwV8cmlDShPiFFDBhjISPNQeSw3g146IhOaNx4cY9U24WriI3lBkDe1oiCixPZFAKswI8GIbLIIpscNAmgErJdSIxCnwOQnH1QMwehUa0AZmEAJBbGxabbvpkXeNc4ZospKFBNqyFPYp2XHBC+IV4T5LT9G86UsLwbDIoG5Gow5PUaN+FjgFqsRxsOqM8i7P8C56NRWLJQWLwAQM4Yil3ZtzGVjpZUKjoNWf4GXRcafSoGAmQUg4KoH8JcTUxzlg/bQSiJuOksgF4CJkCtcgwBY7IaUJ2UoLApVStkaoAGLgI4Ka7tOhAYhjOE8TghOZS9x0ozeR8Tczqu9m0FDHjt8LdBuStjwZykSJtyeHcowELKVIhTlENH5METJkR3wp3GhLhNYzYGpwgeohuPCHUI2cARhNm7EoNziMAwZEkZeFhJGjlUEJEk7xgR7CFGidDUoz0HRi1tN5DGxUnAgpqtucNZmuWDxaAyT76xYOCmoO8h0jagGC/QCwXIDmFYQK4zg+cDghwTynMuPBwdBfHovPIcxzLPdkwDdCCKyH811QALclgje+vnc3SV01RAG5mCaXcQ83DIB8J3XIF/Hb5kgw5iBqe/UuXQwid7hJYMa+GQhg2cNHyThyUr8p+hE7Hw/fx53Ywohh4hv4s3g4+f/9YIXxl8RqEHt2FI10w4gxd8gA8eYR7uJU3By8KrwMNmjHhdhr/5H21XiKuv4lizWKMaAJB5ZDIetwigK9vv9fVVxouggB3HgAoRj0M8YwrxTf4KhwrqbzUwNJwN5Fe5eCDDVDiUuMIsfw+45TrTn+7q6okFOhlP2L8FSmERQGQLaZQSJ5aUcZSfUdjDPK/c7votlGGhl2rwJzlgVApIEXJwNHGmXFYd0L2FAdmlwFXXwRREWDgBjsACT6EpcMwp7IwAwph7Kgg7UD0+C2ywfjIDQAc1dZDVBC8BnmmUrXcPgXZZgtkA0higJcRNRwiCef+oMqFNQcY9ggSEEoq8K9r5goBWTt5C4CNp454oFFxFnxmnaBjF4UJFDPd45uc0SszKe81CaSeNoTPAmUoXjKrw4VQynKUMEcW0piBs3iUHNaoDHs4IAOOAoYaR0nB6ACiGvisYL3CKaRcjDIN7+DAEOOFI9LAFLm3PedwIECp3H0L6gkT0pokoxrmLhYYTUoDRPV5QM51wnRsadCCbgocKeWJGu6CqvYqSY5oCuFw1J+qbm7E1Hzr3jjFjD3fDmv+QU98bAFg6KpXzlq9HA/81g9/RPHREuz/yAiUAd/uKgZcDX9Xufbcq4ZZoqMKJ29pJPkZLWIHykhgswaQHyVPTti2fKMMLvsjDvw9eUYaGRPhIg8LzYQPNB/UxzwgudI3TK8o64i4nZ2gcgQ+4Cvhol8HwwkNyWuiJXOOuAjoIUHPS6NGWzImGfd6GJsKbgvb2tPue1TLzgmXLT7+882BHh8+8+rIK5kGFOgxghelVA5VinIcjf6mmQADRULVlxn1cZWMMr3PIIIqFig32/upL951sb4vnMktmNK48b1kqmQAXEGghCO5EtOC+EVST0d1JYzbfODEHusf44M+bvHarVJSUR082eJVQWywsmm2xoHZ/AhiiudQuQQ0LzjlRfeOeZs4IVginz4nAIB/64ij0xUMqkMMzAnGAcTQg4pRTviP4jRRxtwCqKUKCPD+fYNVorumFppKEnCjkBCIwLYK7GwbzJyl9EYhNtvkoJ4pl8yDorGmqIacTd2gifKZxNsKvcwCI0uECxV3WZzi8HFnkWOOIXHPO24VIRrAwZioMISs2kJDB85/E+YFh4p/CHuNMSzHUgfJHOOKEUSk6F4ZHkWjm4UW1l8DHitT5ACgW/4HvYWc1lWYKw5Iu81S5S+NuE56f31HxAZMWNFUNB28jXFBD2RekeSVDVyI9cUqE35dDJjS3+pjRZuyR57wIPIwHsKJahG95NMXFFYx78Ch8Dr/D9I4zHEmj4CfwUaAMbcp9NlTqLb8a4Tbco0pwTAPF0bgK/8JxY7nb6sAcIgsxGT6uRAfQHhItQegO5ympkcApWYC+b/vgeuFjh6F8rR3s4Uj7ZUQ1oN5I5G7m91lmwC1U+KzqUKbTOPFGFlYfpYkdd4g8bComHGmcA4UKIRd6GMDrrrnjOuBkhTlseFCnwEcZVXnvVQjDtGNSCOGWK/I/SB1KHotw5dOGssuR52CIvwBsWhW6IUJBo9EVvPnb/K6WITeFWMh2KCtLit+x9vJYzHvohe2H2o8zk6svr/VkMnRd8EBrWs8xYQrIuFkQHyJxBGOmZMjspc8y048MZqSxI5kd++IDJIDKxH193R2n21J93asb6t5x1RWLZ8+JIyAQ3MNF2y3UcbdAMh0SpMfZYZn8Cs5HDCJipM8iCxHyZQR6/jTIUoVuDW6Q0U6qrvDYKWS2C3pMiY1EyzUVlXb4yRHLAbm4wtWSCzcrwRdkqLXBcEPmZhyGtRc56VAAvpKgqWVCNrnJe1ZIHYHO7yGJS5MvDVEoCRQIUlYQVFdHU7ElfMqpapCIK3CnBdLokIztQCdHFn4ezeQfOmLjg34XirXCoYnkLiU+tsZ9wOl7SXymtcOgeHLtaOaShkaH8wYgUxVqYgl0ummcu518l9tbCiXdBEnpigKHilF5ZqR9YRCVWgp/5nGsbaBEgJhTGGK7I6rSjmjlECXLBwqd/EThXSTdhtax3dxUZo8ZAxaaNG4Y0M2IC49gMQLegrMw84ELlue5mTxwLNiODyLVFfzOC6IEEcQa14NldDQKb6n7yvnngRBpQO8Gqk1xFe4NDW2ASUIabn2PuWxhxE6umgeyOAeulPE0kVPp+YNdJ/EnaGsV5F1CBbVA+MBbrqgXzY3ayQxiOVCFPmR4KI0o9BxDVhEI6mkjPU1UUSI6gAqL1B5XYUoSD6MfZqjWiMjn3YAQH27ZGFEekGKAvgDcVVNikslLJUIHBbVTYTcl+eqRCYOTIf2XptkC9kWIrrTbTrppyEgnKkmZU66pJr+thH06iFxjgABHiDwPUKAO98FmYJbhZqT1kg/r/dvsrg4Tqwj7asgpszesqoonr7v4IjtiD2/fdrCzNWl4fXk9j8VynAWgCMRw+scEN8Z8CGpBPCVhzvg8PTzcOPBOQMljtr14J5AcQwY3Hva6pdM9XR2nvN6u8xvq3nXFFYtnzSZFbMOcK8M4p5dx2326U8e/3g4kjflJJ2xkBrvzwik6v7CZgS0TLd/0qdCXFCpjGEasKWbycR+TTyTEuF64x3FCq24T4g7j3Ot6wEWMoMUNJz1rBcjRhMR88oKhRLlbsw0FiMNxxJqFEFy0eAA5UZBuCiFBFOzCtmunjqABgOG0EGKAvH9Ouv2kcQflFNNz+QGUSac0+bAQAtNfEb8I0rKifSyq2cP0jIIJAslmOoydSYI3nKQ86KTISMNpSDFyHUHHhHZXz+2l8dAUwBPIdsctIaX2EXAymKqpkeoPclnceVQ5JiHi1KipoFKIYAlPDuQVuHGi/ync64abRBIVAd1ZhYKxMQh7o6/LuQVprXD1jTRiRJKTd+3X41S8cFmwJgoSjg2wTASw3mr/laF0aw2VEdCTDk5w0CehTRFKquC8BLsbrpD2CXjGA/Ij3eiKBJe5mzHtIxcw5mar8InVZqCMBwg9DiQkDYQhOOa2GEMSyTDTCYpxKENZNMQkcE+tI4vgB3FOpMwj+1QHNMO46YRwFgRQwJ0kiSFgYR4v5DcLrp1rWqIqDqTxo6yMCVATm6Madbh8UKoP5EeBl04rvEsRxeFGWEHFXcR0ODUbymkzxiEtZgZwDhXhQiiQX1ooLTycjDwY+AAeBC0pCIDygCj8CD4OLywKQ91lPJ8LZNiwEGVegvDtfmdrKo8SUo+R7mxHrrK4+Oo1a+yk/tDWrd2d7SeNKK6q4tID9pKQOVws0M9hNwkQqos75i1/C/Y1I7iRNKqJxhnvx5sdCTEmjB6qbF9vpqOtqKtryYz6d129blFLi6CiJBhgUVRyBmnjTjzJjLSVGGsumOhnzHifGVsS20zmFKP9MpmiB86XIhmCK3hq0I+EglOYXmofcxAfR7ToQ7qbkZoI2xwfNB4ACR19T+TLw4NYeBCA41BLifpXhjaPBoVscTMmIVhpFJa0ETRzhpL8tI90FY20w5GehOPFYwC+/H6L+9G3hhuqkFruRFaRnc+dkjwxwrAeUOgRRD1RQjr4HqaWuuS9MC4bOIkEnFw0TtlCCSHigMewmifIt3N6KqD5ys3gyjl5Q79gPt1QI86VinBmvuYSMcFwy4CRQERQmoTOkDsGU60UhOuonJWdRAPsE3lyaUJ3xSURTQ7mswwqOOYybQfCA5GNBrDiXESj8Fb6r1wGrkUGHrd7NoXVGaCYLO64UDYOgYgK7GQihUT3sZ2dUNPGTk1K4FOH8QBPswCmfAjhYagOVAA5ohNIDEbWbQDTGLzFXfKOpkoVVKeW6nHkk3vzTxCeCyYhSagJoRg5fyTshcCFD6nIKNgiHGOSK5w5PWQJQDpwWGrCufbD5GTnLRMUMxAeth48QnCKWODDxGnQE0UgycNiF3EXGzSYDg541HYfaJ8SqnYwrCKMe3Xbd42DxHW4IacHX3DK1MEaHZykL9H7TtMRdFV5MZ3LZez3Yl5cBbT3h8GHHnMPQQS6Z6CDfIA/40I6Ixa0IpT3Nr+xBdKQ3TgTowOjVUKZ+pLid152edzwR7a+cLSrzd4uFeWVCS+eJllNSv7HuytGX5qq0cpnDtobrdSu+PgYZISIQfJj0N/f29PemuruPr+p8b3XrZ87c6YHJHKC2hBCEtrt3MXg6mciipPQUqupwiPU68OkRxaX9qGxG0tlEa2yMxsTOQdJ7X3CE3EI6qXt8y9gVrDTiZ1b4pKq0JhAK7ut9CCzE9AAzJ54bEQMmnzw9vMxFmSCTCqRyga4fyXaFJRatBMpzUbcZVyaIJtLHzt44Gjr/tZjB0+3d15/3fvnzl8WYLKm3fUFlKuJ/nXHbRfhHIlRUk48N6c8ihM5zcsc5xhXmxIfCDuDCy1jMGNLwI92axFS8wWFVwXMWtIkYoZqCAUkGUElj2ACBwTpUyolbiKp1jWqUYDymZNUJU+dRaYu8MtDvVIk0du5FEAveN5iwvRn+2OxlKaNEecuTRPnNOl2pBB91GHl7mEAa3D12OimnwjAYlHi5lvswALPMJRdFU8/+dhLL282LIM1GLyYTATgDLY7iVx/uvPCC69cu/ZmqOvq2JhQ5Qof6P+PvfcAk+u4zkRv3dRxenLOg5wzQORIAswRTJIorSR7Zfnt2pblsM9+cth1Xtt6frIty1awRFGUKIEUSZAEEQgQOc8AgzBIgzw5T8d7b9Wrc6puT0/EAAQorTj98QMxg+7bdetWnTrhP/8P213ksUQzssgaAx8ONHFrEoqppKC4BMSRqQLi6TYFI2BEhdyVTJFDxibZNYzhDFJZQykM3sWQmU+jEiBLknU4WTJDz0ZiJOBjwqdJSi8xRHi6hTfiCGRzpDf84c5tV6/WKUrUcWy/L/PBDc8UllTygNLmJg7F7LhDc+lC7dZ3NoFOhqJbxDt+8vQlS5Yafj/0MFELoj7iulECRqG4FNSKIN5Dqj3RNSQS/Co208ijAFxQjXurSnzHzq1vv/HDwvyKFz/zpbLiqphlococRNWiSqo5ybZw0j9XMQANOqCZgP0qWyAmutiT1WvBO40ZBFTlzfJ6H1q8hP/ynePHm9sa+bPwpWcZhsciACfWsZWOYYpAY6hRgn+5exPWhz52f+MI50hKIzLJfmlJhiIaj/REWpvTIj1Ti/KfWrt6UlEJgeSGLHKpKBenSbETMnRy7JNu61wkkGCa1dXGloa33n492tvuUeIE6nC6J5i7bsNjxeWljgUKQFs2b+robHv82Rd13cc9iJa2ll073m9rvsnDHkfTZs9dsGjBCk31OpDTx+wPdRHnmMdXNa3x5qWfvPLvN65fffDRp1eufQikbwT7pkgoATu6BGNB4KkqbR1N772/afv215uu1emONmPa7PETp/Bvg8gTn7RNHAz8VMgziWVDJZWqAEkxl1hBQBcUSa7FkBFfIpO4SW5ouL59+zs93W26k3Asq6i0fM0Dj/lC2RA8U0enqgFXdA4f3HVgz3bTUEG0m3jnLl4xc/Z8YL9iCPmDmFnkzyjRhVOpyNKr6F1FsligagfTBtQdVOTYMaOvCBwtJYaqtrY1bPrp986dqVm74al1ax9RdQ/MqoYVEkpS5EjF2SOgaGSoZU76Wbix1y0dLCoLr2Ove5nGgvwwqayqqLtw5JUffDfS1WwG0tc//GzAn813RGvrze3vbfL6Ag888ETYsgEbSbG/mQkkODDRUGxfpiINjA4DRQZgFb0IbNWiWA6DEh4PksA7s4kUmBBwcFHEYTKRRKVIiFCEEJoaErWtypoPpSI5RsSVFQnRcHSBqEUcqI0i9oJ1WYxOlFtc0Biqi4g6AJTemGqaxsSJ42trdv1803cUx/YGMgNe3zPPfoFpXkWowHInLNb93rs//dF/fsOx46YZfPjJL4wrr/AYBsV2cMrcYo8AtUDFRpUS8wzy/Srm7B1HNoxjpgv6ARQhcYJ9BTxAVg0j3NO95e2f7d/2mqrnLlq0urykCuiDhJ4Fd9EcG6VIiFDxEC3pZIgiFBmo0PwxIbZ/wcuaUoluk7zj+IABSAIiyU6Gz3P/0sWOxnYcO97W3sLXqS8r19TUuOg0E/4vczHX98YlTepMp3JC2CLFqKqigm4zFo700LZWT7Rnan7uYyuWTywtJbato1iNxEe6mCaaUkVLZv7pmIclnA4mIZ0OCOuRYJp/yuRJb/z4u3t3vsmjqYpxM7/4G3+Unp5uJQBU3tPV9rOffqupuXHxqpVFxeO4Wx70p4+bOH7rmz+qv3r5pS/+X5VlVQQu5XCvR8XuSpE5BeeciLYWeuLk4Tc2/Wc03KgYbMXqDQrxYsUX0UuyeRXMhM6dEMp9L5qXU7RyyZoTh3c1xS0zkOY1gpA2p45sJ3RkNQHAElQIl4PpQ24xDaGgBG/SkX2xVJBYYARLXYceAP5OKD04adL4l7+95ej+LXyJFZWMKywpmXvfOsR7EVQQV9vaGl579Tt7dmziX5idXfzcS18qLSxAMyNtCIAusOuPMgmPSmK4uFUzANtPHBid4BUTs4/KSUImVLLsU69XPXfu1M9+8p3u1gtENZcsWRXwGfgFDmL9EIghVcupS/I15FZMMXpsLLAYZQaLjGGw7rXpEcpSanlFxYrlyzb/nDtYlt/UP/9f/ktebiU/ki7Vn7vRcD2/sAQLLCIPwwTsQ5G9wjSJTVUVUUSXLczI4cJErV3sfv5AG29cOX+xtqp8YlnpRJBZEPsFNivFPDN2W2NLsKDmo6Im77bO64pQxFcE4h02HoIPMLjRBQ5AIckeauoSLVJBz6cyZNdzsLuHMLfzB/twmKbpZNbMmQ1XF739+r85ihULNx0+uG39+oczsisoMhfy3d3cfOXQ/u3UCSuK5fH4li9eOG3qlGgCFSMgvUTx6orbmqnLhnFAyDuNN6+cqztbVFIyftxkSiFLJW4C81oAAEMD5wjX1Gt6586e13L9Qm5hRWlpMbiyQv8egSEYNzsUO5+pkmx2lj6UUClxLY4r3uF2Hn4ibAeeBVRQUIO/BTExglSYyp+EnUj3GOsWLeQz/uGxmpb29piiZWTmaJonShSLMRNbzS3RczCw3vrR01eynMekhozsZBBZ2AQRiQ1YSvFIT29Ha3pv97SC3EdWrphSWaFRBykDXKrwJOw7VXiG9TVyMTJ21kh2AUE6KoS+Ta93xYoVphK+VHegoeGi16tMmFCenpEWjTuarpypO37zxoWu7q7jxw+Wl47n0aA/GKwoL/H4yPKVK595+tlgWnY8AdAqDVCdbg+l4N2S3+YUFZcuWLKqrena/IVLVE2zLMyJCl42RCBgrU0VcSTfyAFfWnnpuNz0fAQBarqqIZ0YiDhrii46L9HborqmdHe1nD5d7U/zT5o6m2h+FetowPOKNhgcddngIQygSmQvJ3xvwB9YtmRp9f7tR/e/wd/UcON8zbG9M+csUT1+GBsCMs7WVVdX70dKrkRmVnDVihVlJWVRy+2OlqeAIzs2RXVC9FarNBHvPX32bLg3Mm3mXE9aSPYDKKLZE6rZeI5QUR+1E6yoIH/x4mWX63PnzV/o8xgCr4EtC+BL6iiqBJLTioSqqcl+8+GytINJh8ZeQxpJz5hUzj2N8+FY1gS5AI+ZDdOjGR6wR4YvMyMvMyPbtpTysklPP/25cePGa5riNXSUSFA8XtXUFESjK3HuJtgg0qBhW7ZBFP4uQwqPwivhYB5dAffFsWM/f/17mzdv+p2v/NG0aZMtR+PxJAG9CIA5cCORsKgNCTXCAztugAyVn3ZKzGbY+U0MBZCmBK6J9T8Yjm6DHi2wrGhE1+EdCuJYNBt6wxxFDgTEIkxTF+3PyIin2CCfzwTLDmNSz0tTVdMMBDPzHKu3t7Pr4oUT586fXFVYroIGCdM1++Txw5FIZ3FJ8fVrl/msmT6TB3wGnw6omKqGBndBhCgIP6FtYlvQ224YEIz++Cf/se29dz77a78+d97MhAX8kAoyCekaYFmpjZksMDEKtRS/L/35jZ9dtXRVKCMrI6uQ30zAr3MXTpUpciBmiPPZA0ytJrCkjk1Fp49IamnqwMdN0WH9lQ8aVDeepW6jpko10QSuooejY3dAQUbawyuW+FR926HjrW1tMUoCmTmq6Yly3xmKG4SvHw+5u3I6KWotErFLhaKzJoRIiJJQ+diohy/7SDjS1hro6Z5ZXPTU/cunV5YZFMk2DcSnQGCjJ3mCqIAqKv2wKKIZdewl8N2iYs9QSkcwL82eNX/GzLncwbpy5dLFi3WTps/jm0ZTrVMnD3V0Nifiseqj+zc++Wndo2t+Ze+ek9cbGz7zud8syC/oidimB4wJGC5TFS4yZPJtwDQBQaeqzpqzsCj/Lx0rmldSqugG36P8aXEjovHdbhBLATIaqKBxPwUIaIB9VSWStZWPzTBVX0AxPB4wSrZiOUoMdTR1lQQ86jvvbPnmv/zDynXrZs2f4/F67BgQg0L0qGmaIZuiHSChYuCg0STDnjAJzOfRvB5vIJALnLXRnqNH9zz0xKeKK6aABBMhiWjHoQO7An6Px8xva7zBbZeP361u+AAVAVQcpo6wVBU5tPjAHNvCKIQbbX7l07Wn/u5//0nAn/YXf/2PuWk5YJ65WwvgN0BDWgnchibaIgdKIVPGT/nq7/1Zb7ijoKCcDwrsFjZEUki/adxn5OeHoeo6smlZAIBDDtskKGJshd95FGqPTd69PIkw2SIiaKLZDt8KePwSqiYSzIrRuG1xy7B6+f261x+JQYZJwyRKV29XT1d7LJ4IBtP8oSyfN40HIhYW3zTCuns6Ir1dlF+CsWAgkJaWrmi+eMJSIolLl08e2LO5p+N6uLezs63dVjTu1QFM0k7Ydqw3HA54MwIZmZZjxZ0YH0E0GnYcLSuv2OGxjG0l7HgiEYnFIqGMXO4L9rT3hGPR7OxcU/PwgM+hsY6Oro6OZr6VA/6MUFq2bnjidgLA6tAiZLc1t3Z1d8QSsbRQiMeLpunTNBOqeFSVtDTIJpWIk+z0/PyC8ceOHmpquHrsyIH7FqwlWhp3glrbm05WV0+YOLmz5QZ3sMAKWNxF5H843EHVNdbV3RqPh2OxKGHU5w+mhbIJ8VuWFY/Fr1w9tW/Xu93tV6K9He3tTQ7zarqJWXub32kkEk7zhALpwfb29mgk7ud/9/j4lfOy87rDsa6OTn9aMNLbEw5362BreKzIPVrDHwjFnXhPIkKBPMxIC2bomsSwQcbRHiJ/8qvfRkjlH7baR49rp5RLk/EtPw9DpnflooWOpew8erS1o7VXgVohMQyKKQHM2lK9P8nt3TnyAZvu9kFgnoyvvgQO0Ys7Mxbpjre2hnq6ZhYWPL12zaSyYn7G8ocuqJIcUeAmKdrLmPqlgx/32MvljBAoSNG7x3+0FOLzZU6cMmvXzs3R3s6ztSdWrXmK6N4b1y/X1h5JxLmbzeov1NbXX6gsncz3WPWhg3n5heMnTI3HIRbiRkbjflK0p7W1o6en0zTNYDAzGMwGdAL0yPHoKRoIBayo2t7c4cs0iWHyx8dDwnB3Z0+0ozvR49d9PsPPw8I4pQmmZITSHR5discIfOix7nB3e1tLIhoPeoKhULbm8UW5BXQSLTeaPvzgvdaGc4nYYm4u+Go1iCdomkQlVjzS2trWG+lKWFYwPdPnS/eaPh6VIs4T0Prg/xHAF1i2U1Y83hvQq6v3njldfebM8dLiiYoD0Pf6S3X1F8/On7uotvZQGybGEtzA2YQHpOAiUaujraM31htPxEyipwfTfaEQ97UsR406dm9n64G9O8+fOjR56tzuznafP43p3AXVo1bcsmKxWCIzM0fT1e6uLm4S00OZhurjFjRoBrnx7ezoDKWrsbiViPVoHhUTjhp/g88bDEcjCSfmOPw88vgDmSomDsmYc/URHSw6Fn/d00gfWTFtoaAKACK3DQ103ChRaXPbjVOna+fNXmboPtu2TY3GI12HD+5+461NLe2tSiTSE4nNX7hk47OfqRo33aGalYjuP7hr+64tly6e7bx+RaHx/NLSjc+8sP6hZyNRZ8e2d7e89+rli2f5ifLm66/t31OTlZW/4bHHmm7ePHxo18VzJ1qaW3/rv//xo49trDlVvXvPu+dOHb1yrm78zHl/9bf/2h0O79m5o+bI3ssXTnV1tD7+zGd7wtEPtm3LLCj+i7/828Kc/M6Wm9t3vLNlx3uJaDTS1cFU44H1jz3+2PMZubncJHR3tG97/9133nmbOyj+gNcmalZG9nPPf2b+giXQRY2FIyHUAH6LDZ7k0sWru9q7T58+fujQ3vX3n584aQ6PB8+cPHH1WuOjD6/ZuvnHwnRTBy/AbZAd37f9g9273687U9vZdJM6kezC4qefefHhR563bWXH1nc2v/dK442L/L3vb9l88uT5rOySpza+EO7u2fXBe+fPVV+rP7dmzUOlleO3bnuzozv8/HNfzEnP2L/3g3PnT3a2dXzxy7/7+BPPXq6/9vqbPz13uob7VNyY3rdgzec/96W6i3X//G//xK3f4kX3P/XEs2imqaYR7jRI8jJs+ZQnjej2+ZXeVZIazCVVS/5dgNSgqZBJqljsUHfSPZ77ly3mgfGOY9Xt7S1Rlfozczyqaak60pEo9C5X2fqRSIlSO4JTxMOC5oxEpCfa2urt7ZlRmL9x/bpxxYXEQsgvkqSrSN+guiz/KV7l2Gt4Q6dQqYyI/HUUxe+IYk6ZNi8vv+Ta1XM11UdvXr1cOX7y5fMX2tpbAunp4a7Om9cunag9OmnC5Atn648eObR69aqsvMJY3AGMqRK/dOHi5rc3HTl8kDmJro62vMKSp57+1KpVD2q6/1xd3a6975+vPVh/7vTkqfP/4Gv/EMjy8EDs1Jnjr//sR6fOnNG9nu7ONp+hZWRk+jLyM7KLnnziqZK8DIHZsG1r34G9r29+f//eHVZ3Rygz95mnPvXos58hqrl//57tWzYdObSb39jhgwea/uRrHm/2M08+u2j+3BtXr77x89f279+nsITh9duqPq5ywguf+lxZ+Tgm1juP5bAu6UBaiF8ssGr56uvXL7W03Ni1450l8x/ISMtLxON79uzWDXPRfUtPVB8WBWeHR54WTFp3b8fW994+fHDP5cvnO5uvabo+fvzU5z716SXL1mlaoO503datm3Zt/5mixG/cqP/6P/6d5s2YNmN2YV5W9fH9dWeOd7S0bvzUZ6NWYut776anZ//+H/y5STwfbN92pvbwhYunJ06e+ju/92f1l66+9c5rV6+cslnc1EOPP/rCk088s3PX1ldf/WF6ZvbDDz+5ctX9uq4zlqQ2c7WJBrHLkTEw1i0crLHpuaeJc5IUxqcEMUTiJHac+OWr5zt7e/Yf3l17+vTUqbO9gZCuKvFYx5uv/+Db3/qG6U/77d//48y00D//v3/95mv/383rF//HH/1NYcnk3kjsxMkT/kBww/qHG65cOLxv67naPd9svJaelb940bqpk6d8sJUHf3Hd4y3Izx0/YXwwkB30e9p058yZo/Vn9ihq0FGiqq54vUZj47XD+95nTqQsOk5XHQNoqey6M8cu1R1UVePgwQ/SM7K7Wq+VVVb5TbO7o+lb//a/N/3s5Znzlnzlq79/5crFb/z9X3zrG3/W3dnx+S/9lt/vffvtV7/x9b+dNn3Ob3z5N6omTDhy+Oj3v/29nq5OSLgBuh1rekB64AA3MoFYrWr8jKnTGriDdfbM8bMXjk+aMp17brUnDmdmZlaOm6poHncTQw+XqqnxRPjY0cN+n/ehhx5uvH7t4J73Lp89+K//dDk9PWvt2ocmTRm3+Z2EbYV105uTkz150uRAKCfo99uReFPTzeqjHypO17FjoUgiFu7qsCJWRmYaY7G680fP1h4wPV7bifKDdcrE6RmfS//6P/7Zrs3vcXuycNY8n6naFv/m7lUPPPD0M8/6jBCI8io8hhZMjBKYQ5MUjOSuuwu/jPUgjNKlnplQgMPmU1fTRK54bMCHU4OFfDr3sSzm7Dpx4kZHMz+QMzNydZQxSSiubgdLQWL1AdRTtDfJyEd8UvNDfli0OyDXgqIpLvE3967CPbHWZm+4Z0ZR/lNrVo4rLQBSJiZk3gT/IvBeSvqksdeo0oWK4HbSXLY5lN6jqqqVV00uKK26dvX8qVPHr185U1ZedvpkTVX5uAkTK7a8/fPu7ta6sycTCetiXU08Fp8+Z5FhemMRx68ZJ88c+vu/+39O15x69KkXntv4qbc3v/aTH/7b2VOHHCexYf1TfGN2tTYdPbTLijaXlBWpmmNqysHD+7/+l1+5fOHMCy/99hNPf/qVl7/15k//VTM9n/213374sc/kF5S0N10XbUGW5Zw+dXr85JmL5s/bt2vL9SvHvvOdhlB25sOPPz95wrh9u7RIb6uqksyMtIkTJ2hGRnp6kA/1O9/9+ls//8nDjzz9+JMvZObkvPHWm/v37LHtGBDjU8GAagMBiKYjM5fNJ2DazIVl+7ZxB+vIgV0NVy9lz8hrb2yqPXFywpQZufkljuhkwukSakHt7W0namtKSkpnzJh65mz10T07jhx8s7XtWk5BwZTJC8pKi8rLS9o7m/gXBYPGuMoSI5BfUJCvq9al8zV1J8Ep3Ld/a25uXrSrJTMjw+M1DKZ2hZsPHdkWizQUFmdza7xk0fKMdN/f/t0fnq/e7w8WePSNhmHH4x2ERZ584otLl99PiImpSEGzmpQgIIMo/1xQ6thrOAfLMMeS3Pc2tBNYIX6EGBpUnoSsRiTW+5NXXza9mWfOVefm53s9PGAAIquTR4/9+Iff6uq48qknv7pq5ZqAx1t9ZOmpmg9rjn54YN+OFz47NVsPffWrX9G9phfU7Z0f/eCbf/4nv9PZ2XCi5ujyZfcvu2/hti1TDh94z+cJPPzgo48//pmYBZHl5IkVhw6/V39mt+4hHkPzmsqcWTOvXV1+8INNPV0Rn8+ja0Z+bvqGBzacPr7nUt0hj9fz4oufXrnm/r/5y/+Zk1vu9+nvvrnp9Z99x2vqTz3x2II582ZOmbj93Z/s/bB+5wdvrn/4kaqqqq3vv+EkmidNLJs/b2Z+fmlxfmlHS095WZXP44kRyxAOpqDg8yiqCcB7nz99zdoHt+94s6OtYc/u99ete7Crs7u6+uD6DY8XFZWKqo6CODDDryccJ5SR8Yf/44/8pmrqQAb9ve+U/PVf/VGst+3k8SNr12xYet/it6rGnTy8w+PxrV/70Gde+s2oTRMJxxxX2dSysvrI290dXWtXrvpvv/3HOw/s+tHLP5o2ZVpJcU71sV1na/dpKvF7PYYJIreV5RVf/vJvNV45W1d7YM+ezZOmjP/wwwNz5y/4zEtf8PtCiTgVOmAaS4oFu5mrT4yD5cYOyRDW5dRWJEWWFHdWBV+4lHrJTvc/snaZ5tXfP3a8saO9i+gZ6Tk+zcAUL3ZdEEl0LsWYXcLqpJ64MpyLxVydQUJcGVwmpe6g5o7AFFTFYZT1RMKx1pb0aHhGceGTa1ZMqyzVmAOScZqK3hXKnjhMMIXTsRrgKJcDE/x8wB8LXAQasG+IrubsnJzZc+47eWx3LNp27uyRqskTz9SdWrZ4XtWEit07d3W1N186f+ZC/cmaE/snThw/fcZsvpN4+NfW3PDyD75Ve2x3WfnkF595/r4Fi61o15bNr7a1Nvx80ysLFy5dMH9aZ8fKw3t+1nCj2WMaaX5PIhHetWvzlUsnNM2zauXqhQumX7+8Yvf21zq7Wphjjasaxz39XtNEXCnz+Xxf+OKXVqxeF+7p/Ys//b1Nr3033Nt4oe4EdTbOnj1x/pzZm1+HGuX8OQt/67//rgb1NeXE0YN7dm3zeaxZMyfNmDkxEMze+PTzPjOUm1dgeDTqUMnljMGH4QVELF/WuYWFS5avrak50N3evHfP+7PmzKm7UN3e2rL61389SZcODTrcyplagtLKyoq//qu/8RmaaZLu3t7/9Sdfef21f29pvFx3+uT0yfOLinJXr1z53X9Pawm3FpcUff4LX8gvnpygxI523rhYU1e737aVFzZ+ev3Dj37729+7drUhLzO3qCDvkUc2HNr3xqXzDfzY8Po0j4ff1/zf/NLv/OnXLrQ0X9u65cceH92+473Hn9r44IMP2kyHVBqCFqXmq0KGr4ePbZARHSym2GOzcE9jfSaPH8UlWodjyOMx71//YFpGYf6R/Por9ZYDJEKJRGz3nu0NN67w59LV0v76Tzfx5V1Xd4H7Zlai+8LFc/wk4i4Aj0l6u7tbOjsptbxer6obUPHo7bYSiQQPmWw8nlSdMi0acxIOsDrZLjsV6FOpYAJshIYBzB1I33VEskNOG7nMCSJBTb8v4+FHNgaCWT1dndu2vWVbPQFf7qVzF15++YdEsZubO/hnG29caWq8OWnihOyMDH5r27e+1drWsvi+lfMXLHt24zO+QEYiZiNYHLCajiCnRHp2QIU5yuSpcyomTOEO1sGDH9afP9HU2ByL9cyYMwduyp1BEKhnSKSjKn5Tj0d6+PHMAzivx8vHT2mip7vbitsC7Y5bXnMcLRYHnD7/sGXHGEtge6DCLa9N9elT52180ZOVnWdZIDDnmgkKvQRMScSVivLJG5/7/N/X1129WvdP//S/Zs5e+tJLnw+YoUgMdVYAemUT1W1jdE1k0qNmv+p9ZVKWSHG5DlNVzFhSbFOQW2vIzIbup02DPu+aRYv4at91/ERLe2s3ZdkZOaZhCsJpoeaksj6zTURLZ1KcbRgPS4L7FJLgT5ooXkaMPh0CxUJmDkwj272RcGdba1Zvz/Si3MdWrZhcDj2DUIV296pDhSAAgfOS/yRpa8eOkVu/qHSsNUVK6TiMaA5jpumdMXNuMJgZi4YP7t+ZV1yciEcmTJk9bvy4/OIJXe0tVy+fOXxoe/2lc0tXrA+lZUUtYBY+c/Z4zfFDCvbxHjp0+Gztpcs3zkXjkCM7d76uo6udsipFiBdD2kzTGAlHetuamyAk00xDNeyE4uE2zBdsb288e/ZCPA7kCLKXWpKrEyvGH65/xow5m998NZ7oDUfD8VjUtvy27Yi0DSF6PEFVRnlM5/H400IZbW0Xvv/9b9aeObFo4cqZs5Y+t/H5QCgDwLVSFIAIBVgGRKk2jyoNr2/W3CXZecVNNy58uGvzY489WFuzJ6+woLJq8vnzZ1PcFD5fAJc3NdWjK92d7d3d3XxbBIN+mFtqRbq7+SX511iA1hKntpGw1bilWPxzQMqjoSom0TSfRtJWrny4ra3D60uDQ0FqFUGs76h8WLbjqHNmL9nw4MaXv/9P1cd2X7xyacOGjY8+/hy3iBY08lA1GTYJUtLBW6CfUMfYa7gSoTU2Qfc2hQX0oCrVKfcviA3uD2xdw/TPnb8kL7c8O7/kyPGj/ETgpw7fpfUXL1CW0IjJbVBjw01+4OcWVT3+7Jeisfj0mQvthJWIxY7u23n44IcXr1zR/b7enhbKbA1rVJZDItAPaImUvUVZjO89RERYCSFohjIKDmwgdKeS1RjHshOqZlg0gTAxOCPjtt0TcyZMnGt6fZcvnTp/vk6crF1dXXF6kxuOmXOWTZ6+kFI1J79Y070PP/Zc/eX665dPfrB106F928qrpj7xxKfX3f9EUM3jFs9B5nRHtBgB+xC3B7ZDWSgjb+F9K09VH4h2db7x01eaO7smT51RUTmhvblFAmeZCo0BcaKBpER0795dR4/sOXe53uMLdLc1AC4ULxm3WdzhvhR8RCXQuRGxGLWQkp5/L5XplRh1InHL48uau3C5oanxcI+g88ZuG/h03AGwKvfkli+/v+bo7rfe+EFL0/XSkpLcnMJoBCT+gXfQwR4pWxlS844JosBPSuZ8SM1XV2wYUb9UeqGoXWk72V7/g4sWG1R9v/p4U2ezzZy8rPw03YwrJCp6sZCKQ2hsW9gcEkMW/hAdSVkb1JoVFiUsAn6dEqKqiTQmDmLcLeZwl8sKd8fbm7N7exYU5D+5csXEsnIVzkDmMpDKzkAHWYeIRNeNuVajda9ACwwIpAR3mBAPhr1pqGpZSWVF5dTW1hu1p45z21dYNKWkYorhS1+8eO25k/vbW69tfuMVry+fOyI8LkLVSnrzen1vZ4uCOn/tHW1tLb1xytY/9JRFbd0T8vgzwgkhQS+FE+0E9XgCxSWV3LhSJ9HcCp5WpDfc29PDj7mJU2cA6ZOlOFZSOJIbTDvOwzBL8QXTNU2KZHH3hTtXMQjVbFCC5x+ywKTEFZabX/rw4xu//70rV69c4P/t3LZ52rQlzzz7xQWL1/KbEitNQVUaFe0vchcq3B5XVk2bPHNB042LDTcvvPKf/1J36dLaRz4VTM/mUSGVfg8Exg7aqe6Ojg/2f1Bz7FBjU3MgI+1C3QkRvXArbds04XAbxUdoozX3WpYZS6AOqMNsQQcEUK5YOGblF1bkFpRy+xjlps0hinB8+UFkQxzCEopuhh55dGPNib0njh+kbS3jqyYG/ek9UZCzQo4SVRIZsuHIyMmYg3VrBytFSYsNEh4io07T0JTpZsNcgQ3/I+v/wNidlOL6fd0I9zLgxwGMkcog8XBlqB9HeS9Y4YJ8jcJdLFBggVUr2ccTcTseswvySh/aUIryLVQgHTEip+vXP7Dq/idjCWBD0IScFY++HGfzO6/9xz//TUtTw/pHNm545LHGhisHd+9gTlxThdC7gj0ykNyWNMMUxBqIC2ABugJkbldFToAIcXadSH0XWaORjHNMI6qJaWIquLDT0kPPPf9cxfhZlqOjAAOyJKuqTZ1Vqx/MzSnY8tamvXt33LhZd/rk4etX63ko+sRjLxHFBx1YDE0QEjyi/Bb3Nanh9c6cfV9ufuXNKxe2bXs7Lavwyec/F/Slt9FWTLkrUuBUJwZV3vzZD7/5L3/Z3dm8cOnDj2585lr96SMHdnH/EoT6NaHLLLRLgKYdz1YUdURVoiSVEaQzqO7KnagaMnuhtVKJy/zO75e7lcFQlnh6Oz54f+nKx+bOXxGJOaI3TbKVKoqSKk3orhCisEFLeMgFk6I7odwB3+ZwS5fdat8pQylgqHeU8HeFhNnAiwMjmuysF5VDJmoO/IjLCvjWLbmPn5Q7aqrbulo6GEnPymUGP4jVOFM8KtCh6Sj5pyP9mqmQEfWgJeKKv99LwM0CTkmClI6KoI2kfH1b4d5wWwuPSGYX5z+5evXkslKCyV6pW4fPkShOn4y3q38waBqHfEBDWjAxq+weW7DBZx4dZiTKHVmw0S1IqcyeJOwjSR4Lfrzn55fMmjX/+NEd8Xj0Qt3ZteueDgTSdY9/weJlP/p+MBbrrK09+cgTC0rLxgGXlSpUkwWkSSkszv+N3/iSqoaAvhRAnMRSNY2ZsbiFsavQ4+IOg+PxBDc89PjFU0cP7dv62k9f7orFdm7d3NUbWbv+6Scef95xhNB0UtwdSFcsJG2j7ohFfh2Be5I5BEifgeMNTGXQH9z4/EvFZUUfvPPmkUP7Ojpv7N373rUb138/EJyzYBn3joiQ1aSiO0JxpTFYRnbenHnLD+/e0tvb/dbmNyZNmz9n7n0qCi9Sob8MZlE1NbU70vXtb3/9569+m9vpx594ac0DD255Vz1buw/4QHVViosLvkMwXiqW1V0ma6KJ6XcNvAEky9LQaYpI1QN/tIMmDPqNAmlpphngv07Eut/ZvGnugmUFpeNiUZBsoyhvrUorR4ZSvyQpFmCU3sIAV0EZxltgo/McBp/XIxzfyjDm944X/wjuQd9IdK9XvxuO2hiZ1rC2XyiTgzKVStDJUgVkwTQNj1dncRWUGlBgnqpGRWXlgT06pXZN7fEVax4NBjIcG7cUKiR3dre+t/m15qZLZWWTXnzhsyvXrNm374DOIzYS0w0eRDHTlA8Z2tx04vOqCQjDNF3RPTo/p7RIT0800hn0A0+eYQjKFkDJ8H/VDCVhGMCFgswSHlP3GzoP5rgP4k9Lqxw3oa35cmdXe925UxOnLfQwn3BoVBQsdZzE6dNn0gM5f/iHf3vx3Kk33n7l9Td+0N3dfuDgrvUbnkwP+XlAyJ01B8tqHlPRDOjR13Wi68rUybPnz1v69vVLvZHumfNXLFmwSgcVM3QR8WD2aFrApzQ3N296/eXW5itFReWfev6zjz++YetWXQSNhq76PCq/dyn3isr4fo9OBRhbpYbuQRQcv6zuNQ3+xSpxwErjoY77gRsrzaPDXrBR/nTfob2X6q+tWPnIkcO7r146+dOf/sf4CeMzsgoSjpB2dHMeKA5G+u1tMsZznJwMpInSpOwlQ3FM4EVjeZn+x9et8Ho9W/cfauxut1SSlpmlG8CfYAFwhaB0kmKi/LklyG+FG5x06VIsoCCB5Z8yKcsgAsqFermwHCyTKdHebqetNRAJTy8ueuaBdVPKS3TsUhOuGZbvoX4E51Kfdf0/16Zpv5DHLYjAVZReoalBBqXBtIzps+YH0wq6OhsyM/IWLloWCPipplRUjZs2fd7xI9szM3Puu29FMBi0QL0QzEJpSWVGRl5jtKO5ueFcfd2COauAlAb9dh1RkEjiZ4iQiulMMzTTp1VWVfFrpofSyioqT509WlZV+NCDf738vvWZeRVxeLuimUAAKMMwQ/V4IZev64ZUQlaZ6dFMj6JJgjuIxrhhQU5CJd7Tc77u4vw5K9YufrC25vCrP/3W1u1v3rx54XjNofmLl3hA/4bqKNHKbYJpctMCPN78Lx6Psmzpmvd/Pv30yT2ReGLO7CWTJkzhhsfUTSRcA64vboE9Xu3aufNvv/79aKRlwfyVL33ms9PnTDtz+qhYkrpmAoLKo3B76EYFMcNwPD6IGDWkwcIGRs3QufEzIL7U+J/UywdgakIyQdWp16N6vcABHYv1bnn/3YAvc/bclSeqDx4+tPOdzT/67Be/wkNL7izqaNyplLe/ixn5T5aroDs2kSTVA/5MHhXJGK4f1jTlzQN+7HeFPohEavmg71IkJYhnQ41EUfre01eMGGokA66Q/MiAexkwsNHfyxC3lnKsDnkvMiGEf0LOBt0oVD1wmO3QOGipMyAoB8140Gj2LF62fveu7dcvn377rTdKqiYuX/qAx5vGLQGzqGH4w+GEFYvDoWHFW5ubmhram1taoLoH0uhxVUnweCiUlsP3UU931/Xr9Z1drUw1DYM70VpWRr5pBBOJzlMnqy9erTe9vra2m3GEGsRjMXBKUFEOtCmw8J6wE8iaCdW89FDu6nVPnKw+2tPd/uqPv5+dXzR+0mxN8+qq6cSdQCDDchKbNv0oOzPvq7/1B4sWL6A63X9o16XzNX7uGREGNT4kL8CsAgCI43bCsnlkC5FUZihv1tz7tm99KxGPrVn9YCCQCVgtxXbshDyhASWjRMMRisiDhJVoaW9ubAq3NLc7iO1J0LhN4c0ZaelE8cSjkctXLrZ3NmnU8Bh+n8dE0V409Sjlw5La+/zSCaTaY/gteEZwX+zUmerXfvLK2lVrl9636E///A+OHdq+a/ubc+csfOqZL6qq13ZcD0u6WYPyQySlsJRcLYMX88irq9++SxH/GnJ9Dt4LA+K5obdk/5EMuRdudySpLiaq4VDBJiWyEpRhRgBmPN303r9wEV/Y7x4/fqWjlb8nKyNb0Y241NAEeGAMC3U6JpMsNwbvL6+MSVt8Dg5CqlVUxUxo0MEFKVJF6Y30xNtbgr09s4oKn1y9akppCaS4HPmYKBNSnpoj6GOVYWzgkI9pyFkd4bn0K6cOsm/DXeGuWLAhVsgoLNgQV+g/+OQioZAuQctGmODBckGn3JNJWKxy/OSqidOOH2qZNmNRXkGpA6wrND09c8F9y48f2VWYP37y1Fk26OBApZHa2pRJs6fPXtjcfOn61Uvf/d43dT2Qm1uMeFNCEyyQmc0jQqzmYobFtlTm8Ee4a/u7hw/u+sJnvzB30Yqmtk6/V88LZRiGJxLu0f1pyCQiUjOI1HCg5K8KvUngPmdglhUAOAX96boeshLdV6/Vt7c1+EM2d38aG6+//PJ3Hnzo0aceeWLtAxu6os0HDu9MJGx/0AdgPcjPQj4KBaC4peHXilv8PxrjN1tWWjV15uIztYcK88uWLF5LiIGWLWE7CYwJwfJqVImHI5hWU6KxcFNzQ05DWUdHh5huR2SeKMSCfN56uxqaGm82Nl4OpGWq4DPyubCEqodNAZrm9sWKp2BRYU5B/suGb2b2hx/u2Lf/0H/9wn9lNPa1P/ndppvn33j9lWkzFy9evA6xh5ptOYqrZUVueSCO0m7cwmSNzoKNbLJuPZJhvnTks54Nc4UR95r2+V//GkOAysA/hZ4rZQKdPehHfBtV+v8oPsXkb8Q+6/ej+xGacv3Ur0u9jhxJ8lP9fxwwkgFXGHCdfoNP/kiGGPxI95K835Qf6a3uBVWxKIRY6sWLF3Z9+P6h/TsS8V5GjVBGnm4AahKF1Qm6CmpedkEwEGpubr1+9fLhQ3sPHDlUU33k6LGDx2uqdc07cfzEazevXjh3uqO95VL9jfP1Vy/V1zc1XItG2hkzcosqMjMLAqb31Inajo7r1663XL3e0NLSyndjdnoOtyOnT9e2tTVdunSluqb29NlTV67UN9+8Hov2UMVTUD5O1TynThzfufWdpqar3EQEgjnpGbmhYIhB76NRXFDMozK+o+svnt23b8+R40dOVh85cuRgXV1dUXGZoRs/ee2HV+vPcbNy9sKlbe9vrqk+MXH6nBc//cXyskk8HHJAWRkOQiuROF1bs+P9zSdqqjMzSwuKJvBYNi3oO3zwoN+f/qUv/743kNnW3rFv9wc7tr0dCbczRQsG89MzC/NzCxobbl6uv9TR3nbp8tUL9fDiJiYa7nSYJ7ewPDe3IOD1Vh891tnV3HCz/fqNxrbWzkAw2NTSuHXLW6drj1Enpukhfyg7lJFlejzhcPexowe2b93c2HCZMdUfys3JK+Qm9vCRA//6jX/oDYd/7df+W3Fp5fXrN2qOHbASkfrLDZqZnpWV5/f7qfvQKf4n17l8+qT/rsEqV9/qHX6v9Vu6pP8VBu+1/os/dVsl35C6qof4cfBIBm89lvK9w4xkOLtBsRwBhxZJ3qAA5qB0LxyNfo9RlJ/Pffr21qaucC/3dPymh+iGSNoKzjjNrbraDAn8MQ5HkBsZkOEXypQG0fjxEsNsBAsrjJkAAIAASURBVD90E5GentamjEjv7MKix1etnFJaqiPtNaVSqi05ckU8JjacDWQD57zvTsnANw+2YGx4C0aHXwbDjaSfaR2dBRvwfEdvwQaukGHPBQG8wmlUXC9GKC0Dtik9PXSh7tyZU7Wfeek3p06dG8MQkwc/sd7w7l0Hli5bu3L1g5rhA2Ur9H6CgWBRSWFHZ2d7a9uZkyf37d9/vOZo9fEjx44cv9HQXFpS1tbesmPrO8ePHLCtsKr68wvKDE1/+40fHzmw9VRtzQfbd3y4c8f77775zltvHDt2+GbjTTPgVXX10MG9u7Zv6WhvpMzILhhXWDy+s71t29a3qo/up9wv0QM5ucU5ORVBv+/ixbobNy40N3VcvdFys6Ep5A/GorHXN/2ko7M1Gk2cqK15e/MbN2/eXLLqgSeeeik9PR9cdlAPZBrRe8Ldhw5+uP39N69cuVxYWpGXV+rzpPFId8/ubTNmzn3xxS8lFO16Y8P2LW8c2PcBc/hqNdPSC7OzS0N8li5caLxxtamp6fLl6+fqr1y9ernxxhX+jboZKiyuDKZlek2jq6O1pqa6u7Pr6rWWxoaWzq6elqabu3ZuuXL5PDZIZvkCmaH0bF03uVt2/frlndvfPbhvVzzeTTRfRnYhdwr37N39nX//j9Lyqhee/XR2Vu7pMyfqL57q7eq82dgVSsvNyszWDA8T7iI+TUpHPG2ZMtCMDGs32EjH9ygt2Mgma+BeYwNH0s/Sjs4aD2d+hzAR/UaiffHLXyPIND7UnyP8x0b8cbg3kGHewEb8pTLikNhQV2B3OpK7fi8s6fRev3q1sen6lKlTFixaOmvOIoV5/YGM4uJS0KaROlOKoXsmTpg+ZdqcsorK/MJiwzRNQ0/PzJg4adLUKdMzMrKrKidUjZ9cWFDCd1peccny5aunTZ8dCmUWFFemZxUUF1eWF1UWFJbmFZbl5Bbk55cVl5ZXlI4L+EI5OfklxWWZOXl5eYU5OQWV4yesu//B8VUT09Pzxk2cmpaVFUgLNTY0ZIUy5i9cNn/BsmAwx+NPKygs5L4IXzEBf2jG1DkTJs8oKa/KysrRuC30ebPzcqZOnzGuaoLH68vKyszJzbx2o/78pTO6pi1fueH5F359xrSFRDEBrwyCYA7/vWNZ58+ftSxr1ow5wbQcPp6s7IxQKOgPpC+cv4rfONNVbjq5WaksL1+0YOmcuUsCgRxfWlZRYfmkSTOqqiYVlZSnpaUVFBUvX7lu6tTZwVBOSem4jJzCgoLSirLyovyiwpLxOXkluXnFZeXjCgsLGptuRPn5OmvO/IUrCwvLmWoWFJekpaf19HRcunQuFAosXLhkzvyl6Zn56aEsj2FeunSeD2jegiXjxk03jIBl0bKyigULl4+rmqYbgZy8gszMdKRKUoSkjrsS8MyHdjUEdo9qCQ23dMmotx4b5uKjX97sdvaacqu7SPmg8HcQ1SJyWOL3mkupg2gV5vV4CgryiO20NzVFeqM2YwGvT+VOEvfFEWJuCHVDIgR+iZs4JEmssqzDy9qhKoRQEsQxFScW7u5pa8kM984qLHhq9ZopFeVeCOmpaJRVZIEcrw1QnFHO6uhn7LZmlY1qVm/DQN01CzbqE0H8VSXEbXMQqkmiOq8bXp+vuGTcylUPBINZCHZjGveMDF9+fvHipSuLiispgMrxQWBaqiC3cNbc+yoqp5WUVgRDQV0nAX+wtLSK+ygFBQUNTdd5rDV16vSFC1dOmDhd003+y/aWhtoThzs6W9raGtvbGjo7mto7musv19XU7O8Jh6vGVba1tuTlFs5bsGL2/KWB9NzsvLx4LNLV0TZ7+pwFC1eVlo3zBIL5BaUFuUXFJWWFBeWFBWXZeUXF3LSUVWZzC1dQoJna5Ut1V65ezMjM2vDIxqef+i8lxZOYALWiFVeJGg73nj1TmxFKmzZ9ptcXyssvCQUyMjOy0tODy1asKSudbCvKtRtXWpqbZk2bsXDR8ulT56lGMDunqLS4YsqUmeUV4wsKi32BUMX4yWvX3F9WNiEji/+iPCu/KC+/MOhPKymuKOC2vaSKW3Ie3/Ib7+7uCvj8c+ct5paKHw2GGeC/93i93DW6fvNqc+PNqVOmLFiwcvyEaYbh50+kvaOjuKhk7vz7SksrIZghdMLEyfMWLi0srDA8gaKiEl/Az1yEm0Sjqbc8bdmojcZHt2DsI++1IXf0La0xu72B7a+xfmH9R8NixD7O77330ARxuIDumkNUS4OzA05nxwYkNgCRsBULWOlQygpUCyE6jYUT4Vgkomiqz+/njhb8kwNCgPwiVqQzaiVMf8g0A7ZtRXs6dO6aeQNUNQ3gGKfxRCQWT3j5JtHBjmkOQKtUYkXiXZFozDC93kCaoeosEe/pbdd8pu7j20knDvEg3hLqhggTFsZSobrKcKDEcWi8J9qdiPGIyvD6vbruUQFhjvV6Bm3wkWjY7wkEAiFN8TIQu2JMmlvbrSY4OjAQ8muptgKMUrriQIqemNzjt/jvHKYyaojrMhZXVAu4lBBEptiJeCQc6/EF/R49mKBOuLdL0TWPL0iI5mHMUJRYIh5O8MnxeTQTilKMfwn8nmC9yoJahoFwa1uhlq4qhgLtjRYfEkqVgZagZjgOtj3zUSq2pvABwzFu8SAXKrlIlZQ8U5RUpWLi5mfumKnho6/PXwpWAexFQiixRHqrItTQZH+3gFRB13xCVTuisR17D3xw5HgrfwTZuZlZeVHdDOP+8RJiY33XhJ5EBT0rVWCHATilEpEkFpyi6NfxR2pTYveEO5zWFqO3e0Fh0ZNrV08qLzcp0/lbCUvtDaSuFvStUCa/PFwNtxzJHQz1I96dWPYq9oigtwrS32DeoJMUdfv4bzSSAP1savCdZWvQkKvx/1CSne8ph29D4KFjGnamqEK4FHpinISd6I102TTm83InLU1TPCi6bAE1v0oMXEoO35oGZLBe/v4/r1/3YGXVpBiQmemJWPjggR3vvfv6lGkL/u//+fcTx02lNuBBsW2HOahxo1Lb0KDnNKE4FiD1vSbTNdVhdjwcCYNerwdMk8FvSWUJ0AfvsK1EwJ/m94YIMS2ZY+1TgkelUm5boMfZBrISkzADLLASIQpfgybYFMVSQTcHrBzU8MTbFAONnhWLdFvU9gTTTM2wY4meSK/h4wbXy69DmA5aiNTujUe4Qfb6fRToRcDSoyGGxlhKdYV5kNKZEZrglp8fAKCMQ1X4Vz7b6AnCVmKagWw2mm5jEV+z4TZ5oKIKbgeWsi7GWEVvv4twpN69AY1OI/w+2S8zyuu4G7Lv98NdYXC70whXTr3siIZg6JEMObDRzAYd1Jbo/smkNYf8FATXGlCYQ8aR+1Eakf0pIvzW4OQBNhU8nIiRZmYEPNmCOIsy1CxlIETLPSHTk274CN8J3Evj2yotrYBI3AOP+6FmoRlpQUOxoXHaFsLsKE6s8XDK9KXz7Qc0w2Bd9FCGh/s5NgzAUIlGBZwCD0QEb1OJBAawGAalxEz35TI/Wig47SgTjdlQ9zfSvNy1Eu3CiuMg9EyoZ0j8MFxXBWcMK2uq5Lp3oE0QJEyw4wyVqUVDH7aDgYww9Hc5Fv+bo+lGKN0T5JeOo3VNT/NYqiJy2RS6j0GPOujBQgOFjn1gNeVf4QiLjeyXCIVHGVmC5wDA4QH5A5hO/gmNOTo8IKhEQUjK/Vp8wI6o5UKMjnxN0twwlQxEcQ5AI91yKSabv9Sh1ufgJpehVtottgAZ9aa45a4feSTujwRgIVrqtkBAlSPbtbAzFg5ZlZ8WWT7v/UuX8vnefvhYW1trp6KEsnIc0+RPE4hdCdopl0bBpSMFNgcbThLIG4IYEz9GwKJRfjIp4e5Ya3MaVAYLn35g3YTSEqDexw5btY+9jMgmX9EuNRoH4tazSkb3mEa2KiNb0eFWyGhs6QgWTB3iId6GNdbc587kxQgq3SlyE4EdQG9GoJ4ILhA8wXUhrS779kT7JsKHgHIA+m10g+gZIR8aMZsJnjL4BhN1jWDL80fIbWL95fOvvvJyfm7Bk0+9WFAwMZqwVU0zverkqRM/+GB7ZlZBXlaRSqGRAhSQpeMn8e7C0BCA6INhgg5nbBMKBL3wLVjaxjIZ0VQtPeSFdwILg0ZR5BpVDeSjR2sOHRcKULOjzr0QPQBFA78jGi4BBKoTagIcVHCyYhMz0MVA2sj0+bI9hLtg/GcegwfTMgKOKopVYJWAckIx/V5DUQFF60ADISik2hDPwoj4TNuisQSsqaExUG9E8hGkhBPt7NLIEgvu30MdQxpoqVmvyH4sMpqlSG7VfT96C3ZbKZjhNsUIO3E01niE9sDbs8agwitWs0yykxQ0mfwlGeIrkw3pShLP5f444Aqpri9LifMx3En5VyKD/tT3MNIfOEyGaIZMdlVLuJk67L3Ikav9u6/dj/Tdi9p/JGQQUI4MnF75EeZOfvJeFIFwF14CNyFULGAEH1JhC1WZ8zBQyM0CNwB47Si6GwSjDeRt1ARjqSMMFvSqCM03ReAxdGT2w6QkD8JkpzNookuXCXSx0GGAv2PYb/KdaKFxwRwbuEJAFIGXEkkYvGUet1Eq4N8AY2U4MGjuwp0odKwVt0uMgcsH8pYIniEuuaq4bxnnwfGGBgIa+JmgiRCsf5B4gPyRgG0kFGjCQeQpRWPL7x1iYpABdIR4P+hGwycltIffOL8Wtywq5MOAd4xfE/kiXYIG149x0LujMg/FJxlObTSCqkuTKc27pUGmy6MLNLVcJ2AdXQJZZYgWZZJs82YpqzRlp8hFq/Yluvp+TK7G/itcSe4vlrKYlZS1mkRZqoP2mtJ3TZIER7O+gYmvTn4TIYOobwZYlpSRkBRDkfJd+BDhXnTEE4suP4bUkOh6CZp1+EPn0bdDs72e9cuW8Q/uPHK8pRM0oc3MDGp4gcgNq0a2dMhxDWLk4sCpRBxZG5T5YojBY+GelqbcWHRKfsEz3LsqKebHEKa/ICkLbLd8UxG1zzahz2argrtjANx1kN0Y0N89YFaTEFcl9e/KEBaMpJDT97Ngw1tjOe2DLViqNe4/huFGMrC9XR1o3/ruNGUkI1hjBuYNzn8e3WEdFjYWiMwrqlwMaLkwKiOS1AFNnbwkFYVeXaq1MrRGDCWoNPRORGQketBURbLkQY8zZjDB9bpy+VxzY61t51+7cSUvt8rQSSQeudnYuGPnzvTMvLUPPJKTmWsJLmKwh1RU+EG2izGxgCgVttkWN0EwnnLEhEBwh0zJjoYNQX06yESEd9D2iq4til6jVVKJJFZguE6JJcio4IYc12bi9cGmYiitwjK3KTe6ACEUKB+bIS8zFVkytJGKhp/nHhyypoKwLXiuNtwRovfl/hCriUKFADCJVFWFz8v/sxkeBMhSAUcNxO6q5IyQRZUBK3yIM07tv3SThoUMazcGvCdpwVKvMMDEKYP22oCuiyEs2IgjGejkDLbGA0YyjDXu58INssbik4dqxzRM73WREPwA4dxoLvE3xCxqskcBAigVWVQSmjD0TIhOqLAJJF2xWPwUI39dALuAIR1oBcBd4q4Upl+gTQZ8KcitQ8iDH9ME7AR9PCKotpDUHf0tQWYg8cREKL1IPm4wQIYDTlVCE0gyyKGZyO+XHJhGpQCZ08eG47ZdqMLHwiqp8IoIEQ4imiQpIoqIZIr0LgzDPjBTfLB83/Pj2dIY7WtdYmKiCM6MIr5B1PUUkUpDqnXsnmGqw5L+OzhUckuAYycjTgZ5RZE3Q7SBgNgyZF5ATjIbZ0kXTH+SuzzpYSRb0ccy54NLhIrkGtNwkpChA7v3Wb/Z0h18L8FNQEh7PPb+ngM7jh5rcijJyvFm5jCo80LY7TAZfbslSLFGcV/JX8Llnd6entbmQG/PnJLCJ9etnFxRplNRuII8BJBdi2RlyijQq1dsKfIz9vooNA1Mw2Na6gwpiiVBBiqm6MEMOUK8sn8nJCb1JXeUyGChjXHZHgikjhGfxZLEHAK3ykQEyrijReuvnfrGP/z5vj0fTpk2b8G8ZcGMQEtzS0NjSyQRf+TRR9c/8AhhBnWEn86oSyKL1AYEdRRVoE9THbcDjH8rEdl/BRP0yAFPRJIZEm4qkWIBolePJAlEJG0b2FoRSxOh5swNNMr0gJIQQ8dM8ExJjSciahUwJwbDqFeQ+cHnoIQKA9Cw65XK5j6mQ8KL2yxVw3JsAv03FQjnINoWOucaRvd8/Lbw/vAgAGcRNqUo7HJ3DXwtTTaQqmMG7a6V8w/UWresrg/aSiOkxO8ugmQECaR7AWgYPdHobVy/b9uB7yC2qyqVn0XwyMBHER61pVELzIiqMxC7gZSxKugz0QoASxD8RRe9aoTaWK3iVsAALwf8FVtFW6FAyC7S15D+Eqx94NbwT1loP7S+sg0SlGIhjtsNx+3IgiwPAX4Y8NJsoEfn11G5r2bAJucDo/hWUNdREYgMP8JFVCYpTB03mwH7X0RswExBkloqUoaE9YXhPJRTqSryXBSDQeIgt44oclL5S7Aa6H8KuIPw8MCFowJ9LuNuKmBtDJm9iNBVxdQh/l3FMcgSqLCTMteFnBKqSI0g9If12wpq/yoJ6ePb/FhhOnd3p9ztjYxmmqECoOoCU1if5AYyIlKiSt0dyCHxh2zrpD0c37Jv3wfHjt+wFZKZnZ2RRwyPBZJeDNlg+xwsl2FRnjYghRDujrY2BqORmYBqXzm9stzAgF3mKmGrUZdPsh+RBpUn7i1u/FbG8JfZgt3zkQgwAWRJBPEJZrapyFSiNdHw7LcxXY6WEIpeQE4gvGS0jTr+nkHdChL4CNzEjyZLkG6CFLwUbDalioNUyfwCsWvXLh49eOT8xXNdnR2+gBEKpVdUTpk1577KikpgOUDvRFA7YVMRddXJgacY86MMCgMKlWsVTaIODMnMlv4KxJUUgFCaXMxogrCUoKIjJZNrkkyEuYr/iqgDSOUoGTxrVE4T9gNoroam4y5yxCxCrsoCD5CgGDSPPBhyxXE7DGknB4oZRMPY0IKSPNEh/8ZAEgepM3SwvaqtgoqUJntOxAOiqGHFXS08WxhLVl4YofcGIHivTdbddUVu606HIRp1HGXk2qeaXCFuvsUZaGGGpHn9aNHQ3bzabX3dyN/Obv8h4DmCIRi4DZDMVkWpkCEzFgR8TMAVBFsQZRI+BGAtyEIx20HmIIbhP2x50VUOOV5hmYDIHKFQAqWoOkJ6TYRRNjwdG8GOiCMiWOwXDCmiGQsMHTdSILrLQxnMlesOYJMgSAMZXIJ4VAf+j7tSw2K+I5R8ZQgn6n0EkRRUgCpc8D7+jVJZXGOAf8BLQc5a5JngiBQ1NcgmoWPXl5RgEjeK3hCVIAcRNRL0PpkBQaKGN8Kw8iehtrKtRzAyqSisyqhMg1OX3F51e2oJlrPASiIeH1094RswDZUb3YwjYXQADTHrozNmH3fe4KOtz+Ev+FEvJVIS0smFE0UkJFIz9sL9F7UeB6FRlDo0w2euXLzQUtj2YzU3O9rbqZaflafqBrD3uOB0kUUQMiw2pTaDlEBHuDfR2pIR6ZlaVPDI6hVTKso123aPeXCxcR0jWxFTUhaY5BYY0ab14Yz6CnnuW+kv2IKx2/n2ezgYkbrGjU6I9F0EfonvMV3kuCV3DbQk6GhNoA2GCh9DwChw7wvSDNy8ujzsCU1RC2CCkh0NGiwzG/Y7v6hRVjG1uHhKNBaxEhH+jx6v3+P3E6JHLVuV6VOkU0AfA4iPhUeFqTJVyg8qqKKJquW4/cGHgTBVc4iuoel0iEw74ZWA8APHSNEx0ojAF6ZMNRKDMim0pWDhlErdCERlYF2PiUhOpr0Q+a/otiZRguB2EkkJoEp1T0p1Fe26ozFNsESgn4atQwRlB5FCl6EfxmdKRVwFziUGpWoS/cb6VKeFMWR3bzV+bCbrF771BgPToeOGDvWmvvfRvgYJ+Xn13lqTX6B3xe7JUsC2cEwk4bZi8jCGIEORdHyO8Ehgj6Gn4Bp8iS5iWDHDE0l3hE2HrcSkMi5lruyX8Nuwguae9yJdTUU+iSZxqCIrLyBZkFQikv1DxQIKuIDC71JsLP1TVar7OjIJgM6McB5VYQFFpzIuJ8JSwTiu/o7IOwhHj4mGMFEccFIUV0Tw1A/igKZJkUkONwWPZhxHJQW0KZO2UcyVeK+oAdiugHCy4UDMCHE9N0eA0MBLZFJMgwhQiFsHREOb/DQdAFFKUcv5RXlX7B6c0x8tvMMTUcQMqqwd9y0J17ZQl7BBEU4SUOY6Vqbf+8CS+7izte1IdWd3WxuhgaycuCl4uwF1Q/Ec408pAr1pxKswq6eHtLdmhDvnF+c9sXb1hPIyjdnAvytxEcAUIsyYALJS0u/G1YHzMERsypKxJVFSYXHqL9iC/ZIcNsTV1yYSqAOugNiHFOM8iH3c7U+QH02gF5i7VBSXFVPEmkyKzbA+m5XiYAkHDnarI3q1cStbFsDXfZ6Az+sF8BZwMvPlZ2EJT8RcYOJkw5+kkXADNzWpX8wkNAxMNxWpbEUaOkyjIvEnE7YO011iwGof9I2lYsOl0oBopwbbrkpvDO2twGWoLgwNV2OShIQKOD4aXnRfBQtvX1grErMikUZVCZEiwmhrTHqIDD6OgHy3k1eGO+jIalScN8lzn5F7pUXBPi7X6hflXdEBMh6k+ow1IN+CYkwqZECRUMvWFeS6dqskuPgMR6HamMT87didfgTMsvFQdS1HnwAIoh+lqIgiPREGCTCBvJY5ABdVzGSBMCU5wFzD1F8ligwSjXKV9JInHlNkQ6NL3DiAMlrkqzQ3cnNBVi47bx9ydoi+Kvc4SjqFydWWQrYrHSAiM2z9vrzfadeHO5R9xEQ6Xyzp2/WXA+x7swBcSSy7fBLJ+WKpwEWBzCXuTMt+oL59lJoQHoMsjGCCXPxav6aR/g9HtDIJNJ3sBdK0zmj8nd0H3jpwsJnPfVaOPytP1Uw/AOuwEiXIt4Hlw7bDPbGWJjPcPac071Mb1lZVlCqOPM8Q/kOImuxTEZzv/ZaoOnz9gVDpD4jfJUjyefd1LXFjKDsTPsFGLiW9JMIc1rezUqYGjnO3rtYHoScpXddUcVHTKSYrufVSDzMhtaoI90pWEAWyyrVQIvGVlD+SppEIOzq4uuTiFUTaXcqcJQ3YQB4P0WqHreDSQetXd061CX1dq4S6UqVM6ffWlBlzrSCRnUaK6vbNukKnSh/OPOkRYeWPuv4ncrtJ+pEkdNTBGVNljCNxcC4MlowZtI8aUYIvTFnyhBazfvREn7VjolhF+xHMy9JNSjMkGYPFj73GXmOvu/ECtgxEKXBXycamCx0ibGzs0vW2mP3Org+3Hjl6Q9HUzNy8jByPBrXqhKphPpZ5GItGe6JNN/2x8PSiwo3rVk2pLFOh6Uoo+0IaRUuNHaVZUxVlQAfo4E5saBshbKAuTUoCn8ozbizOHHuNvcZesjCUop7GiG7bNNWLJ0QZkumBSaonkSYnY31TY6+x19jrLjhYIruFFViRVqCyOV1hlhM0jAeWLNUU7f2j1Tfb2iOMmBlZquGxAQcDmKrezk6no8UXC88sLHhs1apxpWWJuK1L/4gZ2Jxqk/6ZFpYqsDMk5sxNbjoDzFwqO2lKKmXMGI69xl6f4JebU+wHMBX/ohO3YIP5U1VIig8JRBigtDw2rWOvsdfY6yO+dEWAD+HvqiCPTgE2EYdmerzrFy/SmLrleHVbR3vUYd6cXN0wKLM7e7tpR0t2uHtmceHjq1ZOrijVmGywgB4FUVxX1f7MEMkM/nB9Ce4vmar0FUtSK+yp9tC1nWMPcuw19vpEOlfYa6W6pB+pbFsIcjc9pP+7k4CXVKo6SWkkTJNoOhjMY5hiie6Q0WAoTlhlxMbOWzIp3JasxIDQ9rZoGsgoBkZGPfjhWlhHM7EDmBCH+3H0szqa+72tWVVGJPBVbuf5Krczq8odPdkB7yFD3csdjGSU96vcqg95yFlV7mj33da9KHfEvDzoCknwniRSAroj5IFTBKuoTpk33bdh1QLVIFsOHGntaHGI4snKSiRivS1NObGemSVFz2xYM7Ws1MTuWtHiriETE0UxNSQeQax1P34fMqq4tF9UmqwOqkryB4rQFvKxWbCR3/BRaBpG80Wjv5fRrJBRLsh7MavKHVnjoRQLbntHfwx2Y4SD9S5a4zs+B4ec1bt4xt3xrN6W0euj0tDJcJZZIUdOJvqZFKnuyCRSMfXyTIp40jHQQcoMs0GGegCG9xPhxg/CCSOLlvJJhOsNtSo+gUtilC9ULEJsLpAqwo86elcI/6REV4G7CEg81LZI4r2dez44dqKV6MTnsxxbC/dMK8x9bsO6qRWlhkN1LC46mkzCK4psaEsuQno74F0mUdSii2KIvnVBq4bCVGOP8Z5solTJyLFNdAc2eSCB/y+k1/lXfaFK3mwXoJly5EG3IErlKLK1Bwwc9HRSaZuQekhFeklsuiXJg9Tl4v4EL1/RAMOGcHTZJxCU0d+RQo1FyeJOPqmrol/U88neLMN6MBTaAVlS1EIVLOuo+oH/7ljIieYoNqUZfs+Dq5fxd+06dqK7p9PL6ITC/KceWDeptFixQQ9aiK+hTgEGiLQva5/stVJE/IjCBrcKkJEhiVKaFIdBUia3vRc65iUrAZWtcmOO1j0yrWOb6A7mEFsQ+5kjqWozNod3z4JBS7OKkrnA9cOoBfLkTKg+YRJelz6TTFaJjndVuFYoooqyborguU0yB0giMvbJtijU7epnKS0BUoGcfMKiTSmsQ1J3Mu2Tl//krYokh5dQImOf9M0yXJDN+qsjCusEvOoUxNCxb59JigzHyvCZG1Yv5389cPR4bnbuI2tWT68oBYpFit6UhtJqqJQuuK1Ux21nZy69D5OsECO7Q7KTnVHq+laiw13ucCEqpSiSschNrYydXHd1EylJQj2mJOVoxiZ5VAY5SQzRx2iTejyNzdHd87EEgYcgChL83n3kJDw6PFJDU9IQwGDrQtwZrnKUvRO8x0ickVSoHLGIO4Ike2q1coQ3k0GZoOF+vOUVRh6JcquC9DBXYKmuRf+7IsrwZW9lqL8rtyqNDzf+kWdVuVXpXRlGG3zkqRtqkpn7v37XEoR7ox/Jba0Q5Vb3csvnO+QFRx6JcgtAA2PDDoXc2U4ZbuWzW2GwRoNIGA0443ZHMppZ7bs+VVRNULlr0i2l8hxlQkFHLCsQzmQO8LIbno7uSO2p09kZmVPGj9MZihigIifFnkGTkSSznNr/MdxeiVBov5Cki4aOlagLYn4tRYLZUcgon8vdtWDK6CA1I6D07oo1Zrc5klufC3j2JD2BpMMgjMktz4XR3IsyzK2xUZ8Lyu3YDTIK4zyaWVVGN5MshdCX9R8cIeR2rfHtngsj2427aI3v7Iy73bWhjLTyBcmsTC+ocumypKymoqfUDCFGQ1VgSpJqvdx2CJk8kkolg1Giogyq/5DhEhzDv+GWHxkpb3IHqZaPNpIh3kOS6uJJAXp2L0Zye6O641TU7cfhSXxvf3Jz6XeSO+2wInc8kruxPIYbyWhXeErFaPSr4l6s/1tCg29rad2tWe37pSoQTsjlKX4rhLqR5BiluIVKIbLDaqpiJxJZAd/S+XNRZA30pIiKIk1Sxk24sqRP1T7lO1N+uhU2kEipS+pS22Ba2iGoF8AITQYTAn4xaJHf0x06SrtBbjUScjeM6h1fZ6SRkEH5Xvn02MdvN8gd2QRldP1V98yCMZfRl5B+VkhRyKhM0UcUDSQfeYX8Us7qMKbC1SAXAhGUSB0neAI6iBQlpw/ljvBQFDoAQvIIdJIIS02Dq/1Ia4dNq3xsJ+vd+ro7EntOlsGwDETIkF3bt9tc+X+iEGbKCUaTNSA2MIK6t+rgt/zXeypGTpK10r5/Yf2o7D+upfvLv+/czARxRaGYjPWEwwJClQpq7Ko6qpugIghF9UonoUG0qApKZEh2qOCBoRC4gspHtzTCt7pThjQNiEAFS0gpSpBTWTUkLEWLUB3kDZCPUXH2lrv+45SdvrsrivT5Ckl98I9vOsk9NlnKPV8kLIVLhLp2SBKh/DIIJP9qiD0TJon8BFCAgLQEcUShkP9G13Wt74lQlJUAxn1AtXs8mj9AdKFtS4aO0Yh7nqqD/kx9Dx1qDlSlj71USflsH2d8ypvZMD8OeYXkL1NHwgYNTFH6aV6MfC+DycGS+n+66LpEwAbBNkxKkuNhSW0GtR/HjgyBWUoGjCrJioQw8gLWyZKZ8eSt3XJWRXGEpv4oRbAI7X8vav+bYgOfCwhsManGI5AthPbdmnSsqCJlK1Q8cCji9jSNUHdwqfOZdMCSKeyUDE8ygZ0UD5NToaSEZELEggxzL0r/WRLvpq7bQ6VOjgAiEiY7P1xeANJ/VpOCHm4VlLhoHiXlXsRsCDFo5rKZqEL2A5K9qjB0lPRbior7jJKumatlJpiAXTXiYVYFahf3XUcZausNsD1EtgATNWUeCEmV5Rs4q0r/bU4G/ciG2vXsliPpmzpiu0eBxtycFhMicIC84nMSjbFwhDpU0YGbXQM9cKkhjuK1EmPONLUvlzxM2eh2XlQh7sTzOdINLRAwDZ0x1sfdnvwadRi78ctjwdSUAY/eGg94vsrwdmO4FTLcvdz6XBDCqmLPgqIzd6KJ2ER9X82S9iOZrZR2Q+5HJpeW+NSAGxRblZK+UvIA6zrcrLJB1ni4c364M27wBYec1eS5IGxUkqNSquK4uH9VaGP3nSMpY4IeXJwHiuGC0F8nyfzxIOPsnhQpNRkl1fi46UWWchAMPL5HsBt0mEkYpd1QBi3IIS7I+haJkvp3V+FMlQ9dZLwJSzHg/UaSMqvD3YviNvzFEyQSti2baUKMSWodcd8gdY0zVyJXVTweNS1drT9/s73NImDZqGh3xuz4GF63n6vJjwRNscsr8/wB5eyZBtsyHZCoSgG3EZH0I9JJQDpEcS5oDkPNUebmb1E+nQghesetomAJZdQtNHCOgjQ8D+s1lGITmDkEW8N2S2pSjurU4ZeSzgcjA1xNITiPC4PKbi3qeAxlyrSiWKzrzJk2TfUzMgARkIxGFVU0Ywl55SRUiWEnGRNTga4brDnaR0TE3JZYSkaBHGduezc/iTUcAHXTD0QoPifxoKi+ySdNFZJl6PI4ckej4qorL02cvoqFlE9VZYqXCpuHHpmTFtDHT8q7eaOh+WacEo8QqB60KqTFRvFtYSKpSqVbjj+iqr/80XGrj8KxEJLdSXnHEfPYoDXOIBEDUCJR53KkC41GODXh9jHtHOaKQOP9osa5wIzzCQDvip+sGWme8ZOyHcUOh/kdayp1PVjW1x1IccZVBLgP34yebKYa3Q2KpmmhD60pmZlma0tr/fkOVfWAUrgqnyPg6MfEcu7N2oAWK2r7/eqEKUUtza03rvQoxIesYywlP0OFNDPryxOTZBMDgRYt6kCCUxUSy26jlmsHYO1pyi91b13SnYMcL94tX5mGazcUoVWfVJDtczOlh6Kq1MrODVaNz7l4/lpri6NpBpS6ZZAv5XCpG37KuYS50d19QAekflG9HY8V5ZeLhkcsAUej+LiJcGdUmQnoA0+rmCwAveX/n733jq7rOu8Fz96n3IYOXFQCIECAAHsnJVKUqEJ12bLjKj3Zjhw/j/PSk5lMMm/lj3lrzZvJTBJPJn5xyYt73GTZlmz1LkqkxE6QIEgQhejtot56ztl7z/6+vc8FSIlFjsJoPRNLpkng4pZz9v72V36FK2DU4kUOzLDgmjAKcZiIK5wy8lJbltPcWlZYRGZmfA6qWNhXxy9LLCFxCpUEcAzFEYP7/Ef/8vSxw+MmiXLiq16LJX7tWeb/aF/5hgbwLWn2E5+6s7Yu+t++8tP0QsigDlEHGCxYio7MSD0SyhmUY48Q0msT7rfaKtj2ATNlC84ZOErV6W4Ga11pMZIrxgNQA6I+nuYWwuzkOvNUDgTf0cpDXGc47zyBLviWYKpQwfExVbpFi9tePpNczrLAlC9HbUI9L1dS4vzBH398ZOzcV//+2Ui4UiwR/xdoiEkMtIfDJ8RFZTL8aFSLsAlD+fkKi8FrccxyuAqF6tVxCiS3ByVXWoa+njzh5hFmMJbSccHUplGw0dAEmsHnhIAbHN7E52hnJ98MVsa+CVdXHf8G2kbBhuWGLd+TqRMgji9mMu42NpQ9+jsPvPjia6+90k1JIeZd+FngFSFBMtUFgG3HGK4j/KlcFSa+MRa0zWxOlLksUx+HwCvqmk1+HFNQcqWZFzZ+ZLAx8Xfla8kd7eNdgRkcDrr4krL22n0FHrRAFMTrgObmMAw0hZ9ra6/7oz+9u6AsxhiDw0L3NnT7eLEVKoRv5FsZ5Eob9yp2N1exFliMVPiO7ezf1/HPX30uGi5HKJY2a8fEml4Phu9/aEXRWeZna2qLf/f3Pv7m/v1P/uKIY5ZgH4ahppCpcSxIxOL6vFf7xYQkQH6H+gweDDvIlJvbZEtKCCaDJJfRFaIKXWJR+QH6UpFXrVgfPyDkDpxa3Ak65pBycdxB5oXBXDXpZRbhesnt29s+97n7vv+d5w4fGg6FCzkELkFV5YZJJzfy6RrI/aILghUoqXCMoTSInJCZYJDMD8o/QPkpCKsQrqIH1p0cbOEX4znWZ8L08c1T6AhSXRjrVpfWopIXlGHT0BLm5REFvhAFhZHPf/G27Tcuh4rQYABkQOyCfCaL0AvuJ6j9qZqQyGNTzM6mpseT4DaBV5nAkUbEOzy6fnPDAPae5GlJrezCAk9lWCKRTc1yompcTLAgnZC3Ul5Y3TCAM4wbprqvMONAqR+CrQiZCRHdQVGHPzwDEUy7q+nWyRUXNJ7b8ItyP3jqFxVMFzSFFrOrdwtr71rK682ueh6KW49dJZV5QAbC5LuHet93mSvSKZ5OssnxdDSSDaaEugWFDVrIHU0lwAYJKMPWQx6GKQIcpr/I01SNbbiSKkliGAiupn+1ZCCHR+8SShJH5I5KQ02V/kFHQriGlmESSOfA2R0e3yawbKGngVtIYPsCn5YruRMZ4+CNQXySO4V5BbFcJivmFryp8axJbNzTvhpnKYiPof+JY1ah6kIoHimMm0FgBTpm8DNPtTmDlBReJMiPofKhV4VPwfIdojHTsUZ7+/Ngdsr/nY4YXRYLdcHVwBmagkSer3PxlOdBJYLezQF81HiXOo+8l/zpKt6TgM2CgkIUcPRGJpVLTM6nnQjXgxyVFHJxvYH1b9PCggXhZUOhSCYj5uUmmsiGzKxcInIT4dSLBkteC6FAgg7FGEQXrIBgp3JVkDCPIDgG2/umCjXywXCsMlR4xKKLfuBOGNjc2KrHUKD65/DGs9iZ4UrsFrNJnUHkr4hQbXBOvVx6esbNZsTMbGZyMhUKQYeH4HXEa8iVeolYnIWp2OdhsweWNwwZVOOMcKKup2oRGfTdAAX/vk0slW6q0YqmI2N+yIO2gJo5qJaBEkZQR1swdFWZtvqw4kq9JMj0fdd1c5m04AwRQlgEqhEIMSzbphenzHDcm7Yp/9+XP7btkEnCmHah4Q7HZyD8N72PJQJcLpr/w3W1HUIt0wxbdogQB9MkTI8M7PtQX+bN+GsWlOaGHvmpZYv5iipBWPACwUwZ7zfOp6DLxYmiNF0+vdKnsB6+6bmSuQQ/IC5EZVw6wRLCuGC4j73kYJfDPlUZD1EFv/ymacqPb1rEoqYdNq0I1boearlAZ8IQnmH6mJ3KK2Phgr9IDZtc2Bsni13v/OUykNB1xV6FGsRS7EhoSBgsb/z0mNwAatqGklc+AtIdRlRnziCB9o4a6youG1niHSU3LeMU6hyqMj/swch/QMksI7y8EnZYLglKbcsOUxLGLAK7k0bgXUUpzkMJji8p19NbPLnx45safceXoH10JaRgY5i1iyteCg0yU1ePYm9MLUBiBndWLJn/kmu+k/Ajy/VjwhtD1CeWdXJ92NBydxzbCWmA4zV6V8LI60bgcgZQodza8j+BGoJBAwCDwHWd0fd3QRDV0obz3LLC1JSbyLFkMLEikGuYDEEuJhagWDUh+QEnOtjitSiaJKElpeqbU4yiFNla8ntQU+VZFbgHiTAMQj5wFbyhKzEVgYLRHzGxr69hpNRYHGPl44WaAwAPlwvPdiKGZRnyVLdD1AlTQUieqkny81XNvMV/E5pPTXT4DU4qHY6EClkfrJUvFOgMsSPc1Dg7hbxStxgGASZqT4mAZpzvw4kAmqKuDJTcCqlxudAK56FnAteZ2tQK2SYDSPYiHMjiPr+wLWsIH7mGXFgCpxIaXSJUqxCa99eFygytQwCpDJXHLEM5V6FyX5jdYmLCKGZG8BhctwQfgg3MfIYKZ2reA0J3htSNVzMItQtU70Eo8U5sZpDLtq9g4RMNCYLkXSiNRT0DugikIi7B6NbfI8RfYhWOc0aC5Q7H9qse2UNiaJmUMZR9xCWreteINhNYDFHVHEXkESxMzhTUAt8hJ8Yit57oyZt6PNGLFeFSKr3kWr/zKti+VFHtMfgifgoG9EuGgKpS4Uiv4RiVAmFKsrRbInTPIqh5sGOFdaCuV+SzQrnMNIhcXjUm1BMhdCu4u9jN1IworlYF7keq5eV0vikuuEG61WQEKG4VcEFk3MQul8GpIJcreEQ+QcUtLnBWorXIl9C0/t3aV/pCKQFqRWQAXDNFEAS8VeZxSH2ta9ktEsGhQ7S2jX6TqgGgEKl4J/j17Or9Da1MKICUrEohtOLUGM4/DvESuBCMCuw5w2SfBvhUsTgiVG5LIp8B4wbEaZeGtcMzKaIE5mpM6FyDfrAuhE7fLzh2BNYhqvAmuinN1NDECijsXMmBG2oIgkA0QGNhkDKQkKvDlibe4OUIwK0IVOC6Kl6SuOlLFBTYxPjAuZaoUQlEUTPP69GKjFi/4UGTj96+Dt4aa0EUzF2NfnSdS64kIKwuBgz2ZCJr+PL8C1YgwfGkxdiSaReDLjzmxl5YIYKxZyH/Kk8l0CBFoSwcwxJKftMTLQgCJs3TOZSlBir4QILjmdDb8RFkBy5p1MTuE94+yI7VdInqygFODgHtEKqt7LCtISxfr2yqEOrYj/WNABZ/6aPUVhqzCGBSwouMYiMtLwhKVAajWkTaLkkHqKWi/fK9MjWdIkQNGTkJCHmwDLmGNykSvdKjFcECC3DLaGPpY6Jow5OaXLeCTDyuqHx+aN9riLfuPRuB0CDkBJxYeldTBexW+RW/bDzkOHizNCWRqWY4N4H6j11vKFOw280hhi9KK0AXS+Pr8uYq+dxUV5NBuIF+pA5aEOioygIR8gSZKSTZPJAfgPQLsysmVCtPvieLw8BCIfoBVoazYnVgYBNe7kXlLCwUQh5OChsFCWCKJnRlpuPmJVaFWhImnkl4+DAAYGFjzyd0kbaC4PKLvX7+jb84fgoT5+OKcZsv/mSw4kznNDJv5z7V3oDXKr3S55O8aY5YUpfANz3cOzayEXxCCLmuMf7+diKwhcKAfOFDsY/EIBnMTIAicfRu82C7yFug/CKgW28KVZjAllMjf6KgdHD4cd9ULV+Me4Yv96qV5w5CaWQAHusDdRN1lR1QiBBlpTDXHsoByKABpzpV8BLYzh7Scsw8GkLhsCB/hEKeITsX5ycqY1InkkrjCLJpsG6jSCMQAYMHk1RTEDUOQbiqiUEd09gP0HhQQygcrqdGED1ljo5RD5sMWNCaHoE5MpTDCpWAfQxKmGpbUFP+ALqcRCWhPkEVvkuU8vADeVmZ7kDASoXfVtROiGnWEs1tgaQLGe+RZ6TQxpBH6ZkiXaSRA9aU/qYXbbq7oo5cBGhTBPcoyCQxMVkiypkAMmP5ACsYMak5sJm3lMGUAfDnPEgZoNhQCQvRzRrlXmRAkAFg8OXfmQLriKDvo1IyNZkPgE0IP8Lu+gWS9ALXl07DVctYAe8ELEhCFNBY97TUGxK6JlTHj4lNTuUeoE4pMzi/VYKGU0Ubnk8gal1LhhAjoMsq5qtAsLnyTaGE8EWhreCvhNArGe0q1I7It2dxISsGSR7MqK83zqUMZiLg2xCBZrTgXItXEuVuIFQowm1Edf9KdS6DkMS0ggB4t8DMUAU/ggUR3mDsqXHFSqQkL97AAW8rApFMCIbQPsbmmk7gKBZAwXsL3jySeuAis8vmmpg5KUU75AHhrREK66XeHVet0mtLE9Z+SpBfE1yfAMrD7hUMCW2B2TDR7jfXsKjTeSa8EXnKIyhOlf5EEY10bw03NxHXW1jvb2iF9rbqVJsqjkJBBMcOnDuM0gsaruqBKv+AMgp6nSZFUojS/DDhJONcOS+pTIIGmiw0kD8gV6ZH/DuMvBisfJyGqu4zonYJU7kWhknYxdREdqURtOZN7d+EuE5gY1IlO4LFb9Afp4Gkm0BGgUwV8rwjFRYoknp16wCKaZi6UT3CwmcyroxSutYjVWooqLLiNmlLQKHylcBBSHXJgfqtYzYn+szC+p9ggFdlHuD9L3Pa4glL8UIpQSxI41QOhe/Fsh164VuUZQEEOssCIpTSVzYRSUs0SJmYWn/5N7uNLYIRIa50hAtq46xgbqTkR9ShwHEIpKDa0OegWqFEPQ9XBA2hufdU6AEUDVhvCjpAkYamovnlr39+dkZxOoVHAtIa8ta3NBhP5plXIoAhLFUhRwg/Mi0Ax6AyA2zgU+yA5rm6+LbU3wGmrDleQq8YrMIQZMQVdlWjroCpoRMshKBBY0p7kQS1FwqzEQX90i4PqiGmVbIudxlMJXeheXqaRYjFSX4qhkQwNQCCYoPmgd+YFuvgYWLfTifHmN4wgQm1nsb6qiZEyL+KhExN/02o9fSFVLmBGdwAikAjinxInKVySyepahqsgLdKEAhzXKwYTc1cVfsaR68I8qNXkszPWxRjwh+8T9zaOnNANQh1Za+lp66J/UkULxIi3yEiyisCvwXXkFomwNgMg15jdJgCrlHbNM08WkW9T2oKhZkzLMMgv/Hx8H0Ordjo11UKx52uE2zV5NTjHIWaIYvjfKpEnpQyH0NmRL71jnuUykw5Pz5kIi/9QskH1eeQKNy+GjQIDUaAbh30Y5hPkUotLLwyIhAnhKxCtcIFz6uFodETCT49bjphKGdiaOPjfsMXgkQU/upxXT1qth32EfHqK/yrnn18oCZZQh1rBnbXEKGHfgxKm0peNctQ9DKojal6GNe566KxUPBXTo2lAg/vFr6QP69SToBowuTI0pNUSFgNC/5YvJlaBoNBtppXZNClo5pYWmo4RvjVeU4tmSW/yz9/PX804+p8mq7ynRj/Cv8svc+VngJ2SBhMDAArTRE0zRG6K5esx4GCbkPWbOiWFg66XbgxWH4AKgbKFa7GX+rov/CTIlYTEmzOr3BVDR64dqvEhgBVRnV75E/cQHMUsj6i2mO4j7S3kqHFTYUW2oYUQhg5gD+YDp4oRAGtsINnYsaiiCUcPyaD16VqmqgShUDHBQ5TUAcApQAuPzeuepUvCqbk8yhY9kIyR7VeWJDGGIHFnG7GqYbhZdyvtEQMTDlVXocjAJy+cgywgLgKSIoUQLFKHtTg6rWJhlyR/DRfyKvIsH9sOibM8yDFFKpJJRTaVCZ1CvzJuQLAISYAlgSMkpT5iqoRGfaQoYtM1IwVjw5ZucMwjJpENdXgQvrIhtLjjSWCtciJwNMHmzyLveh3WeoIpdQtUENlBQa6OPBAiQv1PuE4y7OaL3FVL2nsdfW+mUvuGpSbcOstrlAyAh2feVBECL2YuSqX6bU82QTKDqlecN7JQoFeVcJtat4FF1fw73tXh8drHMHe1Yvw14vGxqVXxRWtD6/iXMDJnm7/E6VngjVIXrmGogG43qP5hYS5hNDBgqHqv7x/IE2rmNQQTCyLKFMSoSkiKHSAdZzxDjDi1XsRGlex2q/GRO/iq6oRYgTCDGrKcN/Pys9EzagSSsT4aQqhhg6c5r3s8IMpojJF1d7gHCdaNAgjiVCzVnUGcE0sUHGPgyQ5XEPKVEufwZxVtdFNRKqiFgInV+lFaLwffruXiCF5N0Ctg4qkBxRYFMjmocQRvpL8YcD1ExZQ+HDOiQNALkMQYqgC42axyDALZIUvEfREvrQlyq70ItCW5ftLtcJwFK1KeASKGQoPDKINlF5wkfKDjaWb7Z1/Gu/YjRf98zL+We/65MYl/v5rv5P39Ax5QeyLZgn69BeLQJ4Ad4mCQ5S6lOKEzYghMwynPjxHLQ+B4g4WJZiTiTTsGFkeizBRIlkqhghTg2OWaHxf6qMJrUGNb0BHKqhzIOESOcPI4KQpJAxbJUJCT49EYF6JKpkyA4A5NGaNpl+7rFQGqMRkOpfDTrEQgcyn0hcVKFBFtTxjfh0SsmghBBtSplYZA1BQNuUx5eyOkgQ5YjHKLIPa2FaR38vJlI6a8vLIRzpqmplHQOl+0AX8DvKOMthYFHIPpoUo4qLUqGSw9qjpMi7zoQhAFPMNSMrUUJGqXgrKxrl+2iBuWVlhUUEs5/qJmaSbZpYVQTwIXaJMz4IXXNwfYtFwdVGSnchVQTz48DxEjShqX8lXlsEua0LmZnPDJkgsFVBJ5iDvlGGCO2Txugeyq8aiwfilNpdYsmpw9SGrCuelnPhcZOWnI/Li87DCpRFiXPUu/rX3bL5eDOAGRNMYVJZPMXtVM1TIOl2yVKb1mgCBAiqF7gTQvL4G0XKyS5OCq49g5NeNP+9bBPtXR2PjvUfjq15RgSyx7q/nO0skz/xSlAO5gj1CXRijGTxoqYD2CuYb8t8hQxaEoGCeQ3ahiUQkGyVsNcybBEpqRASzgvdwVa9ihV/uV668KpBnDMQZE5IkGXBYTV2h3KfDo2nogmCXV2sHkkXUqEozF4ukfGxQFp95xKViKtE0JTmDWkLokg50toBeIM8rmYM4QN0F8EAOFDRRRY9jGUkWGYbk6haScdVb4+qv6kWHMuxUmS3BzBTQBRpFToQLqp7ELyuPFcRibo5PJxZkGJd5KmUORdCNDMRQMsMqsBT0HyfJF33AC97hIhQXszL5DAyGOxyNvtDbBVBB5lKvDqCLa50IjkBdQ5HPccSzpIX2Gw440B8f4f+GbhWpyR8VijiI0z04u3xeU1Ny5+2ristJ17mJfa/1ZZPQpjJNtnFL07adjefOTr/xxtlk2iUIu1u9tm7n7tbZafbyC2dmJrI4N2MAIVDAzsCH+0oABmOJXJYeu8sELptLrVxdeeudq7hwX3y6e7BvDlsnS84GhPgoNB5Foi5jnhDJm2/bdM8DNw0PLjz+41dGhueV7pLF9SxStaG4tlOiRNPWkUPINTsahduM6mUVd+5tt2PG4aNDh98aAMg798MRceNNbStX1XYcmzqwv9NjsiyzbcvYeGPLlq1N5/vS+17smp9xicw7TNUoNNUQ6fL6K0Q73Oi/iIAxoyh38rKu2dB0w83L52fmn/9V93QigxUd9NAsjlhZKC9MKC0IY2x+eXP57j2r6uri4XAok/NmZ+dOHB04+naP58mMx0GRAaWhxZVeKFf4T6QY6GYkbF8dDJnv37Bj1Zat1Tk/+/obPWc7p00iL0WupDR88951FeUFr7/ac7Z7lMHbJAWF9q49qxsaK08cmzj4Zg9eaAVEVceKuApnPcNYjLcqcdATOTyK3Lvu3bxiVWnvmYnXXupPZzi5lvsb+kCmEYx2ghZVMGMGAI3Q03gUgb12b4wrAAYWppxr8roGLCI/Ip9b6RLr+nDv/cttAY5oBMxpFKyjJFgBVHEK5V3Ztbtp9fpqOBlJXsNAd57lw6Ym5198tiuT9G/YtXrD+qqR4YXXXz47k8jKKk5QPffHcEWUNLlB2QcTkIZzPV+w1A23rLnrgRszudz//X/+wluQRZJJ1dBcmZIHvGtTB38URYbFaebFB1BPSxWQ0IJyHOP2u1YtX1HOclBJUoXMRQS9L2tF0+rtnXzphZORiH3LrZubG0tPdY4deKMnnfUMNRsXHyAkdpAJ4SBFsZhg4gPtDJ8lV7RV7di5qq42HotFPNdNJGYPHjp74kg/c6NExGDQBKA9XyF9QOMDjwuyqIj/7q+o8TUiMCTUOo55fI2wHNvKl7iKyK/EhmQ1i95eDNXbeAC/0SQ3ZtDfdAFjohWamMLooJ6SUrtDJKbKRCnnfiwWuvPuzeu3lbx9KHHq+HeG52TFwEIFxscfunXvvfWHDsycOzc53z0MUydL3Hn/joce2fTCc92vvdyBFz9w0cEY7ps+IKLIUgO6d8R2kscgMtTwAey1iX4qnGWbV1R97nduYbl0T+f0QO+0rOp83QlRLpTw3BxVHUANDTQHvDvu3vx7f3R3eUXRgbeGC4qoMeQbhoPN60BOhaq2jckWrfs0zovnaWGAOBXFJZH7H9y6or3w8Z+fOfZ2Pwf5d16zrOzTn7ltw6aq/a9PHTt6yl2ApK4iXvCph2/dsavhiZ+c3v9qh16XWixUeaIgZjXQfSHGpetqPRNUYDDGqY9C7N6adQ1feHT3+cHpQweGpyeShNhC5I9Kgm150PFmPLluS/WXfv8jG7bU2aaRyyDVltDjx8fq6g8+9YsjbgboC0ImZpQpTh9Tx7PGvhNVRzESgP6BM+03raj6D5/bLWzuk8jZky+ahu36mZbVzV/80r2FxTIgFnb3DMu7LTP0ZcsqP/eFvfHKgrHRp6GOpGbAr8AJJUrtB/fiErJmyscs0GUGBqNAKrNA3WPLu/WOTffe2/D882cOvjGQTnsMVZ+uxdmBkd5UXgcwk+BGgIjADJCj6zxccGqbtm0oHDO5Nu0rrjXD5MWyLGDAw16E6T/Xo01FOhN5B9frX+9baMWlqaCpVHeStY0byeOyhfB23tT08MM7oMnJlYY3hC9EuMO9OfTW4MFXenJz2R07Wj/z6KaDB4aOHumdnnYpBcFgYRGVMmvMLMzLxXuld1wyCF/1r19kaPjODYLUN2ZYmRtvWvEfv7S3bV3l+YFJ22KwRUxL9au4Nm9lKKyHICStHaLKXUxMUcyawT6DhNJEbpX8v713rb9772qPI/dQ4SZw4cuK3zHEk7/qfOn5Y6GQtffuTXtvbfzxj04cfqsfpJQJMuOpIfLF7KUviFgi8yP+7TFYBnMAZiK3KrfkJ/WFt2n78k9/Zu/Onc2WvPOeYduEOsYtvRt+8J2XXvjVyVzKV7MXE4FpRKMtYLrAkGN9mTyH07wtCDTbLeCUmzh5hIhsQgeLL+pgKQSz6hwKTebkKrviWp+JKw49v05K1lNXQgPlJkG0Pt4i4kjmXpY1Njp6/MTRDdtvral1KuLhoYF5mfIUxOja9SXyUTXL7HhVqLdHZj/cDvPWFUUhavT29MzOJQgtAkQOzLvlMSw3kecwjpZ2IIwZDL8FzruYoZy7IEogBxVkLZVMugvKl8Rj0MRKM5aWKwyJpa5SB+U6s14cg2DzyifEKykN3X3PrY88ckNTY3R2ISP4PCdZZngmDWsSL0MjUYpSm0q/Q6kGadqeoIG/JmRw1BgZGzl9+nRr+/bKeLiwNDQ9Icsyr6oitLwh5thGXYNdXlUwOz8rn7KkLNTSUibf0OmzJ6dnpi2rBFAB0B/ijLhE+BggHLmafcQVQJGLlHmDKdUBCoApmAPKCsbmppJK8ISRMQyXQ2RwGU9BzspceWERgCU/Csu7EOJ1lU+Rqa4v/OKXPrRzV934TLrj6PmRwYmVbQ2tK6tWthdRc8fMZPb1F08TLgMeJDueSRZ3RqBjog331GJRLqAWPXr06MT4yqbW6vr6glCYeK7vC7+xMVpXa7rcaGyOxArs5AzsxrJyp6G+YHJy4ezZLnl/Tc3083EQIkMDA7wrCRGBSvFKpgu2vYdqEChXBhgU+QNZuKN1O0G2gXAx7ZK3MO37WQzRHoEZLmMkANQCLBQwCxrTCs1FBi9hIkSYa4URGVhAigQVVxW5TgCCkyMJ4mKXtHf0iS7iIwclIICRjXx/DhsWStv7GsHJNfgXm2iMC1/oppZ2bVokaV0gLnf96/05JXXHNbj72jJuqc0D3IThoVT32Wl5jAmfVVYVlFbE5ufc8akF15cFhNndNeNmUMJA7nRI3XOCpwyWESpxZjJltrUOn+Dotyp3FEMbOU/T92GYaMt0gpI8h8Q3QOaFgF0SVlJyUVpy6xHqA1/fQ+VlGU1kNWDxpdJ1QvEbXQ42LWDvIx9DCc23/DVUWgm/oYV54J3vFZeSm27e9JnP7mltLbcsY9FRA8UHEa8NBzRXZEN94RToXcnB8EBiGLYuQwlWJcAg429v39ypnhniykjCl9UVFxWGpxOZyUQqB4ZutKd7AfSZQCcljZsibYgMgEINk6g2rqwR0e1KuaAhJJehCoZP0MiEgjKPzYy87D43ZQSG88XGqhtE+YHhI/+Jl5cYnjpBCZEJnhVoQyvFa9RbhLqcI6tY5pcWR9K6tsWBDjMFTyRAQmN+zvy6hpJPPHT7rlubmesdPzbQ2XG+fnl83eblq1eWfOGLt09PLhx4eZDSCBabFE8/1bkSgfLk5fJnFGbXY0KqGu5MBCx9WEkW87XaBhFLeBTQvcCnBnVGijgUGrgiwfNZi+v8NzrDUqp1aO0Es1VYvFq9zlDHDaV0eibZfW4c1TR5Y2PVqZOTvseWL68riUKL0LHNhhVVR44O5pK8uLSotCySSRlTI1nPNYmqx7hXUBKqaSyOFxDLJ2MJ7/zIbC7NiOkgP0EUhIz6qgqTmBNTEyUVxTXVBTPzXvfZOS8HTSibesvqSiprYtThAwNGNGxYgQkowOtBIkYJ2XEeCJ4irc9rai549NG9t9+6Tr7v6dm0CSA8S8U5LpBzwpWJtAlwIgPhlprjRWhA3eO4rLTHMjVm59KDgzM+k2/DWbGienKy27ZFdW1BLAJjcLk2V69r7us9xnxRWhoujVm5eX9yNJlziSVrEubLRKEkHq1uKKmIGDQnRsbT/eNzOaAbOcClF15RAa2prpSp6tRUoqqqvKLSGR3LdJ9bQBEoX+Zw9fWlMp2V+35qcibkcMw2BFN9R/mmqfwg1AKysoKLCpvSG3et2bS9fnbG/cG3XvrpTw9lFmgsat52Z9sf/vG9rc2l69esOHloYG7GRSEJ1BDlwiaBVJeSkVFWExoPrSaqtKdnNJFIr2ghJUWR6rrS3t7pwqJIc2O5GmKWVRTVLCs7PT1p2TReXRKy6PRodi7hQW4Nr+JZVFTUFlbXRgstnk3R86PJyamUfGXAasJcn5WXh2vLSmdn57NeuraxLhIh/X2psdEskCV5rjBmNzZUF5ZbmWx2ZGjYoUqGS+uM2XCHiR5FokqQTLksTouLwvW1Jcl0cnp2uq62vKgsks3ysYG5yamsDIU46FMNcFhiFlPUD2Fclp5lah1dGjTgMGVBDIkV6KEZKC4DJoX8omnc5UH37woYEpcAiCy1yV8q8Yp4aCOQiGNKsTD/kRT7dQk8+vrX+zbtQV+qQJ0DJQWI7h6jnhEz7Z/9/Nizzx83If7MP/rorQ89csep06Nf/rsnxkfTlNpuTizMe7BjkDRrCq+0wClZUx8rC7kZMjAwk5jKcOIArwYbRYzKXcxr40VVNTEnauRydGJkdmJswRMRgJ0CWICXV0SqqgpmZueSuVRtQ2VB1Jmfcof7puU+Ki6L1S6vKI7R7Kw31De/kJRhy+J6x0Nwi0VpTV15eaVpUj6bECOD88kF6BNRuXcoyXNUgeHBcGRlUN/zlrcVf+7R227e3RqJsoXZ+dKKIhOnATIjdHAeKB+KjmwUGcoaOKHMGgzFLqYir6tM4MhXilYoKuYb3/nmqz/+4RuydjKs2f/yXx7atXPdK/vOfOOfXsgkZSrppNPEZyFKbFsJu4hcedxsbi6Pxey5BTbQN5NKuoI68KbBcYxavrwtflVdUUV1NBTyUgtsbCA1OSUfE4ISGM4CXlNfUFRsT44vUGLW1Vc7lpgazw0OzDDfr6osWlZfaYeNqanM0MBCNutRqAmpqrBk/lpU4tTVlZcUQxY3PekODc2mczKXCim+LyLVOFHmP6gPyGlu5y2bduxcLgvzn/zLwX/51svJBWY4/p5bV/7Jn3xYJpR33LWp48jYwjxgOnAsrbSDsS0A1vLY7r90fWgGFsLaMoWxoI+IMUWAj8cSmFjgaKIBsJr3RXT/W2g57SAbu94V19WCltxQA1QNNiSm6h/Bd82J8dzERKawILJ6TfOLL57wmXvj7vXRWJj7PFbobNi0/JlfHk4vJFetb6+Kl/X1TMqFK0QIA0t6xcryvR/Zvm1XW2tVhKWNQ0cn9x/qePWFjrGJnGlEfMOtrS3+4hfuKioIH+/oXL2pff36+LETE3/1l49NpVK2w27es+r2vZs3bamLFtHO08N+Jmdb3PfUXiOKR2EEeTPN+/1aZMPm5tv2rkrOp5/65f72lcvXbmg0uNzRlqq4TAbIUl/76C2BlOtJOKGLeD3NM1ZyfsMjmZlErqEh3r6q9o3Xj5eWlG7c3BYOh2RWVFYZ27Kt6Zkn37Yi1qp1TaZpnz4+Oj6apFYIU7rsus11u+/aAsXH8kKR4p1d4796/tCzL3TOJz1DBkrmt7Ut//zn73NzuTPnurdua1+7Jv6Tn3b8H//7444ZLYhReSnuvGfL2nVxmUGc6Rw3iWfbmgQuNDg/IAxiO0/WGAXFobbVK6nJT3clXnmhZ3xYZmnFmfnUC8+89elP7amuKSwscWLFoem5tFK5Qsq0JmbimZD3tdLARRqgdphv9vUmN20WDY1VjY3xrq7Blta6TVtWITeKNbfEm1fEO44NFJVEN25qdbOi48RgOil/z5abPxT2b7y1/bb7tq1bV1MRpqMD/v6j51575djhQ+eZFyYygFv+7l3rP/7g7q6uc1meveGmDaUl9B++8sZPf/iW74tlNbF7H9i6a/fqlvbi+ZTbcay7ZUWZ0OB88BongRCGxmUK+YzyI3ibtq747GdvH51KjE2MbN28qrG+6PxI+sShvqeeeOt0Z0IYts+VXIcWuDDh0NKF82UHhRjvzUVicj7OKP0PRewhhGjxoovzp6X/vAyI+6LHiEtMlBe703nTAqKnLjS4LHm+ko6WxmWxGte/fs0ulqEt5IjWkdGYY0VIkfdibp5NJzglshhNzy1k5Y8yrhgfyQ4PuZSCH6FhmjL9Qm6qKI8XPviJm1auXtnQEEtM+QfePPP4T948e06uW4cD25BZjnvjjpZ777px/ca6sjJrdo6fONr34jOH97/Zn3I5oGKEv2tX+2cevq2/b3AikVi1ubWhvnikb+6px1/v7OrfsWfbzpvXNzVEZobTzzx//GeP70/MyPwJ8zuWq6srumPv+q3bWtatrwqHxfD5zOuvdT755MGB3jmTxFBEFUHrnGreB0qXuG5uw6aWex5Y5WUzj/3ohap48d333RT0ThArIgIDLMUNCazjsWhRF00s8geFCGiwSsoeYNgz04wz1+Q+sdMyWZGPTCe9kZFMZhYCvGHaaJ9gKX51Y1P8kc/ftWHT6ni5MziUee3Vjp//8MDYhCurIdMyDU+ecdZte9fvvnXT6vWVRQVidMQ79FbvM08fPnx8GFJJMGvNPvjg7i3bW8+eOV9YFNu0eTnLkSOHB1586a10KvnhD918w40t8mYd7xh+7ZVTLz9/KpNFgjn0Mfz2leW3375x047WtpVFnIn+npkXnz/y1DMnphKeTxUmBet8gtNf0BciTsgpqyyKhsXQaPJH//LK2KBrhwpzycz+fWcP39T9wIOblzWUOBHqzzETyPF6QI1OYpiWk7zo9iVwKFz3EgKuEcphYiqpvmFdIDqQl3PJY+RJPuMSwXGpCMzXo8mSKC3IZbSDQk7o3LnRkx39d+xd1dxUEoN5EGtfXSlvaDKZjRVH6+vK4hWx6cmR9lXxeDx86sT50eGE4BYT2camkt/9o/u33rI847PZGa/Aodt2Vdc1RyOO8fhPjiazwuY8FiWNzZHGxqrVG8qjRU5Wpv2eB47FInfDjWs//cjtbWvLmPCnF3Ir2uvKCkOy2MikArXx/Jkh9OhdM9INk3Hn7bcHfvXEK8cPnfrzP/9dSy4VAUgjFLZTkU5pxKv+l7nkgoilGEARpPe4662urr7hkbGNGxvrlxWHHRoJ05bWKvlj1+PFxaHKquJ4RSSTzaxdvyxaYA0OjgwPJSyZPInshg0Nn/rtW9ZtW05tMZfMFEXsbbc0tq6rdGzrpz+FppcMOcVFdntb1AmXbb0hbkdlIiljh28Jz6bezTdveuSzu5tbi1PZzPyCu2ZtbXHEtixtnoFegCLPDdcdCZumfe+xnzx3pKMgmwyNjzHHKbTQtFBuG8sSJqU5lkuznK95IELJzGsVM71zLlAv1EaOEBmt1187cfe9LQ3LCmtrIiZxK+OR5Ssq0umMzJDiFeHGhng0wqOx3Jp1dbJ27usdSqcBOSJI9va7Nv72791evqxofjY7k+Hx+tCdVW319YWZVKajY5YLGRR5ZdxesTLS0LQmXAiBY3omzeXl8LJlpYUf+q2bPvzRTcXl1kJKvnNyyx0bwqCkLjRgHgitljIY0gxi8H2HQ6qknDa3h5vtRmo1p1O5rPCWLY9VVa+jtjk5+/zoaNIkYcK06cYFIvuXRRQE3Cd9uYS4eCEFe4wL8s7vX/ywd0uefo1/5iVqhD6ySLCg82J3yvqJiLx82PWv97OFJYx34wiLfB0nI5clj3Xg0cmA5Mi/Y0OUOo4TgnaJAi0zhIFDG2JZfVW8uirpevNurqIu+uGPrQ9H7b/5v56YnWPUNIWRu2FH0x/80f1NjWWpVGZqMhMttO68a1VLUw3nz7y6r5OKiC9y8XKyen2stbU9mc6lMjIvYRvWxeurbp+cXIjX17gsSzlvaSn+bP2uHPO+/603hHBkHK6Kh3/rt2648951FeWR5EIqscCXNRQ98ujO0urY1/7+WZkRmk6ICS31gvwolpfylFvvzJnZX/z4mZee3ffZR+80tEEgoTIImVQZdSjx4UWJYKJBH0HpQS7YbEFVTFHkRV43Aogqy7AcZdEqr2nIsXgIu36G6Xu+GjjKtLZ97YqWNWYy5ac9v3llUV3DDpEz/unrzxsMOtHU9h74yJZHPru3tDw8O5OeGmVV5aGPfHRDw/KKf/j7X506JXOssMFZfU2krbWwrW29oFY2nQ3FzM3bKsqrd5RVliyrLWdezrHsLdtqQ1F7ejrz5uu91AL0cFNzxUMP3bprd4sdJbKglQnimrXVK1feEYmGvv/Dt2eTKMMgfNRFF0qWVgAMgj7z1JHe/l750sk5Ho5GsPwj0Ug4Eop6zHBd6I6jthcBJImCBiCqVUFbr+AIRDWS9B3oArVKucUXISOBPKX2HiSCXxx8Fjnm12PA1cwEtK9vaGR4vr9/wjBWxcKhmprikpJIvCo2Mj7b0zWyfmtbQSy2unV5f8+Z6mpHXtjx8eT0bFomZpEIvf3OtTff0jw2nfraN144+EpnfU3Z7//hPctbKnfdtKbr9PhbB4YUkl2m0aEoVBEvPnfiB997dXQoMzeTKilz7vvQhrbVZQvzyX/86nP79nW0tdf+/n96YN3qmrxiJuokKKUpX7HQle4tZ/YbL/W8/VrX1MSYDSbF4Gms+wfwMAtLpkB0Ubyb5Sd5V1yLPTq8MDWVYq5RVlS2vCFeWBKR//X0T7lpsbwtXhCNtLct7+zqqIo78q1NTMzPzbiOEykqprfuXbdhU61J2Xf++c3nnnh9eWPl579479atDY98ds+ZU1NHDo+Ytmol8miYJjP+Yz/c//QTJ8aHs7YVildF7ntgffuq4u4zU3/zdz/qOz+1dVPzf/qP9zW0luV9qMmiCKvqP8GcjHnG2bOTZ7oHTTMi/AiYzsJ+zN10y9rKygJB6cTk7Mx0VpAI6lTI3/O1Bq+4JGpVZVg+c7pODy4kc5Xl0XhFWWVFrGVFLbWNE0cGY7GCZc3VzQ0N1fEiO5qtqHBSKX90bDaXAxxmfWPZAx/d3NxQ9Nxr3f/8T88lx5N7b1v3uS/saW4uu/vebf29z84u5Kgq/SkvLA1NTs1951uv7Xu1azrhU8rbVsfv+9C6snLrwFs9X/3aU9Mzcx/7yM6HH9pdVOQovh4cSBr9wfBSmAiskzFYFvpGOETNkHXixPA//O0vJyemHvzEzR99cPuO7W2vvXJseHjChntAtW+p6pCSwOybXO44JRfZrRlK0X8RbiX0kwpyrU54xD0ryStEU4iLtUTzwfAaK99f/7ogDSNLtDLyOcSSR6BfmC9voe1Yx44NffUfnxweGX/kt2/7Dw/fvHpdTUNzfP74FGO8dlnhw5+8rbW57GTHwP/35ad6+6dLK0L/8198aOuW1pvvWn2iq292EpoTDHFXdsToODDwta88Q032x3/2ic1bayvrS94+MvTlv/sxyfHPf/6e2+5as2XLsh9/z2ZZy7a8LVubbr21rSLuvPRi51e/8rjviu03rfqPv3vP/Q9u7DzV/4Nvv0l4KQhV5rUPUUVdLrhQJHRg3+kTR86ODk35rs1luqaBHKZqnyCvVkHUrpJpoV069OyeqF4s1Z3ivDw1OG0wlArzsbWswbqhsP3y02e/8/VnufD+9C8/fNPO1q3blj3588KxETfr5m64ufH+j99YWum8+srJr3/1ucRYun1txX/+q49t2VKz5+a2wd7xzILcwsCqKy2KTE5nvvfd51567siN25r+4M8+Eq9qznniJz/Y96uf7du2vfV3vnTX5q3LOk5Wv7W/W26+WJjsvql1x67lVkR857uv/+ynr0ec0IfulzXznoc+e9Pbh88fenuccMsCcXb0IsHPCCKIzOzpmTvfO+nYpuHaFKYuWWImt27fvn5ri+v5J4+fT8EAxGIK4AUXxgzEgwPtxkuQHy5eZzq5Uhh37bJBATmk/tPZG9f0uOsx432KAnBECXN0LJdKG+UVBa3N8W1b2yviZROTyV8+ebi7a7ixIbZ6lTxQy5bVViSmvNNdo4yZPvPj8eiHH7zJzbD9r3a99szJoX7/7f2D//zfn81ksms3NDS3VoO2tVLXI0LWbwcP9/z1Xz9+7NDU+Ajzfdq2pqGktCAWMY4c6v7FTw6MD5HXXuh66meva0l0VA8XSjJ5SUKolDw5B8mrsZGc78WoKPDRS5grs2StRxro3Onsnl6JRoPKoMT0PHt4SJaIrGlFVVNz+ab1K8riJZ2nB3/6+Buzs8mW5or1a2qaGsqKi6P9van+3glCwjLRaW5bVt8QLwpbPd1jP/ruS8N9/M3X+77/vecW5vz6+tj6jfVWmHhU7hMGYg4Of+21U1/7yosnjsxNTICqQ2tbbbyyRIavx3728puvD4wM8Oef7Xj1lWOqBPEDMV/KNUVMIDkUaUnyPUcEL2K5EO4b5ovZNVurPvP5uwqKIp2npw693ZvJItWW0kAo3bzigYuh0EpnjKHBrIxmLU3xlqaKG7avkdfo2PHBZ54+4rs5aPLVFqxeuUzWc91nJycnkgArcTM33ti+eUtjX+/sc08eOvnW+GCv99hjbz//3OHq2tL1mxoraopRyQ6c28BrzTK+/rXn/uV7bwycy80lWLQwsnZDC1BpfPdnj71+5MDIcD/7/jef7ekaVgM4iEiUcXUhtEoqR8dlQ1lFynp3bib9vW8+f3T/QP/Z7BM/2ZeYnGpeEZIZMGc+CcRMNXZY8cCM98KwUr8X6AWSAHxBtb2XsRiv/k3/AwiaNg3RnprXvz5w5a14t0JX6OC0ZIiMgjNkfj7z8x+/fnDf4EBX+tjB3qnpheIiu6w8QhHk3rqiZsf2euZn3zpwfHomGYrG0ln30MHTmWxm6/YVy5ZVep4MlJZSWpmcSj799PFjR8ZOnZ46cLA/McuTWf8bX3/s0IHhjo6J4x3Dbs4oKIgWlUQ5yxUXR9atay4vC1Pmv/ziSyBz6Vj9/f2jw9PUNNZtWB6PFwrGQFsY3roCLlJl304tmphID/ZlfDcGRBbTNBY5VXKfsoBERN/7iJosnXNply2+tBDUHVzlG6b4veOj8z/47vMdx8e6T08fOzTkuryo1CkuCcmQEw6bGzc1t7dVpFPJ1984mM3mwoXOxGTi7UNd8pzasr2lvKoI7WCF0jQ8cfzsE4/tP3N65u0DfQvTPGLbpzvGfvLDV/vPpH71iwM9Xf1lMTMWC1khyjy/qrp03foVBYVkaipx8O3D0UhEXqjTZ86NT82XlIU3bmgK2aDdxQ3TgzLMVJ7+CnxGjZDgEe6GDW4LIIylt+xovufB3eFCa2Bw+pWXTsBkwERXMpWtEq0uyi1GlGIPuao+C8kXi3nBBiHPZWvRJpuhJYmlRAgpoUrn+vrXvxKjJbeLLYv+zsGhdW0ralpbywoKCopj5uycv39fz8YtrTu2L6+utm/ctaqpuW56Ktl7dthncvcwy2EVVaab9vtOj2UWfNOOyTt2/ET37My83P/FFeWRWDjtZhki5jzDONU5Nj4uK6YynES79fUV1XWF2Yzf3zPDecS0Ctx0Zmbc81LKuwvNeWig6ajPQmUfQZWGNbgKeg7QuUyZ5aBDjiItGkrIDxhtMFpjZtDEusJ+lqs9k8sdPHry7vvamlcULW8oaG2vKI6S4dH5F58/9tFP7qyrKqqtLdh984Z4RcmRw0Pnzo1a8ipwvzJe0NRcKZ/gTMeQnzOoHc4yd2g4PTycaWmOrlrbVFh6bDwx76OfYC7HTp9OTEwbphXGwSerX1FZWhmZns6Oj7uMFNhW1GV8YpzJp0LvZ8Fw6E4Z+sFCHqlk7KnS2AOxdUgzZGR0126u+YM/u7+prXpgMPmLn7556sQwNQoYaMkq/BoAcLXsvLhchkVNmsum9x04sn17TUt7xYqW4hUry+Q9kZnT6VP9H/vUzprySFNTyYat7SHH7usZm5iYR6FRr6jMcGxjcmR+pHeKkhB1QrPz4x0d5z7ysZs8Lipra86eS5hIaCUmGRlNnzw9ls3ZESfMPS/kkJVtNbGYNTYyPzXuWmYhpaHkbGpuUjPhGHaeMNDwwAIWVgKDNYAafsTILuTOdp4Hi24a8lzTlyUuNSyTW7CgTIqMTZTb0RRAQd4Dh1015NGBUqc1ynoRcGW2Qa+I53p/e1gCbTihi0covV5zftBCq/acCCJP8KeyJlOtabE4mh8enj9/fkYet7bjpJM8m/KjMTsWlbHLcxx7RUsj2LxSc9fOjavWrpchRi7lkgIRoWZBVSReUmDyKaaAFIYxPDhx5EgXlfvQYpPT03MLSZqKTE8I04oZppFM8dkZEQ6Fisoiw6MzBQXhtrbKSBhOgv/w8P3pHETXsGVWlZd6OdbW3lJVUzk1NhwmMYb7TigvMDTKQNPrMAHZ4SyYYBh5sSVU7gIgFUV4hsmQvXIV57W4SPpcKBS8ofzCtB8RGKuiorGGQkL2IZM7cvbc8Pj4rGk7pi3mFjKZHIuEzWjEEsytKC6pr64TnhG2Qx+579a9twv5IIP4heVR3zBqGorsgrBHs6YBvHj5pGOj6emkS5xQxidT054dyXWfHnfTlh0qkOmm5yJildi2ZWdkgVsYbW+rkqlKWVHh73/x464BbGgnRO1IWEbyzRtX/7Lw8GQiQ+woo6YFAt0yorsCDRoNSEttGcYZ90zH37a17ZHf2btxS3xuZu7733rzzMmELFzlj4CPtkTAHenwDOASwrzSQtTGJwCtsEx1BJjK1RfwayS44kQnfGTRXEhcDynvS5lFbXrm3Pnhwcn2lTWtK2uKSgrmk7yzYzSZ9EfH0qm0ES8vu/W2LaUlkcH+ufHxeVktgYq3hVuIUj/H0AkdFAmoafu+vIUsHJE5kw1HmkFNkyRT7uiYPHEdhvIk1CcFkXBFeVQwb24maSJp1aQ2922W09bpIpBFX9R/UYbqIn+2qbmxjzBDlDIAdqmPc0SqFGm5WAT9XvliEMP1/XPnhtIptyTmrlpT19xaNZbwBvpnkwt+f/98S3NVXW1V2+r6wkJHvu3h0YSghfJ8D4d4RaXtWCQxloDdbqI4jDBmZ9Ke65SVFdoOFgdI9kklc6Pj0zD51Jb6ZqwwWlRsJ8bTuawnP6wHvtqW7wF1JvCdB/QVMzX0gwpNxEHXHKDH+TxbUEx372n5zBdubmuv7e2f+9Y3Xn7ulyeJH6WWAMt/+Hi2MCweJAmXvRayyhIZzzt+rCuXu7MgZm/fsbKkJNTdO98/MD03601MZYqj3tatq9dubpanRWJibmHeZYYDxHGFkxfUg9Sac8OD8suwZKCRITYWi0FiLBTtl46OTSaTORmnfLw68rfLimOFRc75c/JSuMgOlrlLyM/RQMBfK7gwJGkgIweFHpWJLgL23Bwg9HGK5xgirHh/lomyzpSBcgSgpUCIxgwcl66+gxWAdFHgQ0kUUZo3CCOazkeu2l7m8s4k5OLVueRPGqBXFklEQlx3HPxAzQfRGg8ECDkJNqwqaZUNt+quC5TPJiSZTKYyOaDDct/3CJNHeCEBDLfhWyYtK4vaIYP7pKK8MFbsq/LA9sXESELuHE8uelmJBaAZuXeS8wuUhg20rZEvnMswwKcyjg7CBNSSTXAWU1zq8vJIQSycnE/XxEshmIJOisFz2cRIKjltm4YDQqmqqkGkoal0rJCjDnuc5Awge4tFoUE4willPNgxyjfsavS4aKBfmfcGwiIKOUtLnJDRXwGCoseJK4it+FtTUwvySsBUwfCYL3MlqBRNx2SGb4esktIC4KVzs6qqpJQz3MKgdTM0MDI7nYXHo1caFmyG68n4bPkURNZBedHnuZSPyGNG81BHrtjc1LZIvDLshGk259XWFjIUbJBXMp1KTo6kMhkPjVDQ5Fu5fsnUCEaRngrmIEPIZGnKd+1Z85FP3rJuffnoyNS3v/nK87/sYJ4Nt1Hb4DsYsXxFuFQub+ZVBS2tHiMUU0rXltBYlMeMWILrhEjmo0Ed1/iu6ynW+xIMTC9rjY2xXJa3rGwoLi0cm84dPnLKY0bXyb6x0YmVq2rhxM3ys2em0ykus3DfzymHb8Z9WbvbppXzFPufWZQ7psVcF/yVmA15gUDFD1yzSFaF0OK6LJPxi2JWrCAC2i1Ai/Nlsm6HjXRW8QZNJbiiEM35UwbBJzg+RpIEBX0XHzWSlcwtAqGVe7UW/cbldcUCXzVEiJlOWqOjfllxbsPmleXx8iOnRnv7R11GXn350K27G1evqTNsY27W6O+bc3Mw5/KYyHp8IeWHbLuwuAjpMEQu05AN6YJ8Yhk5mc8tDv6G8O7lPvWUEzxyQ2SEyPpeznBsO+IAq4hQhzLfthiK7FIT2SLaM1FxQTjRRglQKfq+u1CzrPgTD+2570PrKqtjh98e/9Y/v/jm6+eY52BjHzIBkN8iWJpd2TU2sNgzrPlZMjHul5daN+xcX1AU6dnX2y8vRZofO9K9uqVi245V0ZLw0HCmf2BePhh9I/WdYsINhSyq2k2AtmIhWYgRM5fNwrhYxnfQdDF8zwOdTplEyYeBihXJykvh8UhByAlB3iivGBeuHcU3rTNUFHJBe2kFYNEwKpCfQaICRHUTdUBJ4EcO+b9uWBFfe4FBYwvX0q+j3kgCO2ttAMIY8328AEuC1Tv69O/886K/vOuvkEs/g2ZiETwSlHj+9a8PWAnLtGSbCJxRtEE3fsvHha30bGQsY6g7pOobIxhAy29zlkpnZXGQTKW+8Y0fnTg1bliyUGEO8cpLitIZr/vcPJdRmAWATYrja6oUA6ky7oBsj6pC01T29JBJccsT5nyGyySlq3vga199ZnYO9pxJWGHUsh06nTAGz2eI7XClTawiMOCfqNpSHEUnkY+LUknq9aGFQ9GgVPG/eTDPu+JeIxcyBkTgjoYsEq5FdPGqUKILT7jIItDyYVw7+HNDBOoCkCnIBCqddX1ijE7O/e3ffn94dB4yF4PbjltaGp2dzowMyeQTCJs0KKMwXlA4hpRaH9HVLg8cHRBRJW+P3H1M3h9qi31vHv/RD/f5bgRiu+UWFAG/eXSEz6az3EQJG5AGJKijyrSVGPdkBG9oKH7wY9vuuX9TzbJY54nz3/zGi/v39XnpkLwHnHvYV7JR0D9/kFHBTTSd51csEVWNDlY5XMsDctRPhoRxCcsATj8ZmJXGFUww+fUJ4fuSXaHbOSk6cmTojjtay+OFlmWn0+nzvaM+Fz29MP1pbqj0uC9ziNOnz6fSrgEVg8jl+EySOaaoa64Kh+lC0pcrrWHZsuLCWMi0EqOJ7ELaNiz0XSIoMUJB7RPgWHKVuSMjE5OTyXhFeV1DkS/SMrkKR3lDUwkk7BmVRphKktJQtsQ4ulbWyxB6GMgr+n7G9Vx5EqMUjUwjctzPyJcwADMQgcEJiLDwgEFNrpDoy6KQOPOz4q39ZzZuuKE8GnIcc34mNTYy6zPacbwnk+axClk3itGh+a7TQyYInMAzT0zO952fKi+vW9leTZgvco5NaFVFSWVVOBQ2Tp/sSSZyDgnZYOAJB7MlEPIOSibQ6RrtH12YTdVUx8rKHMJSJCcKCsWy5YXUgSaXhZqi8gr4RFszQuQEnCRUdYwn12+u+uwX9u7evVpmvT/78Zs/+v7+kyfHQWDHyto8FCIhCAWQqcraB5xRg77xpdcDXmeLROem6ZHj5x+4r8UETwdjYmx6amJOZkrdnYOM74gUOjLIjY/O9PeNC+V6TIy5lJ8TRkFppHZZ+ckTE7JUC0fDjY3LgAzE6XDfiIn6nlS5NeFNpdyiMpkkhud653qHN26uiVcVFBVT30/JYruhoai8MpxHyWGUIeiMaij1BHChp5bQEjv5zybPE3nTXAVbQ01nqtRoiLa0p79meUYCE2/lcomIVeRWLQnq79kV0fh1HAADkqyaomhx8etfH5ThgKL8qo2x6Diq7IwwoCnvKwNNY7AbIqguoEwtAAFEetPJ5Uh39zD0+E06P89PnpiUlQjn7pr11fft2Z1ccIcTB8bn5/LQLoJ0IA82mmlo9LICVhs4JEfMoNb2NDIZ1t2TWNFaUVhefLZ3YrDfky8ZLRIf/a1b2ldVnzwyMNDXAwcv2ughAQ4VT7EhDG/Vd6G2oTIQZWURjbtAMC/lZQwrbOP02lKccHI16t+6auB6mypdYAW6VpIyiulMta8jiHmCrh/FtEeFIKHzK9Ve03BPa3om2TcyIugK7tDRqdTRY2OOWUBpds/N7Xfu3Xn27MjgYGeGMwuFFE0FyGWmzWSkskHV3IS+E2TBmBgxLS8hq3vEfSYzZ86Nbdi8zIoWHuucyC5E5GeuqjJl0VteGX3+xc7eoWFmgcktBZF65I8arqEsn3lu8/bGD3901223t4Uc46WnD377a690npziLGxYHnM9OxQBlWaOgxnwh/UMnQRSEkhTkauBs6nuKbTjaP4AsEIhuiTyI6MAyOrClvHa8tQ8QryjvX796+rDgLzeFnRw7Y6Orpn5rVVVBZmscfLY+GxKcNtKZfj5/vSmzdy2QUDu/PmRbMq3ImHimIlE6oWnj3760zdu2rpiz91jr7x0RG7Rhz93R2VN+ZnO6bNnzkMvwjRRMBeZDkzhV5iy0TvZeW5iaud6u2Lz9ubb7lzVcap3+7aNe+7erqVp8Rdo0E8HJrPqXaFpAKFuXWNheZksFPxwxCupCAnOCgtJ+5qqSKFtG9H5OXdkYDbjynwcRJJE4AR22WiIwm/ESiaTJ0+fE2SX5ZjTM6zn3EIyDX2SVNI4fWZ6d3W9Q4x0dkqGPIA3gVYbOXt6sL9/fNu2+jUbGu776OaXXz7W3NJw/33bDZMlZr3jHX1ezrVMaC9r531ZTPpoBA9DPvN0Z//E+Nyyhtg9923r7R0cGpu5dc/WG3auUW8Nmi0m037YQnX1KFWgRNCpa//il+5Yv77W93n/uZG+8/3LV5Y3rmyQBZTMO+cS7tmOkdQCQ21OJveMahcTcmkioaGJwCa1p6aTJzu7PvzhNlmbDo+4Z7sSDMCadHTcnZxwG5tC8r0sJFOjI1MyBICgqm0dPdjb3TW2vCl+y96No5OJgcGJHTvX3vnA9nTaOHGsb3JimhPLQEsMQ8nqMBTcI7L+I8lU5vDhzo9+bHtZaeTu+7fKDFxGuU9/Yu+y5io1/sJyDfz2OQ5hEdvKlK+ZmgILFfuU6j/A01wVR3x0iaW+owT2aGDoD0vxPUUNkidhkuDuoC+mZcpMll5Ddy41lsT2gTAt+fqoHkjeZdZ4/evfpW5FP32lyi4XOVVND/k9Bge0qcVC1DyeY0ue+h64JDAsCBhXs18QnJJr3ew+N3KmZ2JNW+VvfWJvJmt1dQ5X19Q8+ujem29tP3R4/Iknjxg+jMl4AAYHl3duc+VSiagM6Osz0OjCRoav2CEytqRmcx1He/bcvKKxqfp3vnDfYz96PZPM7bhp3YMf2blqbWlqnmXc04B8NgLcocwSTCWiJ9+dX99QVlkR8Q1Z1maqgMJihEP2us21mZQsD0Ozs27fwJTBbXqZku6C3aXlRmEHqxRT+VVB0DOFVhPFJIEwKKsYDCIBnMrY4gYFSQmLEAuTSsQjmCSXc7s6ehITW5ZVFX7uM3dF7NdH+hOr17Z94Ut3t7XVMB6mZhc4KnJIZZg2F/UtiO44IhFc1VBwp+CGBAb6IOtHxscWjhzt2by5afuW1kceuf35Z46EqHPv3ds//MCOeF300LER1xs2wcYbfh96SICbAfFTGdh33bbq4c/cuWp1eTRq9J0b7jp9vqGpvrFlFfTMLDYzmzl6cCCXhQQc7VGEJhEob0pN+TOusN3xJ6ZphpR+D0xFYDn6FKTo80UZ4Szf8NMi8TAhQnYVyhcvgTaI9+7b9D9Y5qShGeQdQ4cL/o7tEOgKyAplJpmZmHTbWw3PFUePdnsZubjMVMo7ePDsXXe3OKXR0aH5xGSaI0KOCppJimd+eWL7trWNy4s/9ulde+5YU1gSXdlSnUh4T/3qaOfpIW6HuAdwAUDXyfOahmCDOnLT+/L2TCWyT/zsjZUrK1Y0V/4vf/7xvsGpinhFc0NxzmU+HJpUDYEwL4NOB65zqKHkXg2HrE9+as/mrY1uhsvtsLy+KBwyG5vin3zoTtejIdM+dXzg2//9+fQ4aF/KrWdS5REj3v1iBAuHojaufM2ZeW9yxlteay0s5LpODfs5YtlOKsVeeeXwzXuWySs7OpZcmM8JHiHYTZmfSz/71LHVaxs2rKv6wz+9984HNobDBSsaK0yTf+d7rx493m+GoyCfCj1tU8Aqd+BMpoDalgt4bCz55BNvL2u4Y9sNzX9e9vDkVLq2trK2rlBxBZnQ9tzKbodybXXgM6+w1PnkQ7ds3FiXyfFUyi0qKX/w4/dSajLD4ZiNdp9OfH3kZ/PzM3JfUcWby/ew3nEVljaxZJ1NAVvBJiYzyaQoKTJGhmbOnByyzai8jD3dE51dA00r1mSy4nzfTDotsyQHkU1O75nJ557u+u3P37T1hsZ4zYc9L1dfH6+sKjp2cPzJJw+kMh6xLZ/6EPPgfw646FkuMX1oXxvmieP9Tz918JOf2n7PPZsbV9TIz9WyoiYaM0EDQmGygPqAaY7KjeQJIuMQ4kJgiUHAU0IvSnudqrGZCdAWSwhTCRQJ9AwnwfThPVUkeftxxR/UoBo4JPNK79dkg3MlCad6V1x5YGlsDAbD4EjTQqPX7Qjfv6J0CYBRvGu1FkwHlT6jrChlAESIKKVy28sImAE9Keg/w7zbsWxZh5qYBKmMX2YGEDHhHoLwgQw+A8Mz3/3OK3/xZx+9YXtLRXFZYma2uLCobWX5TCL99JP7R89POlaB5zEbCPwKmWNim0c+sXxywGmYKLYpkysZDB0rjFLssCR8Txw8cGb/9uV33rXqU5+8ad3qpkzaq66pqKyLHTva/8ST+3Ju1jYLsJigCMMAIDjBEYJlW/c9sO22O1YtpLKC+PGKAvnaZaXFX/xPH/c9WhR1znT1/9f/+rifhgEGIZe5aBdOCAWMKbWhKSKwwA/UtC01AofQYRk8y2WSIssyT14leQVDODbD0SSGCcptW358rE/l8nes0MH93U/99OhnfnvX3tvXN9bVZubTlVXlja3FZ88mnvrV24mJWZPECHdMwwLAvIkYLYYub7b8jkUNhDkAvwt5LXA3TawPjXTKeOXlzq0bVuzc2fTFL9y1Z+da+cOGusqyCvv5Z48c2H8KOm3ozkUwfEGn24fysKAotHP32g0bymV5Ji97LFr4oQfvNElYfjR5NJi20dc3eK5rOJ32Q/IeYrdcwRsUg9hYzLcut7m5ihTonIq1p1DYZHmJLd8jAchZ+0KA2xuk6hTx7tr/X893tQ6NVtEQv9mTv0XNQ6KDwhLecGCerXpEkLUQ3zXePnCuujyUS7LuU0M868i9yT165tTQyZOD1VUlb+47N5VIW7aNyYqsmaNnOhNf/ptfPfTI9uaWirra5bJKONM19Mwvzzzz5NF0yhK2LZe33Hq9/TOptDc773p6wALIPNso3Pdqdyzy7KcfvrGmtmzd2sbxiZk3Xj8XCZtOiGSTHvZZAjKOMvBGPyQ0JTEcm8UiXtjy5fNNT04tTHBPwBAu5JgwGgelYQrdXFlfUDSKI3TJZdF27cG1IBpSCd8DVOT46Pybr3Ty7XXDgwv93aNeFpJ/N5M9fWKos2NEPvuRg72ob8dhCwPGsvDEoeGvffmZhx+5qbWtYsO6hkwqNzQw9uwz3T/44f6cG7ZkOUfFQoqf65nwuDG7kIUcU6YXUA/C8O/ZZ08WxCJ337++qq6sorJ8fCjx4otDlZWFE5MLOfkLYDdm2Zqfo627lF/L9FSqq2sM1K8A6wSOQbCNaAr7+NTNZDgzwYgQD1yq0OUKMcm1YY5YguzBxg/WRzi0t01raGDmrf3dq9oqersGhwfnKY/KBFG+6IkjvStXls3NsqOH+wRURyauMdvzyM8fOyRD4O17W5uWx+XtmJtLPvvsqcd/cKjrZMI3wvI9yxpuPOGePTsxMDib9Yi80zayFywjkpzNfvebr8oScfeetpam6lQuN9Q/2jGRq62LTI7Ocp9D3UZx1QK2TyUPFkeH/oUZr/vs2OBgmnloMilsP+cMnJ+JRELzs65BHa5wGuBiL7SnDaFXBN8GsSTgBuQ3kjJcRhEqWeD6wPGwgkeKd2zFqwG5L+3ov/Ofi7+LoY6LoDOLhEKlNkq0NTAxAil3pUNBjOt4ive18R9oWL3zugaHEG4iotxKBJ2aTA0NTU1NTvkuA5FJcNNVXmbm9Hjm3OnxkcF5P2eq1n02RQe6ZwsKU8l5HxBOwDFzXn3mTNR49sGPbKxrKK1ubMhkcsdP9f/yZyeef/ZUzregHWWIuZnM0EBieGgWlGsoAIoySXdmcnZ6kucyQLaVoWphzh0fSYyOzLgZgBfJ9TIynPzaP76Qmve2ba+tb6owbTo/k37jte7vfvuN3s6ZkBUBLiCczyqMmEr0F1eZTBpY1MlB3kCom0r2nlmQi7AwTHlYfl9eBVcmKTJkUd18WkLJWGyc5P+5SF7TrCRc2LI6okA8N0dH54YGpmYSswZW7VzkKDqxC5+MDizIqi8xnoJCh8IGn5/LnO8Zn55OuVkKosym7WXFd7/1ai5Lb97bUtVQHAlVpOfSb+w788MfHXnrUK88UqA68sXo6HRv38zEeNrgUWryrMv7zk8QEgXXHQ/HjyIyMpDqG0gkZxc0bZI4XV0zf/+V5xIzN61eW7NqTY38/tTU/BtPDH7vO2/Mj8mDVCaHnqlMbpT5gmJDGtZsYn6wf8yEYSvDpJe6IqXkiWSgSsnqFn7D53kEXdC+Vpaoi0fY5SCjBMM55MQEmlbQF+Vw9Biko9NfjDGQdwGoTt7dcJRalvirv/inowfGKS0EVQntEKl4/YT8pocTod0gIevM2TT3yGfvr2sIf/n/+UlqLgpDBRwDMSx2TbSpkw8rLqaV5QWyJhgcTmc8QE8RzkK2F6+xolFnZjo3M+Vx4cDDVdoCLnC5sgpr1dqG2urymenZzjOD46MZngkZpuOj0mw0zOOVYVmQTSWy8/MaSm6oibxwTeouayhc2d4UilnnzvaND88WF8dk1jI26qbTiDEMaKRcG6sytDj143G7qNhUc3iELcDwEGksUKslF9zEuOf6YKwJ+niQfcAiY366pNj+X/+3Tw+Ndv3tXz8TDdcIPd3HuRE4c6KNKc2Wl9OK0oiXJSPDbsY3FezHcdyq2oht0ampzMIc2DnzQBFJwHJNl8ftllV1sv5Lzic7T/VOjPiZnEMc28B0L1Yo4pURWf8kJjPpBbm9bE3cgNXuOpa3fEV5a3u9DGJdp87NJJKlJYUyGo+P57wsYi0RwM3zVr6cyy0QL49FCwBogVYWajKP8mM4Ek2nzcmJnOtpQIOCf2K/GHCZK5ri/9PvP/jsMy+89FyPYRShm46Bfu2GslNmpm9ablU8XBKJzM/6w5OuDCW4Eb3iEl5eFTKYOT6aTGdAUll1jXBVuCHHbWgqaV/TFLLM/vMj3T3jCwn5QaMMsLFcrqrSUrO0LJTNeJNTbi4HYUXlPHAjebYgJlraaxuaaucWZs+c7JXVVHFRJJnmEzI7BdcJ6NcrfWOYseIMRd78wlIWr7Q91xgbSXk+ZF22xatrQ+EIHRtLLszKvN6GETUuJaRT0qsYpi0WbRq4gD6pAs4WWE6r1lb/5X9+sLKmdHoG1E7FtauecEMoJqNcBvHw97/94n/7f58OhSpRx0ag45gIOLjXu1fvd2hF8z/fT9Y3lv/Rn3xq32uvPv7jY7ZdChqcMJajaDCsNaBMwy2tsMornHTKHx+VJ6mlJ97QqfcrSuyy0kgy609MpbMuLLKiAjNeHpZF1cRUaiHJ0IHq/2fvPQDsKK504a7qvmly0GikkVCWUBa2MAghgsEYsAU2YBxwwGDvruE5YO/6bf5tr3ffe15ne9eBxesFjMgIMMkEAwIkEFkoohxGGs1ogibe0N31nzqnqrrvnTtJmiQx16x2burbXV116oTvfJ9MGTk8NfGUIrAwFZXFjc0tW9/Z3XAo6bmFMg0My973yivYuKp4e7t3qL4j4zmwQirLYhXlEBz6DQ0dKdmjbJUVR6uqYqmUD9/NuIhyknrh6YJCNmNm+bSZ1dFYrHZfw7tbDrU2M5LFUH67LIjL9JWleEalGzBufKy8DFZUGqeZTLzI1j7cpCHeaOtw6+rbfS+C6tEe9R0SWRfBFeGcU+7R5SuWfPkvP/qf//H7V18+HIuXcUUjTkK6cF1YM+FdEybGSkoiLS3u4XoCAkijDx+MORZcUaF8q+uI7AeUbY5lZU5lZdxPi8MNyc4kqk/DD2ZS8YQ4ZXr5jFMnFhTG6g8e2bxxb3OT50m+i0hELmzY7CKlZYnGpnTTkZTs04pJhcfC4kh7s9sMryBFaOX4REmZ096Sbqp3XR92GYHa9qmycqn8ccqU8WAudu84uHM73D/wD2OYPEJYvkB+ZKzDwFYWcayK8bywyI5I50mOnWepxneOKIauLlF/MIVXxEK2CMlV5RRj6CL3aMQQ/JeGbf1/3fThc86f39IMr0W5UjOUWQfNg6X+kc2gHF+Bf+WdYrbSlLeCtARlPsaUni3dMm5TYEs84hIDJGnAUXbSUVlGwg6KeAvMocYOuQnDHZdpAtnilfbsffvSlpVCXyWqaEDxG9yW7EJH6t0Xn9vL2F6hGDfiXIqqy1IYPEsm2d69HZgsg6/bAa2Z/DcCs3P37uTePVulLyajDwdmNn7PUUSOGtLLNCsf+ozO4UOZurqkCXvCCEpGvahodGxVy9FixpZx+2XuHkE80iYwcSqslgAAgABJREFUHVwJtZHG4KKOHO7EVhzK7svjp9LO7l1daHDg9YjauAhNIbf8gsP1mcNHajmrRT8Dvhx1ImRMZbW+o81ta+0gGXzGbBGI2cOBoinX3ra19d3tm9CNlKwKjY1d+FM019US4iaCZtxzrUOHunCvDcLAkDy+harytmKTJv4rLB06CO1CTlZkhULVe5kcloxjqraESErbS8dqD7i1ok2mpqUQj0f1/JajoqmlE8WtbEtyhhrdC7jJ0VSGb9/WuWPHJvgFhJM4YGYIwYGlO97U6B1plMEuR5SDmhLkB9rx1k73jTfq33yrHttP5ZHrIKDEe8EUg5DqHaQubjS11tGjfnNLBx4zQuybrgtzrxOFY+V3CedLAF8/qJOyXleR+j0rkFFT8pZa1RNRGTDjI0pwbbgWt00svvJCbeScII1WhcFHt535vctkjT2OEV9FiwiXIlfsswZr7Ls2IXQYiYFjZBNtOOLVN3QwLBJqq6byr/WN7uEjR3FBO6jyxTra/ba2dmmiJLYhojT8bCfjw3xO7d2/E/vo5f3nvEgm0ZWcqN3Y6DYcaZOrkkcdfLH5SLrxSBeGqrgAhdXS4jW14NJjtqUFbGw7Ds7f5g0tmzdJr8rzSUzYIbU7yzK6dB4hzrGdQ75Vfzh5uM4N7dGWavYgWyBpIuKcNCzUBiR0nQtxpHDuGZl9R7peTsE3pvFUrR0Lq9izYkVrazP7D6QZ2XZLj67coaz9YAYPdiIeMkrF8OYWr7GpHa0Bx749tJ+ReDLtvrv16PbtR5miPAbzHnewC0Y6gMw5dChz8GAax9AG8+m5/qHaLot1yewduZsWrzuUPHQIi5Fyl5EjKEkZrfjRJveNV+rffLVeVQMg8LMd0phX7DrMlEvkCs4IUXco7aPNZYohTevYKApVnDCM52T4cFS4Tv/lN2JKx4G4NaSn78CuztC1I+EiW0icWhZuxoEXPQgcPRbFbgip0yP7CT30GyQyV6btmWdp3dr38oOkbQWCqlXOVfaVqNYDS9Fay5g+AI44lm1Qb6EihcxbqGRRt5Q47LBRA0ChAoaXWyJxLCJR6b7/SOcl6lJIqA1FCOYgegSQcQdduHxv43e98MvKpVLM3aggbzP0MUgumGDfMKM8I1TII/lOA0xRRIRxFjlT2o6S8ZVDYVt+7mds/K/7CNNQSEp93TsU5FZE78gF26YupPyxNhNZhIbSs1DsBCRKSJRUQSOKoH4EpvurLcNMk3saeLaqdSHPbXUwx4Ja7mjGcz/GOS3Rnr4e1Lcjhl2nRwxdMBWtqD6m+YxjWd1vRJ9gEDNxBOlt60kpCMWVQcfP99UAp4Xru8rpG7YHMr1xz/MicWoA8Ul3Fs7HReMawdZyjygExx6Dalo1tIWwfMQwq/ZFRj4ELqKQaYW/YvknPLf1EguXg50Qx5nIWjXGwnDK8WSvSqTX88yOm7XQ8r5ivuv4BqaaZ832sHykaxLLWVGmbU1Irif5YxFK3oR5TJBsRvYVcRU8c+niSOqaXNWn0BnSEy/PLVHD5YWNLRJ9ha5CmCFSbkVgpXv6FaH2AhLHCts3K99GySPGYaHtzMu7eWUNIN4y0YPmaH4DK/ppwaggqYVXpbukJLa08pojfGNpEdmFmUlHgkq9CEcgGqnYIpM8dhhRexBCWd/zOSwYUQf9Yo6ZK6n/Rg0l6ITaCrPW77Bb9BpR94ZhZH0H5GxAM2fA58lQRlzSQREKUqZDKepnBNjBjh3lJQrr2E+jLwR5P76etcKOs5rRfeRlBwy5lsjugqyAgiuUI6V/+z8rxFANBRuwMRmSB1I7IGSGK/kuWeyVkZ6DgHlbuVgCoxiJymXDWKmS4ZPcj2Slx5FkhmSoiWUJ8YokJsLGKJmHYPhtQjogSR3HphCVWfZk6IYZnjDBMevnfO/TbPZlbK3j6R9lAzZ9rBfjwEwWCgsLBDvyKCghKhUVwFO1QvXWiOM+9yG4zP4enw0sgjsuA9vnmci0IAoA2MIBl0nylXlIaqPBpI5iiqSKrWzVcTlRSmLx0fPTnpUUIip8B0XWONIMejZCeN/jfcqUCfQsj/uezTykZLMg3hV+Bp65qCZFIIHjXJMnhDWkhDUTLhEEiIzsBpEkcYqIxqLGLFWpOnnHgSqSrsjYvqTPkGUzyUDn2lbGY7oXLWhLYe/5IEWJdmEPMwV72GYvkfUS2Y4gMMGpX5qz4UM7SUvnMUo12tge6bmuSNpWCt9CKh/lgfliDOE+2KYV0YKubFH2VO8ErCLHz3hYu2MKpsLf43QZmL8mMipGmAOmqimSrIWaxIWXkW0+Pqpe+Rnhpccm2GANPhYjM75r+34G0wmSEoy7WMDBwMtRdGsaKs8RK8KoBshEosgqKQVny8WCl6T4RwVvodFH7/HxFZiekfBq8Dwj8XQ0Fi8uZQ73LEfaBmIH12VcdpIPhcRMsEzGKy4W8aiXiAuYOYVxz6dufiIKJnK6k9rBEsQPiBjSRLEbiXqFhby4VNi2bDzyVDVpzMHKmjwIhveVMhq2NmEDs51xrYJC2U+rqq3+sI0XdbBjK7kU4ZS3M56wiktEPO5aRCBucZW4YmP0o0MxJbis3nh+HBdRotAuKZOtzZ6UuRRKzEoVrNh7fpsXSLmFeHom8TwqvyWTfH40LQoK/YjjF0hD5MdwAo89BmuiWr5XVMxjMaxho5K1UFxXCKvbvMkNZcq46hdjmXhClJRFNm/Z1dyUZCyiuJWDFtCxjcG0dFIlzJs5syaWsLduPphxbXQoAk06dlKPGNMVQARQ+jGHz58/uTPVumXzYWYXhCItn5pcxEnuYFEDv/Smiopic+ZOqj1QX3eoU6IKmNCzwiJI69g6Yhp7QeAXhLwQvAZRq55XVhadO686mfI72hyZhx+mEqFPorcSmitcO+JWVSdqDx7evr3OsWOexQ3X+5gxHDLTSi1VEJ9E58875dDhI/v3HmV2dGwRdVs+undIyQIJZkI9wgj76fFVZbNmTti6ff+RpqTDI2PZ1sH0boUfd/jsU6viRdGmI64lGaEd7GhEcP7mTZnQp6VADoe9gaXjMdkgmiji5kaG4XVj+SvLsLSQW0qeKbKKdANmn/xjZbj+dcpeDYwIjZJ9XNCpE2xWqClBNIgy3uY5U2IseRXeIXw9eQzzjCn8cCy7HzzY0tkRZyI2XKMmwRU+4mOFSEfBwRqfKCjhBmRv4lFrrDg4lPbEUkgMZN2zWM6+M6aVmxMTWNm0b1x3++M/HrPssVEairlKAmGHGzqOHgEHIKZ7E7BEGIkELpQvZHeMQ9ohjidDbmqJCO5bqJV97EGbgaBSgeRP54wadbkxEO8ZE4BCbUJtk0jfJZkgtDgdeZ3due9PzoeLJVHpa2LTmY2d0GHz1w/xhfeUj0UqaIqsk6kmfXxNKbNZER6LogbFsGHcJSTCov5PR0qxgK2kfo3s8HXs9g3Rg/QlcBFJollbUl46LMSrNrYH5Tx0cCt0KsS0sqF6v8zH+mPDNjQeFipfMGZLOgpHqRwhx4WD6ALtYCGzv4eNnMjaI1qPtrquh5lGqfLERNi5ymFJzsukHP5kOHrP4Vnu/rQ7tVdPT/s8Qt7fyjmZ/lxL9lOiH0AQrI2tYfF4DCLc9s5WS7FxIJCAyHOEyJbkFt3aVHo/k7zn3+eo9n5pPZ2J1dfQdTsTSXpE3EVIcsd4IhHzLLezo506lhU9FEnd57lN3X/d6t9Pd+fpPs5RZX2dSd6TF2HKBxKVogIH+ATxeDyd7kqmXcuIQPtcsWahskOv97eXmS96PZO819In+3nesRromfRnVI3UoCCBeUmm43El9CeBzYpIRhLHRKIFdoz7DvJb+GIYIwbUZENVRrnCeWdnV1dnF2fUu+JbCgXAe74jvay74bdg3X9rsKyxGLgt7dWCkcogIwFj4XC7oCDemUqmUxnfDhjTqE6oF5HV7WR6v5berVB/rsUaiN1g/TDO/RnVXg7oCxYwhmvuQqKR9p1YNBaLpro63UxGM2/1eSZ579ExW2OWz2gcpzXuzx6X90wGNDes3mY+KWfboqiwkPKFJM+IktzyA47nqmwL0jdLmIztS7JnmNeeax050tze3i45MORdyWD527EY61YkzDuCPW14vTwVfVnzvA5kP81T3p/ufdvo5WyVYLKUdcIhrK6ujkTsQ4fqXJ+k2wQxlam70K94t6cz6Y85OH4Hqz9TMP+ZIPW2QIJVK2LbNTUTk27XoYN1UnFTRv6UBvXQCjBFJtmHgzWgM+nPqPZnP+vPmfSxXwpl3yTSMRGNTZw4oamptaW1hbSCmSD0LsnU+qyPM+lzIfTpYPVn6bF+rzWr16ky0FFVHhbRdcpEEfJGexzbxhBBApF3YUFxTXWV53kQ+Wk2sd736V68kN6fZp220DINUuzZkvR/rR3tdXWHpUybZODxJBmWiCjA2LFYsGNwsAZkwXqfQv23xgOaIf13wXv7abWIMBcTj0RramqOHm1vbG4k9l7sHuTBBtfHtLT6IaNkDfBarOO2YANaa33bQCQzVmSJTIQLJ9z3veKSkvHV4w4fPtLe0Wlzu98Gbeis8UD3uGO0xgMcz4FaYxx54fOIXzOxxvdjntTydZGcBxExzHWyU+4kpkbZRRm1uS7YNY+YyBW6EC2Oj3SKmvBasUvmOVHtUPdgEI8tqu6nd99nzNRjpEJEodl+QH7bjaVBCrYszxNOhGVgjKXWsk9KGpSi9ZkY7FzLaMpgGTYoqZIiMxL4p59yXUcQFRZNIJIXFX3dpkGJmax+DMIxjKrVn/lJ9N5SfdJFbU8hpNKyj3mZ0KzwmM/yT/5hy2B1v0zR77zgYGSwSGAI1xpHJTeZkJDiHKgmxHxYSplMSoaFtk6R5j9m9wvs/TK7u3q5r6geYUVszxAKJjKuy4mCSYYKAgkxmZG1zn9HmGUFUqWjLIPFWCCoOsIZrNwl5hO9L2MZZMGARZR2PUm+iwlgXEQIztJaXv22YHl3n0HIYIlA3kQcUwarP/tC/gPyrKfY56+2ZQpZPFhF8LbrC9jQPc5GIoM1FPWEY8tgWb3a837WE4J3peyJJGxnSp0JBXZ8vbwcJ8JD4aQk0yfTIauJWgFGUelyrp0PunsqAGd6f+1xGbFRVyBk+QupygvgBBhkvcVcNLLSHbWlyqONlKwqMcu4ZLyXA8fNEPi9Zo0GxbcfkfwVQfzI77al4IDATARq3UhWWskMQk1hXG80guUP9o+nQGj19ffwLWgCl/rId8WJ0Zhq7FyXixlTEpa26CG2GKz8VS8byJBmJ/pzJpbGLyr1JIsK7sR9T099MFwMG3LtCI9EJN/kMNKMMlVL8aX6JnrMFlHo+nSqEqClpKx7soGBdDUbQgvWfwc8z6+z/rok/bfGA81f5VlrJLxFdI2StlEZFGLTVItInb8tep3eAy0Q9jNPkneGCzZoBcIB5a+CMVSvMgriiDJAEK8cjqmkdSdw0ODl4vrMX42gNe7l1wejQIgZQrn1RSwfXAA7EpGiWih2w9FVchzDiq/OT7K4yW94AntopHmzibCMEvRciW9xz/dtjMalW0b3T+0swqLIj45m/DFqG6XtJnvU8j5lPYWWPX8l7xFy3xIG+yHIQWK0lNW8FEoIz/fUWz3+tDBoAMTkKu19fIPTjhrIo6B4cy+Bc/5rVCfFQuuHsIrcV6qUeiqEz1OI7EhccH1dXPt5LKtJxwqzY7O+RjXvZzhB0rBg6kvnwsd6IWbyVSM18QqbQc293oHfX5U/UNkxSylLoZUj95irRmXl8zAzMuqpOQJB5izenzPpa3CEIhOVQYyHOoRaF1qdCzPSwIiP4FYPh+1zZPq8Tdl/C70FcLWYWdjdNaU31n1K9H4mbMBnkv2iLMCFcqCUIdcgNoZejYX2SKBK23BSpiuVC8l3CVPXJu07PCXLDyTk6DOwc8lAwlPuM1HSC8ZsY5Vz8PnHbsFMj51gqhdfvaISZdibLzhx7rCQ6TBsh+ozloEyCRUEhEyH+qq6FpbdrtPnGunzWno9jlC4CkS4I5pFMpGhRaGcopbNIcRjPtPan52l91ma78OChctwehHpmofm40FhO64XEeufGelzX+j90qxsRUxFxMf0OmLmW5yHN5R+nwkbyJlYAzRZxjJTs4uvNYxw3zT2y0dXgoc0GY/rng50buQ/Gmlm63P0UGwCmQ4piwjBgR8CdWJGkbYqxcBtaSU1PV04NovBI8IkqztXCxc3fmyl41KuEKWjkKhPVtCEn+8emOq51pMZ+gdTinnCUiqP3EcVTGODOKPV7PN+hMpMC3Qit5NvoVAOVRfVbNF9l+wYT1UPD1O+m6Az9DzjUalgP6c6okWh1S8LkeVvcW4+MAiDTqGSQcdI39LnXHWwKFUcIxusiWsG724LM8boxSkqUzlKEABgDwe5NqhILVhoQHRiVQzaCQktSiGUuChm7oS2CJqIIHTGI9GFRg0YSjqeBg2dA8mVrfeFYTktYfYEwXQLIf5FW6sU7MZpj3JdnhSioOBleIbJV1OL5DQ95bajg6X0w3DQGApwUlZAhWcalcXVSrQosytIBX5Q7qBpFENGFAJ2+NL2kq1QVGIsO5gn6yFo7vk67sXbDaPLQnUMxo4BkDe4hpqh8i3KEWKUolKAWlY927SOyBlaRvHdJwAzWmIUrJQLyhqRB+vmTDDto+idghM+dPQ0wJqQCr0nKT+qk1E2U1kPDBj01jq6unfR2HOlm+VLRLsS5iViSEdYgVy0UKG89ntlOkJQasIWtBExTJzDClZ4CZryfrZWhLSM2BlqqRSCKqYFSSwROFiCWdYwDhidA9e3zZgSKdPIIQD1OfKD+Sok7W13sELl0ZxBZwEnK7NCBK3HcLZmreLZ8vDqDeZiqAShTow+g1/3PJWNow1A3rXsTZQd35LWkbCVrU7JslMhISeaDdq6JPE6VNLgmEEUtm37visUTMY3hQbcqnWeVWZehVrRg0hjFFYXzPV5mZ4VIpQoGlYzQYVc3QHHmVnwymW3GeNWiD93yE8vlJDJUZkWoV1TFzvIZxk+TZpwTCKQ4k7ZRAV5IVglgS38QAkDnULf9836sjHfrFmaB2FUQ4kndaKYJlW9SzpVreZ7iBraClLy6I3pnn6BCAdb1SI4z5f7HE4LnXODWXZEy6xBMq3HERSQaCZVto3JUyPOiTptsMLXY/WuQq5nT6mBUeNfhRKmqiBEviAtpWDz0gnaUXfy1I5hspuYZKHMJjhYjmN3S4wTi4MsdiPsyldhoy6rCVS116tRKKwhrl/czhXDLsNtTITVOHX+wAqlVAdx5vcecgUFwayPYYKNccdBEachm+/H4giGXIEs302rBevaJhNCG3RhZTtP8uoch4sA1UoAMwoUTmgWH6a3maCegNubChg4N3uGgh8qZE8wJ1mQrRi+RctGdsS4ryaQMNaMM9t2hDILKuU2slaMmaynqm4w5vBIxFYVt2EznQZOwLGywsI7lsDQ1NS8aXMVmAW0wF/RS1i6Zrqgz/KPqzBBmtB51d4jO56NUhcUx1L7PZllShfnglF0FtxH/AO3aRdDuKCwTAxMsWXoF/moXPsj+evcJwVqpsvIlM3kGmiiHIFuucCxR/4pLalPKIKxtHFSIZVFVSaTIBh1E1Ftu1ix4JIHS+5CoeXjBAXEIDnMSVZHmDxE0B0hP+DK5ihPf8U3Bgal7pk0Lox5nrQq4L4ZO0DrVpgcv2p9EMbRIqBK+I8+XRCVldEbJ8uXITGz3Hw4lLtS9gjOraWlNRqNxeMJkY18GtmbF5pS5B1KNL3reu3tHTDyhYWFsVg8lUozjeahyoAI2lhEJpMJw7TwLmDZl9la4/tENAGKa1C1YBBagxwE4XH0GDo7u5LJZCwWKyiQcj0wIc04ZBs+YfUc6p00JkwTy1uqPmARqIFwk7ylpcm2o4UFhcda0B5sN5AKvaZwiA9P8qEM32xVGB8DAgl+V7J2hfwsMIee8cXQQnJjcjh3sHGUqzQqmdWczu3AvlJxlHXfmM0r+ttCU+3pvJVK80mAjS+RINJ/EtnpdX1MCcdFR1CAGYEXCwoK0SzYOSnzEEx/7BGem0GaV/PiyrFtbm6JRCJyMEN75diQ9cMwaQw07keOA5NTJJNgvVPxeLygIOF5NoYEOsQZTW6rBjLqs8ciH3lHdJIOWofcSSRQ4TRnIMhC2I6z4e0NL7+y1vcyUjMa1qXteF5GkjkIq6So+Nxzz5s2c/oTjz/W3NL6sY99DMbI8zyhoX+MvD3VNUT4wHDbSBCVMZZ7ATmmKewwWapWS4kcW39RhD1fxkLdHjo+xjyH+9xzz65du+6SSy5duvR09AUhBuUj5i8L05EkiLjMlDEdJ7Jz5861a1/asmUTzMJZs2affvrSxYuXyHw/Kn0y2S6i0IDwv40bN73++qudnR0qqGUKaTd9+ozzzvsg+Geed+JaOktnZ5nCm2FwDjcunU6/8MKLr7/+2sGDh6qqxi9atGj58uXl5eXga2ICj3VDG9vvnQ1CbckY2HC5ePkbb7z+0EMPwiy67LLLbTuCiEkmhqFE2JfpYga/JkFQiMEaAfQFohW5Z7CqoZKGzNjv27f/+eefbWtvwWwQh5ASnBU0qtLdOeus5TD9lKUjx4zl7WA2pSYh8kV3YSMWtmZEXkgGlDK1CoaBFGLdDiNMjQvOc8uWjQ8++OCcOXNXrrwMPAOKOrP9uTH/IGsrNazARDBPrq2sCnP21ltvPPTQQwsXLvrYxz7OZdujrxKWY4++DJIgGBOiuyPRyNGjTWtfWrvhnQ2HD9dNnFizZMmS5ctXQJDsuv7odFhN65QvCNHNlOlCH8fJzgAT4YjuVPEV5iDcVs9tfmDfvuefez6TSYJ31djU2NbeVllRWVRUCo7UhKoJixYtns1n/+nJJ3bv3v2hD32osLCAHCxa/8xg7bBREV8k54BTckVh7ZH8XOcbshwvPdcNdsrXdseUzHwdh2UZI1Mbov0DHpEIrATxpz899fOf/wy8kPe///3kXaE74mMkOgLOMpKNMVWysQx6A7wre/PmTT//+c9raw8sXLgATOQf//jwY4898s1v/jU4ELoEIExnGgzmyy+vW7XqjokTq8EttgIQEoMbsmLFOWywAecjtUZVDdzyufSuUnfddee99943ceKEKVOm7d279+mnn3z77be/8pWvVFZWpFIuFrJNarA/XdInwd5AqUrdx0LeN+wDNnv9jdd+/ON/37p1cyKRoMBDx5JsBINa4zvTRNbv8BypmqE/EWGwS8IwXWWj6xobG9euXdvQUAdLrKOjvaG+oaSkpLy8Ei0HnzRp8sKFC1VVnpNR9a3stt0gp05REA86WghTaEBdOqQkGR8PxftVwzb8u2fP7hdeWAMh4qmnzkfPy2csW+YMjwouNdg9sCQ/+emP3nzjtU99+gtgn8GYiBBb4VjqJV89gfxOtY1w6sVgDBbRWxve+tnPfwJGJhqNEn5DtRWOlQj7FSqrapJtO0ePNt9yyy2PP/H4rJnTJ06cuHnzxieeeOKqq3Zde+0X4/G474tRODk1Nodx1cLLmb75cnpkcybIIp+q/vHAbTe5Zngzk3aXnXXWtJnTJKskY3feuer5Nc9f9Ymrzz5rhee6ESc6sabGsmUzheu6NppE4oiC3/I8V7FyYgM2uXGOozroMQdmqBN04luVtxFur1NKGGcLDZ/SuDCFoVe9gRrOTgB8DcBSyXSyXLyhoeHee+95/PHHYrGERjZk8W4M+70UuqFKcHJ1cZjgMsEmgkd/882/BY/hm9/81vLly+DTmzZt+n//7//+53/+sry8bMGCRSRqJBuCkMYMvt3W1lZWVv73//CP8VjU9Vym5HR5aWkZbKga/H4iJ5gVQ778f9h/zJ577rlVq/5w5rKzvnT9X0yYMLGlpfnuu+984IHVMERf/OJ10WhMt41mZ8Jy/z45Q3BaBaSOle7qeurpJ+++686M5xYVFWNRDkbAE2Lkt1hFJSZMzKDArYj9HOYzIfaPMJo08MhhLs2cOeumm76ZSiXj8ejLr6y75b9uWX722Vd87ConEoNPVlePR+unzCeNP8Z+Htooufw8D1a37fsKv2Xpz9CHaZEa6DS1rxD4FR0vGi0PNqd9+3bfedcdFRUV8+fPw35BA+wKPCc4TjKZfOyxR++8+86W5qbKyvGGO8Wc3phP0GuuImsRuenM439+6q677+ro6CgsKpAte9I/9nRcPzaS/RxYOaSZTObBBx9evfqBK6+84nOf/1xpaemhQ3W//c3N4GOUlZV96lOfGoUmWieAaPko2JjGK0lclgP+jy4ekjPFFWUPSRkhD6CvmV2koyP8ynHjx0+otpHv7c/PPRuJRqdPn774tCVUbPQyGYQiSDY+sCLtbe2HD9eDiYBNvaioSIdhxCMjYF42NzdnMuni4uLS0hLY/2hSghVIpVKFhYXgpTU3N4HpgQ0yFovD+aRS6dbWhnQ6XVJSWlBQgHhS3wAUOjpa8YAuHK+kpBi+orGpggg28OqlzwcB389//tN33tlw9SevhhO75+67Pc8zSXjdhDfMIQglryxDBau8LHBOHf7qq+tffPGFr3zlxosvvpiQqsuXL//KV77y//1///zCC8/PmXMqY7YnW7WJGEeCR8DBgnFbtGhhIhGnMrbvCYTHCZlVFFnV2BMzeWXpofJhJhw92nrfffcWFhZ86frrZ86ckcl4NTWTvvCFa7du3fLkk09ceOGHZs+e4/uutn3vFbFeij3CYERYd7///X//8Y8Pnf/Bc5csWfybX//WlRV/j0tmz5EfFhGm0GO6HIfEtcMwWWXw51s+94IAVchaqqbK9RUIAd8uLi6BJQYjHE9EG5uOgDHEusZpEWnKeDqdbG9vhylXUFAk2Uplv6bo7OyCwyYSMe31SgAoxHjRaAQjSbelpQVmMsxnMIlgGDGJJb0x+ANi1JaWttbWo+l0CgxgWVlpJBKBpd0MkURLEyzr9o7WI0caIpE4nJilYQZowX24Brjvv/nNr//0p8cWL1nw2Ws+ffttt7uuHwrExxyCvndTE3/AHnTLf9388B8fOnP5mUvfdxr41p7vIQbUEWJstAb2cBx77979Dz74wPz5C6677vpx48aBDwDRy4033rhp08aHH1594YUXVFVNwD2ajSrXUDtTIWOl03Kw6hxhiIpwMaqynCVEDhm7YLr/EIIvz89Ynuw+9jKudKdcD9wqWQnEXdzCUqQ8xo6d29c8v2bTpi1gMWbPngUDN2/ePEx3W2ApNmzYcN9999XW1sKWD57TsmXLrrzyqgkTqmOx2HPPPfvww3/87Gev2bRp84svrgGf6X3vO+3aa68Fc7N69eo1a15sbmqeNXvm5z73hSWLF2Pzn/QbXn1t/eoH7q87XMekMYqsWLHiYx+7oqqqynVh58BmaWmokAfKsurr6+ErN91008WXfPjRRx/xFBxJRXu+bwZrRPYX6SLJIFaWKSE85Y1HGtetW1tYXLx06elgUsFQUhl0wYKFMAtfffW1Sy+97JRTTrEUr6VwkEwjmewqKSoCV7W17eiRhiOwaZWXV1aUlxPdA0MtihPWqAomDC2KJcFnjIO7vGvXrnPPPWfKlKnptAs30XWTsP+dccaZt912++uvvzZt2lTqLnxP1UHC3hXSfNhdXV1NTY0f+9jHvnj9tdu2bvUwjYFsuUI3i4x4F2Eocx5eFkwMy9yyNOUB4USFASpYBOPTpwbWTEaUErLqpdMZDHy8VDolGQUlAD799NNPrnt57Ze/9Jdz5swFu9jYePh//ufWiTUTP/OZTzvIEL9ly9b777//6qs/uXDhAjBrT/zpiT8/8zQEmGAhyysqPn755eecd37EkWEwuGsvv/LKg6tXNzY2gL2KRKLnn3/+5ZevBM/sJz/5yVtvvdXU1HzPPfc8+aenVqw4/9prv4iwV49cLKJshYiroaF+5crLvvCFzx08VOtlOQL+GKS9H4kWi1qFIo4Di+hw/eFLLrnky1++fsfOHZpnVFCOfMxhHZDnmsmk33zzzcbGxpUrV44bV9XVlYSX0ym3pqZm+VlnPfbEE+vXv7Jy5eXE1zDaLLfQVkLTXQfJS8e0jChuXEliLjd3m/lWQOqVRRSqmcq4YitX6WVF1ETYJ3gRLPjjTzxeWVn5iauv2rd336OPPnrzzTf/7d/+bU3NBAjFXnzxhZ/+9Cdl5eVXXPHx8vLyTZs2PfbYI83NTV/72tcmTZoE333zzdcLCuI1NZNgxHft3PHY44+4bmbBvPkHDuy/5JIP1x2se/yJx377619957vfOeWUKW7Gfe7Pz/3Hr34BB//kJ68uKiwBc7N69f2dnZ1f/vJfJBIF2ESm2nlkzdATs2bN+va3vz35lBrw7cADC7UFaaLvEU3MUG5fd307zS3NO3ftnD1r1vjxVZmMT4MPF1VUVDx37rw1a8AHbQKvwvKJ9A71c32R6krCDXlpzZq1a9fu2bsXjlYzseacc887/7wLChIJL8yjdaImsGgjVOCcbdu2wsYzd94CSdymaWlgo5o9Zw5ESDvBCGbtKO8JAFZoe6C+PNmkA9Pmuuu+NH58ZVlZaTrjUiaQ53A/DU/PjsiiSLNC5kZkMVNL5FzWKQ7H5EJpArnYbMONEkL/Gx4melNX5TTTAjwBH6iwqOC11149/7wPzpw5Oxp1du7c9cwzT82cNWPlyksrKiogQF2//mVweuBGQCD0h9tvfeSxR85dce6ys5alUsmnn37m5z//GRzooosuggP/6ZmnfnvzzdOmTf/kJz9VUFDw+uuv33XX3V1dndd89tNnnnmmm8kcbWmZO/fUuafOnzFjdjC4ioALQi8PAtQbbrhx/PhxxcVFe/buzhriMW+gn4sIx9TzRDye+NKXvlw1fhzcuy1btyoGJCkY1p34eQyM1YeDBZv7rt07CgoS06fPgLEl+CBsWI7Dlyx534MPP7jt3a2XWZcZZqJRc+YBO5IkznSIad7Q3zJD00CcBSwg/RMhyGO2AfSF8bp8xSqsBRtEiCwhmeoaVznui1+8tqS4NJ124bfuumvVvn17pk+feqC29u577mpsrP/7f/iH5WcthyN86EMfKi0t/Z//+f2Zy868YtKVjkSMNnd0dFx55RXTpk0Fw7F/355HH/0jRIc33PAV6VGh8Oett9564MCBGTNm7N2z5+57VqXTXd/6679euHCh8K0LL7wQ9tSHHnpw2bKzli9fDnGmCNK78mLLysoqKspkHdNzDQMfeVemiDqid5KFWisZmFEIW0+ZPDmRSPhewKwBTysry7q62tvb22SfleR/ZUyh1vz2jvbt27c2NTVMnjx5xQoJknvxpZd+9rOfHqlvuvrqT8TgUCdkfZA09I3WZiD1cfhwPThYlRUV5m7STRxXWRGJOK2tLel0uqDAJPBZKE2rUH8n6zbDglYA+Wc8VjB16jRZz3c9mxNnB1f89spJyG0QGaIdwpBs9LLFa7p3fzg734XQ7XmW0A0klqKwURLOXL1LSHPsidGgQMmp7iPQc9qUaROqqzdv3nTeeedHo8W7du2EhVxUUrBv375x48alU13vbHxn6tQp1dXV69evv+/+ez5w+unf/vZfl5aVwQ+ceeYZ//t//+87/nDb6Uvf39XVdc+9d9mcfftv/mbW7NkQeZ1//gXwS6tXrwab+YlPfCIRj7/55lvLz1rx0Y9ehhLjRCXKjY6Oj+ZiypQpYBtc19WKydZ7J8YYBKfbUGEKKxaLT5s2AxaRm/Gk7KiSkbNy1srwxSontufqHzlyBPZ92JepF49elEDGCdUw3K1HmyEa4TwyKieGMCGhlqRSHTGOaafSHS6cWdwIm+j2EyXroWQIGflYgbY9U7hs5itudmlpykrLzz3nHIiVPdeTnum0qalUR0d7uxNxtm7dtPGdd+bMmVtYWLB3717wlmKxWE1NTSad3rp1azqdohriGWecMXFCTTrtgV1YsuS01998czqYoilTMxmvMJGYOnWq7dgtLc3wk1u2bNq5a8fi006LRCK7d+/2PL+goKhm0qTW1qNbtmw5/fTTQyhOpJnHXB1SACJPs08MNQITHiEHciTXslGPlR4fOPjJZDISsSWzjuYEJxbNoqIScK3A/lqWYoDl2A6e9tyKysriwyUrL/v4JRdfDCGvdGQvuuQXv/jlqlW3zZ4ze9lZZzElpHViLXuFVAuqOXqjSCa7wK2MRgndIkU0UctMJBIF4GDBACIrGDcbCuuW3zlZNwbKOQsEIZp2Uik3bUuxUcvX4k7YUREmyht6WjhNzkw0AcxQnSolOtXG7QtXiAhJZgyTxSeNL1u5UmH/j7wo2zCyMtX0S3AnRS6hhDkn1EycM+fUDRs2dHV2wjrduXP7ktNOg8hn48aN4EvV1R1saDh8/nnnwwC/8MLzsIXMWzC3rb21sfEIHCIai02qmfj8Cy/s3be3vr5+39594EvBcICJA9MVT8QhcGpuatq2besZZ3zAE4rigXhEsynNRHgnk+TDtm1pn1E3bluGxMEaayTM5+ZrrDKKl+hOT1UYkXALIsJlRJQfZjEcG9I+Hx5sYZ2dkgcr4iDeEpttJY2cXVxcAq+kUikIj+Px6Oh0vEkyFR0j3wrF6g6JUBGzH5eCI6pth/uqrhhYFvmvh1G/xnvKP8MblFH8le8UxAvBPbKZ7YoMvB2NgDHnmUwaLFZDXd3Rlub9e/f+8Ac/IGoiOLdOOb5WV1trKtlpSeBRbMa0aYlYvKszbdsRcCMSBYnqiRPBelgu9zwrGoVN0+7s7ACXqL6hvr2jFYzXd7/7PdtmqHtjt7W123a0qakRnI/CwiIN5xRG0wRJwTD5L8N3TnUlhKapyxixFUEScXo8YbnG4vHS0rLOzq5MOmOxQAYa/oBxs20HLpAyV74nRwj2TScS++pXb2pra5sze07EiXo+xKzWrNmnXnb55Vu3bXnl1XXvW3paNBr3xQlr7yjKsX3SfqGspG3DfT9K1k8r7/JkKglOPLhZSCTrGy5s5qvdHbMQJ3ngLbRwFVKgmDo4wzXMdcLG+BbDE3bTMlNCXMxSIno+/W0gCijyZkuhHBbwUQ116l9qWaqx4H62nI86MQ+HFQHvDJ+aZiCBRApoc4uLy2fOnLN23dqGI4diTmTPnt0XfPCCzZs27Xh3eyaZeuP11+HDpy1ZKHx3797dmXTq6aefWrfuFSRZkHiL2oO1sRgYsaa6ukOdne1bt27+znf+Seoa4aAcPdoKQX9TY1Oys8vBFxE45stuNkq0UHKWeSSLjOJRmgrN0gKZuuKpM+ZjiZaeopSAfo/MMrY72MhGKyE15G6N5a6O4WEzXlZaChM02d7JBdLky6K2D8swBY6B7xcUFCbAeo9ORmgNctWao0oZXErlRCJG6s4ioXgskHHbscJ6CUq6UGA3imRVDguJGUtpad4mlIyVRDsORcOmFYh+OpXOuF7q1Hlzl75vqYVuDUG2HceeOnWKJGXRaprETUy/ACeHnTg2no6NjbKy4g0/nEolYT9dsGDBwgWLKb3oSaC3ze3IjBkzwLPzlECy4XTQsouB3KzQKiu+FdCispFazL6aSgSZFAWJwspx444caYLYt6q6WmSQm58xuPCmppaCguKiomJZyfaUy0uw5alTpiLrFfiWGdKQ9LzMpEk1xcXFBw/WZjJuLMZOVBLzwOk3oiB+dXU1TJ76+gZkVZEUshb6ES3NLTABKioqke/HgLhFj5rpJ1v6XXfpq6ZiH7cHD9+yUcWY9l1SJGTGxwiH4EO2QygvT3XRID8JcRQIpeYkDQdEZxGH+2wYRXQFZ4YAxBE2y5LJ0XGYIUwObbzo22vjKGFjc+fOLS0peeON16uqxkOAtHjxYpiczz777I5duzZv3FhZUTlx4iQY6WQyWVhQeOYZZ1WPr3Y9DHiF7K6KxSDUnL59x3YYnsWLT5sza47Ey2FVAWyiY9szZsxEsIct21ak2baNfr32DLilR1mpQWtBZULPhtJXY3t9n5OVcEDSh6VkoR5S0opww+RHSvZx6EvtJ3BiEP+FFQHWO+O6jY1NsgtNFpXQhvuivr7e4pGysnJu264rRplpVR4PJmXAbWJcJ7GxqgdTITAOlibrDDS48s6voOoQALVCmS6dbUZtQhb6hPoMzLeystJ4vGTWzNlfuPbaaDTuui7nNkzEjo52bnMwKCrbTfUMDGyN6KtKnWnjRt1+ZaXl8XjBgvkLrr/+OuleeAJ8Ozhse3snkRRnTW5tOKlKqO+zh8NCwb3lBzR9w3q/VGdcFrzXQudg3KL5Cx948IEDB/bPnj0rg6cGLmlra+u2bVtnzZo1blwlEgbaSKwPp+91drQfqD1YOQ7+V2l5PhI3yL2is7MjnU4XFhVzm5/w9lSYSScfixYtgsnzzjsb0ulMJBLVnj3funUb3E9ksmBIk2YFrP5MvDfAJ0TeozQZyceytP6BJGjAGUVeFya0RI4a+hBnI1mQGWKm7RHpskXgATAUKRguyxkIJQuL5VEgVqbI15yBXIWhetqhhYJ1Z8+SvSnVa55bM3369AkTa2bPPhUCoQfuX/3008/sr61dftbZ8USBm8pUllfVFRy+4IKLzj57ebIrJSlzbDvZBXM5FYtFSktehShr8aIln73mc5iLkqRWbjrTlUza+PBcyS2hKpeSaEIwlU2hkEKTPFu6thVYa6HFOu2QNz72yBOomLXDdFOhUBulj0wxlgldaBGFeLDHqoQ95rBhdUWcyNx5c9N337Vl66aPfPRSJj0rQdv7G2++UViQgM1db9Zs9DmIvooOZeHP4SHfiQvXV/9lfNiYXdfLuL7rIfu6361GJnKsDK1ZnvddHB6OSvS07GVcBRs9eKmzZ8895ZQpr6xfX3vokKQk9eFlH57+8Ic/2rDhHRmmYuQK1hQsho8hNtUM4JgeZqiUlL2U3YRXZOWrvKLq5XUvS29XcLg54F0988wzP/7xj7Zv3w4+ljk5jVaV3nEk4sTjsCNHHakjy52oDX/G41F4hXM+EvcpLH5vITLGIuL14uKis1ecE48VPP30n5qbmxIJedq2zV955ZVdu3aCRa6uHg+r+NChA2+++To4YXBbtm7b+n/+z7/+/r9vSSY7i4sTEceKJaIZN/3888+1tBw9bclpsWhMDFPFZajXqLyrYMrAhVq69PR33tn4xhuvR6MObEvxePzw4foXX1wD4/P+9y8lVeNAM4STsIF4b8TevpL4Q0XLaBQGJwazPRK10e8Usbic/PCwMVEc5hMflmxktnejEwOEKfekbfIsVwT2amj/E7LULi2hD/YQGWhCTnmuudMItqApF2lWVG+1X1paduqpc7du3/7i2nVz584dN27cpEmTJkyc+PAf/9jQ2Lj09KUQFzHHfv/SpUdbj657+aWuZJePGjhtnW3/fdt/3/L737W0Hj117qmFJcXr1q1rbGkC7wpOLeNlnnzmqR/86N937dnJHR5PxCNxJ+2mJGeXrBywQNZHjyq8CPcdbAfcetjSUDqWowYr/BdHfTD/ZNflPB47w7RLLWgRwc6SUIvIoeJ7DG5CHNErTpAMHpZFdALHyD7KGCxYsHD2qXNeXPfipq0bYwUwK51YIrZz947nX3hu5syZp3/gDFSEE2zUmWtFxw6TwnUt8KDAbvjyP2msnFB6OwR40MU8kZVrNi0/odKMLJL6CsDBfC0tyJFq1A8LbOEWKMHl4GDNnDX70ks/+rvf3fxfN998+eUfLykp3bFj+x/+sAomZllZOUOmIl8tdZ2UxRKeChpQGwIBGfSaNWfuvAsv+NA999z125v/6yOXfKS4uHjTps233XYrGLLy8nLNtWqFNZ5raw8crquTv4Og0c5kJ5zDupdfhgOCAZo8eUpZWeUw2hoWaudkJqOoabngzolFi5ZcccVVq1ffW1hU9OGLPgxLGK7x9tv/cOaZy84774MYwrqPPPLIAw/cd+GFF99ww40zZkyfMGH8gw/eD4c4a/my6urqjvaONWuef/DhR84+ewX8R7muk2KRKtIKWJSf+tSndu3a9ctf/rKlpQWWZXNz80MPPXToUN1f/MVf1dTU0FxlufVt6+TuItTeklnRDIZl//69YAlsh2/evDmZStYePLR+/XqE8TmTJ59SWTkuLPQ5ggWZrLjDGoqzyfGbTHeqYsOiJKhJ9hhe9MAYqm8hAlI1QGlpGka0xvbSpR+4/4F7U6n03LnzwD0aP37CvPkL1r38/NKlZ02ePNnzJBXLBy+44Jk/P7X6wdUVFRXvX3p6JpN59rnnVz9w/xVXXllQmJi3YN655577yMMP3/K7W8DWFRQkNr6z8bbbb5s2dXpJWTG4oNOnT6kcV7HmhefnzZ9bNW5cPJaIJwpDZMLyZjY1NR44cCCTSYH/tX37ux1t7YcOHXr11fWOI9HEEydOGD++eiQy9ydM+krn/2TaEgLdffv2gQcOntbmzZs6k8mDBw++/MorqIfi1NRMBk+aoC9j3lUfNQikyC6vqLjms5/9wb//4Gc//ck1n71m4sRJ9fWH7/jDH2A0P/3pz5SUlHneqLTPjEpfagsJWRE5YxxwvUNiVVSihxnCIdQn9JSVv39XFezBoMjg0lcdyqYPBcbCU+qswYNUa8h8ffzjV7iue++9d61f/1pxcUldXd2UKVO//OW/mD59uud6WjgxSKGpH1INPOhteZaPIw5vQVQG9wA+/9BDD770wouFhUWHDzfMnj37+uv/AhwL2ZNsBUVxpDVzn332OfBFUqkueNrW3tZ69Ojq+1f/6U9Pw89UV0+48cavLVs2Hr44jFVzstZcV0KF0gjBGhZce0FB0Wc+c41ts4cefnDNmuccO9La2v6BD5zxl3/5V5NqJkvuBsaOHKmvq9tfX18HF1hVVf3Vr34NjPXjTzz26KOPgPU8evQoXM0VH7viqqs+ATuoIXM/CRwsAh37vjdv3rybbvrGLbf87kc/+lFFRXlbW3siEb/++i9ffPElCMXL2VpZdpXqZNUiNP6VbM9Bod8tv/nNrxsbG7jNk12dsO++uv7lnTu2+xJMWvzFL3555cqVmMQeMR/LkKpQrc6Gk45wm9mChWLBAJkg8v0bfsvKfre7VcslRVM6XdiVyx1fZdWzZ4jqPNUIeE/IZLO0Ukxx2HBiJGX2nDmnlpWWFxeXzZ+/MJ1OJxIJeCUWK1qy5LTS0nIa6qqq8d/61l9D0PnLX/7nhIkTM+nU0aOtF1500dVXfSICF+/bn//c52EE7r/vgT8/80xBorC+4fDcU+ded/0Xx1dVZTLp8dXVF1zwwXvvvfe73/nnCRNrPv2pa84++xzkPlVXxDnbsmXzzTffDFYC27Ik2WzDkcZ3330XLi0SgeDkM5/4xFUj7VWP6iiFEMYwXNFoZOvWbb/5zX82NDTYjg2LqKXpyKvrX9m1YwcYGdiAPv/5a1euvAx3Ln/Mx+o9LUiOBIqjr/jmTZnf/f533/uX71dWVBw92lJRPu6mb3zz7LNXUHf/qNMgJ3lQdEtgWshSGYtwIhyl3NDeHW5O6IZJIj8aF0Wl/EDt/vb2JLWnITrIVxRE6lK9PXv2gps5Y8bMcePGm/gYjBGExZ2dnYsXL45EokgXZsNEhJhp5szZVVVVsBE6Du/qSm7evBGWd2tr28SJNYsWLZky5RRMvdoHD9bu3Llj3rwFlZVVJCxYV3fowIF9EK7B1y2fM9uuOwyf2TNzxszq8dWy9mFbHR2dmzZt3LFjR3t7e03NJPj1SZMmd69BUAPIvn17DxzYL+SWK1PnYH1QDkxeRDwenzVrzrhxVbqeyPJ5Q0rTRigyQn/ChKpoNHrgwCGaKwOfB552sLgVqvdb6gcEVjF5R8fRrVu3bt8Oy9ifNm3G7Nlz4PI910VErL9r187a2gPgU86YMQtBSH5bW9u2bVt37NgJf4CzBeM/d+5csM6eoqOwjl99jFI/uJPA6fqOzaZMmZRKpfbvr4P7rlzGQXZFBTbtIN2XrZTYTYUebm5d3UHwISBYh5s4a9asmTNnxWIxV2o5kdLzUIEhzKzwMcpIJGITJ1Y3NbW0tLSS1stIOVjU5YupeJlQOXz48I4d76ZSafQbBLLbkxS8AEdm2rRZkyZNykG4D3WYEVpQBMFCcnlfQFwxZXJ1V4eX7IQV4Az3NkWISCdTXhFvbWuorW1wbEclt5in+djkFmHb1pEjjTt2bJ8wYcLkyZNVxz4uC6RZcTdtese2nfnzF+AklPkP+DCMM5g+DXfjED4dPly/ceMmsKvwLVitixcvKistdbFHx7Ht1rbWTRs37tq9B0zc5Mlg4paAK2bp7r+Ojo6dO3du3LgR7uz5558/Z84cEtq3tOJPQ0M92FXZEoQar7QW6MbbdgRC3MmTpxg9pZHLaQSLCHaKeDwyaVINBIeNjc2oyThiW6ysyVjExiYXUX19/Y4d22CoqewuYcSIutKLaCbsQWbtGLnu4a+/wRiWlJTAtDxYe7CtvQvF5UZb+KdAlhiQ+Lt37wSvoL6hoWpcFcQhM2bMwFZNFc6MKhwbcpaLGGeTJ43nPNZ2VHARE0z1vchpvGdbJsgwmdy35cXiorg8Unswx8ESloHCo/MRleVmGyYZkSDoApwFPgoqcnQqaUzfj0QkICaZTIKtwQZMBQRx3Qx8F/Y/MAWYMZITNBZzYrFoV1cK3iL3H34FPgzbNryCrAqWE5H9NfDTXsaVzgXz8YBxPKALH4ZvZTJuruimYn6RIUhUZu/CBQKms2V+Op3ChoUe7+aQOlhB2gyVIDWtjlzfsDoiUYf0HmPxWDqZ9j1XUHylLsqGq4Zxwhsk0xXwgDEBUxuNxuCmwBjCUEvraglfte6fsA6WROkZB0uYGlIsFkH10DR4mSgJl8Z+HzvMRDAUC3V0OliKokEvXx+Vv2DysCA9bSrFcnWn0xl4DLMhy3KwmCKBQ0K74lMmj+9sQwfLcobtfPzgpITtuBVViaOtDQcPZjtYwdwm35THYnEYOphvaAxtajAi4EgiEYfJ2YXodcmiJbt5wPp56sOkzCPDSwcmbTqZsmRAHJFaZJ7itYIpLrFWECpk3HTGjcaiHj50l7gF52Y7jgdve4rkIgwDkiRD2JOIr/ndEnhymaTT3ohvYKPTwcKoDK0xaalZVgTcqFhEY916W0Qjx9cw+h0sJUJFFAVC8iuB9Y7CXzB6sJ/CYMIWLxXuLE6Y91FFWEgUchFm10yuskW0tUUuskBlTzDHyoY3oBgFtkb3vC2qr6LFhmmEBiK0SeMAJJNdGj5FBJ4ce/ra9SsWZoy8ri7SiuepVMZXEvBSNhBchEzGwzBLAQjwlTSSSHBKQIBtct0OJPCxSQMETE1XVxdHTQ04se65K+T3wvXJBVqTTA8oKxPDDWfRl2elTY3rwomxCfNsSLTQ2ZmEcBOuu6ujS6UMyWYzhhflazoWiWEFf9R1JeSCcyedBq8rg82dXG0hJ25NTMk8hyBrFjVLS0tHdx9pLNKYC7GR5Cyoh7632nlUyhptmJS4tLyM1+l2iEDyxQ+Vz9jIj4/ic7SMHA2m31CIng2TewXrTlFEKBxWuJjerbyIRg9CMtftJHIZVWRkSsAVPoEazzanzhUui/6dnRldI2HSm8AgBewkOEi4bVvJlKvspwLGwrf8js5OLlcwzO2UkMl8Tj2O0qP33XQyAx4gl9VwPzxW9DcGn5kedmJbc8IZhqwxbvfsAVSJFmmR4f8wkM9kL6IsS073Lpy4GusizLfVCtPZhcUlkUymyEVJJtOEbsxX8R9F5hUZsJRelqXCeJU3lvGYCcIUUAv/v8X7OKZi0xbUkBz0nmDCStkDEYqiQnPLePFcKytLP8HGigCdoyZi4No0yJdNjw4Tun9Rg5QCo6eg9Hj0vJVv47pwZTx7T80MY6jRXRdPBfKEv5YpLN22qbp/8X9GTJJ8LKEGLUA0k9C15Unad7QDQmnpCKWjdsL5C1rmOTxGpLdG1VVVBPQ8YdvMMGoyZr0394xsOLZP/oLqS1EgS85If8EyGgIjOVCBRpRZtZw5DkV/rB/rtBd8Vd7lZuWuPhwReuZLavvwu92PhpkNX/NeEIBCmEIBD6ye0OOtfH0ZlGu9QPq0VrSzDNZUNbuYNmOlzoMZKVlSER5TQFvhCZdL6iBwrjxM9nS/6FAUJ7JmiDIgvn6TS7bSk1g86riiFQWRyVpExCurvVOhzdLY6PXtYanCqxHhVVUvUluxaJ5Ly8UURny0TUnfgmhGwjS5I4IAFdeX4wk3ZGeUbDOuNINQz2NTNFJCs2kH9tv4QGgv8iuKZ0lHa0oe4+4YXqKsJLbKmJlf1zbLuIb4RPi65JWvM1ZYwTH6eeuPyzEfyBFYt++G/2JmhAWRoIbRxyxLU88kXqn7ifCDKoVNbDdSztsP/JMTD+duoMWKjkgnaDBDKd+TPB1CUV5hAZENyj09hjkwsl57TgSuCtqCdT8fZpkkF3FNjdicIEfZyoVay+qBaw1XWy/Too0WEXGRUr7OrfV0f8noaZPkMwrjhLFUSrRVMd3qLsXQpDbOZUCbpMmWTAokrGyjXzGZE5LKyp1podBXWN0drHCMGthHITTX4OjIHh27aR3kFU3sbPkWNTNbU+gDIycG0vNPjyYXRZjhQmUqFvR4K3o2S/XdiRzWkVFz+gJDG0uyznvSCbQDn8RijtRVUVq5dD1yQ/IkdFhkX4vo7mllz/TsJp1g1fbphVikEIhNmJaqhgVKfDzXhAVxlmF6MT+KsYPcXIUmsgqfMGOhVsfBassXRkxVGB5kMRhzOKRIrB1QReuuW3/RgXBR/oJR5TRkRyl7pW6Dw7mvCBvJhfXQjPNBgnsLIyXM8vBBd7c1g7LAuze2IouuUoVDvRXaz1QqdJitish2BsQgzYrjHzLEq2lnSqc0NDFYdogzAtsAhnfGnTHyqbKFweOhckxO8qk/XYTd3Y7eughpBmEgifj/kDaoilrznDwlkkI1DysrEMSEmKJ41j6OCI7HmBW4tqo2Su1IXGTDfAzvgrIGgTIuxcW6kyM893iQ8RVaSt5UN7XDJRQ9TMhVHNG9S5c4rFDHRXcY03BOV7Ik3BRtWFZecFS4LsZHz3KoxSj0rtT+RqeKwYNverz0nk39ATjJBR+tAT8nkVfh6Qo7UgxLQJZUew1FiSRIiCTsvprOUqDQpIfCtpgZthdcjzxI+JH0vdbG7DU0YYo22kMuI2nVkKEP5XrCuRwDONXeYcAgr6m60LOymG2rPkcqOGo8fs48083LxxESC7pMSwkmBBTJNNJZriE7Dh+LGWC+KefT+iFeMdNYkMv0SkArdL+kcg46pL7CwyrK5hDZ2XE9PCW+YaEKJOmGU1sfF4F0tnKLs72uQQ6G0M/iJnmqBYTFkP1o/lmBN8dXuQ/16wTD59kh7zBuViw0CCK8eDS/Ey0iFtZjGE5PFE0tV+BynLe0vogflWHXGx+2QcN42pKICunBhLI/WLuwLD8k1BoyelnGyg4UmUwWiomwN2MZ0iwVxDNOtXtG+GTk1Qg5dwYiRwsZNx2OeXvLlkEUTS9mtAq6r+0w8WGWxkZAi4E+jZL0ECPmWzGhxfgFcWTgRksXxbqZ1uHKbJpFpAU3RIinQ8t+6rz68J1YblSPe5/SRFI7hWrOFaOSq1910TLGuvvPFD/glA7EyEeRe8VM5sJm3EMWD6NzYzndZgCzQsVjZjNywHgQDuImkZu0Zf1LMvTxKcI+9PBV1vPPqVS7KQXR8xByYqgmBUXYSHxNtSnZ5adkDwM6QnZMsoa9f16EPeN8Dzs8O7NftYciZiKzLwFi2OkDe6E8Q2akZEWohsyGLD2D/Q6WGKGaoNnSqGMLuwlwSrBgNoZnBWMjmMk6pmk3BNtCkFNWaSEhG4aED9ZKas/bNnotciD5sGylLJujXUMTsFRHTWw8a183EECrd5PYg0Wzu3/AzruSe3gxZDODkM4+7ls6ssVBLd0jCM5PdozbXAeYOsxmI3uq9qhZR2HZunCoT2gZhhUPrFnYbKi3xUEfydGNAkT4OJdLkKvRRv471cvnO8IPsuhU5dEJZMmPUFlRXlJcTM2FGueSs4G9tx++qo7BtE3EY7bDJ06oFrmCQojOO7nHQRiOa2FzG4YiGnUmT6oxnKmBa3HS00Rr4TpBbAjRaHlZWUGikLFcXW2fBe0x79kHNWSp0lgg3mDjG57wPUlaEHG6pJqWyRANdYnQJJpQGl/hOUVxcaHFamxGbU1+iBbYHzOEQ5XWhKkgF1GktLQkFo1lLyKm6N3GhiurZUHPedKbRMQNDB0Y5PHjKkrL3NGKuGUnqC2UFBLMSiTiyaSplChUg6RJCu9+OHuxQVnWEmU2oiCRcCNeqBnCFKF9a6w/ghwshWTyJdU0Z4WFBQSGMJ1uCE0S7OTux1FE/gosFnG4pNwuLGBWkKYhZIewTva2JGGiapnslkxgLIZSJCLfrBjbSVGvFPEAGtfCDW2QZXmcycQF4hM4y/Krskc8z7/dn1r53rXyPSUYqDC4CG4JcPWKC/OSxo0FnINvTmRlVrIny9hV6vrJTDBnVs4iEkGF4D2+jATLcTUNwSzsR5IezWbxRDTiR8bm6iC7AJawLe5EHNGVVgkEoW29xeD1YLw9iRqQ5Em+L6T8scW6pJi7ywnSr4CxBDX1tNeZV8nr2LzR7t/tfvAcO8h6fdofvzjvz+W9ijyHUkoYjLm+W1RYZNt2e0ebpVEViIXUJDXMt3ITFr0cP+dMBuTm9ykP0vsgW/370exKighvMsK2i1zPbW/vtB1uulN1s9+ApsqAz6R/T495VLvnS7pPfrr3UjeX27zYKU6lulKpFFeU38y0Hmh/gvV6tlavy6Gn+zugeLH3a+nPifX/ZuU5guo9EZQKolniqGQ78yJONBEv4A6T8ctw0jQqnLftC9+2JbIznU53dXQh5Y32wFQ+1g+h74fagvX+gbzLPO/9PYa1NqBr6c8M6eVMTIJQ3vLSktJ0OtXV1cWYau0MmpRUxwY/Tgs2EGucYwoGlJg5trUm+pHv6e5gKbSf7/vxeKzAKehMdroZV9Md97kvDLU1Hro9brBGtU9rbJr9eXFhocN5BGICsAk2eVnyA6ZEGHxDdaPInDwhl/1QQOkbZ1kRMfQWTR5T7J8bR1o9Pz2GD1i9fqCfga9xXclzkAhCW4qNCMOeICgXiCaYOh+Zz/o6oBhgkN3PYewzpj+GUc16EfMLmhAVszIe6UJw1XmrUnrYsq5ofUJ9Yv2+O32fSb+fHvOo9pQpoeUjU5m+TO5ihphbYYkMoaYMoXo4jQAXXAxgwveZuen/0hMDHJPjvxE9fJhZodYZn3xTpJ9mqlPbUBx4lkJC5R6Ehy6hJ3ar8FdYX36D6dgTZAN9oVHDWA3E/ImvuGEED9GMDYMFEwO3YGLglnAQz2SgC82iTgvdCi2V0yBaC4SbqF+ZLA3Zk4GZ1mOY4b3b0mMY1UFfa+R2emiBONMUzCSTx5HVFlsi5Fs8a+MWA9m4h3RUB3GPGyILlvcp01R31EKAu77QRHdMOFKaNGRZNM+KJ/VNVR2XogVODDpC2RQmhgytfKI8qJ8B2f1ZTtzANBG1fFtOaX4ylwdxhjE1rdQa970Qph3phFC6zaKs3kkJSVNNXrLCLvvKbRHQlSlC56ALiYIU2x9bREIYbmPDr8sCVKjCkHs+ulyE18oNgv1+Z1DyRq49bYGKrgpCTZt5zIoY0Rt9kp7FKEHLBRvj4xzkWeH70s9GvglpYAMNhqAtwhKKQHtswAh8IYi5lvqmlQaiIJZO7bGq4G5syAZv6H2SThLYOu5KqRzE7DPCYHEe9gyYNitIkmRprQgVQ2Knv6CW5TFtcLMXcJzeir2ejLOKay2TsBEnv0nk+H+0sLF/XMInCKBmmW6xk38oNI8vN8wHasPGpigixyYTyMbWEC0hERojriS7BDNUKhTZceIdyR41McAMSv+TKIbWnlKOMkaSW5WgBmpOYjq6RDh2Kwc/VsGg1Q64MAwvks9CpnVs5LX5ZViwJnSasLimSZMW2Pdtx2Ga8zaXaXjscfz5BcXsn4VVp4DRkSiZcPpFMFuqmDKHK9CIFcg4sGOwUyf/3qDjA8MOoRKwjGcHxCf3+iYoWgBiV2gJPeWMV/EemDlh4Tqm0dI8eCVYRmPdZ1aAv8JchBAh54YynySBZLOIDAb5sG0OipfXkj9t28hhyzQXqHK9DDvWmDEc9ChFsYsJXf0KYYzeW6a1/+ZXLSJNHasZWYXptGRZtP9jj8GbrDRfwZkFR1ZwM9yW1M4Rfo7X5FmEIpIhWkhShTQYmL6dObTUI4iIzDnC8CDlFRGg5SOFq1zvJpy1Qnx0wc/psnifVzEUiEhrIAPbO7qzp0EWLJuAIWz8mC6VWbkqE8eDM7X6jenupXV/QKPaz7OFW00gRytLi9pEKSIkaMREN+bVAbVl9H8W9bIwjw1nmndwBjSqNCwepoLIsBDLfMjTskwaCfkSSeVh+CJTcxpEy2yJkE5TGO+l7/WJZMH6bY1HoG8JKWaNM61B2SJUZBeGe4zAcKzfdkP0+6IG0SZYQ9u3xDxmeqqCQjvLK5vZc4gynNZ40Pe4gXbYiAH2LfV8KJKOEVqdTw+wQMStIzx1GD+wK4jVIilgrgyLqXYJ5HjPJ8Zk9frK0CEig9MODYffDe46WKeqTapqgFIKqSY1qAWomf4MswZA1ZL3THI8M7/XVOIx4C5zHjlDlzOqVr5BFqFQXkHQ6D+VzWM99TENCBHZy5n053r97BMY0DD2/ysBpywThtVZWIGSpqCeBy361P04fTrix4lWzvtz4jiWnt/DuuvXygqmhY6uhekKoAQSkfLJh4UV1uHyr5QCgKQTl62ECPjhllJCsBS6lRRJTkgL1m9r7B8HR9GxXQsROAWk9zjcvhU2rcEi6r4Rin6MqujHWjv+hdPLmRyDxe7Z/NJWpMvqAWGlymkZCktf9LYb9ed6B8saH4NpHZC3IPptsgZkwXqIwxjV+6SR4sL3NDCIMc9RLMUKzw5GxBPyRR/lPsgl822LCw2FkHaPM0LKhXCp2R6f0QbM0Q/I50caaI5E7IjgtoXUnUPMciwA8egPCP0iQ50JYWyf/g3f6Fzk4RbMZa5T0HUWuAU9+sgItNLsh0yhuwVTiF1FasHMdsuPKUTICXBZd6OQmxIKiOaM6yNCnlB//P2ctqy8XVfhM5FDIQNOI3OGJLY4OEKEWUHA5fJZzz3t3edu1pnQgLNsnu3gCDrBIEKiu4HRsUx9J08QiYwAvZtarq+393BH/bzqGg0QuHJAsmYFjnMoVsl7f/uffOpbMKTHNaiFGoUIoC45OMt8a6F7HoKFTG3+uZrvCHagMMOoh1DI1nK6n8wTKs+nJZeZNWTUBlmjKrkAmdrJKXBC0XTV/ynlZ+VU5nr+M9ZDwkYE2TCrm/py+L4IpUZhhTQB1Wz2WW/0cSFfXVvI7ss88O/zqeVqsJvKRWcbgfANtY7Vgg1EY18oKyqUsKMQGopBCZjsRcRYLnmx6GbBeM9nwgZ0LfpGEKsyN33B4YiBhbL6WNkQJnGtd6jjSdjkPX+biiRMs8BYRo2J+XoAlRXmgglmHVPCpp/7woDTYEzksxtZ+FU95Cx8f/vDYjOgYezdguU5vnL2lT6ej9GYzq6gzXdsO0u8WiCZPlyLLXs6URwINaE0/ZUvDaIq7gZnrM2e+oRhfgtuZI5KK1JzCqPvzvT+qOYfVzJYAZBF6MCFmadq62TcmA4RYF+0iCkppRpdLmYOhSdly593fepuZaTEIHyNA2Gs59UYuvfcZ0o70deSQj4LVzaYFRKx6P2Aff2cWkvdcgCk/SpVyXyiSOBI1i8CgWc6XhjCcgw/3eOZZKedtSi/1KM0MaaK9QXj+aZ1n6WTkPnSexmnqenJHKyNejS+wnhx8vTCs870doZdM6H0WWgq9Bmt2D2cNuu2WRmPwQ9Mkp6OiMdSsysf06jd141gPQ9g7z5i4D5ZOuyCEYMJI38SWRwVMYvInvwi71rI+3P9UXnJdXRY+NTCaS0UKEcudQRCOSSa0vuqZD0QMbB+b7FM3zncQjFphRKIJi2JHaJMKE1qpvACpuExNOV0UZiFVZJCQC5C6BlksioTBAkxrdFjmyglb7ErmEUqqmL5lzkdAdGRrudbPglbcXl5RmU3ay2zvtbjoJiRHqYrWeuQoJQigpHTQ+9LOVX44z2TPo9gZqqR4Jebhuwg8+R8QZSgFE1UCQvNOGVc5uzWezZ4wyiC38iOqVAUWOj8n4W2sbtoOuv3bw3KMHZ7StkH0zcsbN3AK3vwOQvmc77Jyfoyj8e4qfVgwXL1HqjoigrrUh2OMYfcXAoInJDMg/T0OZYOVT1Rz2u1S2J0BMfYvn37li1bPCm5J2wHHDQmfRQUPy0sLFy0aNGECeNffe3Vtrb2s5eviEZjvpEetUyGCLNgvjCi7r7QcEaV71T+ksouKHV7dSWm0iyYZlqiPZMxI3psJIaNRjRGn4EAJwxHZ2fHOxvf2fD2242NTSWlpfPnz1+8aHF5eTlDbqtwU0CPGUkWSk2FIhds6WC6sjoUBYyghEGhBUzEvfv2wrXs2LGjsKho0cIFCxcuKiouhv3TrOoBVSsHekIid2ZrXk1T1jnW39ZTgvmmswuFHw/U1m54Z8O2bdsSsfgCvF64d67rKrggiZhoOuOuZNeWLZtrD9YKpZBtEYNZ1InMX7BwxozpnpaQPL7bonNCIs/2Rh24hrmiB29gKO6NYLq/QDPa+WANag8efPvtt2EA44nEwgXwmFdRWeG5OtrCNA3TkMuhofgUPaj2MUJi4f84wR25n3MOg8Uc2JOhxXmLsC/ULTfNjTaRztPJ1dc3vP32W52dXfLucjCHXDJKeD5lABfMXzBj5gxaqcLM5HCcGYiu0/9nKk7UQ+NrtXKVj6CuboPZ0PEnTXPpLfm+0KFoWDeXsCEQTmfS6T1796xf/+rB2gOO48ycOet973vfpEmTbc49zzeZSjZyIgNaYZBbeZwG7CLkYQ3C4TxPs4hIicGHuO7Qobq33n5769at8Xh8AWwhC+ZWjatyvaBZA2kkYfL6zBoqSgmhoGm5MmRyD/O5ZThZjY89mqjvkTtKaKONW7PNM25m7Utr39327ocvvnjKlCmWoqMTKj4YNQ+hiPs4sj5K2kPyBrQrYjueS0kw34ia4l4pA9tAnpeWnS+beCKRyOuvv37Lf92cTCfBX+voaE+lUgUFRTC9Mhl3Us2kv/mbb50ypebWW3+/e/feJUuWVBUk/DSynMkF7KGwjCACxlCbg4WEcpxYGUM1ilCEL7LFloi7knYLswEHxwwF3qHJBBYEBflhPHhjU+Nvb/71Y48+Cl5IYWHRkSMNra2tHzz/gq997evTp0/v8y4yFXiaVInIHncudPI+i9Bn8GyQwTxhXM/WrnvpP37xy6bGptLyslQqueqO2y+66KK/uuErleXjhkV+fABZqGMYCqEdftxgfLh9MAl/8bNf1B46WFFRnk6n77jzjvPOO/er/+tr1dUTSHUfcYQ678B4c3PTzTf/dsOGtyEGMJPE9dyykrIbb/z67NmzkIvvePWfWFAQ7R4+ySQnLTEmQm2Gw3BvWNCXJxDiBGsN3IJf/PyXe/ftI6/07rtXnXHGB77+9a/V1EyRBk8Y6kwx/NPGJMwYUiOiYg0sXlOi6BNC0R1qY/UMGRHZ5QA/qBRIL4qTqyl8k7bXeHwpbc737N5zyy031x0+DLtCKpkCexiLJwoSBZhnsW78ylenTZ8m06u6q0uTogVWi26QmqtaXs+sWXPL1CrQN0SjLyQjNEcEyOHDh99688258+ZNnTqVDB1jVtgeQnQNK+WB++///f/8PplMVVWNa2trq6urmz179k033QTBsMxo+v7IeldWuA0kn88sgqYQdsz25BgjSGZcTxmxgHu6afOmn/70pzt27KqsqPQ8984773j/+0/71re+NfWUaa4XylEIfzhGTDOEGRHsvHvTcDulA4yiYVRhuJ586on/+3/+LwQqp5122rRpU11XsFEpK6YRAKpkInOXQjk56DhxJ+AXENR2wHTfYagtVr0ov5XJZCDiueHGGz3fhQV5//33vfTSuo9+dOUZHzgLzDSYllOmTIG13dTUDAseRsp2mJAlCLl0UdNb0XL6kp+To6230fXxcgba/AsfIOcstGGQPLiK/+hvekppOhF6wCvGb6NPwt8ZN33HHXesWrXqwgsvvOaaa6qrq3fv3vXYY48/8sij8EPf//6/lpaWhn8x76TuLRxRCX2WWxsd7FCPChRbtmz50Y9+2NWZ/OpXv7poyWKwm3fdtWrVnatiiej/uuHr8USC6mijY46yY/US5Nl7vh+J8u3bd/zoRz9qqGv4yo03nH766e0dbatXP3DPPffYduTbf/NtcKF0Okro+866urr27d/3gTPOuOTii2EO6whDxGLxBQvmwSuWNRjqmiwcV3cz/azviTNUcXcIPQZOy969e372s5+Bc/BXf3XDsmXLuro6//jow7ffdhuET9/+m78tLi4xO7rJCg/jBAlKmSado+xRACBi+bqYWbeyaU+fsbJ7iKz832Wkii9Jco2WBRU1VUpf+FOmTrn2i9d1dLTF44nXXnvt1ltvPXfJaZdeemk0GoVPL1q0hMwXgvQVep9iPJqiYUcKr9fjtgNfhG8RwN4iVnvlI2PuH1w5ZtPr5gZFo7HNmzb/v3//wTe+/o1p06bh14XxrjTtJF/z/Jqf/vyn1eOrpaFYtKixsXHNmjV33XXX9773vZ/+5GdLFi9JByHuaDURLAcAxIZvVoampePY+w/s//GPf7x58+Ybb/jqihUrksnkY48/+rvf/Re89fd/908V5ZWe8HSaYKgXUXZKj3WrtIzuhxmfWCzW0NBw9z0wJe9sbDxSWlIGMTAb5YqtSq9et+TomglNFyeo+DNh9hhh5QddSPZiz501a9acOXOQQEts2bL5zTffXrbs7E9cdRU4WBRjybYb20HLYsOT9vYOx3aisSgZGmlFPB/ehCPA087OTvhiQUEBxwdpZDDDk8Z5KpWioSeTJIX/8BGPx/WsVbfHwQMmIZBMpWGXtXkEcWci5y7CMbdv3/3Qww8tXrz4H//xH8G7gtenT59++ukfaGxseurpp6+++pPnnnvuaL6vmuwE0zCu9+ijj+7etevf/u3fPvqRy8ifqKmZcPDgwdtvu/0jl1y2eOGiVO/O4gnzkAV5uN6nnnpq46Z3/vmfvnPVVVcxJEk65ZTJhw7V3XXXHSs/+tFly84iaYiwXfNceM0/fenSK664QrtTKl4XrkAhFOskfpjKOwwgxIjPPvvnl19++e/+7u+uvvpq3Iz9yadMOtLQ8NBDD156yUeWL19BI2NyhyO1FlTfM0cSFMbC8KTs7aNPvWerL52T7t9VDrogCnnGvLD2poIzsOrq8R/9yEfhpQJ83HffffPnz4dpmUgkyND5UjhfTjAYZxPp0R/hYJL8YC6dMTlX29rb4fOJeIEKC6VOrAVvkuUGh9h1M2gzsb9RWlw/7aba2lpdLwM/K7KdDzKbzc3NDz30sPDZP/3jP5+5bJk0etNmnHHGGWAqv/e97z777LPz5s0Ph6Njj26zURV/YNjBgX7yySf//Odn/v7v//Gaaz4Dr8D706ZPbWlpuueeuy/60MUf/vAlYfszgovohLBOlLvasGHDD//9h6+9sf7jH/94Z2fXurXrwmmR0T+AWU6T7CbwHYtlo+5NQV/0BvqVvpRFaSQKyHwPbYmK0jTMpLb2wJ13rnr2mWfBxzp7xYrrrrsONkL4oJT2Ztbu3btXrVr12muvg481bty4y1ZedvnllycKEhBGP/3kU48+/th1X7wO4oPVDzwAH7jgwguuueazBQWJxx9/YvXqB5qamsE0fO7zn5s1cxYmJKRt2rFzx+1/uP3tt95OpZLjx1dfecUnLrroIrB0ah+l4iduq+CEgR1cduYZVVVVlM8Ac1ZWVr5o4eL1L6/ftWsXOFijelUoKjm5X+7fv3/t2rXgIJ55xpnkv8JNqJ4w4YILLnjppZceeeSRuXPnwtV5J7iP5SvwPq+rO/TSSy9OnDDxnBXnwFOYinB74T5e+KELn37m6YcefnDxktPisZhy99FHh69nMi7sO4lEAbze3t4OowGvg9cuM9LvDbENCsEhsDl08OCzzz5XWVm54pxzotFIOp2B6y8pKb3wwgufeOKJp59+ZunSD8DIGB9rRJdAlqsw7LzdQoSwhT2gZxkYNPgY+P1hrxSxgAwMESxA2Dauvfa6mTNmgI060nDkzlWrIKi74sorMd0uIa133333lVdcsXDRonQmCWsZ4vf9+/fBkeeeuuALX/gcxIHEcA+PHdt33HrrrZs3b4QYcsLEmquuvPLiiy/u6ur653/+p9dee+3IkYbf/e6WRx75I5iv66//EmJJAwsGkSqY2ctXXjb31LngkpFBKIwXgH0YN278zh074TjFxcXmKsYeeWoGuIgczg7WwiJ6try84oILPgihfldXEt4tLCi46KIPP/zQQ7C+IEoBz9WEKJzzEV5BJ4KbBStl46aN3/j6N6+86uO/+vWvqC5FS2k0bsciJw2nQi/CZZM77mR/3DMN2aKX7AlOF9Rcs3Sm2lQiFL8Z/NvW1nbvvfc2NDQsXLzw3Xe3/+GO248ePfoP//APFZXl8PVNmzb+y7/8y4ED+z/4wQ/CNH3jjTf+/Yc/OFRXe8MNNxQXF+3Zt/vRRx+Jx2NtbUenTDtl27Ztv/7Vf3i+N2fO7If/+OC4qspkquu22/+nqbnxO9/9TmVFBfz066+/9v3vfw8cLzgg7Bbr16//l+9/t7HpyBc+f62uJ5pZ7oOJ+d53vxePR6lwaSkYhFd3+BD8Bc7KCRJzyFiqtra2rq7u/PPPLygsNMA1cLLALpeXl7+09sVvZL4BJuBEt20UW0MQf/DgwT179p7xgTOKigpNChOC/gXz5k2cOGHtunXJrq6Ezm4y/UhnUpyxTDrz5z//+bnnngOvtKKi4uyzl5911vLxVeN1eCpOekm5iBOFAdyxY8eiRYvKy8o9BceWG+60adNqJk5Yv/6VdDpNCRgxsrpGBvQqOT9kLppbw3l/fEIy0y/6IvfUWHZmQlpFyw76R1XlLgrx2/333798+fIZM6bZ3N6+Y9uqO++YM+fUSy69tLS0FDYP8KjefPPNq6++GuzPvffe9x//8cuampoLLrgQ7OeaNWve3vDGv/3bvy3DhNO6dS//679+H9wg8J/ASL788ivf/e53waiuXLmyoKAA4lL4UfCMYbHD37pdUZg9Hib8N77xDVhH8GEZYCDyGt5sbm5ua2udMm1qPJ4Y86H683Ci0b3797377rtLliyBUQXfWloniVv2Jk2aNHXaVLihHR0dRUVFBsdiajIjsKeIIBk8mq0brJTFixb96le/+v/ZexM4qaozb/icc29VV/VK03Sz2zTQ7NKALAqKEDXinqhZxuT7shh1jDNq9sXJ/OabyftmMzE6OiYxM1k0cUzUqNGMqKyigCgqi4BCswnI1vtWVfee8z1nvbfWrmbpLpx7JoPdVdW3zj33nOf5P9v/mT17Viwec7kTR0WcCtM74CeNQqazF5WFhVTWzNtpyFqWxvINg/yUVn5jEit2I+zzP2sER/RfMTCnurq6vv3tb9fW1ra0tAKcev6F56+97uOLFl0IR/qhhx7asOG1u+/+6cc//nEQQ01NTf/2b//2hz/84ZxzzrnqqqtAQLS1tWzevAn+asaMGaASbr75JhA9l19+OSCwuXPntrW1/vM///MTT/z5M5+5YdSiRaAv4cEADvv3f79/yZIlGBPAHN/5znceeujX58yaDdfs6enx+yPhG6PFUe7C17EkQCpb33ln3bp1I0eOmDZtGjtDWuYRjFpaW9ra2sAmNq5U7kp0aU1NTWlJyZHDH/R0x0Ckfih8MHyHdXR0wv0OqR5i8XRIpmMurLqmZlBFRWPjbvOsvdRgxpyE097R/tifHoNjDIKvqqoKdssLL7xwySWX3H7H7WNq6xJx90Pswze0VphgUMlg9gwdWhMpKmK6xAQj7sEFlb9v/wFYwLKyMj90GMCJy6xv6ezBmPSvv190s4AJWHwl/BjLy6fwbGtkeLqMWrVte9KkSWDngGl+4YUXwvKCVt67b0+4KLx//75Bg6bHYrH169fX1Y0ZO3bs5i1bfvazu0eMGHnvvfdKGw+sxH/8x3/8xS9+MWXKFEC9DzxwPwi6Bx98EC4FEwLL6lvf+ha8O3PmTEBaYM2CCP30pz997bXXpuRgSdUOkwE0IOMPogCehUPho0ePLVu2DCY7Z/ZskBI9Pd0Bfur1EBE4RM0tx44dGz58OABayYMrdWV5eTnIlq1btnV1d3ld3gtAsPiTCAvWhJ44aVLItsHYc5yEPOzYT3tYePJZ9LuhKjGQCK4b7Mu9pj50pbmiFB+LL3QoS5SZrkn0gSpm4oleuqghtiovH3TZZZeBpICFGzZs6Pz557W1Nre2toCB9dZbb61cuXLy5MkAfUBwAN4qKSkBYAQ/gEyBV0TqVQ+YfVOnTgVhMWzYsAULeBZhdXX1ggUL4N1Ro0bPmTMXTAdAZvBdYDHAH06f3jBz5ozOzg74Fvjk4sWLd+/e/cbrryecBFEN2U0JD3LioGoT8gAAngNA9osH/+PokSOf//wXQA76kyQK3Gfd0w0L0yOT2DwQiRHoyKJIuCcW6+hoY2d4CypfM32ert7V1Qn3axHLX80AsCkajYLGgqdvtqi5cUDSsXhPa0vr5z//RYD1P/7Rj3/+83s+9alPPf30U7/5zW/hmqZs4kM8ZEwZdktHR0c0WixawIpNJHYOrF60uDgWj7e1txmtMIBr4pEGMQ/U9L/xz7y2OLqtheiTr2u0VPWM8HJR4u1TPmDXjRo1CgTdhg0bwNoEw2Dbtm11dWMB4rz51puWRQ4fPrx3794pU6aCCPrbs88B8AXwBGobQDB8+Oyzz541a9b69et2796zceNGEJsgMMH8g8cHHwCbCkTczp0733jjDfjzoqIi7qEMhUDA2naIpcUwZOBSCj2YMOCteCz22GOPLV36/Cc/+SmwYxOJOAu6+PciiOS/BPBTR0c7qC1R9SbqrjChFA5RpLS0pCfe09HekWLjDYj7ihima4wLNhXCmAH8yAj0j3QRkglCeCK9kLYoU9xmwsSSVhU3xFw1ScJgczh+BxdlmtJdJFQx7cYSqX3I49PAmosK+/ad8ZuJ30DB19fXS9dfyA5FiqKwCQE2wdnet2/fkSNHQCJ8//vfl7mfsE0BXcEnAeh0dnbKcF5DQwPoUVB+8O01NTVgfo0bN05aYDLJHTQCCBr4GS4oSo4P33XXP3HSEUpB0ICFB7bFvvf3d3d1S6+4SXzG2KvmCofD8Mmf/OQnL7300i23/P3VV18NU4KZaExW6CoTlhFuARYNHh4JSW8qn7e0U0OhcIQXjaMz2j3j5YoiFokUwZMHdeW6Dty4sRHhkQHgho0ULY7Ke+VVEZyWhMGTnzBh4vf/9f/ALpo5a5Zl8W0/uKryxhtv3Lx58/Jly6792HWzZp0Dm/PDbn9TOP7hojAoBrGArqLtEm/JYVtWSXGJPwV7QCSaV5ui2DZhfk7/hgh1YzEuM6lg6pMSn6oOYqZBhQjJq75ZOHn+DFUNrp4yeervH/798ePHATNt3779iiuu2LJ1y6ZNm2ADb9z4BtiTsCdh677zzjtwhF955ZXGxkaZCAWCCEAVvLV///4DB94HXLVnz55vf/vbUlvD5ge5B5+EF+EtCfJEZr0QdIikLJY/UAXHBKTiHx555N/vv2/x4o/cdttt5eXlp4QK7kNtnxheIQpSqKSkFKQuPEQUKuKYlRN08xMEyxiybNBNpoxmQFZV8auxNHhYsMYzUvzihsHAz3plAqyFtUV9fHQ8zULgJ5HMIHs5YduX0WjEB5atH1TZDvbe09fESvCQrBXnPBPQtsAg5mAlnhCkMETwQ/CLgqCJx3uGDRsGCk8KC9iIgwYNqq2tnTlzpoy5WlYIJIhZVpmVLFNDkEj88lc7g3wB82v40GGDB1cJM517I8rLKyZOnHz2tOl+A4J5R4U/zKJw0Y4dO37wgx+sXbv2ppu+9IUvfkElKAxYTmKfT1F5WVlpaWlTU5NgcRdyWZhTLS0tPT3xykGVJSXF6ENTxsIYgIOysvLm5hbHcU0sxiJWe3tHV1dnRUWFzM0S9yv8CqCYsVVVNfhSHjvGYs84ApC5VVVVYLi//vqGffv3zp07V5SrfjjNboORXEbLy8rhrMGGicfiJcVlgsAPThPuFKOirAJMF1NKNuD2ImO+Jtr9GuGQIIpSrGSFrz1eao6qr6mXrtJWgVcClt7UqdOi0cibb74JJiLYgfPmzYMVXrdu3Z69e9a/9hrs2IkTJsAfNjU3AfYdMWJEZWWlEUEXXHABbPgRI4Zv2/aO4ySGDx8+WKScipxRNnXK1MmTpkyf3iBAoNTlMk+A6MZHOF1i2CG7pbXlV7/81W9/+5sFFyz47ne/O2rUKIm2g2K33kwUJFepomIQPKZjx47FeuKlJYBNKZwsi9PBdHV0dILqiaYdon5eWIwxO1OdhKxXKFZwekmQp6sQmUaK0pIJ6c9Qw5lO5QlOpozxSWnZkRDlrlDgNA2Y8M6H2BKd2GRpM88QAvkeDhctXLjwzjvv9PMvSPgvEoZwCsOCnz7Uv9bSzwQIoygSveTSJbd86RbtqpOZVQQMRFcMpBJRZftLUTXtuKtXr/7hD3944MCBr3/96zfccEOkKCprIY3b/+TWHPeD/hk2fHh19RCwjLt7eqLREplWZmO8a9cuALIfWTw3FAqfuZVBfrNb3gWA8pEjh+/Yvq2rq0ua3UiYBbt37z1+rGnWObOKeGoR9ag+LL4J4/FYd3c3fN5nexjWRyLI2PCH1/I2Bi1JJBLDhg0dO3bsjh3bW1qbwSAxlHMHDx44frypYfoMzuGUarWfdvHko5kyR16lPekcLG4Q9ttj4r0IhcgSgIUJEk4jDVPaDRpKZqo6BLhS3Cqqz2nTpg0dOmzp0ufr6yfC7m1oaIA7efLJJ1esWL6ncfeMhgaAUPBcBlWCXBx04403LliwIKbBvnTwwwBAVlxccvXVV99ww2ck/akAfJxoVGVeOjzLnotw2VsipbeCFqRwI42NOx944IG//e25a675GEjgoUOHcgksuoIMWCJ2hi3BCg8gKLLZRMIBHFxXV7d165bmlqbq6hqJCuBhHT585NChgxMmTJQlRwZjBbD1JNXmgIDUPGfLRL9HC2HLskU7HNMe1xIhWk0sirHJNBDRMcFN55MiyNd8kKkmRxkahquf+cGnyKs6VM0HEdhhdXVjRowYuXHjxta2VrMLd+zY8ctf/nLLli3YN/xeQZNPk8KCCH8Oe33woEFwwfbODukAsy0bTMYH7r+/cdcukR4ruOy5PUolumppaXn00Ue/971/Aoh5zz333HTTzWVlZVjwlILR2Rd0la3mEp9+9yRfutoxtfPmnfvee++9/fbbMp8MEAbAypUrV8ZiPdddd104HEqrwsjGBnQqrf9TZzV6V4P7BdE2f/6Cvfv2weOW/BqcU8B1V69a1dzSfO211wp1xVPam5qaumLdcA3BVP7Yv/zLv2zatAnQAzxxbliEQocOffDKK6+MGXNWXW0dbMvTYdWcvpXpO8bi/wVTe+TIkYsuvPDAgYOvv/46nClbDLAr1q9f33T8+KVLLjMlhObk9o+oMu7ypIZjonU61ULJJ6/64X+Gd1QEJ0kSzY0XDMSyj4/hH2ci11WwX4luisOGDZs4ceKGDa8tXfq3qVOnjh49GgBuRUXFb3/7uwOHDiw4/wLYkxYh06c3tLW1v/32W/LPBFBjzzz9zMO//0Nra1t9fT2YkfDIEvG4EowEwzUf+tWvGhsb+cEPh4lOt0gVX2JteQcSN7Fi5fK77rpr7dq13/jGN+FEjBkzBj4cDoVB7mUVWcwUdPan9xBl5+Vg/on1W4KpJPqRqWyjRo9evHgxCBBYSfhViJMQvPX662+8//6Biy++qKJikPGv9x8mNVE2hs6UvFudxc3/w8kxQXPbkkSTiAbBRAooqcQHvrQ5g46XkgvL7CpVlSMOHBhCtuO4yQidufxtl7hId8yQPUs9j5apXZbee7WLfIaH6WUou0Uj0+pE/JuIJxoaZl5yyUf/9Kc/Pfbfj4FNVlxcfOjQoXvvvW/Xrp2zeIqMpdeRafgl+tsgRQChu3d5jbpmzTrnvPPmv7Rs2eOP//mjH/0oQIo9e/f+9O6ftre3X7hoEWeB4t0SKTwjeUcHDr7/q4ceeuyxR6dMnvzFL34RVM7WrZsl3wQ816rB1UOGVPUN6TC/XlDZeQyd4q5PLAU5CzEeLYpeecWVr7766n333VcUjowfPz7hJFatXPHiCy8sWXL59OnT/akVzO+T9Jnjp3THYd1BknnBE5Q5YJE/xpLbCRRtOBy59NIlK1esuv+Bfy8rLZ04aSI8uDWvvPLXvz5z0UUXzZ49m9f4tLY89NBDmzdv+eQnP/mxj13NWwVb1vNL/6e5uenWL3+5dnRtqCh09MiR3/3utwBM77zzjvH19XGut06h9Y2S+/x7rcBO+a7I+8Ew1U6D2BdffPHyFct//etfV5RXNsxoAHi64fUNTzzx+LnnnXfOrHOkiaIbJPRH5oZpw62aeTNRWiNdVzrBQbQn7s8Vc5Hs7yap5ahNpT2Z2hWcaSAgWdcNb763dUE9zD9v/uOP/+mDDz44++yzYWGHDx8+c+bMhx765fSzZ0yYWA8XCIVDV1555dNP/+WPf/zjxImTJk+e7Druq2vX/+THP54/f/7HPn717DmwtWcvXbp03tx5CxcuKgqHG3c3/uhHP04kEos/stiyrdFnjR5cNXjjG28sWrRo0KBBSCS8I18QAEyOv/zlyQcffBAe7k033TR37tx9+/bt2rVLfqC8rGLo0KG67iGpNRlTDSn7z3ugW4Ehr4O+kXlMNU9SZMvJ3R37LRwEqn/JkiWrVq0COTO4cvCsc2bDir2x8fWHH/79nNlzzj13PiAEAF79UTrjZRar1VCdchg+A0iwdHdiXrJLeclaV0cnPPCeWHdrayvYEh8c/mD3nt1OIgFGSGXlYL9zvTBcmmJDCpY6zvbLROdJ1WAFbsu106QwVn1osWF7l1WIvFG4rC4U5HUWFh0aYzGns7PTSfCWkq7sxUi4sysWS3T39FDqoTdAct3d3a5IE4pGir/w+S+2NLc++MCDL77w4uAhVe+9uwMuddttX57e0ACf4fnKTsJ1BLckfBci8BWdnd2JuMMd4PA/iuH9ro7ueNxxXVQ5aPAtt9za0dnxo5/84K/PPl1WVr5jx3bQqV//2jc54EgkxN4jAlpSQGtr1qz+3e/+q6uzc/v27f/3/35fZfMAmHPdSCR644033nTjTa5YrbwAAFPtyXiIgIpm4L4HcKpVEUt2j/HSlenTZ3zlzq/dd+/Pv/qVrwBW6Onp2bd3LyjLf/iH26PRYuW+4ig1nTxW9AE+dbtNCR8qsviopYtYRMreCTfJMbfKpRUPiUyaOPkrX/naPT//2de/8fVx4+vg8e3evWfGzBlf/cpXQbXAlojFYmBZvvrqmhkNMzh1ucWuvvqqzq72Rx55+Oabv1RfX19eUbF7VyPosJu/dMunP3UDqEDnFGb4GrmvlgKOBO+Jbha6v+loVONfKdBgjyfGjh1/5x1fueeee+666zv1E+rhrO3ZvXfqtKl33vnVmppqyU5pctyRj0D9tLlipeJMbljLZA6daEeIWQppTL9IT6ZzrsQpYcqK8msuifuF6UhAXoFIScQSxu8uHznsW9icJSUlpWVlDQ0NsDlhl06bNg3emjVrZlVVpeMmQCxOnDjhW9/61n333XvHnXcADuvu6gbpNGnSpC988XMlPI+y+NZbb+3q6vrXf/3/Jk35c0V5+fYd28Ha/+Y3v1k3ti6RiNXV1c6ff96zz/71yLEjY8bUXn3lNXPmzobXlTFqWWC+AqTetes9mMivxfD7AxYtXvTd73y3qqoKJG9aXAJj1UZzAPWwpPnEuk8RTzbBsq1+f04Mq7rSRCI+tm7s1772tZ/effc/fe+f6uvHOy7du2fPxIkTv/HNb44eNTJTK6TTEnDX6IpKhkv/aohMHteXxlh4+Epid5imbXW0tYNSXrFypYxU7Nm9++ixoz+++8eVgwbBYsLCfvnW2+rrJxROugtmfqVmeihLP5UUaS4+utf1K1v+kvjXCqPiCru7uz2R6JGmBGFSQTNeW8gRFi+lWb9+3bvvvrvg/PPHjR0nGkLwjwCy+dvf/qeltfmaaz4mc8ZBgYGptGLF8oULL5xQP8EVDUoPHfpg1cpV27Zt6+joALE+f/4CsNIiRRE7ZG/ZvOXll19ectmSurq6eIwTtb/zzta33n7z3HnnjhtfD18Usu3t23eseWXNuefOmzx5ChXNTQ8cPLh82bKdO99r7+gcMWL4Beef39Awk2fkGAe3hJWY7dixY93atT2xOBEBVBGDEDiSslDInjVr1uw5c0TDCZbs7GHpup+qFveU171bFtyLL/nB3x+NpWRupLml/J/xd1Jjye/SFCVDeaSXACKFJXpt/Wu7GhujkShYwAvOXzBy5EjehVB35yCY4AySi6SFrnCWr2bZ74V5+oYgzrBHaXtHB8H+zqwZby23maU/wwSDG8+HoSZsDepn7bq1YMfDZphQP/H8888/66yzZKfnzs6u1S+v3r//fTD3Z8yYIWomMLy4afPbsET733/fwnj4yJHcJ3DObMlaLl26rJeZ5H5M3r1I8xHbFmjGmGjeRDBO8j72vqoouWNxxl9zbJikQVVzYsmEJzIRGT8F69e/tnPXrpBNJk6cNG/euXV1Y4WXm6pUU+WvybhXs80kfcVywGbzV0S7SUTYW7ixJLoillVaWtzVnojHACfb/QawRHaeyEzi/PdOWWXYod0dHZ1YNCiU/dwZJcbDByKusbFx9erVAIlmzpwJv5rAB4gmsHmeX/o/FrEuXbIEtiuxeCX18uUrZs6YAVhKxgB45S+lW7dsWbPmZXgX/mp8/QTAPePqxholvX///mXLl+1ubOzgIm7EwoUXnD29IRwOycaJ779/YP369W+/uRFE1yeu/wTs7oQTV8YJ5pQQq1atam5u5l/E+0MJ7h7RGhZ+HlNXt3gxJyV3uPMydZUJ5S3WcT9GjeQJAtxgWQTwZTyeiHX1cAlgijdVW2zcbx4sKVuQzmGWG3bneztfXbd2186d8HAnTJx47ry5YNJTV7abSyrFPU0eQOUD0qjT58FCxiECIq6ktBj2DCjTgqrf0g4sBicCLIpXX331vXd3cNoYoaiJSAcXG5UNqam+8MJFNdU1hUXTwGQ3ZFB5JXDUutth7cMW1QxeoK2O7PGlnvAmK7qlaBiXloe6etodJyY+LNqLCgXPu2XptHSRy2L39MSkVGQqmohFASCKx+PidSJ8/bgoXCRq6R2kWfjAAuvq6nbiTqQ4ClcCS1oKLMviMW2en04dLnKZC98C14RXzJ+HxDDMLiD4eJzWAlDYk4jFItFiAGrcLWEClCKHQ0YeZVjXFmyqOlKORJdoDl/AxAQrn5BULvzk1CVf0E3og2g0qgGWqeY1Tot8NBDOosB8Liss+V1x8gNWZowMVLe3t8G/gGvF4jPt+1FNM5JKYo0RwTLfWnI33Iy/4tTDwt0OWFAY0/b2Dn2YGTJxE5ZRN2e9oG5VLI8hGOJEcrWJRDq443BXVye8L/OuRHmgBGF8B4JyBkPT1DfIBDX4VfCAwJEok9WpYnYOTjv46TPxAaMcOMMzcAAcwMRAucKOkulDyv5mLL9V7RVvpQOsDJNXsXYmpbw5BdiyuV8NcKfQYcWS/URsZpYWX8gxE9anHZLxXpjXcl7yyXjXCeFQWUlJZ0ci1g1S1+43Je8KpivMQjx1kyRKK4sc1t3R2Uk0wBJsN8TkhchktSLRo0nKKKzqoZSWDYeL4KdYIm6kH+xGkF1mf8rvhddFGww4OxhOsbTXZfaCrNoBSdjV1QWnG96FD4vGmupcS3ar9nawimWnQqL8pjIKQ0R2qeiFz+uOZBcdprIvYlwyJ2RTTpJSOo+RKsDup8UXxItYBteoxa0UAFhxDbB8ZsyJ5x2cMMBKTgsW6bycFqurCxa7pKQU1tA8/f6LqTIV2sD+zncGA1IK27IYAFZnR6EBLF1sp+yQUCgszlFSfyHNnk1hDxRitxw+UQYyiiZwVzts3ZBFLTVH5uKju2J+mUKlJxyjUBEurQh3xzriiR5ZEaNQg8iGsGypsJEfoat4s+hrQQj21S6Zkhbdz1++gJESTEgyiOjjIjq9yJxSmcupif4VvNCbW5E1qB5AkrOLUpu3jFAiSU1PBjeTnSi+/BL1IqWukGDyXmAhXJzkf/KDKp2IIUkHhVkVjUZA4yuAhWSZJfNHjPKLhvlBFUnTnanhJZl2qR4Bj/+ykB2SzdHk8hrAoeadpP+M0xv1hvNyOWyE1wHr+CXH0qVlJTAZ48GSlavCfc2QqrU3C0tz4glm9rDfza4go6zusohOCvY8csyLKkiSJ8PyJ//WklXu8MQJqBqx50mS/wpnd+n5vZLUt0qYly4qEEmkMQL6DgxHDbD4izorS/wtZr72oCw/x0/KJsmIbFInb/IkZQ0UExVySmFiFXiV7irp3+2jZsiG81BvFkXSs8Kq9g0MOCqNPfknYSvMje/WuAsqjFfq9GtYijLCD4/tlg0Ku7inq70TSbJmXY0Nu8j4e1LI0z3uZi+YqAp6JLL36WBfUobM9uVlrR5BpfFgpVABpVjz8uIyh1WRMGG92Rj251xzmOVSwzkhPyy/VO+jAW9AKXYooyREUgCWqnjCKWj+NMeDEErpzmnwFuEDG2tW67wB551Stj8VAAssKAOwCite6Ds1KQ4/lvwWNkUuBQawsIUAYDkx1NHq8gAeTwiR+VSuV/YsSmWIyrhiQllQjrmQMbm5gpQsWRJIYZMBL9zmHBRpQkuMDaWKSq7FTIMAqdsETIX/d4X8cGWbOaozRZD2dFIhGiS/g9gZQhSr2le4lRCSveSllCA8lEupo3e4IiszwUHmxQlT3DlYCDWvjkbAR5J8vnBqYgtT/mmtWUgy3b2KiOO+lXPgZKmR9gNOi8BLe5rKZUeuQ9XuFBhV541otIczhcEzzyH3lHz/MqRdHhI3CLOYOT49Kz1vBnwkBR/y+GrV25rvQLhPTuAuyX5FRpHj8vskAl/6M3Gxorw1bSglBBfURq7PJBDxKNg6NKXpc7ZFwNknT3RaAdLJcljtB+Ytl1wrvjdSwWW2r+51k2RdN98DkJX7MmWYYeLlWKpESayeHfZme/KbNvfEfH+l07yEUJEZY1y/SnyjsohYHyyVU5jf4jnU+Kbj0VXMVHqWoe/14yqsjTbEjAT2VIn+ADOlPMJEJDKR3lRzG1Zkf5G//LA0J/xKKPlJY1OE6Jdw5kPS0ybPD9GWqvSNeZNEHvBjUnIPFIs+ZmnVuCY+NwCK1l/I5vdjuW5yKJDloHPqLzzIklYSmSACKzRCGsx0V/Ukz6nPqFa4SgOOwsKHeoExU6WDPvLQ5F6EYL/Y2KZS5djCdaR8yNopzvTzob7WlaqJpNlWipZPZtZq7hATIRbZC/IjMjdA5jMIDlINxTRjlnJIqM/xAAAqUklEQVRAGNcCQYqpiyCvPs34wzSGUoRf/FKE+8bUszO2mt/N6DnetKxPckImUd74XdNS9KjMW0FLI4UB9hSG/IAfIaQa9yiPiE8vmU86CYyYW2PalcTFKE9N01Q+mKQFvDzlezI5WDiJroMwtWEEqsO6e5IPOPvq6PLLwVJQXmJJCymWarkhKWdZ475Y49gkomOJrnLlk7NEe0bde0DtBoyUG4KIsDDpTfD0noNlAhbMs3Il6lImR9qusDw93LccLJzpX5RtPRXEZz6zR+4QJKhLZDNlDscJUmuD89ir6JTmYOkHjY33RFtHktIY9rDFG8zj/vRgiSRh2F7MopaUPfoU66ItheGRFna+pcOeSjNdyAShqwZGMptQ5JgwpI1znN5TJYXM2q91Ujy7phtpxoCsuY4hZ0q5fjpTtsYxbEAQgib5YdpVr1g7WKos7T90lbLsKarE95mBmaE/LcAgZBV19SRiwSW8KwonhA33fcqGR0ZgDeiqZpdkktYFhSzuZefiSm9V22cAyUCu+B8oJeqRnyh5LJISBOwhuruhDvUp+9izRxk20Af7ZIzOS1AWkSRZ8KEYnJqPw7xv4JIIGZNLE0d4ZeRYEf5hkzarftOoHfsiYjoNRU3bf0iwVr1eem8m0xx7BI7CfUJVdRHTniJzSZzNuM9p0/f+K/KH2rDn51GRXK4cFERGujLU78XCJ+q1ynQFLJlh5dJS1ZqJJcckTZgYZ3KD5d6/Op5lAswaxFjIZIdgE4ixmG/bi6ep4n/62SOqspE0LkUp2dw5MEHO1fCCPEbmMpMF5fsj/67I8Xx7fTT5XUEENCTzrjmq2DuzPB3LI5rDzBdPz2cmOb46f1ecbH5KhX9IIRnmdVI2kbL+IvcRid9meXjlKu+PwAR3g/LCKstQ1QIoOceQyRFiPh3LY9nCa0mQ18/OGJ9JyjtdnWe06dNVvv/zGmklfTCdtzkbeaM3K60WEKb9R/Gq+V2YhFhYdyzCIuwu9ghHu/3uylCRD9mSBLEU7Ou3ZxChAx12859uw2EJi+YiXHBNSoRngrBMVZZ+p6BOqyiwCCE/xbYUn5S5PDTBtLZlzDZMCsoDJ7JppLtaWNhYbmttNVCJhUXluTbzMEPJ/VD9/02t8NaJy9gLEvus1RTLTwExdcC8a/qzn43Pk2mXPUOe0kXY+y6N4DBKmoCf8cWn/hjqxXRTnmqRC686vyoHWqYqrtMnnrwVNkEpP3eRhzpPo3KixhcmaxWxpPoXHiZTdUO0GsUnupmZvlmlPEzWvEeCi1Mdjf6SepN3LIwDYxhzQ8E1FvLJnjiN0ZEvJ4O7Z6kfv2UuCD2tbmy1MdQRwD76SGKS7nlaABugaJD+L2XeDhZuHku1f4OthWh/ICzhoee0M9K5B99pCZOO+nahyghlzGR2Yp9uS4s0ahXH/F1BU1JPdLJi0gnJp2bK6wOWfEEfUvVyP9I7IJncrGypXaj/adsY8hgYTQhJ2feeFTsQsS5pjaXmBvmbpaL+Tb3PKpOZ5xPyB44LkbCBmZhQhu6ZqAAadvWml5jpPSqWWfcbZLy1q5XsFVcNniWPKpGIReVSyaCPeBPjPvggctm0JDlUnA7HfK4azHoz9XHyuzhN2rE00IeTw1X5ixMTykQyTCcT2+xC6FneVz/CqTBBpBh3iUiIQswSKpIk5a+LYNkpse3MOcwAgrP9inXGFEtC9WrbE40ST/64aRpvLJpCitaQLvFTvXImE+ES6Oc9gdPOGkqrq8AqGavfAxpUZS8g2alLmrQif1TkKIkkIYJIfyFSLDhbxKbm9jUR/iyZ6ycyEGR6IxFS1PSNz3bUsEmVSBIOaf4P7KNN6XOQJc0XZS7lXTZH9UKuwgaMT2xWJ7EhZLBSuATEwxeJH6LJKtIJKQOC/rwcEJxx3VTMGFsD51LB2l1CdQ4o0RnJloi4F16bXSKPHMmxq4WnhBRkQzNGBGm7cMBb8rAQnU9mZ9DDki2J8qz1aDQSZiHmV2Yyz8VLCM4nGyOXIz4/i1Rld6Vp0LS6pHwyH3sF8SwvkCTppo1Lhhe9Y1xSUpIkRRnu96zCbBV/KG/2qRMRiLqqh59mi1jEJmVlpZ70YT7CLXwKbQfcd9XpYztO2hL4VIEFUxgnc4cjRZFwOORbCpTi8+hX8dtnE6if5kV9qBmOlcyyZLwaxibUQqLCF/VbPpBQ4UqZ8zpT3gg5FA6VkBJJverH5vkktbAzttXlQHivfK4+EW8jtl0UIbxtLh6oHVrQK5b5oOuEacr5+GANOXeP67hnaFPEwjxBmocY2SGL0yIRE9xTJlNKDpb0dnG9AE+iq4OGwkRntBh8Q5EiKiFZbj8lIRol2cepv+bPX0CzWFEsUxJunzRMGltPEnxkWXKN9bQokkwAbkwSy5DkOlKcqfFfNi6lbOnkKBOHUPqqopwETumfYZkAa25YlhGlmcCdjK6wRMzhVffESkvTYTlz9tNvKq+v7gu40MFFhrJTJOSeCcqjCECnBlKWwILsA9tZdl2ORc5mReDs9kz6FbLlp+d5OvKhXcD53UvGQ+pnF6Mqo0m84qoV5IwSjuPShAwb9RsntYzWgTayqUNlZlVXT7y9rQ1bFmUkSQTkE7/ALLskYX5D/tTdH0uygdkZprlMbrtt2+XlZT09se6ublkWgFJwFkPByLQaqjSP82BFouXlJW1tHfFYHBdeDtYZvvIcLgwqL0XIcjnfjWtTojzfiNrJ0lXUFSFLlsg4PU48lhAVViLaw7lGmQ5t9D/7/in5xhQCoYx8iTrun5pwnwaVJEkDM+FLipjfd431kpoqWdKb4qTJE6M6eQIloyt8Spc0Rcr752nouFJm4mV1+Bx1KpOHCFp8kepOkmGxollKA805iEYzzsT3pX0zx1hm1ZL6uLPNhCZTqVEfCb7vXgx0U3kFNA1wmzVMf77pxGDp+phmag+Ak2eC0+5ac2T0noNB89urKQeH9XYvGY0EmnoSOfucbPqhqz5FxqcIqrL+SyCR3G6iB46s5QEp2tnVdfjwMYuEqFeCL1Mm6Kl0HuI+ol+UA5BnA0/J7VQKF6NwiFBUFC6OFne0dRw73kSInWyq4UC/51g7zd5FK8oHRSPRpqbWzo4uwad9hoDFMwM9U5tYkVA4HCrWKbhEp4Qjm4SIz6koOH5lE2VMLGwTpNxXgkDXYh7A6u97yC8JoNePZfToZLA2FeVCHh4xVYRGVKpbUkjesJbj07cBT86JjE/RdChKasYkX05aQB+UOfk4jydg8cm5mRXHDzsls/Imprut+uodfUARIzwQkoN5PRKzOlmQ4W8cILGqjxJWucOyYkwzpPYbi7NghBX95HlWhWsJ1zTPVSdUSRhlZ4qGeChT3WUKAiB5ObmyRb1xSqN3bTl79MO+8iCKsz/HFH8nluKcFRxQYUiSLsrsA7EPmGIdzMimG4wUdGXIOxSjHFLVg4yxQg21GY8rRb5quIxe8IKaus4Z4HCK54mqRFGRh2e7yc09RMjWoV4uKdaWJnzMGaAbZNrcxydtKbK8ULGRmHmVmfvIHFII+U6XrmIFAtK8QTLMKlmXs1Q33MnPv2/Ly7JuLd3S5JTBTf/EME51XQ2UYuj1q/HACrIkChHVZUpCCMKS+SNO/xBgijG5r13RVkby2Oo+OUp9qeofnVPga96gHIH5xrKZwUw4E9hAXhd+RZfDl4ZgU5+L/U5F5QnDOY89UybA6REIJ7cPsK4SptQ02xDFDhkyN4KR5TTLdn6cYl4unSpTwwWahOWjOVMkB9gnn1GmOFKBTFxZOlgQYYtVN4z/zMYuTT/ppEAfADsV4IPljVECC+kMMNVOxedZ8LjPnJ3fb1FCmfAlOSJcwX+I0xWCH1Zrz4siVpOlZF4TXoRzlu9r7qd0PIQzfaGS7X5vKPUFXi2sRX9v5reiQihUfwbuFwPxQ4iuUGYCflx48JT5/qfNFp+14cvkoJq3uWCmznQfOCkmELU0G6b8jx3s02AEIxjByGhQK24enLt1r885iZHmO07Sbpj5bfFMl5DNdzJXAPjVjfm8P67HsEr1w5piXhBC9xZBl621mSaKDlDLSewUdEY51XDhzQf7Ool53qzkzh+4YFeTaFJGPxEm/GYXVm/tYAQjGMEoAIlJmZLzgD8s0c7XR7DR258n9XPUpdy5qUAUpR5Nrgcj+ehEnFTtofpDmU5euXxmXviaBXG3k8LhSSXJwRqeALpivoOAdYMW7FEgp1b2FMbUfdw7vK+IpA9FRNZvUoxsHARGghGMYAQjFbVoZSljhUx1f2AZVCxT/+cBF5mTqI1xnMKNmV1d62aLyWQhzF8xomtJVFhC9iXzKMRMu27ZIkv4qDJ6p5hu4oS9Et20ZqzB8B5NhmXRzPsm54ZkXLxgSfMAqSkdclL6OHlurMKKbjKvH5F51F5bCpzUizAYwQhGMILBh0i60lxclGZooa3dQ5aNTWWWUgwCTxFMeJcSKiu2WUpDQP157HvFfEAybCqRLbEV1bnsHleKqgJg4hqGI4PIxt6qBRI2zcJ02b5uC23bIbiy6zrwP6SCi4odN1nzBSP9SfkdGHwxZUOURMI1nYeS6BJxgFxzYJQkXy/W7VcsC1bVTiQSqvOMzFDsx0riPqNEJLj8RGGGsnQo70VIg2ccjGAEIxjp8Ml4IFS/vzTIEYvHu1s7AKNw1CIZA1XXP45UotFIJFIss6NSWv7JH2SfOOS1tNMUtaqLrGoiIjt1M509y2EWI55cZ7LJIPEat4mG9YK5VfqzqO48yUKhEKCBlpbWI0cOx+PxqqrBVVVVvDSeys7KFqVMd83wp78EI6ntoMHKgK5aW9uOHDli23Z1dXVZWbnjJMQaEgPLdOcfHGCsNFjCkltkIkX5g3FT0/Fjx44NHTqstLTMdKsuUHAlqUSYtKRULYv8FXaFHTzmYAQjGMFIHkRqUMobumsFmZwBQgjes2f3n//836AMRJ9C0fid8p5pImpnXX755RdeeCEhFlOEedzbIdvuyuTXdN+GahSuk7GoDpRINEawaX0om4dzLlRXOAEcx+nq6izifZnCKqELU8mJirVyAq3f2Nj4yitrdu58d/fuvT093UOHDl24cOFFF11UUVFpiPJluw/JlMhQgAiSnViKL4M//e7u7pUrV65Zs3rfvn3hcFFtbe1CPi4ErUqpF+EyXowAXaXZMSKpXTT+lOaJOBr48OEPfvOb/4K9evvtX21oaBB+rIJNcpNZj7wrGu+Wp/hTuE2DSRAiDEYwghGMzNa1kuqWR+iZmivCa7NdSl2APuTAB+/v2LZl2PDR48ePIxj+yNHdHhROQshkliCpdwnxlIbPNSIFtjKCFVMk/zARf8/dUZYlfU7EpaCQmGVZ77yz5YknnrjsssvmzJmrkvQFk5RXh4jxwYMH/+M/Hti4ceOsWTMXLjy/tbXttfXr7733HtBnn/vcF0pKyhzHxYqeHvvaGwSwwDx7QXQkqG8TCeeZZ55+5JGH68bULrn00s7OztUvv/z6htdjsfjFF19iWVy3Sg9lgKtynDFsHLQMtjE3UXbvbnzkkUeeffapwYOrE4mYXG0JWQozao1lBJMxjaaULwuG7bpu8JiDEYxgBCNlWIrWk3MeUN0PxzOkuQSlY8eOu/OOO13XKYoUvbxq1Y9/8qOLFn/ks5/5TDgSYS6KFkdDIZuDLd5PUcY+SCjEw3CO4xDZTZq/EnKchFQktg1gyTaKGbQ4z5HiDWG53wvM5OKiCOX9ERlcB64qMVBRUbilpenVV9fMmzc7Go04Do3HE37GW9BfoPhffPHFbdu23XzzzUuWXFZaWgpX3nvVVffe9/NHH31kzpx58+ef77rUI9/CSKXMB1FCDaalIxHWIhwOv/Hahj8+8sjZZ0+74/Y7Ro0aCSB78eLFP/rhj37zm/8cM6ZuypSpwu+ifJNBiDCrB0sX3MJx6OhoX716xRNPPgE7c9rZ01uaW5lq44Ckm7YA+SV0ij4TdHkuZrwFLzeDMMyZBjQNwQhGMIKRwbomKgNXYR3liNCdK2XKVNgOlwyuAjMVsFTFoEGAlkpKSodUVxeFIyBwnYS7+e3NLS2tU86eVlFRAX/d09MDEKekpGTcuHFS9ra0Nm/dshV+HTp0WMjGR44eXr9+/fvv7weYNbZu3Lxzzy0tLUsk4oRjL7urq/uVNat27dzR1dM9csSoOXPmjhp9VmdHx+qVy9auX+s4PW9s3NDT01171pgZM+eoQKHqT8XnPnnylNtu+8fzzz+/vLwMEF4oFJ46deqMhhmvrFl+/Phxc1MpKiRAVwpaY5kXxyxCerp7lq9Y3tLW8onrP1Fbe1Y8FoNVmjJl8sc+fs3dd9+9YcN6QN6AlAP1mg/GEueMwYaHdfv5z38+bfpUMFFeeWXNihWrkC6/kGx0BbktdMKiJKLDivyXu5sxsQNAHYxgBCMYmWWnYkDARLSy1oQIqo+3hCKOw3vpuI7rJBL8Ywy5DksQB4tPvPPOtj89/qdvf+vb58yZTSkD5PTrX/9q9Oizbr/jjkhRBMTvprc3Pf74n2+55dZRo0Zu2771F7/8RWPjrrNGj+7s6vrLU38579z5t9xyS01NDaX06NEjv/v971auWD58WE1RJLL0+aUvvLD0y1++ra5uzHN/e3bL5i0dHZ2vrVu/+a3NH7noolkz5yCZqaUqDhnAqblz5wlPDJ+wZWEAAEeOHnn3vXcrK4cOHz5chSmZopkIRgoSwLrBox2yd+7e+fbmtyZNmnTWWWeJELHoUE4JvDJy1Kj161+7/PKrqqqqhEfQCxt5XbmC4R0yVbnhuk4kEv3sZ/+fj156cWVlxZo1LzNYVSKSGrHmhCs8uMLrSETzRMzTsLjHV/LSSc+cTVlQRRiMYAQjGJ7Lhie268Il4eznDaepZEAkUnzKNjiy8RjAKszfJ4gSQDRMkKgTl3EGh1G1o1pam97b9V7DjIZwuGjP7l2bN2/s6mxpb2kuGToqFk+8+frGaDRSWzuqqen4/ffd17i78Y7b75gzZy7o7Oeefe7h3z5cM6T6Szd9Cabw6B8ffu6Zp2747GevuvKacDi8adPbP7vnZ79/+OGvfw3+75svvvTSw7///bXXfWLBggsqygeJHHjeO1EwpmIq2SYoDym6rtva3g7T7OrqBogGyOyKK64aO3YsaDis22r7MIDrJ9r+344GsGDttsjxpuNHjx2ZPGVStLjYdbHLLM5g5qLKyiE1NdX79+9PJLpFQZwrvBqcH0sABCraWRrqLBKsqre2jM2YMWPOnNnhkN3R1c587HJwoohyH6ICC7J6fay8sLqaNwNjyw4cWMEIRjCCkSo1lWUt4AkvDNLEnrIhGjY070xQT8mgoek8o4IF8DcjR44YO65u65ZNly1ZErZDe3bvdhJOc0vLjnd3jBp5VltrN/zQMOPs8rLSp55+et36dddfe90VV1xBiIWJ9YXPfXHrpq3PPvfslVdd2drasnzZS6PPGv13f3fD4ME1juMsueyKvfv2PfDAfZdddvnVV1+9Y8e7th0aPnzU1KnTXJcmEg4vZJMkqRjrCAsrKors3t141/fuam9r6WhvhY9cd90nbvi7z1RUVDiuq7AhMdlbQQlUEgKQ3OKWZXV0dbS1tZaVldmhECBXDrGR5TI3Eo2WlZX29HR1dABEcGElRc2oqCtjmHn0H8HCmrPGywelNzjKOU1EJhNfT48mXcXdsI+6t3Agt2igzdGzZqijpsUWQrYVBImDEYxgBMMvNbnQ5P+Bfx3ETGf/JMWgKKkMJSg2NYOKB4vnxqPq6pr68fXr1q7t7Gx3nMS77767aNHiAwcPbN269aLFFzfufq+9vWXKlCnUpa9v2BAOhSzbXr58eYKnqJNoUTTmxABa7du///AHB5uam+vGjn1t/XqX+9RQJBJpampKJNydO3e2tbXJaBR8RXd3t/RDyYBUMs8WfIBGosVzZ81p7Ww/8sEHBw/uf3PjxrLS8iVLLhsypIZKHlPmU3/JPRCDodLUKJN1nYoHXxR6Ep5IRCybFzFIagbmdVcSHhgC+ECiVxJgLH3UNFeDwCZUWgIq8d3zqPpsH1x4t6CeM++SQ7AlvN3C0Y1tHNA0BCMYwQhGsgeLMV/bM4lVcIrparoze81dETM5Wjz9CaRtNFo8fvyEZcuX792/DyDRgUMHP/3pT23ZsnXPvj0t7c3rNqyzQ6HJU6a4DB3+4DDY7u9se2fvvr3UARFtgYBu72gfX19PqXO86XhPrOfQ4cOPP/E4k6TuiMXjsfHjx4VCtuPEdd4UVc12GPWccXqCFub8TIMrh9z2D3dQxlpbm98/sOeJJ5+4/4H7u3tin//c50OhsCgrV52qFV1DgLCMs0VsCJfSsrLyykGVzU3NiYRTVATr43JeDU48C/i2O1IUKSkpxZzKn2l/KHd0+roasQBgmaOGVKsBhE2OI07DUt6GLCzIr2WA7OYuHcYSEnJsZYssyGAEIxjBCIZPbjKJVpAkDBT6MVOnWWzihhbn59RCV8bjhH4lkyZNBmW8du2ro0ePCoXDU6eeDZbtH/74yJatm3bu2jFy1MjKwVWCdp1UVFZ++oYbxo0b5yRcqUXCYpRXlG3bvs0OhS++5JKFFyzkcxFy27btcNgC3IYtwgl3FOWhUVeGm4eIDFziOi6xLNl4B16prKysGVoF+u2tt95asXz5NVdfM3z4SJcmgga12bCAoHXlrJiVlYOrq2v27d/b1d1ZUTGIFzogSghqa2sH1FUzdFhRUUQ8AqJwg+oAE6TkZF9er+OUz42qW6WjAsb5go5XVIjwlHaqbByM4YzaNPBgBSMYwQhGsirFHreopAzU6CXZhYWVI8uPvFQTG5G8xQuLzjqrdsSIES+vWcPzserqxo2rj8ddJ+H85emnDh448IlP/l1RuCgWS4wYMWrv3j3RSGTK5Mk93TH4xlAodPDgoY6O9iF8VEeKigCzTZo40XV5ojq829raeujQobKyCouEpKeJc24hQ3joj7OgPXv2LFu2rKGh4ZyZM6mqfKeY2WWlJfCl8XgPYy5XCoAKVQKMur2AB8tgbsqZ82kiEa+tHTN16rTnlz63f//+ESNGym0C4BV+3bf//euvu760tEyQmRHdXSeFhjzIzDEOIGw6eYpDRrHiwxCBWBWAE00MDG1WgW1GypDOdqRYe5fFCaO2HQpa5QQjGMEIhk9iimwZWQ3E6RmIpOFJMbhNF2eRcKNCdF7nWkKI4PJmkUh0+vQZa9e/euzYkdu+fHtxtKSmZvi4+vpVy18cUl09ffp02wpTG11wwcIVK15avnz5nNlzo9FiUMyHDx++9957QEl/4xvfmD69YejQoS+vfvmyy64YNXIUQlYsFnvsscfWrVv71a9+rbq6uqKioqSktLm5GfFGuRYgMJ8HhUv8Q4cO/vd///Hll1d975+/N4GHHXm2fiwRX/vqWsBeV115TXl5hevSpPwtL1gTDOkRpBIwwTNdvPgjr7y65qmnnqqrHVs1ZAh84PixY8//z/PhcGjevHklxcWOeAQKOuh2hMmbJBhewwC5UQmx4DwRziAmUtV4y2ciW23yLMPC69wkktz5bViY2JZtIUtm48sUTtvFAU1DMIIRjGCkuCuYoTa0EA8SMmM8+6xo7ZzgvzkUcdeU45iMcukJI7Y9Y8bMIjsUjkQmTpgUTzg11dVTJ09+cekz9ePrq6uqE4kEfNV55513ySWXrFq1wiJcQ8fj8ZUrV23ZsunWW28D8DRo0KBrrrn2v/7rP3/4gx9ddNHFZWWlb7755rJlL1188SW1tWPgS+vqxtbW1i5d+kJl5eCRI0cOHz6ipmao6tws6AWmTz/7hhtuePTRR374g/8zddrUMWPq4MXtO7atXrl6Qv2Ea675OOAzuI7f9RVsg9QtodxRDB7ZrFmzPnH9px977NG7f3r3ueeeC4j2tdc2vP32m//v5z43YcLkhOMa3yHWIDVgcs+xsPF4DLY0YH1YYyeR2LRpc1Nz0wsvLt2x/V0wBgYPHjJ79tzBg6sKLXdN5geoputIdXo21olN3QBgBSMYwQiGX2gyinCIWlQQYGGRtYSU3z9DNohwFLHS0rKpU6fW1AyTvivu7eAdo3lqSV3duDlzz4uWFNfXTwDlEQ4XTZ129jmzz1206COlZeWCqJIVF0f//u+/PGTIkDVrXmls3A0q3LZDN95400c/eqlMl77yyqsjkeJnnnn6ySefBPs+Hk989KOXAWYqLS1NJJzBgwfDB5599q/wLgCyT33qhuHDR1KakOFCmExJSfEnP3l9dU3V3557duXKFSUl6y3LchLO+ecvvPba6/jEHDfgu8rPj8V9lvAsrr/++mi0GGDuE088Ae9Eo9Ebb7z5yiuvLCoq0r7ApOhqgK6yryqi1HnnnXfWrVsrDpgbj/XUjh69Y9u2d7fvhHdra8dOnDgZTgct1KxxzsfhgJFlMezVmuKWfT3B0w1GMIIRDP8gjBCeCo4c7BCLFQ8qPtp87ODBw4JRkmDtkNAdmrkqjcViHR3tEVC8xcWyz6DgGpQUObSlpVnklQ+SgUXXdVpbWouLS+DDTJUicgKqnp7uo0ePHj58BD48bNjwoUOHSrgG71oWcRynqen4Bx980NPTM2RI1fDhI0QytfSLYFBRra2t+/btg5mMHz8BtJFCVwIx8pommziuAzM5cvhIa1sT4LwhVTVVVdVlZWW8ZTWlXtePgYMCMv2Gk1xgwDFuJBIaOXIE3Nfx4808fjRwEFAupuq6LV6AH+LxWHNz86FDh0IhG7A1QFtAV7xntvgMHmDedibm65aXlw8bNuzggYPtHd2AqgvNfSXnyXhZaztsbBGH5a1mOG+D6AIK62xZ4fLyinA4XFAgVZ6rkIVHDa8psYudDpfwYlEifZ0cYHW+7wTCNBjBCEYwkkxqUVbPqwiZAz+FBxUdO37s4KHDyCIoGWCZYj3LsrFs+so01QEHWCpdXuQ7I8A3vIyPUYJt0UjDFf1AZJSESOJv0CacmpLjKiS41yUvF5HUSrZti1438nt5VpDOspLVavIVJhOwlDISGSGinknk3VsCH/CL8O+ivNEPFV2MqUFXBQWwRo0a0dIy8ABLduBGSbFCmTZkXuEvUJeJagOMBj5jKDPAKqiaBSY9PZg3nOHb0ZL7XLbHMeeC71jB9IYKDWDBsAkeNaKmNFxCO5kEWOZ92wqKCIMRjGAEI1WbKp4rDlgUSmIZNZPo48ErBrliEC1RZIWeyM3AinSU2+ImdMDhkcO713F7l7+FHKyEMgdVMroE/zJT2c+pC6nsdeY4jlQxVHdA0znCHtoTEM31uKVVITnBIune5ZQQ3P/CIzHCa8VvQfR6kQBx4NWWdP4wk/4sp8S5MBQ/mSpsHBhWb77CHGUTV5CNUUU6ajNefymK3TxWJDwAkzMpQFkWt+CYOplMWCQcm/J6EV6XJ44UkqCfCFo3bGlO38KLYsstK2YvzrBmwrJpwIMVjGAEIxipQp8qYCQlOkAQijWtoOgow5WsaJuvKR0s0X6MKtCDdcMcoR6EC4oJUEN1Gx1xdZU6z5SzA/sBk7LXmUqaZcz04ZEuMaQxFdFIy6Aro4eMeMdMMzli5dMyrjokvGWKoXTAPQS8al/QpErPoJ68VsNYKmSiNJggT+qfwv0k95WEWZzWQnCkcdcabzMofJNyz+D+1e96obgrUm5YpoE4Q8jkD7JCazdt9i1GXh8/8SIRLkOL6dOhrI0CbC3AsHFpY0FzIlvlwC8BR0MwghGMYKTJfap63kh/BBMeJC3aKZWd5aTdKhm6eTo8QiY6pP1dGgYIN5FoBUsEEhPwgepOK8TE+JhsByw/qNuw6ColxDwyU2SCgPpPdDxFITPJwCRVkuyYJlukJZG7eyxXzM9CjwawVkuCSFnFqXUw8UUGXcHpquo8NVpgpx9woyQAyrDi7E7KYWeyFZ1cTqRRQf/5UHS/JlfgbeOLNMUZ3gIXkCWjiViFp8rsdHFELITMu/Ikqc1cUKLCMHQhxY5nQsnEJiSoawhGMIIRjFSFJZlCVYaIrXxARCUuY1/+MkO61b/ftvZzkjKtlLGPAUEm7aSUmqkmNaktgTOwgJuv03+iAoFIBSglSvO97ifp0r+aixSeX8C4r5jOyGG6dZ3Xwkj/1g9aNOV388QNmvI9l/7GqSx1wwjWedGmhckSVyYbERReix6cvG5M2zVqdzLfeqOCo3PXPm1hD8iURh7qRLIfPBJiIwgRBiMYwQhGssoiMiqFqXRNYZnQ6lLtYBFkpETF7pJaEmb3MLBMn2Fpipj10W2R/gPr21/3JxbId2YqAkqZl2DmykeiuIcUuf5AIgZWWMunlsIVQUseGZSLRXkhBZEVb5SJft6s4K2bPm/mgbMDZEt0xlLtHw4dbZlEFoxgBCMYwfCZpjLZlieu818d3ik5HC4ilnIGuTzmxhsUBrxRp0FpMVFEiCiseSiEGbYtuwgWHxMdSsI6+Y0GD0ADTdiqliHApeodAABWiK8hgjWMhMOaYyIYp2YA6g8TKyTqW7kNQE2rHFF0GgtoGoIRjGAEI3lwaIVFNR9PEmFFJSFm0a5YXHi1mI7BBOO0uARUzo1oQIctUhQJJxJOIu74qDtxsrMD/69HWEx39eP/SCImqjg8WChkRyJF3V09okA12Len1BQTrqvicJETp25MIFym+lMFACsYwQhGMDKqecFCJYr9eGTFYmD8I5yxBivIsjjlWktm32MZ5HKxLDZAmbBUsPi+VUvanJLqgNsKnGBNFDwQFrj7Tvmic18rL4KJ8Z6lyEWijJfHuEF6BCHCYAQjGMHI5BTgspP7q7h+oiiWcEDPg6IiPGHYr9BUOMYS8SqS/C/yZZJk/JWqeKR3Baz/Vn7GFW/5f/VTLGBkyta8C5IsM6EpzA3G+5H81dlmkvFeWNpMzJWpnnDGe8k4E5Q0Ycx8tALq4rqbn3R0UcmU75tYPvciP+P6ZoK9FHo1n9yraq6Akyefz6qmXzCfVU25QqZdoemvvMRw1Uo5fRuQ3mbih2wo572kzCRl8ih5V2T86ow7vNdVzXYv2DcTlOn50uRn1+tZS9nS/nsRexSDAWCp6KwgB3ap3LoULLLuffFAlgYjGMEIRppnRNDyyHb4mKluhFjUiWOtDWXuOvYXyWNTHa97Q/sgWwqC0z+oKnSN2XQ7afOz3z+RFBTz17DpyzHfTLyfk2eSDmy867MsM8k0+UywNHkmyVdIiehl/VXrM4ZTVtXrs630W9oMkpYuy6oi36/ZfEE5VlV9S/IVUlY160xMx/D0DZO+qti3jCn3kvyrLrBLWQ/pw/ItY8pXZ59JXveSfmss567I+NVZHlMvM8lyL94uYVlPdsZt0OtMMt4L/yoqll9Q4BEi6fHEewCw7CDlLRjBCEYwUodgayQSZQkz1jIS1h8oxCgjRkmO1zCUC6OkIA+W6d90gJWCkLJ9Xba3cgGsnPeSDgVYH2eC0vwj2WaS6Qo4TeFmVsa57yXjt/fpXtKv0KdVzbgrel3VXm8N5eRvZ3ncGsriw0K9bciUC6Ls94Xz2Pwokw8rfSb53BrKeV95nrWM8xe9KbHiSeHtE3kDU0yJBl+AtYIcrGAEIxjBSB2uT8AST7Ozgmw2EoxgBGNABq8jUCkDHFD5ARb3YCXDunSomPGVbGg9m5mV58A5Daz0X3NPLNsrKPsHslkq+VwK5zExnPfkcabngvqysDngPOrLTPK83z6tao5F7tOqnsC9nMCTzW3x5L+q+R+BHL9mO2vZNkyfvrpPOwT1RUrk+XX5rGo+W7FPYiHT1zHMLJZiuupQTMqdSwcX8+IGfZNgfb2XPM9a/iKlTzNBJyfBcB8nkE1Q6GZ/Jh8Go74LtBOQxjk8WH060adXGovkdqpjZlgUtLET0gsnoH1OeFVP4FtOuY7ru/g1yMrEJgVxC9PxRpt5O5Ul57TlQEss7X5YchYayj/WnjzpHHR7LIvPM2WGOe4l21en30ueM8Fpk88xE5Zp8vmsasphzubIRZmOPcs5w2yvoDxcwSi7QxtleS4oJx9iNnd9tlXNdkiyrWrKg+jrqqIsV8h/VXMHTXLMJM+zhnpzsKMsRxvnQTmZYybZ5AbKOZNe7yXH0csoN3LPJON5zDUT0blPFAjpUJTq4SGSO1xPxvKcC63yT0CCob5IsGxpTDnkRu7ni3NK+9w7pE8SDPdRL/QqKHTeW4Zdw/Jb1WynPk+9cAJyA/VdbqTL0nzkBmW6xZPeu6zveqFXaYzzlsYphyvbTPKRG/moEtSbXshxrPokjVUnK4JMg3KNuXQTJ7uPKVi5veO9+s4zVjj3m7v9BCYfRANO4Qr357cHD+5M3zYnKWpOek5YkzH7slsUd4CXj6XfYf/L5cZJ3m/f/xyrNkCYsZPurZdbbpyRj5K3oWaemv/fxGWR+wmejqcpLmjpVpW+rHuQEv9/AAAA//80YRwPc3Wa+QAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": { "image/png": { "width": 700 } }, "output_type": "display_data" } ], "source": [ "display(Image(os.path.join('../Data/','Figs', 'nmf.png'), width=700))" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "def display_topics(model, feature_names, no_top_words):\n", " for topic_idx, topic in enumerate(model.components_):\n", " print(\"Topic %d:\" % (topic_idx))\n", " print (\" \".join([feature_names[i] for i in topic.argsort()[:-no_top_words - 1:-1]]))" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "dataset = fetch_20newsgroups(shuffle=True, random_state=1, remove=('headers', 'footers', 'quotes'))\n", "documents = dataset.data\n", "\n", "no_features = 1000" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The creation of the bag of words matrix is very easy in Scikit Learn — all the heavy lifting is done by the feature extraction functionality provided for text datasets. A tf-idf transformer is applied to the bag of words matrix that NMF must process with the TfidfVectorizer. LDA on the other hand, being a probabilistic graphical model (i.e. dealing with probabilities) only requires raw counts, so a CountVectorizer is used. Stop words are removed and the number of terms included in the bag of words matrix is restricted to the top 1000." ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "# NMF is able to use tf-idf\n", "tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, max_features=no_features, stop_words='english')\n", "tfidf = tfidf_vectorizer.fit_transform(documents)\n", "tfidf_feature_names = tfidf_vectorizer.get_feature_names()" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "# LDA can only use raw term counts for LDA because it is a probabilistic graphical model\n", "tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=no_features, stop_words='english')\n", "tf = tf_vectorizer.fit_transform(documents)\n", "tf_feature_names = tf_vectorizer.get_feature_names()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As mentioned previously the algorithms are not able to automatically determine the number of topics and this value must be set when running the algorithm. Comprehensive documentation on available parameters is available for both NMF and LDA. Initialising the W and H matrices in NMF with ‘nndsvd’ rather than random initialisation improves the time it takes for NMF to converge. LDA can also be set to run in either batch or online mode." ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "no_topics = 20\n", "\n", "# Run NMF\n", "nmf = NMF(n_components=no_topics, random_state=1, alpha=.1, l1_ratio=.5, init='nndsvd').fit(tfidf)\n", "\n", "# Run LDA\n", "lda = LatentDirichletAllocation(n_components=no_topics, max_iter=5, learning_method='online', learning_offset=50.,random_state=0).fit(tf)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Displaying and Evaluating Topics\n", "\n", "The structure of the resulting matrices returned by both NMF and LDA is the same and the Scikit Learn interface to access the returned matrices is also the same. This is great and allows for a common Python method that is able to display the top words in a topic. Topics are not labeled by the algorithm — a numeric index is assigned." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The derived topics from NMF and LDA are displayed below. From the NMF derived topics, Topic 0 and 8 don’t seem to be about anything in particular but the other topics can be interpreted based upon there top words. LDA for the 20 Newsgroups dataset produces 2 topics with noisy data (i.e., Topic 4 and 7) and also some topics that are hard to interpret (i.e., Topic 3 and Topic 9). I’d say the NMF was able to find more meaningful topics in the 20 Newsgroups dataset." ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Topic 0:\n", "people time right did good said say make way government\n", "Topic 1:\n", "window problem using server application screen display motif manager running\n", "Topic 2:\n", "god jesus bible christ faith believe christian christians sin church\n", "Topic 3:\n", "game team year games season players play hockey win league\n", "Topic 4:\n", "new 00 sale 10 price offer shipping condition 20 15\n", "Topic 5:\n", "thanks mail advance hi looking info help information address appreciated\n", "Topic 6:\n", "windows file files dos program version ftp ms directory running\n", "Topic 7:\n", "edu soon cs university ftp internet article email pub david\n", "Topic 8:\n", "key chip clipper encryption keys escrow government public algorithm nsa\n", "Topic 9:\n", "drive scsi drives hard disk ide floppy controller cd mac\n", "Topic 10:\n", "just ll thought tell oh little fine work wanted mean\n", "Topic 11:\n", "does know anybody mean work say doesn help exist program\n", "Topic 12:\n", "card video monitor cards drivers bus vga driver color memory\n", "Topic 13:\n", "like sounds looks look bike sound lot things really thing\n", "Topic 14:\n", "don know want let need doesn little sure sorry things\n", "Topic 15:\n", "car cars engine speed good bike driver road insurance fast\n", "Topic 16:\n", "ve got seen heard tried good recently times try couple\n", "Topic 17:\n", "use used using work available want software need image data\n", "Topic 18:\n", "think don lot try makes really pretty wasn bit david\n", "Topic 19:\n", "com list dave internet article sun hp email ibm phone\n" ] } ], "source": [ "no_top_words = 10\n", "display_topics(nmf, tfidf_feature_names, no_top_words)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Topic 0:\n", "people gun state control right guns crime states law police\n", "Topic 1:\n", "time question book years did like don space answer just\n", "Topic 2:\n", "mr line rules science stephanopoulos title current define int yes\n", "Topic 3:\n", "key chip keys clipper encryption number des algorithm use bit\n", "Topic 4:\n", "edu com cs vs w7 cx mail uk 17 send\n", "Topic 5:\n", "use does window problem way used point different case value\n", "Topic 6:\n", "windows thanks know help db does dos problem like using\n", "Topic 7:\n", "bike water effect road design media dod paper like turn\n", "Topic 8:\n", "don just like think know people good ve going say\n", "Topic 9:\n", "car new price good power used air sale offer ground\n", "Topic 10:\n", "file available program edu ftp information files use image version\n", "Topic 11:\n", "ax max b8f g9v a86 145 pl 1d9 0t 34u\n", "Topic 12:\n", "government law privacy security legal encryption court fbi technology information\n", "Topic 13:\n", "card bit memory output video color data mode monitor 16\n", "Topic 14:\n", "drive scsi disk mac hard apple drives controller software port\n", "Topic 15:\n", "god jesus people believe christian bible say does life church\n", "Topic 16:\n", "year game team games season play hockey players league player\n", "Topic 17:\n", "10 00 15 25 20 11 12 14 16 13\n", "Topic 18:\n", "armenian israel armenians war people jews turkish israeli said women\n", "Topic 19:\n", "president people new said health year university school day work\n" ] } ], "source": [ "display_topics(lda, tf_feature_names, no_top_words)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2.4 - Tips to improve results of topic modeling\n", "\n", "The results of topic models are completely dependent on the features (terms) present in the corpus. The corpus is represented as document term matrix, which in general is very sparse in nature. Reducing the dimensionality of the matrix can improve the results of topic modelling. Based on my practical experience, there are few approaches which do the trick. \n", "\n", "1. Frequency Filter – Arrange every term according to its frequency. Terms with higher frequencies are more likely to appear in the results as compared ones with low frequency. The low frequency terms are essentially weak features of the corpus, hence it is a good practice to get rid of all those weak features. An exploratory analysis of terms and their frequency can help to decide what frequency value should be considered as the threshold. \n", "\n", "2. Part of Speech Tag Filter – POS tag filter is more about the context of the features than frequencies of features. Topic Modelling tries to map out the recurring patterns of terms into topics. However, every term might not be equally important contextually. For example, POS tag IN contain terms such as – “within”, “upon”, “except”. “CD” contains – “one”,”two”, “hundred” etc. “MD” contains “may”, “must” etc. These terms are the supporting words of a language and can be removed by studying their post tags. \n", "\n", "3. Batch Wise LDA –In order to retrieve most important topic terms, a corpus can be divided into batches of fixed sizes. Running LDA multiple times on these batches will provide different results, however, the best topic terms will be the intersection of all batches. \n", "\n", "#### 2.5 - Topic Modelling for Feature Selection\n", "\n", "Sometimes LDA can also be used as feature selection technique. Take an example of text classification problem where the training data contain category wise documents. If LDA is running on sets of category wise documents. Followed by removing common topic terms across the results of different categories will give the best features for a category. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3 - Example: Clustering and Topic Modeling applied to film synopses" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this guide, I will explain how to cluster a set of documents using Python. My motivating example is to identify the latent structures within the synopses of the top 100 films of all time (per an IMDB list). \n", "\n", "It will cover:\n", "\n", "
    \n", "
  • tokenizing and stemming each synopsis\n", "
  • transforming the corpus into vector space using [tf-idf](http://en.wikipedia.org/wiki/Tf%E2%80%93idf)\n", "
  • calculating cosine distance between each document as a measure of similarity\n", "
  • clustering the documents using the [k-means algorithm](http://en.wikipedia.org/wiki/K-means_clustering)\n", "
  • using [multidimensional scaling](http://en.wikipedia.org/wiki/Multidimensional_scaling) to reduce dimensionality within the corpus\n", "
  • plotting the clustering output using [matplotlib](http://matplotlib.org/) and [mpld3](http://mpld3.github.io/)\n", "
  • conducting a hierarchical clustering on the corpus using [Ward clustering](http://en.wikipedia.org/wiki/Ward%27s_method)\n", "
  • plotting a Ward dendrogram\n", "
  • topic modeling using [Latent Dirichlet Allocation (LDA)](http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation)\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3.1 - Contents" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
    \n", "
  • [Stopwords, stemming, and tokenization](#Stopwords,-stemming,-and-tokenizing)\n", "
  • [Tf-idf and document similarity](#Tf-idf-and-document-similarity)\n", "
  • [K-means clustering](#K-means-clustering)\n", "
  • [Multidimensional scaling](#Multidimensional-scaling)\n", "
  • [Visualizing document clusters](#Visualizing-document-clusters)\n", "
  • [Hierarchical document clustering](#Hierarchical-document-clustering)\n", "
  • [Latent Dirichlet Allocation (LDA)](#Latent-Dirichlet-Allocation)\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "But first, I import everything I am going to need up front" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3.1.1 - import three lists: titles, links and wikipedia synopses " ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "100 titles\n", "['The Godfather', 'The Shawshank Redemption', \"Schindler's List\", 'Raging Bull', 'Casablanca']\n" ] } ], "source": [ "titles = open(os.path.join(datapath, 'title_list.txt')).read().split('\\n')\n", "#ensures that only the first 100 are read in\n", "titles = titles[:100]\n", "print(str(len(titles)) + ' titles')\n", "\n", "print(titles[0:5])" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "100 links\n", "['http://www.imdb.com/title/tt0068646/', 'http://www.imdb.com/title/tt0111161/', 'http://www.imdb.com/title/tt0108052/', 'http://www.imdb.com/title/tt0081398/', 'http://www.imdb.com/title/tt0034583/']\n" ] } ], "source": [ "links = open(os.path.join(datapath, 'link_list_imdb.txt')).read().split('\\n')\n", "links = links[:100]\n", "print(str(len(links)) + ' links')\n", "\n", "print(links[0:5])" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "100 synopses\n", " On the day of his only daughter's wedding, Vito Corleone hears requests in his role as the Godfather, the Don of a New York crime family. Vito's youngest son, Michael, in a Marine Corps uniform, introduces his girlfriend, Kay Adams, to his family at the sprawling reception. Vito's godson Johnny Fontane, a popular singer, pleads for help in securing a coveted movie role, so Vito dispatches his consigliere, Tom Hagen, to Los Angeles to influence the abrasive studio head, Jack Woltz. Woltz is unmoved until the morning he wakes up in bed with the severed head of his prized stallion. On the day of his only daughter's wedd\n" ] } ], "source": [ "synopses_wiki = open(os.path.join(datapath, 'synopses_list_wiki.txt'), encoding=\"utf8\").read().split('\\n BREAKS HERE')\n", "synopses_wiki = synopses_wiki[:100]\n", "\n", "synopses_clean_wiki = []\n", "for text in synopses_wiki:\n", " text = BeautifulSoup(text, 'html.parser').getText()\n", " #strips html formatting and converts to unicode\n", " synopses_clean_wiki.append(text)\n", "synopses_wiki = synopses_clean_wiki\n", "\n", "print(str(len(synopses_wiki)) + ' synopses')\n", "\n", "print(synopses_wiki[0][0:627])" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "100 synopses\n", "\n", "\n", "In late summer 1945, guests are gathered for the wedding reception of Don Vito Corleone's daughter Connie (Talia Shire) and Carlo Rizzi (Gianni Russo). Vito (Marlon Brando), the head of the Corleone Mafia family, is known to friends and associates as \"Godfather.\" He and Tom Hagen (Robert Duvall), the Corleone family lawyer, are hearing requests for favors because, according to Italian tradition, \"no Sicilian can refuse a request on his daughter's wedding day.\" One of the men who asks the Don for a favor is Amerigo Bonasera, a successful mortician and acquaintance of the Don, whose daughter was brutally beaten by two y\n" ] } ], "source": [ "synopses_imdb = open(os.path.join(datapath,'synopses_list_imdb.txt'), encoding=\"utf8\").read().split('\\n BREAKS HERE')\n", "synopses_imdb = synopses_imdb[:100]\n", "synopses_clean_imdb = []\n", "\n", "for text in synopses_imdb:\n", " text = BeautifulSoup(text, 'html.parser').getText()\n", " #strips html formatting and converts to unicode\n", " synopses_clean_imdb.append(text)\n", "\n", "synopses_imdb = synopses_clean_imdb\n", "\n", "print(str(len(synopses_imdb)) + ' synopses')\n", "\n", "print(synopses_imdb[0][0:627])" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "' On the day of his only daughter\\'s wedding, Vito Corleone hears requests in his role as the Godfather, the Don of a New York crime family. Vito\\'s youngest son, Michael, in a Marine Corps uniform, introduces his girlfriend, Kay Adams, to his family at the sprawling reception. Vito\\'s godson Johnny Fontane, a popular singer, pleads for help in securing a coveted movie role, so Vito dispatches his consigliere, Tom Hagen, to Los Angeles to influence the abrasive studio head, Jack Woltz. Woltz is unmoved until the morning he wakes up in bed with the severed head of his prized stallion. On the day of his only daughter\\'s wedding, Vito Corleone Vito Corleone hears requests in his role as the Godfather, the Don Don of a New York crime family. Vito\\'s youngest son, Michael Michael , in a Marine Corps Marine Corps uniform, introduces his girlfriend, Kay Adams Kay Adams , to his family at the sprawling reception. Vito\\'s godson Johnny Fontane Johnny Fontane , a popular singer, pleads for help in securing a coveted movie role, so Vito dispatches his consigliere consigliere , Tom Hagen Tom Hagen , to Los Angeles to influence the abrasive studio head, Jack Woltz Jack Woltz . Woltz is unmoved until the morning he wakes up in bed with the severed head of his prized stallion stallion . \\n Shortly before Christmas 1945, drug baron Virgil \"The Turk\" Sollozzo, backed by the Corleones\\' rivals, the Tattaglias, asks Vito for investment in the emerging drug trade and protection through his political connections. Vito disapproves of drug dealers, so he sends his enforcer, Luca Brasi, to spy on them. The family then receives two fish wrapped in Brasi\\'s vest, imparting that he \"sleeps with the fishes\". An assassination attempt by Sollozzo\\'s men lands Vito in the hospital, so his eldest son, Sonny, takes command. Sollozzo kidnaps Hagen to pressure Sonny to accept his deal. Michael thwarts a second assassination attempt on his father at the hospital; his jaw is broken by Police Captain McCluskey, who is also Sollozzo\\'s bodyguard. Sonny retaliates for the attacks on his father by having Tattaglia\\'s son killed. Michael comes up with a plan to hit Sollozzo and McCluskey: on the pretext of settling the dispute, Michael accepts their offer to meet in a Bronx restaurant and, retrieving a planted handgun, murders them. Shortly before Christmas 1945, drug baron Virgil \"The Turk\" Sollozzo Virgil \"The Turk\" Sollozzo , backed by the Corleones\\' rivals, the Tattaglias, asks Vito for investment in the emerging drug trade and protection through his political connections. Vito disapproves of drug dealers, so he sends his enforcer, Luca Brasi Luca Brasi , to spy on them. The family then receives two fish wrapped in Brasi\\'s vest, imparting that he \"sleeps with the fishes\". An assassination attempt by Sollozzo\\'s men lands Vito in the hospital, so his eldest son, Sonny Sonny , takes command. Sollozzo kidnaps Hagen to pressure Sonny to accept his deal. Michael thwarts a second assassination attempt on his father at the hospital; his jaw is broken by Police Captain McCluskey, who is also Sollozzo\\'s bodyguard. Sonny retaliates for the attacks on his father by having Tattaglia\\'s son killed. Michael comes up with a plan to hit Sollozzo and McCluskey: on the pretext of settling the dispute, Michael accepts their offer to meet in a Bronx restaurant and, retrieving a planted handgun, murders them. \\n Despite a clampdown from the authorities, the Five Families erupt in open warfare and the brothers fear for their safety. Michael takes refuge in Sicily, and Fredo Corleone is sheltered by associate Moe Greene in Las Vegas. Sonny attacks his brother-in-law Carlo on the street for abusing his sister Connie and threatens to kill him if he abuses her again. When it happens again, Sonny speeds for her home but assassins ambush him at a highway toll booth and riddle him with submachine gun fire. Michael\\'s time abroad has led to marriage to Apollonia Vitelli. Their euphoria is shattered when a car bomb intended for him takes her life. Despite a clampdown from the authorities, the Five Families Five Families erupt in open warfare and the brothers fear for their safety. Michael takes refuge in Sicily, and Fredo Corleone Fredo Corleone is sheltered by associate Moe Greene Moe Greene in Las Vegas Las Vegas . Sonny attacks his brother-in-law Carlo Carlo on the street for abusing his sister Connie and threatens to kill him if he abuses her again. When it happens again, Sonny speeds for her home but assassins ambush him at a highway toll booth and riddle him with submachine gun fire. Michael\\'s time abroad has led to marriage to Apollonia Vitelli. Their euphoria is shattered when a car bomb intended for him takes her life. \\n Devastated by Sonny\\'s death, Vito decides to end the feuds. Realising that the Tattaglias were under orders of the now dominant Don Emilio Barzini, he promises, before the heads of the Five Families, to withdraw his opposition to their heroin business and forgo revenge for his son\\'s murder. His safety guaranteed, Michael returns home to a father saddened by his involvement in the family business and marries Kay the next year. Devastated by Sonny\\'s death, Vito decides to end the feuds. Realising that the Tattaglias were under orders of the now dominant Don Emilio Barzini Emilio Barzini , he promises, before the heads of the Five Families, to withdraw his opposition to their heroin business and forgo revenge for his son\\'s murder. His safety guaranteed, Michael returns home to a father saddened by his involvement in the family business and marries Kay the next year. \\n With his father at the end of his career and his surviving brother too weak, Michael takes the reins of the family, promising Kay that he will make the business legitimate within five years. To that end, he insists Hagen relocate to Las Vegas and relinquish his role to Vito because Tom is not a \"wartime consigliere\"; the older man agrees Tom should \"have no part in what will happen\" in the coming battles with rival families. When Michael travels to Las Vegas to buy out Greene\\'s stake in the family\\'s casinos, Greene derides the Corleones as a fading power. To add injury to insult, Michael sees Fredo falling under Greene\\'s sway. With his father at the end of his career and his surviving brother too weak, Michael takes the reins of the family, promising Kay that he will make the business legitimate within five years. To that end, he insists Hagen relocate to Las Vegas and relinquish his role to Vito because Tom is not a \"wartime consigliere\"; the older man agrees Tom should \"have no part in what will happen\" in the coming battles with rival families. When Michael travels to Las Vegas to buy out Greene\\'s stake in the family\\'s casinos, Greene derides the Corleones as a fading power. To add injury to insult, Michael sees Fredo falling under Greene\\'s sway. \\n Vito collapses and dies in his garden while playing with Michael\\'s son, Anthony. At the funeral, Salvatore Tessio arranges a meeting between Michael and Don Barzini, signalling his treachery as Vito had warned. The meeting is set for the same day as the christening of Connie\\'s son, to whom Michael will stand as godfather. As the christening proceeds, Corleone assassins, acting on Michael\\'s orders, murder the other New York dons and Moe Greene. Tessio is told that Michael is aware of his betrayal and taken off to his death. After Carlo is questioned by Michael on his involvement in setting up Sonny\\'s murder and confesses he was contacted by Barzini, Peter Clemenza kills him with a wire garrote. Michael is confronted by Connie, who accuses him of having her husband killed. He denies killing Carlo when questioned by Kay, an answer she accepts. As Kay watches warily, Michael receives his capos, who address him as the new Don Corleone. Vito collapses and dies in his garden while playing with Michael\\'s son, Anthony Anthony . At the funeral, Salvatore Tessio Salvatore Tessio arranges a meeting between Michael and Don Barzini, signalling his treachery as Vito had warned. The meeting is set for the same day as the christening of Connie\\'s son, to whom Michael will stand as godfather. As the christening proceeds, Corleone assassins, acting on Michael\\'s orders, murder the other New York dons and Moe Greene. Tessio is told that Michael is aware of his betrayal and taken off to his death. After Carlo is questioned by Michael on his involvement in setting up Sonny\\'s murder and confesses he was contacted by Barzini, Peter Clemenza Peter Clemenza kills him with a wire garrote garrote . Michael is confronted by Connie, who accuses him of having her husband killed. He denies killing Carlo when questioned by Kay, an answer she accepts. As Kay watches warily, Michael receives his capos capos , who address him as the new Don Corleone. \\n \\n\\nIn late summer 1945, guests are gathered for the wedding reception of Don Vito Corleone\\'s daughter Connie (Talia Shire) and Carlo Rizzi (Gianni Russo). Vito (Marlon Brando), the head of the Corleone Mafia family, is known to friends and associates as \"Godfather.\" He and Tom Hagen (Robert Duvall), the Corleone family lawyer, are hearing requests for favors because, according to Italian tradition, \"no Sicilian can refuse a request on his daughter\\'s wedding day.\" One of the men who asks the Don for a favor is Amerigo Bonasera, a successful mortician and acquaintance of the Don, whose daughter was brutally beaten by two young men because she refused their advances; the men received minimal punishment. The Don is disappointed in Bonasera, who\\'d avoided most contact with the Don due to Corleone\\'s nefarious business dealings. The Don\\'s wife is godmother to Bonasera\\'s shamed daughter, a relationship the Don uses to extract new loyalty from the undertaker. The Don agrees to have his men punish the young men responsible.Meanwhile, the Don\\'s youngest son Michael (Al Pacino), a decorated Marine hero returning from World War II service, arrives at the wedding and tells his girlfriend Kay Adams (Diane Keaton) anecdotes about his family, informing her about his father\\'s criminal life; he reassures her that he is different from his family and doesn\\'t plan to join them in their criminal dealings. The wedding scene serves as critical exposition for the remainder of the film, as Michael introduces the main characters to Kay. Fredo (John Cazale), Michael\\'s next older brother, is a bit dim-witted and quite drunk by the time he finds Michael at the party. Sonny (James Caan), the Don\\'s eldest child and next in line to become Don upon his father\\'s retirement, is married but he is a hot-tempered philanderer who sneaks into a bedroom to have sex with one of Connie\\'s bridesmaids, Lucy Mancini (Jeannie Linero). Tom Hagen is not related to the family by blood but is considered one of the Don\\'s sons because he was homeless when he befriended Sonny in the Little Italy neighborhood of Manhattan and the Don took him in. Now a talented attorney, Tom is being groomed for the important position of consigliere (counselor) to the Don, despite his non-Sicilian heritage.Also among the guests at the celebration is the famous singer Johnny Fontane (Al Martino), Corleone\\'s godson, who has come from Hollywood to petition Vito\\'s help in landing a movie role that will revitalize his flagging career. Jack Woltz (John Marley), the head of the studio, denies Fontane the part (a character much like Johnny himself), which will make him an even bigger star, but Don Corleone explains to Johnny: \"I\\'m gonna make him an offer he can\\'t refuse.\" The Don also receives congratulatory salutations from Luca Brasi, a terrifying enforcer in the criminal underworld, and fills a request from the baker who made Connie\\'s wedding cake who wishes for his nephew Enzo to become an American citizen.After the wedding, Hagen is dispatched to Los Angeles to meet with Woltz, but Woltz angrily tells him that he will never cast Fontane in the role. Woltz holds a grudge because Fontane seduced and \"ruined\" a starlet who Woltz had been grooming for stardom and with whom he had a sexual relationship. Woltz is persuaded to give Johnny the role, however, when he wakes up early the next morning and feels something wet in his bed. He pulls back the sheets and finds himself in a pool of blood; he screams in horror when he discovers the severed head of his prized $600,000 stud horse, Khartoum, in the bed with him. (A deleted scene from the film implies that Luca Brasi (Lenny Montana), Vito\\'s top \"button man\" or hitman, is responsible.)Upon Hagen\\'s return, the family meets with Virgil \"The Turk\" Sollozzo (Al Lettieri), who is being backed by the rival Tattaglia family. He asks Don Corleone for financing as well as political and legal protection for importing and distributing heroin. Despite the huge profit to be made, Vito Corleone refuses, explaining that his political influence would be jeopardized by a move into the narcotics trade. The Don\\'s eldest son, Sonny, who had earlier urged the family to enter the narcotics trade, breaks ranks during the meeting and questions Sollozzo\\'s assurances as to the Corleone Family\\'s investment being guaranteed by the Tattaglia Family. His father, angry at Sonny\\'s dissension in a non-family member\\'s presence, privately rebukes him later. Don Corleone then dispatches Luca Brasi to infiltrate Sollozzo\\'s organization and report back with information. During the meeting, while Brasi is bent over to allow Bruno Tattaglia to light his cigarette, he is stabbed in the hand by Sollozzo, and is subsequently garroted by an assassin.Soon after his meeting with Sollozzo, Don Corleone is gunned down in an assassination attempt just outside his office, and it is not immediately known whether he has survived. Fredo Corleone had been assigned driving and protection duty for his father when Paulie Gatto, the Don\\'s usual bodyguard, had called in sick. Fredo proves to be ineffectual, fumbling with his gun and unable to shoot back. When Sonny hears about the Don being shot and Paulie\\'s absence, he orders Clemenza (Richard S. Castellano) to find Paulie and bring him to the Don\\'s house.Sollozzo abducts Tom Hagen and persuades him to offer Sonny the deal previously offered to his father. Enraged, Sonny refuses to consider it and issues an ultimatum to the Tattaglias: turn over Sollozzo or face a lengthy, bloody and costly (for both sides) gang war. They refuse, and instead send Sonny \"a Sicilian message,\" in the form of two fresh fish wrapped in Luca Brasi\\'s bullet-proof vest, to tell the Corleones that Luca Brasi \"sleeps with the fishes.\"Clemenza later takes Paulie and one of the family\\'s hitmen, Rocco Lampone, for a drive into Manhattan. Sonny wants to \"go to the mattresses\" -- set up beds in apartments for Corleone button men to operate out of in the event that the crime war breaks out. On their way back from Manhattan, Clemenza has Paulie stop the car in a remote area so he can urinate. Rocco shoots Paulie dead; he and Clemenza leave Paulie and the car behind.Michael, whom the other Mafia families consider a \"civilian\" uninvolved in mob business, visits his father at a small private hospital. He is shocked to find that no one is guarding him. Realizing that his father is again being set up to be killed, he calls Sonny for help, moves his father to another room, and goes outside to watch the entrance. Michael enlists help from Enzo the baker (Gabriele Torrei), who has come to the hospital to pay his respects. Together, they bluff away Sollozzo\\'s men as they drive by. Police cars soon appear bringing the corrupt Captain McCluskey (Sterling Hayden), who viciously punches Michael in the cheek and breaks his jaw when Michael insinuates that Sollozzo paid McCluskey to set up his father. Just then, Hagen arrives with \"private detectives\" licensed to carry guns to protect Don Corleone, and he takes the injured Michael home. Sonny responds by having Bruno Tattaglia (Tony Giorgio), the eldest son and underboss of Don Phillip Tattaglia (Victor Rendina), killed (off-camera).Following the attempt on the Don\\'s life at the hospital, Sollozzo requests a meeting with the Corleones, which Captain McCluskey will attend as Sollozzo\\'s bodyguard. When Michael volunteers to kill both men during the meeting, Sonny and the other senior Family members are amused; however, Michael convinces them that he is serious and that killing Sollozzo and McCluskey is in the family\\'s interest: \"It\\'s not personal. It\\'s strictly business.\" Because Michael is considered a civilian, he won\\'t be regarded as a suspicious ambassador for the Corleones. Although police officers are usually off limits for hits, Michael argues that since McCluskey is corrupt and has illegal dealings with Sollozzo, he is fair game. Michael also implies that newspaper reporters that the Corleones have on their payroll would delight in publishing stories about a corrupt police captain.Michael meets with Clemenza, one of his father\\'s caporegimes (captains), who prepares a small pistol for him, covering the trigger and grip with tape to prevent any fingerprint evidence. He instructs Michael about the proper way to perform the assassination and tells him to leave the gun behind. He also tells Michael that the family were all very proud of Michael for becoming a war hero during his service in the Marines. Clemenza shows great confidence that Michael can perform the job and tells him it will all go smoothly. The plan is to have the Corleone\\'s informers find out the location of the meeting and plant the revolver before Michael, Sollozzo and McCluskey arrive.Before the meeting in a small Italian restaurant, McCluskey frisks Michael for weapons and finds him clean. Michael excuses himself to go to the bathroom, where he retrieves the planted revolver. Returning to the table, he fatally shoots Sollozzo, then McCluskey. Michael is sent to hide in Sicily while the Corleone family prepares for all-out warfare with the Five Families (who are united against the Corleones) as well as a general clampdown on the mob by the police and government authorities. When the don returns home from the hospital, he is distraught to learn that it was Michael who killed Sollozzo and McCluskey.Meanwhile, Connie and Carlo\\'s marriage is disintegrating. They argue publicly over Carlo\\'s suspected infidelity and his possessive behavior toward Connie. By Italian tradition, nobody, not even a high-ranking Mafia don, can intervene in a married couple\\'s personal disputes, even if they involve infidelity, money, or domestic abuse. One day, Sonny sees a bruise on Connie\\'s face and she tells him that Carlo hit her after she asked him if he was having an affair. Sonny tracks down and severely beats up Carlo Rizzi in the middle of a crowded street for brutalizing the pregnant Connie, and threatens to kill Carlo if he ever abuses Connie again. An angry Carlo responds by plotting with Tattaglia and Don Emilio Barzini (Richard Conte), the Corleones\\' chief rivals, to have Sonny killed.Later, Carlo has one of his mistresses phone his house, knowing that Connie will answer. The woman asks Connie to tell Carlo not to meet her tonight. The very pregnant and distraught Connie assaults Carlo; he takes advantage of the altercation to beat Connie in order to lure Sonny out in the open and away from the Corleone compound. When Connie phones the compound to tell Sonny that Carlo has beaten her again, the furious Sonny drives off (alone and unescorted) to fulfill his threat against Carlo. On the way to Connie and Carlo\\'s house, Sonny is ambushed at a toll booth on the Long Island Causeway and violently shot to death by several carloads of hitmen wielding Thompson sub-machine guns.Tom Hagen relays the news of Sonny\\'s massacre to the Don, who calls in the favor from Bonasera to personally handle the embalming of Sonny\\'s body. Rather than seek revenge for Sonny\\'s killing, Don Corleone meets with the heads of the Five Families to negotiate a cease-fire. Not only is the conflict draining all their assets and threatening their survival, but ending it is the only way that Michael can return home safely. Reversing his previous decision, Vito agrees that the Corleone family will provide political protection for Tattaglia\\'s traffic in heroin, as long as it is controlled and not sold to children. At the meeting, Don Corleone deduces that Don Barzini, not Tattaglia, was ultimately behind the start of the mob war and Sonny\\'s death.In Sicily, Michael patiently waits out his exile, protected by Don Tommasino (Corrado Gaipa), an old family friend. Michael aimlessly wanders the countryside, accompanied by his ever-present bodyguards, Calo (Franco Citti) and Fabrizio (Angelo Infanti). In a small village, Michael meets and falls in love with Apollonia Vitelli (Simonetta Stefanelli), the beautiful young daughter of a bar owner. They court and marry in the traditional Sicilian fashion, but soon Michael\\'s presence becomes known to Corleone enemies. As the couple is about to be moved to a safer location, Apollonia is killed as a result of a rigged car (originally intended for Michael), exploding on ignition; Michael, who watched the car blow up, spots Fabrizio hurriedly leaving the grounds seconds before the explosion, implicating him in the assassination plot. (In a deleted scene, Fabrizio is found years later and killed.)With his safety guaranteed, Michael returns home. More than a year later, in 1950, he reunites with his former girlfriend Kay after a total of four years of separation -- three in Italy and one in America. He tells her he wants them to be married. Although Kay is hurt that he waited so long to contact her, she accepts his proposal. With Don Vito semi-retired, Sonny dead, and middle brother Fredo considered incapable of running the family business, Michael is now in charge; he promises Kay he will make the family business completely legitimate within five years.Two years later, Clemenza and Salvatore Tessio (Abe Vigoda), complain that they are being pushed around by the Barzini Family and ask permission to strike back, but Michael denies the request. He plans to move the family operations to Nevada and after that, Clemenza and Tessio may break away to form their own families. Michael further promises Connie\\'s husband, Carlo, that he will be his right hand man in Nevada (Carlo had grown up there), unaware of his part in Sonny\\'s assassination. Tom Hagen has been removed as consigliere and is now merely the family\\'s lawyer, with Vito serving as consigliere. Privately, Hagen inquires about his change in status, and also questions Michael about a new regime of \"soldiers\" secretly being built under Rocco Lampone (Tom Rosqui). Don Vito explains to Hagen that Michael is acting on his advice.Another year or so later, Michael travels to Las Vegas and meets with Moe Greene (Alex Rocco), a rich and shrewd casino boss looking to expand his business dealings. After the Don\\'s attempted assassination, Fredo had been sent to Las Vegas to learn about the casino business from Greene. Michael arrogantly offers to buy out Greene but is rudely rebuffed. Greene believes the Corleones are weak and that he can secure a better deal from Barzini. As Moe and Michael heatedly negotiate, Fredo sides with Moe. Afterward, Michael warns Fredo to never again \"take sides with anyone against the family.\"Michael returns home. In a private moment, Vito explains his expectation that the Family\\'s enemies will attempt to murder Michael by using a trusted associate to arrange a meeting as a pretext for assassination. Vito also reveals that he had never really intended a life of crime for Michael, hoping that his youngest son would hold legitimate power as a senator or governor. Some months later, Vito collapses and dies while playing with his young grandson Anthony (Anthony Gounaris) in his tomato garden. At the burial, Tessio conveys a proposal for a meeting with Barzini, which identifies Tessio as the traitor that Vito was expecting.Michael arranges for a series of murders to occur simultaneously while he is standing godfather to Connie\\'s and Carlo\\'s newborn son at the church:Don Stracci (Don Costello) is gunned down along with his bodyguard in a hotel elevator by a shotgun-wielding Clemenza.Moe Greene is killed while having a massage, shot through the eye by an unidentified assassin.Don Cuneo (Rudy Bond) is trapped in a revolving door at the St. Regis Hotel and shot dead by soldier Willi Cicci (Joe Spinell).Don Tattaglia is assassinated in his bed, along with a prostitute, by Rocco Lampone and an unknown associate.Don Barzini is killed on the steps of his office building along with his bodyguard and driver, shot by Al Neri (Richard Bright), disguised in his old police uniform.After the baptism, Tessio believes he and Hagen are on their way to the meeting between Michael and Barzini that he has arranged. Instead, he is surrounded by Willi Cicci and other button men as Hagen steps away. Realizing that Michael has uncovered his betrayal, Tessio tells Hagen that he always respected Michael, and that his disloyalty \"was only business.\" He asks if Tom can get him off for \"old times\\' sake,\" but Tom says he cannot. Tessio is driven away and never seen again (it is implied that Cicci shoots and kills Tessio with his own gun after he disarms him prior to entering the car).Meanwhile, Michael confronts Carlo about Sonny\\'s murder and forces him to admit his role in setting up the ambush, having been approached by Barzini himself. (The hitmen who killed Sonny were the core members of Barzini\\'s personal bodyguard.) Michael assures Carlo he will not be killed, but his punishment is exclusion from all family business. He hands Carlo a plane ticket to exile in Las Vegas. However, when Carlo gets into a car headed for the airport, he is immediately garroted to death by Clemenza, on Michael\\'s orders.Later, a hysterical Connie confronts Michael at the Corleone compound as movers carry away the furniture in preparation for the family move to Nevada. She accuses him of murdering Carlo in retribution for Carlo\\'s brutal treatment of her and for Carlo\\'s suspected involvement in Sonny\\'s murder. After Connie is removed from the house, Kay questions Michael about Connie\\'s accusation, but he refuses to answer, reminding her to never ask him about his business or what he does for a living. She insists, and Michael outright lies, reassuring his wife that he played no role in Carlo\\'s death. Kay believes him and is relieved. The film ends with Clemenza and new caporegimes Rocco Lampone and Al Neri arriving and paying their respects to Michael. Clemenza kisses Michael\\'s hand and greets him as \"Don Corleone.\" As Kay watches, the office door is closed.\\n\\n'" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Joining the two synopses sources\n", "\n", "synopses = []\n", "for i in range(len(synopses_wiki)):\n", " item = synopses_wiki[i] + synopses_imdb[i]\n", " synopses.append(item)\n", " \n", "synopses[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3.1.2 - Importing the genres" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "100 genres\n", "[\"[u' Crime', u' Drama']\", \"[u' Crime', u' Drama']\", \"[u' Biography', u' Drama', u' History']\", \"[u' Biography', u' Drama', u' Sport']\", \"[u' Drama', u' Romance', u' War']\"]\n" ] } ], "source": [ "genres = open(os.path.join(datapath,'genres_list.txt')).read().split('\\n')\n", "genres = genres[:100]\n", "print(str(len(genres)) + ' genres')\n", "\n", "print(genres[0:5])" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "# generates index for each item in the corpora (in this case it's just rank) and I'll use this for scoring later\n", "ranks = []\n", "\n", "for i in range(0,len(titles)):\n", " ranks.append(i)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3.1.3 - Stopwords, stemming, and tokenizing" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This section is focused on defining some functions to manipulate the synopses. First, I load [NLTK's](http://www.nltk.org/) list of English stop words. [Stop words](http://en.wikipedia.org/wiki/Stop_words) are words like \"a\", \"the\", or \"in\" which don't convey significant meaning. I'm sure there are much better explanations of this out there." ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "# load nltk's English stopwords as variable called 'stopwords'\n", "stopwords = nltk.corpus.stopwords.words('english')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next I import the [Snowball Stemmer](http://snowball.tartarus.org/) which is actually part of NLTK. [Stemming](http://en.wikipedia.org/wiki/Stemming) is just the process of breaking a word down into its root." ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "# load nltk's SnowballStemmer as variabled 'stemmer'\n", "from nltk.stem.snowball import SnowballStemmer\n", "stemmer = SnowballStemmer(\"english\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "Below I define two functions:\n", "\n", "
    \n", "
  • *tokenize_and_stem*: tokenizes (splits the synopsis into a list of its respective words (or tokens) and also stems each token
  • *tokenize_only*: tokenizes the synopsis only\n", "
\n", "\n", "I use both these functions to create a dictionary which becomes important in case I want to use stems for an algorithm, but later convert stems back to their full words for presentation purposes. Guess what, I do want to do that!\n", "\n" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "# here I define a tokenizer and stemmer which returns the set of stems in the text that it is passed\n", "\n", "def tokenize_and_stem(text):\n", " # first tokenize by sentence, then by word to ensure that punctuation is caught as it's own token\n", " tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]\n", " filtered_tokens = []\n", " # filter out any tokens not containing letters (e.g., numeric tokens, raw punctuation)\n", " for token in tokens:\n", " if re.search('[a-zA-Z]', token):\n", " filtered_tokens.append(token)\n", " stems = [stemmer.stem(t) for t in filtered_tokens]\n", " return stems\n", "\n", "\n", "def tokenize_only(text):\n", " # first tokenize by sentence, then by word to ensure that punctuation is caught as it's own token\n", " tokens = [word.lower() for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]\n", " filtered_tokens = []\n", " # filter out any tokens not containing letters (e.g., numeric tokens, raw punctuation)\n", " for token in tokens:\n", " if re.search('[a-zA-Z]', token):\n", " filtered_tokens.append(token)\n", " return filtered_tokens" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below I use my stemming/tokenizing and tokenizing functions to iterate over the list of synopses to create two vocabularies: one stemmed and one only tokenized. " ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "totalvocab_stemmed = []\n", "totalvocab_tokenized = []\n", "for i in synopses:\n", " allwords_stemmed = tokenize_and_stem(i)\n", " totalvocab_stemmed.extend(allwords_stemmed)\n", " \n", " allwords_tokenized = tokenize_only(i)\n", " totalvocab_tokenized.extend(allwords_tokenized)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using these two lists, I create a pandas DataFrame with the stemmed vocabulary as the index and the tokenized words as the column. The benefit of this is it provides an efficient way to look up a stem and return a full token. The downside here is that stems to tokens are one to many: the stem 'run' could be associated with 'ran', 'runs', 'running', etc. For my purposes this is fine--I'm perfectly happy returning the first token associated with the stem I need to look up." ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "vocab_frame = pd.DataFrame({'words': totalvocab_tokenized}, index = totalvocab_stemmed)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3.1.4 - Tf-idf and document similarity" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "Here, I define term frequency-inverse document frequency (tf-idf) vectorizer parameters and then convert the *synopses* list into a tf-idf matrix. \n", "\n", "To get a Tf-idf matrix, first count word occurrences by document. This is transformed into a document-term matrix (dtm). This is also just called a term frequency matrix. An example of a dtm is here at right.\n", "\n", "Then apply the term frequency-inverse document frequency weighting: words that occur frequently within a document but not frequently within the corpus receive a higher weighting as these words are assumed to contain more meaning in relation to the document.\n", "\n", "A couple things to note about the parameters I define below:\n", "\n", "
    \n", "
  • max_df: this is the maximum frequency within the documents a given feature can have to be used in the tfi-idf matrix. If the term is in greater than 80% of the documents it probably cares little meanining (in the context of film synopses)\n", "
  • min_idf: this could be an integer (e.g. 5) and the term would have to be in at least 5 of the documents to be considered. Here I pass 0.2; the term must be in at least 20% of the document. I found that if I allowed a lower min_df I ended up basing clustering on names--for example \"Michael\" or \"Tom\" are names found in several of the movies and the synopses use these names frequently, but the names carry no real meaning.\n", "
  • ngram_range: this just means I'll look at unigrams, bigrams and trigrams. See [n-grams](http://en.wikipedia.org/wiki/N-gram)\n", "
" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/rsouza/environments/default_env/lib/python3.8/site-packages/sklearn/feature_extraction/text.py:388: UserWarning: Your stop_words may be inconsistent with your preprocessing. Tokenizing the stop words generated tokens ['abov', 'afterward', 'alon', 'alreadi', 'alway', 'ani', 'anoth', 'anyon', 'anyth', 'anywher', 'becam', 'becaus', 'becom', 'befor', 'besid', 'cri', 'describ', 'dure', 'els', 'elsewher', 'empti', 'everi', 'everyon', 'everyth', 'everywher', 'fifti', 'forti', 'henc', 'hereaft', 'herebi', 'howev', 'hundr', 'inde', 'mani', 'meanwhil', 'moreov', 'nobodi', 'noon', 'noth', 'nowher', 'onc', 'onli', 'otherwis', 'ourselv', 'perhap', 'pleas', 'sever', 'sinc', 'sincer', 'sixti', 'someon', 'someth', 'sometim', 'somewher', 'themselv', 'thenc', 'thereaft', 'therebi', 'therefor', 'togeth', 'twelv', 'twenti', 'veri', 'whatev', 'whenc', 'whenev', 'wherea', 'whereaft', 'wherebi', 'wherev', 'whi', 'yourselv'] not in stop_words.\n", " warnings.warn('Your stop_words may be inconsistent with '\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 4.5 s, sys: 0 ns, total: 4.5 s\n", "Wall time: 4.76 s\n", "(100, 564)\n" ] } ], "source": [ "from sklearn.feature_extraction.text import TfidfVectorizer\n", "\n", "tfidf_vectorizer = TfidfVectorizer(max_df=0.8, \n", " max_features=200000,\n", " min_df=0.2, \n", " stop_words='english',\n", " use_idf=True, \n", " tokenizer=tokenize_and_stem, \n", " ngram_range=(1,3))\n", "\n", "%time tfidf_matrix = tfidf_vectorizer.fit_transform(synopses)\n", "\n", "print(tfidf_matrix.shape)" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "terms = tfidf_vectorizer.get_feature_names()" ] }, { "cell_type": "code", "execution_count": 106, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[\"'d\",\n", " \"'s death\",\n", " \"'s father\",\n", " \"'s friend\",\n", " \"'s hous\",\n", " \"'s mother\",\n", " 'abandon',\n", " 'abl',\n", " 'accept',\n", " 'accid',\n", " 'accompani',\n", " 'accus',\n", " 'act',\n", " 'action',\n", " 'actual',\n", " 'admit',\n", " 'afterward',\n", " 'ago',\n", " 'agre',\n", " 'air',\n", " 'aliv',\n", " 'allow',\n", " 'alon',\n", " 'alreadi',\n", " 'alway',\n", " 'american',\n", " 'angri',\n", " 'angrili',\n", " 'ani',\n", " 'announc',\n", " 'anoth',\n", " 'answer',\n", " 'anyon',\n", " 'anyth',\n", " 'apart',\n", " 'appar',\n", " 'appear',\n", " 'approach',\n", " 'area',\n", " 'argu',\n", " 'arm',\n", " 'armi',\n", " 'arrang',\n", " 'arrest',\n", " 'arriv',\n", " 'ask',\n", " 'assign',\n", " 'assist',\n", " 'assum',\n", " 'attack']" ] }, "execution_count": 106, "metadata": {}, "output_type": "execute_result" } ], "source": [ "terms[0:50]" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics.pairwise import cosine_similarity\n", "dist = 1 - cosine_similarity(tfidf_matrix)" ] }, { "cell_type": "code", "execution_count": 107, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 0.00000000e+00, 8.00612667e-01, 7.62919309e-01, ...,\n", " 6.40317667e-01, 6.70731044e-01, 8.24020109e-01],\n", " [ 8.00612667e-01, 1.11022302e-16, 7.33522706e-01, ...,\n", " 7.33496310e-01, 7.71593583e-01, 8.93000317e-01],\n", " [ 7.62919309e-01, 7.33522706e-01, -2.22044605e-16, ...,\n", " 7.24210289e-01, 7.49546661e-01, 8.58322258e-01],\n", " ...,\n", " [ 6.40317667e-01, 7.33496310e-01, 7.24210289e-01, ...,\n", " 2.22044605e-16, 4.51669244e-01, 9.17444019e-01],\n", " [ 6.70731044e-01, 7.71593583e-01, 7.49546661e-01, ...,\n", " 4.51669244e-01, 0.00000000e+00, 8.68338789e-01],\n", " [ 8.24020109e-01, 8.93000317e-01, 8.58322258e-01, ...,\n", " 9.17444019e-01, 8.68338789e-01, -2.22044605e-16]])" ] }, "execution_count": 107, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dist" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3.1.5 - K-means clustering" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now onto the fun part. Using the tf-idf matrix, you can run a slew of clustering algorithms to better understand the hidden structure within the synopses. I first chose [k-means](http://en.wikipedia.org/wiki/K-means_clustering). K-means initializes with a pre-determined number of clusters (I chose 5). Each observation is assigned to a cluster (cluster assignment) so as to minimize the within cluster sum of squares. Next, the mean of the clustered observations is calculated and used as the new cluster centroid. Then, observations are reassigned to clusters and centroids recalculated in an iterative process until the algorithm reaches convergence.\n", "\n", "I found it took several runs for the algorithm to converge a global optimum as k-means is susceptible to reaching local optima. " ] }, { "cell_type": "code", "execution_count": 121, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 53.9 ms, sys: 3.37 ms, total: 57.3 ms\n", "Wall time: 56.4 ms\n" ] } ], "source": [ "from sklearn.cluster import KMeans\n", "\n", "num_clusters = 5\n", "km = KMeans(n_clusters=num_clusters)\n", "%time km.fit(tfidf_matrix)\n", "clusters = km.labels_.tolist()" ] }, { "cell_type": "code", "execution_count": 122, "metadata": {}, "outputs": [], "source": [ "#from sklearn.externals import joblib\n", "import joblib\n", "\n", "joblib.dump(km, os.path.join(outputs, 'doc_cluster.pkl'))\n", "km = joblib.load(os.path.join(outputs, 'doc_cluster.pkl'))\n", "clusters = km.labels_.tolist()" ] }, { "cell_type": "code", "execution_count": 123, "metadata": {}, "outputs": [], "source": [ "films = {'title': titles, 'rank': ranks, 'synopsis': synopses, 'cluster': clusters, 'genre': genres}\n", "frame = pd.DataFrame(films, index = [clusters] , columns = ['rank', 'title', 'cluster', 'genre'])" ] }, { "cell_type": "code", "execution_count": 124, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ranktitleclustergenre
10The Godfather1[u' Crime', u' Drama']
11The Shawshank Redemption1[u' Crime', u' Drama']
12Schindler's List1[u' Biography', u' Drama', u' History']
33Raging Bull3[u' Biography', u' Drama', u' Sport']
14Casablanca1[u' Drama', u' Romance', u' War']
25One Flew Over the Cuckoo's Nest2[u' Drama']
26Gone with the Wind2[u' Drama', u' Romance', u' War']
47Citizen Kane4[u' Drama', u' Mystery']
28The Wizard of Oz2[u' Adventure', u' Family', u' Fantasy', u' Mu...
49Titanic4[u' Drama', u' Romance']
\n", "
" ], "text/plain": [ " rank title cluster \\\n", "1 0 The Godfather 1 \n", "1 1 The Shawshank Redemption 1 \n", "1 2 Schindler's List 1 \n", "3 3 Raging Bull 3 \n", "1 4 Casablanca 1 \n", "2 5 One Flew Over the Cuckoo's Nest 2 \n", "2 6 Gone with the Wind 2 \n", "4 7 Citizen Kane 4 \n", "2 8 The Wizard of Oz 2 \n", "4 9 Titanic 4 \n", "\n", " genre \n", "1 [u' Crime', u' Drama'] \n", "1 [u' Crime', u' Drama'] \n", "1 [u' Biography', u' Drama', u' History'] \n", "3 [u' Biography', u' Drama', u' Sport'] \n", "1 [u' Drama', u' Romance', u' War'] \n", "2 [u' Drama'] \n", "2 [u' Drama', u' Romance', u' War'] \n", "4 [u' Drama', u' Mystery'] \n", "2 [u' Adventure', u' Family', u' Fantasy', u' Mu... \n", "4 [u' Drama', u' Romance'] " ] }, "execution_count": 124, "metadata": {}, "output_type": "execute_result" } ], "source": [ "frame.head(10)" ] }, { "cell_type": "code", "execution_count": 125, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1 31\n", "3 28\n", "2 18\n", "4 14\n", "0 9\n", "Name: cluster, dtype: int64" ] }, "execution_count": 125, "metadata": {}, "output_type": "execute_result" } ], "source": [ "frame['cluster'].value_counts()" ] }, { "cell_type": "code", "execution_count": 126, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "cluster\n", "0 53.222222\n", "1 44.516129\n", "2 37.888889\n", "3 56.571429\n", "4 58.928571\n", "Name: rank, dtype: float64" ] }, "execution_count": 126, "metadata": {}, "output_type": "execute_result" } ], "source": [ "grouped = frame['rank'].groupby(frame['cluster'])\n", "\n", "grouped.mean()" ] }, { "cell_type": "code", "execution_count": 127, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Top terms per cluster:\n", "\n", "Cluster 0 words: b'george', b'singing', b'perform', b'music', b'film', b'marries',\n", "\n", "Cluster 0 titles: Singin' in the Rain, It's a Wonderful Life, Amadeus, The Philadelphia Story, An American in Paris, The King's Speech, A Place in the Sun, Nashville, Yankee Doodle Dandy,\n", "\n", "Cluster 1 words: b'army', b'war', b'soldiers', b'killed', b'captain', b'family',\n", "\n", "Cluster 1 titles: The Godfather, The Shawshank Redemption, Schindler's List, Casablanca, Lawrence of Arabia, Forrest Gump, The Sound of Music, The Bridge on the River Kwai, Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb, Apocalypse Now, The Lord of the Rings: The Return of the King, Gladiator, From Here to Eternity, Saving Private Ryan, Doctor Zhivago, Patton, Braveheart, Butch Cassidy and the Sundance Kid, Platoon, High Noon, Dances with Wolves, The Pianist, Goodfellas, The Deer Hunter, All Quiet on the Western Front, Giant, The Green Mile, Network, The African Queen, Stagecoach, Mutiny on the Bounty,\n", "\n", "Cluster 2 words: b'home', b'water', b'ship', b'away', b'sister', b'family',\n", "\n", "Cluster 2 titles: One Flew Over the Cuckoo's Nest, Gone with the Wind, The Wizard of Oz, Star Wars, E.T. the Extra-Terrestrial, 2001: A Space Odyssey, The Silence of the Lambs, Chinatown, Raiders of the Lost Ark, A Streetcar Named Desire, The Best Years of Our Lives, Ben-Hur, Jaws, The Treasure of the Sierra Madre, The Exorcist, Mr. Smith Goes to Washington, The Grapes of Wrath, Close Encounters of the Third Kind,\n", "\n", "Cluster 3 words: b'police', b'car', b'says', b'killed', b'asks', b'apartments',\n", "\n", "Cluster 3 titles: Raging Bull, Psycho, Sunset Blvd., Vertigo, On the Waterfront, West Side Story, Some Like It Hot, 12 Angry Men, Gandhi, Unforgiven, Rocky, To Kill a Mockingbird, My Fair Lady, The Apartment, City Lights, Rain Man, Fargo, Shane, The Graduate, American Graffiti, Pulp Fiction, The Maltese Falcon, A Clockwork Orange, Double Indemnity, Rebel Without a Cause, Rear Window, The Third Man, North by Northwest,\n", "\n", "Cluster 4 words: b'new', b'york', b'new', b'relationship', b'love', b'father',\n", "\n", "Cluster 4 titles: Citizen Kane, Titanic, The Godfather: Part II, The Good, the Bad and the Ugly, The French Connection, It Happened One Night, Midnight Cowboy, Annie Hall, Out of Africa, Good Will Hunting, Terms of Endearment, Tootsie, Taxi Driver, Wuthering Heights,\n", "\n" ] } ], "source": [ "from __future__ import print_function\n", "\n", "print(\"Top terms per cluster:\")\n", "print()\n", "order_centroids = km.cluster_centers_.argsort()[:, ::-1]\n", "for i in range(num_clusters):\n", " print(f\"Cluster {i} words:\", end='')\n", " for ind in order_centroids[i, :6]:\n", " print(f\" {vocab_frame.loc[terms[ind].split(' ')].values.tolist()[0][0].encode('utf-8', 'ignore')}\", end=',')\n", " print()\n", " print()\n", " print(f\"Cluster {i} titles:\", end='')\n", " for title in frame.loc[i]['title'].values.tolist():\n", " print(f' {title},', end='')\n", " print()\n", " print()" ] }, { "cell_type": "code", "execution_count": 128, "metadata": {}, "outputs": [], "source": [ "#This is purely to help export tables to html and to correct for my 0 start rank (so that Godfather is 1, not 0)\n", "frame['Rank'] = frame['rank'] + 1\n", "frame['Title'] = frame['title']" ] }, { "cell_type": "code", "execution_count": 129, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
RankTitle
1The Godfather
2The Shawshank Redemption
3Schindler's List
5Casablanca
11Lawrence of Arabia
17Forrest Gump
18The Sound of Music
25The Bridge on the River Kwai
30Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb
32Apocalypse Now
34The Lord of the Rings: The Return of the King
35Gladiator
36From Here to Eternity
37Saving Private Ryan
48Doctor Zhivago
49Patton
51Braveheart
53Butch Cassidy and the Sundance Kid
56Platoon
57High Noon
58Dances with Wolves
59The Pianist
60Goodfellas
62The Deer Hunter
63All Quiet on the Western Front
78Giant
81The Green Mile
83Network
88The African Queen
89Stagecoach
90Mutiny on the Bounty
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#export tables to HTML\n", "html_output = frame[['Rank', 'Title']].loc[frame['cluster'] == 1].to_html(index=False)\n", "\n", "from IPython.core.display import display, HTML\n", "display(HTML(html_output))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3.1.6 - Multidimensional scaling" ] }, { "cell_type": "code", "execution_count": 130, "metadata": {}, "outputs": [], "source": [ "from sklearn.manifold import MDS\n", "\n", "# two components as we're plotting points in a two-dimensional plane\n", "# \"precomputed\" because we provide a distance matrix\n", "# we will also specify `random_state` so the plot is reproducible.\n", "mds = MDS(n_components=2, dissimilarity=\"precomputed\", random_state=1)\n", "\n", "pos = mds.fit_transform(dist) # shape (n_components, n_samples)\n", "\n", "xs, ys = pos[:, 0], pos[:, 1]" ] }, { "cell_type": "code", "execution_count": 131, "metadata": {}, "outputs": [], "source": [ "#strip any proper nouns (NNP) or plural proper nouns (NNPS) from a text\n", "from nltk.tag import pos_tag\n", "\n", "def strip_proppers_POS(text):\n", " tagged = pos_tag(text.split()) #use NLTK's part of speech tagger\n", " non_propernouns = [word for word,pos in tagged if pos != 'NNP' and pos != 'NNPS']\n", " return non_propernouns" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3.1.7 - Visualizing document clusters" ] }, { "cell_type": "code", "execution_count": 132, "metadata": {}, "outputs": [], "source": [ "#set up colors per clusters using a dict\n", "cluster_colors = {0: '#1b9e77', 1: '#d95f02', 2: '#7570b3', 3: '#e7298a', 4: '#66a61e'}\n", "\n", "#set up cluster names using a dict\n", "cluster_names = {0: 'Family, home, war', \n", " 1: 'Police, killed, murders', \n", " 2: 'Father, New York, brothers', \n", " 3: 'Dance, singing, love', \n", " 4: 'Killed, soldiers, captain'}" ] }, { "cell_type": "code", "execution_count": 133, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/8AAAH3CAYAAADtzu8SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddVhU2RvA8e8Mg6RgADbiKmIhIIgB4ogouCp2YmCsteq64dqKrasbumGsulhrrN0BiooNimInqFiAApIS8/uDH3fBGUox93yex+dh7px77rlXYk69r0ylUiEIgiAIgiAIgiAIwqdL/r4bIAiCIAiCIAiCIAjC2yU6/4IgCIIgCIIgCILwiROdf0EQBEEQBEEQBEH4xInOvyAIgiAIgiAIgiB84kTnXxAEQRAEQRAEQRA+caLzLwiCIAiCIAiCIAifOEVeb5qYmKgsLCzeUVMEQRAEQRAEQRAEoegEBwdHqVQq0/fdjg9Bnp1/CwsLgoKC3lVbBEEQBEEQBEEQBKHIyGSy8Pfdhg+FWPYvCIIgCIIgCIIgCJ840fkXBEEQBEEQBEEQhE+c6PwLgiAIgiAIgiAIwicuzz3/giAIgiAIgiAI2aWmpvLgwQOSk5Pfd1MEQaKrq0vFihXR1tZ+3035YInOvyAIgiAIgiAIBfbgwQOKFy+OhYUFMpnsfTdHEFCpVERHR/PgwQOqVKnyvpvzwRKdf0EQBEEQBEEQCiw5OblQHf/HiXHsD79MTEoiJXT0ca9cm7L6Rm+5lcJ/iUwmo3Tp0kRGRr7vpnzQROdfEARBEARBEIRCKUjHPyopnomntrMv/DJpqgzp+JTTO2lVuQ7TG3piomf4Npsp/IeIVSj5EwH/BEEQBEEQBEEoUlFJ8bTfvYhdYaE5Ov4AaaoMdoZdpP3uRUQlxb9W/VpaWtja2kr/wsLC3qi9O3bsYM6cOQD4+Pgwf/7816rH29ubTZs2vVFbBOFtETP/giAIgiAIgiAUqUmndhD2IjrPMmEvopl0ageLmvUsdP16enqEhIS8ZuvUeXp64unpWWT1fSrS09PR0tJ6380QioiY+RcEQRAEQRAEocg8Toxjb/ilApXdG36JJ4lxb3zN+Ph4mjdvTr169bC2tmb79u0AhIWFUaNGDby9valevTpeXl74+fnh5OSEpaUlZ86cAcDX15fhw4fnqPP27dvUq1dPen3z5s0cr3Nz9OhRGjduzGeffSatAlCpVIwePZo6depgbW3Nhg0bAAgICKBp06a0a9eOzz77jLFjx7J27VocHR2xtrbm9u3bAERGRtKpUyfq169P/fr1OX78eJ5t+PLLL9mxYwcAHTp0oH///gCsWLGCCRMmANC+fXvs7e2pXbs2S5culc41NDTk22+/xcbGhpMnT+Z7v8LHQ3T+BUEQBEEQBEEoMvtf2eOflzRVBvvCLxf6GklJSdKS/w4dOqCrq8vWrVs5d+4chw8f5ttvv0WlUgFw69Ytvv32W65du8a1a9f4+++/CQwMZP78+cyaNSvXa1StWhVjY2NphcFff/1Fv3798m3bo0ePCAwMZNeuXYwdOxaALVu2EBISwoULF/Dz82P06NE8evQIgAsXLrB48WKuXr3K6tWruXHjBmfOnGHgwIH8+uuvAHz11Vd8/fXXnD17ls2bNzNw4MA829CkSROOHTsGQEREBFeuXAHg2LFjuLi4AJkDAcHBwQQFBbFw4UKiozNXaiQkJNCgQQMuXLiAs7NzvvcrfDzEsn9BEARBEARBEIpMTEpiocrHvkwq9DVeXfafmprK+PHjOXr0KHK5nIiICJ48eQJAlSpVsLa2BqB27do0b94cmUyGtbV1vrECBg4cyF9//cVPP/3Ehg0bpJUCeWnfvj1yuZxatWpJbQgMDKRHjx5oaWlRpkwZmjZtytmzZzEyMqJ+/fqUK1cOyBxwaNmyJQDW1tYcPnwYAD8/P6kDDxAXF0d8fDyGhpoDJjZp0oRffvmFK1euUKtWLZ4/f86jR484efIkCxcuBGDhwoVs3boVgPv373Pz5k1Kly6NlpYWnTp1yvc+hY+P6PwLgiAIgiAIglBkSujoF6q8cTG9N77m2rVriYyMJDg4GG1tbSwsLEhOTgZAR0dHKieXy6XXcrmctLS0POvt1KkTU6dOxdXVFXt7e0qXLp1vW7JfL2v1QUHL59a+jIwMTp06ha6ubr71AVSoUIGYmBj27duHi4sLz549Y+PGjRgaGlK8eHECAgLw8/Pj5MmT6Ovro1Qqpeelq6sr9vl/osSyf0EQBEEoBEtLS9avX1/o80aNGkV6enq+5bIvsfT19WXZsmUay4WFhdGrVy+1cwRBEN4398q1UcgK1s1QyOR4VK79xteMjY3FzMwMbW1tDh8+THh4+BvXCZkdYXd3d4YOHZpjyf+4ceOkWfOCaNKkCRs2bCA9PZ3IyEiOHj2Ko6Njgc9v2bKltAUAkFY9nDlzhj59+mg8p2HDhvzyyy+4uLjQpEkT5s+fT5MmTYDM51WyZEn09fW5du0ap06dKnBbhI+X6PwLgiAIQh5iEp8QcHMVuy8tZNmOGTg2tGfnzp2FrueXX34RMymCIPwnlNU3olXlOgUq26pyHcroG73xNb28vAgKCsLa2ppVq1ZRo0aNN64ze91yuVxajg8QGhpK2bJlC1xHhw4dqFu3LjY2Nri6uvLDDz8U6vyFCxcSFBRE3bp1qVWrFosXLwbg3r176OlpXjnRpEkT0tLSqFatGvXq1ePZs2dS59/Dw4O0tDRq1qzJ2LFjadiwYYHbIny8ZHktRXFwcFAFBQW9w+YIgiAIwochLjmK9UGTOf9gPxmqzGWXQZtisKhnyJ39OhzYeQxT4woolUrs7e05evQoQ4YMYcCAAbke8/Pz4/nz5wwYMIAXL15Qs2ZN/vjjjxzXdXZ2JjAwEMic+U9LS6Nv3754eHiQmpqKqakpGzdu5P79+0ycOJE1a9bkOEcQBOFtu3r1KjVr1syzTFRSPO13L8oz3Z9F8dJsaz0UEz3N+9Y/FPPnzyc2Npbp06dLx9zd3dm/f/97bFWm0aNH07t3b+rWrfu+m/JB0PS9KZPJglUqlcN7atIHRcz8C4IgCMIr4pKjmHewE8H3d0sdf4CosFRMPlNgWD2GET+6E5ccBUCvXr0IDAxk5cqVUllNxwDmzJnDuHHjOHz4MMWLF1dLoxQaGopSqUSpVDJnzhwAFAoFu3bt4ujRo9SsWZNDhw69rVsXBEEoEiZ6hmxrPZS2FnXVtgAoZHLaWtT9KDr+HTp0YNWqVXz11Vc5jn8IHX+AefPmiY6/UGAi4J8gCIIgvGJ98BSexoflOBb7OJXn91+yZ85T0tNURJUNZ33wFADq1KmDtrY2cvm/H3A1HYPMWYmxY8cik8mIj49X2/NpbW1NQEAA8O/Mf0JCAoMGDZKiV1taWmJpaVn0Ny4IglCETPQMWdSsJ48T49gffpnYl0kYF9PDo3LtIlnq/y4UZl+/IHzoROdfEARBELKJSXzC+fv71I7fPZuEyxelqVAnM9LyvvmRnAvfS1pGWWQymVp5TccArKys6NWrF/b29gD5RpqGzBmm6tWr8/fffzNhwoQCRY8WBEH4UJTVN6JvzUbvuxmC8J8nlv0LgiAIQjYhEftzLPXPcv98EmWqF5Nel6ygTcS1BOJTnheq/vHjxzNjxgxcXV1xc3PjwYMH+Z7ToEEDduzYQZs2bfLNSS0IgiAIgqCJCPgnCIIgCNnsvrSQHaE/Frh8u7rf8XntEW+xRYIgCB+WggT8yy7t+UPiz20nPeEZWgalMKzXDkXJ8m+xhcJ/lQj4lzex7F8QBEEQsjHQKVGo8vrFjN9OQwRBED5yaXFPebp6BPHntkH6vyuqnv49CkP7Dpj1WojCyOz9NVAQ/mPEsn9BEARByMa2gjtyWcHGxuUyBXYV3d9yiwRBED4+aXFPuT+zCfFnN+Xo+AOQnkb8mX+4P7MJaXFPX6t+LS0tbG1tqVOnDl26dCExMTHXsr6+vgwfPhyAxYsXs2rVqte6Zm4sLCyIiopSO964cWMAwsLCqFOnDgABAQG0adOmUPUrlUre52rs7O0XPm6i8y8IgiAI2ZTQL4NdJY8ClbWr5IGxXpm33CJBEISPz9M1I0l9civPMqlPbvF0zcjXql9PT4+QkBAuXbpEsWLFWLx4cYHOGzJkCH369HmtaxbWiRMn3sl1ilpBAtG+zfOFt0d0/gXhE/I4MY6VV08yN3AHNk0b09ilCQ0bNiQoKIjHjx8zc+bMQtU3atQo0tPTNb7n4+OjFnhsxIj89z3HxMSwZcsW6bWzs3Oh2uTj44ONjQ1NmzZl4MCBuZZ7nfsVhCzd7adiZmiRZxkzQwu62099Nw0SBEH4iKQ9f0h8cMFS5MUHbyUt5tEbXa9JkybcunWLZ8+e0b59e+rWrUvDhg25ePGiWlkfHx/mz58PwK1bt3Bzc8PGxoZ69epx+/ZtAObNm0f9+vWpW7cuU6ZMKXA7kpKSaNWqFX/++ScAhoaGeZZPSEigf//+ODo6Ymdnx/bt26V6unfvTs2aNenQoQNJSUn5XlupVPL111/j4OBAzZo1OXv2LB07dsTS0pKJEycC6jP48+fPx8fHRzp/1KhRODg4sGDBAoKDg7GxscHGxobff/9dOic9PZ3Ro0dLz2fJkiVA5oqGJk2a4OnpSa1atUhISKB169bY2NhQp04dNmzYUODnKLw9Ys+/IHwCopLimXhqO/vCL5OmyiDePxjZZ8YYN7XDvWJNTMwrUNasLBMmTChUvb/88kuhyv/666/5lsnq/Hfs2LFQdWf3448/4ubmxsCBA7l06ZLGpWhlyxb+fgUhi5GuCaNbbGZ98BTO39+XI/q/XKbArpIH3e2nYqRr8h5bKQiC8GGKP7ddfal/btLTiA/eRonmQ1/rWmlpaezduxcPDw+mTJmCnZ0d27Zt49ChQ/Tp04eQkJBcz/Xy8mLs2LF06NCB5ORkMjIyOHDgADdv3uTMmTOoVCo8PT05evQoLi4uebYjPj6e7t2706dPnwKvLJg5cyaurq6sWLGCmJgYHB0dcXNzY8mSJejr63P16lUuXrxIvXr1ClRfsWLFCAoKYsGCBbRr147g4GBKlSpF1apV+frrr/M9/+XLl9L2grp16/Lbb7/h4uLC6NGjpTLLly/H2NiYs2fPkpKSgpOTEy1btgTg3LlzXLp0iSpVqrB582bKly/P7t27AYiNjS3QPQhvl5j5F4SPXFRSPO13L2JXWChpqgwAZMW0eXn7ISlx8ey+f5leR9dw7tplevXqBUDDhg354osvsLW1Zd++zHzmixcvpmHDhowZMwalUglkjgKnpaXh4+NDnz59pA43wPDhw6lQoUKOtmTN4nt7ezNkyBCcnZ2ZOjXnzOjSpUs5ePAgSqWSyMhIYmNj6dmzJzY2NtIf6GXLltGkSROaNGnCuXPncr33rD8kqampNG/eHBcXFzp16kR6ejphYWF53q8g5MdI14RBTr8z2/MEPRym067ud/RwmM6cdicY5PS76PgLgiDkIj3hWSHLFy5lKmTOjtva2uLg4IC5uTkDBgwgMDCQ3r17A+Dq6kp0dDRxcXEaz3/x4gURERF06NABAF1dXfT19Tlw4AAHDhzAzs6OevXqce3aNW7evJlve9q1a0e/fv0KtaXgwIEDzJkzB1tbW5RKJcnJydy7d4+jR49Kn2Hq1q1L3bp1C1Sfp6cnANbW1tSuXZty5cqho6PDZ599xv379/M9v1u3bkDmRE1MTIw04JH1TLPavGrVKmxtbWnQoAHR0dHS83F0dKRKlSpSGw4ePMiYMWM4duwYxsYiOO6HQMz8C8JHbtKpHYS9iM5xTL9RbdKfvyDqh3VoGRmQPqgNP6b6Ifv/+8+ePWPmzJmkpqYyfPhw3Nzc8PX15fjx4wQFBXH69Gm169jZ2bFq1SpatmxJTEwMJiZ5d3zc3d1ZvHgxDRo0yLFkbtCgQdy7d481a9YA8PTpU1asWEFwcDArV66kYsWK7Nixg6NHj/L8+XP69+/Ptm3bctT97bffkpiYiIODA3Xq1EGlUrFr1y709PSYOHEihw4dwtLSUir/6v16eBRsP7cgQGYMAKXlu9kfKgiC8CnQMihVyPIlC32NrD3/RU2lUjFu3DgGDx5cqPOcnJzYt28fPXv2RCaT5X/C/6+1efNmrKysXqepanR0dACQy+XS11mv09LSUCgUZGRkSMeTk5NznG9gYFCgNv/666+4u+cMdhsQEJDj/OrVq3Pu3Dn27NnDxIkTad68OZMnT36t+xKKjpj5F4SP2OPEOPaGX1I7LlNoYeTpRJnpA9BvUpf4A0EcibhOcloqAKamppiZmVGhQgViYmKIiorC3NxcipyrSdbS+vLlyxdo6VZWeT09vTzLVatWDV1dXaktd+7c4cKFCzRr1oyOHTsSExOjds6PP/5ISEgIUVFRJCcnk5CQwIABA2jatCmbNm3i4cOHOcq/er+CIAiCILw9hvXagVYB5xi1FBjaty+S6zZp0oS1a9cCmZ1RExMTjIyMNJYtXrw4FStWlCYYUlJSSExMxN3dnRUrVhAfHw9AREQET59mZiRo3rw5ERERGuubNm0aJUuW5Msvvyxwe93d3fn1119RqVQAnD9/HgAXFxf+/vtvAC5dupQjdkGfPn04c+ZMga+RXZkyZXj69CnR0dGkpKSwa9cujeVKlChBiRIlCAwMBJCeaVabFy1aRGpq5mfKGzdukJCQoFbHw4cP0dfXp1evXowePTrPlZzCuyNm/gXhI7b//3v8X5UWFYtWCUNkCi3kRvqgUpGmUvEwIQYgx4i0SqXCxMSE+/fvk5GRoTE4jqZz8pPbqLe2tnaOIIKv1lulShXq16/Ppk2bAKQ/Lq8yMDCgc+fO+Pr6YmpqSvXq1fn777+ZMGGCWvsK23ZBEARBEF6fomR5DO07EH/mn3zLGtp3QFGiXJFc18fHh/79+1O3bl309fVZuXJlnuVXr17N4MGDmTx5Mtra2vzzzz+0bNmSq1ev0qhRo8z2GRqyZs0aTExMuHXrFqVK5b6qYcGCBfTv35/vv/+eH374Id/2Tpo0iVGjRlG3bl0yMjKoUqUKu3btYujQofTr14+aNWtSs2ZN7O3tpXMuXrxI+fLlC/hEctLW1mby5Mk4OjpSoUIFatSokWvZv/76i/79+yOTyaQ9/QADBw4kLCyMevXqoVKpMDU1VVuhCRAaGsro0aORy+Voa2uzaNGi12qzULRE518QPmIxKZpz2qbef8qzRduRFVMg05JTsv/nqDJUvMzQHLlfoVDQt29fGjduTKNGjdDW1n5rbS5btizPnj2jc+fOLF26VO19U1NTWrdujYuLC1paWri6ujJp0iSNdfXs2RN3d3c2btzIzJkzCQoKwtjYOMeSf+HNPHz4kDZt2nDlyhXi4+NRKBScPn2ar7/+GrlcTv369fn555/Vzjt27Bht2rQhMjKSYsWKvZW2+fr68s033/DkyRPpQ1vXrl3FAI8gCMIHwKzXQlLCz+eZ7k+7TDXMei18rfqzZuazK1WqlMaOqLe3N97e3gBSdHsAS0tLDh06pFb+q6++4quvvspx7NKlS3Tq1Enjisbs2Y/++usvtTZaWFhw6VLmSk2lUinFVtLT05Oi5Wenp6fH+vXr1Y7HxcVhaWlJxYoV1d4LCAiQvs5+jVffGzlyJCNHqqdXzF4GwN7engsXLkivswYz5HI5s2bNYtasWTnKv3pNd3d3ta0Bwvsny+tDkoODgyor4qMgCB+elVdPMuHU9gKXn9mwHX1rNtL4XtZesNOnT7NixQqNf4yE/470p/Gk+N8kMSqWFF0ZPX0n4n/kMAqFgsePH1OiRAl0dXWlSMnW1tY5zv/666+Jj4+nY8eOtGrV6rXakJGRgVye++40X19ffvvtN2bPnk2LFi3o27cvFy5ceCt7QAVBEIR/Xb16lZo1a+ZbLi3uKU/XjMxM+5c9+r+WAkP7Dpj1WojCyOwttlT4r9H0vSmTyYJVKpXDe2rSB0Xs+ReEj5h75dooZAX7MVbI5HhUrp3r+7/++itNmzZl1KhRfPvtt0XVROEjkx6dQMzXO4h0W0LcdD/SFp1F6+czpF54SMx3O0mPTqBs2bLo6uoCmUsItbS01Oq5ceMGkydPlmZgwsLCaNKkCZ06dcLe3p4HDx4A0K9fP9zc3Ojfv780G2NjY0OvXr2YPn06LVq0kOps3ry52jaQdu3asW3bNl6+fElSUhIlSpQAIDIyEk9PT5o1a8awYcMANGatEARBeFceJ8ax8upJhi/7Ec8h3jxOjGPFihXS+1kz068jJSVFyriTkZFB8eLFuXPnDpC5Rzw0NLTQdfr6+uLr61ugsrGxsVy5coXIyMgcxxVGZpQftp6MIQcx6/0bpTtOx6z3b1SYfZ1kj1k5Ov737t1DpVLx8uVLrly5wr179wrdZkEQ8iaW/QvCR6ysvhGtKtdhZ5jmffrZtapchzL6moPeQOZMbUFywAqfrvToBJ55/U36vRj1N1WQvP86z65FUWptT7RKG3Dx4kUiIyOpVatWjqLnzp3DwcGBSpUq8eTJEymycHx8PEeOHGHdunVs3ryZhg0boqOjg5+fH3PnziUpKQmABw8ecOLECQwMDBg4cCC3bt0iPT2dqlWrqm1JKVeuHCEhIRw8eBBXV1dpmeScOXMYN24cjRo1YsyYMZw8eRJQz1qRNVggCILwtkQlxTPx1Hb2/T9OT8rNe6REhNFw4xxSft6MZ4+umOgZvtE1dHR0pI7zzZs3sbW1JSgoiM8++4yrV6+q/Z4uSiqViufPn1OlSpXcg/wWN6NEfRfpZUpKCsTnDJxnbm4OZKbgMzExwcxMrAgQhKImOv+C8JGb3tCT0OgItXR/2VkUL830hp7vsFXCx+jFTH/NHf9s0u/F8GKmPxkTnRk+fDgbN25UK7NlyxYCAgI4ffo04eHhnDhxgooVK1KrVi3kcjkVKlTg1q1b3L17V8pdbGtrK3XQrayspHRBXl5erF+/nvT0dHr06KGxTQ0aNGDy5Mns3r1b6vxfvXqVsWPHIpPJiI+Px9HREVDPWiE6/4IgvE1RSfG0371I49/o2MPniL0dRlUHG3b6/s3s2bMB6Nu3L2FhYcjlcvz9/aXtT6mpqXh4eJCamoqpqSkbN27MsfLKxsaGCxcucPnyZQYPHszZs2fx8PDA0NAQlUpFjx49iIiIoEKFCqxevZrAwEDmzp2LQqHg2bNn7N+/n2LFitGlSxdSUlLQ19eX8sZPmzaNQ4cOIZfLWbFiBWlpaVy/fh2FQoGenh6xsbEkJSVRsWJFIiIiqFGjBikpKTx8+FDK+56f69evU61aNR49eiQdMzIy4t69e2RkZGBkZPTage4EQcgklv0LwkfORM+Qba2H0tairtoWAIVMTluLumxrPfSNZxWET1v603iS/W4WqGz8wWt4de3B/PnzKVu2rNr7QUFBBAYGsm/fPrZu3crWrVsBzZkdspaiZs8ykX2ff9OmTTl27BjHjh2jadOmGtvTpUsXmjdvnqMtVlZW/PTTTwQEBBAUFES7du00tkEQBOFtmnRqR66D8wZKW7QrmFL8uy6si79NuXLlSE1N5cGDBxw5ckTqbGdRKBTs2rWLo0ePUrNmTbVAdY6Ojpw9e5bg4GDatGnDo0ePCA4OxsHBga1bt1KrVi2OHj1K7dq12bx5MwDFihVj586dfP755/j7+7Nt2zYcHR3Zt28fJiYmQObv54iICAICAvj999+lQYrU1FQ+++wzypcvj5GREVWqVKF48eIa7zUxIY0TgWH4H7jJicAw4uKSNZaTy+WULVuWMmXKYGZmRkREBBYWFtSoUYPk5GRevnxZuP8AQRByEDP/gvAJMNEzZFGznjxOjGN/+GViXyZhXEwPj8q181zqLwhZUvxvQpp62shUVTpe95ZzJfkRPe4tZ5yZB+EvowkKP8P3338PwOzZs6WUSNevX8fU1FQ6v0aNGpw6dYoRI0ao1d2gQQMWL15M8+bNKV++vMaUQ3K5nLp165KWlpZr8L8qVaqopVQaP348gwYNIjY2FrlczrJlywr+MARBEIrA48Q49oZfKlDZveGXeJIYRxl9I/r27UuvXr2oXLky06dPl373JSQkMGjQICIiInjy5IlaZpv69eszf/58UlNTKVGiBHK5nDNnzlC/fn1u375NvXr1AHBwcCA4OJgyZcpIq6EqVKhATEwMjx49ws7ODkBKL3ft2jUCAgKkSO7lymWm5dPX1881rW+WxMQ01vgGExr6iOyZieVyGVU+K45XnwoYFtfJ9fzk5GTu3r0LZAYmfvny5VvLICMI/wVi5l8QPiFl9Y3oW7MRI21c6Vuzkej4CwWWEat5FkZbpsXGyoO4ZjWVfyoPop6eOR2M7bj7wx4CAgIICAiQOv6QOeO+evXqHHUcP34cCwsL1qxZA2SmA8oK7vfnn3/i7+9PnTp1+OyzzwAIDAzMcb5MJqNnz55qbfP29lYL3JeVqsjU1JStW7dy6NAh/Pz8sLCwwMfHBzc3NyAzkJWFhUXBHo4gCMJr2P//Pf55+n/nOU2Vwb7wy9IWpzVr1hAZGcnZs2f/rW//fqpXr86RI0fo1KmT2uqlmjVrEhoaKnWOLS0tWbNmDY6OjlStWpXg4GAgc3VW1apV/3959RVZWendzp8/D0D16tVp2bKl9Dt/1apVed5SVpyXqKhYtv1zl4sXcnb8M8uouH0rjt8XHif+RUqudenq6lKlShWsrKyoVauWtCUMQEtLC1tbW+lf9nR72cXExPDHH39IrwMCAmjTpk2e9/C6AgICkMlk7Ny5UzrWpk0btTR6r+vy5ctUr15dipED0Lp1a9atW1eg85VKJYXJ5FbY8q/atm0bV65cKbL6hDcnOv+CIAgCcmPdt1o+NwMGDMDFxYXAwEA6dOig9v7kyZMJDw+nfv36RXI9QRCEdyUmJTHfMlqlihP9+1ZSH0UT+zKJFy9e0Lx5c5ycnLh//36ONKoNGjRgx44dtGnTRmNHVy6XU7x4cWk2397enidPnmBhYUH79u25fPkyLi4uhIaG0qlTJ43tad++PSdOnMDd3Z2YmBggMyZL2bJlUSqVNGvWLEcee02MjY25du0au3dcJzY272X60VGJrF55kmfPnml8v0KFCoSFhXH9+nVu3rwpDSwA6OnpERISIv3LbUD31c7/m0pLS8vz/YoVKzJz5swiu152tWvXpmPHjlL927ZtIzU1NdeYONmlp6e/lTbl9Txe7fy/resIBSfLa8+jg4ODSozOCIIgfPrSn8YT6bZE49J/NQo5pv6D0TL9b8eRCAgIoG/fvnz22WcoFArWr19P6dKlC3z+qFGj+PHHHzWmSsyPlZUV5cqVIykpCS8vL0aOHKmxnK+vL2lpabi5uTFx4kRp9YUgCG/fyqsnmXBqe4HLz2zYjr41G+Vf8AOgKZd6drGxycye5k9GRv6xVeRyGeMnN8eokIPKhoaGxMfHS6/j4+Np164dz58/JzU1lRkzZtCuXTu6d+/O9u3bsbKyokWLFrRu3RofHx9MTEy4dOkS9vb2rFmzBplMRnBwMN988w3x8fGYmJjg6+tLuXLlUCqV2NraEhgYSI8ePXJNiRwQECBtvfjuu+9o0aIFbdq04bvvvkOpVGqsX0tLi1atWhEcHMyFCxewtbUlPDwcc3NzqlatSmhoKPr6+tI1EhMTsbOzY8OGDXTv3p2dO3dy7949vvvuO9LS0qhfvz6LFi1CR0cHCwsLunXrxsGDB/n+++9ZvHgx8+fPp169evTv35+KFSsyY8aMXJ+xUqnExsaGI0eOkJaWxooVK3B0dMTHx4fbt29z584dzM3NmT17Nv379ycqKgpTU1P++usvHjx4QJs2bTA2NsbY2JjNmzczYMAAGjRowOHDh4mJiWH58uU0adKE9PR0xo4dS0BAACkpKXz55ZcMHjyYgIAAJk2aRMmSJbl27Rrnz5+na9euPHjwgPT0dCZNmkS3bt1ytFnT96ZMJgtWqVQOhfoG+0SJmX9BEAQBLTNDdN0s8y8I6LpZ/qc7/ulP40lcd56kHZfpXq8Ffht20rdv3wIvu8zyyy+/vFbHHzK3NQQEBHDq1Kn31qGPjY1FqVSiVCoxNjZGqVTSr18//Pz8ClXPvXv36NChA0qlEmdn5zeKz5C1J1kTX19fadbQ29ubW7du5VtfQEAAxYsX5+LFi5QpU4ayZctiY2PDsWPH8j1v4sSJebYnq03BwcFSeUDK1Z4lLCxMLf97SEgI586dy3GtwlAqlTlm0fJqZ0GflaDOvXJttUC8uVHI5HhUrv2WW/TuXA59XKCOP2RuAbgU+rjQ10hKSpKW/Hfo0AFdXV22bt3KuXPnOHz4MN9++y0qlYo5c+ZQtWpVQkJCmDdvHpC5peGXX37hypUr3Llzh+PHj5OamsqIESPYtGkTwcHB9O/fnwkTJkjXe/nyJUFBQbl2/LObMGGCWqc6t/rNzMxITk4mLi6OY8eO4eDgwLFjxwgPD8fMzCxHxx8yYy3Mnz8fFxcXunfvTqVKlfD29mbDhg2EhoaSlpbGokWLpPKlS5fm3LlzdO/eHcicQffy8sLS0jLPjn+WxMREQkJC+OOPP+jfv790/MqVK/j5+bFu3TpGjBhB3759uXjxojQg3bhxYzw9PZk3bx4hISHSVpO0tDTOnDnDL7/8wtSpUwFYvnw5xsbGnD17lrNnz/Lnn39KsR7OnTvHggULuHHjBvv27aN8+fJcuHCBS5cu4eHhkW/7hZxEwD9BEAQBgOITmpN65Ume6f60zEtQfELzd9eoD0h6dAIvZviT/P/giEkJt0lJuEuk2xIemtxA1706AF999RUhISFkZGSwdu1azM3NWbx4Mb6+vjRt2pTTp09LwbP8/PyYMWMGd+7c4eHDh1hYWLBs2TJu375Nz549KVu2LPHx8Sxfvlzjktbswa98fHxwdnbGzc0Nb29vKa5CUYtJfEJIxH4SUmLw+bM/thXcadOyEwEBAa91zYEDB7Jw4UJq1KhBRkYGJ06cKPpGk9nR7tWrV66BI7NkBU6NSUnkUfg1ylWswPr162nRogUKhYIvvviCH374gSZNmrxxm7I69YXdDxwSEkJaWpoUwE34MJXVN6JV5TrsDLuYb9lWlet8UnF6khJTC1c+qXDl4d9l/1lSU1MZP348R48eRS6XS4ERNXF0dKRixYoAUryAEiVKcOnSJVq0aAFkLpPPCm4IqM0w58XFxQXIGcPm+vXrudbfuHFjjh8/ztGjRxk/fjz79u1DpVLl+numbdu2lChRgmHDhnH9+nWqVKlC9eqZf4P69u3L77//zqhRozS2e/DgwXTt2jXHwEZesrYUuLi4EBcXJ20H8fT0RE9PD4CTJ0+yZcsWAHr37i0FBNakY8eOQOa2lKztKwcOHODixYts2rQJyBxcvnnzJsWKFcPR0VFKF2ltbc23337LmDFjaNOmTZH8Hv6vETP/giAIAgBapQ0otbYnuh5WoHjlz4NCjq6HFaXW9kSrtIHmCj5h6dEJPPP6m+T913NsjdgUew73mz+z7Pg2Wh9QkB6dwOzZszly5AhTpkxhyZIlpKWl4evry/Hjx6UPPa+ys7PDz8+Pe/fuERMTw/z581mwYAFbtmzh6dOnauUjIyNRKpXUqlWL5s3fzWBMXHIUSwOHMW5HY9YFTWJH6I+sC5rEuB2NeRx3m7jkKABWrVqFm5ubFIwxMjIST09PmjVrxrBhw3LUee/ePczMzKRMD3K5XJr59vPzo2HDhjRs2FBaTaDp2K5du7C3t6dfv36kpmruQJw5c4aQkBCaN28uBaScP38+zs7O0szTmUsXqORgjUW9OoyYMIZ55w+y/MpxnnxWiuVbN5Kcmrl3+dGjR5w6dYoGDRrQqVMnlEolVatWxcrKCldXV3755Re++OILli9fzrlz53ByciI+Pp5BgwZx9epVunbtSrVq1ahbty7jxo3Dz8+Pfv36sW3bNmxsbEhISAAy42EYGxvTsGFDbt7MmYZz6dKlzJs3Dy8vLwCCg4Np27atdC2VSsXQoUNxdXWldevWPH/+vED/xzt27MDe3p5BgwaprUDIWk4NmVtWsoLHCXmb3tATi+J5bweyKF6a6Q0931GL3g09fe3CldcrXHlN1q5dS2RkJMHBwYSEhFCmTBmSkzUHs9XR+TfDgJaWFmlpaahUKmrXri3FEAgNDeXAgQNSuezBBgvi1dn/vOp3cXGRZvvbtWvHhQsXCAwMzLNzK5fL8x3M1NTuxo0bc/jw4VyfzatezeiQ9bqwzyNL1rPPeu6Q+Wx+/fVX6dncvXuXli1bql2nevXqnDt3DmtrayZOnMi0adNeqw3/ZaLzLwiCIEi0ShtQ4idPTP0GYzTJDcORzhhNcsPUfzAlfvL8T3b8AV7M9Ne4IqKzcT32V/kKO71K3LsbzouZ/tKs8MSJE3n48CFRUVGYm5tLkak1yQrQVb58eWJjY7l79y5169ZFS0tLei+7rGX/t27d4urVq4SHh6tF7S5KcclRzDvYieD7u8lQ5Qy6lKFKIz7lOfMOdiIlLVFtIGPOnDmMGzeOw4cPU7x4cU6ePCmd+/DhQ2nm68qVK9I2AshcyXDgwAEOHDjA5MmTcz2WNdgybdq0PGf5bG1t8ff3p3fv3gC4u7sTGBjInj17iEqK5/NBfUjt0QSTMT1Ji4gi/VkcACo5JFY1ZduunezZu5chQ4awevVqTp8+TVRUFHv37sXBwQEzMzMpu8SMGTOoV68e2traUv70zp07s2nTJnx9fbG0tGTw4MFcupSZBi4mJoY2bdrwxx9/8PTpUx49esT27du5f/8+P/74I3fv3s2R33zQoEGMHj2atWvXAuq52nft2oW5uTmHDh1i+PDhLF68uED/z3PnzuXo0aNMmTJF7Vl26dKFzZs3k5GRwYULF6Q0cELeTPQM2dZ6KG0t6qptAVDI5LS1qMu21kMx0fu0tlLVti6LXJ53GsAscrmMOtZl3/iasbGxmJmZoa2tzeHDhwkPDwegePHivHjxIt/zraysiIyMlH5HpaamcvnyZY1lt27dyrhx4/Ksr2XLljx//pyLFy/mW3+TJk1Ys2YNlpaWyOVySpUqxZ49e9QG4XJrd1hYmLQ9Z/Xq1TRt2jTX8gMGDODzzz+na9euUue7T58+nDlzRmP5DRs2AJmrGLL277+qcePGrF+/HsgchMkatCjos3d3d2fRokXSAO6NGzekgdDsHj58iL6+Pr169WL06NHS9ieh4MSyf0EQBEGNlpkh+j3s3nczPgjpT+NJ9ruZZ5kRpZvxY9RBZu4rweGS/hw7foyDBw+ydu1aTExMuH//PhkZGdKHwFdpSrcVGhqKg4NDrh8+s84rXrw4MTExGBsb8+jRI1QqVZ7nvI71wVN4Gh+WZ5mn8WE8fJjIyKazgH8HMq5evcrYsWORyWTEx8fj6OgonVOuXDkePnwIQK1atXLkEpfJZBgZZS6DzoqNoOmYXC7H0NAQQ0NDTE1NC3xPWYMqenp6TDq1g7gHj5H9uQsAVWIK6c//DSSm51iTxMBQStpZsWrqPFq1aoW1tTUXL16kWbNmpKenc/PmTby9vXn8+DFlypTB1taWZ8+eSfnTW7duzezZs7lz5w5BQUE8evSIEiVKAJkRzRUKBRUqVCAtLY3w8HCSkpLw9PQkMTGRpKQkIiMjqVChQp73knWtJ0+esH79evbv309aWlqOdJyQmT4tJSUFhUJBcnKytHRXS0sLAwMDDAwMMDExyXFO+/btpX3CWUuahYIx0TNkUbOe0paS2JdJGBfTw6Ny7U9qqX92xsa61Klbloshj/ItW6du2UIH+9PEy8uLtm3bYm1tjYODg7SiqHTp0jg5OVGnTh1atWpF69atNZ5frFgxNm3axMiRI4mNjSUtLY1Ro0ZRu7Z6LIbbt29Lv4vyMmHCBNq1a5dv/RYWFqhUKulny9nZmQcPHlCyZMl8r6Grq8tff/1Fly5dpIB/Q4YMyfOcb775htjYWHr37s3atWu5ePEi5cuXz7V+Ozs7UlNTWbFihcYyv/76K/369WPevHlSwD+A7t2788UXX7Bw4UJpSb8mAwcOJCwsjHr16qFSqTA1NWXbtm1q5UJDQxk9ejRyuRxtbe0csQ2EghGdf0EQBEHIQ8r/9/jnpZqOGdFpCbxMfYl+Eri6ulK3bl0AFAoFffv2pXHjxjRq1Aht7fyXt3733Xd4eXlhZmZGyZIl1c7JWvafkZFBzZo1sbGxoWTJknTo0IEdO3YU6ANjQcUkPuH8/X0FKvso7haJL2Ok1yqVCisrK3r16iXNFGcPNFe5cmUeP34sRWdWqVRSOqqMjAzi4jJn3/M7lpCQwPPnz4mMjATg2bNn6OnpSZ1aAG1tbdLT01EoMj/6ZA24vMxIZ2/4JRRlS2HcozlaJQxRZWQAMl7euA+AXE8HmW4x7oZeYdykzABdR44coXjx4vj6+mJsbIybmxuDBg2iR48eREZGkpqaKi3XV6lUKBQKjIyMOHv2LAsWLCAhIUGauX91WW3lypXR19dn9+7d7Ny5kz179uTo+Gtra5OS8m9u9FcHj6ysrOjTp48UmOzV7RC1a9fmxIkTtGjRgsDAQGnwICMjg8TERGJiYoiKispxjqGhIUZGRixYsIBZs2YhFF5ZfaOPJpp/UWjfsQ4RD2KJjso95WFpE33ad1Rf3VQQ2SP9A5iYmORYWZTd33//neN19iCXv/32m/S1ra0tR48eVTv/1bgcISEh/Pzzz2rlsq9egsx98dlXYuVWP8D9+/elr8ePH8/48eM1lsuSPd1j8+bNOX/+fJ5lIOd9ZG15iouLw9LSUoqBkFv57F6N71K5cmUOHTqkVs7JySlHqr/s9ZmYmEjtk8vlzJo1S+13y6vP093dHXd3d41tEgpGdP4FQRAEIQ8ZsZr3RTY2qEpjg6rS642VBwHwz6AfMByS8wP+wIEDGTJkCKdPn5ZmTrI+BGX/EOXr6wtkdpBPnTpFeno6Tk5OlClTJkd9169fV2uPubm52j7s7FHiXzcrQEjEfrWl/rlRqTK4FRkEdJGOjR8/nkGDBhEbG4tcLmfZsmU5ghcuX76ckSNHEhcXh1wul4JTTZkyRQqMlbWvU9OxMWPG4OLiQr169ShbNnPp8E8//USrVq1wcnKSrtO6dWvat28vxSLI8iw5gTRVBkYdXXi+Yg+qtHRkWnJKfdkhR7mM+CTSE5K5yGV0kNO1a1dMTU3p2rUrCoWCBw8eMGLECMaMGcP48eMpVqwY5ubmOero06cPXbt2ZcWKFVIAK03KlStHmzZtqFChAoaGhmpZIRo2bIi3tzeXLl3SmK/d09OTkSNH4urqCmTu0ff0/HdP+ejRo+nfvz8zZ87EwMBAmqX7/vvvcXFxwdbWVu17DjJn8SZOnCjNqApCXgyL6/DlSCe2bbnEpYs5o//L5TLq1C1L+451MCyuk0ctH6ZPKW2qkZER//zzz/tuhvCOyPLaF+jg4KAKCgp6h80RBEH4tFlaWjJ9+nQp5c7bOicv+/btIz09Pdelj4Xx+PFjli9fnm/UYF9fX2bPnk3ZsmWpUqWK1MnNy5w5c+jdu3euS53flcR154mbXvD0dUaT3NS2TPz8889s27aNly9fsnLlSikqc25u3LjBwIEDSUhIYMCAAWqB8t6l3ZcWsiP0xwKXb1f3Oz6vPeIttih/I0aMYMGCBQUKhrUgxJ955w8WuO7v67VkpI3rmzTvg5WWloZCoSAiIoJBgwaxe/fuHO/v2bOHy5cvM3r06PfUQuFDoSmXel5iY5O5HPqYpKRU9PS0qWNdNEv9BeFVmr43ZTJZsEqlcnhPTfqgiJl/QRCEtyh72rC4uxHYN2zAzp07C9yRv3DhAs7OzoU6Jy8ZGRlFmhe3bNmyBU4XNHr0aAYOHMjQoUMJDAzMM5BRRkYGY8eOLapmvhGd5pYw+1C+S/8BUMjRcbNUO/z111/z9ddfF/ia1atXz3Vp6LtmoFOiUOX1i6kHg3rXfv311wKXLaGjn3+hbIyL6eVf6CO1adMmFi1aREJCAgsXLszx3ubNm/n555/Zvn37e2qd8DEzNtalsbPF+26GIPzniWj/giAIb0FUUjxDDq+l4cY5TDi1nXnnDzLPdwlHqig4EX6DiJhoIHM/27fffkv9+vVZvny5Wj1btmxh2LBhJCYmSnt8lUol3333HQ4ODixcuJBevXphY2PD/v37ATh9+jRKpRInJydpOa9SqeT777+nT58++Pr6smzZMgAmTpyIs7Mzrq6uxMTE8Ndff6FUKnFwcJBSEHl7ezNkyJAcadGyhIWF0atXLyBzKfIXX3yBra0t+/blvkfc1taWBw8e0LVrV5o2bUrLli2lfdw2Njb06tWLH374AW9vb27dusXWrVtxdHTE1dWVPXv2vPb/yevSMjNEV0OHXhNdN0u0TD+tqN22FdyRywo2VyCXKbCr+HHtx3SvXFstCntuFDI5HpXVg399Krp3786RI0cICgqicePGOd7r1KkTgYGBlC6dd9o6QRAE4cMlOv+CIAhFLCopnva7F7ErLJQ01b+zxan3nqJVpSwxVUvTYu5oopIygxX16tWLwMBAVq5cqVbX+fPnqV+/Ph4eHlJec8iManz8+HGmTp3Kjz/+yN69e/n9998BmDx5Mjt27CAwMJC1a9dKKcI6dOiQY5/i+fPnuXPnDoGBgfj7+2NsbEy3bt0ICAjA39+f+fPnS2Wzp0XLzbNnz5g5cya7d+9myZIluZY7evQo1atXx9fXlyNHjtC1a1cpldCDBw9YsmRJjln/LVu2sHHjRg4dOkSrVq1yrfdtKj6hOVrmJfIso2VeguITmr+bBr1DJfTLYFepYKtF7Cp5YKynvlf8Q1ZW34hWlQsWcKxV5TqfbHR2QXib0p/Gk7juPPGLT5K47jzpT+PzP0kQhCInlv0LgiAUsUmndhD2IjrHsbQnz0l9EEnUTxtRpaUTXuYxk07tADLTdGlra6vtT7516xahoaF4eHiQkpJC9erVpX36WefUqFFDCsz1/PlzIHOrQFZwr6ioKCkC+qt5uW/cuCHN7mVFC9+/fz8LFixApVLx9OlTqWz2tGi5MTU1xczMDMjMW/6qefPmsWbNGpRKJTY2NowcOZLQ0FDi4uLo0CEzuJqVlRUGBgY5zpswYQIzZswgLS2NCRMmYGlZsFn4oqRV2oBSa3vyYqZ/Ztq/7FsAFHJ03SwzBwhKG+ReyUesu/1U7j+7lGe6PzNDC7rbT831/Q/Z9IaehEZHqP3cZmdRvDTTG3rm+r4gCOrSoxN4McOf5Fezpsw+9Mn/3hSED5Ho/AuCIBShx4lx7A2/pHY86dwNSnh7oFvLAoDohZvZczeUChnpamm+smzZsoVly5bRvHnmbLKnpycZGZkfnrLOeTXFF4CdnR2bNm3CwMCA1NRUKU3cq4MLVlZW7Ny5k+HDh0vnz549myNHjpCSkpIjUnpubcxOU1uyy9rzDxAcHExCQgJHjx7lzz//JCIiQmMbITOF0LJlyzhx4gQ//fTTe8vrq1XagBI/eZL+NJ4U/5tkxCYjN9ZF5xNc6v8qI10TRrfYzPrgKZy/vy9H9H+5TIFdJQ+620/FSNckj1o+XCZ6hmxrPZRJp3awN/xSjhU7CpmcVpXrML2hJyZ6n/b/syAUpfToBJ55/U36vRj1N9MySN53ndQrTyi1tudrDQBoaWlhbW1NamoqCoWCPn368PXXXxco0Oe7NnnyZFxcXHBzc3ut8xs3bsyJEyeKtE1hYWG0adOGS5fUP7MIny7R+RcEQShC+8Mv5+g4ZEm+cBvD5vWk14pypUm8Ec6z5IRc69q9ezcjRvwbNb1WrVocO3Ys3zZMnTqVtm3bolKpKFWqFJs3b9ZYztbWlsqVK+Pk5ISOjg5btmyhTZs2uLi44OjoSIkSJfK91uuysrLi1q1beHh4UKlSpTwj+vv4+HDq1Cni4+P58ceCR51/W7TMDNWi+f8XGOmaMMjpd2ISnxASsZ/El7HoFzPGrqL7R7fUXxMTPUMWNespBemMfZmEcTE9PCrXFkv9hRxiY2Np164dkLl9ys7OjipVquDl5VWozp2zszOBgYHcvHmT3r17s2PHDqZPn16ogJU+Pj54e3vnSJ/5qrVr1/Lrr7+ira1NzZo1Wbp0aYHrL6hr166ppYB8MdNfc8c/m/R7MbyY6U+Jnwq/qkZPT4+QkBAAnj59Ss+ePYmLi1OLTfMhyEpN+rqKuuMv/HeJVH+CIAhFSKQNEwRB+DRlz95SQkcf98q16dzycwIDA/Hx8cHZ2bnQnf8tW7bg6enJmjVrqFatWqHbVJDOv6OjIydOnEChUPD8+XNKlixZ6Ou86tV0aq92/tOfxhPptqTAWVJM/QcXegWVoaEh8fH/xg64c+cO9evXJyoqivDwcHr37k1CQuYA+2+//Ubjxo0JCAjAx8cHExMTLl26hL29PWvWrEEmk3H27Fm++uorEhIS0NHRwd/fH319fcaOHUtAQAApKSl8+eWXDB48ONc2paenM2DAAIKCgpDJZPTv35+vv/4ab29v2rRpQ+fOnbGwsKBv377s3LmT1NRU/vnnH2rUqEFkZCQ9e/bk4cOHNGrUiIMHDxIcHIyJiYl0r3m1f8+ePXzzzTcYGBjg5OTEnTt32LVrV65tzT7zn5yczNChQwkKCkKhUPDTTz/RrFkzGjZsyPLly6ldOzPQqVKpZP78+dSsWZMRI0Zw6dIlUlNT8fHxkQbE3jeR6i9vH966GEEQhI+YSBsmCILwadGUvWXCqe003DiH27GRUvDWVatW4ebmJm1vioyMxNPTk2bNmjFs2DC1ehMTE+natSsLFiyQOv5ZKVA1ZVk5ffo09erVo0ePHtSrl7mSbPjw4VSoUCHPrCgJCQmcPn2ajIwMqePv7e3NgAEDcHFxYfLkybm2V9Oxx48f8/TpU65fv86DBw+AzE7vnTt3uHz5cmZ2mlf3+OclLYMUv5sFK5uHzz77jPT0dJ4+fYqZmRkHDx7k3LlzbNiwgZEjR0rlzp8/zy+//MKVK1e4c+cOx48f5+XLl3Tr1o0FCxZw4cIF/Pz80NPTY/ny5RgbG3P27FnOnj3Ln3/+yd27d3NtQ0hICBEREVy6dInQ0FD69eunsZyJiQnnzp1j6NChUnDdqVOn4urqyuXLl+ncuTP37t3TeK6m9icnJzN48GD27t1LcHCwFOunoH7//XdkMhmhoaGsW7eOvn37kpycTLdu3di4cSMAjx494tGjRzg4ODBz5kxcXV05c+YMhw8fZvTo0dJAi/BhE51/QRCEIiTShgmCIHw6csveApCmyuBZcgLtdy8iMfUldnZ2+Pn5ce/ePWJiYpgzZw7jxo3j8OHDFC9enJMnT+Y4/9atW8jlchwdHTVe+9UsK9OnT2fHjh0sW7ZM6hiamJigra2dZ1YUX19f5s2bh6WlZY5MLK6urhw9epRz584RERGhsb2ajs2ePZvixYtjZWUlbdlKTU3FwsKCypUrEx0dTUZscqGec2HL5yc1NZUvvvgCa2trunTpwpUrV6T3HB0dqVixInK5HFtbW8LCwrh+/TrlypWjfv36ABgZGaFQKDhw4ACrVq3C1taWBg0aEB0dzc2buQ9UfPbZZ9y5c4cRI0awb98+jIw0bxnq2LEjkBmINywsDIDAwEC6d+8OgIeHR64rNDS1/9q1a3z22WdUqVIFgB49ehTqeQUGBkppe2vUqEHlypW5ceMGXbt2ZdOmTQBs3LiRzp07A3DgwAHmzJmDra0tSqWS5OTkXAcrhA+L2PMvCIJQhLLShu0Mu5hvWZE2TBAE4cOmKXvLq8JeRJP84Cazlc0AKF++PLGxsVy9epWxY8cik8mIj49X6+TXrVsXJycnJk6cyMyZM9XqfTXLSlxcHBUrVgRQy3qSV1aU+vXrs23bNhITE2nWrBleXl5AZnBYAGtra+7evauxvZqO3bhxAx0dHeDfQK+6urrI5XK0tbVJS0tDbqxbgKf7r8KW1+TOnTtoaWlhZmbG1KlTKVOmDBcuXCAjIwNd3X/rz2o7ZAYNTEtL01QdkBm89tdff8Xd3b1AbShZsiQXLlxg//79LF68mI0bN7JixQq1clltyO/6mhSm/W+qQoUKlC5dmosXL7JhwwYWL14MZD6XzZs3Y2Vl9dauLbwdYuZfEAShiE1v6IlF8dJ5lhFpwwRBED5suWVv0eRW7FNiUhKl1yqVCisrK3766ScCAgIICgrSuCd62rRpXLt2jXXr1qm992qWFSMjIx4+fEhiYiK3bt3K8V5WVpRBgwbx008/5Xgva6ZaX18/R7rWCxcuAHDp0iUsLCw0tje3Yy9fvpTuUxOd5pagKGA3QyFHx+3NUrhGRkYyZMgQhg8fjkwmIzY2lnLlyiGXy1m9ejXp6el5nm9lZcWjR484e/YsAC9evCAtLQ13d3cWLVpEamoqkJkiN2t5+6sBDiEzvW5GRgadOnVixowZnDt3rsD34OTkJC2xP3DggJS+tyCsrKy4c+eOtIpgw4YN0ntnzpyhT58+eZ7fpEkT1q5dC2Te471796SOfbdu3fjhhx+IjY2lbt26QOaqlF9//VX6/z9//nyB2yq8X2LmXxAEoYiJtGGCIAgfv9yyt2iSoVJx9kk4XbIdGz9+PIMGDSI2Nha5XM6yZcvUAvPJZDJWrVpFixYtqFq1ap7XmDRpEm3btqVatWpUqlQpx3t5ZUX5+uuvpY5k586dMTTM/Ntz5MgR/vjjD5o2bUrFihU1tlfTsbFjx3Lt2jWuX7+OgYGBtBohOy0zQ3TdLEnedz3fZ6f7mulSk5KSsLW1lVL99e7dm2+++QaAYcOG0alTJ1atWoWHhwcGBnmnEixWrBgbNmxgxIgRJCUloaenh5+fHwMHDiQsLIx69eqhUqkwNTVl27ZtREVFaRz4iIiIoF+/flJa3tmzZxf4fqZMmUKPHj1YvXo1jRo1omzZshQvXrxA5+rp6fHHH39I95q1fQHg3r17OQZ9NBk2bBhDhw7F2toahUKBr6+vtMKgc+fOfPXVV0yaNEkqP2nSJEaNGkXdunXJyMigSpUqeQYXFD4cItq/IAjCWyTShgmCIHycPrTsLWlpaSgUChISEmjZsiXHjx9/7bq8vb2ZOHHia2UYAM0R1V+VHp3AM6+/80z3p2VeglJre6JVOu/O+Ydm165d3LlzJ0cgwTeVkpKClpYWCoWCkydPMnToUCmVYUHEx8djaGiISqXiyy+/xNLSkq+//prRo0fTu3dvadb+Uyei/edNzPwLgiC8RWX1jehbs9H7boYgCIJQSB9a9pbjx48zefJkXrx4IUXo/5BplTag1NqevJjpT7LfK9H/FXJ03SwpPqH5R9fxB2jTpk2R13nv3j26du1KRkYGxYoV488//yzU+X/++ScrV67k5cvM4JNZKQnnzZtX5G0VPl5i5l8QBEEQBEEQXvE4MY6GG+cUaOm/QibndNex/5mVXQWZ+c8u/Wk8Kf43yYhNRm6si85rLvUXhPyImf+8iZl/QRAEQRAEQXiFyN5SdLTMDNHvYfe+myEI/3ki2r8gCIIgCIIgaCCytwiC8CkRM/+CIAiCIAiCoIHI3lI0YhKfEBKxn4SUGAx0SmBbwZ0S+mXed7ME4T9HdP4FQRAEQRAEIRcmeoYsatZTZG95DXHJUawPmsz5B/vJUKVJxzcET8Wukgfd7adipGvyHlsoCP8tYtm/IAiCIAiCIOQjK3vLSBtX+tZsJDr++YhLjmLewU4E39+do+MPkKFKI/jeLuYd7ERcctRr1W9o+O9qiz179lC9enXCw8NZvHgxq1atAjJTGm7atAkApVJJYQKZBwQEFHlUfwsLC6Ki1O/Xx8eH+fPnAzB58mT8/PyK9LpvQ1hYGH///Xe+5R4+fEjnzp3fQYuEghCdf0EQBEEQBEEQitT64Ck8jQ/Ls8zT+DDWB095o+v4+/szcuRI9u7dS+XKlRkyZAh9+vR5ozrfp2nTpuHm5lbg8mlpafkXegsK2vkvX768NAAjvH+i8y8IgiAIgiAIQpGJSXzC+fv7ClT2/P19xCY9ea3rHD16lC+++IJdu3ZRtWpVIOcsem4OHDhAo0aNqFevHl26dCE+Ph6Affv2UaNGDerVq8eWLVvyvf6jR49wcXHB1taWOnXqcOzYMQDWrVuHtbU1derUYcyYMRrPnTlzJtWrV8fZ2Znr169Lx7OvVggODqZp06bY29vj7u7Oo0ePgMxVDKNGjcLBwYEFCxbwzz//UKdOHWxsbHBxccm33atWraJu3brY2NjQu3dvAHbu3EmDBg2ws7PDzc2NJ08y/098fHzo3bs3jRo1wtLSkj///BOAsWPHcuzYMWxtbfn5558JCwujSZMm1KtXj3r16nHixAkgc5CgTp06APj6+tKxY0c8PDywtLTk+++/z7etQtESe/4FQRAEQRAEQSgyIRH71Zb65yZDlcb5B/tRWhZutj4lJYX27dsTEBBAjRo1CnxeVFQUM2bMwM/PDwMDA+bOnctPP/3E999/zxdffMGhQ4eoVq0a3bp1y7euv//+G3d3dyZMmEB6ejqJiYk8fPiQMWPGEBwcTMmSJWnZsiXbtm2jffv20nnBwcGsX7+ekJAQ0tLSqFevHvb29jnqTk1NZcSIEWzfvh1TU1M2bNjAhAkTWLFiBQAvX76UtjFYW1uzf/9+KlSoQExMTJ5tvnz5MjNmzODEiROYmJjw7NkzAJydnTl16hQymYxly5bxww8/8OOPPwJw8eJFTp06RUJCAnZ2drRu3Zo5c+Ywf/58du3aBUBiYiIHDx5EV1eXmzdv0qNHD43bLEJCQjh//jw6OjpYWVkxYsQIKlWqlO+zFoqGmPkXBEH4iKU/jSdx3Xn2fvM75qblUDq50KJFC6Kjo3M9Z8SIEfnWGxYWhkwmk/5wP3nyBIVCQUBAQFE1XRAEQfhEJaTEFKp84svYQl9DW1ubxo0bs3z58kKdd+rUKa5cuYKTkxO2trasXLmS8PBwrl27RpUqVbC0tEQmk9GrV69866pfvz5//fUXPj4+hIaGUrx4cc6ePYtSqcTU1BSFQoGXlxdHjx7Ncd6xY8fo0KED+vr6GBkZ4empniry+vXrXLp0iRYtWmBra8uMGTN48OCB9H72wQknJye8vb35888/SU9Pz7PNhw4dokuXLpiYZAZaLFWqFAAPHjzA3d0da2tr5s2bx+XLl6Vz2rVrh56eHiYmJjRr1owzZ86o1ZuamsoXX3yBtbU1Xbp04cqVKxqv37x5c4yNjdHV1aVWrVqEh4fn2V6haInOvyAIwkcoPTqBmK93EOm2hLjpfiRtDqWjqhbrX7Sjs8Katct8cz33119/LdA17O3t2bp1KwDbt2/Hzs6uKJouCIIgfOIMdEoUqrx+MeNCX0Mul7Nx40bOnDnDrFmzCnyeSqWiRYsWhISEEBISwpUrVwo9gJDFxcWFo0ePUqFCBby9vaVAg0VBpVJRu3ZtqZ2hoaEcOHBAet/AwED6evHixcyYMYP79+9jb2+f5wRAbkaMGMHw4cMJDQ1lyZIlJCcnS+/JZLIcZV99DfDzzz9TpkwZLly4QFBQEC9fvtR4HR0dHelrLS2t9xaz4L9KdP4FQRA+MunRCTzz+pvk/dchLSPnm2kZRJ+/Q6JvEOnRCXz11Vc0bdqUJk2acO/ePSBzaR9k7iscMmQIzs7OTJ06Ve06NWrU4OrVqwD4+flJAYgePnxIs2bNcHZ2ZtiwYUBmVORWrVrRtm1bnJycpP2TgiAIwn+PbQV35LKC7S6WyxTYVXR/revo6+uze/du1q5dW+AOfMOGDTl+/Di3bt0CICEhgRs3blCjRg3CwsK4ffs2kLlvP8uZM2c0BhEMDw+nTJkyfPHFFwwcOJBz587h6OjIkSNHiIqKIj09nXXr1tG0adMc57m4uLBt2zaSkpJ48eIFO3fuVKvbysqKyMhITp48CWTOrGefjc/u9u3bNGjQgGnTpmFqasr9+/eJiIigefPmamVdXV35559/pAGCrGX/sbGxVKhQAYCVK1fmOGf79u0kJycTHR1NQEAA9evXp3jx4rx48UIqExsbS7ly5ZDL5axevTrfFQjC+yE6/4IgCB+ZFzP9Sb8Xo3Z8U+w53O8uwPf5STpm1OTFTH9mz57NkSNHmDJlCkuWLFE7x93dncDAQPbs2aPxWjVq1OD06dPo6upKo/UmJiYcPHiQwMBA4uLiuHnzJgDFihVj586dfP755/j7+xfdDQuCIAgflRL6ZbCr5FGgsnaVPDDWK/Pa1ypVqhT79u1jxowZ7NixI9/ypqam+Pr60qNHD+rWrUujRo24du0aurq6LF26lNatW1OvXj3MzMykc+7du4eenp5aXQEBAdjY2GBnZ8eGDRv46quvKFeuHHPmzKFZs2bY2Nhgb29Pu3btcpxXr149unXrho2NDa1ataJ+/fpqdRcrVoxNmzYxZswYbGxssLW1lYLovWr06NFSgMHGjRtjY2PDo0ePUCjUB2Bq167NhAkTaNq0KTY2NnzzzTdAZmC/Ll26YG9vL20JyFK3bl2aNWtGw4YNmTRpEuXLl6du3bpoaWlhY2PDzz//zLBhw1i5ciU2NjZcu3Ytx8oE4cMhU6lUub7p4OCgKkw+TEEQBOHtSn8aT6TbErUZ/xMJtzmacJOxZh589XADQ0q5UNOwAn+4R3P41DFSU1OpWbMmf/31F87OzgQGBuLt7c2ECROwtLREqVTm2M8fFhbGxIkTGTlyJIMGDWL8+PFcuXIFpVKJlZUVQ4cOJSYmhrCwMFauXIlKpeLgwYPMnDkTX19fZDIZffv2fcdPRxAEQXgXrl69Ss2aNfMsE5ccxbyDnfJM92dmaMHoFpsx0jXJtcyHYPTo0fTu3Zu6deu+76YU2G+//Ya5ubnGeAKF4ePjg6GhId99910Rtezt0vS9KZPJglUqlcN7atIHRcz8C4IgfERS/G+qL/V/xYjSzVgYfYhnyS8I2H2AY8eOMX36dDQN9mrat5dd/fr1sbe35/PPP5eO/f3331KEZScnJ6ne7HXlNbAsCIIgfPqMdE0Y3WIz9uZt1LYAyGUK7M3bfBQdf4B58+Z9VB1/gOHDh79xx1/49IhUf4IgCB+RjNjkfMtU0zEjOi2Bl6o09LV0cHV1fe0PLTKZTG0fpaurK3369GHbtm2vVacgCILw32Cka8Igp9+JSXxCSMR+El/Gol/MGLuK7m+01F94d3x8fN53E4QiJJb9C4IgfEQS150nbrpfgcsbTXJDv4eI0i8IgiAUnYIs+xeE90Es+8+bWPYvCMJbERAQgEKh4OnTpwCcPXsWmUxGWFgY+/btY/fu3Wrl8xpdzis3vbe3txS1N8u2bdukCLbZ3b17lzZt2tC0aVOaNWvG2bNnC3FXmbKi5b8POs0tQVHAX90KOTpulm+3QYIgCMJ/ktjeJXxoxPdk/kTnXxCEIhWT+ISAm6s4eXczVWtWYt0/qwHYunUrDg6Zg64eHh60bt26UPUWNDd9ltw6/wMHDuTHH3/kyJEj7NixAy0trULV+75pmRmiW8AOva6bJVqmhm+5RcKnJutnePelhfywYjSNnBqiVCr55ptv8kzdtGLFigLVr1KpaN26NS4uLmr1TZ8+nVatWkmvz507h52dHTNnzsxRTtMAoiAI746uri7R0dGisyV8MFQqFdHR0ejq6r7vpnzQxJ5/QRCKRFxyFOuDJnP+wX4yVGk8vJOMrkUSv66dgp7tHS6E3qF27doA+Pr6kpaWxsCBA+nfvz/37t2jbNmyVKtWDQBra2usra25fPkyK1euxNbWVopQv2PHDqZOnYq9vT1XrlwhMDAQgPnz53Pp0iVatGhBv3792LdvH1evXqVz586MHj0ayMzHW65cOaysrAAoXrw49erVIzY2Fi8vL+Li4rC1tWXhwoV0796dJUuWsHHjRnbv3s22bdto06YN27dvJy0tDW9vby5duoSPjw9t2rTBz8+PiRMnAjBjxgxq167NqFGj2LBhA2lpabRs2ZJDhw4VybMuPqE5qVeeaEz3l0XLvATFJ6jn9xWE3Lz6M5wcl86BX6JoPaYcjpafE3FInz///JMhQ4ZoPH/FihX0798/3+s8evSI4sWLa+y8nzx5En19fWJjYzE2Nmbfvn3Mnj0bD49/U4ZlZGTkeC0InyJLS0umT59O9+7d37iuV7O5FIWKFSvy4MEDIiMji7ReQXgTurq6VKxY8X0344MmOv+CILyx3NL5aClkaGnDHv/NxOgUo0S6cY73z5w5g5aWFn5+fsyaNYuXL18C8PTpU1asWEFwcLDU+c8yd+5cjh49SkxMDEqlUjru7u7O4sWLadCgAVOmTMHDw4OJEydKAwqQ2ekoV66cWvuXLl1Kt27d6N27NwMHDuT06dM0aNCAU6dOcfbsWXR0dEhNTUUul6OlpUVkZCQbN26kdOnStGzZkjZt2uDj48OBAweAzJUNJ06cIDExkRcvXnDixAnc3Nze8Clne66lDSi1ticvZvqT7PdK9H+FHF03S4pPaI5WaZFjVygYTT/D90KSsHQ2QEsng+B7uyhVy5x/FisYMmSINBgXFhaGj48PHTt2JDQ0FKVSyYQJE2jRogUAaWlp9O7dm4iICCpUqMDq1av5/vvvOXz4MAMHDmTZsmXS9e7evUuVKlVo1KgRu3fvxtHRkaVLl2JsbEx8fDy//fYbjo6OPHz4EDc3N2kAceLEiQQEBFCsWDG2bNnC1q1bWblyJfHx8cyaNYuWLVu+68cpCIX2ODGO/eGXiUlJJO5uBPYNG7Bz584i6fy/Ddra2lSpUuV9N0MQhEISnX9BEN7Y+uApuebxrWSrS+CKZzQZUIq7J0NyvHfnzh3s7DKD0dnb23Py5EkAqlWrhq6uLhUqVCAmJibHOVpaWhgYGGBgYICJyb/pgerUqQOAnp5eru0sV64cDx8+VDt++/ZtKZWdg4MDt27dwsnJid27d5OUlETdunXZsGGD1NbSpUtjbm4utQcyo+IbGRnlONaxY0e2b9/OoUOHpFUBRUWrtAElfvIk/Wk8Kf43yYhNRm6si45Y6i+8Bk0/w4kx6ZSqVEx6/ezlPR5Ep2k839PTE2tra7XZxa1bt1KrVi3WrVvHjBkz2Lx5MzNmzADI0fHPKtu5c2fs7e358ssv6dmzJ97e3jg7O+Pm5sZvv/1Ghw4daNSoEb6+vgCcP3+eO3fuEBgYKC0/7tatG/369SM2NpYuXbqIzr/wQYtKimfiqe3sC79MmipzIDdu2zEMbCzRPXSZiJhovNp3wsHBgYCAAPr06cOZM2cIDQ3lhx9+wN3dndmzZ7Nv3z6Sk5NZvHgxdnZ27Nq1iylTplC3bl1SU1MBuHXrFsOGDSMlJYUWLVowceJElEolfn5+KBQKaYXA+PHjOXr0KNra2qxdu5by5cu/z0ckCEIREnv+BUF4IzGJTzh/f1+u75vb6mFSpRimVYsRnRBBXPK/SwSrVKnChQsXgMwP8VnyyhefkZFBYmIiDx8+JCoqSuM5kDkr8ep+4sqVK/P48WOuX78OQHx8POfPn6dq1aoEBwcDEBQURNWqVbGzs+PAgQOUKVMGJycn5s+fT+PGjQF49uwZDx48IDExUbpGRkYGcXFxxMXFScc6derEhg0bePjwIZ999llej/G1aZkZot/DDsMhjdDvYSc6/kKh5fYzrF9Ci4Tn//4Mpb1UkZj2nNikJ9Kx/Pb73r59m3r16gH/DqzlZs+ePcyePZuuXbty4sQJkpPV01ra29vneH3jxg3p51ImkyGTydi/fz9KpRJPT0/u37+fZ/sE4X2KSoqn/e5F7AoLlTr+AKn3nqJVpSwxVUvTYu5oUjPS8fLy4vjx40ydOpUff/yRvXv38vvvvwPw1VdfceTIEdauXcv8+fMBmD17NkeOHGHatGk8eZL5MzthwgSWL1/OkSNHuHz5Mg8ePNDYruPHj3P06FEOHz6scbWcUDBpzx8S47+Iu+sm4WxTnabOjTE2NkapVNKvXz/8/AqeuQfg66+/xtnZmUaNGrF06dIibWv2lZS5yS1eS5UqVaTvO8icjClMesC8AjoLRU90/oVPSvrTeBLXnSd+8UkeLz/G5y3cUSqVNGzYkKCgIHr16vW+m/jJCYnI3B+cG21dOU0Hlf5/51zFlUdHpfcaNGhASkoKzZs358aNGwW63vfff4+LiwuTJ0+mTJnccwS7u7szbNgwFi9enOP4smXL+Pbbb1EqlbRp04b09HS++OIL1q9fT5MmTdDR0aFhw4Zoa2tTrFgxnJyccHR05Nq1azRs2BAAExMTfHx8cHFxYcyYMQBMmTKFFi1a0KJFC6ZMmQKAkZERurq6OQKYCZ8Of39/lEolLi4udOjQgejoaObMmUNERAQhISGcO3cOgJCQEJYvX14k1wwICJBWkWzevJlOnTqRkZGRz1l5y+1nuJKNHjePJZCanFl/6N44Kjvocv7BfqljHhoaKpV/dQAO0Diwpsnjx4+pWLEiBw4cYN++fYwePZqDBw+qlZPLc35ssbKy4tSpU9JrlUrF7Nmz2bt3L9u3b1crLwgfkkmndhD2IjrHsbQnz0l9EEnUTxtJPHOV8JPnuBsXTZ06ddDR0aFGjRqUKVOG8uXL8/z5cwBWr16Ni4sLAwcOlFa3yeVyDA0NqVSpEqampgBcv36d3r17o1QquXr1KhERERoH27///nv69u3LqFGjSExMfBeP4pOSFveUh7934853VXi6ejip+2exwu42f1oFY2VSDL8dG6lcuXKh6rx06RJRUVEEBgZy8uRJunTp8pZan7useC1Hjx7NESy5fPny0u/hGzduoK+vX6h6CxvQWXgzYtm/8ElIj07gxQx/kv3/3f+84tlx3BTG9O/aC70xTbnx9N57buWnKSElRuPx8rV0KV8rZ8RV5ZDSGJkVo3szb+lY1vLd7LKC+FlYWEjvZx37/PPP8fT0JCIigkGDBqnVkbXsuHPnznTu3Fmt7ipVqrBr1y6143v27FE7duTIEenr7LOQ2TsbWVq2bKlxebG2tjZdu3ZVOy58nGISnxASsZ+Hjx4wd9wqdu3cTaUyVblx4wYvX75k7NixABw8eJC0tDTq1auHra1tjrgVReH48eP8/vvv7N69+407uLn9DOsZa2HracTeuZHIZFDaohg2bYxIfBlL69atcXZ2pkGDBlJ5R0dH2rdvz7fffkuTJk0AaN++PZs2bcLFxYVy5coxZswYIiIi1K61fft26RzInIWaO3duvh+QbW1tqVy5Mk5OTujo6LBlyxbatGmDi4sLjo6OlChRovAPRBDegceJcewNv6R2POncDUp4e6BbywKA6IWbeZaUwtOkF1TQLqWxs/7HH39w/vx5bt++zRdffAFkrkZLSEjg+fPnUlA+KysrfvnlF8qVK0d6ejoymQxjY2MePXqEnp4ejx8/BsDV1ZXWrVsza9Ysdu3aRbdu3d7mo/ikpMU95f7MJqQ+0bDKKT2N9Pgo7s9sQobck1WrVjFnzhwsLCxYtmwZkZGRDBgwgBcvXlCzZk3++OMP6VQ9PT2uX7/OrVu3qFatGiVLlgRgzZo1/Pbbb2hpafHHH39gY2OjFpPF19eXhg0bYm1tzdmzZ5kzZw4eHh4sXbqUFStW0KhRI/X7KES8FplMRpkyZXj8+DFbtmyhQ4cOpKSkEBYWxsSJE1mzZg0BAQEEBAQwcuRIOnbsiEwmw9ramoULF0rtvXbtmhRQtkOHDnz11VdF/L8jgOj8C5+A9OgEnnn9rRb5XE9ejKD4MNx3ncPsyhP0ZzsRHh5Op06dCAsLY/v27ZQpUwYPDw9SU1MxNTVl48aN3L9/n969e2NmZiaVq1ixItOmTePQoUPI5XJWrFiBhYXFe7nfD42BTolCldcvZpx/oTxs2rSJRYsWkZCQwMKFC9+orrdt0KBBmJmZiWWTn4BXI+HfOBpPCVuYdbgldpU86G4/FSNdE7y9vZk4cSJLly4lOjqaw4cP88UXX+Dn54enpyfff/89kJnC7vLlyzx8+JAxY8aQmprKwIED6devH0qlEnt7e44ePcqQIUMYMGBAjrZcv34df39/du3ahZ6eHg8fPsTLy4vU1FTq1q3LH3/8QUBAAHPnzkWhUPDs2TP279+PgYEBw4YN4/r16+jp6bFmzRpKliyZ58+wuZ0e5nY542joFzNm6tQRTJ06NcfxH3/8Ue18bW1tNmzYkOOYhYUFa9asyXFs8ODBOV7XqFGDv/76K8ex7PEEvL29pa9fTQM4efJkJk+erPmGBOEDsT/bHv/ski/cxrB5Pem1olxp4veeZn/4ZfpbN1ErD5kDby4uLri4uEjHxowZg4uLC/Xq1aNs2bJA5s9K//79SUlJQVtbm82bNzNo0CDatm2Ls7OztEKgXbt2JCUlAfDPP/8U2T3/FzxdM1Jzxz+b1Ce3SIjci53bAFatWkXLli2JiYlhzpw5jBs3jkaNGjFmzBhOnjwpdcyrVq3KqFGj6NevH8+fP2fp0qU0aNCAhQsXcvz4cSIiIhg+fLjGyQ3I3K44c+ZMUlNTGT58OG5ubixfvpzjx49z5syZHFsvoXDxWiDze2bbtm2cPn2akSNH5pg8ye78+fMolUp8fHzUto2NGzeOxYsXU6NGjTde0SbkTnT+hY/ei5n+GlOedTaux6PUGDrfW4JphCGTfhhEfHw8R44cYd26dWzevJmRI0dKH6AnTpzIoUOHsLS0VCvXrFkzIiIiCAgI4OrVq8yePZslS5a8+5v9ANlWcGdD8NQ8l/5nkcsU2FV0f6Prde/e/YONfvyqot6TJ7wfmiLhZwXDy1ClEXxvF/efXWJ0i83S+4MGDZKi0Wd1Wh0dHQkICJCWpFeqVImBAweyY8cOihcvTosWLfDy8gKgV69ezJo1ixYtWqh1/g8cOMDXX39N6dKlgcxtKAcPHkShUNCrVy9u3rwJQLFixdi+fTszZ87E398fuVyOubk5ixYtYu/evSxevJhx48a9859hQRAgJkXzcnrTsT1zvDbuosS4i5L4jMygfVmr4LJ//eeff6rV4+npiaenZ45j1apVY+/evTmOff7551LA2yxZmWuEwkl7/pD44K0FKvvy4VVqWmRODJQvX57Y2FiuXr3K2LFjkclkxMfH4+jomOOcnj170rNnT+7evUv//v1Zt24dlStXRltbGwsLC2JjY3OUz965NjU1xczMDICYmBiioqKoXLkyCoVCLZYKqMdrCQ4OzrHS61XNmjVj5syZWFtbS6tTNK1ScXFx4ciRI3h5eeHh4UHv3r2lMlFRUdSoUQNQ3+IlFB3R+Rc+aulP4zNTnWmgLdPiG9MWfGPagq2x5/l979/UbF4duVxOhQoVuHXrFgkJCQwaNIiIiAiePHmCpaUllpaW1KpVK0e5a9euERAQIAVEETO5/yqhXwa7Sh4E39M82pydXSUPjPVy36cvCB8iTZHwXw2G9zQ+jPXBU/Kt686dOyxYsIDt27cDcOHCBekDelRUlLQ8t06dOmhra2v8ADR06FCOHz/Ovn378PDwIDo6mqFDhxITE0NYWJi05zcrA0ZW1ownT56wfv169u/fT1pamjSjJH6GBeHdK6FTuH3RxsVyz2QjfBjiz22H9PwHUQFQZZB88ySQOZmhUqmwsrKiV69eUmc8Le3fup49e4ZMJqNkyZKUKpW5/cPU1JTw8HBSU1OJiIjA2DhzZWV+MVlUKhUmJiaEh4eTnp6uNusP/8Zrad26NUFBQTnSJmuira1NmzZtaNq0qRQnwtjYWNpKktWW9PR0pk2bBmRu28re+Tc1NeXGjRtUr16djIwMMQDwlojOv/BRS/F/Jcd5NvdTn1NWYYS2TAsThSEZGRlkPHkhva9Sqdi/fz/Vq1fn77//ZsKECdLI5Ku/JKtXr07Lli2loCRZaXOETN3tp3L/2aVc0/0BmBla0N1+aq7vC8KHKLdI+JVs9fD7JYqqjfQppicn9nEqgTG7SEvPDAqpra1NSkpKjnMSExMZPHgwf/31Fzo6OgDY2dmxadMmDAwMSE1NRVtbG9AcPC+LQqFgw4YNtGzZEgsLC3bv3k379u3x9vbGy8sr199jVlZW9OnTh2+//RbI+XtM/AwLwrvlXrk2U07v1Lj0/1UKmRyPyrXfQauEN5Ge8KxQ5TOSX+R4PX78eAYNGkRsbCxyuZxly5ZJW0yfPXtG//79M8/LyGDatGloaWnx5Zdf0qRJE+RyuZT9QVNMllcpFAr69etH48aNadq0qdr7BY3Xkt3o0aOBf7dolShRAnNzc9zc3KhWrRply5blzJkzjB8/ntTUVNzc3HKcP2vWLL744gtkMpnY8/8Wic6/8FHLiFVPBZXlcvJDBketQVeunbkKwMSNdam3c5Rp0KABM2fOJCgoCGNjYywtLTXWZWtrS9myZVEqlchkMnr06CEFmxPASNeE0S02sz54Cufv78uxfFguU+TYEy0IH5PcIuHrGWlh18GY/fMiUQE6BnKaDirFs4TMWfeGDRvi7e3NpUuX6NSpE5AZnf/69etS1pH169czdepU2rZti0qlolSpUmzevFntWpqUKlWK1atX06tXL5YsWYK3tzfbtm3L8xxPT09GjhyJq6srAKNGjZJWHXxoP8NHjhxh6tSpZGRkoKWlxbRp03Bycip0PdkDXmVp1qwZO3fuxNDQkM8//5zOnTvTv39/VqxYQUJCAgkJCfTu3VsK2ujm5iYFrcri6+srbesAcuRKL4iAgADMzc357LPP2LdvH+np6bRu3brQ9yd8vMrqG9Gqch12hl3Mt2yrynUoo2/0DlolvAktg1L5llnXKnM2e4StHDOn+kDOoMVbt2reNlCtWjWOHj2qdrxv37707ds3x7GpU6eqxWTJvl0kq3M+ZMgQKcDeqwoar+XVuiHz92HWStkVK1bkWz7rdY0aNXKNFSAUHVleOXodHBxUQUFB77A5glA4ievOEze94HlSjSa5od/D7i22SMiKhp74Mhb9YsbYVXQXy4SFj9buSwvZEaoeyC437ep+x+e1P+6cxe/rZ1jKpPD4AT98t5od23diXrYaL1684NatW9jZFf53t6bO/3fffUfbtm1p2rQp7du3p2LFivz2228MHToUb29vabYsq4P/Njr/Pj4+ODs7q818FbWsZ/o06hGzRvliqFOS0AuXsbOzo0qVKmpBFd+WKVOmcODAAX777TdpSbO3tzdXr15FTy9zOfuBAwcoVqxYnvUolcocgR/fh7CwMO7cuSMNor2JqKR42u9epJbuLzuL4qXZ1nooJnqGb3w94e1Ke/6QO99VKdjSfy0Fn/0YhqKE2Eb6LshksmCVSuXwvtvxIRAz/8JHTae5Jcw+lOvS/xwUcnTcNM/sC0WnhH4ZlJZ93nczBKFIvOtsFh+Cd/0zrCmTgrENzA5wl1YcZHX8586dy44dO9DR0cHX1xdzc3ONxyZPnszhw4epVauW2vUcHR05c+YMlStXpk6dOoSHhwOZ8RdsbW2ljA2vI+vcatWqSR1VHx8f7ty5w8OHD7GwsOCPP/7A19eXrVu34ubmhrW1tTTIoCnTTL9+/bh//z7m5uaYm5vj4+NT6GcK0GAUyGUveTxLnx37NuW6iuNt7LU9dOgQJ0+eVDu+du3afPcSFwVNW2FeV1hYGIcOHSqSzr+JniHbWg9l0qkd7A2/lGMLgEImp1XlOkxv6Ck6/h8JRcnyGNp3IP5M/hkSDO07iI6/8F6Izr/wUdMyM0TXzZLkfdfzLavrZomWqfgDKghCwYlI+G9XfpkUNqzbwPQv1tC+ZS8mjJ3EoUOHOH78OIGBgcyePZspU6aoHZs8eTJnzpzh2LFj/P3332qRyx0dHdm0aRMWFhbUr1+fR48e8eLFC2QymRSLoSDmzZsnrQYICQnJs6ydnZ2U0isxMRFvb29p5j/7qoRXM800bNgQHR0d/Pz8mDt3rpR+rbDPNEuGKo34lOcMmqXk/qHiqDJkTJ48GQ8PDxo2bIidnR16eno8e/YMPT09Ll68SLNmzYiJieHkyZN8+eWX9O/fn/Hjx3P06FG0tbVZu3Yt5cuXl67x6mDMjh07uHjxIkqlkl27dmFomPvfYW9vb3R1dbl06RItWrRgypQpnD17lsGDB1OtWjWeP38OoDEf+r59+5gzZw7x8fGMHDmSPn364OPjQ3h4OBEREXzxxRf89ddfKBQKIiMjGTx4MKtXr0ZXV1dKj/ZqKswLFy6opcxcunQpx48f5+TJk/j7++f7/5EfEz1DFjXryePEOPaHXyb2ZRLGxfTwqFxbLPX/CJn1WkhK+Pk80/1pl6mGWa8PO1Wx8OkSYRSFj17xCc3RMi+RZxkt8xIUn9D83TRIEIRPRlYk/IIQkfALL79MCtWcDGgyxJDgG/6EhYVRt25dIDP11K1btzQeCw8Pl45pSmFlYWFBWFgYQUFBODg4YG1tzerVq7GxsSlU20ePHk1AQAABAQHY2toCmlNbwb+ZF7JSeuUme6aZmJgY7t69K91L1jXyo+mZ5qBScXTTLXrNtCUgIIB58+YBmdkmJkyYwE8//QRAy5YtOX78OP/88w8DBgzgxIkTLF++HIDjx49z9OhRDh8+nCP7zePHj6XBmGnTpjF79myGDx+OtbU1AQEBah1/Ly8vlEolHTt2lI65u7sTGBjInj17AJg2bRrbtm1jxYoVPHjwAEDKh3748GGKFy/OyZMncXFxISAggFOnTuVIxVu9enUOHDiAqakp2tra7Nixg7Zt23L+/Hn8/f2pUKEC58+fZ9euXZibm3Po0CGGDx/O4sWLgcyUmTt37uTzzz/H39+fQYMG0bt37yLp+GdXVt+IvjUbMdLGlb41G4mO/0dKYWRGpQnHMHTsAlqvzLFqKTB07EKlCcdQGJm9nwYK/3mi8y98VAICAqTlmFlBRLRKG1BqbU90PazY8CKYtc9PS+U73luMomU1Sq3tiVZpg/fS5iy+vr45ZnggM+XJN998g1KppEmTJuzfv/+161cqldKzCQsLk4KKjRiR+/5jHx8f/PxyxkwICAjgzp07r90OQfjUdLefipmhRZ5lRCT8wssrk8LNwAReJmYugc5IVxGdEEGpMgZcuHABgKCgIKpWrYqFhYXascqVK0tppTSlsAIwMzMjJCSEChUqYG9vz6JFi9Ryar8OY2NjHj16REpKCjdv/puG9tVBAW1tbdLT09XOf7VclSpVpHu5eDH/wHC5PdPsUhIziIlIZfpQX1zdlDx69AiVSoWZmRkVK1aUymUNWJQrV446deqgo6Mjte/777+nb9++jBo1SkrrBWgcjMnL2rVrCQgIYMuWLWrXzYoFEBMTg7m5OYaGhlSvXh1AyoeuVCrx9/fn4cOHBAcH4+bmRvPmzbly5YpUX/YBoOyDMNm/fv78OVevXmX9+vUolUpmzpzJs2fPcpyTNSAjCPlRGJlRfth6Ppt/F7Pev1G643TMev/GZz+GUX7YetHxF94rsexf+ChkBS06efcs4c/CiUl8wooVK6S0J1qlDSjxkyfFLR6SfOkhhvWckRvrov3bDkrMb4tWAYMwvWtLly7F1NSUgIAAEhISaNWqFfb29piYvF5E7aNHj0r5XbNkpScsqICAAJydnfnss89eqw2C8Kn50CLhfyryyqRg38mY/T9GIpOBTEuGracRD9PO06xZMxo3bkyxYsVYuXIlZcuWVTtWrlw57O3tadKkSa6z+fXr1yc4OBjIXJJ/5cqVIun89+nTh379+kkZYnKjVCoZN24cp0+fxtzcPNdyDRo0YPHixTRv3pzy5ctTo0aNPK+f2zPNTkdfjkEJLVqNM8XLcQhOFj2QyWRq+/yzD0S8ulfe1dWV1q1bM2vWLHbt2kW3bt0ANA7GFNar1zI2NubBgweULFlSGlDRlA+9Q4cOLFu2jAoVKkiDBECO+8rtnnJLhXn8+PECD9wIwqsUJctTovnQ990MQcjhw+wRCcL/vRq06OGdZCIeJdPuqzoEh8TRxMWJP35fjLW1NQByI12KOZpjOLARALIlWgC57gW8fv06kZGRVK5cmeXLl0tBmJKTk9HV1eWff/5BW1u7QPsADQwM1MoZGBjQpUsXUlJS0NfXl9JqZdmyZQs7duwAwMDAgL59+7Jnzx4piFV+9ZcsWTJHfT179mT16tW0aNFCOubs7ExgYCCnT59m6NChWFlZcf36dc6dOwfAqlWrmDNnjsZAVD/+WPAo5/9l6U/jSfG/yZGzJ2i74CvuX7xJudpVOHv2LI6Ojty9e1fK1atJWFgYDRo0oGbNmgAsWbIEKyurHGXySwcWEBCAn58fM2bMKHC7P4TI2R8LI10TBjn9LrJZFKGElJhc36tQW5cKtXVzHEt8Gcu4ceMYN25cjuOajuX3czBlyhTpa0NDwxyduawVWtkD0b2a3srb2zvH66yfo3r16kmd3yzZA/Rl1W1hYaExbVfWdbKnyvrzzz9RKBTMnTs3z4ECyPuZSmQyrD83YvfMp5w2nE6T+qel/OAF1a5dOyn+wD///BvcTNNgTF68vLykGf7s9WQ3adIkPD09qV69unT/mvKhd+jQgXbt2mFra0uJEiUKdT+gORWmkZH60vs6deowbtw4unXrppYKTRAE4UMnOv/CByuvoEU1XPW5fvQFytEKKlvmjJaqKQiTi4sLHh4epKWl0bRpU/r0yYxkXadOHSZMmMDQoUM5deoUkLkc9M8//2Tu3Lls2bIFAwMDzM3NWbRoEXv37mXx4sU0atSIYsWKsX37dmbOnIm/vz9yuVytXNWqVXF0dGTChAkMGjRI7T6Sk5OlDz4AFStWJCQkBHNz8wLV/+oH3l69etG2bdscnf8s06dPZ8eOHZQsWZLKlStLx/MKRCXkLT06gRcz/En2vwlpGSQl3KZ2sbKsdf+egV17s1l1DAeHgmWWadGihcb8uVk8PNT3nb+NqNxC3kQ2i6LzX8yk8DoGDBjA3bt3MTY2zrWDnKUgz7SdT+ZglbmdHj0cJknfz9lzb2ffopZ9gDCrzKtBFLPTNBjzal7vV6+R13UbNGggDVZnMTU1VcuH3r9/f2k1YJbsAy/ZB1SyD95kL6NppZymczQN3AiCIHwMxKdG4YOVb9Ai4Gl8GOuDp+Q4pikIU257AbPSR9na2kp7E189VtB9gJrK3blzR6pPU+ApHR2dHNGbHzx4IAVPKkj9r9LV1cXJyUnjB7O4uDgqVqyIgYEBlpb/pjwsaCAqIaf06ASeef1N8v7rOVJNOutXI/DFTZL3XefC2oPUqpY5g9+uXTspUvWoUaOkJceahISE0LRpUxo0aMCsWbOAzA/Fy5YtIywsjGbNmtG5c2eNH56z++qrr2jatClNmjTh3r17QOZWk4YNG/L1118D8OjRI2nJblpaWpGkrxKEgrCt4I5cVrA5iP9yJoWVK1dy9OhRdu7cia6ubp5lxTMVBEEQ8iI6/8IHqSBBi7K24Z2/v4/YpCd5lv3hhx9YtmwZfn5+OZYDZi3PvHDhgrQ38dVjWfsAAwICCAwMlDpjue0XzF6uSpUqUn2aAk916NCBX375BYCEhAR8fX1p1apVgevX5Msvv+SPP/5QO25kZMTDhw9JTEzMEYRJ7Gd8PS9m+pN+L0btuLZMCx2ZguCkcKpllCT14iMAunTpwubNm8nIyODChQtqg0EHDx5EqVTSqlUrrKysCAgI4PTp0xw8eFAtvdfTp0/ZsGGD2izXq2bPns2RI0eYMmUKS5YsIS0tjeXLlxMYGEiXLl2AzGBeiYmJvHjxAn9/f7HiQ3hnRCaFovdffqYxiU8IuLmK5u0c8d07m5jEJwwbNozJkycDcOjQIWk//6u2bdsmDahrCoSbn8ePHzNz5szXanf2QMaQucIgt0CJ+/btY/fu3bnW5ezsrHYsKziyIAgCiM6/8IEqSNAig9JaHPg5kmcPkjj/IO8o+Vl7AQcOHJij83/16lWaN29OUlISjRplxgmIjo6mZcuWBAYG0rFjRzw9PQkLC8PV1RVXV1f27t2r8RqayrVv354TJ07g7u6uMUrw4MGDefLkCU2bNsXd3Z1x48Zhampa4Po1yYrM/KpJkybRtm1b+vXrR6VKlXJ9VlkrC6ZNm5Zrmf+69KfxJPvdzPX95oY1GPNoC58Xr0P6wzjSoxNo3749O3fu5NixY7i4uKid06JFCwICAti7dy93797l888/p2nTply9epWnT5/mKGtjY4OWlla+7fzhhx9o0qQJEydO5OHDh0RFRVG5cmUUCkWOwYeOHTuyfft2NmzYQPfu3QvxJAThzYhMCkXvv/ZM45KjWBo4jHE7GrMuaBLJJW+xcsd8xu1oTPBtP27fvQEgxWDRJHvnv7BUKhVlypRhwoQJr30PBeXh4ZFr3JfciM6/IAjZiT3/wgcpt6BF5WvpUr5W5rLH5sP/jayd+DJzuXpuQZg07QWEzMjMr850enh4MHDgwBzHCroPUFO5nTt3arwXAIVCIc38v1p3QevPkn1fZva941l7Le3t7QkODiYhIYGWLVsChQtEJfwr5f97/HPT3LAGAfE3sNWtBKqTvDwehqF9bYyMjFiwYEGuqzayLFq0iDFjxqBUKnF2ds6RLxwo0D7/6OhoAgICOHbsGAcPHmTt2rWYmJgQHh5Oenp6jpUonTp1wsvLi9TUVJHlQXinRCaFovdfeqaaYgOZVS3GjWMJVG2cSkzKE0IjYolLjuLs2bN07doVpVKJn58fCoUCpVLJqlWr2LdvH1evXqVz585AzkC4y5YtIzIykgEDBvDixQtq1qzJH3/8gY+PD+Hh4URERDBz5kwWLFjAmjVraNiwIdbW1pw9e5Y5c+bg4eHB4sWL8fX1pWnTppw+fbpAgVaTkpLo378/T548wdTUlDVr1rB27VrS0tIYOHAg/fr14/79+5ibm2Nubo6Pjw+xsbH07NmTy5cvs3LlSs6cOUNoaChKpZIFCxYwfvx4EhISMDMzY+PGjW/pf0UQhA+Z6PwLHyQRCKroHT9+nMmTJ/PixQtpGaTwejJik/N830Cuw0/lu/xb/kUKAN27d2fixIn5putq3bo1w4cPp1atWhQrVqzA7Vq7dq0UuHL8+PEYGhri6uoq5d1WKBT069ePxo0b07RpU+k8IyMjdHV1xZJ/4b0QmRSK3n/lmWqKDVTaohjRa2KIDn9JaXNtkl8k89uurwkLC6NKlSpqdZibm+Ph4cHEiROpVq0aPj4+OQLhxsTEMGfOHMaNG0ejRo0YM2YMJ0+eBKB69er89ddfhIX924Znz54xc+ZMUlNTGT58OG5ubvj6+nL8+HGCgoI4ffq0WhtWr14tDdRfu3aNiRMnsmzZMjw9PenRoweLFi1i06ZNUvnTp0+jo6ODn58fc+fOlbaGPX36lBUrVhAcHMzKlSv5+eefWbVqFQEBAdy+fRtTU1N2796tNqAsCMJ/h+j8Cx8k2wrubAiemu/Sf3j9oEXZZ72zvLpy4FPStGlTjhw58r6b8UmQG2sOutXYoCqNDXLmtV5QvhtGn2V+4JTJZPTs2VPtPAsLixyrNTw8PNSi+2f/3tSUFUCpVHL37t0cxzQF7xsyZAhDhgxRO66trU3Xrl013JUgvBsik0LR+5SfaW6xgbQUmXFsntxIwfQzHZLj0tm7Zy+lTWwB9Tg3mrwaCPfq1auMHTsWmUxGfHy8tH1AUyBfU1NTzMzMMtsYE0NUVBTm5uZoaWlJQYhf1bt3byk9Zdbv+qtXrxIcHMySJUtITk6mR48eGBtnTnTcvXtXGtS1tbWVBiOqVauGrq6uFCg4u6pVq2JtbY2Xlxf29vZ88803GtsiCMKnTXT+hQ9SVtCi4Hu78i37qQUtEj58Os0tYfahPJf+SxRydNws2bx5Mz///DPbt29/+w0spEGDBmFmZiZlmhAEQfjQ5RUbqHRlbW4cTaCmqyHJ8Vrs/SESz3bFATA2NubRo0fo6enx+PFjALVAt5oC7vbq1Uvq7KelpREaGqpxC9ar55qYmHD//n0yMjK4ePFige/PysqK5s2b06lTJwBSU1NZu3YtAFWqVJEG87PXqWlgI+tYSkoKX3/9NXK5nJYtW+Ll5UWZMuKzkyD814iAf8IH678WtEj4eGiZGaLrZpl/QUDXzRItU0M6depEYGAgpUuXfsutK7ylS5dqjD0hCILwocotNhBk7vtXZYBCR45haQXJselUqZXZ0R00aBBt27bFx8dHCrDr7u7OsGHDWLx4scb6xo8fz4wZM3B1dcXNzY0HDx4UuJ0KhYK+ffvSuHFj/v77b7S1tQt03qBBg9i6dSvNmzfH1dWVc+fOSe81aNCA5ORkmjdvzsWLF/Oss1KlSnTq1Inr16/j4uJCo0aNcqxOEAThv0WW174fBwcHVVBQ0DtsjiDkFJcc9Z8IWiR8fNKjE3jm9bfGdH9ZtMxLUGptT7RKG7y7hgmCIPwHBNxcxbqgSQUu38Nh+nvbApGWloZCoeD06dOsWLGCJUuWFFmdc+fOxdzcnB49ehRBSwXh0ySTyYJVKpXD+27Hh0As+xc+aP+VoEXCx0ertAGl1vbkxUz/zLR/2bcAKOToullSfEJz0fEXBEF4C95FbKCi8uuvv7Jt2zZevnzJypUri6TOAQMGcPfuXYyNjfnnn3+KpE5BED59YuZfEAThDaU/jSfF/yYZscnIjXXR+f9Sf0EQBOHtWXr8ywLFBrI3b8Mgp9/fQYsEQfgQiZn/f4mZf0EQhDekZWaIfg+7990MQRCE/5Tu9lO5/+ySWrq/7ERsIEEQhH+JgH+CIAiCIAjCR8dI14TRLTZjb94GuSznfJZcpsDevA2jW2wWsYEEQRD+T8z8C4IgCIIgCB8lERtIEASh4ETnXxAEQRAEQfioldAv896i+QuCIHwsxLJ/QRAEQRAEQRAEQfjEic6/IAiCIAiCIAiCIHziROdfEARBEARBEARBED5xovMvCIIgCIIgCIKgQfrTeBLXnSd+8Ul2T1hMU6cmuLi40KFDB6Kjo5kzZw4RERGEhIRw7ty5AtXp7Oyc43VWHZoEBAQwceLEHMfCwsI4dOjQ692Q8J8mAv4JgiAIgiAIgiBkkx6dwIsZ/iT734S0DKLS4pkRsZrVFgMwcbfmUTdzXr58ydixYwE4ePAgaWlp1KtXr9DXyqqjoLI6/66uroW+lvDfJmb+BUEQBEEQBEEQ/i89OoFnXn+TvP86pGUAcCj+Gp2N6mGoKkbyvuuYTDmLWTEjvL29uXXrFkuXLmXevHl4eXkxdOhQLl26BMAvv/zC5s2b87xeVh3R0dE0a9aMzz//nHbt2hEQEABAcHAwbdu2xcnJifj4eJYuXcrq1atp3rw5t27dolGjRjRr1oxZs2a91ecifPxE518QBEEQBEEQBOH/Xsz0J/1eTI5jT9JeUEZhJL1OvxfDi5n+0utBgwYxevRo1q5di5eXF+vXrwdg7969tG7dukDXXbZsGYMHD2bPnj28fPlSOl6sWDF27tzJ559/jr+/P4MGDaJ37974+/tz5MgRBg8ezOHDhxk3btwb3LXwXyA6/4IgCIIgCIIgCGTu8U/2u6l2vIyiOI/T4nIcS/a7iSo5Va2sk5MTp06dIiwsjHLlyqGrq1uga9+9e5e6desCYGtrKx2vU6cOABUqVCAmJibHOV26dOHixYt4eXmxb9++Al1H+O8SnX9BEARBEARBEAQg5f97/F/laliDzXHniE9PBuDuyyieJMWQ/ugFANra2qSnpwMgk8lwdHRk9OjRdO/evcDXrlKlCqGhoQBcvHhROi6TyaSvVSpVjmtpa2vz008/8ddffzF58uRC3q3wXyMC/gmCIAiCIAiCIAAZsckaj5soDPnaxI3eD/5CpYISWvr8VK4zqpeZnfCGDRvi7e3NpUuX+PXXX/Hy8kKpVLJu3Tq1ui5duoSbmxsAbdu2lY4PHDiQTp068ddff6GlpYW2tjapqeorC+rUqcO4cePo1q0bHTt25LfffiMxMZFevXoVxSMQPmEylUqV65sODg6qoKCgd9gcQRAEQRAEQRCE9yNx3XnipvsVuLzRJDf0e9ipHb9y5Qp//PEHv/32W4HrysjIXHEgl8tp3bo1S5cupUKFCgU+X9BMJpMFq1Qqh/fdjg+BWPYvCIIgCAUUk/iEgJur2HhyLrYNauLs0hhjY2OUSiX9+vXL9/wVK1bk+l5eeZ4FQRCEd0OnuSUoCthFUsjRcbNUO3zs2DEGDBjAyJEjC3Xt+Ph4mjZtSoMGDbC1tRUdf6HIiZl/QRAEQchHXHIU64Mmc/7BfjJUadJxuUzBwVmJnDsTipGuSb71ODs7ExgY+DabKgiCILyhmG92kLzver7ldD2sKPGT5ztokfAmxMz/v8TMvyAIgiDkIS45inkHOxF8f3eOjj9AhiqN+JTn9BnvTH1HB5ycnLhw4QIAa9asoWHDhtKxHTt2EBoailKp5ODBg/Tt25emTZvSrFkzMjIypDzPSUlJ9OjRA1dXV7p166Zxv6cgCILw9hSf0Bwt8xJ5ltEyL0HxCc3fTYPe0OPEOFZePcmCEH9qN6pPyO3MgY0dO3bw3Xff5Xt+1t+nN+Ht7U3Dhg1xc3OjY8eOb1Sft7c3YWFh+Pr6smzZsoKcYiGTyU7JZDI/mUy2RSaTVXvda8tkMl+ZTGbxuue/byLgnyAIgiDkYX3wFJ7Gh+X6vipDxYntd5m6oh+tKo9l+PDhbN++nYULF3L8+HEiIiIYPnw4u3btwtramoCAAFJTU5kzZw5HjhxBpVLliOS8bNkyPD096dGjB4sWLWLTpk306NHjHdypIAiCAKBV2oBSa3vyYqZ/Ztq/7NH/FXJ03SwzBwhKG7y/RhZAVFI8E09tZ1/4ZdJUmfeQ4loD535d8Zr8HRfmLmLf7j3vrD1r1qyhWrVqXL58mf79+3PkyJEcf//esl4qleqWTCarDayQyWRNVXktgf9EiZn/j0BAQACVK1emWbNmtGjRgujoaI3lwsLCChzl09nZOcfrvn37cuXKFQCGDRsmpQo5dOgQ3377Lb6+vgQHBxMWFsahQ4cKfb1XxcTEsGXLlkKfd/fuXdq0aSPNlp09e/a1ri8IglAQMYlPOH8/77zJyS8yMDTR4uKjg5Qso0dsbCyRkZFUrlwZbW1tLCwsiI2NzXGOtrY2ffv2pVevXkycOFEK8gRw9epVfvnlF5RKJStXruTp06dv5d4EQRCE3GmVNqDET56Y+g3GaJIbhiOdMZrkhqn/YEr85PlRdPzb717ErrBQqeMPoFOtAhkvU1k762ee1jCjtWdbHBwcOHDgAJA5qz5kyBCcnZ2ZOnVqjjoPHz6Ml5cXqampTJs2DaVSiaurK2FhYQAaj2lSu3ZtqlSpwr1797h37x6urq44OTkxd+5cAI3H7t69S4MGDfD09OTOnTtqdRb02iqV6jJwFzCXyWQeMpksQCaTBclksj4AMpnMRyaTrfr/KoFl/z9WRSaTnZbJ/sfencfVlP4BHP+cW6mImqHsymAahFIaS8ttkexZZkyEGAzGmBnDWLJkSeZnxqz20CDbWLM2U1xZxi5iDEKWQkmLStvt/v5ourra7cvzfr3mNe45z3nOc45bzvOc5/l+pWDgvf+2bZMk6Z3//vyTJEnWxZ70FSI6/68wZVwq6WtP8zD4PJ+0bE/o+u0MHDiwyJQhT6tVq1bqjnRKSgo3btwA4Pjx49ja2uLt7Y21tbVG5/9pPGnnf8iQIfzwww/s37+f4OBgtLS0nrotgiAIxYmICSk01f9xepVlpN5TkpOdze4jqzE0NMTY2Jjr16+TnZ1NdHQ0hoaGwKNczUqlEk9PT1avXk18fLzGQKa5uTnffvstCoWCI0eOMHLkyOd3gYIgCEKJtEwMqOhphcHwNlT0tELL2OBlN6lMphwJJvpB0S8Mq/RyJCPyKhnW9Wk+fQRhYWF8//336v0dOnTg4MGD7Nr1aFaAQqFg6dKlBAYGcuHCBWJiYlAoFMyfPx9/f3/Onj1baFtJatWqxZ07d/juu++YPn06hw4dYt++fcTGxha5be7cucybN4/NmzcXehFa3nMDsUANIFylUsmB1sBnBfafVqlUruQNEBgB44AxQE+g6n9l/gB6SZIkA1qoVKqTpZ30VSA6/68gZUIaSV8HE++6mJSZoTzcFEnmgWvEuy4mdvkBctMygaJHuK5du0a3bt1o3bo1165dA/KmkNrb22Nvb8+pU6eKPKetrS3Hjh0jKyuLChUqqN9C5Xf+fX19CQ0NZcmSJaxatQoXl7w1TtevX6dXr15YW1tz69YtAEaPHo2DgwNdunQhOTkZhULB5MmTAQgMDCQwMJAlS5bw119/IZfLiY+PV7djz549yOVybGxsWLlypUYbr1+/Ts2aNTE3NwegcuXKtGzZkoiICHVk1NmzZwOo2wuP1gVt2bIFW1tbnJ2d2bVrFyqVihEjRuDs7Eznzp1JTEx8ur84QRDeOGmZSaWWkWQSTd0MCJ5xl+lf/8bMmTPR0tLi888/x97enr59+zJz5kwg73eth4cHhw8fxsXFhXbt2nHz5k2aNWumrm/YsGFs2bIFFxcXnJ2di/29LQiCIAhFuZOewu7r54rdr13NEC0jAzL/uc6KERNx79KZmzdvqvdbWFgAoK+vr942Y8YMpk+fjo6ODv/++y8KhQK5XM6IESNISUkpcltJYmJiqFmzJleuXKFly5YAWFpacu3atSK3Xb16FSsrK7S1tWnevLlGXeU9N1AbuA1YS5IUCoQBTQrsz795sYAheW/7T6tUqhzg7H/7tgJdAXsgvLQTvirEmv9XjDIhjfv91qC8kaSxfWPyKfalXeThxWx2S5M43eaoeoTrwoUL+Pv7M3HiRO7fv8/+/fs5efIk3333HbNmzSI4OJjw8HASExMZPHgwW7duLXReS0tLxowZw5kzZ2jRogXx8fFER0cTHR1N/fr11eWGDRvGe++9x6xZs4iOjiY1NZX9+/ezdu1aNm3aRNu2bUlLSyM8PJzVq1ezaNEiPvzww0LnGzZsGDdu3GD16tUa2x0cHHB3dycnJwdHR0cGDBig3nf79m1q1qxZqC5zc3MUCgWSJOHk5MTXX39d5L3dvHkzGzZswMzMDJVKxY4dO6hXrx4LFy5k9+7dLFq0iIkTJ5b01yMIwlumkq5RqWW6+1YH4H0HAzxtpmPVKC/f88CBAxk4cKBG2R9++EH95/BwzWeFwMBA9Z8f/90oCIIgCGUVUmCNf0ke7DqC8XhP+lt2YP7gR8/PRa3DDwwMZMSIEaxbt473338fNzc3fv31VwCys7M5f/58oW3FuXDhAtevX6du3bo0aNCAkydP4uDgwOnTp/niiy+K3Fa/fn3OnDmDra0tkZGRGvUV1Z7iSJLUGDAFbgLzgSFADHCpQLGCsQAk8pYJtJAk6RjQDEClUqVKkpQCfAlMKvaErxjR+X/FPPALK9TxB+ht2JIJJu58GbueG9euE/1dDIqovBEuQN0pbtasGdra2lhaWhIVFcXVq1c5c+YMTk5OJZ63QoUKABw+fBgbGxvi4+PZtWsX1atXL/G4Jk2aIJPJqF27NlFRURojdTY2Nuzfv5/WrVuryz8e2OpxJ0+eZPr06WRnZ6tjEOSrWbMmsbGxhY65du0a33zzDenp6Vy8eJG4uDiNc+TH8vDx8WHWrFnk5OTg4+PDhQsXWLduHSEhIeTk5NCmTZsSr/VNpYxLJTPsMol37uG5dCLSO/pEnDuLlZUV9evXp1+/fri6upa5vhs3bvDll1+SmJhITk4O3t7eDBkypFxt8vX1RS6Xq7/fpYmOjubq1as4OzuX6zyCUBrL2h1Yf3J6qVP/IS/tn1WdDi+gVYIgCIJQvKTM9DKV02vRgPg5a1hrG4WRkVGJZevVq8fPP/+Ml5cXGzdupEaNGsjlciRJwtPTk2HDhhW5raB+/fpRuXJlKleuzLJly5AkiW+//ZaBAweSlZVF165dqV27dpHbxo4dS9++falevXqh/omlpWWp5waCJEl6ADwAPlWpVCpJkrYA24AIIKmEy/8eWAPc/e+/fOuAWSqV6t8Sb94rRHT+XyHKuNS8iKIl+KKqEz/c+4vPLznT3tGJ3wIWAXkjXDExMZw7dw6lUsmZM2do0KAB9evXp1WrVmzcuFFdrjgtWrQgMDCQoUOHkpCQwJQpU+jVq5dGGR0dHZRKpfrz453sBg0aqAOGnDhxggYNGmBoaMjt27cBiIyMpHnz5oXqyfe///2PgIAAateuzfvvv6+xz9TUlDt37nDx4kXMzc1JTU3l8uXLLF++nPHjxyOXy7Gzs0OlUqnPqVKpOH/+vPr4gIAADh8+zLx583B3d2fAgAF88803pd6bN5EyIY0Hs8LICMuLYqsFbKAPPJDhYZBA2KadzPx1brnrHTJkCL/88gsffPABubm5HD58WGN/bm4uMtmzW3GkjEvl32V/sffEIbL2XeGzwJm817AB2trarFu3jqpVq5Zah7e3N5MnT6ZhwyfO/CK8oYwqVseqrjsnb+wotaxVXXcM9UseMBWeveTkZLp37w7A6dOnn3jg0tDQECurvFkbzs7O6sC3T+urr77ihx9+KBSjJiIigtzcXPWAuSAIwrNipFux1DLGk/KCdlfp1o4hrbszsHHeS7CCs9AUCkWhbXv25AXB9fHxwcfHR6POorblK1hHQaampurzlLStQYMGHD16VGObt7d3mc4NRKtUqkJTkVUq1XJg+WPbfAv82bvArsJTmfNmCKwp7qSvItH5f4Vkhj2WSqQIDXVNSMhJw0QyoNqDTI0RLjc3N0xMTPDw8CA+Pp6goCCMjY3p3LkzDg4OaGlp4ezszJQpU4qs29bWlgMHDlCxYkUqVqxIXFwctra2GmUsLCyYOHEiffr0UUffLKhVq1YEBgZib29P5cqVWbNmDVWqVCE2NpZOnTqpO2I1atTg/v379O7dmyVLlvDuu+8C0KNHD7p3746lpWWRI5ABAQF88cUXpKamAvD999/TuXNnRo0aRZMmTdQzGHr27EmPHj0IDg7mnXfeAfLeJh85coTU1FR++OEHHB0dGT16tPpt8VdffUW3bt1KvP9viuKWlwCQk0tu4kPu91tDbvMsVq5cyZw5czAzMyMgIID4+Hg+/fRTHjx4QOPGjVmwYIH60Bs3bmBiYsIHH3wAgEwmU2eWkMvl2NraEhsby9ixY/nyyy/JyMige/fuTJo0ifv379OrVy/09PSQJAm5XE5gYCA5OTkMGTJEPRvg/fffp1+/fmQ9zOSDh0b4qVxYcn01x9Kj2bPvL3pUaUzFTBO2xJykTZs2/Pnnn5iZmb2Auyq8qT6xns7N++dKTPdnYmDGJ9bTi90vPHvJyRmcj7zDw/RsZs8KpGmzGnTu7IpCocDX17fc9eWnYXxS+bPMHp/d9tNPPxVZPiIigpycHNH5FwThmetg2pRpR7eXaeq/tiTD3bTpC2jVm0WSpF7A10D3l92W8pBKSm9oY2OjOnHixAtsztstddHfpP5ysMzlDUbbYTD87ZyqLjydpDHBZOy5WOz+btELCDYbyU+Gp6j+sS1ff/01bm5ubNiwgZkzZ9K7d2/atGnD+PHj8fDwUC+ZOHLkCJs2bWLu3Ln8888/6ijl+UFY/P39adOmDQ8fPlR38p2cnNi1axe//vortWvXpl+/fnTo0IGJEycSHR1dqPPftm1bVIkPSRm4geF/L+QbY1fuZKcQnnYZh0qN2JR8Gpkk0bRGfVI61SU4ZBfvvvsuVapUISgoCENDQyZPnoxCoaBChQps3ryZr776ismTJ3Pz5k0CAgJo3rw5TZs2pUuXLmzdupUrV66oZ4gIb6eUjHusOzmN0zf3aCwBkEnaWNV15xPr6VTRq/YSW/j2SH2QydZN5zgXeYfc3EfPMDKZxJbtPpw8eZTvf/Dn6tWrxMbGlmngEvJS4B48+Ojf4JiYGAYPHsyuXbuYPHkytra2WFtb4+3tTWZmJt26dWP8+PH4+vpy/fp1YmJiWLVqFT4+Ply+fJmKFSuye/du5HI5oaGhLF68mFWrVqGvr88PP/zAqFGjSEhIwMbGhqCgoBd2/wRBeDuM2LeG7dFnSy3X1aw5C536voAWvTySJJ1UqVQ2L7sdrwLx5v8VIjPUe67lBQHKtrwkX87VBBrXaQDkpWRJTk7mwoULTJgwAUmSSE1N1ZgdUjAuQ5MmTdSd/nzW1nkpUIuK03D16lW6dOkCoH4TVlTshoSEBIbY9yDxdjw3sxO5k60Z0XX3g3OkqbLQSj5Fg4Q6pBvAuXPn1AEo3dzcuHr1KgcPHqTg4KdCoWDv3r38/vvv3L59m8mTJ9OlSxf++OOPIme5CG+XKnrVGNZuPknpd4mICSE9K5mKFQyxqtNBTPV/gVIfZDL/l0Mk3Cu8njU3V0VaWhbzfzlEVmYOVlZWrFy5Ejc3N5KSkpgzZw4TJ05UD1z+/fffGrFeIiMj1b+v+vbty7Bhw+jduzdDhw4lIyMDf39/Pv/8c6ZPn469vT3u7u70798fyAs2tWLFCrZs2YKJiQkBAQHqrDn5tm3bxr59+9DX10elUjFs2DD14KYgCMKzNrN1NyITYopN9wdgVrkqM1u/HbNehTyi8/8K0XVpBP57S536D4C2DF3XRs+/UcIbpyzLS9RyVeScjoWP8j6qVCrMzc3x8vJSd+Rzch69Bc2Py3DhwgUaN26MSqXSiO2Qv9Z/4cKFheI05EdxbdKkCadPn6ZDhw4YGhqqI7pGRkbi5OTE6iUrcMs0o49pL0bG5C2z0pa0UP4XmLVj5aboyXRIzc3EVKpGrU/z0lLmB6A0MzOjbdu2gObgwowZMwgLC0NHR4d69epx//59EhISSEpKok6dOuW9zcIbyqhideSNBpReUHgutm4+V2THv6CEe+lEXYvDydkRKNvAJRQ97d/Ly4tvvvmGkJAQgCLTT8Gjgc1Lly6pf788Httk+vTpjBgxggoVKqhTPwqCIDwv1fQN2Np5BFOOBLP7+jmNJQDakoyOphbMbN2NavoGL7GVwosmOv+vEC0TA/RcG5U4HTufnmsjtIzFD6tQfrnJGeUqr0rL0vg8adIkhg0bRnJyMjKZjICAAI019cuWLWP06NGkpKQgk8no06dPoTqLitMwZMgQevXqxcqVK9HV1QXAxcWFuXPncvz4cbS1835dtatQn0/jf2V30qP8tR/oVmd23G5OPbxOK30z9GQ6nHpwgz8f/IP577f5ymecOgClubk527dvZ9SoUXnX99/b/4IpbKpVq0a3bt0YPnw4Xbt2Ldf9EgTh+UhOzuDc2TtlKht3N5X09EdBXEsbuCyOr68vM2fOZPbs2Wzfvr3I9FPwqKNvbm7OkSNH6NKlS6HgppaWlgQGBrJmzRoCAwOpU6cOmZmZZb5+QRCE8qqmb8BCp77cSU8h5Pp5krMeYlhBH3fTplSvWOVlN094CUTn/xVT2ceF7H/uFh2I7T9a9Yyo7OPy4holvFHKslwk2Cxvrf5YYzeqtLYHNKO0btmypdhjzczMCA4OLrS94Bs1d3d33N3dSyyT79ChQxqfU//9m33vjSlUbqvZCA6nXSE87TJfVXPhq2oufHx9CWbG9TQCUBoZGWFqakq7du3Q1dVl8+bNQOEUNh999BFjxoxh4cKFxV6rIAgvzvnH1viXRKWC6Gv3NbaVNnBZcNq/tbU1np6exMbG8t1336FUKlm6dGmR6acK6tatG9u3b8fBwQEDAwN27dql3jd8+HCuXbtGZmYmK1asQFdXF29vb86dO6fOTS0IgvA81KhYRR3NX3i7iYB/ryBlQhoP/MLy1mUXnJ6tLUPPtRGVfVzQqlrp5TVQeK0p41KJd11c5uUlxmGfvVKzTNLXniZlZmiZy1eZ4kpFT6tynycxMZEhQ4awadOmch8rCMKzF/bnZUJ2lz4zLl+HTua4tBfL4wRBEN52IuDfI88u2bbwzGhVrYTRvG4Yh35GlSmuGIy2o8oUV4zDPsNoXjfR8S8jZVwq6WtPE/tjKO5W9ji2s6d169Y8jwGt5cuXF9oWGBiIubk5crkcJycn7t69C6BOfVeagoHynqX85SVl8SouL9F1aQTaZfzV9YSxMf7991+6du3Kl19+We5jBUF4PvQr6pSvvH75yguCIAjCm05M+3+FaZkYPNEby7edMiGNB7PCyPgvsF3g/UO4yWrQt1prtJ3fQ7vasw/etnz5cgYPHlxo+7hx4xgyZAhr1qxhzZo1fP3118/83E/idV5e8iJiY3zwwQcaKb8EQXj5mjarQfCW82Wa+i+TSVg0q/ECWiUIgiAIrw/x5l94oygT0rjfbw0ZIRfV09r1ZRU4mX6dhIwH5PwZRfbw7YRt283kyZOBvDf0gYGBREdHY29vT69evbC2tubWrVtERUXRpk0bnJycmD17NgABAQHY29tjb2/PqVOnWLJkiXqtaH5k+selpKRQpcqjwCqZmZm0b99e/dnFxYWsrCyWLFlC69atn/sggVbVSrwb1Bc9d/PCb9G1Zei5m/NuUN9XdpZJZR8XtOoZlVjmVR28EAThyRga6mHRvGwdeovmNagi0uEKgiAIggbx5l94ozzwCyv0Nru3YUtuZyfR+8ZijLUM+C3Hk4er48C88PGpqans37+ftWvXsmnTJgwMDPjss8/w9vZGpVJx7949goODCQ8PJzExkcGDB7N161ZWrlxZZLC6uXPnEhgYyM2bNzl69Kh6u66uLtWrV+fmzZsolUrq1KmDTCZj2bJlHDp0iGPHjnH69OlnfHc05S8vUcalkhl2mdzkDGSGeui+glP9H5c/eCFiYwjC28WjpwUxt5JLTPdXtVpFPHpavMBWCYIgCMLrQXT+hTeGMi41ryP4GB1JizHG7Rlj3J4tyadZev8ATicbk1s3r4OrUqnU+d6bNGmCTCajdu3aREVFMWjQIHx9fenXrx9eXl5UrVqVM2fO4OTkVKY25U/7j4yMxMfHh2XLlqn39ezZk40bN5Kbm0uvXr24d+8epqamaGtrq1NRvQiv6/KS13nwQhCEJ2NQWZfPR7dj6+ZznDurGf1fJpOwaF4Dj54WGFTWfYmtFARBEIRXk+j8C2+MzLDLRUawv5mdSA3tKuhIWlTTNiA3Q0UVdIk5fQnIS+/UvHlzAPUgAOQNCujo6DBv3jyysrJo164du3btolWrVmzcuBGA7OzsQscVxcjIiPv3NdNOdezYkR49egAwatQotLS0uH79Okql8rm/9X+TvK6DF4IgPBmDyrp4DbQmOTmD85F3ePgwG319HSyaian+giAIglAS0fkX3hi5yRlFbj+fEctn91ajJ9NBR9Lix5ofUUO7CrfjjtCpUyeqVq1abJ3BwcH89ttvpKen4+XlhbGxMZ07d8bBwQEtLS2cnZ2ZMmUKdevWpVevXvj5+fHBBx+oj587dy5BQUFkZWUxb948jbr19fUxMjJCW1sbXd28t1SDBg2ibdu2ODo6qsvNmTOH/v37F8onLQiC8DYzNNSjrZ3Zy26GIAiCILw2JJWq+Ki5NjY2queRFk0QnocXlf9dEARBEARBEITXgyRJJ1Uqlc3LbserQET7F94YLyL/uyAIgiAIgiAIeRo1asS6desKbVcoFJiamiKXy+nevTsZGRn4+voSGlr2F3UliYiI0IilVZz/AnJXAJAkyVuSpCHlOY8kSWMlSfpbkqSDkiT5PkFTXyli2r/wxngR+d8FQRAEQRAE4W11Jz2FkOvnScpMJ+VaDNatP2T79u188sknhcr279+fWbNm8d1336njZT0rlpaWWFpallruv87/E0WBlSSpCtBFpVK1+e/zO09Sz6tEvPkX3igi/7sgCIIgCIIgPFv3HqYyfF8QrTfMwefINuae/ou5gYvZX1+bw9cvEZOUUOyxlpaW3Lp1S/05NjYWJycn7OzsGDlyJAC5ubkMGTIER0dHOnbsCMDRo0eRy+W0a9eOFStWaNSpUCiYPHkyAM2aNaNv3760aNGCiIgIdZmsrCwCAwMB6kqS9MN/mztKkrTrv/8kSZL0JUlaK0nSXkmS1kuSpFPgNEqghiRJLQBUKlUigCRJB/MLSJKkyP+/JEk/SJJ0XJKkT8t8Y18w0fkX3ij5+d/13M0LLwHQlqHnbs67QX1F/ndBEARBEARBKIN7D1Px2LmQHdGR5KgeZdbKvhGHVv0aJDWoSvvvxnHvYWqRx4eHh/P++++rP1erVo2//vqLgwcPkpKSwuXLl9m2bRsmJibs37+fnTt3AjB16lSCg4M5ePCgOoB2UeLi4li+fDkLFizg999/V2+vUKEC3t7eADdVKtU3/22+pVKpOgExQHNgCBCsUqmcAQXQO/94lUqVBnwJzJUk6ZIkSR6l3KrVgB0wsJRyL42Y9i+8cUT+d0EQBEEQBEF4NqYcCSb6geab/Zy7iWTfiufevA2ocpRcr36HKUeCWejUV11m1apVHDp0iCZNmtC9e3fOnj0LQEJCAiNGjCApKYno6GhiY2O5dOkSbdu2BUAmy3uBd+bMGbp16wbAvXv3iI+PLzL7VcOGDdHT06N27dokJSWVdjnn/vt/DGAENAasJUn6DNAD1hYsrFKpQoAQSZKqAn8CW/P3SYVzfZ9TqVTZkiQVzj3+ihCdf+GNJfK/C4IgCIIgCMKTu5Oewu7r5wptf3jqEkbe7ug1MQMg4ZdN7LoWyd0PU6hesQrwaM3/49asWYOHhwfe3t7069cPlUqFubk5R44coUuXLuTm5iKTybCysmLjxo1UqlSJ7OxsdHR0CtUFULAP/ngmu/+OKdhJL1hAAi4CYSqVatN/dalPIkmSPvCuSqWKAVKA7Ee7JF3A/LGmFJ9G7xUhpv0LgiAIgiAIgiAIhYRcP68x1T9fxpkr6DZ89BZeu2ZV0i9dZ8/186XW6ezszA8//ICHhwdpaWkAdOvWjdu3b+Pg4ECXLl0AmD59Ol27dsXJyanIgIJlIZfLAWpKkjS1mCJLgB6SJIVJkrQXaFlgny6w8r81/vuBn/7bHggcpMASgdeF9PjoSEE2NjaqEydOvMDmCIIgCIIgCIIgCK+CnyPCmHv6rzKX/7alG6NbOD/HFpWfJEknVSqVzctux6tAvPkXBEEQBEEQBEEQCjHSrViu8oYV9J9TS4RnQXT+BUEQBEF4qyQnJyOXy5HL5RgaGiKXyxk0aFCRZQMDAwkICADgxx9/ZPTo0URERLBs2TIA7OzsgLyppTk5OWVug6+vL82aNVN/njt3LvXr1y/z8dHR0Xh5eWls27NnjzpKdlnlt7+gL774osRjfH1983NnC4Lwhutg2hRtqWxdRm1Jhrtp0+fcIuFpiIB/giAIgiC8FfKzwGglZ7Drsx/RdWmEY0/3MnVk//jjDw4fPsz69euRyWRYWlo+dXt0dXW5fPkyjRo14vDhw9StW/ep6nN3d3/qNgH8+uuvGp/zg28JgvD2qVGxCh1NLdgefbbUsh1NLdTB/oRXk+j8C4IgCILwRlMmpPFgVhgZYZchp0DgKv+95CTcZ+XCZSz4fSlaWlosWLCAFi1aaBx/4MABbt26xc6dO5HJZCgUCkJDQ4uMYl3Qxx9/zN27d9HV1WXjxo1UqaL5UNyjRw82b97MgAEDqFGjBomJiUBeequRI0eiVCoZNWoUXl5e/PvvvwwfPlx9XPfu3QHIzs5m4MCBfPbZZ1y7do2cnBxcXV3p378/JiYmREdHs23bNurUqcOgQYO4efMm9erVo169evj6+pKUlMRHH33E1atXWbRoEa1atcLOzo6DBw/i7e2NgYEBly5dYt26dfTq1Qs9PT0kScoPoiUIwltgZutuRCbEFEr3V5BZ5arMbN3tBbZKeBJiGFcQBEEQhDeWMiGN+/3WkBFyUbPjD5CTS05iGj9NmIVi6x6CgoLw8fEpVMfWrVvp378/enp65Tp3YGAg+/fv5+OPP2b9+vWF9tva2nLs2DG2bt2q7swDTJkyhaCgIA4cOMCvv/5KdnY2EydOZNGiRSgUCvW0/OzsbLy9vRk2bBiOjo4adaempvLHH38wZswYNm3axNGjR9HV1SU0NBRz80fZqWJjY1mxYgXBwcFMnz69UBvbtWvHn3/+SUBAAEOGDGH37t0olcpy3QdBEF5v1fQN2Np5BF3NmhdaAqAtyehq1pytnUdQTd/gJbVQKCvx5l8QBEEQhDfWA78wlDeSit2fkJOGhXYtMv4Xjtm8biQnJxcq4+vry8KFC7G0tCzzdH+lUsm4ceOIjIwkJSWFHj16FCojSRI1a9Zk3bp1hIaGMmfOHAASExMxMzMDoH79+sTFxXHv3j0++OADAPUU/PDwcDp06FDkW/gmTZogk8moXbs2UVFRXLt2jebNmwNgaWnJ33//DUDDhg0xMDDAwMCgyGu3trYG4OrVq+r0Wy1btixUThCEN1s1fQMWOvXlTnoKIdfPk5z1EMMK+ribNhVT/V8j4s2/IAiCIAhvJGVcKhmhl0ssU1W7Ereyk3jw179cOXkeQ0PDQmUqV67M2rVrGTx4MHfv3i3TuSMiIkhLSyM8PJzPP/+c4lIrDxgwgC5duqCjo6PeZmRkRHR0NNnZ2Vy9ehUTExOMjY25dOkSkLcGH8DFxYV69eoVWqMPeQML+VQqFfXr1ycyMhKAs2cfrd2NiooiLS2N2NjYQssS4NFAQ/369Tlz5gwAp0+fLtM9eBIhISHY29sjl8sZM2bME88yCAwMxNzcHLlcTseOHYGigxuWh1KpZMyYMcjlcuzt7QkJCXmq+vJt3bqV+/fvA3kDTaGhoeU6/tq1a3Tp0gVHR0ecnJw4fvx4mY990nsSGBhYaqwMb29vjaCU5TlXwXsivFpqVKzCwMZtGN3CmYGN24iO/2tGdP4FQRAEQXgjZT6+xr8IMmQMeqcNHlHz6efZl5kzZxZZ7r333mPevHn06dOHzMzMUs9tbm5OVFQU7u7uHDt2rNhytra2jBs3TmPbjBkz6Nu3L3Z2dnz++efo6Ogwe/Zshg4dilwu1+jsz5gxgwsXLrBu3boS2/Phhx+SkZGBi4sLZ8+eVQ821K1bl8GDB9O1a1emTp1a7PFDhgxh8eLFdOzYEV1d3VKvvzySkzM4fDCazX8cZfz4KaxfvxWFQoGxsTFLly594nrHjRuHQqFg9+7dz6SdS5YswdjYGIVCwZ49e/Dz8+PevXvlrkelUmkMBj1tR3fIkCH88MMP7N+/n+DgYLS0tJ64rmft3LlzxMbGlvs40fkXhOdDKm4kGsDGxkZ14sSJF9gcQRAEQRCEZyN10d+k/nKwzOUNRtthMLzNc2zRy5WTk4O2tjbfffcd9erVw9PT86W2J/VBJls3neNc5B1yc1Wc+ycMpTIHqxbuWDSvgXunhvTz+piQkBBat25Ns2bNOH78OHPmzMHd3Z0dO3bwv//9j5ycHKZOnaqR7SAwMJCcnByGDBmi3pYfyDAqKoqRI0eSmZlJ+/btmTx5Mh07dmT37t14eXlhbW3NiBEj8PT0ZMuWLerj27dvT3BwMPr6eXnMly1bho6ODgcPHuTrr7+mcePG/Prrr1SvXh0nJyc+/fRTHjx4QOPGjfH3n8eYrycQc+sm95PiiIu7xZw5/rRt2xZbW1tMTU3p3bs39+/fZ9WqVaSlpaGjo8OuXbswMjLC09MTAwMDGjduzIIFC9Rtun79Oj4+PqxevVrj3vr6+mJnZ4erqyve3t5YWFjw2WefMWjQIOLj43nvvfdYsWKF+p7873//QyaTMXToUPr160dKSgqWlpb88ssvJCcnq7dVq1aNv/76i3PnzmFsbEzv3r2JiYnh3XffxcvLi08//VTdBm9vb1q3bs3Nmzfx8/NTn+vo0aOMHz+e7OxshgwZwqBBgxg4cCDR0dHIZDJ+//13bG1t0dLSomvXrixatEhdZ/4SF21tbWrWrMn3339P9erVy/R9CwwMpFmzZuqlLMLbQ5KkkyqVyuZlt+NVIN78C4IglIEyLpX0taeJ/TEUdyt7HNvZ07p1a57XAKm3tzdRUVHqz0XlFS+r/PKBgYHq6cL5Hs8VXtKU0+joaPbu3VuucwvCyyQzLF+AvvKWf918+umnODg4cPDgwSJjELxIqQ8ymf/LIc6euU1ubt6LqLS0+xgYvEturoqzEbdZtuQkDx9mAHD//n38/PzYuXMnixcvJjc3l++//569e/eiUCiYO3duoXPMnTsXuVzOxIkTNbb7+PiwbNky9u/fz/nz57l16xaVKlUiLS0NpVLJuXPnOHHiRKFOYkZGhrrjD1CnTh1u375N79692bhxIwC7du2ic+fOzJkzh4kTJ7I9eA83otMYNfw3/v0njvQ0A5q8/zGVDRryy8+/8+471XF3dycoKIhx48Zx5swZ2rVrR2JiIs2bN6d69erMmTOHd999l3379lG5cmV1vIbc3Fxu375NzZo1S73fGzduZPHixbi5ubF//371vyf59wlg7NixLFmyhD59+hAeHk56ejpHjx5l0aJF6m2ZmZlUq1aNP/74g4oVKxITE8O3337Lvn37GDx4cKHzurq6cvjwYR4+fKjeNnXqVIKDgzl48CBBQUFkZmZy69Yt9u/fz969e6lXrx7u7u706tWLTz75pFCdoaGhhIaGMmjQIEaMGFHqtefz9vYu9Hf6+L+JgvCmEwH/nqH8/MGJd+7huXQi0jv6RJw7i5WVFfXr16dfv364urqWq84hQ4agra2tMer5JJYvX17kL+VXrU5BeNU8niIs8P4h3GQ16FutNdrO76Fdrc4LaUd5Ao0VJzAwEC8vryfO153f+Xd2dn6qdgjCi6Lr0gj895Y69R8AbRm6ro2ef6Neot9///1lN0Ft6+ZzJNxL19hWqdK7pKY+mup9904SiffzllgYGxtjYmICQFJSEvfu3ePChQvq56q4uDhUKpVGrINx48ZpvPnPd/HiRfr376+uKyYmBltbW7Zu3YqpqSl37tzh8OHDtGvXTuM4XV1dHj58qB4AuHXrFjVr1sTZ2Zk5c+bw2WefYWBgQKVKlbhw4QLjxn1LbMwD0tPT+LBVLQCqV2/ApajDWDbryJHjf/DzvH1kZz+Ka6Cjo0NKSgr37t2jTp065Obmsm/fPm7evImRkRGmpqasX78eOzs7LCws+OCDD1i5ciWHDx9Wv0U/evQogYGB/PHHH4wdO5b4+Hj++ecf5s2bxxdffKGRNvLq1ausWbMGIyMjduzYwa1bt9i6dSvR0dEcOHCAs2fPUrFiRebPnw/kLWfR0tJi+/btfP3115ibm7Nr1y6CgoK4c+cOOjo6dO/enUmTJhEVFcWoUaNISEjAxsaGjIwMHBwcOH78ON26dUOpVHL27FmcnZ3Jycmhb9++1KhRg9OnT3P58mUaNmxIz549i/0OOTs74+fnh1Kp5Nq1a4Vmc0yaNInw8HB0dHQICgpiyZIl2NnZoa2tzbx58wAYMWIEMTEx6p+Nn3/+WQS0FN5o4s3/M6BMSCPp62DiXReTMjMUraURbKAP6x940NigNmGbdmJqalr+epVKbt++TXR0dLGBgsoiNzeX5cuXP/HxxXkedQrCq6SoFGH6sgqcTL9OQsYDcv6MInv4dpQJaYwePRoHBwe6dOlCcnIy0dHR2Nvb07t3bywtLVm7di1ubm7Y2dmRlpYG5K3VlcvlODs7Ex0dXWJbFAoFkydPVn9WqVSMHj2adevWER8fT7du3XBycmLkyJFFHn/s2DEiIiJwcXFh1apVpV57Tk4Onp6eODg48EmPj0hZfZwF42azcvEyKupXLHZ9cVhYGHK5HAcHB3r06EFCQkKhWQyledqgXAU9ft8ed/XqVTp27IhcLqdXr17Ex8c/s3MLL5+WiQF6ZezQ67k2QstYpKl6EZKTMzh39k6h7fXNrDl/YS9Z2Xlv+0+c2kbN6i1JSc4oFMCwWrVqNGvWjLCwMBQKBWfOnNEoUxJzc3PWrl2LQqHg5MmTtGrVirZt2zJ37lzatWuHmZkZGzZswNbWVuO4Hj168NNPPwGQlpZGYGAgHTt2RFtbm/r16zN37lz1jApzc3M6tP+M3h6zGND3Rxo1aA2AJMmIi79KzRrvU9+0JadO/03srVR1YMPmzZtjYmKCk5MTf/75J3FxcTg6OuLq6kpSUhJnzpzhwYMHLF68mAkTJrBw4UI++OADli1bRlBQEPfv3+err75i+PDhjB8/nqCgIG7fvk2TJk345ptvMDY2ZuLEiSxYsACFQkH9+vWZPXs2JiYm6s/5Swji4uL48ccf6dy5MydPngTyBk6qVq1K165d2bx5M7q6ukyfPp1ff/0VExMTjh49yl9//aV+01+9enWOHTvG/fv3yc3NJTw8nEqVKrFq1So+/vhjfvvtN8LDw+nfvz9du3bl0KFD6iCNOTk5pf5dmpiYcO/evSJncxw6dIjw8HD27dtXaHZEVlYWwcHBtGrViuDgYMLDw9m2bRszZswo03dIEF5X4s3/U8rvHBSZRignl9zEh9zvt4bc5lmsXLmSOXPmYGZmRkBAAPHx8RrrwQqu4YK8FD5yuZzMzEz+/vtv2rZti6+vLxcvXiQ+Ph5TU1OWLVtGREQEX375JRkZGerR1sDAQHbv3k1qaiqOjo5ERkaqgwQNHTqUFi1acOTIEb766iu2b99OVFQUq1atokWLFkWuoXt8rV1WVpa6Th8fH9q3b/9ibrggvEBFpQjrbdiS29lJ9L6xGGMtA37L8STyi0Wk6edF9V69erV6imRqair79+9n3bp1rFu3jj///JPZs2cTEhJCw4YNiYmJQaFQcOHCBfz9/Vm8eHGZ2/bVV1/Rpk0bPvnkE7755hsmTpxImzZtGD9+PH///Tdt2miuW7a1tcXS0pLQ0FC0tTV/9f/111/qdZTR0dHY2dmxZcsWPjBryMIanvivXcja4z/xidZ76GQnodSvw6bpC/mofVe0qlZS1xMfH8+MGTPYsWMHlStX5tKlS2RlZZXvpj9DZZnOOXToUBYtWkSjRo04dOgQX375JWvWrNGo40lnSgivhso+LmT/c7fEdH9a9Yyo7OPy4hr1ljv/3xr/x1WqaETrVh+xccs0JEmiunEDbG16ci6y8ECBTCZjzJgxuLi4IEkSTZo0Ub+dLo2fnx+DBw8mMzMTHR0dNm3ahI2NDf/++y/t2rVDT0+P7du3U6lSJY3jPvvsM8aOHYujoyNKpZJJkyZhbGwMQK9evfj444+5ffs2AKNGjaFjh4/JzEwHScLd9QsAUlMTuHcvmj+2TEOpzOYdo1rUN7Ni2LDheHr2QUtLi/79+/P777/j4ODA8uXL+fzzz/Hw8MDZ2RmZTIaZmZm6bWfOnMHMzIx27dqRkZFB586duXTpEtu2bePcuXPIZDKaN2+uXl8/ePBg9u7dy/fff8/y5cuRJAl7e3tmzpxJ3bp1qVSpEvHx8ezbtw9jY2PatWtH06ZN6du3L0uXLqVq1arUrl2bIUOG8PHHH5OUlISnpyepqano6uri6OjIxYsXiYuLA+D9999HT0+PRo0aqQP4tW7dmo8//pgbN27w8OFDFi9ezNmzZ6latSpKpZIuXbpw7do1/vrrL4KDg4tMZZkvLi6OatWqFTmb49tvv2XgwIFUrVoVPz8/jePy3+5fvXqVM2fO4OTkVKbvjiC87kTn/ymVlj8YQHkjiazka1h9bMvKlStxc3MjKSlJvR6suAf2LVu28PXXX5OVlUVAQABt27YFwMLCAh8fH0aMGMGRI0do0aIFCoUCSZJwcnLi66+/BvJSBa1fvx6A4OBgdUqW+/fvM2PGDJRKJS1btiQ6OppTp06xbNkyfvrpJ/UautzcXDp27Ii7u7t6rV12djajRo1iy5YtNGvWrNQ0L4LwuiouRZiOpMUY4/aMMW7PluTTLL1/gKYHa2M5Mu9BwsbGhv379wOP8mzXqlULCwsLAGrVqkViYiL//vsvCoVC/VBTljWb+S5duoSenp76DdSFCxeYMGECkiSRmppa6G1Vadq3b69+0+Pr6wvA5cgLNPoziYyHF2lRoTZnM25hrF+ZqKx4plfvys+39nLb83dqrh2oHgDYtWsX/fv3p3LlykDeQ19BBYNG5QeSSktLY+DAgRoBqPLlB6DS19enXr16fPDBB3z44YckJCTg6+tL586d0dXVZeTIkSiVSkaNGoWXlxfe3t4YGBhw6dIlJk2aBEBKSgpeXl74+/vTtGlTIC9QVo0aNWjUKO/NcLt27ZgyZQpKpZJPP/1UXUdgYCD9+vUjOzub5s2bq9+Yfffdd2hra3P//n1CQkLQ0dHho48+IisrCyMjI9zd3fH29mbGjBns3bsXmUzG8uXL1fnbhRdDq2ol3g3qywO/sLyf6YJLALRl6Lk2orKPi8ZAlvB8PUzPLnbfe/VteK++Zlyuhw+zOXjwUeDG/GePTp060alTpyLr8fb2LrQtv46GDRsWmQEgIyNvxkH79u2LfKmhra2t/r37uE6dOpGamqr+fPe2Eo+uPhpl2rXpy9ETm+jgOhrTei0A2Bw8k0YN2tCj92e0tTPj+vXr1KqVt0Rg2rRphISEUKNGDezs7Fi7di2gOTvKysqKjRs3UqlSJbKzs9HR0aFjx46FtrVv3x49PT02bdpEz549mTBhApD3omnLli24ubnh6+uLj48PjRo1Qi6Xq2dNGRkZsWvXLiDv3oeGhmJkZIS5uTlhYWEEBwfz888/06tXL+RyOXZ2dqhUKoYMGaJ+e+/s7Kxud7Vq1fjpp5/YuXMnderUoVevXgBkZ2czb948Ll26hKenJwEBAXTr1q3I+w2wf/9+3nnnHbS0tDA3N+enn36iZs2aKJVKJEkiMzOTzp07M3v2bHbs2KFxbMEUlq1atVLHbMjOLv67KQhvAtH5fwplyR+cL+dqAo3rNADyHv6Tk5NLfGBXqVTs3btXndO3YF5hKysrIG8NcFRUFFWqVOGbb74hPT1dY7S1uGimxsbG6sioDRo0QE9PT90hKW4N3eNr7QThTVdcirCb2YnU0K6CjqRFNW0DcjNUmGm9y5o9+2HCGE6cOEGDBnk/6wWnoD4+ZfX999/Hzc1NnbKrPA8c77//Pp6enowbN47vv/8ec3NzdYRqoNipkjo6OiiVykJv/otS61QaETcu4mxcjzMZt6ivUxVtSYu4nAdY6tfFycAcxYUTdPGrg9G8vIez27dv06xZs2LrzA8k1b9/f4YMGcLRo0c5fPgwbm5uDBs2TONNfcEAVKdPn2bDhg0kJCTQqlUr/vnnH06fPs3kyZPp1asXQUFB1K5dGzs7O/r06QPkdeR/++03FApFkR3//PbmP2Tnq169ujp1V34dWVlZ/PXXX2hra+Pl5cXly3m/9ytUqMC2bdvw8/MjLCyMjIwM2rZty4QJE9RBqM6ePftUMzyEZ0OraiWM5nVTx+bJTc5AZqiHrpjq/1LoV9QpX3n98pV/FRQ3wHH12nFaWnZRf676bl1uxZzn4cPGQF5w148//hh9fX10dHRYsWIFNWrU4P79+/Tu3ZslS5Zo1Dd9+nS6du2KSqXi3XffZdOmTUVu69y5Mx4eHgwZMkSdNlKSJHr06EGvXr3w8/PjxIkTGBoaqgdESzN69Gj1bIvOnTszatQomjRpQoUKFcp0/LBhwxg6dCgLFixApVLh7+/PkCFD6NWrFytXriw2paSrqyva2trUqFFDff6iZnP07NlTvfzgjz/+4MKFC4XqMjY2pnPnzjg4OKClpYWzszNTpkwpU/sF4XUkOv9PoSz5g9VyVeScjoWP8j6qVKoSH9iPHz9Ojx491PmGJ0yYQGRkJJA3xatTp06cOXOG/v37s3DhQsaPH68x2gpoTFUtrhNS3Bq6kJAQtLS0yM7ORpKkQuUeP1YQ3jS5yRlFbj+fEctn91ajJ9NBR9Lix5ofUUvHiM2qGOzt7alcuTJr1qwpdZDM0tKSGjVqIJfLkSQJT09Phg0bplFm4MCB6OvrU6FCBb799luNfZ9++in+/v589913TJo0iWHDhpGcnIxMJiMgIKDIt8sFH/7y37QURZn4EJfrVdmSeReP6IVU167MqKpy/s24ze2cZJpfmkEjXRPeq2CMa2hTlPGpaBkbULNmzRLzOV+5ckX9ls7GxoaoqCguXbrE559/Djz6nZWSksLatWs5cuQIkLcGdsqUKSQnJzNmzBgOHDhAbm4uOjo6JCYmqq+1fv36RQ5+bty4kaFDh2p0/IEi23v37l2qVaumUUdCQgIjRowgKSmJ6Oho9TH5szlq165NUlISt2/fpnnz5gDq4IxPM8NDePa0TAyo6Gn1spvx1mvarAbBW84XOfX/cTKZhEWzGi+gVc9WcQMcnh/N0fjsaOedV/6/AY7u3bvTvXv3QseFhISo/1xwFoStrW2hLCxFbfvqq6/46quv1J/zZ6jlO3XqVKFzPp4+EPJS7eX/PmvUqJF60LZhw4YaqRZBc/ZF/qwyyAs+W9I5SppVWty+omZz/PnnnxqfC7ah4FKCQYMGMWjQoGLPKQhvEtH5fwrFdQ6Ko0rTXPta0gP7li1bNDIDyOVyNm/eDORN8XVxcaFevXq0adOG5OTkUkdb69atqx7ZLUl51tDZ2tri4eHBN998g729fVlvgyC8FopL+eVeuSnulZsW2v7T8MkanQojIyP1Q03Bh6WCD0M+Pj74+GhOC81X8OEoX34d+Q9+BdNXFcxF/bj88o8//AGYmZlpPHz5+vqSvvY0Kcp/WVzHS6NseHoUq+oOwr5S3luhgTdXkJudQ2boZSp6WtGpUyd69+7NJ598QuXKlYmKitJYM9ugQQNOnjxJ06ZNOXHiBEOGDCE+Pp4jR45gYWGhXl9fpUoVJk+ezKBBg1i1ahVaWlrIZDKSkpKQy+VMnTpVnXHAyMiI6OhoateuzdWrV9UzlAoOfg4aNIibN2+ydetWPDw81NtNTU2JjY3l8uXL6jX/JiYmaGlpadSxZs0aPDw88Pb2pl+/fkUOgKpUKurXr09kZCSdOnXi7NmztGrV6qlmeAjCm8rQUA+L5jU4G3G71LIWzWtQ5TVMwfg2DHAIgvD6EZ3/p1CWfMDBZnmRt8cau1GldV4HueBDfXEP7P7+/hqf3d3dcXd3x9fXlwEDBmgMDOTvK+jxtW4FA1gVHDHO/3PBDkBRa+iKWmv3ww8/FNn20gwcOJDx48fTpEkTRo4cSbVq1dRrYnfu3FmmegMDAxkwYIDGA35OTg4DBgwgJiaGzMxMfHx86Nq1K1988YX6wTufXC4vNV5BcfWJFIdvh7c5RVhxA5uhqRcY/M6j1Ffv61bnSPo13P4rb2xszJQpU+jSpYt6umnBXNJDhw5VB41q3ry5OpDogAEDWLVqFQ0aNFBnEcmPNTJ69Gh+++03rKysSEpKQldXF21tbXUMlBkzZtC3b1+USiWff/45OjqF37ZJksSSJUv45JNPeOedd3B0dFTvW7p0KZ9//jkZGRm8++67RU7Jd3Z2ZsCAAWzdurXE++bh4cFHH31Ehw4dMDAwQEdHp0wzPAThbeTR04KYW8mF0v0VVLVaRTx6WrzAVj07b8MAhyAIrx+ppBRyNjY2qhMnTrzA5rxelHGpxLsuLnPnwDjss6deW+jr64udnZ1G5/91kb/WcuG21VR+x5BPp49h4JjhaGtrExgYyHfffYeZmZl6zW5J5HJ5oajlO3bs4OjRo8ycOROVSkVycjJGRkbFHl9a57+4+uzs7DQGQ4ojooS//pLGBJOx52Kp5fTczdXr3t8E6WtPkzIztMzlq0xxFVOp/5OTk4O2tjYjRoxgwIABhbIuCILwSOqDTLZuPse5s5rR/2UyCYvmNfDoaYFB5aLXfb8OUh9kMv+XQ6UOcHw+ut1rfZ2C8KqTJOmkSqWyKb3km0/0TJ7Cy8gf7Ovr+9p1/JUJaSR9HUy862JSZobS5GgWf6/fQ4zzfIi4g/Jh3nKI48ePY2try44dO3BwcKBt27bs2bOHrKwsOnfujFwu5+OPPy42X3nFihU5deoUMTExSJKk7vjnR5fdsWMH1tbWDBo0SD31NioqCjc3NxwdHZk1a5ZGu4uqb8mSJeoUh5GRkaxevZrWrVvTrl07zpw5A+SlsBkxYgRjx47FyclJnbu3d+/eGoEbhVdfZR8XtOoZlVjmTUwRpuvSCLTL+M/DGzbr4Wl17tyZdu3akZ6eLjr+glAKg8q6eA20ZuJUFzx6WdChkzkevSyYNNUFr4HWr32H2KCyLp+Pbkdzy5rIZJpxkmQyieaWNUXHXxCEF0pM+39KIn9wyZQJadzvt0bj/jTVq8X5uzv4Jy0G84eVSDyRzJXT/xAdHY2pqSmDBg3SSDXYqFEjjI2N2blzJyqVCkmSisxX7uzszPnz5/Hw8ECSJFatWoW5ubl6v7+/P/v37ycxMVGdz9XHx4dly5ZRt25dPD09uXXrFnXq1Cm2vmHDhrFy5UoUCoU6HdihQ4eIiYlh1KhR7Nixg3v37uHj40OdOnWYNWsW+/btw9bWlszMTHWWBeH18LamCMsf2CzTrAcRLV1DwaBcgiCUjaGhHm3tzF52M56L/AGO5OQMzkfe4eHDbPT1dbBoJqb6C4Lw4onO/1N6WzsHZfXAL6zQwEgFKe9rd/zhdVro1SEhK5UtY39Rp9h6PNXge++9R7NmzejXrx/W1taMGTOm2PN98cUXfPHFF/z9999MmzaNdevWqffJZDIMDAwwMDDA2NgYgIsXL9K/f38gL4VhTEyMuvNfWn3x8fGYmpqio6ODmZkZycnJAJiYmKjr6Nu3L/7+/sTExNCzZ88nvY3CS/S2pggTA5uCIAjPzps8wCEIwutDdP6fgbe1c1AaZVxq3oBIEZrq1WRD0gn6mdmSqEzH69ByPvpiUJGpBrOysvj666+RyWS4ubnRr1+/IvOVx8bGYmRkRMWKFTExMdHIGQ55a/DT0tJITEwkPj4eAHNzc3766Sdq1qyJUqnUiN5dXH35ZYyNjbl+/TrZ2dnExMRgaGgIaEYZf++994iNjWXDhg0aQReF18/bliJMDGwKgiAIgiC8WUTn/xl62zoHpckMu1xsMEQrvbocTb9GRVkFKsoqcC8nFUupZpGpBr/88ksGDx6MUqnkvffew8TEpMh85devX6d3797qaN+PR/gfP348Dg4OtGzZkho18lLq+Pn5MXjwYDIzM9HR0WHTpk0YGBiUWF/BtImff/459vb2yGSyYlMidurUidDQUPXggCC8LsTApiAIgiAIwptDRPsXnpvURX+T+kvpUfHzGYy2w2D4mxcga8GCBRgbG/PRRx+97KYIgiAIgiAIwltFRPt/RLz5F54bWTkD2ZS3/OtgwYIFbNmyhV27dr3spgiCIAiCIAiC8BYTqf6E50akC4ORI0fy119/qZcOCIIgCIIgCIIgvAyi8y88N/npwspCpAsTBEEQBEEQBEF4fkTnX3iuKvu4oFXPqMQyIl2YIAjCqyE5ORm5XI5cLsfQ0BC5XM6gQYMIDQ0tVz03btygR48eyOVy7OzsCAgIKNNxcrkcgFOnTmFlZYWfn1+R5QIDA9UZWLy9vYmKiipX+4qiUCgwNTVFLpfTvXt3MjIyynTM1atXC223s7N7pm0TBEEQhGdBdP6F5yo/XZieu3nhJQDaMvTczXk3qK9IFyYIgvASJaXfRXF5JQdv/o7v0sFs3bWeZs2aqTvE5TVkyBD8/f1RKBSEh4fzwQcflOv4PXv24O/vj4+PT5H7C3b+y6uk4/r3749CoaBt27Zs3Lix1HqK6/wLgiAIwqtIBPwTnjuRLkwQBOHVlJJxj3UnpnL6Vgi5qhz19vUnp3MnJZ2UjHsArFy5kjlz5mBmZkZAQADx8fF8+umnPHjwgMaNG7NgwQL1sTdu3MDExETd4ZfJZOo34aGhoUyePBmAWbNm4erqyo4dO5g2bRrNmzcnOzubqKgolixZgqGhIampqVy+fJk9e/aQkZHBokWLyM7OJiIiAhcXF4YMGQLA999/z7lz52jfvj3Tpk0jKiqKkSNHkpmZSfv27Zk8eTLe3t4YGBhw6dIl/ve//3Hy5Ek+/fTTIu+LpaUlp0+f5ssvvyQiIoLc3FyCgoKoV68erVu3xsrKCn19fTZv3syWLVtwdXXlhx9+ePZ/QYIgCILwDInOv/DCaJkYUNHT6mU3QxAEQSCv4z/3r17EpUYX2peryiE1M5G5f/UiJ+dDrKysWLlyJW5ubiQlJTFnzhwmTpxImzZtGD9+PH///Tdt2uSlao2NjaVmzZoA/PPPP4wcORLImyLv6+vLn3/+CYC7uzuurq74+/uzf/9+EhMTcXJyomHDhnh7e2NnZ4erqyvp6elMnDiRqKgopk2bRlBQEJaWloSGhqKtrU1YWBgdOnRg0aJFfPjhh0ybNg0fHx+WLVtG3bp18fT05NatWwC0a9eO3377Dcjr4BcnPDwca2trRo8eTcWKFQkNDWXx4sX4+flx7949fHx8qFOnDlWqVFG3UxAEQRBedaLzLwiCIAhvoXUnpxXZ8S8oLjWa2Nh0RjvOBqBWrVokJydz4cIFJkyYgCRJpKamYmtrqz6mZs2axMbGAtCkSRMUCoV6Lb8kSVSpUgUALS0tIG9mgIGBAQYGBhgbGxdqw6pVqwgKCkImkyFJUpHttLCwAEBfXx+Aixcv0r9/fwCSkpKIiYkBwNrausTrXbVqFYcOHaJJkyZ0796dmTNnEhYWRnZ2No0bNwbAxMSEOnXqlFiPIAiCILyKxJp/QXjNKeNSSV97mnaNLIkNCEcZlwrAV199xf79+0s8dvny5eo/f/HFF8+1nYIgvDqS0u9y+uaeMpW9nRJFelaS+rNKpcLc3Jx58+ahUCg4ceIE3bt3V+83NTXlzp07XLhwQV1eqVQCeevkU1JSSElJ0diWlpbGrVu3iI+PL3T+BQsWoFAoWLp0KSqVCgAdHR318UChQQFzc3PWrl2LQqHg5MmTtGrVCsgbaChJ//792bdvH/PnzycpKQmFQsGBAweYOXOm+twF63i8HYIgCILwKhNv/gXhNaVMSOPBrDAywi5DTi7OKbXZPG0hvX+xQc+1EYf2HyhxDWpubi7Lly9n8ODBAPz6668vqumCILxkETGaa/xLolLlEhV/AvhIvW3SpEkMGzaM5ORkZDIZAQEBmJmZqfcvW7aM0aNHk5KSgkwmo0+fPgBMmzaN9u3bAzBjxgwAxo8fj4ODAy1btqRGjRqFzm9ra4uDgwMODg7qbZ07d8bDw0O95v9xfn5+DB48mMzMTHR0dNi0aZPm9UdElLjmH+Cdd97BwMAAZ2dnmjdvXmQZuVzOxIkTOXr0KFOnTi22LkEQBEF4FUj5I9lFsbGxUZ04ceIFNkcQhLJQJqRxv98alDeS1NuuZd1jdtxultbpz9mHt/g9+yRK25rEJSVgbGzM6tWrCQoKYvfu3aSmpuLo6Iifnx9WVlb8+uuvjBgxgoMHD3L06FFGjBiBubk5Fy9e5NSpU9y4cQNvb28yMzPp1q0b48ePf3kXLwjCU9t57heCI8seoK5787F0aipmBwmCIAivH0mSTqpUKpuX3Y5XgZj2LwivoQd+YRodf4D6FapxJyeFjNxsdj84zwc5VXHNMGXv3r3I5XJ12iojIyN27tzJt99+q07l1axZM3U9M2fOJDg4mICAAG7cuAHAd999x/Tp0zl06BD79u1Tr+cVBOH1VEnXqFzlK1YwfD4NEQThieUv+0td9Dfpa0+zd+senJ2dkcvluLi4cOjQoXLXGR0djbe3N4A6S0dBYong2yc5ORm5XI5cLsfQ0BC5XM6gQYMIDQ0tVz35x9rZ2XHp0iUUCoU6+0u+iIgIli1bBhT9/StKfkyZonh7exMVFVXkPkmS5JIkzXpsm6UkScVPCdMsd0CSpP2SJB2UJEn3v20ty9Tol0hM+38FKBQKBg4cyHvvvYe2tjbr1q2jatWqT1XnwIEDGT9+PE2aNGHkyJFUq1aNGTNmsHfvXnbu3EmzZs1o1qxZqcGPAgMDAdT/EAgvnzIulYzQy0Xuc6jUiANplzmQfpmmurXYojjNqnZHyVRm4+npiaGhYal/5ykpKepgVo0aNQLgypUrtGyZ9/vM0tKSa9euUatWrWd4VYIgvEiWtTuw/uT0Mk39l0naWNXp8AJaJQhCWTy+7A8gISeNybGrWDfQj9ozupJeIbfYTs/TEEsE3x530lMIuX6epMx0Bi30p4NpU3q7dVJnbimv/BdOR48e5X//+x9eXl6FylhaWpaYieV5U6lUEUBEGYpOBrxVKtUVSZKqANmAJXl961OlHSxJkkylUuU+eUufnHjz/xLlj9g+DD7PJy3bE7p+OwMHDmTt2rVPVF9u7qPvUKtWrTh+/DiQ15nLf4N7/PhxbG1t8fb2LrUTKLyaMgv8Y/+4TpUtWHg/nNraRjTUNWHku3J2j/qFI0eOqNNtFQxWVVTk7CpVqhAbG0t6err6waFBgwacPHkSgNOnT2us7RUE4fVjVLE6VnXdy1TWqq47hvrVn3OLBEEoi/xlfxkhFzWeBcJS/6VXZSsq7LvJ/X5rqJglw8rKio8//hhHR0fc3NxISUkB8jphffv2pUWLFkRERAAwdepU7O3t8ff3V9eZk5PD0KFDsbS0ZM+evAChZX0bK7y+7j1MZfi+IFpvmIPPkW3MPf0XPke20XrDHK4kx3PvYV5g6ZUrV+Lq6qqOvRIfH0+3bt1wcnJSP3MWxdLSUp1+9eTJk3Tt2pV27dqRmppa5GwAf39/HB0d+fDDDzl9+jQAO3bswNramkGDBpGdnQ1AVFQUbm5uODo6MmvWLB5TVZKkbZIkhfz3/wr/bbeWJGm7JEmHJEkyKDgbQJKkDf+92f/zvw5+QelAe0mS9FUqVcp/HflhwDhJkoIkSdKWJGmtJEnh//1f+7+6gyVJCgamSJL0/X/nqSZJ0pYy/wU9JdH5fwmUCWkkfR1MvOtiUmaG8nBTJJkHrhHvupjY5QfITcsE8oIhyeVynJ2diY6OJjs7GxcXFxwcHOjVqxdKpZLo6GicnJzo3bu3+i095AVIOnbsGFlZWVSoUEE9MJDf+ff19SU0NBSFQkHHjh01fvCysrLo3r077u7uBAcHq+scPXo0Dg4OdOnSheTkZObPn8/27du5fPky7777LiqVimnTpnHs2LEXej/fNrnJGcXua6pXi9vZyXSsbIGX0YfsfnCOTtOH4uzszKlThQci69atS69evfj333/V26ZMmULXrl0ZNGgQdevWBeDbb79l6tSptG3bFrlcTu3atZ/9hQmC8EJ9Yj0dEwOzEsuYGJjxifX0F9MgQRBKVdSyP4C7OSlU187rn/wRuY92zVsxduxYAgMD2b9/Px9//DHr168HIC4ujuXLl7NgwQJ+//13bt++zbFjxzhw4ACOjo7qOu/fv4+fnx87d+5k8eLFL+T6hJfr3sNUPHYuZEd0JDmPvZjOUeVyPyMNj50LSc/OwsrKitDQUG7cuEFSUhJz5sxh4sSJ7Nu3j8qVK/P3338XeY7w8HDef/99ACpUqMD27dvp1KkTYWFhRZb/8ssv2b9/P0FBQXz//fdA3oDA/v37mTFjBnfv3gXAx8eHZcuWsX//fs6fP68eYCggTqVSdQAOAz3/25alUqm6ArsAl8fKe6tUKkdgA9DnsX3fAi2Bc5IkLZYkSQYsAeaqVKp+QA/gH5VK5QCcB3r9d1wFlUrVTaVSTQdaSnlv4XoBfxR58c+BmPb/ghUVqA1gY/Ip9qVd5OHFbHZLkzjd5igxMTEoFAouXLiAv78/ixYtYseOHejr6zN58mT27t1Lo0aNiIuLIzQ0VJ0zGfJG1caMGcOZM2do0aIF8fHxREdHEx0dTf369TXOXaFCBbZt24afnx9hYWFkZmZia2uLj48Pw4YNA/IGDdLS0ggPD2f16tUsWrQINzc3NmzYQEJCAq1ateKff/7h9OnThUbshGdLZqhX4v6/Gz4Kxje/tidVprhS0dMKgA8//FCj7Jo1a9R/PnjwIJCXB/vkyZOkpaXh5uYG5KXuUigUz6L5gvDcKONSyQy7TG5yBmHRp5irCEJbrwItW7Zk7ty5Gr8jixIREUFubi4tW7ZEoVAQGhpa1NuDIl27do3x48ezYcMG4uLiqFu3LikpKejq6iKXywkODlbnty/qfGUREBDAokWLmD59Op07dy7TMQUFBgYyYMAA9eyfKnrVGNd+E+tOTuP0zT0aSwBkkjZWdd35xHo6VfSqlftcgiA8eyUt+6uuXZk7OXlv9nsaWtEqtz4/X7/KuHHjiIyMJCUlhR49egDQsGFD9PT0qF27NklJSVy/fl2d0cLa2po///wTAGNjY0xMTABISkp6zlcnvAqmHAkm+kFCiWWiHySQcesy/nInAGrVqkVycjIXLlxgwoQJSJJEamoqtra2GsdFRkbi5OSEkZERCxYs4OLFi1hYWACov4uGhoXjy6xatYqgoCBkMpl6xqpMJsPAwAADAwOMjY0BuHjxIv379wfyvq8xMTGPV3X6v/9HAK2AO8C5/7bFAEZAMoAkSVrAXEmSmgFVAI038yqV6g4w7L/O+0LA7bFzNeDR9P8TgDVwF80lAQeAdkBXCg8uPDei8/+CFTdi29uwJRNM3Pkydj03rl0n+rsYFFEKdRCLmjVrkpaWxrBhw4iJieHu3bs0atSIRo0a0aJFi0IPtRUq5M1mOXz4MDY2NsTHx7Nr1y6qVy88dfPxH7zbt29jZZXXWcxfGlBwzbeNjQ379+9n7NixTJkyheTkZMaMGcOBAwfIzc1FR0fnmdwroWi6Lo3Af2+xU/81aMvQdW1UrvoPHTrE1KlTefDggUhdJbwWHl//mpCThv+tlax5bwjvtrVgfqXTLF26lOHDh5dYT0REBDk5OWXujBdUv359rl27BjyaYXXmzBmsra1JS0sr1PEv7/lyc3PZsGEDBw8eRE9PT2N7abnr8wUGBuLl5aVRvopeNYa1m09S+l0iYkJIz0qmYgVDrOp0EFP9BeEVU9KyP2eDDxhyaxXdqjSnipY+OTk53L8Sg3YlXcLDw1m6dKm6M1RwyZ9KpcLU1JTIyEgA9bTqosoJb7Y76Snsvn6u9IJAVHIcSZnp6s8qlQpzc3O8vLzUfYecHM2YMs2aNWPfvn3qzxcvXizTd2zBggWcPn2aK1euMHToUCDv3760tDQSExOJj48HwNzcnJ9++omaNWuiVCqRJImFCxcWrKpFgf9fyT9tgf0F18JaApVUKpWDJElDAY0pr5IkNVSpVFEqlUolSVI8ebPpswHd/4pcIa/DvxOwAfIDcBT8AQ4C/IFklUqVVuTFPwdi2v8LVNKIbb4vqjrxS8Je6l7Kob29EwqFAoVCwcqVKwkJCeH9999n//799OrVS/1DUtyDX4sWLQgMDMTKygpra2sWLlxIq1atCpV7/Aevfv36nDlzBnj0j0DBNd8nTpygQYMGaGlpIZPJSEpKQi6Xs2LFCo2o8cLzoWVigF4ZO/R6ro3QMjYoV/2Ojo7s37+fU6dO4eHh8QQtFIQXp6j1r2GpF+ht2JKKuTpk7LnIgCPGbN6Ql+2idevWhdaw5luyZAlz586lX79+QOG1iCqVihEjRuDs7Eznzp1JTEzUON7ExIT4+HiOHz/OZ599xvHjx7lw4QJNmjQhIiJCvWZx9uzZhc5XVN0KhYJu3brRrVs3goKCOHbsGB06dCAqKooWLVrg5eXF//73P0JDQ2ndujWtW7dWR1+Wy+V88803tGrVimXLlnHs2DEiIiJwcXFh1apVhe6jUcXqyBsNoFPTL5A3GiA6/oLwCipp2V81bQPGGrfH+9bv9L6+mAl3tjDwwy5ERUXh7u5e4pLMmjVrYm1tjb29vXoWoPD2Cbl+vtBU/+LkqlQcv3tdY9ukSZOYNWsWzs7OuLq6FjXt/onY2tri4ODAihUr1NvGjx+Pg4MD06dPp0aNGgD4+fkxePBgnJ2d6dSpE+np6Y9XVVWSpD8BO2BzKae9CDSUJGkPYFvEfi9Jko5KkrQfMAVCgCP/bf8V2Ao0lSQpHGgGbHq8ApVKdQmoR96yghdGvPl/gUoasc3XUNeEhJw0TCQDqj3IRC6XI0kSnp6edOrUCT8/P06cOIGhoaE6EntxbG1tOXDgABUrVqRixYrExcUVmoJTFA8PD3r37k2HDh145513gLwAgoGBgdjb21O5cmX1dHErKyuSkpLQ1dVFW1ubtm3blvFuCE+jso8L2f/cLXIWST6tekZU9nl8+ZIgvFmKmk11N+cBjXVrqD/rxKTx8EHemsD8NazZ2dmMGjUKd/dHQe+GDRtGTk4OQ4YMQaFQFFoSJZPJqFevHgsXLmT37t0sWrSIiRMnqo/PD7R65coVxo8fz+jRo6lYsSK2traYm5ujUCiQJAknJye+/vprjfNt3769UN1t2rQhKytLPUixbNkyQkND0dbW5tatWxw+fJhKlSphZ2ennqbr7u6Oq6srAF5eXsyePZv27dsTHh6OpaWl+nhBEF4/pS37s6vUELtKDdWfqzi40mfht4XK5XfwzczM1PGiilriVHAgIH/pnxgceHMVfJNfHONJeRH6q3jYUadl3szhgjHHtmwpPm7d49+d/PSBoJlVLH9bfvmlS5cWqit/YLyghg0bsnv3bo1tBdsG7FGpVAEFPiv++w+VShX42HbIGyQokkql8gV8H9t8BbAv8Pnxqfzq8xWQAOzmBRJPAC9QcSO2bSs1oG2lBurPG0zz1tmPdeqI7/A2GmWLCtq2evXqIusdOHAgAwcOVH/OD4gBaKToKOoHb/v27YXqmz9/fqFt06c/CgT1JPlkhSejVbUS7wb15YFfWN5skoKDStoy9FwbUdnHBa2qlV5eIwXhOStuNlXBta8AGbnZyJKyUManlmsN6+NLou7evcu6desICQkhJyeHNm00fz/nd/5VKhX6+vqkp6dz4sQJBg4cyLVr1/jmm29IT0/n4sWLxMXFaRx74cKFIusubkmAubk5lSrl/XxLkqReVlBwCZiFhQU6OjplXhYgCMKr7Xkv+xPebka6FctV3rCC/nNqydtBkqSdQJhKpcp6kecVnf8XqLQR26ctL7xdtKpWwmheN40gZzJDPXSfYKq/ILyOiptN5WzwAZ/eWklPQysqyiqw5P4BOlZqQmbo5RLXF+ro6JCZman+/HhZc3NzBgwYwDfffAOgTi+Uz9bWlokTJ9KlSxcAKlWqxOHDh/nxxx/55ptvGD9+PHK5HDs7O1Qqlcb5iqr70KFDxXbcC27Pzc1Vp/BSKpVFtj//+pRKpXjzLwivqfxlfxl7LpZa9kmW/Qlvtw6mTZl2dHuZpv5rSzLcTZu+gFY9MwmPvfV/6VQqVfkj9z4D4nXAC6Tr0gi0y3jLxYitUEZaJgZU9LTCYHgbKnpaiX/shbdGcbOpqmkbMLqaE543AuhxfSHxOal4vfNhietlIS8ewOrVq/niiy+K3N+tWzeio6NxdnbG2dm50PRCY2NjHjx4gI2NDZCXdUVHR4cKFSrQuXNnRo0axccff6wOyFrwfKXVXZJp06bRvn172rdvz7Rp04ot17lzZzw8PNi0qdDSQ0EQXhOVfVzQqmdUYhmx7E94EjUqVqGjqUWZynY0taB6xcKBbIVXn1RS9E4bGxvViRMnXmBz3nxJY4LLNmLrbo7RvG6llhMEQXhbpa89TcrM0DKXL5j2UhAE4XWlTEgTy/6E5+Lew1Q8di4sMd2fWeWqbO08gmr6r8/LJkmSTqpUKpuX3Y5Xgej8v2D5kalLC9T2blBf8YtbEAShBMq4VOJdF5d5/atx2GdiZowgCG8MsexPeB7uPUxlypFgdl8/p7EEQFuS0dHUgpmtu71WHX8Qnf+CROf/JRAjtoLw+lIoFAwcOJD69etjaGjI+vXrNfKul7WO0NDQIqMrC+UjZlMJgiAIwrN3Jz2FkOvnSc56iGEFfdxNm762U/1F5/8REfXnJRCB2gTh9VLwZzUj5jL9evZh9o//47vvvmPjxo14eXm97Ca+tUTaS0EQBEF49mpUrMLAxm1KLyi8VkTn/yXKD9QmCMKrSZmQxoNZYWQUiCqfnnaF9IdRJEnBNGvzAV369GDRokXo6OgQFBREv379CA0NRUtLi969ezN//nyioqL49ttv0dHRYcSIEVSvXp2TJ0/StWtX7t+/T0hICHp6evTv35+YmBhq167NqlWrRFT2MhBpLwVBEARBEMpGPFkKgiAUocT4HLkqMvZc5K9t+2j6QWPCw8ORyWSoVCpcXFzYt28ftra2ZGZmUr16dT766CO2bdtGtWrVyM3NJTw8nAoVKrBt2zb8/PwICwsjKyuLJk2asHbtWmbNmsWmTZvo06fPC7/u15GYTSUIgiAIglA6kepPEAShCA/8woqdSr4x+RS9ri8iKTGJye/3YuDAgXz11Vekp6fTt29f1q9fz5YtW+jZsyeQlyO+WrVqwKP87BYWeel0ateuTVJSEleuXKFly5YA2NjYEBUV9Zyv8M0j0l4Kb5r9+/fj7OyMXC7HxcWFQ4cOlbuO6OhovL29AQgICMDGxoadO3cWWdbOzg4AuVxOTk7OE7dbEARBeDWJN/+CIAiPUcal5k0hL0Zvw5ZMMHEH4GGUkt77FvLd0l/YsWMHffr0ITY2lg0bNrBmzRoAJEkiISGBqlWrkpubq96WT6VS0aBBA06ePEnnzp05ceIEDRs2fI5XKAjCqygnMZbUU9tQpt0nKacCU+dtYfuuPVSpUoUHDx489aDghg0bOHjwYLmDlAqCIAhvBvHmXxAE4TGZYZfLlj4O8I5ejoO9Pbt378bR0RGATp06UaFCBQwNDQHw9/ena9euODk58ccffxRZj4eHB+fPn8fBwYHIyEh69er1bC5GEIRXXk5KHLHz+3B1bH3iVo0iYfNUNv04HjeOkbp6GDkpcVSuXBkrKyu+++472rVrh7OzMzdu3AAoctvUqVOxt7fH398fgI0bN3Ls2DE6dOhAVFQUAQEB2NvbY29vz6lTp4ps1549e5DL5djY2LBy5UoA5s+fT+vWrXFycir2OEEQBOHVJN78C4IgPCY3OaPYfW0rNaBtpQbqz+vrDcVgtB0Gwx9FxJUkib59+6o/t2vXjsOHD2vUI5fLAdTTcQHWr1//lC0XBOF1k5MSx00/e7Lvar7Vj0uH99/JJfXYH2zYvZ8/7tWjcdNm3Lx5k0OHDnHw4EH8/f2ZNm0ae/fu1dg2depUjh07xoEDB1izZg1//vknvXv35rfffiM0NJSkpCSCg4MJDw8nMTGRwYMHs3Xr1kJtc3BwwN3dnZycHBwdHRkwYADbtm1j37596OvrU1K6aEEQBOHVI978C4IgPEZmWL4psQXLL1iwgC1btuDh4fGMWyUIwpsobvXoQh1/AGP9vAEAgE5V45jXyYRbt27RvHlz4FFskOjo6ELbrl+/rt5mbW1dqO6rV69y5swZnJyc6NmzJ0lJSUW27eTJk7i6uuLi4sI///wDwPTp0xkxYgTDhg0jLi7uaS9fEARBeIFE518QBOExui6NQLuMvx61Zei6NlJ/HDlyJH/99Rc6OjrPqXWCILwpchJjST25pch9jnVg2xUVD7Ly3q6nnA1BlZPJmTNnADhx4gQNGjTAzMys0DZTU1MiIyMBOH36dKG669evT6tWrVAoFCgUCv76668i2/C///2PgIAAQkNDMTIyAsDS0pLAwEDkcjmBgYFPc/nPRHJyBocPRrNtyylaWrXGzs4BQ0ND5HI5gwYNIjQ0tFz15R9ra2vLxo0by3xcREREoWUQe/bs4euvvwbyYrvI5XLu3LlTrvY8iWnTptGmTRtOnjyp3qZUKhkzZgxyuRx7e3tCQkLKXW9gYCABAQEa27744ounbq8gCC+OmPYvCILwGC0TA/RcG5Gx52KpZfVEOjlBEJ5Q6qltoCw6qv67ehKjLGHkXhWSpEJbyuXbMS04n12dtm3bUqFCBX7//Xdq1KiBk5OTxraaNWtibW2Nvb09LVq0KFS3sbExnTt3xsHBAS0tLZydnZkyZUqhcj169KB79+5YWlqqO//Dhw/n2rVrZGZmsmLFimd5O8ol9UEmWzed41zkHXJz8wZIXOWTkckk4uN82LE9hO9/8C93vc2aNUOhUJCRkYGbmxu9e/cu03ERERHk5OSos7YAuLu7M3/+fKKiojh69Ciurq7UqFGjXO3Jzc1VZ4kpq7179/L3339rbFuyZAnGxsYoFArS0tLo2LEj1tbW6kw0T3r+X3/9tVxtEwTh5ZJKWq9lY2OjOnHixAtsjiAIwqtBmZDG/X5rik33B6BVz4h3g/qiVbXSi2uYIAhvjIRgPxI2Ty1z+ao9Z1K126Tn2KLXQ+qDTOb/coiEe+lF7l+z4Vu+GPkbyal7uRVzg9jYWMzMzAgICCA+Pp5PP/2UBw8e0LhxYxYsWKBxrJ2dHQcPHuT+/ft4enoSEhJS5DHz589n1apV6Ovr88MPPzBq1CgSEhKwsbEhKChIXd+5c+eYMmUKCQkJhISEEBQUxO+//w7Azz//TMuWLfn444+5e/cuurq6bNy4kSpVqtCiRQuaNWuGhYUFKSkphIeHo6OjQ1BQELVq1VLX/9133xEcHIyuri6BgYEEBwfj4+ODlZUVO3bswMAgb3C6ffv2BAcHo6+vD8CyZcvQ0dEhNzeXnJwchgwZgq+vrzoezbx58wAYMWIEHTt2BPLe/OeXLXi/1q9fzzfffMO6detQKpW4uLigUCgICAjQuFYzMzN69uyJJEk0a9aMX3755Ym/A4JQHpIknVSpVDYvux2vAvHmXxDeYgqFgoEDB1K/fn0Atm3bpo5Q/7bTqlqJd4P68sAvLC/tX8Ho/9oy9FwbUdnHRXT8BUF4YlqV3i1n+XeeU0teL1s3nyu2458v4V46UdfisHe0YuXKlbi5uZGUlMScOXOYOHEibdq0Yfz48fz999+0afMoYGtkZCRyuZyoqChmzpwJUOQxjwc+HDZsWKGOMYCFhQWGhoZ07tyZtLS0IgMtBgYGUrFiRQICAli/fj1Dhw7l1q1bHD58mEqVKuHo6Eh4eDgymUwjyOKdO3cKBXtcuHAh69atQ6FQaLQjIyND3fEHqFOnDhEREVSvXr3I+5eVlcWePXvK9PdRu3ZtEhMTycjI4MiRIzg4OHDv3r1C1/rFF18gl8vx9fUVwSIF4SURnX9BeMso41LJDLtMbnIGGTGX6dezD7N//F+Jx+T/I10wN/3bQKtqJYzmddO4ZzJDPXTFVH9BEJ4Bg5bdiVvzVbFT/zVoaWNg7fG8m/TKS07O4NzZsq2bj7ubSv367wNQq1YtkpOTuXDhAhMmTECSJFJTU7G1tdU4Jn/af05ODu7u7nzyySdFHpMf+LBChQrqQYLimJmZYWZmphFoMZ9SqWTcuHFERkaSkpJCjx49ADA3N6dSpbzB5W+//ZaBAwdStWpV/Pz81NsfD/Y4ffr0Ytugq6vLw4cP1QMAt27dombNmhqd8IJ/Lrh8oSw6dOjA7t272bt3L0OHDi3yWh0cHNi/fz/9+vXD3d2d/v37l+scgiA8PdH5F4S3hDIhjQezwsgokMM+Pe0K6Q+jSJKCOdQ6l7kLfiI1NZXRo0czYMAAfH19uX79OjExMaxatYqhQ4eSlZWFkZER7u7ueHt7M3r0aCIiIqhSpQpBQUFv5MwBLRMDKnpavexmCILwhtF+pxYG1j1IPfZHqWUNrHugbVTzBbTq1Xa+wBr/0qhUcD06scBnFebm5nh5eamzIOTkFD3woq2d94icmZlZ5DHZ2dkEBgayZs0aAgMDqVOnDpmZmSW2Jz/QYn4gwezsbCIiIkhLSyM8PJylS5cSExMDoLHO3tnZmc6dOzN79mx27NhBnz59AIoM9licHj168NNPPzFx4kTS0tIIDAxk8+bNHDp0SB0cMjIyUt1ZL2+cgd69ezNx4kRu375N8+bNiY+PL3StSqWSGTNmAHmBI0XnXxBePNH5F4S3QEnr1zcmnuTY4q8xXV+DsLN/ojLUVedzBnj//fdZsWIF69evp23btkyYMIERI0YAcPz4cfVDy+rVq1m0aBHjx49/kZcmCILwWjPx+oXM66eLTPeXT6d6Q0y8xPpogIfp2eUqn5mp2bmfNGkSw4YNIzk5GZlMRkBAAGZmZur9+dP+s7OzcXNzw8jIqMhjpk2bphH4UFdXF29vb86dO1dsELyiAi1+/fXXREVF4e7uTt26daldu3ah47p3787Dhw8B+OOPRwNFRQV7LM5nn33G2LFjcXR0RKlUMmnSJIyNjXFxcWHu3LkcP35cPeBRknnz5rFu3TpAM9hfvXr1uHbtmjpmQFHX6ujoyKRJk8jOzsbV1bXUcwmC8OyJgH9voKT0u0TEhBB37zazvwrEQPcdIs+cx8rKivr165cYnffOnTssW7YMHx8f9bbAwED8/f2pU6cOABMmTKB9+/aFjv3iiy9E1NdXVNKY4CIj1x9Ou0J42mUmmLhzJP0aP+UeQlXfiLNnz5KYmIivry9t27bFzc2NOXPm0Lx5czp16sTixYvR1dVFT0+PhIQEPv/8c/79919++OEHli5d+hKuUBAE4fWVkxJH3OrReWn/Ci4B0NLGwLoHJl6/oF3F5OU18BVy+GA0WzedK3N5j14WtLUze34NEkqVkxhL6qltKNPuo1XpXU49NGHWvPnk5uaipaXFjBkzWLduXbmeIQMDAxkwYEC5ZygIbycR8O8R8eb/DZKScY91J6Zy+lYIuaq8h4cPvwKZlMWd2RUJ3rORKnolp3SpUaOGRsc/37hx4xgyZAiJiYl069aNpk2bakSbzc3NfeKO/5OksRHKThmXmhewrhQLEhTMrd2DZmvH0rjdo7V++X839evXJzIykk6dOnH27FlatWpFgwYN+PPPP4HSpxwKgiAIRdOuYkKtkesKdJIS0ar0DgbWHmKq/2OaNqtB8JbzZZr6L5NJWDQrX2o94dnJSYkjbtUXpJ7aqh7Uup+hYuJ+WDm2Bw2GLuShpE9UVFS5nyEDAwPx8vISz4+CUE7iJ+YNkZJxj7l/9eLkzZ3qjn++XFUOqZmJuH7cAjv7ttjb23Pjxg1SU1ORy+WkpqayePFifvzxR6Kjo/Hy8ir2PO+88w6DBw/mr7/+QqFQ0K1bN7p160ZISAh2dnZkZmZqzApwcXEhKyuLHTt24ODgQNu2bdXRY1u3bs2IESMYO3bs87kpAgCZYY9Fqi9Gx8oWeEev4NNPBqjzORfk4eHBoUOH6NChA3fu3EFHR4dWrVqhr6+Pvb09a9asYfjw4c/hCgRBEN4O2u/UwshlBFW7TcLIZYTo+BfB0FAPi+Zl69BbNK9BFUO959wioSg5KXHc9LMn9fhGjdks4THQrT5IkVu56WePvuohVlZW2NnZAeDv74+joyMffvghp0+fBkAul/PNN9/QqlUrli1bxrFjx4iIiMDFxYVVq1a9lOsThNeVePP/hlh3chpxqdEllmnWU8aHjax472EPFi9ejJ+fH5MmTWLo0KEkJCSwZ88ebty4Ueq5atWqRUREBKamphqpYPz8/NDV1aV69ercvHkTpVJJnTp10NbW5vvvv2fv3r3k5ubSsWNH3N3duXfvHj4+PurlBMLzkZucUey+tpUa0LZS3tt6T6NWeBq1wqCvHQbD89Ie+fr6qsvq6uqyefNmtLW1GTFiBO+99x4A8+fPf36NFwRBEITHePS0IOZWconp/qpWq4hHT4sX2CqhoLjVo4uMYxGXDu//l7Fy89+XWW/VFIceA9X7v/zySyZOnEhUVBTTpk0jKCgIAC8vL2bPnk379u0JDw/H0tKS0NDQMsUpEAThEfET8wZISr/L6Zul52KN2J7CrvPLqVPlCBZN81LDtG/fnlGjRjF9+vQyT52KiYmhZs28txFFpYLp2bMnGzduJDc3l169enHv3j0uXLigDu4SFxeHSqXCxMREdPxfAFk533qUVL5z586kpqbSsGFDjbzIgiAIgvCiGFTW5fPR7di6+RznzmpG/5fJJCya18CjpwUGlXVfYivfXjmJsXnxK4pgrJ83AADQ9T0JqxrJBMbeVO9ftWoVQUFByGQyjfTCFhYW6OjoiGn+gvCUROf/DRARE1Joqv/jMlOV3L6QSbdp1WmU6cI5RRwAixYton///ixdupSePXuWeq6kpCR+//131q1bx8WLF4v8JdyxY0d1ntpRo0aho6NDs2bNCAkJQUtLi+zsbCRJEr/AXxBdl0bgv7dMU//RlqHr2qjY3SEhIc+wZYIgCILwZAwq6+I10Jrk5AzOR97h4cNs9PV1sGgmpvq/bKmntmkGrizAsQ58sU9FRzOoXEFCmZNDTvINQAuABQsWcPr0aa5cucLQoUPVxxUcCADQ0dFBqVSKN/+CUE6i9/UGSMtMKrWMbiUZOnoSO2bd5WDYMQBu3rxJcHAwPj4+jBo1Sp17tShz587FxcWFXr16MXnyZPWb/6Lo6+tjZGREtWrV0NXVRSaTMWbMGFxcXHBycuKrr74q7yUWKSn9LorLK9nw93dYftgYO4e2GBoaIpfLGTRoEKGhoeWqL/9YuVzO/v37n0kbAwMDCQgIKHb/vXv3+OSTT5DL5djZ2bF79+5nct6CtEwM0HusQ78+6QS5qrzBgF/v7eN2djIAeq6N0DI2eOZteFso41JJX3ua3WPmU1m/EgmXbwHg7e1NVFTxabwKWr58ufrP+Wsgi1Lad6sokiSpfy7Kc3xgYCC5uXnfl/JcS1kVvGZBEITyMDTUo62dGS7tG9HWzkx0/F8ByrT7xe57V09ilKXEyL0qBoTkMv2Iio/sm6j329ra4uDgUGJmKsibiejh4cGmTZueWbsF4W0gUv29ARSXV7L2xJQyl/e0mYm80YDn2KLnq6isBgAySZu/Zqdz6lgk8+b8hp2dXbnyyNrZ2XHw4MFC258mG0FgYCA5OTkMGTKkyP2enp6MHDkSe3t7srKyOHny5HOZTq9MSON+vzUobyQB0PP6IjbUG4q2pKUuo1XPiHeD+qJVtdIzP/+bTpmQxoNZYWT8F1zxcNoVJtzZgue7tnztOZQvb29gykxfGjZsWGI9ubm5ODg4qL+HxX0nofTvVlEaNmxI8+bN2bx5c5mPz83NxdnZWb220tvbm8mTJ5d6LeVR0nUKgiAIr5eksIXErRpV5vIm/X/DyGXEc2yR8LYTqf4eEW/+3wCWtTsgk8o27UkmaWNVp8NzbtHzU5asBnP/6kVmTjorV67E1dVV3bmJj4+nW7duODk5MXLkyBLPEx0djZOTE7179yYwMLDYbAVDhw7F0tJSvW3r1q20bt0aJycn9eyB3bt306lTJzp16kTBwTalUsnt27ext7cHoEKFCrRp04acnBw8PT1xcHDA09OTnJwcFAoFHTt2pGvXrrRr147U1NQit6lUKkaMGIGzszOdO3cmMTGR3NxcPhv/Jb1Sfsfr4TpOZ93ifEYsH91Ywh/JJ/ny9gZiW1dBa2Fnug/sg4ODA6NHjwbyOpi9evUqsv1CnvyBlYyQixpLKzpUbsqfKedJ232BzPCrKBPTSU5OpkuXLoXucZ8+fejcuTPff/89kZGRyOVyIiMjycnJKfQdK2j79u106NCB7t27k5WVxYgRIzh3Li//9U8//VTojUiNGjUwMDDg0qVLGttHjx6Ng4MDXbp0ITk5WeP7//333xeKqvz9999jZ2fH9OnTgbylPpAXkOnHH38kIyNDvfRnxowZyOVynJ2diY6OJioqijZt2uDk5MTs2bNZsmSJxjULgiAIrzeDlt1Bq4zT8bW0MbD2eK7tEQThEdH5fwMYVayOVV33MpW1quuOoX7159yi56csWQ3iUqM5F7sPKysrQkNDuXHjBklJScyZM4eJEyeyb98+KleuzN9//61xXH4HRC6Xk5ycTFxcHOvXr8fb21udrUChUDB37lwA7t+/j5+fHzt37mTx4sXk5ubi5+fHvn372Ldvn7pTX6dOHXbt2kXt2rU5e/as+nzx8fEYGxsXav+WLVto0qQJ4eHhNG3aVN2Bq1ChAtu3b6dTp06EhYUVuW3Hjh3Uq1ePvXv3MmrUKBYtWsS2bdswMTEh/PBB/rxyHLfDfrQwb8ru//3Op9+PR6/D+1SZ5MKyjUH06dOH8PBw0tPTOXr0aIntF/I88AtTz6goSAsJN4Mm7HpwDlVaFmkL/2bJkiVF3mMjIyN27tzJt99+S7NmzVAoFDRr1qzQd+xxJiYmhISE0LZtWzZv3ky/fv1Yt24dkDfo1Llz50LHjB49mp9//ln9+fjx46SlpREeHs4nn3zCokWLANTf/2+//RZLS0vCwsLo378/AB06dODgwYPs2rULgEqVKpGWloZSqeTcuXOcOHECa2trzp49S0xMDAqFgvnz5+Pv78/+/fv57LPP2LdvHxMnTmTYsGEa1ywIgiC83rTfqYWBdY8ylTWw7iFSWgrCCyQ6/2+IT6ynY2JgVmIZEwMzPrGe/mIa9ByUNasBwO2UKOo3qg3kpSZMTk7mwoULTJgwAblcTlhYGLGxsRrH5HdAFAoFhoaGtGjRAi0tLY1sBW5ubty+fRuVSoWxsTEmJibUrl2bpKQk4uPjMTU1RV9fH0C9VMDCIi/VUH65fMbGxsTHxxdq+5UrV9RZFGxsbNTrq4uq5/FtFy5cYN26dcjlcvz8/Lh//z6XLl2ibdu26jZpmRggMzHA4LM2VPS0QtLTKfd5hTzKuFQyQi8Xu7+vkS2rk/I6+JmHook692+R99ja2rrI4x//jj3OysoKAEtLS6KiomjXrh1HjhwhOjqamjVroqdXeO2rjY0NV65cITExESj+7z3/+1+U/O9E/nfd1taWrVu3YmpqilKp5PDhw7Rr145///0XhUKBXC5nxIgRpKSk8NFHH3H27Fn69etX5GwGQXjRchJjSQpbyLW1U7Br8T6Odk8XP+bGjRv06NFDHculrLE15HI5AKdOncLKygo/P78iyz3vGByC8CyYeP2CTvWSl4fpVG+IidcvL6hFgiCA6Py/MaroVWNc+01Y1+tSaAmATNLGul4XxrXfRBW9ai+phU+vLFkN8qlUuVy5d7LAZxXm5ubMmzcPhULBiRMn6N69e4l15Hfeq1WrRrNmzQgLC0OhUHDmzBkkSdKIPJs/GHDjxg0yMjIA1A9nj5fLp6WlRc2aNTlw4AAA2dnZHDlyhAYNGnDyZF7bT5w4QYMGDYqt5/Ft5ubmDBgwAIVCwcGDB5k9ezbm5uYcOXJEo035UXILKs95hTyZ/63xL46hlj4NKxhz+uFNUOZSL7tykfe4YEyJgve7tHt/5swZ9f8bNGiAJEnY2toybtw4Pvnkk2LbNWTIEJYuXQoU//desE2Pf18ej7rctm1b5s6dS7t27TAzM2PDhg3Y2try/vvv4+bmph5UW7lyJTo6OsybN48VK1YwderUIusThBchJyWO2Pl9uDq2PnGrRpEdMpvlVldYan4S82oVCA3egKmpabnrHTJkCP7+/igUCsLDw/nggw/KdfyePXvw9/fHx8enyP0FO//l9aTHCUJ5aVcxoa7PAQxsPyq8BEBLGwPbj6jrcwDtKiYvp4GC8JYSnf83SBW9agxrNx//bofxtJlJ9+Zj8bSZyZzuhxnWbv5r3fGHsmU1KCgjJ03j86RJk5g1axbOzs64urpy69atMtVT1mwFMpmMiRMn4ujoiLOzs7pTX5Jff/2V+fPnI5fLcXJyIikpCQ8PD86fP4+DgwORkZH06tWrTO0E6NatG9HR0Tg7O+Ps7Mzu3bvp1q0bt2/fVq/phqKj5A4dOpR169Zhb2+Prq4urVu3LvN531a5yRmllvn03XZEZeXN8Bho06nUe1y3bl169erFv//+W2rdCQkJuLm5cfDgQXWqzn79+qFQKEoMdtmjRw/S0/MSLbdq1Qp9fX3s7e1Zs2YNw4cPL1S+tKjKNjY2/Pvvv7Rr14527dqhUqmoVKkSlpaW1KhRQ/39XrFiBcHBwdjb29OmTRv69u1b7msWhGchJyWOm372pB7fWDglmTIHZeo9bvrZk5uZVq74MTdu3MDExETd4ZfJZOqsHaGhobRu3ZrWrVurZxPs2LEDa2trBg0aRHZ2NlFRUSxZsoTx48ezceNG/P39cXR05MMPP+T06dMcO3as1BgcUVFRuLm54ejoyKxZs4C8GQKjRo3C3b1sSwQF4VnQrmJCrZHreO/7a5j0/42qPWdi0v833vshmloj14mOvyC8BCLav/DaeNuyGgivvvS1p0mZWfYpwVWmuFLR0+o5tgj++ecfFixYwG+//fZczyMIr7PYBZ+QeuyPYvd77s5lbUcZi+MbU8f1U77++mvc3NzYsGEDM2fOpHfv3rRp04bx48fj4eGhztJy5MgRNm3axNy5c/nnn3/UgwMKhQI7Ozt1nAx3d3f18piQkBASExNxcnIiKioKX19fdbaa9PR0KlasSFRUFNOmTSMoKAi5XK6RfaN79+706NGDDz/8kKNHj9KnTx++//576tati6enJ3PnzmXy5Ml06NABT0/P539zBUEQXjEi2v8jZQzFKQgvn2XtDqw/Ob1MU/9f96wGwutB16UR+O8tceq/mrYMXddGz7U9Bw4c4Ntvv+X3339/rucRhNdZTmIsqSe3lKlsVuwFGpvlBSN7PH6MJEmkpqZia2urLl+zZk11PJkmTZqoY15A3vKWKlWqAKjjachkMgwMDDAwMCgyAOyqVasICgpCJpMVuzzm8RgcFy9eVAfnTEpKIiYmBig+toggCILw9hCdf+G1kZ/V4OSNHaWWfd2zGgivBy0TA/RcG5Gx52KpZfVcG6FlbPBc22Nvb18oi4UgCJpST20rPNW/OKpcMi7/DeTF0MiPreLl5aXuTOfkPKrL1NSUO3fucOHCBRo3boxKpVLHy8jNzSUlJQVAY1taWhqJiYlFBoBdsGABp0+f5sqVKwwdOhR4FINDWzvvEe7xQQFzc3N++uknatasiVKpRJIkFi5cqBHHQxAEQXg7ic6/8Fr5xHo6N++fKzHd3+ue1UB4vVT2cSH7n7tFpvvLp1XPiMo+Li+uUYIgFEuZdr9c5XMzHmh8njRpEsOGDSM5ORmZTEZAQABmZmbq/cuWLWP06NGkpKQgk8no06cPANOmTaN9+/YAzJgxA4Dx48fj4OBAy5YtqVGjRqFz29ra4uDggIODg3pbfgyO/BgEj/Pz82Pw4MFkZmaio6NTbKyOt1FOYiypp7ax/8gJRv2ylfcamSNpV2Dbtm0YGho+03NFRESQm5urzqaS7+HDh4wdO5Z//vmH7OxsWrRowfz585/puQVBEIoj1vwLr52UjHusOzmN0zf3aCwBkEnaWNV15xPr6a99cEPh9aJMSOOBX1he2r+CSwC0Zei5NqKyjwtaVSu9vAYKgqCWFLaQuFWjylzepP9vGLmMeI4tEp63nJQ44lZ9QeqpraDM4egdFYdjVXzdqgIG1j0w8fqlxOBzubm56pkTBf9cksDAQHJycgoN0kycOJGmTZvi5eUFQHh4uMbgjiAIz55Y8/+I6PwLr62k9LtExISQnpVMxQqGWNXpIKb6Cy+VMi6V6WRTVAAA5CBJREFUzLDL5CZnIDPUQ/cFTPUXBKF8chJjuTq2ftmm/mtp894P0Wgb1Xz+DROei/zMDtl3o9Tb1J3/lnmdeJ3qDVlX8WN2/LkXXV1dAgMDqVevHi1atKBZs2ZYWFiwZ88ebG1tiY2N5ccff+TTTz/lwYMHNG7cmAULFjB//nxWrVqFvr4+P/zwA6NGjSIhIQEbGxuCgoLU53ZwcCA8PLxQO729vZk8eTINGzZELpejUCjw9fXl6tWrxMbGUrt2bRo2bMjOnTvp1KkTU6dOxdfXl4sXLxIfH4+pqSnLli17/jdUEF5DovP/iFgAJry2jCpWR95oAJ2afoG80QDR8RdeOi0TAyp6WmEwvA0VPa1Ex18QXkHa79TCwLpHmcoaWPcQHf/XXNzq0Rod/3zBV6H/nlwmHswlNvoyIesDOHToEDNmzMDf3x+AW7dusXjxYiZMmADkpUldvXo1c+bMYeLEiezbt4/KlSvz999/s23bNvbt28e+ffuwsrJi2LBhjBs3TqPjD3lxI/K5ublhYWFRYuphKysrQkNDuX37NhYWFhw5coTg4GD1fgsLC0JDQ6lQoQJHjhx5qnslCMKbT3T+BUEQBEF4q5h4/YJO9YYlltGp3hATr19eUIuE56GkzA7d3oNV7jL87WTEpEIDrThykm5jY2NDVFTeYIG5uTmVKj1aspUf5DE/44NcLicsLIzY2FimT5/OiBEjGDZsGHFxcWVq359//omNjQ05OTkagRsLDhDkZ3OoVauW+s8GBgbqoJFWVnnpYy0tLdXtFgRBKI7o/AuCIAiC8FbRrmJCXZ8DGNh+BFqPxT7W0sbA9iPq+hwocR248Oora2aH2gZwMSGX1JNbOXHiBA0aNAAotLY//7O5uTnz5s1DoVBw4sQJunfvjqWlJYGBgcjlcgIDA9VZGR7Xtm1bVq1apf6cny3C0NCQ27dvk5mZyeXLl9X7Cw4KFDVAcObMGfX/89stCIJQHBHt/zlq1KgRM2fO5JNPPnkm9e3ZswelUknnzp2fSX2RkZGMGzeOjIwMcnNzGTt2LN26dSv1uFu3buHh4UGbNm0YNGgQn376Kb179yY+Pp4ffviBAwcOUK9ePd57771n3mZBEARBeBa0q5hQa+Q6dQR4ZVoiWpXewcDaQ0z1f0OUNbODsb7EhzXB7fM5VKxRn99//73E8kVlfJg2bRrXrl0jMzOTFStWoKuri7e3N+fOnePXX39VHztt2jTGjBlDQEAAFSpUoFGjRtSoUYMBAwYwaNAgLC0ti8z8UJwLFy7g4uJCvXr1aNOmTZmPEwTh7SQC/j1DBYN9nUu6waIz28mWqQqt93oSZY0uW1ZZWVm4urqyfv16atasSVZWFqdOnaJ169alnnPNmjWkpKQwfPhwZs+eTcuWLXF3d1fv9/X1xc7ODldX12fWXkEQBEEQhPJ40zM7iOctQSgbEfDvETHt/xlQJqSR9HUw8a6LSZkZSuovB/njhwA+OV6V5KNXSI/NG3mWy+WMHTsWGxsbfvnlF7y8vGjRogUhISEAHD16FLlcTrt27VixYoX6mG+//ZYBAwYQGBhIQEAAAJMnT8bOzg5nZ2eSkpJYsWIFcrkcGxsb/vzzTyAvcuzw4cOxs7Nj+nTNvPdHjhzBwcGBmjXz3m5UqFBB3fFv3bo1I0aMYOzYsezZs0dd78qVK0lNTWXGjBn8+OOP/PbbbyxZsoTx48ezceNG5HI5WVlZBAYG8s033/DNN99otFkQBOF1pFAoMDU1RS6XI5fLNYJt/fzzz8jlcszMzGjRogVyuZz9+/cXqmP58uXqP9vZ2ZXr/IGBgZibm6vPf+zYsSLLbd26lfv3y5fDftCgQcjlcoyMjHB0dEQul5OcnFyuOkpT8NoLCgwM5OTJk0XuUygUTJ48+Zm2Q3j7GLTsXnhZR3G0tDGw9niu7REEQXjZxLT/p6RMSON+vzUobyRpbD+XEcM4YzccEm+xtes0+vw5B4B+/frh5+dHrVq1+Oeff1AqlQwfPpwOHTowdepUgoODqVy5Mu3bt6dfv35AXnTZNm3aEBgYCMDp06e5evUqBw8eVK/56tOnD4MGDSI5OZmPPvoINzc3ADp06MCiRYv48MMPmTZtmrp9sbGx6o7/3r17mTFjBjVq1GDdunXcu3cPHx8f6tSpQ3p6Ou7u7uTk5ODo6MiAAQOYMGGCOnftvXv31KPOv/32GzKZDG9vb/W2/DYLgiC8bpKTMzgfeYeTx2/hJO/Kz798j6GhnkaZL7/8ki+//LLUN3DLly9n8ODBT9yWcePGFcoX/ritW7diYWHBu+++q96W/29EwbXCBRUcaA4NDUVbu/jHgsdng5V1RlpR156bm4u3t3epxwrC08jP7JB67I9Sy76OmR18fX1fdhMEQXjNiM7/U3rgF1ao438t6x4XMu/geSOALFUO72XE0MkvDMiL2qqjo8MHH3xA9ep5qekSExOBvGAt+Wvu7927R3x8PPAoumy+S5cu0bZtW+DRA11ISAg///wzKpVKI8psfmRYfX19jTpq1qxJZGQkAM7Ozjg7OyOXywEwMTGhTp06AJw8eZLp06eTnZ39f/buOyyK43/g+PsoAopiAwvWWIgKCgGxUDyKir137CXRJH41diGKiUSN0V80iS2oqGhiL9HYAA9EjSKKohITo9hQwQIKAnLc/f4gt3LcgRg7zut58uTYnZ2dXfDuZmfm8+HChQv/8S4JgiC8O9IeZbFj6znOxd1GpVJz7fp1rl5PZs5XYdg2rkzX7raYlzYpcn0rVqwgLi4OuVzODz/8gFKpZOTIkURHRzN37lx8fHzYvXs33377LUqlkhkzZmgtpdLnxx9/BGDYsGG0b9+eNWvWsG/fPuLj4+nZsyfp6elcvXqVmzdvsn79evr27Ut2djaWlpZs2rQJQ0NDvfVeunSJMWPGkJWVRevWrfH392fIkCGYm5vz119/0b9/f/bu3UtaWhqBgYHs2rWL8PBwDAwMWLVqFUqlkoEDB2Jqakrr1q2pWLGi1rWPHDkSBwcHzMzMKFOmDK6urjRs2JABAwaQnZ1N48aNWbJkSdF/WYLwDFa+i8m6elpvuj8NkdlBEIT3hZj2/wJyktLIDP1bZ/vvj86xoEpPfqkxgq01PyFJ+ZDHBy+izs6ROuv6IrY6ODiwZ88eFAoFp0+fxtraGtCNNmtjY6OVy1WtVjNnzhz27t3Lzp07tcoXNNrTvHlzFAoFiYmJwNNos/nP9+233xIUFERoaChly5Yt0n0pKMKtIAjC2y7tURY/LT7C2TO3UKmexsS5EH+IDRunMt1vCFMnryTtUVaR6xw1ahR2dnYoFArs7Oy4f/8+gYGB7Nmzh+XLl6NSqfjuu+8IDw9HoVAwf/58nTrmz58vTfu/du0an376KXv27GHkyJFMmjSJmjVr4uPjw/r165k0aRIA9evX58CBA1SsWJHdu3cTGRlJgwYNCA8PL7Ctfn5+rFy5koiICM6fPy/lH3dxcZGWlJUtW5Y9e/ZgYGDAzZs3USgU/PTTT8yZM4eIiAg+/vhjDh06xLRp03SuXTOzbOHChdI5K1asyMGDB4mKiuLhw4dakc4F4UWJzA6CIAhPiZH/F5AV9jcoVTrbQ9PiGVbORfq5vkkl/nj4D+qcjELrmzVrFp06dUKtVlO+fHm2bt2qt5y9vT01a9bExcUFExMTtm3bRseOHXF3d8fZ2blInXQTExN++uknBg8ejFKpxMDAgDFjxuiU69atm5TCpqidf7lczrRp0zh+/Dg1atQo0jGC8K7SBPp8cPsu/X6ehqycGbHnzuLg4EDt2rUZMGBAkYMxDR06lCtXrhAbG0uTJk2QyWSMHz+e6OhoZs+eLZWLjY0lJiaG4cOHF1iXXC5HoVBIPyckJFC7dm2io6NxcnLizp07WFtbExoaKs36EWDHtnPcu/tYZ3vDBh64tRyoVc53sKNOuaKwtLTEyiq3o5GSksLdu3eJj4+X/k6SkpJQq9VaD2/1Tfv39fXlq6++KjCorGbWWHp6OqNGjeLmzZvcuXOHevXqsW7dOlauXImPjw9Tp06Vjrl48SIDBw6U2nbz5k2tuvK+/vPPP1EoFNLfT5UqVejVqxcBAQEMGDAAX19f2rVrp9WmvDPLNO7du8fo0aNJSUkhISFBeigtCC+LyOwgCIKQS3T+X4AqNVPv9u01tSPF+lm1B6DN2MHSesqoqChpv+a1s7OzzohM3i/veddHBgYGapWbMWMGM2bM0NqWd7193no07O3tOXjwoM72vG0bNmyYzlrNvO3Iu95Mcw4XFxciIyN16hWE4iTnXjqPZoeR+e9DQENgE33gkQFdze8RtnUPX/+gO4JbGH3rrwv6t2tvb6+1rSjrrx0dHdm+fTtOTk7s3LkTBweH52pfcZeamsm5s7eLVPbc2ds8TM2kTL4YAAUpLFd3xYoVsbOzY//+/RgaGpKdnV3grC2N9PR0goKC6N27N2vWrGHw4ME6s640fw/79++nfv36bNiwAT8/P9RqNQMHDqRGjRrMmjWLffv2cebMGY4cOYKNjQ3ff/89VapUIScnd7ba0qVLtf62NK/r169PmzZtpDRm2dnZKJVKFi5cyJMnT3BxcaFdu3Za12JgYMDnn3/ODz/8QGxsLC1btmTDhg3cvXuX4OBgZs6cSf4sRCkpKYSHh9O9e3cgN2Bi3s+pZ2natCnR0dEANGzYkB9//BFPT09mzJhB06ZNCQsLY8GCBQUuhdAYMmQIAQEB1KpVq8jnFt4uRuWqvlPR/AVBEF42Me3/BRgU8Uvffy0vCMLbSRPoM3P/Rd3ZP0oVqgcZ3B+wAdXjJ6xduxZvb29p1DY5OZnOnTvj4eGhd7aNPjExMXTq1AkXFxfS0tK0IqE3adIEX19fvv32W3bv3o2joyNDhw4lOztbp54PP/yQ+Ph4AEJDQ6WR5sTERDw8PHB1dZXapFAoaNeundZ5i7vz/67x1+dC/CF+3TyNXzdP43x8OA8f3WfSJP3R6D///HOdbdWrV6dHjx78+eefOvsMDAz44osv8PLywsPDg3HjxumUyTvt/+DBg/j5+TF16lRmzpzJunXruHPnDm3btmXMmDEsW7ZM69hmzZqxa9cuOnbsyN9//8Pff91l2+bjjB83hTVrfkWhUGBra0vJkiUJDAxk2LBheHp60r59ex4/1p0FoaHJRy6Xy/Hw8GD16tXs2rULNzc3WrRoQf/+/fVeu+ZhQWxsLGq1Gk9PT86fP8/o0aNJT0/XOU9KSgrbtm0rsB3PUrNmTa5evcqjR4+wtLREk8I4OjoaZ2dnvv/++2d2/AVBEAShOBAj/y/AxKsezAnXO/Vfh5EBJt71Xn2jBEF45fQF+swv51oKT1Kv4NDbmbVr19KmTRtSUlKYO3cu06ZNo0WLFkyZMoVjx47RokWLQusqUaIEO3fuJDAwkLCwMCwsLKR9N27c4OjRo5QqVQoXFxciIiJ48OABHh4eeuv68MMPOX78OKamppiY5Aat06y5NjIywtfXV1pznf+8Xbp0eY679O7JeKz7wASgRnU7Ph6um66ubfuPpdd5Z0FpOrd5bdiwQXqdd9RaM7Ojffv2tG/fXu/5hwwZohMZv3Xr1tLr0NBQAHr27EnPnj11jq9WrRqREcekIIbZGWqCgjZiVbEpP30fjW3jyuz9PVQKYpg3neH9+/cJDg7Gzs4OOzs7zp8/z5o1awAICgpi3759QG7Kw48++gjIzT7Trl07xo8fj5+fH1ZWVnz//ff4+PgQFRWFq6srCxcuJCUlhW+++YYRI0bQpUsXTE1NOXfuHBEREcycOVNaTrBixQoOHjyIXC5n8+bNpKam0r9/f6kt9vb2BAUFSe3K2xbInVV34sQJLC0t6d+/P8eOHQNyH8RVqlRJmmkze/ZsLl++TGJiIrVq1SIoKIgrV67Qt29fKlWqREpKit7fjyAIgiC8K8TI/wswtDLHtIgdelPvehhamr/iFgnCf5eTlMbjX06z94ufqGFZhVYubnTp0oXMTP3LW4YMGcKlSwVHT9aQy+VS/vBFixbpHRUF3dG9gsq9aQUF+tRHefkeDarVAaBq1aqkpqYSHx/P1KlTkcvlhIWFFWl9syZrh7W1tU4HxMbGhlKlSgG5I8jm5uZUr14dS0tLvXV17dqVjz/+mI4dO0rb7t27R8+ePZHL5URFRUltKuy8xZFZSePnK2/2fOXfFH1BDNPT71GqVHlUKjW//voLtrZOjB07ntu3bxMeHs6RI0f46quvmDNnDpAbh2DVqlUsWbKENWvWcPfuXXbt2kVkZCQ7d+7kq6++0jpn/fr1uXjxIlevXpViB1SvXl3a7+zsjL29PWFhYVKMgbZt2xIVFcXvv/+uVdeoUaNo3bo1CoUCS0vL526Ls7Mz0dHRREdH07x5c5RKJVeuXKF27do698rBwYHQ0FCuXbtGSkoK8+fPZ+HChWzbto179+69+C9DEARBEN4gMfL/gkr7eZF94U6ho4CGNcpS2s/r9TVKEJ5D/rXrGen/0F3dkKmP2rPM4CybVq9n0OiCA8sVRVhYWKH5w+Fp51+zrlff6OnboKBAn3qp1ChPJ0Kv3B/VajU2Njb4+vpKQdPyZtooiL7sIBr5866np6fz4MEDKVVofk2bNsXR0ZH27dtL6Ts3bNhA165dGTJkCAMGDNCbGz7/eYujRnaV2bX9fIFT//MyMJBha1f5NbTqxekLYliqVHnS0u4D0PBDOdZVGnD61A4SEhJo3LgxAE5OTsyaNQuAunXrYmpqKj0Iunz5MmfOnClwholmFkqJEiUwNTXl4MGDUoraghSUmja/522Lo6MjX3/9NdWrV2f8+PFUrFiRvXv30rRp0wLboHlYd/nyZRwcHDAyMpLuiyAIgiC8q8TI/wsyrFCK8uv7Y+pjA0b5bqeRAaY+NpRf3x/DCqXeTAMFoRDPWrtuc9WYv/9vD61c3KROav7I8MHBwXTp0oW2bdvSpUsXnjx5Uug5XV1dgdxI4Zo1zIsWLdKa2pucnCyVCw0NpXnz5jRv3lya3iyXy5kwYQJNmzZl5cqVL+FOFF1BgT4Lok7Xvh/Tp09n9uzZeHp64u3tLaVSexmmTJmCu7s7s2bNonJl/R1TmUzGypUrMTd/OhPJ09OTBQsW0LVrV71rrt8XFham2DYuWofetnHlIgf7e5MKCmL4QS0nLvx5iKys3N+3Sp1DyoMMKpSvzJkzZwA4efIkderkzlzJ/yCodu3aNG3aFIVCgUKh0Ake27JlS5YsWYKDg4O0rj5/5z9/gMKCghwWVq4obSldujSPHz/myZMnGBkZ4ejoyNKlS3F2dtY5l766z5w5Q05ODnFxcXrbJwiCIAjvCjHy/xIYVihF2YWdpZRfqtRMDCxMMRFT/YW33LPWrv/x+AqNVdYculb4NHcrKyt+/vln5s2bx7Zt2+jbt6/Wfi8vL2QymTSKCDBt2jSWLVvGhx9+iEql4tq1a1y7do2QkBCtYwMCAqT84j4+PlKQOl9fX7755htat25daMq7l60ogTt31coNmjfRsg1lmrsB2tk3tm/fXujxeSP8ax6QgHamDc22vOvHO3fuTOfOnfXWWatWLb33VkNfx0bfeYu7rt1tuXkjVW+6P40KFUvStbvta2zVf1dQEMOSJS1o2bwf23fNRiYzQGZgQLOmPUlOAg8PD1q2bEmJEiWkdfT5WVpa0qFDB9zd3TE0NMTT05Mvv/xS2l+tWjUePHiAq6sr5ubmTJw4ERsbG606OnToQNeuXXVSGOZXuXJl7t+/T8+ePVmxYsVztwVyY12ULl0ayJ0JcOHCBZycnAo9L8DEiRPp378/lSpVolKlSs8sLwiCIAhvM1lhUzmdnJzUmqi4giAULzlJaSR7L9cZ8T+a/g9jEzdSs0R56ptUYnalLvS+/jPhf5/EpEpZWrVqRUREBEOGDMHf35+oqCgeP37MmDFj2L9/P9HR0VIketBOWwdP03S5ublx+PBhqVxCQgL+/v5SB1VfOc1rTcRzY2NjnXz2r1pB900vIwMswz4WDwHfMWmPstix7Rznzmp3nA0MZNg2rkzX7rZScLy3XdiBv9m/92KRy7dtb4NXaxGcVhAEQXhK+SCRtFM7yUm/z7G/79Iv4GeuX79B2bJlpe+DdevW1TomNjYWlUqlFYD1vwgODkapVD7zQXFhZDJZjFqtfvYT3/eAGPkXhPdUYWvXe1p8xFQrH+nn0jJTrm49Rvm+Tbl9W3cKsWaa8JkzZ6Rpws9iaWnJX3/9Rf369VGpVDpTezVUKhUPHz4EKNIU4VdNE+gzc9+zO1Qi0Oe7yby0Cb6DHUlNzeR83G0yMrIxMzPG1u7dmOqfV3ENYigIgiC8esqHSSSt+5y0UzsgJ3f554PbaioZqVk4TM6M4AMFHhsbG4tSqXyhzr9KVcQYS0KRiTX/gvCeep616wPLOdNz3v8ICAjQG0X+3r17tGnThqioKClg37N88803jBw5Erlczg8//KA1tff+/ftSuZkzZ9K6dWtat27NzJkzi9zmV6m0nxeGNcoWWkYE+nz3WViY0tK1Fl6t69HStdY71/GH3CCGBgZFe1D2LgUxFARBEF4t5cMkrge6kRa9Rer4a3hVg31Hz5DwtSuq7EwyMjLo168fnp6e9OnTh+zsbFasWMH8+fMZMGAAkyZNIi4ujoMHD2Jvbw/A4MGDSUpKKjC20+TJkxk0aJB0zps3b9KhQ4ciZUkSCiam/QvCe+rxL6d5+HVokcuX+dKbkv0cdLa/jOlY76Kce+k8CgzLTfuXdwaFkQGm3vVyHxCIQJ/CWyBkTQxnY289s1xj+yr4DnZ8DS0SBEEQ3naJS/qSdmKzzvbjt9UcTVRTpoSMquZwJLMmbgO+oGLFivTr14+lS5dStmxZsrKypO+H27dvJykpiVu3bnHixAk2btxIr1692LdvH66urlKKVx8fH44ePYpcLmfOnDm0aNGC4OBgrl27xvHjx/n555+pWrXqc1+LmPb/lBj5F94pCoWCmjVr4uXlhVwu55dffnmu4xMSEvD19dXZroks/6xz513LXtg5XnaANE3O+x07dmiNir8IE696uhkqCmJkgIm3WAeclybQp2Xox5T50hvzsa6U+dIby7CPKbuws+j4C2+Nrt1tqVCxZKFl3qUghoIgCMKrpXyQSFpM4cGJe9WHzX+pUd67xu+7dvD9998jl8tZs2YNSUlJWmVdXFw4evQoly9fZsCAAezcuVMKoiqTyShTpgxlypTB0NBQOkaTEhlg2bJl9OzZ8z91/AVtYs2/8E7QZFLIiD5P349a883y73lS2pBevXphY2PzwsFE3naanPc7duzA1taW8uXLv3CdL2vt+vsUCV4fQytzvTMiBOFtYV7ahE/HuhSbIIaCIAjCq5V2aqfOVP/8ypSQUdtCzbFbKka0KU89zzH06NEDgOzsbDZt2kRWVhaQmxXq1q1bWFtb4+LiQteuXRk9ejRQcGwnA4OnA1T+/v7s2LGDBg0a0Lx585d6re8bMfIvvNVy7qWTMn4Xyd7Lefh1KBlb48g6fIVk7+Vk+R1k3Igx/PbbbwCMHTsWd3d3OnbsSGpqqtZIfXBwsJRq7cqVK3Tu3JnmzZtz5coVrfMdP34cuVyOi4sLq1evLrBddnZ29O/fnyZNmhAbGwvAjBkzcHNzY86cOVK53bt34+7uTsuWLdm3bx8AzZs35+OPP6ZJkyasXr2a7t2707hxYyloXvPmzRk5ciT29vbSMa6urly7do19+/YxYMAA5s+fj4eHh/Qm2bNnT+7cufPc91esXReE94MmiOG0GV507WFL2/Y2dO1hy/QZXvgOdhQdf0EQBEGSk160WaYDG8i4nAouNlXYvn07Xl5eeHp6curUKZo3b05ISIg0e7VKlSo0btyYWrVqkZycTMuWLYGixXYqUaIEISEhzJw5k/j4+Jdzke8pMfIvvLVy7qVzf8AG/XnolSoy912kVHQmt+peJzo6mvT0dCIjIwkJCWHZsmU0a9ZMb733798nIiKCmJgY5s2bx7Jly6R9M2bMYNeuXZQuXZrWrVszYMAASpQooVNHUlISq1atIiYmhjVr1lCpUiVOnDjB4cOH2bBhAwcOHEClUvHdd98RHh6OSqWiXbt2+Pj4cP/+fb766itycnL46KOPSEhI4NSpU6xcuZLFixdz//59AgMDyc7O5rPPPsPHJzfqfo0aNfDx8ZHSqWRlZXHo0CGcnZ3Jysr6TzmoDSuUovz6/mLtuiC8JzRBDAVBEAShIIalCp5h2qyyjGaVcwPJ1ioj48/BMqwaNSBk7GidsnlTOq9Zs0Z6ffPmTel1mzZtaNOmjdZxeVM4551hun///iJfg6Cf6PwLb61HgWH6O/553Lx2g/I5j/nnn3+kqf9OTk5ERERoTQtSq9VSajg7OzuMjIywt7fn0qVLWvWdOXOGzp07A3D37l2Sk5OxtrbWOW/dunUxNTXF2tqalJQUrl69SuPGjYHcNUoHDhzg7t27xMfH4+3tDeQ+MFCr1VhaWkod9Tp16mBqakrVqlV58OABkJsCz8rKCoCUlIKvv3///syZM4ebN28WOcK+Ppq165qlFarUTAwsTDERaeoEQRAEQRDeO+YfdSFpw7hnTv0HwNAIc8eur7pJwksiOv/CWyknKS13JLoQmapsfr5/mEklfDAvX4UDB3JzjZ48eZI6depgYWHBrVu5Ea7j4uKkzvm5c+fIycnRm5PewcGBLVu2UKpUKbKzszE21p/zOm+OebVaTc2aNYmLiwPg9OnTAFSsWBE7Ozv279+PoaEh2dnZyGQyrWPz11PQNg1jY2Npqv8HH3xAYmIimzZtYsOGDYXeq6IQa9cFQRAEQRAEo3JVMXfspjfaf37mjt0wKlvlNbRKeBlE5194K2WF5ZuCnseW1FPEZFwjBxW+ZZtha1yFMvfKYGZmhpubG6VLl2bDhg2UKVOGxMRE2rdvT4UKFaTjrays6Nq1K8nJyaxfv16r7lmzZtGpUyfUajXly5dn69atRWpvlSpVcHR0xM3NjSZNmgC5gUq++OILvLy8kMlkNGzYkJ9++uk/3pFcbdu2ZcyYMfTq1YtPPvmE9u3bExoaioWFxQvVKwiCIAiCIAgaVr6Lybp6muw7lwosY1ypLla+i19jq4QXJcs/spiXk5OT+uTJk6+xOYKQK23ZMdIWRxW5vPlYV8w/afEKW/R2WrJkCZaWlvTq1etNN0UQBEEQBEEoRpQPk0gKGZub9i/vEgBDI8wdu2HluxijMlZvroFFJJPJYtRqtdObbsfbQIz8C28lAwvTV1q+OFiyZAnbt2/n999/f9NNEQRBEARBEIoZozJWVB3zK8oHiaSd2klO+gMMS5XD3LGrmOr/jhIj/8JbKScpjWTv5QVO/ddiZIBl2MciOJ0gCIIgCIIgCFrEyP9TBm+6AYKgj6GVOabe9YpU1lREpRcEQRBeIoVCQc2aNfHy8kIul/PLL7881/E7duzg/v2i5cnOq3v37sjlcuRyOR9++CH9+/cnISEBX19frXK3b98mMDDwuesXBEEQ3m9i2r/w1irt50X2hTuFpvszrFGW0n5er69RgiAIQrGlmdqa+sdJerk2ZO6PK8k2LUevXr2wsbGRUso+y44dO7C1taV8+YJzZYNulpdt27YBkJOTg6enJ/7+/nqPq1y5Mn5+fkW9LEEQBEEAxMi/8BYzrFCK8uv7Y+pjA0b5/lSNDDD1saH8+v4YVij1ZhooCIIgFAvKh0kk/tSHyxNrk7TuMx4eXk163D4uT6zNg9VDGffJMH777TcAxo4di7u7Ox07diQ1NRUAf39/XF1d8fT05Nq1a+zbt48BAwYwf/58rl27hqenJy4uLsybNw+AgIAAhg4dStu2bbl7965OexYsWICPjw8NGzYE4OrVq/To0QNHR0du3LghzQY4evQoU6ZMAeD+/ft06dKF7OxsvLy8cHd3p0ePHlJ62KFDh+Lt7c2wYcMICAgAYN68ebi4uEjtFgRBEIo3MfIvvNUMK5Si7MLO5CSlkRX2N6rUTAwsTDERU/0FQRCEl0D5MInrgW7601nlKEk7sRnZqeMkqlsRHR1Neno6kZGRhISEsGzZMtq0acPly5eJioqSRvJ9fHzw9/enbt26fPrpp8yaNQs3Nzd8fHwYOHAgAPXr12f16tU6p/zzzz/57bffUCgU0ra0tDQiIiL45Zdf2Lp1K126dAGgRYsWTJs2DYBdu3bRpUsXjIyM2L17N2ZmZvj7+xMeHk6ZMmUwMTEhNDSUefPmkZGRwe3btwkPD+fIkSNERUUxZ84cli5d+pLvriAIgvA2EZ1/4Z1gaGVOyX4Ob7oZgiAIQjGTFDK20DzWADeuX6WMcQz//POPNPXfycmJiIgIatWqRcuWLYGn0/fzynuMvb09V65cAcDR0VGnrEql4pNPPmHZsmUYGhpK2xs2bIiBgQHW1tZcuvS0rTKZjCZNmnD69Gl27dpFUFAQ6enpjBo1ips3b3Lnzh3q1avHvXv3aNy4sdSGY8eOkZCQIG1zcnJi1qxZRb5ngiAIwrtJTPsXBEEQBOG9pHyQmJu/uhBZOWrWXFDjavQnNa0siImJAeDkyZPUqVMHGxsb/vjjD6m8Wq3G2NhYmm5fp04d6ZjTp09Tq1YtAAwMdL+CLVy4kNatW9OoUSOt7XkfKuTP0tSzZ09Wr16NUqmkfPny7N+/n/r16xMREUGPHj1Qq9XUrl2buLg4AM6ePQtArVq1OHPmjNa1FEepqZkcjUog7MDf/PjDr1SvXgO5XI6Liwvx8fH/qU5XV1fptUKhKDA2gyAIwttGjPwLgiAIgvBeSju1E3KUevftugyxySpUauhdX0aDsiqs1AmYmZnh5uZG6dKl2bBhA2XLlqVmzZq4uLhgYmLCtm3baNu2LWPGjKFXr15MnjyZwYMH8+TJEzp16oS1tXWB7ZkxYwYfffQRBw8eBHJH/CdPnlzoNbi6utK/f39mzJgBQLNmzQgMDOTkyZNYWFhQr149mjVrxrJly/Dy8qJq1ap8+OGHVK5cGQ8PD1q2bEmJEiVYs2bNf7yLb6e0R1ns2HqOc3G3UalyH5hcu36F6tYtGTF0EpWtH7Fs2TIWLVr0WtqjUqn0PvARBEF4nWT5nyDn5eTkpD558uRrbI4gCIIgCMLrcW9XIPe2zShy+Qrdv6ZC5+mvsEWvjlKpxMjIiHnz5lGjRg369ev3ppv0yqQ9yuKnxUe4d/ex1vZr1+O4ej0Wt5YDuXv/HJaVUuneoytTpkwhOzubESNGMHToUORyOY6OjkRGRvLJJ58wfPhwrXpcXV2JiooCckf+Q0NDGTFiBP7+/oSEhKBQKFAoFAQEBNCkSRPs7OywtbVl6tSpr+0eCILwlEwmi1Gr1U5vuh1vA/EIUhDeEzlJaTz+5TQ3/+8g7g2daOXihoWFBXK5nKFDhxIaGvpc9clkMrZs2QJAdnY25cuXJzg4WG/ZvHmqV61a9ULXkb/eSpUqSXmxL168qFMmODiYoKCgl3ZOQRCKD8NShafi0y1f7hW15NUbPnw47u7uREVF0a1btzfdnFdqx7ZzOh1/jQvxh/hl81Q2bfmWsmXsmTFjBrt27SIqKor169fz5MkTAHx9fYmKitI7IyI5OVn63Bk3blyhbblx4wbLly8XHX9BEN4KovMvCMVczr10UsbvItl7OQ+/DsXw51g20YeNj7rSwNyasK17qFmz5nPXa2dnx549ewA4dOhQkdeLvszOP0Dr1q2lURYbG5uXWrcgCMWb+UddwLCIKyANjTB37PpK2/MqrVmzhsjISH777TdMTU3fdHNemdTUTM6dvV3g/oYNPOjXay6DByxi5eoFxMaeoXPnznh4eHD79m2Sk5MBsLW1xcTEBAMDA63OPoClpaX0ufP9998DBcdlsLGxoVQpkZL4ddPEeti5/RQfOTTH1dX9hQY8xo8fj6urKy1atGDFihUAfP755wAMGTJEKxDn65Ceno6Liwu9evXS2p73O1be2BRF8bIGS573vMLrJTr/glCM5dxL5/6ADWTuvwhKlfZOpQrVgwzuD9iA6vET1q5di7e3NyNGjAByRzY0X4jGjBmjU3eZMmXIyMjgyZMn7NixQxpJKijHNOSmooqLi0Mul3Pw4EGOHz8uBV7SpLwaPHgwrVq1wsPDA5VKxaVLl2jTpg2tWrVi9uzZhV5vbGwsrVq1olmzZnzzzTc6+/Pm4k5JSeHMmTO4uLjQvHlzQkJCgNwP8U8++QRXV1cR/VoQijmjclUxdyzaKLi5YzeMylZ5xS0SXtT5PGv8C1OihBlZWY/5oPaH7NmzB4VCwenTp6WYDHk783k7+wWxsLDg9u3chw6a4IqgP7Cj8OqkPcoiJDiGOV+FsWPrOY5EJuIt98e12RQqV6rN7t/2P/eAx7lz57h79y5RUVEcO3ZM6nD/8MMPr+ISiuTMmTO4ubmxefNmre0ve4BFKH7EO5IgFGOPAsPIuZZSaJmcayk8OXwFBwcHQkNDuXbtGikpKcydO5dp06Zx6NAhSpcuzbFjx3SO9fT0JDQ0lFu3blG1alUAKcd0ZGQkDRo0IDw8XCrfuXNn7OzsUCgUtG7dWme6ZVZWFjdu3CAiIoLw8HAMDAzw8/Nj5cqVREREcP78eW7cuKHVhoMHDyKXy2nXrh02NjYoFAqOHz/OwYMHycjIkMqdPn1aysUdFhaGhYUFX375JevXr+fw4cP88MMPZGdnA9C2bVuioqL4/fff/+utFwThHWHluxjjSnULLWNcqS5WvotfU4uEF5HxOLvQ/RfiD/Hr5mls3OqPs2N3fAd8RqdOnfDw8KBv377/+bxly5alRo0aeHt7c+HChf9cj/DfaWI9nD1zS+cBkEqlJj39CT8tPsKTLOVzDXiYmZlx8eJFaXS/XLnc5T/5R7gzMjLo168fnp6e9OnTh+zsbIKDg+nRowft27enffv2qNVq0tPT6dmzJ61atWLo0KEA7N69G3d3d1q2bMm+ffu06k1NTaVjx464u7szduxYACZPnswvv/yilWlixYoV0gBLXFwcSqWSkSNHYm9vL9VZ2Hn06d27N61ataJNmzY8fPgQyJ356evri52dHb/88gsdOnTA0dFR+n6WkpJCr169cHR0JDo6midPntChQwfkcjm9e/d+5jmFV0tE+xeEYionKY3M0L+LVFZ5+R4NquVO269atSqpqanEx8czdepUZDIZaWlpODs76xzXuXNn2rdvr/WFSV+O6Xr16uk975kzudMtAe7evcvdu3cZPHgwvr6+1KxZk6+//pqLFy8ycOBAIPcD5ebNm1SrVk2qo3Xr1tKo/YULF5gwYQKPHz/m4sWLJCUlSeX++usvnVzcDx48kNJu1a5dWypva2sL5H7gC4JQvBmVsaK632GSQsbmpv3LG/3f0Ahzx25Y+S7GqIzVm2ukUGRmJY0L3Fejuh0fD9ceGXVwsOXTz8O1tuUd4dc32q8J9gdoLQfQN+qat6zwahUW60Hj3t3HXLqShFsrB9auXUubNm20BjxatGjBlClTOHbsGC1atABy03WOGzeOoUOH8uDBA1asWCF9n8grKCiIzp07069fP5YuXSrFRapWrRqLFi1i5MiRnD17lvDwcNq0acOoUaNQqVSoVCq+++47wsPDUalUtGvXDh8fH6neFStW0KdPHwYOHMiIESM4fvw4s2fPJjQ0VGtG5KhRo1i7dq30N3v//n0CAwPJzs7ms88+o02bNoWeR5/g4GBKlixJUFAQGzduZOTIkSQlJREUFMSpU6f47LPPOHnyJL/++iubNm3iiy++IDExkT/++IPU1FQ+/vhjFi1ahKWlJXv27NFJVSq8fqLzLwjFVFbY37pT/QuiUqM8nQj/Lh1Tq9XY2Njg6+uLo6MjkBspOr/KlSvj7e1Nr169iIiIAJByTG/YsAE/Pz+dN/q8UykdHBzYsmULpUqVIjs7GwMDA/r168egQYMYNWoU0dHR2NjY8P3331OlShVycnK0js9v6dKlTJkyBblcjqurq866y99++43PPvtMusayZcuSkJCAtbU1ly9fxsrKSqeNgiAUf0ZlrKg65leUDxJJO7WTnPQHGJYqh7ljVzHV/x3TyK4yu7afL9LUfwMDGbZ2lV9Dq4RX7VmxHvJKupNG7dr1gaIPePTv35/+/ftz5coVhg0bxqFDh3TqjY+PJyYmhuXLl5OZmUm/fv2wsLCQBhSsra1JSUnhr7/+4tNPPwVyl4UkJSURHx+Pt7d3bvuSklCr1dJ3kX/++Yf27dsD4OTkxKVLlwpNGaphaWkpfa9JSUnh7t27hZ4nv5ycHCZNmkRcXBwPHz6UlnfWrVsXU1NTqlatSoMGDTAwMKBq1arEx8dL+83NzTE3Nyc1NZU6depgZ2fHgAEDcHR05Isvvnhm24VXR3T+BaGYUqVmPld5dfoTrZ+nT5/OqFGjSE1NxcDAgKCgIGmUPK9vv/0WQOr868sxnZezszNdu3ZlwoQJzJo1i06dOqFWqylfvjwrV66kc+fO5OTkUKZMGezs7AgMDGTYsGFkZWVhbGzM1q1bMTc313sNHTp04LPPPqNhw4aUKFFCa5+9vb1OLu6vvvqK/v37k5OTw6effoqxccEjRoIgFH9G5apS1mv0m26G8AIsLEyxbVyZs7G3nlnWtnFlylgU3+CH75OixnoAUKvhasKDPD8XPuBx//59ZDIZ5cqVo3z58gV2lm1sbPDy8qJHjx5Abgyk9evX6wSDtLGx4Y8//sDW1haVSkXFihWxs7Nj//79GBoakp2drXVMnTp1iImJoVGjRpw8eZIRI0aQman/O17e4/Kf91nnyS82Npb09HQiIyP5+eefuXnz5jPPAXDp0iXS09NJTU2lTJkyZGVlMX78eAwMDGjTpg0DBgygUqVKBZ5XeLVE518QiimDInyh2VUrd13bRMs2lGnuBqCVrm/79u0FHpt/KuOQIUOk16dOndIpr5mav2DBAq3teWMCAERGRmr9XLduXfbu3au3DbVq1ZLqBfDx8dGZwpa3XYGBgVr7HBwcOHr0qNa2vNdfWHAnQRAE4e3UtbstN2+kFjoFvELFknTtbvsaWyW8Ss+K9ZBfVpb2bMbCBjzu37/PsGHDAFCpVHz11Vd66xw1ahQjR45kyZIlqNVq5syZo7fcyJEjGTRoEOvWraNOnTqsWrWKL774Ai8vL2QyGQ0bNuSnn37SKt+/f39+/vlnGjduTPPmzQv8flK9enV69Oih830H4NGjJ/i0HUD9+rZcvvwnAwYMIiRkDdHR0Tg7OzN//nxWrVrFr7/+CsD//d//cenSJXx8fKhevTrW1tasX79eCjZYrVo1DA0N9bZh2LBhXLp0iSVLluDn50dERARZWVlYW1tjZWWFQqHQWbaQV0ZGBhMnTuTChQtkZ2fTpEkTrXvyImQy2TC1Wv3MyIgymWwNME+tVl+QyWRLgLtqtXqGTCbzBDqo1eoJRahDAXir1Wplnm3fAxPUanVOQcflq8MeMFCr1bpfrv8DWWFrL5ycnNQnT558GecRBOE1y0lKI9l7edGm/hsZYBn2MYaW+kfUBUEQBOFdkvYoix3bznHurPaIsIGBDNvGlena3Rbz0iZvsIXCy3Q0KoEdW88VuXzXHra0dK316hr0Fkl7lMWOrec49+/siGvX41AcXoV9Yx98fYcQG7eRiIhDbN68WWuGp0ql0slW4ezszNGjRzEyMuLBgwdS8MOiCA4ORqlUMmLEiGd2/qdNm0ajRo3w9fUFcgeG3N3dn//i/yWTyWLUarXTv6+j1Gr1M/MRymSyz4BHarV6jUwmCwGUarV6iEwmmwIkqNXqjUWoQ0G+zv9/aPsQwEitVr94HkbEyL8gFFuGVuaYetcjc9/FZ5Y19a4nOv6CIAhCsWFe2gTfwY6kpmZyPu42GRnZmJkZY2snpvoXRyLWg36aDAj5Z8HUqN6Yq9fOcDb2Fr/vO4LDRx8CuR30vXv3kpaWRmBgIPb29lrHpaenc/z4cVq0aCF1/IcMGYKZmRlnz57Fw8ODlJQUjh07xqeffsqwYcMYMmQI/v7+rFixgnv37nHo0CFGjhxJTEwMnTp14v79++zfv19rSeeRI0e0Zk5oOv7Xrl1jyJAhZGVl0blzZ6ZMmUJycjLDhw/n0aNHNGjQgCVLlvDTTz+xbt06zMzMtGacymSyzoDdv53yQEANaJ5A+KvV6tA8l3sCGCyTyX4BnvC039wU2CSTyRYB9uRmzxsA3Aa2A6WAJLVarUltME8mk7kDy9Rq9UrNAwHAH/gAqEruw4QRMpmsDrDh37rMgeHAKKCCTCbzAAYD6wBr4CYwEHAFpgBKoDzQVq1Wp1EAkepPEIqx0n5eGNYoW2gZwxplKe3n9XoaJAiCIAivkYWFKS1da+HVuh4tXWuJjn8xpYn1UBTvU6yHgjIgGBoaYWhoTOKtPyltXoVrV1OkfWXLlmXPnj06HX/IfTgwf/586tWrx/Lly6Xtbdq04ciRI2zevJnhw4dz9OhRVq5cqXXsqFGjmDRpEuvXrwegRIkS/Pbbb7Rv356wsDCtsnlnprdp0wZbW1tu3LjBvHnzmDVrFkeOHOHQoUMkJibqTU29c+dODh06xKFDh3BwcMhb7y4gTq1Wy9Vq9UEgAGjz73/513PEAk3+/e8McE0mk9UCaqnV6ivANLVa3QqYBXwMVAeS1Wq1HOiTp54Qcjvog3VuKJxWq9XeQA2ZTFYWmAj8D+gOaFLMrADmq9XqAUA34IJarXYHzgM9/i3zRK1WdwJ+Bwr9Ui86/4JQjBlWKEX59f0x9bEBo3z/3I0MMPWxofz6/hhWKPVmGigIgiAIgvASdO1uS4WKJQst8z7FenhWBoQPajtxIGwJ9eu2JOVBBo8eZgFIQQ/1adq0KTt27CAuLo5Vq1aRlpY7wKzJaFClShVsbW0xMTF5Zuak/FkQCnLgwAGcnJxQKpX8888/fPTRR0BuIOcrV65ImRrkcjlhYWEkJiYya9YsRo8ezahRo7TSPuuhVqvVD9Vq9UMgJ98OTSTslsDJf/9rD9z5d/tkmUx2mNyZA1XVavU/QJxMJlsPjM9T1Tm1Wp0F6FuHq1mrkghYALWBs//GA9C3jqUOoFn7fxKom6+em0DZwi5YTPsXhGLOsEIpyi7sTE5SGllhf6NKzcTAwhQTMdVfEARBEIRiwry0CZ+OdRGxHv71rAwIH9RyIuHqaSpXqodareavi8kAOuv88/r777+pV68eJUuWxMzMTNpeUAaAvIyNjcnKytJbLn8MupYtW7Ju3ToGDhwIPM2+oMl84O7uzunTp/n888/1ZmrIzs4mODiYDRs2aAVy1pwuz2sDmUxW5t/XutELc0f8hwA/AxWAr4GtMpmsAiBXq9VuMpmsNTBAJpOZAP+nVqtVMpnswL8PAfKfr7C2yIAr5C5LOAk0+nd7NqD5o/0HcAT2AE7ApQLqKZDo/AvCe8LQypyS/RyeXVAQBEEQBOEdJGI9PPWsDAglSpjh03qs9HNmpnb5uXPnMnDgQKytraVt48eP58GD3DSJPXv2LDD1sj7NmzdnyJAhnDt3TkqHWJCZM2fyxRdfEBQURIkSJahXrx6VK1dm8uTJDB48mCdPntCpUyesra31ZmqYOXMmV65cISsri9WrVzN16tS81Z+QyWQ7gAXkTtk/+O/2GXqacgJwU6vVj4HHMpnM6t9tD4A0mUwWDpz9t2xNYJVMJjMELgOFTjkowHfA+n+PfUBux/8PIFgmk9kCXwA9ZTJZJHALmAe4PM8JRLR/QRAEQRAEQRCEYkRkQHgqb7T/t5lMJjNSq9XKfx8gHAFcXyRTgD5izb8gCIIgCIIgCEIx0siuMgYGha+713ifMiC85T74d1T/BLD2ZXf8QUz7FwRBEARBEARBKFY0GRDOxt56Ztn3KQPC20ytVv8FuL/Kc4iRf0EQBEEQBEEQhGJGZEAQ8hOdf0EQBEEQBEEQhGJGkwGhsX0VnSUABgYyGttX4dOxLu9NBgRBTPsXBEEQBEEQBEEolkQGBCEv0fkXBEEQBEEQBEEoxiwsTIttNH+h6MS0/2ImLCwMuVyOu7s73bp1o1OnTly6dEmrzNy5c7l582aR64yNjeXUqVMvu6mCIAiCIAiCIAjCayI6/8VAamomR6MS2LrpOBMnTCckZDORkZHMmzePJ0+e6JSfOnUq1tbWRa5fdP4FQXgTlA8SSQlbypVfvsS1SX1aubbEwsICuVzO0KFDCQ0Nfa76LCws8PT0xMPDA39/f7Kzs19KO11dXaXXwcHBBAUFFfnYlJQUtm3b9lLaIQiC8DJp3oPv7Qpk94Lx1KxeDblcjouLC/Hx8S/tPEOGDNEZqPovEhISCA8PfwktEoTiS3T+32Fpj7IICY5hzldh7Nh6jpUrf6WSpTM//t8JQtbEULVKTapUqcJ3332Hq6srs2bNAp6+yQYHB9OjRw/at29P+/btUavVxMbG0qpVK5o1a8Y333wDwIoVK5g/fz4DBgxAqVTSr18/3N3d6devH0qlkkmTJhEXF8fBgwext7cHYPDgwSQlJSGXy5kwYQJNmzZl5cqVb+pWCYLwDlE+TCLxpz5cnlibpHWfkb3/G1Y5/MPPNjHYVCxB6K5N1KxZ87nrtbOzIzw8nEOHDmFsbMxPP/30n9qnUqn+03H6PE/n/2WeVxAEoSD534PvbZvBg4OLaF/hFht6V2ZOwHSWLVsmlX8b3ptUKpXo/AtCEYjO/zsq7VEWPy0+wtkzt1Cp1ACkp9+nVKnyqFRqzsbe4qfFR8jOzqFt27ZERUXx+++/69RTrVo1fv/9d6ytrTl79iw2NjYoFAqOHz/OwYMHycjIYNSoUUyaNIn169ezfft2GjZsSGRkJI0aNWLr1q20bNmSo0ePcuTIEapWrcqjR4+4c+cOVlZWAPj6+hIVFcWaNWte6z0SBOHdo3yYxPVAN9Kit0COUntnjpKctLtcD3RDlZXO2rVr8fb2ZsSIEQAkJyfTuXNnPDw8GDNmTKHnmTZtmvSeuHv3btzd3WnZsiX79u0rcFvz5s0ZPXo0EydOfOZ1KBQK/P39gdzZAMHBwSQkJODm5kaPHj1wdHTkxo0brFixgoMHDyKXy0lOTiYoKAg3Nzfc3NykGVdNmjTB19eXb7/9tug3UtArNTUVuVyOXC5/4VkkcrkcV1dX/vrrL/bt28eePXuKfPzt27cJDAzUuy84OPit6EwJ76dC34NVKtJObObyio8xNzFELpczefJkBg0apHfwqFOnTqSmpgIwYcIETpw4waVLl2jTpg2tWrVi9uzZUtX5B6r0lVu9ejVyuRwnJycOHDgA5A5offbZZ/j4+LBixQrWrVuHl5fXq75NgvDOEp3/d9SObee4d/ex1rZSpcqTlnZf+vne3cdcu5qCrW1u7k4zMzOdejT7rK2tSUlJ4cqVK7Rv355WrVoRHx9PUlKSVvl//vmHjz76CAAnJycuXbqEi4sLR48e5fLlywwYMICdO3dSqVIlrXOYmJhgYCD+3ARBKFxSyFiy7xQ+/TP7ziXSz+7FwcGB0NBQrl27RkpKCnPnzmXatGkcOnSI0qVLc+zYsQLrKFGiBNnZ2ahUKr777jvCw8NRKBTMnz9f7zaAu3fv4ufnx8KFC7XqiouLkzqUc+fOLbTtaWlpbN68mS+++IKtW7cyatQoWrdujUKhQCaTsWvXLiIjI9m5cydfffUVADdu3GD58uVMnTq1KLdQ0EMzfVkZ8SM7vuxD6PYN2NnZoVAo/vMsEoVCwYIFC/j222/x8fGhQ4cORT6+cuXK+Pn56d0nOv/Cm1TYe/CuyzBgr4rJe27iaXwBgG7duhESEqJ38KhTp07s2rULgJiYGJydnfHz82PlypVERERw/vx5bty4AaAzUKWvXJ8+fVAoFISFhfHdd99J7XJxceHAgQOMGjWKgQMHEhYW9ipvkSC804pNtH+FQkFoaKj0dHDIkCH4+/tz6dIlcnJyCvxQdnV1JSoqSu++gIAAQkNDpf2FlX2dUlMzOXf2ts72D2o5sXPPHBrYuFGiREkepCRy48ZN0tJ01/1ryGRPc36q1WqWLl3KlClTpBENtVqNsbExWVlZANSpU4eYmBg6dOjAyZMnqVu3LlZWVty6dQtra2tcXFzo2rUro0eP1nsOQRCEgigfJJIWs71IZZ8kxtOgVhUAqlatSmpqKvHx8UydOhWZTEZaWhrOzs4FH//kCcbGxty9e5f4+Hi8vb0BSEpKIjk5WWebWq3GysqKatWq6dSl6QhCbsdNqVTqvLdqfm7YsCEGBgZYW1vrrHG9fPkyZ86cwcPDQ2u7jY0NpUqVKtJ9EbQpHyaRtO5z0k7t0BrFTNowjie3yqB8mPuAe+3atcydO5datWoRFBREcnIyw4cP59GjRzRo0IAlS5bord/e3p4bN25Iv/fBgwfj4+NDdnY2lpaWbNq0ievXrzNw4ECsrKxISEhg586dKJVK/P39WbVqFd26dSM9PR0rKysmTpxIbGwsXl5ejBgxgoEDB76O2yQIwLPfgzt/AOM/MuBuhhr/dQdQ12iOo6MjAFeuXGHChAk8fvyYixcvkpSURLdu3fjkk09o2LChNHB08eJF6e86JSVFCkCdf6BKX7no6GgWLVqEWq3WGpzStEEQhGd75zv/ygeJpJ3aSeofJ8m8kojyQSJG5apK+318fF6o/vv373Py5EmcnJxetKkvzfm429JU/7xKlrSgRbO+bN2ZO1pkamKOoYERf19MxsGhaHV36NCBzz77jIYNG1KiRAkgd6rrkCFDOHfuHAsXLmTLli24u7tTpUoVpkyZAkCVKlVo3LgxtWrVIjk5mZYtW76cixUE4b2Rdmqn7jTTgqhVZP59DOib+6NajY2NDb6+vtIXQaWy4Lq+/fZbOnbsSMWKFbGzs2P//v0YGhqSnZ2NoaGhzjaZTPZcs5csLCy4desWkDszoHHjxoDuA1djY2NycnIAqF27Nk2bNmXLli0AUkBCMWvqv9FMX9Y7ipl3CYlBZxwcHFi7di1t2rTRmkXSokULpkyZwrFjx2jRooVONZGRkdSvX1/62cjIiN27d2NmZoa/vz/h4eHUq1ePtLQ0IiIi+OWXX9i6dStdunQB4Pr161haWrJnzx7pIZG9vT2hoaEYGb3zX9GEd0xR34NLGUPaEzUlHt2V3p/0DR5ZWlqSmZlJcHAw/fr1A3IfZn7//fdUqVKFnJwcZDIZS5cu1Rko0leuefPmREREkJWVhYuLi1RW04a876eCIOj3zn6y5H+a//C2mvRENZcn1sbcsRuqf4M4a57GjxgxgqFDh3L9+nVq1KhBjRo1CAgIIDU1lf79+3P+/HnWrFkjBazT+Pzzz1m0aBHr1q2Ttp05c4YxY8aQk5PDZ599hq+vr95tQ4YMwdTUlHPnztG6dWtmzpz5Uq4943HBEapr1bCnVg3ta6hQITeyf96RKYC6detKZQICAqTX+h6YHD58WHq9ceNGnf151/PnTSOoOWf+14IgCPnlpN9/dqE8VJmPtH6ePn06o0aNIjU1FQMDA4KCgqhVq5a0Py4uDk9PT9RqNS4uLkyZMgUDAwO++OILvLy8kMlkNGzYkJ9++knvtufRuHFjEhMTad++PRUqVCiwXOXKlbl//z49e/ZkxYoVdOjQAXd3dwwNDfH09OTLL798rvMKTxV5CUnyXtzG/R9Q9FkkcXFxeHh4ULZsWZYsWcL+/fsBSE9PZ9SoUdy8eZM7d+5Qr1496tWrV+CMjzp16mBnZ8eAAQNwdHTkiy++eMl3QRCK7lnvwbsuw6kkFVk5MLqxjLVJTx8U6Bs80myfN28eixcvBiAwMJBhw4aRlZWFsbExW7du1XsufeU6duyIu7s7zs7OlC1bVucYW1tbpk2bRp8+ffR+VxUE4R3t/Bf0ND/3TekJ7NnI5TRDpk8cL+07fvw4JiYmhIaGMm/ePDIyMoDc6ZyrVq0iJiZGb+e/Xr16HDx4kMTERGnbl19+yfr167G2tsbV1ZU+ffro3Qa5a5iWLVtGs2bNXlrn36yk8fOVN3u+8oIgCG+CYanyzyzzS7vcEZ7P7Q2wcmkKPH2gCbB9e8FTVjWBp/LTZDx51raCln3l3T5kyBDp9d69e3XKhoSEAEgxAgCp4wgwdOhQhg4dWqTzCgV73iUkqjydnqLMIrGzs+PQoUM6de3fv5/69euzYcMG/Pz8UKtzZ+nln/GhkZWVxfjx4zEwMKBNmzYMGDBAGr0UI//C61bYe3CzyjIO9dQene8zfZL0d+rj46N38GjMmDFaAVjr1q2r896Y9z1cM1Ckr9yMGTOYMWNGgcdaWFgQGRlZ4DUIgvCOBvwr6Gl+5w9gnY8B63wMcKucw71/p79D7lokzbTLvB38unXrYmpqKgW802fMmDH8+OOP0s8PHjygVq1aGBsbU7t2bZKSkvRuA901TC9DI7vKGBgUbR29gYEMW7vKL+3cgiAIr4r5R13AsIgdHkMjzB27vtL2CO+u511CkvHXUa1N06dPZ/bs2Xh6euLt7S0FJXuWZs2asWvXLjp27EhCQsIzy1+9ehV3d3datGiBpaUlVlZWdOjQga5duxY4IioIr4p4DxaE4u+de6z8PE/zH58/SI5VayhhTu3atYmIiADg7NmzUpmCnsbn5e3tzezZs6XZAmXLliUhIQFra2suX76MlZWV3m35639ZLCxMsW1cmbOxt55Z1rZxZcpYmL70NgiCILxsRuWqYu7YjbQTm59Z1tyxG0Zlq7yGVgnvoqIsIck7i6TCh7kZaoo6iyT/bIy8Mz40KRrz0jfjQ7Mtf13jxo1j3Lhxz2y/ILxs4j1YEIq/d27k/7me5ucoyUrI/RBu1qwZmZmZeHl5cfbsWYyNn28qvK+vL3fu3AHgq6++on///ri6uvLpp59ibGysd9ur1LW7LRUqliy0TIWKJena3faVtkMQBOFlsvJdjHGluoWWMa5UFyvfxa+pRcK7qChLSLTLl3tFLRGEd4t4DxaE4k1W0Gg3gJOTk/rkyZOvsTnPdm9XIPe2zXh2wX9V6P41FTpPB3LX7BkZGTFv3jxq1KghRR59V6U9ymLHtnOcO6sd/d/AQIZt48p07W6LeWmTN9hCQRCE56d8mERSyNjcWV55H/YaGmHu2A0r38UYlbF6cw0U3nrKB4lcnli7aIMFhkZ8sCBBjGIKwr/Ee7BQ3Mhkshi1Wv32pG57g965af8v8jR/+PDhXLlyBQsLCzZvfvaUpredeWkTfAc7kpqayfm422RkZGNmZoytnZjqLwjCu8uojBVVx/wqpXLNSX+AYalymDt2FR00oUjE9GVB+O/Ee7AgFF/v3Mi/eJovCIIgCMKzFJQZKC/jSnWp7ndYjGIKgiAUY2Lk/6l3bs2/5ml+UYin+YIgCILwfjIqY0V1v8OYO/fSjWBuaIS5cy/R8RcEQRDeK+/ctH/IDUaSdfX0M5/mi2AkgiAIgvD+EtOXBUEQBOGpd27av4YIRiIIgiAIgiAIgiAURkz7f+qdHPkH8TRfEARBEARBEARBEIrqne38axiVq0pZr9FvuhmCIAiCIAiCIAiC8NZ65wL+CYIgCIIgCIIgCILwfETnXxAEQRAEQRAEQRCKOdH5FwRBEARBEARBEIRiTnT+BUF448LCwpDL5bi7u9OtWzfu3bv3n+oJCAggNDRUa1twcDBBQUEvo5mCIAiCIAiC8M565wP+CYLw7nmapeM+D7KNmbVwO3v2HaB06dL89ddfPHny5E03URAEQRAEQRCKFTHyLwjCa6N8mETiT324PLE2Ses+4962GWz9v6m0lUXzaN1IlA+TqF+/Pvv27UMul+Pk5MSBAwcAmD59Oq6urnh4eJCYmKhVZu3atdI5Vq5cibe3N8OHD9c6d3Z2Nl5eXri7u9OjRw9ycnJISEjAzc2NHj164OjoyI0bNwDw9/fH1dUVT09PUlJSWL16tU57BEEQBEEQBOFdIjr/giC8FsqHSVwPdCMtegvkKKXtyRlgaaoi7cRmrge6oXyYRJ8+fVAoFISFhfHdd98BcOTIESIjIzl06BBVqlTB3d0dhULBH3/8wfLly6X6bG1tCQ0NpUSJEvzxxx/SdiMjI3bv3k1kZCQNGjQgPDwcgLS0NDZv3swXX3zB1q1bOX36NJcvXyYqKoqwsDAsLCz0tkcQBEEQBEEQ3iVi2r8gCK9FUshYsu9c0tluaQZJj3NfZ9+5RFLIWI5X6cOiRYtQq9UkJSUBMHnyZAYPHkyFChUIDAzk1KlTzJo1i+zsbC5cuCDV5+DgAIC9vT2XLj09X3p6OqNGjeLmzZvcuXOHevXqUa9ePRo2bIiBgQHW1tZcunSJv/76i5YtWwIgk8kA2L9/v057BEEQBEEQBOFdIkb+BUF45ZQPEkmL2a53X6tqsOuymrRsNQDnD21j8sQJ7N27l507d2JgkPs25enpybp167CysmL37t18++23BAUFERoaStmyZaX6zpw5I/2/Tp060vb9+/dTv359IiIi6NGjB2p17vk0HXwAtVqNjY2N1owBtVrNnDlzdNojCIIgCMVFamoqcrkcuVyOhYUFcrmcoUOH6gTRfZbx48fj6upKixYtWLFiBQCurq4vta0KhQJ/f/9XcqyFhQUeHh60bNmS48ePF6lOuVz+n9pSkB07dnD//n0gN2hxTEzMS61feL+Jb7HCe+1lfNitXr2aJUuWALBp0yZatWoFQFZWFi1atCA2NpaVK1e+cFuHDBlCQkLCM8sFBQXh5OTEnj17tLbPnTsXd3d33NzcWLNmzQu353mkndqpNdU/r/KmMsY0lvFJmJoBe1XMO55NT9eGuLu74+fnJ3Xsu3TpgpubG3v37qVVq1Z069aNLl26MGLECK3Of3x8PF5eXmRkZNCiRQtpe7Nmzdi1axcdO3Ys9D7a29tTs2ZNXFxc8PT0JDU1lY4dO+q0RxAEQRDedcoHiaSELUUZ8SM7vuxD6PYN2NnZoVAoqFmz5nPVde7cOe7evUtUVBTHjh2jV69er6jVr46dnR2HDh1i06ZNzJ8//420IW/nf8iQITg6Or6RdgjFk5j2L7yXUlMzOR93m4zH2XwzO5hGdpXp0MEbhUJBQEDAc9XVtGlTFixYAEB0dDQlS5ZEpVIRGxuLvb299N/zUqlU/2mUedOmTURFRWFqaipt27t3L1euXCEyMhKlUkm3bt1o2rQpDRs2fO76/4uc9PuF7m9ZVUbLqk9H4Ct0b8mcNdO1yuQPtDds2DCGDRumtU3f727IkCHS61OnTunsDwkJAZAeAgEEBgZqlZkxYwYzZswo9BoEQRCKq7yfmecvnGDTluUYGECFChUICgpiwoQJ+Pv7U7du3Rc+l1wuR61WI5PJKF++PNu2bXsJV1C4hIQELl++jKen5yupf8SIEfz5559s3LgRa2trIHdEd9CgQRgYGDBkyJDnun/t2rUjIyOD06dP4+DggJmZGX369EGpVDJixAip3L59+8jJyaFDhw46dSgfJpG07nO6zd7MurZPP39/WzCWy+eNUT5M4sKFC6xevZoaNWqQkZHByZMnSU5OZvjw4Tx69IgGDRpIgx8AZmZm7Ny5k0uXLlG3bl3KlSuXey6lkpEjRxIdHc3cuXPx8fHhf//7H7GxsahUKtavX8+jR49YtWoVCxYsoFq1avz222+kpKQQHR1NvXr1mDNnDubm5kycOJGSJUsSExNDp06duH//Pvv37+fhw4cMGDCA7OxsGjduzJIlS1AoFMybNw8jIyOpnMbDhw/x9fVlzpw5NGrUSOf+pKSkSK81sw2VSiUzZszAx8eHFStWsGrVKq1BhuPHjzNlyhSys7MZMWIEQ4cOlYIFKxQKBg0axIkTJ4iLi+Pbb7+lbdu2yOVy7OzsiI6OZtiwYfj4+LBv3z7i4+Pp2bMn6enpuLq6IpfLGThwIDdv3sTa2pp169YRFRWlc33m5uZF+hsS3l9i5F94r6Q9yiIkOIY5X4WxY+s59u+9yI6t55jzVRjJSWmkPcoCYO3atXh7e0sfosnJyXTu3BkPDw/GjBmjVWfDhg2Jj48HIDExEblcTnx8PNHR0Tg7O0tTzE6cOCF1MMuUKcP169eZM2cOrVq1olmzZpw+fRrI/eIzefJkBg0axJUrV2jWrBmdO3fm8uXLOtcTEhJC8+bNcXFx4cyZM2zZsoUTJ07Qtm1brfXumzZtYuLEiUBu4Ltx48axZcsWdu3aJbXJzMzs5d/wfxmWKv+c5cu9opYIgiAIRZX/M3P71hPM/24OTR0+Z9Tw/2PGl1+/ktSsYWFhKBSK19Lxh9zOvyYI7LOoVKrnrv/ixYtERUVJHX/I7fz/l7og94G+QqGQRuj37t2rt5yPj49Ox1+lUmkH4P13CdzTAjmon2SwfbQT0cf/YMyYMRw+fJjy5cuTkpLC3LlzmTZtGocOHaJ06dIcO3ZMOrROnTpUq1aNoUOHYmtry9GjRwG4f/8+gYGB7NmzRwrQO2fOHCIiIpg5cybLly+XvkslJCTQqFEjjh49ypEjR2jZsiXbtm1j06ZNhIeH065dOwBKlCjBb7/9Rvv27QkLC6NixYocPHiQqKgoHj58yN9//623HBTe8Y+Li8PNzU2a7adSqfjuu+8IDw9HoVAwf/58lEolK1euJCoqSmt2w4wZM9i1axdRUVGsX79e+rcxYMAAjhw5wqxZs1iwYAF79+7lp59+ko7r27cvR44cITg4mMqVK+Pj48P69euZNGmSVGb79u00bNiQyMhIGjVqxNatWwu8PkEojOj8C++NtEdZ/LT4CGfP3EKl0v6wU6nUpKc/4afFR3iSpcTBwYHQ0FCuXbv2zA87AwMDSpYsSWpqKoaGhjg6OhIdHS11/jU0DwKmTJlC//79qV69Ov/73/+IiIhg/fr1WlHku3XrRkhICPPnz2fhwoVs27aNe/fuabU5JyeHxYsXc/jwYdavX4+fnx89e/bE3t6esLAwrRGEW7duUbVqVennatWqcevWLTp37oxCoaBv377/ef1cUZh/1AUMizjRyNAIc8eur6wtz5KTlMbjX06TtuwY+778menjJ0v7AgICUCgUOseo1Wo6dOiAu7s7OTk5/+m8n3/++X9tsiAIwkun7zPzcsJJGjXwwNjIjLOxtziwN4nS5k8f7uZdJjV27Fggt9Pi7OyMp6cnv//+O2q1mtGjR+Pp6UmHDh148ODBM9sil8uZMGECTZs2lZbRHTlyBBcXF+RyORs3bkSpVNKvXz/c3d3p168fSqWS4OBggoKCgKfv3wqFgnbt2tGpUydcXFxIS0tjxYoVrFu3Di8vLwC++uor5HI5np6eJCQkkJCQgIeHBz179iQ4OJjBgwfTqlUrPDw8dDrwY8eOxd3dnY4dO5Kamoq/vz9nz56lY8eOUpkTJ04QGxuLl5cX69atA+C7777D1dWVWbNmAXDp0iXatGlDq1atmD17dpF+Z3v37qV9+/a0b98etVotXX/+9i/8pAPdVv3FNyf0P3zIzIFvDl6nXf2SfPTRRyQkJPDPP/+QmprKypUr6d69O+bm5mzbto3ExERWrFhB8+bNGT9+PFZWVhw+fJjffvsNPz8/ACwtLbGyssLa2loaUf/2229xc3PD39+fxMREZDIZJiYmhIeH89lnnxEbG0tMTAxOTk74+fkxe/ZshgwZIg1s2NraAkh13rt3j549eyKXy4mKiiIxMVFvOYAtW7bg4OCgd8Tfzs6Ow4cP8+2333Ls2DHu3r1LfHw83t7etGnThlu3bpGcnEzNmjUxMjLSmpJ/5swZaaDo9u3bJCcnS20wMTHhww8/pFKlSlStWlXr797BwQFDQ0Nq1qxZYFDhf/75h48++ggAJyenAu+DIDyL6PwL740d285x7+7jQsvcu/uYP+OTpDfTqlWrkpqaSnx8PFOnTkUulxMWFiZ9qGg4OjqyYcMGbGxscHR0JCYmhosXL9KgQQOtcpcvX2bRokUsWrQIgHXr1uHu7s6IESO06tR8mFy+fBkHBweMjIxo3LixVl2aDx9jY2Nq1apFampqgddVpUoVrfpv3LhBlSpVAPjjjz84dOgQ06dPL+jwF2ZUrirmjt2KVNbcsRtGZau8srYUJOdeOinjd5HsvZyHX4eStjiKx2tjeLz+FClf7CLnXnqBx966dYvSpUsTGRmJoaFhoecpaKTnhx9+eKH2C4IgvEz6PjPT0+9TKs9Mrnt3H7Nj2znp5xUrVtCnTx8iIyN5/Pgxx48f1xm13b17NzVq1JA6ecuWLdM5t5eXF3K5XGumna+vL1FRUVLMmmnTprFz504UCgW9evUqcGRUn/yjpaNGjWLgwIGEhYVx9uxZbt68iUKh4KeffmLOnDkAJCUlsXHjRgYOHMiNGzeIiIggPDxca3ledHQ06enpREZG0rdvX5YtW8bs2bOxs7Nj9+7dUjlnZ2fpQf3AgQMBaNu2LVFRUfz+++8A+Pn5sXLlSiIiIjh//jw3btx45u+sWrVq/P7771hbW3P27FmtfZr29+/kzfqDMWxoJ8OnlkxvPQ+fgGtVMLz7N6o8y/Y0yzHWrl3LxYsXsbW1pUOHDtIoeNu2bVEqc+P7lC9fXgqomz+w7r1791AoFBw+fJivv/5aCsDr6OjIjz/+iLu7O0+ePCErKwtTU1Nq1qxJUFAQo0aNYuHChXrr3LBhA127dkWhUODi4lJgUF+AoUOHcv36dXbs2FHgvRw6dChr166lQoUK2NnZSbNRzpw5g6WlJVevXiUnJ0eatQm5nfg9e/agUCg4ffq0NNOjoPugcebMGXJycrh69SpWVlYYGxvrDCTUqVNHCvx38uRJKaBxQXUKQkFE5194L6SmZnLu7O0ilU26k8bjx9nSz5oI8AsXLkShUHDy5Em6dOmidYyzszNLly6ladOmlCtXjoSEBEqVKqX1peDx48d8/PHHBAUFYWJiAiCtSfv555+13rQ1x9WuXVv6UIiLi9M6p+bDJzs7m4SEBCwsLAq8pp49e0ozC5RKJd9//z3du3fnzp07+Pn58fPPP2t9gLwKVr6LMa5U+HpG40p1sfJd/ErboU/OvXTuD9hA5v6LoMzXOVepydx3kfsDNqB6nDuFL/+o0eTJkzl06BAjRozQO/IVHBxMnz596NChA2fPnmXo0KF4e3szbNgwKU6Bq6srN2/epG/fvrltysmRYhAEBQXh5uaGm5ubFLfAzs6O/v3706RJE2JjY1/5PRIE4f1R0GdmqVLlSUvTjuFy7uxtsp/kdlT0jU7mH7WNj4/n119/RS6XExgYKAU2y0vT0cq7nlwzeqr5fFSr1VSsWBHI/czUd+6COkaFjZb++eefKBQK5HI5o0eP5uHDhwA0adIEQ0NDjI2NGTx4ML6+vvj7+2s90C1odLYoNG3SLMG7ePEiAwcOlJYS3rx5s8h16LsuTfuvKjZQtZQaIwMZthX012NpBqeS4Gqqioy/jmrtq1evHkuWLGHgwIEoFAri4uKkUfDq1atz7tw53N3d6dChQ4EzCsuVK4e5uTmenp5awYldXFzIycnBwsKCatWqSQMoAQEBtGrVis8//5w+ffrordPT05MFCxbQtWtX0tMLflgPuR3mFStWEBISQkREhN4yhoaGtGnThp07d/LFF1/g5eWFh4cH48aNw8jIiKFDh0pLEjRmzZpFp06d8PDwkD7Li2Lz5s20bNmSQYMGUaJECdq2bcuYMWO0Hox17dqV8+fP4+7uTlxcHD169Chy/YKQlwj4J7wXzsfd1pnqXxC1GhKuaH8ZmT59OqNGjSI1NRUDAwOCgoKoVauWtN/Z2Zm4uDicnJyA3A/v/KP+W7du5eLFi/j6+gLw66+/4uzsjLu7O+7u7nrbMnHiRPr370+lSpWoVKmS1j5DQ0M+/fRT3NzcMDAw0Fo/ll+HDh04c+YMbm5uqNVqhg8fjq2tLV9//TXXr1+nc+fOAHqntL8sRmWsqO53mKSQsblp//JG/zc0wtyxG1a+izEqY/XK2lCQR4Fh5FxLKbRMzrUUnqRegfa5o0Y7d+4kMDCQsLAwaUpmUFAQ8+fPp0+fPgwcOJARI0ZIqYLKli3Lxo0bOX78OCYmJoSGhjJv3jwyMjKkc1hbW/PgwQMyMzP5448/cHd35+7du+zatYvIyEgePHjAsGHD2LFjB0lJSaxatYqYmBjWrFnzn4JKCoIg6FPQZ+YHtZzYuWcODWzcKFGiJA9SEjE2NuXBg9z3Mc3oZKNGjTh58iQjRoyQRm2PHj3KwoUL8fHxYdCgQUyYMAGA7OxsnfPok/8BtUwm4969e1SoUAGVSiWdu0OHDpw8eZK6detiamoqPTiPi4vDw8NDpy61Wq010lq/fn3atGkjzcbKzs7m5s2b0kOHnJwc+vXrx6BBgxg1ahTR0dE0a9ZMun5NcNq8o7P6aM5pZGSk9/psbGz4/vvvqVKlCjk5OUV6QF/YKLCm/WWNnpCYDjkqNRcKiMXbrQ4MbSRj2EE1lc1zj2vRogW1atWiRIkSbN+em7pXLpfj4OAgjYI/evQIe3t7ne8SUVFR0mvNvrwzITQ8PDykdL15A+/OmzdPp6zm4XjeoL75B0kKKqfZtmXLFp3yedv61VdfSa/bt2+vVe6TTz7hk08+0drm7OysEzsi773IW3fe199++630dwC5AzY9e/bUadvGjRu1fs4bqDjv9QlCYUTnX3gvZDx+9peL/r2/BcClRX9sG9kAuSO2GpoPO31q1qyp9UG7adMm6XXeN2fN9D6Nn3/+WaeuvB8UderUKTTP7ODBgxk8eHCBx+c1ffp0nan9X375JV9++WWB9b9sRmWsqDrmV5QPEkk7tZOc9AcYliqHuWPXNzLVH3LX+GeG/q13n4mBEU/UTx9SpP9zh2NhkYWOrvzzzz/Sl4S8Iz+apRxXrlyRlnDY29trxY+A3Kmfe/fuJTw8nJEjR3L58mXOnDkjfWnV0HyxFev8BEF42Qr6zCxZ0oIWzfqydWdup8jUxByf1mPJyckd/R45ciT9+/fn559/pnHjxjRv3pwpU6bwxx9/kJaWxoIFC2jVqhVjx46VIuuPGzdOegCt4eXlhUwmw9DQsMAgZnPmzKFTp06YmJjwySef0L17d7Zs2YK7uztVqlRhypQpZGZmMn/+fKKjo7U6V/nZ2toybdo0+vTpw8aNG6lcuTJyuRyZTEa/fv1o06aNVPbRo0d07tyZnJwcypQpg52dnbSvadOmBAcH4+bmRunSpdmwYUOB5+zQoQNdu3bVis6fV2BgIMOGDSMrKwtjY2O2bt36UiK5m5SxpHtdGX33qmlaqeByZU1kzHeF0Yu2sbL5wALL5R0F16Q6FgTh7SUrbH2Ik5OT+uTJk6+xOYLwahyNSmDH1nPPLvivrj1saela69U1SHhrPP7lNA+/DtW7774ynU9urufXGrlfzvpdX8knI0dxvlQKs2fPlh4OyeVy/P39pSCNlSpVYtCgQYwYMUJK8aRJwXT8+HGCg4NZunQp8+fPJz09nYCAAFxdXYmKiuLatWtMmzaNW7duER4eTnJyMqNHj5ZGKLKzszE2NpbKJyQkEBAQoPWgShAE4UWIz8ziS/kgkcsTa2vPviuIoREfLEh4Yw/nBeFlkclkMWq12ulNt+NtINb8C++FRnaVMTAo2pp2AwMZtnaVX3GLhLeFKjWzwH3ljUrRoYwdXa8upevVpXQsbUdZWeEpEUeOHMmvv/6Km5sbJiYmNG/eXGt/s2bNyMzMxMvLi7Nnz2JsbKy1v0aNGly5ckU6ztLSUsok4OHhwdy5c//jlQqCIBSN+Mwsvt6FALyCILw6YuRfeG+ErInhbOytZ5ZrbF8F38GOzywnFA+FjfzrU+ZLb0r2c3ihcyqVSoyMjJg3bx41atSgX79+L1SfIAjCyyY+M4sv5cMkrge6kX2n4ICExpXqUt3v8BuJwyMIL5sY+X9KjPwL742u3W2pULFkoWUqVCxJ1+62r6lFwtvAxKseGBXxrdDIABPvei98zuHDh+Pu7k5UVBTduhVtBEYQBOF1Ep+ZxZcmAK+5cy8wzBcLwdAIc+deouMvCMWU6PwL7w3z0iZ8OtaFxvZVdKYzGhjIaGxfhU/HumBe2uQNtVB4EwytzDEtYofe1LsehpYvHnBpzZo1REZG8ttvv2FqavrC9b0NlA8SSQlbys7A4VSvVIFWri2Ry+Wkpqa+tHNoUoVpuLq6vpR6V61aVaRywcHB2NjYSEE8T5w4QWxsrJR+8b/6/PPPpfrzpg0ThDdJfGYWb5oAvB98dwWrgT9SofvXWA38kQ8WJFB1zK+i4y8IxZSI9i+8V8xLm+A72JHU1EzOx90mIyMbMzNjbO0qU8ai+HTC0k7tJOKPk3y2eAcf1LNBqZYRFBSkk35QIzg4mEGDBkmpgPJKSEiQgtnpk5OTg5+fH8eOHUOpVNK5c2emTJnyn9o+btw4FixYgKGhobRtyJAhBAQEaKVWfBkUCgUKhYKAgABK+3mRfeEOh+NjsDYuS80SFdiYchKlOocB5XJTOBnWKEtpP69C6/zuu+/YunUrhoaGeHt7ExAQ8J/aJpfLX2naxSFDhuDv788HH3xA79696du3L2lpadjZ2UlZCeBptovCUggpHyaRtO5z0k7tgBwlD2+r6VhJzXibGMwdu1FKliWVValUev/GXqWinHPVqlUMGzasSPVNmjRJKzp3cHAwSqVSyu39X9qiSSkWHByMr6/va79HglCQ9+Ez831nVK4qZb1Gv+lmCILwmojOv/BesrAwLXaRiQvrhMWXc2PJ4oX8sFQ3tSC8WKdjxYoVlC5dmoiICKDgVINF8f333//nY1+EYYVSlF/fnxMdw/nojpqaVHi608gAU+96lPbzwrBCqQLrePjwIbt375ZS9z148OBVN/uF/e9//8PNzU1vPuGiKHTdaI6StBObWb9bQbRpM9KzlAQGBrJq1SpiY2MpU6YM69ev58GDBwwcOJBKlSpx6dIlpkyZwurVq3n8+DH79++nVKmC77nG8ePHmTJlCtnZ2YwYMYKhQ4cil8txdnYmMTGR//u//2P48OE8evSIBg0asGTJEunYFStWEBcXh1wu54cffuDMmTP8+OOPGBoasmTJEpo0aVLouVesWMG9e/c4dOgQISEhjBkzhosXL2JmZkZISAhnzpxh4cKFAIwePZrJkydjZ2fH+fPnWbNmDfb29ri6urJw4UJiY2Px8vJi2LBhhISEcPDgQSA37dm+fft0gkMKwutSHD8zBUEQ3kdieEEQigFNJywteotu+p4cJclnwuHMNpQPk7SmSueduuzl5cW6dev4888/pWnNixYtAuDq1av06NEDR0dHbty4oVX9tm3bmDBhgladAL1796ZVq1a0adOGhw8fcv/+feRyOR4eHowdO5YnT57QoUMH5HI5vXv3lo5VKpVcuXKFZs2a0blzZy5fvgxAly5dpA71uHHjiImJkc6ZnZ2Nl5cX7u7u9OjRg5ycHBISEnBzc9Np97Bhw/D29iYoKEj7NpU25tdbxwg0O8o3tc9i0roeh6s/YKjVAfr/uQyD8iXJyMigX79+eHp60qdPH7Kzn+bCNjQ05Pbt25w5cwaAcuXKAejcb83/J0yYQNOmTVm5ciUAu3fvxtHRkaFDh0r1rl69GrlcjpOTEwcOHAByR+E/+eQTXF1dmTVrFoDe39lXX32FXC7H09OThISE/H8yzJ8/nxIlSvC///0PgICAAEJDQ3ny5AldunTBx8eHXbt26RyXV1LIWL0d/12XYeA+FdOiVOQ8TKJE0jn27NlDdnY26enpREZG0rdvX5YtWwZAWloamzZtYvLkyfz6668cOHCA9u3bs3//fp26BwwYIF2rxowZM9i1axdRUVGsX7+eJ0+eANCtWzdCQkKYO3cu06ZN49ChQ5QuXVp6QAMwatQo7OzsUCgUNGzYkMWLF3P48GHWr1+Pn5+f3vumOf+1a9cYNWoUkyZNYv369ezevZsaNWoQHh7OZ599Jl3fkydP2LVrF+3atSMpKYlVq1axZMkS1qxZI9Xr7OyMvb09YWFhDB48mJo1a3Lp0iUuXrxInTp1RMdfEAShGEp5fAfF32vZdGwe9s0a4OreEgsLC+RyOUOHDiUnJweFQiF9Fyqqffv2sWfPnlfUauFdJkb+BaEYKKwTdvKOiquPYGXrBySFjNUpo+l0hIaGYmRkRLdu3Vi2bBkffvghKpWKa9eukZaWRkREBL/88gtbt26VOowAmZmZetetBwcHU7JkSYKCgti4cSMffPABcrmcgIAA1Go1ly9fxtLSkj179pA/68j8+fNZuHAhzZo1k0Zee/XqxdatWxk2bBhnzpzRmiVgZGTE7t27MTMzw9/fn/DwcOrVq6fT7hYtWmBoaEhoaCjffPON1EkEKFGiBEOGDMHV1RVvb2+Cg4OpWfYRixYtYuTIkZw9e5bIyEg6d+5Mv379WLp0KVu2bJEi9ZcqVYpFixYxadIkEhIS+Pbbb+natWuBvzNfX1+++eYbWrduzfDhw5kzZw4RERE8ePAADw8PAPr06cPQoUNJTU2lV69etGnTBoC2bduybNkymjVrxsyZM5k2bZrW7+zs2bPcvHkThUJBfHw8c+bMYfny5Vrn37p1q1YnWGPHjh04Ozvj5+fHqFGjCmy/8kEiaTHb9e7r/AGM/yj32fK2S2ps1FdRptzin3/+kabHOzk5SbNFGjZsiIGBAVWrVsXWNjd4WNWqVfXOnli/fj1169YFnj5YOXPmDJ07dwbg7t27JCcnA0hLGOLj45k6dSoymYy0tDScnZ31tjs5OZmaNWtibGxMrVq19MYryD/tP6/4+Hh+/fVX9u/fj1KppEWLFgBaSwLq1q2Lqakp1tbWpKSk6K0Hch9y/Prrr+Tk5IhsEIIgCMXMw8y7/HpyBqdv7Eelzh20aTYODGRPuP1NSXbt20IZ04pA7oxKV1dXPvjggyLX7+Pj8yqaLRQDYuRfEN5xz+qErW9nwI5OMv7vlJq0mO2olbkd3oLSfN69e5cPP/wQQFoGoOmc6euwmJqakpmZqbUtJyeHSZMm4e7uzo8//khiYiLu7u6oVCoGDBhASEgIderUwc7OjgEDBvB///d/WsdfvnwZBwcHjIyMaNy4MQBdu3blt99+4/Dhw7i7u2uVT09PZ/jw4bRq1YotW7aQmJiot92aegGtte0F0XRENcfHx8fz/fffI5fLWbNmDUlJSVrl27Zty4EDBzh27Bhff/211r7899vW1hYTExPpHhsYGGBubk716tWxtLQEYP/+/cjlcjp37sz169d12mVmZgbo/s7+/PNPFAoFcrmc0aNH8/DhQ51rW758OQMGDNDZV9R7lHZqp+4skwIYqFWkxeygTp060oyNkydPUqdOHQBksqfBxPK+LiwVbV4ODg7s2bMHhULB6dOnsba2zj3vv/fWxsaGhQsXolAoOHnyJF26dNE6XnNOS0tLrl69SnZ2NgkJCVhYWDzz3MbGxuTk5EjnGTRoEAqFgqioKL755hutdjzr+vLW1apVKw4fPszhw4dp1apVke6DIAi6UlMzORqVwI+Lt2Bn50iLFi0ZP368tH/+/Pm4uroyYMAAadZV/m3Z2dm0aNECc3NzraCjBRkxYgSffPKJ3n3jx4/H1dWVFi1asGLFipdzkQV4/PixtAzKw8NDa8acRkBAwCuNMSPoeph5l/kHexBzfY/U8ddQqZWkZT1g/sEeuLm78OTJE4KDg5kwYQITJkwgNjaWVq1a0axZM+kzJjg4mB49etC+fXvat2+PWq0mODhYmuHo7++Pq6srnp6ehT50Ft4PovMvCO+4onTCShlDWjaQo0SZdo+srCzi4uKk/Xk7HZaWlvz1118AUuTxwjos3bt3Z8GCBdLPkZGRxMbGStO7P/30U9RqNTk5OXz11VesX7+eBQsWkJWVxfjx41m/fj379u3jzp07Uh21a9fmzJkz5OTkSO00NzenTJkyLFq0SGckdP/+/dSvX5+IiAh69OghtTF/uzX1Apw+fVrnPuW9D/qOt7GxYfLkySgUCv744w/GjBkj7c/IyODmzZsAlClTRpqmrVarde53/ro19zo9PZ0bN25II9dz5sxh79697Ny5s8AOJOj+zurXr0+bNm2koIZr167VudYmTZowffp0+vfvrxVh/ln3SCMn/X6B+/SXf0DTpk0xMzPDzc2NDRs2FPjl+HnNmjWLTp064eHhQd++fXX2T58+ndmzZ+Pp6Ym3t7fO0pXq1avTo0cP/v77bz799FPc3Nzo37+/zgMc0J72f/DgQZo3b05ISAiff/457d2cuHj4N1o0qkV5C3McmtgxZswY6WHUs3To0AEXFxemT5+OgYEBjRs3xs7OrsixOAICAmjSpIlUR37BwcF6v/wX5HmmmtrY2ODh4UHz5s2fuVxEEF6HtEdZhATHMOerMHZsPceFcxm0lvvRqqUfx//4k+N/xJCUlMShQ4eIioqicePG7NixQ+82IyMjduzYUaT4KDk5Ody6dYuEhASdz8tz585x9+5doqKiOHbsGL169XpVlw/kvjdqPgs2btwoLbkT3qxfY2aSlJZQaJmktASSHiVgYGDAkCFDWLBgAQsWLMDGxgaFQsHx48c5ePAgGRkZAFSrVo3ff/8da2trzp49K9Vz+vRpLl++TFRUFGFhYUV6qC0Ub2LavyC84wrrhO26DKeSVGTlwOjGuR3GvvLGuLq60q5dO6lchw4d6Nq1KyNGjOCbb75h5MiRyGQyunXrpjNKmt+oUaPw8/OjVatWUrT/Tz/9lEuXLuHj40P16tWxtrbmxIkTTJ8+nezsbLy9vbl69SrDhg0jJyeHDz74ACurp2mFJk6cSP/+/alUqRKVKlWStvft2xd/f39plFujWbNmBAYGcvLkSSwsLKhXT3/qvmbNmrF06VK8vLyoWbMmNWrU0Novl8uZNm0ax48f19mnudaRI0eyZMkS1Go1c+bMoVmz3GwAWVlZDBo0iKysLFQqFePGjQOQlhLkvd/6TJkyBXd3dz766CMqV64MQMeOHXF3d8fZ2ZmyZcsWeGz+39n//vc/KleujFwuRyaT0a9fP71T+Lt27cqFCxeYNGkSpUuXlrb17NmTtm3bSnEL9DEsVV7v9maVZTSr/PThRPe6sn/L59b1008/aZUvW7aslEki71p+fRkGNNkHNKKiooDcpSvh4eFa+/KOZFlaWrJ9u/7ZMQAbNmyQXn/44YcMHjxYb7khQ4bobdehPVtJWvc5VyZ9wMSySkLM1XS0hV4fXsHUvgulu/vrtLlWrVrS9Wi2jRs3Tvq7gdyHPP379y+w3fosWLAAb29vOnTowPXr16levTqQ+1CosKwN+jzPVFNLS0sOHTpERkYGHTp0kJZhCMKbkPYoi58WH+He3cfSNvN/34NUKjUPU5+w8ZczuLjdkN5zvL29Wb9+PaVKldLZ1qtXL63PIo3PP/9cytahERkZiVwuJysri2PHjtGyZUtpn5mZGRcvXuTSpUvUrVtXeo9t3rw5H374IefOnSMgIICOHTsyZ84c9u3bR2ZmJsuWLcPBwYEjR44wefJkjI2NGT16NL1799YJMpr3ffvIkSPMmzcPACsrKzw9Pfnjjz+wtbWlR48emJqaIpPJpFlin376Kba2tnz//fdUr16d27dvs27dOszMzFiwYAFXr15lzpw5mJubM3HiRNq1a6dz/unTp+vU06NHjxf/pRYTKY/vcPr6viKVfZR1n9SMO1rbrly5woQJE3j8+DEXL16UZiDmn6mo8ddff0l/g/kHDoT3k6ywaZVOTk7qkydPvsbmCILwvFLClpK07rMil7ca+OM7m9bn999/5/z580yaNOlNN+W9p3yQyOWJtYs29d/QiA8WJGBUtsqrb9hrpi/jwZa/1ZxOVjPhIxnlTWUYV6pL5cnhdOw9iOzsbCwtLdm0aRPz5s3DwcGBdu3a8dtvvxEfH4+VlRVKpZKzZ8/yyy+/4O7uTkJCAjt37qRatWoMHTqU69evU6NGDWrUqKGVTjIgIECKWTFt2jS6dOnCuHHjcHBwwMzMjDJlyuDq6sqmTZsYP348DRo04IcffqBSpUqUKVOGuXPnkpaWxtixY+nbty/169fHwsICb29vZs+ezbBhw7hz5w6WlpaEhIRoBSF0dXUlKiqK5ORkunfvzqZNmxg3bhwbN25EqVTSpk0bwsPD6d27N3fu3MHExIQtW7ZQpkwZ7OzsdDIgCMKLCFkTw9nYW3r3JSVf4fCRtfToOpO0jDM0tq/AJ598wqVLl/jmm2/w9vbm4cOHWttWrVoFPE2Tqok7os/YsWMZP348T548ISgoiPnz52vt37BhA0uXLuXBgwesWLGCli1bUqdOHQ4dOkSFChVo06YNR44c4fHjx5QsWZJLly4xc+ZM1q9fj7u7O9u2baNixYqoVCr27NnDuXPnmDZtGnv37iU2NpZp06ZJ53Jzc+Pw4cPSz8uXL6ds2bJcvXoVa2trBgwYQNu2bZk2bRpGRkbs27eP2bNn07ZtW3bu3Ennzp3ZuXMnZmZmqNVqBg0axNdff02tWrVQq9Xs3r1b5/xubm469eiLC/S+Uvy9ll9OfllomZ0Bd+gSUInfvr7Duq1L+WNbIk5OTrRt25bPP/+cHj16IJfLcXV1JSQkBIVCgVKpZMSIEQQEBCCXy0lISECpVOLk5MR3330nPWRXq9Xv5UMAmUwWo1arnd50O94GYtr/Oyo1NVUaJcsbFTQ0NPS56rl27RrdunWT3kTyR0B/mWQyGVu2bAFyo7OXL1+e4OBgbt++TWBgIKAdGV0oGvOPuoBhESfxGBph7tj1lbbnVdm6dSvffPNNkfOxC6+WUbmqmDt2K1JZc8duxbLjD/qDbXapA1VKyRi8X82QAyoSE/7m/q9fsHv3biIjI2nQoAHh4eH07NmTrVu3Arl/33mnFH/xxRdUq1aNzZs388UXX7B161aOHz+OiYkJoaGh2NjYFNimnJwcTpw4wQcffMDdu3fx8/OT0g0C9OzZU3ov/v333+nQoQPu7u7Scpbly5dLATA1U02DgoLo3Lkz4eHhyOVy6XiN5ORkWrVqRf369Zk2bRpVqlTh8ePHPHr0iLCwMLy9vYHc2RsRERH07t2bjRs35t7DAjIgCMJ/kZqaybmzt/Xuy8h8RJhiOW1b5wa/Tb6TTVLSPSA3XWvZsmWxsLCQYqFothWVWq0mPDyc0aNH87///U/vd7L+/ftz+PBhfvvtNymjSIUKFahRowalSpXC0NAQgHXr1uHu7s6IESOkpUNqtZqKFXODwBkYGEhBRuVyOYGBgdy/rz0TMP8A340bN6hSpYpWbBdNQFIXFxf++OMPEhISqFKlCqampsyaNYvRo0czatQokpKS8PPzY/bs2QwZMoRLly7pPb++eoSn0rNSnqv84yep0v396quv6NChA5999hm9e/emRIkSzzze3t6emjVr4uLigqenp95AtsL7RUz7f8coHySSdmonOen32fFlH8w/6oK8U28UCoXWCFBRjRgxgsWLF0tRwo8ePaq1X6VS/afc7/rY2dmxZ88eevbsyaFDh6RgX5UrV9abUksoGk0nLO3E5meWfZc7YT169BBTB98yVr6Lybp6Wm+mCQ3jSnWx8l38Glv1+hQUbNPYQMZnTeCzJjJ2X1az5oKa0SbbmXjoCYnJ97lz5w716tWjdevWXL58mYyMDG7cuMEHH3xAZGSkVE/egJWXLl3iypUrUgBMe3t7vdkaJkyYQLly5ejbty9WVlZYWVlRrVo1rTKenp7MnTuXjz/+GHNzc0qVKsXhw4eZNWsW2dnZXLhwQafe+Ph4YmJiWL58OZmZmTpxNywtLYmIiCA0NFRK1di9e3d27txJeHg4/v7+UiDQuLg4Hj58SLduuQ+PipoBQRCK4nzcbVQq3VmtKlUOe/YtQO42TFoCYGVVl317VzFjhh+hoaE0b96cpk2bsmTJEiZPnixtK6ro6Gi6desmxQuZOnUqcXFx2NnZAXD//n1kMhnlypWjfPny0gjs/fv3uXHjBuXLl5fizixZsoTTp0/zzz//MHLkSCB3EOXevXtUqFABlUolBRnVpNvNm34WoEWLFvzyyy/069ePpKQkwsLC+PLLLzl27BhnzpyhYcOGnD59mrZt2yKTyXB2dmbSpEkMHz4cyH2fCQ4OZsOGDQQHBzN27FiCgoI4evQoCxcuxMfHR+f8+uoRniplUvaZZboE5C4x6fRlJUqXLI9LExetz4b8kfzzLunS1xfQDLAJAoiR/3eG8mESiT/14fLE2iSt+4x722aQtO4zLk+szZNbF1E+zF3zs3btWry9vaVUVMnJyXTu3BkPDw+t4GSQO+pvZWWlFSVcM/Iul8uZPHkygwYN0luHvm0BAQEMGjRI6/x5lSlThoyMDJ48ecKOHTukL34JCQn4+vpqlb106RJt2rShVatWzJ49+2XdxmLLyncxxpUKnoYIxbsTJrwZRmWsqO53GHPnXrqzTwyNMHfuRXW/wxiVsdJfwTuuoGCbN9PUZP/b+ahgBio1RF1XUrPkE52glHK5nBkzZuDp6alTj76AlZrAkXkDOuW1YMECFAqFFExR38NbIyMjateuzfz586X34W+//ZagoCBCQ0Olkc78mQwKCnaZl7e3NzExMTx48IAePXqwceNGEhMT+eCDD/QGAtV3nYLwIjIeZ+vdfvGvKG7f+ZuIw6v5dfM0bib+SamSZWnUyBFXV1diY2Pp2rUrVlZWuLu7a20D6N27NwcOHGDw4MHs3LkTyF3zn9f27duleAGQ++9727Zt0s/379+nS5cuuLu706FDB/z9c+OBVKxYkYCAANzd3ZkyZQqQG8vE3d2d1atXS8fPmTNHCm66efNmOnfuTEJCAp6ennh6erJ3716t9gQEBLBv3z5atWpF7969WbRoESVKlGDEiBEsX76cdu3aYWJiIpUfMGAACoVCmqnzySef4O7uzqJFi+jUqRMBAQG0atWKzz//nD59+hR4/vz1CE/ZW7fFQFa0sVcDmREO1dq+4hYJ7xsx8v8O0LemVJKjJCftLtcD3VAZdMbBwYG1a9fSpk0bUlJSmDt3LtOmTaNFixZMmTKFY8eOSbmnExMTqVIldxT4woUL0pc5TaCsbt260aJFCyZMmKBTx5YtW3S2ATrnzz9dztPTk9DQUG7dulVgrm0APz8/Vq5cSfXq1enXrx83btzQGb0SntJ0wpJCxuaORObtkBgaYe7YDSvfxcW2Eya8OUZlrKg65tc8s5IeYFiqHOaOXd/ZWSZFVVCwzfj7MC5CjamhGiMDmOOS27n9+chpznXsqBWUsmfPnjRu3FjvaHt+zZo1Y9myZXh5eVG1alWdwJfPo0ePHvTu3Ztbt3LXRWuCe9rb20vv23kDYE6aNKnAYJf5DRgwgNWrV/PFF19gamoqdQBsbGx0AoEKwstmVtJY7/YGH7aiwYe6aTOHDvmUlq7a6/KnTJkidcI1Nm3apHNs/mB/c+bM0frZx8dHa5S2bt26WiO4GkZGRjrLLn/++Wedci4uLjozNPO3Ia9SpUrpXUpToUIFven9ZDIZffr0wcgot3uQ/1hN8MBnnT9/PcJTZUtWwqG6DzHXdj+zrEN1HyzMdANNCsKLEP8q3wH61pTml33nEunJe3Ebl5svvWrVqqSmphIfH8/UqVORyWSkpaVpdbirVKmilQ9dkxdcQ5PjW18dBdWriTaqOX/+zn/nzp1p37693nRceV28eJGBAwcCkJKSws2bN0Xn/xne506Y8OYZlav6zgaS/K8KynjgXUOGdw3dgEqRK77UuUcNGzZEqXz6sC7v9E19WRB+/vlnjIyMmDdvnk5GCn3TPTWZBPLvb9++PWlpadLPw4YN04mn4eKiPdVU0x598p4nbz3Gxsb07t0byE3Xmbdc/mPzZkAQhP+qkV1ldm0/r3fqf34GBjJs7Sq/hla9/Q4fPszkyZNfOO7Gy6qnOOvrOIvr988Vmu7PyrwWfR1nvb5GCe8N0fl/yxW0plSfJ4nxqPKMRGnykvv6+kod+bxfMmvWrMnt27eJj4+nQYMGUi52Dc10UX11REVF6WyLi4t75vTNypUr4+3tTa9evYiIiCjwWmxsbPj++++pUqUKOTk572Vk0v/qfeyECcKbYP5RF5I2jCtyxoOXEWxz+PDhXLlyBQsLCzZvfnacjzdp1KhRWFlZSTPMBOF1sLAwxbZx5QKj/edl27gyZSzefEA6fQ/FXjc3Nze9cUTeVD3FWRnTikxqvZVfY2Zy+vo+VOqnnyEGMiMcqvvQ13EWZUwrvsFWCsWV6Py/5QpaU6qXWkXGX0eBPtKm6dOnM2rUKFJTUzEwMCAoKIhatWpJ+1euXMnYsWN5+PAhBgYG9OnTR6dafXXo21ZU3377LUChnf/AwECGDRtGVlYWxsbGbN26FXNz8yKfQxAE4VV7E8E236XRtBUrVrzpJgjvqa7dbbl5I5V7dx8XWKZCxZJ07W77GlslCE+VMa3IKJefSHl8h9ib+3n8JJWSJSxwqNZWTPUXXilZYcF1nJyc1CdPnnyNzRHyu7crkHvbZhS5fIXuX1Oh8/RX2CJBEARBo9CYLP8yrlS3WAc+FIS3UdqjLHZsO8e5s9rR/w0MZNg2rkzX7raYlzYppAZBEIoLmUwWo1arnd50O94GYuT/LVfQmtKCy5d7RS0RBEEQ8hPBNgXh7WRe2gTfwY6kpmZyPu42GRnZmJkZY2v3dkz1FwRBeBPEyP9bTvkgkcsTaxd5TekHCxJEcDdBEIQ3QATbFARBEIS3jxj5f0qM/L/l3sSaUkEQBOH5iWCbgiAIgiC8zQzedAOEZ7PyXYxxpbqFljGuVBcr38WvqUWCIAiCIAiCIAjCu0R0/t8BmjWl5s69wDDfZA1DI8yde4lgUoIgCMJbR6FQ4O/v/6ab8dZ5+PAhHTp0QC6X07x5c06ePElKSgrbtm177rpmzpzJ77//DuRm0xk8eDAAly9fpkePHi+13YIgCMK7TUz7f0cYlbGi6phfxZpSQRAE4a0mBVh7nE38xdtkZRUxXe17QHNvfvllFY3t3Jk67X+UKmVERkYG9+7dY9u2bXTv3v2Z9ahUKgwMcsdvmjZtSnR0NO3bt+f8+fPk5OQAEB0djbOzc5HrEQRBEIo/0fl/x4g1pYIgCMLbKO1RFju2nuNc3NPUateuX+HajQSaObfGuEQmJUuasWXLFg4fPszly5cZPnw45cqV49atW+zcuZNSpUqRnJzMunXrMDMzY8GCBXz00Udv+MpeXP57c+nvVG4m/kH6w+o4N7Oha3dbVqxYwcGDB5HL5WzevJlPP/2UO3fuYGJiwpYtWyhTpgxNmjTBzs4OW1tbpk6dCoCzszPLli0DQKlUUrZsWR49ekR0dDQdOnRgzpw57Nu3j8zMTJYtW4aDgwNyuRxnZ2cSExPp0aMHc+bMwdzcnIkTJ9K+ffs3easEQRCEV0h0/gVBEARBeCFpj7L4afER7t19rLNPrVbT0vljKlcpTymLi2zcuJEePXqwYcMG7OzskMvlHDt2jKNHjzJz5kyGDRvGoUOHMDMzo7CMRO8Kffem4YcePHp0l182TWfn7rL8Ge/PAN/BXLt2jZCQEACCg4MpWbIkQUFBbNy4kZEjR3Ljxg2OHj1KqVKlpLqsrKxISkoiOTkZKysrGjVqRExMDKdOnWLmzJk0a9aMadOmcenSJWbOnMn69esB6NatGy1atGDgwIFs2rSJWrVqFYv7LQiCIBRMdP4FQRAEQXghO7ad09vxB1CrVCgOr+buvasYGGQzbHh/ypcvz7179zh69CiTJ08mPDyc69evU61aNWbNmsXo0aMpUaIEX3/9NZUqVXrNV/Ny6bs3hoZGtGzej5bN+xH/ZwQHw36lQkUTaX9OTg6TJk0iLi6Ohw8f0q1bNwBsbGy0Ov4aNWvWZMuWLTg5OdGoUSMOHDhAeno6pUuXZvny5axfvx4DAwNkMpl0jKOjIwB+fn7Mnj0bpVKJn58f9erVexW3QRAEQXgLiIVegiAIgiD8Z6mpmZw7e7vA/UnJl8nOzqRfr7k0sGlDZkY2ANWrVyc8PBxPT0/i4uKoUKECAPb29gQHByOXywkODn4dl/DKFHRvUh8mkZOTGwuhZMmyqNVqLv11n8zMJwDExsaSnp5OZGQkn376qTQiX9D6fGdnZ5YuXUrTpk1p1KgRmzdvpkGDBgAsWbIEhULBzz//rDWyr6mrZs2aBAUFMWrUKBYuXPjyLl4QBEF464iRf0EQBEEQ/rPzedb461JToUINbt2+yObtMylTuiLWSbmd0pYtW5KUlIRMJqN06dI0b94cgE8++YQrV66QlZXF6tWrX9NVvBoF3Zuk5Mv8tmceRkYlMDA0ol3r/2FmVpbr127Ts2dPFi5cyKVLl/Dx8aF69epYW1sXeh5nZ2cCAwOpV68eMpkMmUwmBftzdnbG3d0dd3d3vccGBATwxx9/kJaWxoIFC178ogVBEIS3lqyw9V1OTk7qkydPvsbmCIIgCILwLgk78Df7917Uu+98fDhPnmTi0ORpELm27W3wav1+TC0v7N7o8z7dG0EQhNdFJpPFqNVqpzfdjreBmPYvCIIgCMJ/ZlbSWO/2Py8e5kzcfurXa6ld3kx/+eKooHtTYPn36N4IgiAIr5/o/AuCIAiC8J81squMgYFMZ/uHNm707z2PUiXLStsMDGTY2lV+ja17swq6N/q8b/dGEARBeP1E518QBEEQhP/MwsIU28ZF67TaNq5MGQvTV9yit4e4N4IgCMLbRHT+BUEQBEF4IV2721KhYslCy1SoWJKu3W1fU4veHuLeCIIgCG8L0fkXBEEQBOGFmJc24dOxLjS2r6Izzd3AQEZj+yp8OtYF89ImBdRQfIl7IxR3qamZHI1KYOf2U3zk0BxXV3csLCyQy+UMHTqU0NDQ56rv2rVrdOvWDblcjqurK0FBQa+o5UVz6tQpHBwcCAwMlLYNHjyYCxcuADBmzBhmzJgBQHh4OBMmTHhmnbGxsZw6dQoAhUKBv7//K2i5IOgSqf4EQRAEQXhh5qVN8B3sSGpqJufjbpORkY2ZmTG2dmI6u7g3QnGU9iiLHVvPcS5PSktvuT8GBjKSk/zY/dt+vlsw57nrHTFiBIsXL+bDDz9EpVJx9OhRrf0qlQoDg9c3frlv3z7mzJmDj4+PtK1p06ZER0fTsGFDHj58yOPHjwGIjo6W0mwW1tbY2FiUSiUfffTRq78AQchDdP4FQRAEQXhpLCxMaela6003460k7o1QXKQ9yuKnxUe4d/exzj6VSk16+hN+WnyEJ1lK1q5dy9y5c6lVqxZBQUEkJyczfPhwHj16RIMGDViyZIl07LVr17CysuLDDz8EwMDAAFdXVwDkcjnOzs4kJiYyceJE/ve//5GZmUmXLl2YPn06wcHBbN++nczMTExNTdm8eTPGxsaMGTOGixcvYmZmRkhICPHx8YwfP56SJUvi6+vL8OHDpfOfOXOGMWPGkJOTw2effUbz5s1ZsWIFFhYWpKWl0bNnTwCcnZ1Zs2YN/fr1o0SJEiiVSiC389+7d+9ntnXFihXcu3ePQ4cOMXLkSGJiYujUqRP3799n//79mJubv7LfnfB+E9P+BUEQBEEQBEEosh3bzunt+Od17+5j/oxPwsHBgdDQUK5du0ZKSgpz585l2rRpHDp0iNKlS3Ps2DHpmMTERKpUqQLAhQsXkMvlyOVyaX+3bt0ICQnBxsYGhULB8ePHOXjwIBkZGQBYWVmxf/9+WrZsybZt2/j/9u48IKqqfeD4d1jcQMUFXHBNxVcSRVFU1gHUcIk0NVMhcUlzo9LSXHJLXjPTbNHU1DDFMndyFxEQ83VBwSVaEAEFFVAWcUGGmd8f/Lgxsojmkvh8/sm5c+bcc+7M0Dz3POecnTt30qhRI0JCQhg/fjzLly9nz549LFiwgEOHDjF8+HC9Nn/88ccEBgZy+PBhvv76axo3boyvry+LFi1SAn8AW1tboqOjiY6Opm3btjRq1Ij4+Hji4+Np2rTpA9s6atQoPvzwQwIDAwGoUKECv/zyCz179uTgwYOP/sYI8QAy8i+EEEIIIYQok8zMu5w7c7VMZVOuZdO0qRUA9evXJzMzk5iYGD766CNUKhXZ2dl6afL16tUjOTkZAGtra0JDQ/WCfzs7OwAuXrzIpEmTuH37Nn/88QcpKSkAtGvXDsgPzk+cOEGFChX46aef2LdvHxqNhi5duvD+++8zb948Vq1ahZ+fn97509PTadKkCQBNmzZV6r1fhQoVAPj111/p0KEDqamp7N69mzp16pS5rYW1bp2/4KelpSUZGRllurZCPAoJ/oUQQgghhBBlcr7QHP8H0ekgIT690GMdLVu2xNvbWwmOC1LmARo3bszVq1eJiYmhVatW6HQ68vLylOcL5s9/++23TJkyRVkUUKfLb090dLTy32bNmlGlShXeeustZRG+3NxcNBoNy5YtIzk5mREjRrBnzx6lfjMzM+Lj47G0tCQuLg4LC4sS+9a2bVsCAgJ4++23uX79Oh9//DH9+vUrU1uNjY3JyclRyqpUfy8GWtAXIZ4ECf6FEEIIIYQQZXLndu5Dlc/J0eg9njZtGqNGjSIzMxMDAwNWrVqljLYDrF69Gj8/P7KysjAwMGDgwIFF6uzVqxfjx4/H2tpaGYUHuH79Ot27d1fm/FeoUAE/Pz/c3d0BeO+994iLi2Pr1q1kZ2czZcoUvXrnzp3L4MGDycvLY9y4cRgbG5fYL3t7ew4fPkyVKlWoUqUKKSkpelkEpbW1c+fO+Pr6cu7cOb0bBkI8aarS7i516NBBd/LkyafYHCGEEEIIIcS/1a8R8Wzfcq7M5fv0a/1UFroMCAhAo9EwcuTIJ34u8XxRqVSROp2uw7Nux7+BLPgnyjVNejIZB7/l4o8f49TWClcnh3+09yzkb0HzzjvvKI93795Nu3btWL16tV65gIAAIiMj/3EfCuzbtw9nZ2fUajUTJ07US4MTQgghhHgaXrapi4GB6sEFAQMDFa1t6j7hFgkhykrS/kW5pMlKIWXdBLJPbYe8/HSzNe0AwwS8r1QjOOhn5i1eVmodxcnLy+PKlSvk5eWh0+lQqVRs376dH3/8UdmWBvL3dfX19X08nQHS0tLw9/dn7969mJiYMH/+fFasWMHYsWMf2zmEEEKI501WVhaDBg3i1q1b3L17l2+++YbExERef/31Z900PU5OTkRERDzrZjwW1atXonWbupyJuvLAsq3b1KVa9UpPoVU81t9dQpRXMvIvyh1NVgqX/J3JPrFZCfwVeRrystO45O+MNucWP/zwA127dlVSxFJTU/Hy8sLNza3YwDo8PFxZsOXo0aNEREQQFBTE0KFDiYiIoHPnzowZM4YPPviA2bNnExwcjFarZeTIkbi6utKjRw8A5s+fj6urK506deL06dNA/v61kyZNomPHjkWyCHbt2oWPjw8mJiYAvP/++2zfvh1A2f82Pj5e+R/fzp07cXFxwcHBgb1795Z4rHPnzrz99tvY2toqx0RRmZl3+TUinkUL11O3riXOzq5069aN69evl/iaCRMmFDlWeMXix+ny5ct06NBB75wZGRls3bpVeVzwOSmrgs/vw7j/nIVdunQJIyMjZRXn+/n6+hIbG/tQ5xNCvLgKMvu+/XAInq1qELxtAxEREVSsWLHEv0Pi8enzemtq1a5SaplatavQ5/XWT6lFQoiykOBflDsp6/3IvVZ6EJF7LZZbZ/Y81N6zANu2baN///4MGDCAbdu24eTkhKenJ4GBgTg5OZGWlsb06dNZvHix8podO3ZgYWFBWFgYu3btAuDdd98lLCyMwMBAPv/8c6Wst7c3ERERrF27Vu+8V65coX79+srjSpUqce/evWL7ptVq+fzzzwkJCSE0NJSFCxcWewzgxo0b+Pv7s2vXLlasWFGGq/tiyb6Zw/qASObPPcj2Lec4cewSTRs74Wg/meYvuRDw/boSX/v1118/0jl1Ot1Dr/QbHh7OyJEj9c5ZWiD+pJR2zq1btzJs2DB27NhR5DmtVvukm/avVBC8XA/yJ+Pgt4Ts3IK7uztqtRoPDw+OHDlS5ps2BTeWPv30U5KSkootExUVxalTpx5X84V4JjRZKSQvHUjcB01JWTeevHO7CA8K5OT4JqSs9CYwYBUHDhxArVaTmprKG2+8gaurK927dycrKwuAGTNm4OLiwoQJE0q9ab59+3Y6d+6Mm5sbYWFhZGZm0rt3b1xcXPDz8wPyv1cFN/P/+9//AnDr1i369++Pq6srw4YNy2+3RlOubrabVq3IOD9H2tjWKzIFwMBARRvbeozzc8S0asVn1EIhRHEk7V+UK5r0ZLIjt5Wp7L3kGFo1qQeUbe9ZnU5HSEgIf/75JwDXrl0rUqeFhQUNGjTQO/bnn3/i4OAA/L3ty7p16wgMDMTAwEBve5fWrVtjbGyslCtQeN9bgLt372JoaKhXpiBgTEtLIyYmhq5duwKQkpJCampqkWM6nQ5zc3NlGxvZV1Zf9s0cln51hOtpt4s8p9Xq+OvPJJKTKzB6dA7TZ0wmKioKrVZLYGAgjRo1UlI8T5w4wejRo2nevDnp6fnbHaWmpjJixAhu3rxJq1atWLZsGbNnzyYhIYGkpCT8/f3x8/OjUqVKdOvWjWnTpinnTkxMxNfXl5ycHLy8vBg3bhxz585Fp9Oh0WgYP348ACtXrlR+AG/atInMzEwGDx7M+fPnWbt2Lba2tqxatUq50fTll1/Svn37Eq/H3dREhgzsx6Ur10hMycTqP9Zcz8hCpVJhbm6Ot7c3Fy5cUM5Zt25d5s2bR/PmzQE4dOgQtra2BAUFMWbMGCB/myQbGxtlf+OCcu+++y6LFy/GyMiI4OBg5s2b98D3y9fXl4CAgFLL3J92GxAQgI2NjbLdVIGMjAxCQkKeWNpwcdOSbtzVMTUMfvigL83e/pY7qsqPlAnx0UcflfhcVFQUGo2m1Pe5gFarLfJ3SIhnrSCzr/AN/teawdXbKobuzqXWoY184NGQRLUzGzZuBvK/51WqVGHVqlVs3LiR3r17c+rUKcLDw9m4cSN79uzRu0Gu1Wrp0aMH3bt3x9/fn/DwcCpXroxWq2XRokUMHDgQHx8fRo4cybFjx2jTpg2hoaGoVCrc3Nx4//33WblyJd27d2fUqFHKzc2Cm+25ubmMHz8eT0/PZ3INHyfTqhXxHmpHZuZdzp+9yp07uVSubExrm6eX6i+EeDgS/ItyJfvUjqKp/iXRabn711HgzfyHD9h79sSJE/Tt25dPPvkEyP+RffbsWb0qi/ux3LJlS/73v//Ru3dv5Qf1smXLOH36NBcuXODtt99Wyha+EVBYjx496NevH4MHD8bExIQvvviCvn37Avk3AgClLbVr18bGxoZ9+/ZhaGhIbm4uhoaGRY6pVCrZV7YU27eeKzbw/y3mEBfjT6HR5DBk4EK2bz3H/PnzqVKlCsHBwaxYsQJ/f3+l/Ny5c9m+fTs1a9akcePGAEqGSZcuXZgyZYqSYWJlZcX333/P6tWrGT16NL6+vkXelwULFjBnzhycnZ3x9PTEx8eHjz76qMgKx6NGjSIxMZH169cD+Td81qxZQ2RkJGvXrqVBgwYEBQURHh5Oeno6w4cPV6aSFFYQqG7aspUG6Xm8XA1+vaWjd4UTxDW0otuI6bw6YDA6nY6EhATlnIXnXqamplKrVi1mz57N0KFDycjIwMzMjMuXL/Prr79iYmKCr68voaGhhISE8Nprr2FkVPb/PT1q5kBJ80MLMhieRPBfXPACEJ4EXk1BdXY7l/zP0XD6Ydq1a6c8P3/+fPbu3cvdu3dZvnw57dq1Y+fOncyaNYs2bdqQm5ur9GnGjBlkZ2fz7rvvcvfuXV577TWmTZvGypUruX79OocOHWLt2rX4+PiQlJSEpaUl69atIyIiQslaGjNmjDJNSYh/i+Iy+4wNVIxvC+PbqtgZp2N1xCUqmef/vzgvL48PP/yQs2fPkpWVRd++fUlISFBuONra2rJnz54Sb5o3btyYypUrA/n/f79w4QI9e/YEoEOHDsTGxlK1alUmTZrE7du3+eOPP0hJSeHPP/9k3LhxyuuAcn2zvXr1Sk9lNX8hxD8nwb8oV/Ju3Xio8tq7N/Uel7b37LZt25QfBpCfZluWtGovLy9++eUXXFxcMDU1Zffu3djb2+Pi4oKLi0uZ2mlhYcHUqVPx9PQkIyMDa2trNmzYAOTvH+vk5ESnTp2A/B8aEydOxMPDA5VKhbW1NUuXLi32mCheZuZdzp25Wuxz1q3ccHbwYfe+L8i6mcq5M6acj9lGxJEwcnNzadWqlV75jIwMGjVqBOQH90CJGSYFN50GDBjA7NmzGTJkCN7e3npB2IULF5SRW1tbWy5evFimPjVv3pxKlSphaWlJRkYGcXFxREdH4+bmVuJr8m6lK4HqpUwdL9eCtDuQkwe/X89jyH9+Z8V/x/Lj5q1UrFKVs2fPcvnyZeWH7eeff865c+eoWbOmEmSamZkxefJkrl+/jlarZcCAAezatYucnBzGjx+Pvb09GRkZeHh46LWluCyFwpkD8+fPB2Dp0qWsW7eOypUrs2jRolJHuWfPno2TkxNVqlTh/fffp0qVKkUyGDZt2oS5uXmZrnFZlDQtKeU2WNXI//fWo3+xsd3LuPQdqjz/7rvvMnXqVGJjY5k1axaBgYHMnz+fsLAw0tPTi7yPLVu2LDIaOWrUKOUm0aZNm7C2tubHH39k3rx5bNmyhTp16nDv3r1ykZIsyp+SMvuSsnVYVMm/CVCrMpgYw+20S2gyrhB9IZlbt24RHh7Od999R1JSEo0bN+a3334D4MyZM0DJN80TExO5e/culSpVQqvV0qxZMyIjI3n55Zc5efIkI0eO5Ntvv2XKlCnKekAFAwn/+9//aN26tXLTX262CyH+DST4F+WKoUnNB5b5sUf+XfgJtgZYOHYE0EsX3rat+GkDBcFFAU9PzyJpe4VTimfPnq38+/4F/L777rsi9YeGhhb77wI9e/akZ8+eJCQk8MYbb3D9+nUsLCyYM2cOc+bMKbbsg44Vbm9x53xRnT97Fa229B9nnTsO4Mj/fqSr22iOHAvm1On/ceDAAQIDA/XKVa9encuXL1OjRg3++usvgGIzTM6ePauMEBkbG7N48WLu3buHo6OjXvBf8OPTxcWF06dPM2HCBKXewoyNjfW2g7z/h2fTpk3p2LEjmzfnp8YWjBwXln5wKblZ+YFqw6pw7jqMtoFf4mDHBTidqmOxSxaJ5qlM2vorJ06c4IMPPqB69eoAvPLKKyxfvlwJ/seMGcP777/P22+/TZcuXXj55ZextLTkzJkz/PXXX0ycOJHjx49z584dvXakpaUVm6VQOHOgwI4dOzh06BCVK1cu8w/sPXv2sGDBAtRqdZEMhseptGlJ5pXzbwAAvPqSinZ1MwlIvqQ8X9xUIQMDA0xNTTE1NS1yg+LixYtFRiMLK3wTqUOHDkRGRlKnTp0yTQkQ4lkoKbMv5ga8F6ajkqEOIwOY56Bi5lEt/bx68fX67cTGxuLp6UnDhg2xtLSkXr162Nra4uzsjLW1tTLVrrgb5FOnTsXV1RUTExNmzZrF22+/zeDBg/nuu+9o06YNnTt3JiMjg/Hjx2NtbU2FChUAePvtt3nrrbdYt24dzZo1Y82aNU/7cgkhRLEk+Bflimn710jZ8F7ZUv8NjTC16/Okm/TYNW7cmGPHjj3rZpRrd24XDYTvV7NmA27fySQvL5cKFSvj7u5OmzZtipT7+OOP8fLywsrKSskAKC7DpLCgoCC++eYbbt++jbe3t95zkydPZujQody7d49XX30VS0vLYttXt25dbty4Qf/+/Vm5cmWR583NzenVqxcuLi4YGhri7u7Oxx9/rDyvvXOTTzaEU71CfgC92EXFvgQdvvvAvAqs6qZi+hEd/XfqMDQIp5vXQOWcAwYMwNjYmNatW5OVlYVOp1NSZ01MTMjOzsbKyorIyEglE+HmzZs4OzszZMgQXn31Ve7cuaO8pqQshZYtW+oF/gBz5sxhzJgxVKhQgU8++YQ6deoUe30KGzNmDPPmzWPVqlX4+fkpqbmPW2nTklwbwIRDOno0gaoVVORpNGgyE4H8tT2Kmyqk1Wq5desW6enppKam6tVX3GiksbExOTk5wN83kXr16sXJkyeVtRlknr/4tyops69rIxVdG+lPmVvdTUWt1/tTq1GjYrfXmz17NkZGRmzcuJG4uDig+Bvkffv2VabYFdi9e7fe4+IGAgC2bNmi91hutgsh/g0k+BflilGN+pja9SX7+KYHljW164uRWb2n0CrxvKlcxbjY440a2tCooY3yeGC//IXoFn/+fZH5jgU/9Dp16lRkhXVzc/MiGSaFM0UGDhzIwIEDi21D48aNi/xwLG7uuqGhIfv27SvSniZNmiiZLsOGDVNWor7fxO7N8b6mAv7+Ub3EVaWXYtu3OdSurOPVl1QEXotTzqnT6Rg2bBgqlYpq1arRtm1bvbonT56MRqMhIiKC2bNno9PpGD58OBkZGfTo0QMrKysl8AdKzFIoLlC1tbUlICCADRs2EBAQwJQpU4rtX2E1atRg2bJlJCcnM2LECFatWqWXNfG4lDYtqWYlFeNtYWyIDpVKh5EKJo21ZtHePwCKnSo0ZcoUXFxcaN++PXXr1tWrr1evXkVGIzt37oyvry/nzp1j8eLFbN68GRcXF+rVq8eUKVM4cuTIY++zEI9LWTL79MvXKPG56dOnc/ToUQwNDfn555//adOEEOK5IcG/KHcsvL8iJ+F0qdv9GddpjoX3V0+xVeJ58rJNXYK2nX9g6j/kb2nU2qbuA8s9b0oKVO9PsZ3vqKKuiYoGFavg6Oj4yHtsjxw5kn79+vHDDz9QsaL+1lAPylIo7J133uHixYvk5OTw/fff6z2XlpamrNvRsWNH5TwrVqxg69atZGdnM2XKlCJZEzVrPlzQUZIHBS9d6qnoUu/vmy0WXTrQd0b+lKHipgp5eXnh5eWld6zgxk7z5s2LHY08fPiw8u+NGzfqPadWq5UtA4X4t3mcmX0LFix4bO0SQojniaq0OZEdOnTQnTx58ik2R4jHQ5OVQsp6v/z5tYV/KBgaYWrXFwvvrzCq9mRSe0X5sH5tJGeirjywXBvbengPtXtguedNxsFvSVk3vszlLXy+wcxjzBNs0fNPk55M3AdNyxy8vLQoXrKThCgkedmbZcvssx9A/bE/PYUWCSGeByqVKlKn03V41u34N5DJfaJcMqpmQf2xP/HS5xex8PmGWq9/goXPN7y0KJ76Y38ql4F/ZuZdfo2IZ8e2U7Rv1xknJxeqV6+OWq1m2LBhBAcHl7muYcOGoVarMTMzw9XVFbVaTWZm5hNs/aPR6XTKiHDhNO3Ciyup1Wq9LRsfJCsri169erFi1fv8tHkyV6/9RfatdI4e31ikbK3aVejzeutiaikbtVrNhAkTlMe9e/cucfu54l77JJm2fw0My5gc9pyun/G0FUxLKguZliREURbeX2Fcp3mpZSSzTwghSiZp/6JcM6pRv9yPRmbfzGH7lnOcK7RCfVf1DAwMVKSmTGfnL/v4fNH8B9SiryBdWq1WExwcrLfnesG2RY/bo9R75coVqlatyq5du/SOr1mzhuHDhz9SO3744Qdef/11RowYQUb6LTZtjOTCXzfpYv/3HHwDAxWt29Slz+utMa36d4p64T6UtT+XLl1Cp9ORnZ1NZmYmtWvXfqR2P+73RdbPeDJkWpIQj86omgUNpx+WzD4hhHhEMvIvxHMs+2YOS786wpnoK0Xmp2u1Om7dusfSr45wL0fDDz/8QNeuXRk5ciQAqampeHl54ebmxtixY0s9T0BAAAMHDqRXr16cOXOGuXPnolarcXd3Jz4+ntzcXDw8PHBxcaFfv37k5eURGxtLly5dcHNz47///S/x8fHKyvWhoaHKAndt27bF29ubzz77jGPHjqFWq3F0dCwyX1uj0TBo0CBcXFwYNGgQGo2GyZMnc+jQIaVPkL9S/tmzZ1Gr1Rw4cADIXxitY8eOypaLpZ2nSpUqHD16lLS0NMxqmPD2Oy4MHtqc6POreKVnS8zrXuPw0fksWzGBiCOHgPyF1MaMGcMHH3yAr68v48ePx9PTk+TkZNzc3HBycirxGnfs2JHjx4+za9cuvZWm3333XVxdXXF2diYxMRGAlStX0rlzZ95//32lnFqtZvLkybz11lsP9Z6WhYyyPX4FwYup/YCimRWGRpjaD6Dh9MMSvAhRghcxs08IIR4XCf6FeI5t33qO62m3Sy1zPe02v8ek0K5dO4KDg0lMTCQjI4NPP/2UqVOncujQIapWrcrRo0dLrcfMzIxdu3ZhYGBAUlISoaGhLF26lPnz52NkZMTOnTsJDw+nVatWhISEEBYWxujRozl06BBTp04tsd7Lly+zYsUKPvroI2bOnElQUBAREREEBgZy7949pdy2bduwtrYmPDycl19+mS1btjBv3jy6deumt1Wel5cXNjY2hIaG0q1bNwC8vb2JiIhg7dq1AKWex8fHh0aNGuHm5kbXrl25evUq1apVxNzCFDePZuzas46w8FBCQ0NZuHAhkL+Q3PTp01m8eDEAjo6O7N+/n9q1a3PgwAEiIiLIysrir7/+KtL/vn37sm3bNnbv3k2vXr2U4/PnzycsLIxZs2axYsUKNBoNq1evJiIiggEDBhSpY/369Q/9nj6IBKpPhgQvQvxzBZl9tbymYeYxRrKPhBCiDCTtX4jnVGbmXc6duVqmsinXsmna1AqA+vXrk5mZSUxMDB999BEqlYrs7Gzs7e1LrcPOLn9Ru99//53Q0FBlznm9evW4desWo0aNIikpiWvXrtGiRQsGDBjA7NmzGTJkCN7e3lhbWyt1FV5otPBe7dHR0crq5WlpaaSmpir72F+4cIH27dsD0KFDByIjI+nUqVOZ+t+6dWuMjY2VtPjSzmNsbMzMmTOZOXMmP/74I0uWLOGdd95RysbExCgrxqekpKDT6bCwsKBBgwZFrtX169cZM2YMGRkZxMfHk5ycTIsWLfTaZmVlxfnz5zExMaFatWrK8c8++4yDBw+Sm5tLq1atSEtLo3HjxhgZGSn133++h31Py6IgUNWkJ5N9agd5t9IxNKmBqV0f+bH9D70I05KEEEII8e8hwb8Qz6nzheb4P4hOBwnx6YUe62jZsiXe3t5K4PigRfEKAmcrKyu6d+/O119/DeTvuR4UFISVlRUbNmxg+vTp6HQ6jI2NWbx4Mffu3cPR0ZEDBw5w9Wr+zYqzZ88WqRegXbt2bN68GRMTE3JzczE2Nlaea9asGZGRkfTq1YuTJ0/SvHnJ6egqlarUx6WdJyEhgfr162NsbIyFhQVarVZ5rnbt2tjY2LBv3z4MDQ3Jzc1FpVIVmWtf8HjDhg306dMHX19fhgwZQkm7q/Tr1w9zc3Pl8fXr1wkNDeXw4cMcOHCAwMBAateuTUJCAnl5eZw+fbrY8z3se/owJFAVQgghhHi+SfAvxHPqzu3chyqfk6MfCE6bNo1Ro0aRmZmJgYEBq1atokmTJg+sx9bWlrp166JWq1GpVAwaNIiePXvi7+/PyZMnqV69Oi1atCAoKIhvvvmG27dv4+3tjZmZGY0aNaJr1640b96cunXrFql7zpw5vPrqq+h0OmrWrMmWLVuU5/r06cPmzZtxcXGhXr16TJkyhaSkpGLbaG9vT58+fZg0aVKxz5d2nqioKN544w0qV66MsbEx33//vRJEGxgYMHHiRDw8PFCpVFhbW7N06dISr5W7uztvvfUW27dvL/WaFqzwHx8fD0CNGjUwNTXF3d2dNm3aAGBkZMSwYcNwcHDA1dW12Hoe9T0VQgghhBDln6qkkSiADh066E6ePPkUmyOEKKtfI+LZvuVcmcv36dcaB6cmT65BQjxGf08zuMHRv9IYt2QTTZs1p3r16rRq1YquXbsq0y8Ki4+PJy4uDnd392fQaiH+HQq+P+kpyfh8uhHDqrWJOnuedu3a0bRpU4YMGVLs96ckTk5OREREPFJbfH19mT179gNvRK5atYrly5czZ84cZf2T0NBQGjVqxEsvvURAQAAajUZvgdcHadmyJfXr1+fOnTtMmzYNLy8v9u7dS15ent4aK//Ul19+ybZt24iPj6d69erUqFGDOXPmMH369Ie6brNnz2bbtm2YmZnRokULvfVsCouKikKr1SpT4R63y5cv06dPH7p06aJk+WVkZBASEsLrr78OPPxnYvbs2Tg5OdG1a1feffddGjdujLW19WN/L4QojkqlitTpdB2edTv+DWTkX4jn1Ms2dQnadr5Mqf8GBipa2xQdaRfi30aTlULKuglkn9qubOOVflVHz1oqPn7DibWpLVi97scSA5f4+HhCQkIk+BcvpOK+P2vaAYYJeF+pRnDQz8xbvOyJtuFRtx39+eefiYiIoFKlSsqx0NBQnJyceOmllx6pLebm5hw6dIg7d+7Qq1cvvLy88PT0fKS6SvPuu+/y7rvv6gW4j2rRokXKzjznzp2jdevWRcpERUWh0WjKFPw/yvsRHh7OyJEjlfVuID/437p1qxL8P6rPP/9cyaITQjx9stq/EM+p6tUr0bpN2QL61m3qUq16pQcXFOIZ0mSlcMnfmewTm/X37wbQask+von657/n8uXLAMVupbhy5UrWrVuHh4cHAH5+fri4uNC7d28yMzOLPRYfH4+zszP9+vXDzs5OqV+I50mp3588DXnZaVzyd0abc+sfbf0KEBwcTOfOnencuTPBwcGA/rajFy9epFOnTnh5eREXF1fk9evXr6dz5844OjoSHR3N5s2bOX78OK+88gqxsbEA3Lt3j4CAACZNmqRM4dqzZw89e/akZ8+e6HQ67ty5w6BBg3B3d2fgwIHk5hY/HS47O1t5LiAggFWrVpX4vR82bBhdu3Zl+PDhzJ49mxs3bqBWq3Fzc8PPzw+A9957j7y8vAdep8zMTAYPHkzbtm2JiooC8jMcnJ2dcXZ25tSpU6W+Fii2jytXrmThwoUMGTJE6Q/kj66HhubvRuPl5YWXlxf79u3DxsamSDsKJCYm4u7ujqOjIwsWLCA7O5u5c+fyxRdf8M033yjlVq5cyYEDB1Cr1aSmpj5S3zZu3MiJEyeUnXEe9r0QQvxzEvwL8Rzr83pratWuUmqZWrWr0Of1oiMHQvzbpKz3I/dabKll/vd7Ei/Vyr+RVdxWiqNGjcLHx4eDBw9y4sQJbt26RXh4OG+++SbLly8v9hjkBwebNm1i4sSJemtACPG8KMv3J/daLLfO7PnHW7/Onj2b/fv3s3//fmbOnKkcL9h2dOHChSxevJitW7dy/fp1vdfm5eXx1VdfcfjwYQIDA5k+fTr9+/fH1taWgwcPKou5VqhQAV9fXxYtWsSiRYsAaNCgAbt378bS0pIzZ86watUqvLy8CAkJQa1Ws3nzZr1zpaam4urqipWVVbFbzt7/vT927BgVK1YkODiYli1bAnD69GnUajWHDh3iyy+/BGDJkiUYGhqWeo0gf0eYNWvWsGzZMtauXUtaWhpBQUGEh4ezY8cO5s6dW+Q1kyZNokWLFhgZGdG6deti+zhq1Cg+/PBDAgMDSzz3vXv3CAoKokePHkXaUdiCBQuYM2cOR44c4dChQ2RlZfHRRx/x4YcfMn78eKXcqFGj6NatG6GhoZibmz9S337++WfGjBlTZBHesr4XQoh/ToJ/IZ5jplUrMs7PkTa29TAw0P+fqYGBija29Rjn54hp1YrPqIVClI0mPZnsyG0lPh8UBz77tGTdA7X5TfKyr3P9+nX69++PWq0mIiKC5ORkvdfcvz1kbGxssccArK2tMTAwwNLSkoyMjCfTSSGekAd9fwq7lxxDqyb523Tev/WrWq3m4MGDRb5L91OpVFSrVo1q1arpBcEFO43ExcXRrl07jIyMlEVLC6SmptK4cWOMjY1p0qSJMsJdFgUp8AXf05iYGJYsWYJarWbt2rWkpKTolTc3NycsLIxNmzYRGhpapL77v/cXL15U2mtrawuAi4sLWq2WIUOGsH79+jK3FaB58+ZUqlRJqT8uLo7o6Gjc3Nx4/fXXi/1bs2jRIqKiokhLS+Pu3bsP7GPhQLrwOl6FpwTc347CCv9NtLW15eLFi0+sb19++SUTJ07k0qVLRZ4ry3shhPjnZM6/EM8506oV8R5qR2bmXc6fvcqdO7lUrmxMaxtJ9RfPj+xTO4qmKhfi9RK83z7/fvXXUVru/PkrGy5cLrKVorGxsZKO26xZM/bv3w/AyZMnadasWbHHoOQf0EI8Dx70/dGj03L3r6PAm/kPH2HrV61WS1ZWFoBe+nvB3PKmTZsSHR2Nvb293taukB+QJyQkkJubS1JSEtWrVy/xPIW/z1D0e9qyZUs8PDzo168fQIlp/127dmX+/Pmkp6frHb+/vqZNmxIWFgbAmTNnlP4VjGLb2tri4+NTYnvvV1z9HTt2VDIUSmqviYkJ/fv3JyAgoNg+/vzzz+Tk5ABQvXp15RqfPXsWNzc3QH8b3dL+vhVso+vi4sLp06eZMGECf/31V5E2Pei9KEvfGjRowLfffsubb77JgQMHHnit7n8vhBD/nIz8C1FOVK9eCQenJnh0a4GDUxMJ/MVzJe/WjYcqr717E3d3dxYtWkSfPn24desWkD8yeOTIEQYOHEjHjh2pXLkyzs7ObNiwgXfeeafYY0I87x7l+1PYtGnTmDdvHu7u7nTt2rXIuhfnzp1Tdtj48ssvmTVrFt26daNbt27MmjWrSP0ffPAB7733Hn379qVOnTp6zxkaGjJu3DicnZ0ZPHgwn3zySYntVKvV+Pv7F5tCDvmp6Nu2bcPDwwN3d/dS59APGTKE77//vsTnATp16sTdu3fx8PDgzJkzGBsbc/z4cZycnOjUqZOykF9Z5/zfz9zcnF69euHi4oKbmxuffvppiWUHDx7MDz/8UGwfO3fuzPr165kwYQIeHh7s3bsXLy+vh24PwOTJk5k5cyYODg6o1WosLS2LLVe3bl1u3LhB//79uXGj6OetrH3r1KkTY8eOZejQoaXeaC3uvRBC/HOy1Z8QQohnLuPgt6SsG//ggv/PwucbzDzGPMEWCfH8kO/P46PRaDAyMmLBggU0atSIQYMGPesmvbDkvRCPi2z19zcZ+RdCCPHMmbZ/DQzLOBPN0AhTuz5PtD1CPE/k+/P4jBgxAhcXFyIiIujbt++zbs4LTd4LIR4/mfMvhBDimTOqUR9Tu75kH9/0wLKmdn0xMqv3FFolxPNBvj+Pz/2r4YtnR94LIR4/GfkXQgjxr2Dh/RXGdZqXWsa4TnMsvL96Si0S4vkh3x8hhBAPIsG/EEKIfwWjahY0nH4YU/sBRVOYDY0wtR9Aw+mHMapm8WwaKMS/mHx/hBBCPIgs+CeEEOJfR5OeTPapHeTdSsfQpAamdn0kVVmIMpLvjxBC/E0W/PubBP9CCCGEEEIIIcolCf7/Jmn/QgghRDmlSU8m4+C3XPzxY5zaWuHq5ED16tVRq9UMGzaM4ODgh6qv4LX29vZs3ry5yPNXr17F39+/yHG1Wv2oXXho27dvV/Yhnz179iP10c3NDQcHB44dOwZAQEAAkZGR/7htvr6+xMbGotVq6d+/f7HX8EEmTJjwj9shhBDixSSr/QshhBDljCYrhZR1E8g+tR3yNACsaQcYJuB9pRrBQT8zb/Gyh67XxsaG0NBQ7t69S/fu3enfv7/ynE6no06dOkyfPv0x9eLRbN++ndatW1OzZs1Her2NjQ2HDh3i8uXLvPfee2zevBlfX99Hqqsgu1KlUukdf/fdd3F2dta7fmX19ddfP1JbhBBCCBn5F0IIIcoRTVYKl/ydyT6xWQn8FXka8rLTuOTvjDbnFj/88ANdu3Zl5MiRAKSmpuLl5YWbmxtjx44t8Ry3b9+mcuXKQP7o+rBhw3jllVc4efIk3t7eAKxcuZLOnTvz/vvvK68LCgrCzs6OUaNG4eTkBEBsbCzdu3fH1dWVefPmFTmXn58fLi4u9O7dm8zMTOLj43F2dqZfv37Y2dlx+fJlpWxiYiJ79+5lyJAhLFy4EOCR+5iRkaH8uyCDYNSoUcTExAD5QfjPP/9cbH2Fr0laWppevQsXLqRChQq8++67APTo0QOA6dOn89577wHg6ekJwBtvvIGrqyvdu3cnKysLQLluQgghxMOS4F8IIYQoR1LW+5F7LbbUMrnXYrl1Zg/t2rUjODiYxMREMjIy+PTTT5k6dSqHDh2iatWqHD16VO91Z8+eRa1W06ZNG958803luJWVFfv378fc3BwAjUbD6tWriYiIYMCAAUq5BQsWEB4ezqxZs7h27RqQH/SuXr2asLAwzp8/rxfMnzhxglu3bhEeHs6bb77J8uXLAcjOzmbTpk1MnDiRLVu2KOUbNWqEp6cngYGBfPjhhwCP1EdnZ2dcXFyKZDEUTtXfvXs3vXr1KrG++69JgS1btvDOO+/oXbs//viDhIQEMjIySEpKomHDhkD+dIOwsDDeeOMNNm7cWOp7KoQQQjyIpP0LIYQQ5YQmPZnsyG1lKnsvOYZWTfJXgK9fvz6ZmZnExMTw0UcfoVKpyM7Oxt7eXu81BWn/Go0GT09P5QaAnZ2dXrm0tDQaN26MkZGR3nOGhoaYmJhgYmJC7dq1Afjjjz/w8fEBUILfBg0aAHDhwgXat28PQIcOHQgLCwPA2toaAwMDLC0tiY0t/UZH69atH7qPhw8fZtWqVRw9epR27dopz7m7u/Ppp58yevRoTE1NMTExKbG++69JgRUrVjBkyBCCg4OpVq0ajo6OhIWFUaFCBSpVqsSBAwdwcHAgLy+PDz/8kLNnz5KVlUXfvn1L7acQQgjxIBL8CyGEEOVE9qkdRVP9S6LTcvevo0B+AK/T6WjZsiXe3t5K4KrRFF+XkVH+z4ecnBwADAz0Ewlr165NQkICeXl5nD59Wjmu1Wq5ffs2GRkZSjp8y5YtWbJkCfXq1SMvL09vfnyzZs3Yv38/ACdPnqRZs2aA/hz6+3ctMjY2Ji8vT3l8f9my9nHYsGE4OjoyevRovX43bdqUhQsXKsF4cfWdPXu2yDUp0LZtW6ZNm8bgwYMJCgrCwcGB3r17M2LECKpWrcqSJUvYuHEjUVFRStbDd999R1JSUrH1CSGEEGUlwb8QQghRTuTduvFQ5bV3b+o9njZtGqNGjSIzMxMDAwNWrVpFkyZNlOcL0v5zc3Pp3r07ZmZmxdZrZGTEsGHDcHBwwNXVVTk+efJkXFxcsLW1pU6dOgD4+/szfPhwcnJyMDY2ZsuWLZiamgLQsWNHAgICcHZ2pmrVqmzYsEFvLn5xXnnlFcaOHas33eBh+ljA0NCQ7t27s2PHDr3j/fr144033uDKlSsl1vcgffr04bfffuPDDz9k0aJFpKen4+TkhKmpKR988AEtW7YkOzub2NhYPD09adiwIZaWlg+sVwghhCiN6v475oV16NBBd/LkyafYHCGEEI9Kk55M9qkd5N26gaFJTTqO+oxP/OcrqdlqtZrg4GDmzZuHk5MTXbt2VV57+/Ztxo0bx8WLF1GpVHz++eclpi3v3buXvLw8evXqVeS5jIwMQkJCeP311/9xf9asWcPw4cOB/EXOIiIiyvxaNzc3fvnlF0xNTenZsyf9+/dn+PDhrFmzhlu3bpVpu7TC5/+nqlevrqSPz5kzRy8gLquytCfj4LekrBtf5jotfL7BzGPMQ7flUWk0GoyMjEhKSmLUqFHs2rXrqZ1bCCHEi0mlUkXqdLoOz7od/way4J8QQjznNFkpJC8dSNwHTUlZN57rW2cS/uU42hgm8vOiKWiyUh5Yx5w5c+jevTuhoaFs3LiRCRMmcO/evWLLenp6Fhv4Q37wv3Xr1n/UnwJr1qx55Nfa2dkp+7JXqFCBU6dOAfkLyN0/x/ufnl+r1T6wTMFc+dDQUL3AvyyvfZj2mLZ/DQzLmNRnaISpXZ8yn/9x2Lx5M66urrz22mvPfEtAIYQQ4kUjwb8Q4oWhSU8m4+C37PAfwQdDeqBJT37WTXpoI0eOxMnJSZn/W7Ct2/qfNtFjy9/B+v5EHYOsdNy8lkjsHMdibwAU3jLsyJEjDBo0iPfee49atWrh4eHB0aNHlS3OAHx9fYmPjycgIEBJbZ47dy5qtRp3d3fi4+NZuXIlBw4cQK1Wk5qaqtSfmJiIu7s7jo6OLFiwAMjfDu2tt97S24atwMqVK5UU87Nnz6LRaHj77bextbVl7969AOzcuRMXFxccHByUYwXs7e05fvw48fHxtG7dmszMTACio6OxtbVl1apVODs74+zszKlTp7hx4wZqtRo3Nzf8/PwICgpSzn/gwAGOHTuGWq3G0dGR77//HsjPpJg8eTJvvfVWqX25X3x8PG5ubvTv35+AgADWr19P586dcXR0JDo6GoDOnTvr9ff+9pTEqEZ9TO3KtjCcqV1fjMzqlans4/Lmm28SFhbGyZMncXBweKrnFkIIIV50MudfCFHuabJSSFk3gexT2yFPQ9ZVHbeSdcR90BRTu75YeH+FUTWLR6pbq9WWuLDXk/DHH3/opb8XbOsWdllHm9pwIUNHMzMVv10HP1sVzpYQGhVLtfV+pdZbsCjakiVLAGjQoIEyp7kkZ86cISkpidDQUGJiYpg/fz5Tp04lMTGR9evX65VdsGABc+bMwdnZGU9PT2V193bt2vHDDz/QvXt3MjIylDnko0aN4ocffiA0NBSAGzdu4O/vT25uLuPHj6d79+58/vnnhISEoNVq6dGjh7I3OuQH/5s3b6ZJkyZ07NiRK1eucPPmTVQqFTdv3iQoKIjw8HDS09MZPnw4EyZMQK1WM3v2bHQ6HSqVShmth/x55EFBQVStWpVu3boxZMgQAPr27UuXLl2YPXt2iX2Bv+fKA3z55ZekpKQoN1W6dOnCkSNHSEpKYvz48ezcubNIf7dt26bXntJYeH9FTsLpUrf7M67THAvvrx5YlxBCCCHKDwn+hRDlWsHIeLGBUJ6G7OObyEk4zeIsF8789idarZbAwEBu3rzJmjVrWLRoEQ0aNOCXX34hIyODEydOYGFhwZ49e8jOzsbf35+goCBCQkIwMDBQUrN9fHywsLAgPj6eHTt20KBBA2bMmEFoaCgVKlRg69atpKWlMXbsWHJycujWrRszZszQa56fnx9RUVFUq1aNwMBAFi5cyJkzZ+jduzc7d+5UtnW7o9GRp4MBLVQcSAQjAx1nr0OXn7RoAZta8OvSTURdNkGtVtOxY8f8a6PR4Ovry7lz57h9+zbw97oABXuup6amcufOHbp27VpkVfXff/+d0NBQJaitV6/kUeTCW7bZ2tpy8eJFoOg2bCUtIGdubo6FRf4NmoKV4mNiYpR1C1JSUpSgHaBJkybEx8dz8uRJ/Pz8uHjxIuvWraNt27bExcURHR2Nm5ubUr+LiwthYWEMGTJE7+ZEgejoaLy8vID8bewKshoKr4tQWl8KB+7x8fG0bdsWQ0NDrl69SuPGjTE2NqZJkyZKhsL9/X0YRtUsaDj9MCnr/fK3/Su8+r+h0T++4SWEEEKI55ME/0KIcq1gZLw0uddiec/WhmbfhhEcHMyKFSuYN28eMTExxMfH8/LLL/Prr7+Snp6OWq0mNjYWMzMzNm7cWOLod3Z2NmFhYfz4449s2bIFFxcX4uLiiIiIUILo0aNHs3r1aho2bMigQYO4fPmysr/5iRMnlG2+1q9fz/Lly5k3bx6hoaHs3LkT+Htbt8NJ4Gqpws4C1pzXYWigYsTLcCQZVncz4J2DWt631RJnVJePP/6YefPm0atXL1JTU/n555+pVasWVlZW/Pjjj/nXLCWF2NhYjh8/zjfffMPy5cv59NNPOX/+vN51s7Kyonv37nz99df51zE3l5SUFL1t1go0a9aMyMhIXFxcOH36tLLgXmlbthV+7v5ytWvXxsbGhn379mFoaEhubq5eGQALCwuioqKwtLTEzs6OsWPHMmnSJJo2bUrHjh3ZvHmz0u68vDzmzp0L5N+c8PHx0auvXbt2bN68GRMTE3JzczE2Ngb0t7grrS/3K3idubk5CQkJ5ObmkpSURPXq1Uus6/7+lcaomgX1x/5UaBHIdAxNamBq1+epp/oLIYQQ4t9Bgn8hRLlVMDJeFkvWbuP0xk5odCpatWqFSqWiYsWKhISEMH78eIKCgkhLS+ODDz4gNjZWGfEtafTb2toaAwMDLC0tiY2N5c8//1TmOBcEcX/88YcywpyRkUFSUpIS/BceKe/QoQNhYWFF2lywrVvIJR3Jt2B3PFzMgrQ7OibYQkb+Fuw0N4NPjsGZK4nMnDlT2Zu9Vq1aNGrUCMgfKd+3bx+nT5+mffv2fPLJJ/Tq1YubN29y8eJF3njjDWrUqKF3fltbW+rWrYtarUalUjFo0CBGjBjBjRs36N+/PytXrqRmzZpA/hZvQ4cO5d69e7z66qtl2rasYcOG9OvXD39//yLPGRgYMHHiRDw8PFCpVFhbW7N06VK9Mh07dlQW/WvXrh2//fYb9vb2mJub06tXL1xcXDA0NMTd3R1XV1emTZtGbm6ukk1gb29Pnz59mDRpEnPmzOHVV19Fp9NRs2ZNtmzZ8sD2l4WhoSHjxo3D2dkZAwODIn0orHB7nJ2dy1S/UY36T3U1fyGEEEL8e8lWf0KIcqukbc+OXdXxa7KO99vnj76m39XhF6pjX+AyTmibExgYSEBAAPPmzWPr1q0cOnQIPz8/UlNT2b17NwEBAWg0GkaOHElUVBSrV6/WG/1OSkpixowZrF+/XlnhvU+fPnz++efKXHidTsebb77JkiVLqFevHnl5eahUKmVE+MSJE3z77besWbOG9evXc/nyZT766CO9Le8yDn5L0tpxTDikY7lH/uvCk3QkZIFVDZQ+ltS/5s2bExoaSs2aNenWrRtHjhxBrVbTuXNnduzYwZ49e7C0tMTKykpJ0xdCCCGEeJ7IVn9/k5F/IUS5VTAyXpxfLkJ0Wv42a6NtVFQxhlff/xw791eVMo6OjmzatInq1avToEEDateuXaSe4ka/u3fvXmy5xo0b4+joSMWKFdm6dSv+/v4MHz6cnJwcjI2N2bJlC6ampkD+qHVAQADOzs5UrVqVDRs2FKnTtP1r/O8zP/5T8+853XYWEHBeh1WNv1PEq1eEKhVU9J0TSNv2f/+/r3bt2syePZuoqChmzpypHJ83bx5WVla89tpr2NraljgPXwghhBBCPD9k5F8IUW6VNPJfEgufb567FOnkZW+SfXzTA8uZ2g+g/tifnkKLhBBCCCH+PWTk/29Pb38qIYR4ykzbvwaGZUxwMjTC1K7PE23Pk2Dh/RXGdZqXWka2dRNCCCGEEBL8CyHKLaMa9TG161umsqZ2fZ/LVdALtnUztR9Q9EaHoRGm9gNoOP2wbOsmyj1NejIZB7/lepA/GQe/pUWzpvz005PJdomPj8fb2/uJ1A0QEBBAkyZNlJ0z1Go1Go3mAa8SQgghSidz/oUQ5ZqF91fkJJwudbu/531kXLZ1Ey8yTVYKKesmkH1qO+TlB8i/39DRxlDFz4um0L+n+3N586tKlSps27aN/v37P+umCCGEKCdk5F8IUa69SCPjBdu61fKahpnHGAn8RbmnyUrhkr8z2Sc2K4E/wP5EHYOsdNy8lkjsHEc0WSmo1WomTJhA586dWblyJQDR0dE4OjrSuXNnZSeO33//HbVajVqt5ssvvyQ3NxcPDw9cXFzo16+fMhoPcOzYMT744AMA0tLS6Nu3L/Hx8Tg6OuLl5UXnzp25ePEiN27cQK1W4+bmhp+fHwA7d+7ExcUFBwcH9u7dW6Rvw4cP57vvvtM7lpiYiLu7O46OjixYsACAHj16ADB9+nTee+89ADw9PR/H5RVCCFHOyMi/EKLck5FxIcqnlPV+xWb1/HYd/GxVOFtCePQFqq3PD7gLttd0dnbG19eXjz/+mMDAQCwtLXFycmLgwIFMnTqV5cuX85///AetVotKpWLnzp1UrlyZGTNmEBISQosWLQDo1KkTU6dORafTsWXLFgYMGADAjRs3CAsLIzIykgULFjBgwADUajWzZ89Gp9Oh1Wr5/PPPCQkJQavV0qNHjyIBu5mZGVZWVpw4cUI5tmDBAubMmYOzszOenp74+PhgZWXFH3/8QUJCAkZGRiQlJdGwYcMndcmFEEI8xyT4F0K8MApGxoUQzz9NejLZkduKHE/I0vFnBow4oOWeFppWA3XkNnQaO9q1a4ehoSGNGzcmJSWF9PR0mjRpAkDTpk1JSUkhLS2N//znPwAYGBiQnZ3NqFGjSEpK4tq1a7Ro0UIJ/gGcnZ05cuQIv/zyCxs3biQ1NRUbGxuMjIywtbUlNjYWFxcXwsLCGDJkCJ6enrzyyivExMTQtWtXAFJSUtDpdKhUKr2++Pn5MWfOHOXxhQsXaN++PZC/fejFixdxdHQkLCyMChUqUKlSJQ4cOICDg8PjvNRCCCHKCUn7F0IIIcRzJ/vUDr1U/wL7E8HfQcXqbgase8WAlNug1eSSdzON6Oho8vLySEhIwMLCAjMzM+Lj48nNzSUuLg4LCwvMzc35888/AdBqtezbtw8rKyvCwsLo168f92+RPGTIEL744guqV6+OiYkJAOfOnSMvL4/o6GiaNWtGXl4ec+fOJTAwkEWLFlG7dm1sbGw4ePAgoaGhREdHFwn8AVq0aMGtW7dISkoCoFmzZkRGRgJw+vRpmjRpgoODA8uWLaNdu3bY29uzZMkSCf6FEEIUS0b+hRBCCPHcybt1o9jjYZd1+Pzn70C6uRmcvAY6rYZNmzbx3nvvMWzYMCpUqMDcuXMZPHgweXl5jBs3DmNjY/773//y9ttvo1Kp6Nu3L/369cPf35+TJ09SvXp1vVF/ACsrKxITE5kxY4ZyzMLCgj59+pCamkpgYCDHjx9n2rRp5Obm0rVrVwwMDJg4cSIeHh6oVCqsra1ZunRpsf0ZN24c3bp1A2Dy5MkMHTqUe/fu8eqrr2JpaQlAeno6Tk5OmJqa8sEHH9CyZct/cmmFEEKUU6r772AX1qFDB93JkyefYnOEEEII8U8UrG0R9r+TjP9qOy3+0wqtyojRo0czaNCgZ908IH8rOxsbG2rVqkVcXBzu7u7Ex8czY8YMZeG9wnJycvDw8CAiIgKtVkv16tU5vGwyVQ7OZvJhLSNaq2hZQ3/k/NhVHb8m63i/fX6S4/DTzQiN/A0jo8c/7uHp6UlQUBAVKlQotR9CCCGePpVKFanT6To863b8G8jIvxBCCFEO3L/lXdZVHb3r6Hi/+QkMbV7Fb+0aWrZsqcwZf5Z8fX0BCA0NJSQkBHd391LLV6xYEZ1Ox7179/jrr7+wtbUlJtccO0MjLmTeo3n1B5zQ0AjDqrUfT+Pv06tXLzw8PKhQocITqV8IIYR4XGTOvxBCiBdeaGgojRs3xsPDA7VazY8//lim10VFReHs7IyrqytOTk7k5OQQFRXFqVOnnnCL86nVajQaTYlb3gGQpyEvahtDzH5nx+afit26Lj4+HmdnZ/r164ednR2XL18GYMaMGTg5OeHu7k5GRgaxsbF0794dV1dX5s2bB0DDhg1xcnLCzc2NzZs3K+nvu3bt4uuvv+b27dtUrFiRGzdu8P333/Pzzz8ze/ZsgoODWblyJevWrcPDwwOAhIQEateurdeG0NBQZsyYQdu2bYmOjubEiROMHj2aUzEX0Fn3poox6ICJYVqG7NEyMUyLRvt3VuMvcTq23LIhLOJXYmJiGDt2LDqdjjFjxuDu7k6vXr1IT0/n119/pVOnTri5ubF69Wrl+haWkZHB1q1b9Y7t2rWLDz/8UHncpEkT1q9f/9g/Gzk5OTg5OQH5axFUrVqVuLg4AN566y3Onj37SPUWNmHChH9cR1nFx8crN4EKBAQEsGrVqsd+rjVr1ij/LvjO3C80NBQjIyNSUlIAOHHiBCqVip9++onGjRujVqtxdHQkJiYGQO+9jIqKUj4zpSnp3A8jPj6ekJAQ5d/e3t4P9XpfX186deqEi4sLPj4+RdaweFjFfSeEEP9eEvwLIYR4YWnSk8k4+C2ZR9YxwMmafZvXsWfPHgIDA4sEaVqttsjr582bR0BAAGFhYezevRtjY+MSA7ziXv+4lLTlXWE1c5K4eHgrRkZG7Ny5k/DwcFq1aqUEEtnZ2WzatImJEyeyZcsWTp8+TVxcHBERERw8eJCqVasyffp0Vq9eTVhYGOfPn+fy5ctkZWURHh7OoUOHqFWrlnK+Ll268L///Y/jx4+jVqs5evQov/76q95idKNGjcLHx4eDBw8qbWjZsqXShsLs7e05ceIEkZGR9O7dmytXrnCp5RDaNqzBgURoZqYisIcBzc1U7E/4+3Xd2zcj/IYZAFu2bKF///7s3LmTRo0aERISwvjx41m+fDl79uxhwYIFHDp0iOHDhxd7DR8m0HmYz0ZZFM5+iImJwdbWloKpmTExMVhbW5f6+sKfv5I+i19//fUjte3frnDwf7/CfwNsmlmydcNaALZt20aHDvlZwj4+PoSGhrJw4UKWL18O6Af/tra2jBgx4gn3Il/h4P9RBQYGEh4eTuXKlYmKivpHdUnwL8TzRdL+hRBCvHCKS5G/lawj7oOmmNr15b13hvPLL79Qs2ZNhg0bRq1atejZs2eRoLBKlSocOHCA+vXrU61aNQBWrlzJ9evXOXToEG+//TaLFy8GYMyYMezdu5eoqCi0Wi2BgYE0atSIzp07Y2Njw4kTJ/j000/x9PRk+fLlBAQE4OrqyrFjxwgNDeXYsWNMmTKF3NxcRo4cybBhw/L7kp7Mn2Fb+Shcy708cG+oYpSNCv/jOtQN8tvpF6qlZxPISbmIs0Nn/oiNo2bNmqhUKmXruv/85z8MGTKE8+fPo9PpMDc3x9zcHC8vL6X9ISEh+Pj4APk/+pOSkrC0tGTo0KHUqlWLV155Rbk23333Hbt37+bo0aPMmzePH374gTNnzlCzZk0++eQTNm3axLFjx/jrr7+U11hbW5OQkIClpSWxsfo3Mzp27Mjnn39Obm4umzdvZv/+/Rw5coS3h47jWlQQETFnOXpFy617oG4ItUyM2BRvSOaVtlxK/h1HR0cuXbrEzp07adKkCX/99RebNm3iwoULmJqaMmnSJH7++WfmzJnDlStX6NKlC7m5uXptWLlyJQcOHECtVrNp0ybWrFlDUFAQFStWJCAggEaNGpX5s7F27Vp8fHyUa7hu3ToiIiL473//i6GhITk5OWzevJmaNWsqdRZkP5w/f57Ro0dz4sQJPD09MTU1RafTMWjQoCL1Ff78ffTRR9jY2NCiRQsiIiI4cOAAAB4eHuzduxc3NzciIiLw9fWlUqVKnDt3jm7dujFr1iyOHTvGmDFjaNmyJX/88UeRmxhvvPEG165do2LFimzevJlq1aphY2ODjY0N58+fZ+3atdja2jJz5kwOHTr0wJsVBfz8/IiKiqJatWoEBgaydOlS2rVrR48ePfjll1+IiYlhwoQJDB8+nGvXrmFubs769esxNjYGICgoiLNnz6JWq5k+fToAU6ZMIexQCINaGfFqpTNEX81l5lEdN+7CMv8peFWI5Fx0Bi+//DIA4eHhBAcHo9FoCA0NJT4+noULFxIXF8dHH33E1KlTSU9PJyIigvPnz5OXl0flypVp27Yt58+fp3fv3ixdupTs7Gzat29PlSpVGD58OKNGjSI4OFjJlpk3bx5du3ZFrVZjZ2dHeHg477zzjt6NhZUrV3LkyBGOHj3K6tWrSUhIoF+/fsTHx7Njxw4aNGjA3LlzCQkJwcDAgDVr1ijbWd7v5s2bVK1atdjrfPr0aYKDg5WbWJCfueDj44OFhYVyvsLfiTFjxpCamsr48eOVbIjyekNJiOeVjPwLIYR4oTwoRT77+CZU2yeRnHgRyN+DfePGjcWOBn/22WecOnWK1q1bM3r0aLRaLaNGjeLDDz8kMDAQgHv37hEUFESPHj2YP38+YWFhzJo1ixUrVgBw48YN/P392bVrFytWrECj0RAQEMCRI0d4/fXXlXPNnDmToKAgIiIiCAwM5N69ewBknw7iu+hc/GxV/NTTgGNXdVy7rcPKDK7egjsaHdm5sP0C/Jmuxdu1FWPHjqVhw4b06dNHSfu9fPky1tbWfPXVV5ibm3Pp0iV+++03pf2enp64u7vz448/EhoaSmRkJB07diQ3N5dLly6xY8cO3nnnHQCuXr1KSEgI/fv3p2bNmoSHh5OVlcWdO3c4fvw4TZo0ISYmht9++4369esrfSy83d396citWrXi7NmzaLVagoKCGD9+PJUrVyb012O0GzIDTx8/9gcuo7FVK7IbOFB/7E/cylXx3Zq1TJ48mcTERDp27MiRI0eIiYnhrbfeUvp58eJFfvnlF5YsWUJ2djaNGjVi7ty5XLt2Ta8No0aNolu3boSGhpKXl0dISAhHjhxh7ty5zJ8//6E+G9u2bcPa2prw8HBefvllJdNBp9OxZ88eRo8ezcqVK/XqLC77ITIykg4dOpRYX+HP3+XLl1mxYgWzZs2icePGxMbG8scff9CsWTMlWC7wyiuvEBERwe7duwH45JNPCAoKYtWqVSQmJhb5LhRkObzxxhts3LgRyP/urFmzhmXLlrF27VquXLnC8ePHOXz4MK6urkXquN+JEye4desW4eHhvPnmmyxfvpz+/fsrfSvI5Fi1ahVeXl6EhISgVqvZvHmzUoeXlxc2NjaEhoYquya82acn692y+Sn4JORp+CpKx/vt4PXmcPWWjkNBG6l//Tja3LsAREdH8/777zNs2DAlkL537x6fffYZcXFxepkFWq2WixcvcvPmTRo2bEhISIjSnpSUFMaOHcuRI0cICAjg3r17zJ49m/3797N//35mzpyp1OPt7U1ERARr167VuybFZcsUztg5c+YMSUlJhIaGsnTp0iKfS8jfnrJ9+/akpKTw0ksvFXudS3L/+Qp/J7y8vJTPy8aNG/81C4wKIf4mwb8QQogXSllS5C9fSqDatfz91Nu2bYuhoWGx5erWrcvKlSuJjY1FpVKxf//+ImUKL7D32Wef4ezszIwZM0hOTgbA3NwcCwsLLC0tycjIIC0tjUaNGmFoaIitra3y2ujoaLy8vHBzc+Pq1aukpqYC+VveJd4E6/8fIG5VEy5nQ8c6EJwIb+zScekm9Gqq4vJNWLU9hMWLF3Ps2DH++OMPpf6CUUmA+vXro9FoqFOnDufOncPd3Z3MzEz8/f0ZPnw47u7u9OzZk9u3b5OWlkZeXh4NGjTgiy++APJTk9u0aYODgwP16tXjwoUL1KxZk8qVK/Prr7/i6OjI+fPnuX37NmfOnGHgwIGlvh8ABgYGVK1aFQsLC6Kjo9m0aROxsbHKtncbt++k8esf8evvyTS288DQtBa1atXCxMQELy8vkpOTGTFiBBUrVqR27drEx8dz6NAhGjduTPv27fn9999xcXEhJiaGESNG0LBhQ8zNzUtsT0EfATp06FAkU+FBn40LFy4o17vw69u1awfkp5IXl/1w4sQJ0tPTMTMzw8DAgOPHj9OxY8cS6yv8+WvZsiUmJiZAfgD4008/8dNPPxUbpLVu3RqAypUrA5CVlUWDBg0wMTEpst1hXl4eH374IS4uLnzzzTfKZ7t58+ZUqlRJ+WwnJCQo18zOzq7Ea1vaNbKysiIuLo47d+5w+fJlXnrpJWJiYliyZAlqtZq1a9cq8/ZLYhG1AoPrcRj8/72m32/AF6chKA4MVTD7f9C1VgZ3LxwD8v8GfPHFF3qp/iqVisqVK1OtWjUMDP7+Od2yZUtlS8h79+7RrFkzABITE7l58yY+Pj4YGhrSuHFjUlJSUKlUVKtWjWrVqun9nWndujUVK1bUq7s41tbWGBgYKNf4999/JzQ0VBmJz8rKKvKagmlNffr0ITAwsNjrXNKNuPvPV1jlypWxsLAgMTGRY8eO0aVLl1LbLoR4+iTtXwghxAtDk55MduS2Usvk5OlY+5uOd+1+R5OVUuqP79jYWJo3b45KpcLc3BytVouxsTE5OTlKmYLXX79+ndDQUA4fPsyBAweUzID7f2TXrl2bS5cuodVqOXPmjPJcu3bt2Lx5MyYmJuTm5iojtYYmNWlUFc5fh451IeYG+PwH7CwM+OWiljpVYLKdijomKnbE6fjx84lY9n5Prw6AadOmERkZycyZM4mIiKBZs2Y4OjrSpEkTZXE/MzMz9uzZo3cNXn75ZQ4fPgzkL5oG+YveRUdHs3DhQlq0aMH69etZvnw5b7/9NiEhIRw4cIDXXnuNunXrKtcBYP369Tg5OaFWq4sstgdw6NAhUlNTuXz5sjKampuby5kzZ3ByciIgIIDvvvuOpKQk1Gq1MkprZmaGs7Mz3bt3V675119/TWxsbJFr6ujoSO/evbl8+bJyg6WAsbExeXl5en0EOHnypBLklfWz0axZMyIjI+nVqxcnT56kefPmAEqd0dHRReosyH4oCKALru0vv/yCSqUqtr7Cn9/C/3Z1deXTTz8lLy+Pjz/+uMi1Lvy5BKhWrRrJycmYmZkVuSkRFRWljBwXXP/769DpdDRu3FhZmPD06dNFznm/Zs2aKTdNCl9jtVrNzJkzlV0iWrZsiYeHB/369QMoMl1Drx2ae9w6tV3vB3CrWvDWfyAyBYa/DAtOgk1t2PBnInm30qlUqZIyFaRwwJudnU1WVpbeGgoF51KpVErQXLt2bSZNmkTVqlU5c+YM9vb2JCQkYGFhgVarVQL0gs/W/W0urPBnsEjfdDqsrKzo3r27km5//7UozMzMjBs3buDg4FDkOlevXp0rV64A6H3m7j/f/e0ZPHgwkyZNwt7evsQ+CCGeHRn5F0II8cLIPrWjaKr//wuKg6H7tIw8oKNXUxWtzLTcPvv3aO3evXvZtWuX3mvWr19Pp06dcHV1JSEhgVdeeYXOnTuzfv36Iiun16hRA1NTU9zd3YvUU5iRkRFDhw7FwcGBDRs2KAH6nDlzePXVV3Fzc+PNN99Uypu282JkW2O+itLx5m4t9nXzA32ANrXzU/8LHvu1N8L7s81F6gDo06cP58+fx8XFhbNnzyqBVGFlXQ2+bt26uLm54eDgwIwZM5g6dSoADg4OmJiYoFKpqFq1Kp07dy5TfYGBgXTt2pWuXbty/vx5evXqhYuLC25ubnz66ae0bNmS2NhYPD09OX78eJnqhOKv6ZQpU3BxcWHOnDnUrVu3SL9u3LhB//79qVChQrF9LPCgz0ZJ19vY2BhPT0+WLVvGqFGj9OosyH4oGJW3s7Pj2rVrNGnSpEzv3/11tWnTBhsbmweOLgN8/PHHvPrqqwwbNoyGDRvqPVfW61+vXj3s7OxwdnYmIiKi2DKLFy9W3mtTU1MqV66Ms7MzGzZsUKaV9O/fny+++IL+/fsD+anw27Ztw8PDA3d39yLrEdjb29OnTx8OHz5M3s20In8D/NqqWHwq/2/AjF/hv44G+YGrTsvduBOcP3+esWPH0qhRI+WmyrRp0/j4449p0aIFQ4cOLfXamZmZcfjwYSwsLNi0aRMODg689dZbVKhQgVmzZtGtWzdlbYUHad26NUeOHCkxW8bW1pa6deuiVqtxc3Pj+++/L1JmyJAhuLm5sW7dOry9venYsWOR69ymTRuSk5Pp2bNnkZtghRX+Tty4cQMPDw8OHz4sKf9C/EupStvio0OHDrqClWSFEEKI5931IH+ub5354IL/r9brn1DLa9oTbFHxNBoNRkZGHDt2jDVr1ijrA5QkedmbZB/f9MB6Te0HUH/sT4+rmeIxCw0NVRZZexomT57MgAED6Nix4wPLFnwmb926Rffu3Tly5MhTaOHj9yz+BuTl5eHp6akssFievUh9Fc8PlUoVqdPpOjzrdvwbSNq/EEKIF4ahSc0HF9IrX+MJtaR0X3/9Ndu3b+fevXtFFvwqjoX3V+QknC51LQPjOs2x8P7qcTZTPMdmzpxJQkJCmQJ/gCNHjjBz5kxu3ryptzDd8+Zp/w24ceMG/fr1Y/To0f+onufBi9RXIZ5XMvIvhBDihaFJTybug6Ylpv7rMTTipUXxGJnVe/INeww0WSmkrPfLX9OgcP8MjTC164uF91cYVbN4dg0U4l+gPP8NEEIUT0b+/yYj/0IIIV4YRjXqY2rXt2wp8nZ9n6sf/UbVLKg/9qf8RQ1P7SDvVjqGJjUwtevzXPVDiCepPP8NEEKIB5HgXwghxAulvKfIG9Woj5nHmGfdDCH+tcr73wAhhCiJrPYvhBDihWJUzYKG0w9jaj8ADO+7B25ohKn9ABpOPywp8kKUU/I3QAjxopI5/0IIIV5YkiL/4goNDWXo0KE0bdqU6tWrs3HjRipVqqRXZs2aNQwfPhyAgIAA3nrrrTJtiyeeH/I3QIjyT+b8/02CfyGEEEK8EP4O9G5w9K80fr2i5b+ff8mCBQuwtLTE29tbr7yTk5OyH71arSY4OBgjI5kxKYQQzxMJ/v8m/wcTQgghRLmmyUohZd0Esk9tV1Z5T7+qI/2qiuRl17Bp0Ze+g97iu+++Q6vVEhgYSFRUFGfPnkWtVtOjRw+ioqLw8PBg5MiRtGnThrFjx5KXl8f48ePx9vbG19eXSpUqce7cObp168asWbOebaeFEEKI+0jwL4QQQohyS5OVwiV/5+IXd9NqyT6+iV1/HGDVsiX4jBhDcHAwK1aswN/fHxsbG0JDQwHYs2ePMvLv5eVFYGAglpaWODk5MXDgQABeeeUVli9fTqdOnST4F0II8a8jwb8QQgghyq2U9X4lruoeFAenUrU0r36DyM3fsDJgA7m5ubRq1arUOtPT02nSpAkATZs2JSUlBYDWrVsDULly5cfXASGEEOIxkeBfCCGEEOWSJj2Z7MhtJT7v9RK8396A9Ls6/MJiOBKTxKET5wgMDARApVIpZY2NjcnLy8PIyAgzMzPi4+OxtLQkLi4OCwuLIuWFEEKIfxtZslYIIYQQ5VL2qR3KHP/SVK8IVYx0uLup2bVrl3Lc3t6ePn36cPjwYXr16kWfPn3YsmULc+fOZfDgwTg5OTFu3DiMjY2fYC+EEEKIx0NW+xdCCCFEuXQ9yJ/rW2eWuXyt1z+hlte0J9giIYQQT5us9v83GfkXQgghRLlkaFLzIcvXeEItEUIIIZ49Cf6FEEIIUS6Ztn8NDMu4vJGhEaZ2fZ5oe4QQQohnSYJ/IYQQQpRLRjXqY2rXt0xlTe36YmRW7wm3SAghhHh2JPgXQgghRLll4f0VxnWal1rGuE5zLLy/ekotEkIIIZ4NCf6FEEIIUW4ZVbOg4fTDmNoPKDoFwNAIU/sBNJx+GKNqFs+mgUIIIcRTUsaJcEIIIYQQzyejahbUH/sTmvRksk/tIO9WOoYmNTC16yOp/kIIIV4YEvwLIYQQ4oVgVKM+Zh5jnnUzhBBCiGdC0v6FEEIIIYQQQohyToJ/IYQQQgghhBCinJPgXwghhBBCCCGEKOck+BdCCCGEEEIIIco5Cf6FEEIIIYQQQohyToJ/IYQQQgghhBCinJPgXwghhBBCCCGEKOck+BdCCCGEEEIIIco5Cf6FEEIIIYQQQohyToJ/IYQQQgghhBCinJPgXwghhBBCCCGEKOck+BdCCCGEEEIIIco5Cf6FEEIIIYQQQohyToJ/IYQQQgghhBCinFPpdLqSn1SpUoGEp9ccIYQQQgghhBDisWms0+nMn3Uj/g1KDf6FEEIIIYQQQgjx/JO0fyGEEEIIIYQQopyT4F8IIYQQQgghhCjnJPgXQgghhBBCCCHKOQn+hRBCCCGEEEKIck6CfyGEEEIIIYQQopz7P6r9qXngVEJxAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#create data frame that has the result of the MDS plus the cluster numbers and titles\n", "df = pd.DataFrame(dict(x=xs, y=ys, label=clusters, title=titles)) \n", "\n", "#group by cluster\n", "groups = df.groupby('label')\n", "\n", "\n", "# set up plot\n", "fig, ax = plt.subplots(figsize=(17, 9)) # set size\n", "ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling\n", "\n", "#iterate through groups to layer the plot\n", "#note that I use the cluster_name and cluster_color dicts with the 'name' lookup to return the appropriate color/label\n", "for name, group in groups:\n", " ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, label=cluster_names[name], color=cluster_colors[name], mec='none')\n", " ax.set_aspect('auto')\n", " ax.tick_params(\\\n", " axis= 'x', # changes apply to the x-axis\n", " which='both', # both major and minor ticks are affected\n", " bottom=False, # ticks along the bottom edge are off\n", " top=False, # ticks along the top edge are off\n", " labelbottom=False)\n", " ax.tick_params(\\\n", " axis= 'y', # changes apply to the y-axis\n", " which='both', # both major and minor ticks are affected\n", " left=False, # ticks along the bottom edge are off\n", " top=False, # ticks along the top edge are off\n", " labelleft=False)\n", " \n", "ax.legend(numpoints=1) #show legend with only 1 point\n", "\n", "#add label in x,y position with the label as the film title\n", "for i in range(len(df)):\n", " ax.text(df.loc[i]['x'], df.loc[i]['y'], df.loc[i]['title'], size=8) \n", "\n", "plt.show()\n", "\n", "#Saving the Fig\n", "plt.savefig(os.path.join(outputs,'clusters_small_noaxes.png'), dpi=200)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The clustering plot looks great, but it would be better without overlapping labels. We are going to use D3.js (http://d3js.org/), a browser based/javascript interactive. We will use a matplotlib D3 wrapper called mpld3 (https://mpld3.github.io/). Mpld3 basically let's you use matplotlib syntax to create web interactives. It has a really easy, high-level API for adding tooltips on mouse hover, which is what I am interested in.\n", "\n", "It also has some nice functionality for zooming and panning. The below javascript snippet basicaly defines a custom location for where the zoom/pan toggle resides. Don't worry about it too much and you actually don't need to use it, but it helped for formatting purposes when exporting to the web later. The only thing you might want to change is the x and y attr for the position of the toolbar." ] }, { "cell_type": "code", "execution_count": 134, "metadata": {}, "outputs": [], "source": [ "#define custom toolbar location\n", "class TopToolbar(mpld3.plugins.PluginBase):\n", " \"\"\"Plugin for moving toolbar to top of figure\"\"\"\n", "\n", " JAVASCRIPT = \"\"\"\n", " mpld3.register_plugin(\"toptoolbar\", TopToolbar);\n", " TopToolbar.prototype = Object.create(mpld3.Plugin.prototype);\n", " TopToolbar.prototype.constructor = TopToolbar;\n", " function TopToolbar(fig, props){\n", " mpld3.Plugin.call(this, fig, props);\n", " };\n", "\n", " TopToolbar.prototype.draw = function(){\n", " // the toolbar svg doesn't exist\n", " // yet, so first draw it\n", " this.fig.toolbar.draw();\n", "\n", " // then change the y position to be\n", " // at the top of the figure\n", " this.fig.toolbar.toolbar.attr(\"x\", 150);\n", " this.fig.toolbar.toolbar.attr(\"y\", 400);\n", "\n", " // then remove the draw function,\n", " // so that it is not called again\n", " this.fig.toolbar.draw = function() {}\n", " }\n", " \"\"\"\n", " def __init__(self):\n", " self.dict_ = {\"type\": \"toptoolbar\"}" ] }, { "cell_type": "code", "execution_count": 135, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "
\n", "" ], "text/plain": [ "" ] }, "execution_count": 135, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#create data frame that has the result of the MDS plus the cluster numbers and titles\n", "df = pd.DataFrame(dict(x=xs, y=ys, label=clusters, title=titles)) \n", "\n", "#group by cluster\n", "groups = df.groupby('label')\n", "\n", "#define custom css to format the font and to remove the axis labeling\n", "css = \"\"\"\n", "text.mpld3-text, div.mpld3-tooltip {\n", " font-family:Arial, Helvetica, sans-serif;\n", "}\n", "\n", "g.mpld3-xaxis, g.mpld3-yaxis {\n", "display: none; }\n", "\"\"\"\n", "\n", "# Plot \n", "fig, ax = plt.subplots(figsize=(14,6)) #set plot size\n", "ax.margins(0.03) # Optional, just adds 5% padding to the autoscaling\n", "\n", "#iterate through groups to layer the plot\n", "#note that I use the cluster_name and cluster_color dicts with the 'name' lookup to return the appropriate color/label\n", "for name, group in groups:\n", " points = ax.plot(group.x, group.y, marker='o', linestyle='', ms=18, label=cluster_names[name], mec='none', color=cluster_colors[name])\n", " ax.set_aspect('auto')\n", " labels = [i for i in group.title]\n", " \n", " #set tooltip using points, labels and the already defined 'css'\n", " tooltip = mpld3.plugins.PointHTMLTooltip(points[0], labels,\n", " voffset=10, hoffset=10, css=css)\n", " #connect tooltip to fig\n", " mpld3.plugins.connect(fig, tooltip, TopToolbar()) \n", " \n", " #set tick marks as blank\n", " ax.axes.get_xaxis().set_ticks([])\n", " ax.axes.get_yaxis().set_ticks([])\n", " \n", " #set axis as blank\n", " ax.axes.get_xaxis().set_visible(False)\n", " ax.axes.get_yaxis().set_visible(False)\n", "\n", " \n", "ax.legend(numpoints=1) #show legend with only one dot\n", "\n", "mpld3.display() #show the plot" ] }, { "cell_type": "code", "execution_count": 136, "metadata": {}, "outputs": [], "source": [ "#uncomment the below to export to html\n", "#os.chdir(outputs)\n", "#html = mpld3.fig_to_html(fig)\n", "#print(html)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3.1.8 - Hierarchical document clustering" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAWYCAYAAABArDYhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAADVoElEQVR4nOzdfZhddXnv//dNSDIgjEQM4jGYDFDZ9QHUgKJYQUGFOh494iFFCz/UeqziA4rK8OBDrEioitGqtForhqpQi9USSxRQaA4SIBEEhY1WJ2mMosiDEWXnae7fH2uNZ7mdmWSSmdlrZt6v6+Laa6/1Xd91r2Hkuubjvb4rMhNJkiRJkqQ6263TBUiSJEmSJG2PAYYkSZIkSao9AwxJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLt7d7pAqQ6ePSjH50LFizodBmSJEmSNO2tWbPmV5k5t32/AYYELFiwgNWrV3e6DEmSJEma9iJi3VD7fYREkiRJkiTVngGGJEmSJEmqPQMMSZIkSZJUewYYkiRJkiSp9lzEUwBExLnAJqArMz9Q2b8AODIzLxvinL7MXFJuvw/4MHAJsAg4G1gDPAy0gC6glZmrtlPH7+cc5vjxwKHATOCCzBzY8bsc3ub+ftadcupYTCVNG929vcxZdFKny5AkSdI0YYChQdsy88MR8caIOBQ4ERgAPg/8eUQ8DVgKvJkilLhiiDmOBO4GngrcARwG/Bw4GFhdzvNa4B3AOUCU8z8FuAfYAiyMiIWZuSYiDgJ6gd0z8yPlNZ6WmRcARMRBEdFL8Xt8H7ACOA34v8AzgJsowo4u4KeZ+eUx+DlJAlrNJoABhiRJkiaMAYYGzYiI9wDdwF7ABuAAYDbwHWAV8EJgHrASmN92/nrgGOCrwOuBc4E/BdZRhBpdwL8DTwAawLcpHmF6NEWQMYOiU2NNZq4p59wT2Aw8sXKdrGxXj3+nMs+PKcKUPYFnAtcBc0a6+Vk9Pcy/dNlIQyRV2LEkSZKkieYaGBq0LTPfD9xP0ckwjyKU2AQ8G3glcE25bzbwo7bzv0PRaXEbcGhm3lvu3wC8DNgH2ErR1bEBeB5F4HEbRcjwonL8IyPimeX2E4Hfltcb9L2IeFf5yEv1+PeA1wBPpwhFfgP0ADeW17571D8RSZIkSVJtRGZuf5Q0xR1++OG5evXqTpchTRqDHRh2LkmSJGmsRcSazDy8fb8dGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNrzLSSSpJ3SajZr8TaS7t5eX+cqSZI0DdiBIUmatFrNJhuXL+90GZIkSZoAdmBIknZKV6PR8beQ1KEDRJIkSRPDDgxJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtGWCIiOirfpbbp0XE/uU/p43ndcvtt0TEGdV92zn37oiYGRF9EXFIRBw4wtynRcT+Y1e5JEmSJGmiuYinAIiI+cDCiDgkM+8ud7+u/FwfEb3AkcDXgFcCa4C9gYeBRwN7Af8AvBXYBrwfuAy4Hbgc+J/AVuC7wGHAJmBOee1uYCAzPx4RJ0XEwcCHhjo3M79V1vSfwMnl9mOBVkS8CrgP6AbmRsTpwKzy+6KI+ERmbhvq/jf397sYoDQKrWaTrkaj02VIkiRpGrEDQwBk5jpgTSW8APhM+Q8UYcVPgWcBrcz8Z2C/8tiVwIPAC4GNwEPlsdXAJcBTgMOBXwH7A92Z+SlgYISShjt30I+BBcCMyr4B4PPl9gOZ+UmgC1gHXD5ceCFp9LoaDbp7eztdhiRJkqYROzBUNS8inpiZdw5x7GCKEGE3YHZEvIEitAB4BfBIim6JMygCg3spOjESCOAWik6IlcC+EXEy5e9fZm6MiN0i4gxgj8z8l4gY7tyqfwEuAm4ov+9O0TWytTImgbXAayLiwuFCjFk9PR1/HaQkSZIkaXiRmZ2uQZNMRPRl5pJy+zRgRWbe09mqICKOBY4GlmfmzaM59/DDD8/Vq1ePT2GSxs3go18GkJIkSVNHRKzJzMPb99uBoVEbDC/K7Us6WMofyMxrgWs7XYckSZIkaey5BoYkSZIkSao9AwxJkiRJklR7PkIiSZrUWs3mlHwNcndvL3MWndTpMiRJkmrDDgxJkmqm1WyycfnyTpchSZJUK3ZgSJImta5GY8q9hWQqdpRIkiTtKjswJEmSJElS7RlgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas9FPFUbEXEusAnoyswPVPbvCxyYmbcMcc5y4B3AQcDzM/PMnbn25v5+F83TtOCrOSVJkjRZGWCoTrZl5ocj4o0RMRc4GZgLfBY4KCJOBm4D9snMj5fnrAKeT9FNdG9EPA14HvAgMADsAzwuM985kTci1VGr2QQwwJAkSdKkZIChOpkREe8BuoHZQAIHVo7fl5nLIqKvsm8r0AU8AOwF7A38GngScAfwZeCU7V14Vk/PlHsNo9TOLiNJkiRNZq6BoTrZlpnvB+4HeigCjNnV48Oc988UQQVAA2hVzhvuHEmSJEnSJGIHhmojM5eUnx8sd60EPlFur20f174NVLe/MMx+SZIkSdIkZAeGJEmSJEmqPQMMSZIkSZJUez5CIknTSKvZnFKLebaaTboajU6XIUmSpAlgB4YkadLqajTo7u3tdBmSJEmaAHZgSNI00tVo+MpgSZIkTUp2YEiSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPAEOSJEmSJNWei3iqIyLiXGAT0JWZHxhh3AmZedUOzPU74MmZ+dq2Y33APcCKzLxnuDk29/dPqVdLSkPxlaOSJEmazAww1CnbMvPDEfHGiJgLnAzMBf4ReB0wH3gncFhELAQ2APOAFcALgCMy839V5tsCbI6IBcCRFKFFa6JuRpoMfOWoJEmSJjMDDHXKjIh4D9ANzAYSOBB4FvA54PjK2G3AJcBZwPOADwHvqR7PzE9ExFvKeQKYMZpiZvX0+GpJSZIkSaox18BQp2zLzPcD9wM9FMHDbOBG4K+A5wJby7GZmVluf5siyDisMteMiDijnOce4JnAi8b7BiRJkiRJE8cODHVEZi4pPz9Y7loJfCIiZgDrgC7gvsFxg+dExD7A4cBtlf3nt01/RmV71VjXLkmSJEmaeAYYqpXM3Ab8/QjHHwQunrCCJEmSJEm14CMkkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj0DDEmSJEmSVHu7d7oACSAiPgn8XWY2RxhzQmZeNcT+04AV5dfjM/OSyrE+4DLgyMy8bLi5N/f3s+6UU3eyemnq6O7tZc6ikzpdhiRJkvRHDDDUcRGxP0UA8ZyIaAHnAA8B5wMfB9YAtwOHRcRtwFuBbcD7M3NTOc3rys/1EdELHAl8bcJuQpoCWs0iPzTAkCRJUh0ZYKgOXgzsCxwEXANcD/wMOBi4E/go8K5y7J8BG4EE9gPWl/s/U34eD+wN/BR41o4WMKunh/mXLtulm5AmO7uQ6qXVbO7QvxO7ZiRJ0nThGhiqg7mZ+bfA5RRBxjaKgCKAbZk5uA2wEngk8Gvg3mHmO7gc7++3pCmt1WyycfnyTpchSZI0IezAUMdl5pLy81vlrjWVw6uqY0pntZ1/SeVrdbtq7a7UKEkTravR2G5nmF0zkiRpOvH/oZYkSZIkSbVngCFJkiRJkmrPR0gkSb/nwpGSJEmqKzswJEmj4sKRkiRJ6gQ7MCRJv+fCkZIkSaorOzAkSZIkSVLtGWBIkiRJkqTaM8CQJEmSJEm1Z4AhSZIkSZJqz0U8NWEi4hnAccAA8BngQODYzFwSESdk5lWjmKsP+AegD3hvZrZ2pbbN/f0uTKhpr9Vs0tVodLoMSZIkaUgGGJpIx2bmBwEiYgFwEHBoRLwYeEpE3AmcADwLuAp4LPAQsAXYB3hcZr6znGs34N3AucCfRsTzgAcpwpF9gMcBFwFvBbYB78/MTeN+h9Ik1tVo0N3b2+kyJEmSpCEZYGgi5RD7bs/Mr0fEUzJzXUTsDZwFnAesBh4F3A98GTilct4ARbAxF9gb+DXwJOCOytg/AzaW190PWD9cYbN6erb76khJkiRJUue4BoYm0nURcXb5+Me+5b7fRMTLASLi+cAhFB0YK8sxPyzHbRtivvOAt5XjW8DstrErgUdShBv3ju2tSJIkSZImkh0YmjCZuQpYVdm1Zohh3xphiiWVuQa331Y5/oUhxp41mhol7ZhWs7nddWO6e3uZs+ikCapIkiRJU50dGJKkMddqNtm4fHmny5AkSdIUYgeGJGnUuhqNEdeN8a0+kiRJGmt2YEiSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPAEOSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7BhiSJEmSJKn2DDA0ahFxRET0RcQ5EfFnOzC+r/x8TET8dUScEBFnlPP8efm9rzq27by+oWf+o3En7Mp9SZIkSZLqa/dOF6BJ6bjMvGDwS0S8BZgJ3AUcXNk+BNgEzAHIzF9ExP5AAr8FngVcCrx+mOs8JSLOKD+PAVpAA1gBXAzcDnwFWBgRRwOHRcTDwHHAI4Hzyn92By7PzFXD3dDm/n7WnXLqaH8O0rTUajbpajQ6XYYkSZKmGTswtNMi4tSIOAmYk5kfAZ7Ztt2dmZ8CBtpPpQgxHpWZD4xwiTsycylwRzk+gBnlsdXAJRSBxprMvL5y3lXAd4GnUoQd1+zsPUr6Y12NBt29vZ0uQ5IkSdOMHRjaGddExNnAg8BDwAMRcSZwE3BwZfugiDiZP/w9u6f8bAJPGcU1fwi8FXgM8HVgG/8v1IiIOK4ydvDYj4G3AXsA/zTS5LN6eph/6bJRlCNJkiRJmkgGGBq1zLwFuGUUp3ypcu7fV/b/33LfksrxP9qu7KuuhTG4b21lX7XTYhVARNwGHEERmEiSJEmSJikDDE1pmXkpxTobkiRJkqRJzDUwJEmSJElS7RlgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z5vIZEkjYtWs8m6U07tdBmTUqvZpKvR6HQZkiRJtWIHhiRJNdPVaNDd29vpMiRJkmrFDgxJ0rjoajSYf+myTpchSZKkKcIODEmSJEmSVHt2YOiPRMRM4HTgWOBa4GOZmeWxGNzewbkOAV4NvC8zWxHxBeAW4NrMvGOI8X2ZuWQ7c462hu3Oubm/32f1NeV09/YyZ9FJnS5DkiRJGhMGGPojmbkFWBoRewOzgbdFxHeBFwBrI+JPgG7gB8BM4AFgFvDNzOyPiIXACUAC9wGtzGy1XWZTRHwauAnYAswA9gB6IuIFwNPL/V8Deil+V9eMUMMdlXO+CxwHPBL4MLAwIg7JzLvH9icl1Ver2QQwwJAkSdKUYYChkZwL/DXw+PL71ymCiruAY4BPAmdRhAjPpwghoOjc+AjQBzSB2ypz3pGZSwEiYl1mfjYi+oDZmbk4Ii4oz2+W190T2Aw8kSLAGK6G6jkAVwFPAFrAmu2FF7N6enxWX1OKHUWSJEmaalwDQyM5H9gf+FH5faD83ApszcwBii6LRwG/A3rK49cCZ1IED+2eEhFnRMTTgW2V/Wsj4i+AfcvzB6/7ROC3FJ0gI9VQPYdy7gQCmBcRTxz13UuSJEmSasMODA0rM/9mhMOryjGDa0usqJy3hqJbYqg5X1X5+t22OQAuKz+vbjt1qPaI9hraz1lVfr5pqFokSZIkSZOHHRiSJEmSJKn2DDAkSZIkSVLt+QiJJE1RrWZzTBbz9HWskiRJqgM7MCRJw2o1m2xcvrzTZUiSJEl2YEjSVNXVaOzy64F9HaskSZLqwg4MSZIkSZJUewYYkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2nMRT02YiDgSOBboAj6bmWsrx/oyc8kw510IfDEzv1d+/yTwd0ACrwbel5mtiDgKuCMzN462ts39/S5WqCml1WzS1Wh0ugxJkiRpzBhgaCI9PzPPj4jdgbdHxG6ZuSQi+oADI2JRZl4eEbsBHyjP+RRwILARICL2B1YAz6H4/W0B74iIDcBewE8i4izgp8C/AicDczPz3RN4n1LHdTUadPf2droMSZIkacwYYKgOZgA/yczLy+9zgf8G/hM4CliTmf3lsRcD+wIHAV8CbqMIRj4XEacBs4ANmXlxRMyj6NI4cHsFzOrp2eXXTUqSJEmSxo9rYGgifSsizgPeC/wLsCkiTgEeCayPiNeU434JzAf+ErihbY65mfm3wOXAwnLfQOX4ZuB/RMQbgB6KAGP2eNyMJEmSJGniRGZ2ugap4w4//PBcvXp1p8uQamfdKafu1Hoag+fY2TS+dvbfz3jo7u1lzqKTOl2GJEmaAiJiTWYe3r7fDgxJ0phzDY7ppdVssnH58k6XIUmSpjjXwJAkjchOinqrw78f3+IkSZImgh0YkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqr3dO12AJpeIeF9mvi8ivpGZLxr8Xjnel5lLBj9HmCeA4zPzqu1cb3C+I4GuzLyucuyE9vOr191eDVWb+/tZd8qpOzJUmlZazSZdjUany5AkSZIMMDRqD0fEk4FmRDSA+6uhBXBgRCwCZkTE6cB+wBXAicAA8HngXOCTwGERsRDYAMwDVgAvAI7IzP9VXm9GRJwBzAe+Vl5jK/Dd8vw7gdeVx98JPDsiPgIsAxZGxNHACcAPM/OfxvdHI009XY0G3b29nS5DkiRJMsDQqK0GTgc+DJwFfBo4rjw2A/hJZl4eEecAF5djjqcIKQ4AZgPfzszbIuJ4YBtwSTnuecCHgPdUrrctM5cOdmAAhwPLgf3L488CPldeA+Bm4IvAEcCazLw+Ig4CHjnSTc3q6WH+pctG/9OQJEmSJE0I18DQaN0EHJqZPwYOA24DNkXEKRQhwfqIeA0wkJkDQFJ0VswD1gObKDoxBmVmZrn9bYog47ARrn8L0A3cVX6/Efgr4LkUnRlby/mD4kmVFwB7AY+JiBm7cN+SJEmSpA6yA0OjkpkPAUeV288sd390hPGDa1DcXtm9tu0Y5SMo+1B0WNzWfn5mrip3XVeZ59YylFhH0Z1xX2XOtZVxV2/vviRJkiRJ9WaAodrIzAcpHjsZzTnbgL8fl4IkSZIkSbXhIySSJEmSJKn2DDAkSZIkSVLtGWBIkiRJkqTaM8CQJEmSJEm1Z4AhSZIkSZJqzwBDkiRJkiTVngGGJEmSJEmqPQMMSZIkSZJUe7t3ugBNbxExEzgdOBa4FvhYZmbl+LOB72fmxog4BvifwL3AtzLzpnLMUcAdmblxhOtEdd52m/v7WXfKqWNwR1J9dPf2MmfRSZ0uQ5IkSRoTBhjqqMzcAiyNiD0oOoJeHRG/BGYB84EHgJ8Ag+HEv2Tmqog4JyJeAGwA9gL6I+IvgO8B3cDzgIeBK4C3At8AvjJxdyZ1VqvZBDDAkCRJ0pRhgKG6mAn8EnhSZv5TRNwCvBB46QjnDGTm5yLiNGAA2Bd4LrAMOAVYSRGCrMvMEcOLWT09zL902a7fhVQTdhRJkiRpqnENDNVJC5gdEacAZwCvH2LMSRFxNsXjJgNtx34K7EERhKwHZgM/GmKcJEmSJGmSsQNDtZCZ7y83v1DZfUPbmOuA6yq7bir3X1J+v7Ry7NzK9pKxqFGSJEmS1Dl2YEiSJEmSpNozwJAkSZIkSbXnIySSNEW1ms0xX8zTV7NKkiSpU+zAkCTtkFazycblyztdhiRJkqYpOzAkaYrqajTG9PXAvppVkiRJnWQHhiRJkiRJqj0DDEmSJEmSVHsGGJIkSZIkqfYMMCRJkiRJUu0ZYGinRcR5EXFaRDwqIr4TEftGxBGV431t4w+JiAPb9vVVtk+LiP0r30+OiDMj4q3bqeOYiDhy1+9IkiRJklRXvoVEu2Ir0A30AtcBewMHRcRzgE3AnIg4D9gAzANWAq2IeBVwX3nu3Ig4HZhVfl8UEZ/IzG3Agsy8ACAieoEnlNfcDbgR+HPgQeBW4KSI+N/A+4DzgAA+D/wJsCfwncxcO9yNbO7v9w0LmlJazSZdjUany5AkSZLGjB0Y2lUbgAOBjZV93Zn5KWAA2AZcAmypHB+gCBcAHsjMTwJdwDrg8jK8AMjKOQsz8yJgX+AnwEvLa0d5/JsUAcnTgW9TBCp7AYcA80cKL6SpqKvRoLu3t9NlSJIkSWPGDgztquXAKuCUyr77I+Jkit+vzMyMiOo5uwOvo+imGJTAWuA1EXFhGWL8d0ScWY5bHRFvB34F3AC8Cvhe5fwXlp/v5f91YCwGnkjRDTKiWT09zL902Q7dsCRJkiRp4hlgaKdl5pJycwMwuL22MuRLQ4wlIh4BHA0sz8yb245fVznni22X/Hple1Hbsesq22eV19kT+FOKUEPSGGg1m5P6cavu3l7mLDqp02VIkiRpJxhgaMJl5rXAtRNwnd8B7xrv60iaHFrNJoABhiRJ0iRlgCFJ2mFdjcakfdxqMneOSJIkyUU8JUmSJEnSJGCAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj0DDEmSJEmSVHsGGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNrbvdMFaMdExEzgdOBY4AbgwszMYcYeUY7bDViZmSu3M3dfZi6pfD8GaAFdQCszVw1z3jHAS4F9gHdn5k+3N/eO1jG4PdL5EbEAODIzLxviHk4DVmTmPTty7c39/aw75dQdGSpNW61mk65Go9NlSJIkaZoywJgkMnMLsDQiuoAZwBsjYj/gCuBEYCAzF5fDj8vMCwbPjYi3ADOBu4CDK9uHAJuAOW2Xm1+OWw38eUS8FjgDeF85/mOZeW85djNF0LExIl4JHA4sBU4DHqzUMBN4I3BgZr41Iv4NuB24HHhF29j5wMKIOAR4dkR8BPgs8D+BrcB3M/Nb7T+jiPj/gD2BpwA3l/teD/wAmJGZ1w/z45W0A7oaDbp7eztdhiRJkqYpA4zJKYGLgbOA44ENwAERMTszNw0OiohTKTop5mTm4ohYTBl0tG1fEBGzgC1lV8c64G6KYOLfgScAT6YITu4FHl9+AvwbRajxLOARwH3AU4EAPg+8oRy3R7nvURHRTRGOfBF4RvvYzFwXEWsy8+6IuLkcdwRFOLIc2L+ccwtFGDNoXmaeHxF/U9m3D/Ac4MKRfqCzenqYf+mykYZIkiRJkjrINTAmp4HMHKAIMlYA84D1lfDimog4myJQ2Ao8EBFnAje1bd8fESdTBFl/Bexdnr8BeBnFH/9bgQFgPbCt/L6+Ussi4C8pAo+DKH6ndqMINV5eGTeXIsSYWR7fVtYfQ4wFmBcRT6xcP4BbgG6K7hGAnwFPjIizKLo5fh4RbwT2q8zzXWDbcI/bSJIkSZImBzswJpnqOg+V7dvbxtxC8cf+jvpSRDw6MzeW5/8I6KscH1wD451t17kOuK6yq3pOe90/Bi6o7Bqsfe0w499Ubt453LgylDh78HsZeLwAuDkzLyn3nQ78/XB1SZIkSZImBwMMAZCZv+p0DbsqM+/k/wUeg/ve3aFyJNVQq9mcUgv2urCqJEmaTnyERJKkScqFVSVJ0nRiB4YkadroajRcsFeSJGmSsgNDkiRJkiTVngGGJEmSJEmqPQMMSZIkSZJUewYYkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2vM1qpoQEXEusAnoyswPbGdsZGZGxHszc3FEXAm8HDgXuCkzrxrmvL7MXLIz9W3u72fdKafuzKnSTuvu7WXOopM6XYYkSZI0KRhgaKJsy8wPR8QbI+JQ4ERgAPgUcDIwF/gsRUjxSeA24CcR8WTgbmBhOf4w4KqI+DfgduBy4BXAgwAR8RZgJnAX8ARgM7AeODgzPzohdyrtgFazCWCAIUmSJO0gAwxNlBkR8R6gG9gL2AAcAOwJJHBgOe7bmXlbuf0doA/4GPBq4Ebg4PLYauCLwDOAAD4PvAGYU3ZtLKYINTZTBBkPjlTcrJ4e5l+6bFfvUdphdvxIkiRJo+MaGJoo2zLz/cD9wApgHkVnxOMpAozZ5biBwRMy88fA4cAPgEOAG6rzlecFxaMpLy/3PxARZwI3AevKeRdQhB+SJEmSpEnKDgxNiMG1KTLzg+Wu2yuHVwKfKLfXtp33tHKzt/wcnGfJUOMlSZIkSVOTHRiSJEmSJKn2DDAkSZIkSVLt+QiJJHVIq9l0Mc8J1Go26Wo0Ol2GJEmSdpIdGJKkaaGr0aC7t3f7AyVJklRLdmBIUod0NRq+vleSJEnaQXZgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z6LeGrMRcRM4HTgWOAG4MLMzBHGfxL4u8xsbmfeAM7KzCWjrKdve+ds7u/3dZaaUL7SU5IkSRodAwyNuczcAiyNiC5gBvDGiNgPuAI4ERjIzMUAEbE/sAJ4TkS0gPcA/cA/Ai8BDgXOAj4NLAMWRsTRwMnAemAPYA7wPuBtwMPldc4AbgK2AAdGxKLMvHzcb17aQb7SU5IkSRodAwyNtwQupgghjgc2AAdExOzM3AS8GNgXOAi4hiJ0uAl4BtBFEUAcBPwgM78REU/LzOsj4s+ADwLnAv8KHAjMA1YC84F1mfnZiOgDfrK98GJWT4+vs5QkSZKkGnMNDI23gcwcoAgyVlCEDOvL8AJgbmb+LXA5RZBxFPBK4DbgMRQh227AQDk+IuI4YGv5WMrWcu7dKDoyZgM/ArZValgfEa8ZtzuUJEmSJI27GGFpAmlCRcQC4MjMvGyir3344Yfn6tWrJ/qykjQlDK4hZCebJEkaCxGxJjMPb9/vIySqjcxcC6ztcBmSJEmSpBryERJJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtuQaGJEnaZa1m8/eLeUpjobu3lzmLTup0GZKkGrEDQ5IkSbXSajbZuHx5p8uQJNWMHRiSJGmXdTUavkZVY8ZuHknSUOzAkCRJkiRJtWeAIUmSJEmSas9HSDQpRMRM4HTgWOBa4GOZmZXjpwErMvOeyr4TMvOqHZl/c3+/7arSKLi4niRJkiaaAYYmhczcAiyNiL0oOofeHBE/AZ4AbAXmAIsi4iGK3+tvAodFxFbg6cCWzLyoM9VLU0ur2QQwwJAkSdKEMsDQZDMjMy+KiMXAnMxcXG73AyuAxwPPB2aU448FmuX+Yc3q6XHxOWkH2a0kSZKkTnANDE02WyPi7cCvgNWV7bXAa4C5wO+AnnL8tcD+wI8mvlRJkiRJ0lixA0OTSmae37br65Xt69qOXd32KUmSJEmapOzAkCRJkiRJtWeAIUmSJEmSas9HSCRJo9ZqNqfsYp6+IlaSJKme7MCQJKnUajbZuHx5p8uQJEnSEOzAkCSNWlejMSVfPTxVu0okSZKmAjswJEmSJElS7RlgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas9FPDWiiPgk8HeZ2Rzm+KuBzZn5hR2cL4DjM/OqUdRwwlDjI+IY4KXALOBNmZltx48C7sjMjdu7xub+fhfvk3ZQq9mkq9HodBmSJEmaZgwwNKyI2B9YATwnIlrAOcBDwPmZeV85bAbwiHL8F4CfAr8CDgbeCbwb2AR8DFgKXAIcFhE/B14C3Ay0gGcBdwKHAhuAeZn5N+U1DouIu4a5/uXAc4DnRkT7HHsB6yLiHGBNZn55LH8+0nTV1WjQ3dvb6TIkSZI0zRhgaCQvBvYFDgKuAa4HfkYRTtwXEYcCTwb2iIh5wF3AF4CjKEKMP6UIOO4FHg/8IDOvjoiFwAuBizLztxHRC/wSWEgRZlwCnDVEPX9w/XLf/wJ+AuxdmWNTZn4uIk4DtgE/L48Pa1ZPz5R8JaQkSZIkTRUGGBrJ3MxcEhHPpwgytgEJRHn8RcDbgdnAa4Gt5fGtFL9b68tztpbbA5W5vwm8PSJuBv4EuL88JzMziydN/kj79QH+LTNXRcTbKnM83HbeVmDeqO9ekiRJklQbBhgaVmYuKT+/Ve5a03b8Q+Xmw8AnKofWVrbfWdkenG9J+f228vMbw127bXtt25jrKtsfHWKOS8rNT7YfkyRJkiRNLr6FRJIkSZIk1Z4BhiRJkiRJqj0DDEmSJEmSVHsGGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPAEOSJEmSJNWeAYZ2WUS8KiLOjYhFO3l+X2X7hIg4LSL2H2l8RBwTEUe2zxERfxERC4abX5IkSZI0Oe3e6QI0JTwGWAdcHRELgROABG4A/hzoBn4AzATuAJ4ObMnMi4aY6zDgHuDJEfEy4EHgscBDmfmZyrj5wMERcVdm/hqYExFnAE8Dbo6ID5bj/gFYGBELM3PNcDewub+fdaecujP3Lk063b29zFl0UqfLqK1Wsznu/z3w34EkSdLo2YGhXVYGEbcCFwHHAh8BZpWH/x34KfBJYHZ5/BfAXtuZ9q+ATwPPAR4A9m47vg74ehleADyQmUuBq4C5wH8D/wwcCawZKbyQppNWs8nG5cs7Xca05r8DSZKknWMHhnZZRLwEOIQimLgWOBPYXB7eCmzNzIGIyPL4QuBHlSkGuyfurOz7CHAWsBKYB9zddtkNwGsjopmZD7Yd+yVFh8ZfAp8CnhoRz8zMm4a7h1k9Pcy/dNmO3bA0idlptH1djca4/vfAfweSJEk7xwBDuywzrwSurOxq73ZYVY5bUn6/uu38sypfv1nZvmWY6w3O09e+LzMvK3edXTmlui1JkiRJmoR8hESSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7roEhSdPMaF8T6is/JUmSVAd2YEiShuUrPyVJklQXdmBI0jQzmteE+spPSZIk1YUdGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbXnIp4atYg4EjgW6AI+m5lrhxjTl5lLBj+HmWcGcDZwBfB64IPAiZl5cXl8AXBkZl42xLkBLAG+mJnfi4jIzBzmOsPWMGhzf7+LFWpaaDWbdDUanS5DkiRJGjUDDO2M52fm+RGxO/D2iNgfuA3YJzM/HhGzgYURcTTQExFnAA8Am4DHAg9l5mcyc1s5xxHAT4BnA3dGxFuAucA1wNERsRJ4M7ANeD9wOfBR4EBgY0R8Brg0Il4EBPAZimDkIeD8spaFmblm/H80Ur11NRp09/Z2ugxJkiRp1AwwNBbuy8xlEdEHkJmbImJNZl4fEX+WmUsj4mzgccBq4FGVczcDjwR+BjwXWAocShFOrAOuB44CNgIJ7AfcXM79rHLftymCkUuB55djri/nPBhYs73wYlZPzw6/VlKSJEmSNPFcA0M741sRcR7wXuBfKDoj2kVEHAdsLb8nsBLYF/hhZdytFMHGKuAgYH45djZwH0V4cSNFyPFr4F5goO1aA8B3gFOAecAvy5qSoiPjkRHxzJ2/XUmSJElSp9mBoVHLzFUUgcOgJeX+JZUxF5Sb17Qfa5vrKuCq8utLy8+VwCfK7TeXn2eNcL215ee5lTH9le1qrZIkSZKkScgODEmSJEmSVHsGGJIkSZIkqfZ8hESSNKJWszltXjPsa2YlSZLqyw4MSZJKvmZWkiSpvuzAkCSNqKvR8DXDkiRJ6jg7MCRJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPRTw1qUTEucAmoCszPzDE8b7MXDLaeTf390+b10Rqeunu7WXOopM6XYYkSZK0y+zA0GSzLTM/DGREnBcR50bEUyPi3RHxIoCIeG5EnBQRfRGxZ0Sc0dmSpc5oNZtsXL6802VIkiRJY8IODE02MyLiPcD7gEcAfcALgYsy87cRsRB4eWaeERGvBv4P8G/bm3RWT4+vidSUY1eRJEmSphIDDE022zLz/IjYBpwJbAa+Cbw9Im4GBoDPRcRfA18EPpeZSztWrSRJkiRpTBhgaFIZXN8iM89vO3Rb+fmN8vN7EfFy4HMTVJokSZIkaRwZYGjKysyvdLoGSZIkSdLYcBFPSZIkSZJUe3ZgSNIU1mo2d2kxz1azSVejMYYVSZIkSTvHDgxJ0rC6Gg26e3s7XYYkSZJkB4YkTWVdjYavCJYkSdKUYAeGJEmSJEmqPQMMSZIkSZJUewYYkiRJkiSp9gwwJEmSJElS7bmIp8ZMRLwvM98XEd/IzBcNfh9i3ALgyMy8rPz+KmAB8F/AbcCWzPxJeawvM5cMMcdFwAZgBfCSYcZEZuaO1L65v3+XXjUp1ZGvQJUkSdJUYoChsfRwRDwZaEZEA7g/IvqArcB3gWcBDwA/AI6OiJWZuQF4DLAOuBo4FGhFxF8CDwJExBuALuCnmfnl8lr7AP8O3AmcGxEvBg4CZgJ3Ac8Hbo+Ix2bmhRFxTmZ+cNx/AlKN+ApUSZIkTSUGGBpLq4HTgQ8DZwGfBvqA5cD+QBN4AvBz4PoyvCAzL4qIJwEXAZeUcwXweeANwDOB64A5lWu9Afhz4O3A7Zn59Yh4b2YujojFwP2ZuSwiXhgRbwZWjlT4rJ4eXzUpSZIkSTXmGhgaSzcBh2bmj4HDKB4HuQXopuiK2AfYE3gYOCoiDgCIiJcAJwC/qMy1CXh5uX1jee7dleNvA55O8djJbyLi5cADEXFmWcdAOe4a4MWZOWKAIUmSJEmqNzswNGYy8yHgqHL7meXuCytDbq1sv7ly3pXAlW3TrdrOtf5ozYs2/1F+Phf40nbGSpIkSZJqzgBDU1pmXtfpGiRJkiRJu85HSCRJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPAEOSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7BhiSJEmSJKn2du90AZpeImImcDpwLHADcGFm5jBjzwV+C/w8My/fzrwxOE9EnJCZV1WO9WXmkpHO39zfz7pTTh3dzUg11t3by5xFJ3W6DA2j1WxOqf/mtJpNuhqNTpchSZKmOAMMTajM3AIsjYguYAbwxojYD7gCOBEYyMzFbadtioheYBYwH7gPmAM8ADwe2AAMREQ3cB1wWETsCcwFbgQWRsTRmXn9uN+gVAOtZhPAAEMTpqvRoLu3t9NlSJKkKc4AQ52UwMXAWcDxFEHEARExOzM3Adsyc+ng4Ii4BXgh8JbMXBwRi4FNmfm5iFicme8tx70Y+AHQC8wG1mwvvJjV08P8S5eN/R1KHTCV/p/9qaqr0fC/OZIkSaPkGhjqpIHMHKAIMlYA84D1ZXgBMCMizoiIv4yIU4AzgNcD/RHxVuC/gIFy7N0R8aaIeEr5fV9gI3AQxRMmx03MLUmSJEmSxoMdGOqI6poUle3b28acP8SpNwwz3xcrX+8YaawkSZIkafKxA0OSJEmSJNWeAYYkSZIkSao9HyGRpCloLF7T6atYJUmSVCd2YEiS/kir2WTj8uWdLkOSJEn6PTswJGkK2tXXdPoqVkmSJNWNHRiSJEmSJKn2DDAkSZIkSVLtGWBIkiRJkqTaM8CQJEmSJEm1Z4ChCRMR50XEaRHxqIj4zjBjzo2IMyLimMq+fSPiiHI7Kvv7RrjWaRGx/9hVL0mSJEnqJN9Coom0FegGeoHrIuJFwC+Ao4F/zMzfVsZmRLwFmAt8FjgoIhYBtwN/8GqFiJgLnFyO/QzwBmAB0IyII4E9ge9k5trhCtvc3+9bFzRltJpNuhqNTpchSZIkjSk7MDTRNgAHAhuBq4EXAHtUwottmbkU+DGQ5dhB92fmUO+FnF0Z+2zgEmAVsBY4BJg/UnghTTVdjQbdvb2dLkOSJEkaU3ZgaKItpwgXTsnMgYjYA/jWEON6KEKJ2ZV9A21jnhIRZwC3VsbeSNGN8UTgcuCXwKbtFTWrp4f5lw6VjUiSJEmS6sAAQxMmM5eUmxuAJRHxGKArM/9v+5jMXAmsBD5RHlo7xHyvqny9vjJ2CUBE7An8KfDesbsLafpoNZu1erSqu7eXOYtO6nQZkiRJ6hAfIVHHZOYvMvOccZz/d5n5rsx8eLyuIWlitJpNNi5f3ukyJEmS1EF2YEiShtTVaNTm0ao6dYJIkiSpM+zAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj0DDEmSJEmSVHsGGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNrbvdMFqL4iYiZwOnAscC3wsczM8lgf8A3gGKCZmVeV+8jMJSPMuRx4B3AQ8PzMPHOYcX2D80TECZl51QhzDjk2IiIzMyKOAVqZuWq4OTb397PulFOHOyxNO61mk65Go9NlSJIkSb9ngKFhZeYWYGlE7EXRrfNm4OPl4QXACZn5wTK4+KOAISKeBjwPeDAz/6ncvQp4fjnfvRHRCzwB2ArcDTwZuLE8/2XAQ8BhEXEXcE75/XzgXcBvgP8CDo6INwEPAvOAqyLiq8BHI+J/ArOAL4zJD0WaJroaDbp7eztdhiRJkvR7BhjaETMy86KIWFzZ9yDwmIiYNcJ5ewO/Bp5U2bcV6AIeAPYCFmbm4nLuZ2fmewEi4iXA0zPzPRFxeHnu9cDPKEKOH1KEIU8BfpWZn4iI9wGtcuzNwCbgm+X1RjSrp4f5ly7b3jBJkiRJUoe4BoZ2xNaIeDvwq8q+B4G/BT7A8L9HDYpAYXbb/n8Gvlxur67M/Z2IeHtEPJsi+LguIl5ROW8bkMCWcu5FFIHIo8sOjJ9Uxg4A3weeDfzZjt+qJEmSJKmO7MDQdmXm+UPsG1zn4l1D7Bv8/uly8wvDjBnc/npl3zfKz+8MUcrawY2I2A94DnBLZv7rCPW9d4h5JEmSJEmTjAGGJqXM/Crw1Q6XIWkCtZrNXVpst7u3lzmLThrDiiRJkjSRfIREkjTltZpNNi5f3ukyJEmStAvswJAkTQpdjcZOL7bra5IlSZImPzswJEmSJElS7RlgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj1fo6rtiohPAn+Xmc3y+zOA44AB4GrgTzLzsmHO7cvMJTt4nQDOah8fEecBvwU2ZeanBsdmZu7sPbXb3N/vaxY1pXX39jJn0UmdLkOSJEnaaQYYGlFE7A+sAJ4DNMvdx2bmB8vjC4A/iYi3ADOBu4AeinDjqmJIvJ0i6BgMPs4BngscQNEFtBx4PfCNcs6XAQ9l5jUR8WTg9sz894h4e0Q0gDOBT0fEs4EDM/OtEfFvwO3A5cCJwH1AN/BroAv4aWZ+eXx+SlK9tZrF/3QNMCRJkjSZGWBoe14M7AscBPxjuW+ozoc5mbk4IhYDZOZ7ASLiecCnMvOOiHgRcAfwLuCjwALgQ8CbgHWZ+ZWIuAB4ema+Z4Savg3cDRwFPCoiuoHVwBcpQpIB4PPAm4FnAtcBc0a6yVk9Pcy/dNlIQ6RJy+4iSZIkTQWugaHtmZuZfwtcHhELy33XRcTZEdFHEW4APBARZwI3Ab+IiDeU3RnfAv5H2UmxH0U3xxMy84fAVuAdFN0ZA+U8vy7nfwVAZn4fODQi3ga0yn8GgLnAHhRdH7sB2yiClaAI5l5Xzn8jsA9F4CFJkiRJmqTswNCIBtejyMxvVfatAlZVhq0ZYYrqehbvKj+PLec5v3Ls1ur12mr4QNuuteXnBUNcZ21EHAscDSzPzJtHqE2SJEmSNEkYYGjKycxrgWs7XYckSZIkaez4CIkkSZIkSao9OzAkaRpoNZuTejHPVrNJV6PR6TIkSZLUQXZgSJJqr6vRoLu3t9NlSJIkqYPswJCkaaCr0fBVwZIkSZrU7MCQJEmSJEm1Z4AhSZIkSZJqzwBDkiRJkiTVnmtgSJKmhbq8icU3qkiSJO0cAwyNq4iYCZwOHAvcAFyYmTnM2CPKcbsBKzNzZUTEUOMjoi8zlwwzzzFAKzNX7Widm/v7a/GHjTQe/IO5XnyjiiRJ0s4xwNC4yswtwNKI6AJmAG+MiP2AK4ATgYHMXFwOPy4zLxg8NyI+DNweEeuAZwF3AvsCewA9gyFGRPQBXwZ6KX6nfwUcHBEPAy9vu4Y07fgHc8E3sUiSJE1uBhiaSAlcDJwFHA9sAA6IiNmZuWlwUEScCrSA+zNzWUT0Ar8EFlKGERFxQWXeGcCewGbgicAa4G7gRcNdo92snh7/sJEkSZKkGnMRT02kgcwcoAgyVgDzgPWVYOGaiDgbeASwFRgo9/8JsI0icFsbEX9B0YlxR0ScDjQogovfArMpQouXAauGuIYkSZIkaRKyA0MTorpeRWX79rYxtwC3DHHuR4eY8rLK9icr24NtFH3l53+OulhJkiRJUu3YgSFJkiRJkmrPAEOSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtGWBIkiRJkqTaM8CQJEmSJEm1Z4AhSZIkSZJqb/dOFyBtT0QcARxLEbitzMyVI4ztA1YBrcxcVe47ITOvGukam/v7WXfKqWNYtVQf3b29zFl0UqfLkCRJknaJAYYmg+My8wKAiOiNiA8AXwNOBm4D9gH6gYOAQykCjJdHxGuBvwYOA0YMMKSpqtVsAhhgSJIkadIzwNCkERGnAgH8FHgWcF9mLiu7Lp6emYsj4oJy+L8DTwAevSNzz+rpYf6ly8ajbKmj7CySJEnSVOEaGJoMromIs4FHAAsoQozdgG2VMbeWAcf88vtWYKAcK0mSJEma5OzAUO1l5i3ALSMcX1L5Wm2jWFV+Vo9LkiRJkiYhOzAkSZIkSVLt2YEhSZKk2mk1m5N+HR/fAiVJY8sAQ5KmuKnwR8CuajWbdDUanS5D0jTiW6AkaewZYEiSpryuRoPu3t5OlyFpFLoajUn9hrDpHhxL0ngwwJCkKW6y/xEgSZIkgYt4SpIkSZKkScAAQ5IkSZIk1Z4BhiRJkiRJqj0DDEmSJEmSVHsu4qkJExGvAhYA/5WZl4/y3GOAVmauKr9fCPwSeBzwceDIzLxsiPP6MnPJ9ubf3N/vauGaknx9qCRJkqYKAwxNpMcA64CrI+I0YAVwGnAZcA7wEPAx4A3AGuBB4OnAFuA+4OCIuCszfw0kMAA8PDh5RPQBFwFvAbYBm4A5439bUn35+lBJkiRNFQYYmjCZeVFEPIkiZPg2EMCM8vD1wM+A/YGfA3sDC4Em8Hjgu8DdZXgB8GBmfjQizq5c4iHgRIpg5MTMXBwRF+xIbbN6enzNpCRJkiTVmGtgaMJExEuAE4BfAN8DXkPRYQFFx0RS/E5uBeYB11IEGj8CNgAvi4h9yvFzIuLtQFflEsuB12Tm94H7I+JkYPeIeFlEVMdJkiRJkiYZOzA0YTLzSuDKyq7bKttrK9s3Vravrmz3VeY6q236wfNfUB7/u/L7l0ZfqSRJkiSpbuzAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj0DDEmSJEmSVHsGGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbW3e6cLkEYrIo4AjqUI4GZk5t+MMLYvM5dMWHGSJEmSpHFhgKHJ6LjMvACKgCIi5gInA3OBzwLnAA8B5wMLI2JhZq4ZacLN/f2sO+XUcS5bmhjdvb3MWXRSp8uQJEmSxpQBhiatiDgVmAXMBhI4sDx0PfAz4GBgzfbCC2kqaTWbAAYYkiRJmnIMMDQZXRMRZwMPAluBHooAY3Z5fFv5PYBHRsQzM/OmkSac1dPD/EuXjV/F0gSxk0iSJElTlQGGJp3MvAW4pW33SuAT5fbayv5VE1GTJEmSJGl8+RYSSZIkSZJUewYYkiRJkiSp9gwwJEmSJElS7bkGhiRNMa1mc8ov5umrYiVJkqYfOzAkSZNKq9lk4/LlnS5DkiRJE8wODEmaYroajSn9WuCp3l0iSZKkodmBIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj0DDEmSJEmSVHsu4jlFRcRM4HTgWOAG4MLMzGHGngv8DnhyZr52mDGnASsy856IeBTwGuByoDczLx6hjhjuuuXxTwEfzsyfRMSLgScD3cDfZuavh5srIvoyc0lE7AscmJm3DHeNHbG5v9+FATUltJpNuhqNTpchSZIkjTkDjCkqM7cASyOiC5gBvDEi9gOuAE4EBjJzceWULcDmiNgTWAxsAv6BIgRZA8wHFkXEJzLz/ojYAJwN/FtEnFWe/zWgl+L3ag3wAmBFRBwB3JSZN0TEXsC7gQA+D8wFflPWcFhmfrCs839HxKPLkKIPeDRwO9D+aoW9gYMi4ljgIuAtwG+BLuCnwGOBzcCXM/O+XfqhSpNAV6NBd29vp8uQJEmSxpwBxvSQwMXAWcDxwAbggIiYnZmbgG2Z+YmIeAtwOEXgcS+wH/BzipBgHUUHxjaAzPxSRMyn6PBoAo8H9qQIC55IEWB8HegHnlkeA3gS8G2Kx5f2AtZk5r3DFR4RM8rN+zNzpPdCPkQRzKwA3gFcB8wB7gKOoAhMhjWrp2dKv3ZSkiRJkiY718CYHgYyc4AiyFgBzAPWl+EFwIyIOAPooQgetgFbKToYtpbj1wKvqQQKg64F9gd+RBFc/BaYPXhdis6J35RzA/wAeB5wDPD9trm+V3ZzvBX4cjnP4HMdA21jn1LWPBiMLAdek5nfB24E9gHuLj8BHjPkT0aSJEmSNCnECMsTSNPG4YcfnqtXr+50GZJ2wOB6NXZNSVPXVPjf+VS4B0nqlIhYk5mHt++3A0OSJEmSJNWeAYYkSZIkSao9F/GUJE06rWZz0r36uLu3lzmLTup0GZIkSZOWHRiSJI2zVrPJxuXLO12GJEnSpGYHhiRp0ulqNCbVwniTrVtEkiSpjuzAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj0X8dSYiohzgYeARwMfzcz7hxnXl5lLhtgfmZkR8TTgaOBI4AvAkwbHR8QJmXnVWNa9ub/fRfZUW75+U5IkSTLA0Njblpkfi4hHA6+IiP0oOn2WAy8CHgCuAhZGxGHAK4EAFlMEFR8CbsjMWyNiHbBvZl4ZEb0RcUZ5/mMj4qfA44FHALcCfw4cCJwHvIfid/vLQG9Z16cy86fjf/vS2Go1mwAGGJIkSZr2DDA03mZQhBJvAroy8+8BImIN0AV8myLgeDJwc2beUDm3D3h/ub0+M5dGxNlAZuYdEfFiivBjRfn5KOBp5fcuYCbw38B/AkcBlw9X5Kyenkn1SkZNH3YGSZIkSQXXwNBYmxERbwXeStEBsRV4B3A18HBE/HVEPAqYBzwMPA84Bvg+MDA4SUScAswF/ioijiznAcjKtTYBvy7H7UERWPyEohvjxcDvgPnAXwLVYESSJEmSNMnYgaExlZnnt+2qfr+1sv2m8vP2yr7fr4mRmZcCl1aOrSr3V8d8tHL8gsGNiLgNOAK4KzPPHkX5kiRJkqSaMsDQlDNE+CFJkiRJmuR8hESSJEmSJNWeHRiSVHOtZtPFPCtazSZdjUany5AkSdIEswNDkjSpdDUadPf2bn+gJEmSphQ7MCSp5roaDV/zK0mSpGnPDgxJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtGWBIkiRJkqTacxFPbVdEHAEcSxF4rczMlbsw1wmZeVVE9GXmksHPyvEFwJHAKuDIzLxsmHkWAbcDJwLXA0cA1wK/ycyfDDH+D67TbnN/v6+pVC35ylBJkiSpYIChHXFcZl4w+CUi3gLMBO4CjgNuA/Ypvz8d2JKZF5VjzwA2A+uBg4HZEXEnsDAiDgGeHREfAT6bmXcC84Gjy/EvjIijgfOAM4GHgSvKcd8BXgj8CjgE2BuYA+wREX3ATcAWYAawB9AzHj8Yabz5ylBJkiSpYIChHRYRpwItYE5mLo6IxcB9mbmsDA2OBZrA46unUQQYTwAeBOZm5rqIWJOZd0fEzcAXKToo7gTWUXRUbAC+BfyMIviYB6ykCDjuzMz1EXEQ8COKMGWgcs11mfnZsqbZZa0XMIJZPT2+plKSJEmSasw1MLQjromIs4FHAFuBByLiTIouh22VcdcC+1OECoPWAbOBBcCNlf3zIuKJ5XwDFEEHwH3AUcABlWO7UXRkzG6b+38AtwLdwH9V9ldrWhsRfwHsO6o7liRJkiTVih0Y2q7MvAW4ZZjD/1GOGVxf4uq2c7/SNv7Ocv+bqt+BteX+3wBvHuI6N7bvyMzTys3b2g6taqsJYMi1NCRJkiRJk4MdGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPAEOSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7u3e6AEmSpoNWs8m6U06dkGt19/YyZ9FJE3ItSZKkiWKAMY1FxLnAb4GfZ+blEdEDvBQ4FliWmV8uxy0AjgRWAUdm5mXDzLcAWAzcCnw+Mx+oHOvLzCXldmRmVo7tC5xSXvermfnZtnkjM7P9vOHmBo7PzKva6hq2boDN/f0T9oeFtKP8I1Q7o9VsAvi7I0mSphwDDAFsAsjMfmBpRHQNhhel+cDRwHrghRFxNHAecCbwMHBFZt7ZNudAGZAEcCmwMCIOAS4EPhQRTwIOBc7KzPsGrwv8NiLeBjwEbAHmAHtExMPA/RGxf7l/HTAXuLGc+2jglcA3gCdExGrg5HLMHwQi0mTgH6FTT1ejwfxLl437dQxjJUnSVGWAMb1ty8ylOzBuHXA9sAH4FvAz4GBgHrCSIuAYDDCuGux0iIgW8HBmrouINZl5d0TcTNHJsZAiiDgoIp4PfKE8/znAauBRwP3A5cALgW8CbwGawOOBHwC9wGxgTWZeHxFHZeZXIqKv3J/AgTvyg5jV0zMhf1hIO8o/QiVJkqQ/ZIAxvc2IiDOAXwH9wH9n5nqAiDiq8v0+4CiKAGMrMECxAOx6iqDgR5U5Tyi7JL5Sjt07IvYB5kXEE8tz9wQeQ/H7t9tgiFI8/cFKimDkbuDR5XjKz2spgo8fAfsCG4GDilPjuMpYgB6KAGP2rv2IJEmSJEl1YIAxjWXm+cPsX9L2/TfAm4cYemPbuLXA/1fZ9bHK9pvKz8FOjXO3d92KS8rPe4CrK/tvaBt3Tds8K4FPlNtrh5lbkiRJkjQJ+BpVSZIkSZJUewYYkiRJkiSp9nyERJJqqtVs1noxT1/zKkmSpIlkB4YkadRazSYbly/vdBmSJEmaRuzAkKSa6mo0avt63zp3hkiSJGlqsgNDkiRJkiTVngGGJEmSJEmqPQMMSZIkSZJUewYYkiRJkiSp9gwwtEsiYmZEnBERV0ZEX0TECGPfV35+Y/B7RJywA9eI8rNvmOPnRcRzyu2DI2JxRLw7IhbuxC1JkiRJkmrIt5Bol2TmFmBpRHQBM4A3RsR+wBXAicBAZi4uhz8cEU8GmhHRAO4HDouIO4ETgGcB/1R+3gkcCmwA9oqIbUDP4HUj4jyKAG45cBjwtfLQK4DFmTkQEedExBzgpcC3MvPfhruPzf39vlVBtdJqNulqNDpdhiRJklQbdmBoLCVwMdACjqcIH3aPiNnl8dXA6cDHgbcD3wHIzHXA3sBZ5ecvgYUU4cfngEdl5qcoAo9BM4APA8cBazLzjmFqWgPcM1J4IdVRV6NBd29vp8uQJEmSasMODI2lgbLzIYEVFN0Q6zNzU3n8JuD9mfnjiDgMuA04LiKeDxxC0XmxgCKo2B14uDxvbUT8BbBv5VpbgXcAVwIvquz/V+B9EbEF+A/gAuD7EfGkzPzBcIXP6ulh/qXLdv7OJUmSJEnjygBDYyIzlwyxfXvbmIeAo8rtZ5a7B8d+a4S5P19uXlbZd35lyK2V/f8FvKdybM2O3YGk0Wo1m6N+9Kq7t5c5i04ap4okSZI0lfkIiSRpQrSaTTYuX97pMiRJkjRJ2YEhSdopXY3GqB69cqFcSZIk7Qo7MCRJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPAEOSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7BhiSJEmSJKn2du90AZr6IuJc4LfAbZl5XduxyMwc/Bzi3AXAkZl5Wfn9COBYivBtZWauHIsaN/f3s+6UU8diKmlaaDWbdDUanS5DkiRJ04gBhibSAxFxHkX4sBx4PfCNiHhR+fkEYCvwXeBZwAPAD4CjI2JlZm4AjsvMCwYnjIi+zFwSEX3ADGAj8KfAz4CbgD8H1gB7Z+bFE3Wj0lTX1WjQ3dvb6TIkSZI0jRhgaCJsy8ylABHxMuBDwJuAdZn5lYholJ//ShFs7A80gScAPweuL8OL34uIU4FWZdcMIIFPAO8GzgfeBbQy858j4r0jFTirp4f5ly7b5RuVJEmSJI0P18DQRNsKvAO4Ghgo9w1+3gJ0A3cB+wB7Ag8DR0XEAeWYayLibOAR5VybIuIU4JHAQPkYyubyM4DZEfEG4MFxvi9JkiRJ0jiyA0PjLjOXVLbPrxy6tXo8My9sP1Z6c+X8WyiCju1eb/DREh8dkSRJkqTJzwBDU1o1PJHUea1mc1oumOuip5IkSbvOR0gkSRpnLnoqSZK06+zAkCRNmK5GwwVzJUmStFPswJAkSZIkSbVngCFJkiRJkmrPAEOSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7BhiSJEmSJKn2fI2qaisizgV+Bzw5M1+7nbF9mblk8HOI45GZOdz5m/v7WXfKqbtetNQB3b29zFl0UqfLkCRJksaVAYbqbguwW0R8CNgEfAxYCqwBbs/Ma8pxT4mIM8rPY4AW0ABWAH8PfAi4YSILlyZCq9kEMMDQH2g1m38Uyhp0SZKkyc4AQ3W2LTM/ERHvAfYB7gUeD9wJfBR4V0Q8HrgVuCMzl0ZEH5BAADPKeW7OzBHDi1k9Pcy/dNk43YY0fuwc0o4w6JIkSVOBAYbqbEbZVTEH2Fr+s54i2MjysZB/AoiIF1XO+yHwVuAxwNeBgQmtWpI6rKvR+INQ1qBLkiRNBQYYqq3MPH+YQ0vK40sqY9v39bWPlyRJkiRNXr6FRJIkSZIk1Z4BhiRJkiRJqj0fIZGkSW6oN07UUavZpKvR6HQZkiRJmqTswJAkTYiuRoPu3t5OlyFJkqRJyg4MSZrk2t84IUmSJE1FdmBIkiRJkqTaM8CQJEmSJEm1Z4AhSZIkSZJqzwBDkiRJkiTVnot4ThMR8Ung7zKzWX5/FbAA+C/gF0ArM1eVxyIzc5h5+jJzyXauFZmZEfFu4KfAXUBXZl63E3X//noRcSXwbeDnmfmlYcafkJlXbe8+2m3u758Ur6GU2vlqUkmSJE0XBhjTQETsD6wAngM0y92PAdYBVwMvAQ6OiMcAzwD+JSJeDgwAnwbeCmwrtxdGxGHAycDdwH8CvRS/S2uAFwCXAD8CtgDzym0i4pXA4cBS4BxgPbAHMAd4H/A24GHgCuAVwINtt3JDZl4UEedExKHAiWWN15Z13wQcFhF3AecC/xQRLy1rf39mbtrpH6JUU76aVJIkSdOFAcb08GJgX+Ag4B8ByiDgScBFFIHD3UAX8HXgRcAG4ADgucBGICnCgjXluP/MzP+IiKcAm4Enlse+npk/qlz7cuDNFKHEI4D7gKdSdGZ8kCJo+FfgQIqwYyUwHwjg88Abhrmn4ys1rgeOBPasHP92eWyw9v3KcUOa1dPjayglSZIkqcZcA2N6mJuZfwtcHhELASLiJcAJFI+PbABeBuxDEVKsoAgT1lN0WDwS+DVwb7n/N8BzI+LVFMHFb4HZ5bUGqhfOzB8Ce5VfD6L4ndsN2Fo+3rGVImDYrbzebIqOjU3Ay9vu46iIeDvQ31Zjd1lTT2XsAEUYUq1dkiRJkjRJ2YExDQyuIZGZ36rsuxK4sjKsr+202yvbZ1W23zTM+D9qX6hc99XlruuGG1O6sbL9R+tsZOZLRqjxjrZja8vPs5AkSZIkTXp2YEiSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPNTAkSZKkcfDWRz+P2f9w4/YHSlPIS5/6OF75zMd3ugxNUXZgSJIkSZJ22Z0/38jXbtvQ6TI0hdmBIUmSJI2Dj/3q28x//au3P1CaIhbZcaRxZgeGJEmSJEmqPQMMSZIkSZJUewYYkiRJkiSp9lwDQx0TETOB04FjgRuACzMzhxl7LrAJmAHcnplXjTDvCdXjEdGXmUtGqmVzfz/rTjl1J+5C2jndvb3MWXRSp8uQJEmSJg0DDHVMZm4BlkZEF0Uw8caI2A+4AjgRGMjMxeXwbZn54Yj4G+CwiFgNnAzMBT4LnAM8BJxfHt8fmAWsBhZGxMLMXDOR9ycNp9VsAhhgSJIkSaNggKG6SOBi4CzgeGADcEBEzM7MTcCMiPhr4GbgScDs8pwDy/OvB34GHFx+/wHwfODXwJrthRezenqYf+mysb0jaRh2+0iSJEmj5xoYqouBzBygCCVWAPOA9WV4AUUHxt9n5pXl955y7OzB4+X3KL8/CvhdOe6REfHMCbgHSZIkSdI4sQNDHVddn6KyffsOjFkJfKLcXlsZvqr8XFF+Xj1WtUqSJEmSOsMODEmSJEmSVHsGGJIkSZIkqfZ8hESSOqDVbLqY5yj56llJkqTpzQ4MSVLttZpNNi5f3ukyJEmS1EF2YEhSB3Q1Gr66dxTsVpEkSZIdGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbXnIp4acxHxKmAB8F+ZeXllf19mLim3DwG2ZOZPhji/D7gHWJGZ97QdC+CswXnaz8vMJe1zR8QxQCszVw1X8+b+fhcJ1IRpNZt0NRqdLkOSJEmaVAwwNB4eA6wDro6IpwIvAW4GZkTE6cB+wLeBVhlW3ARsAWYAewA9FAFGRMQHgYeBK4C3At8AvhURzwGeAdyUmTe0Xf+x5dz/B/ghsA04OCLuysxfj99tSzumq9Ggu7e302VIkiRJk4oBhsZcZl4UEU8CLgLuBC7KzN9GxELgYuCsyvB1mfnZMsiYnZmLI+KC8thMYB6wEphfjv0KQEQ8FjgS2HOEUn4IPBK4Fbh7pPBiVk+Pr7SUJEmSpBozwNCYi4iXAIcAvwC+Cbw9Im4GBjJzICKyMnxbZXttRPwFsG/5fQuwHpgN/Ag4rDL20cBvKLo1Bh0VEWcAvwJ+DOxF0Q3yc+DVEdHMzAfH5CYlaZJpNZs+KqdJw0ftJElDMcDQmMvMK4ErK7tuKz+/UR6vrl+xaoh9l1W2z61s/35MZt4B3NF23Ze0lXJjZbtvB0qXVGP+Ab5j/MNPU4GP2kmShmKAIUnSFDLcH35djYaPykmSpEnNAEOSNCn4B7gkSdL0tlunC5AkSZIkSdoeAwxJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtGWBIkiRJkqTaM8CQJEmSJEm1Z4AhSZIkSZJqzwBDw4qImRFxRkRcGRF9EREjjD2iHHNORPxZuW/Y8aOs41MRcWC5/b6I2Csi/jUiZkTEeUNdKyL6qp+SJEmSpMlt904XoPrKzC3A0ojoAmYAb4yI/YArgBOBgcxcXA4/LjMvGDw3Ij4M3B4R64BnAXcChwI/Bx4FfGNwDuBa4BnATZl5Q0TsBbwbCODzwFzgN5XSjgTuBp4K3BERXwAuiYi5wOHAx4CFEXE00BMRZwAPZObnh7vXzf39rDvl1J37QUkad61mk65Go9NlSJIkqYPswNCOSuBioAUcD2wAdo+I2dVBEXFqRJwE3J+Zy4C9gV8CCyl+374A7FmdA1hfHtuznOZJwLeB64C9gDWZeW95bD1wDPBV4PXAd4AfZObVwCOA+4DDynOuB9Zn5lLgf4zZT0LShOtqNOju7e10GZIkSeogOzC0owYycyAiElgBvIIiHNhUHr8mIs4GHgQeouisAPgT4H6K37UtwOvKY7+fA+im6LDoKc/5Af+vA2Mx8LxKHd8BXgDcBhyamfdGxOC1DgJ+SxGGREQcB2wtj+VINzerp4f5ly7b0Z+FJEmSJGmCGWBouzJzyRDbt7eNuQW4ZYhzPzq4HRF9mfl3lcPVOe6onPMQcFblWPX6dwF/UX49slpTZlbXu/hq+XlN+z1IkiRJkiYfHyHRhDFEkCRJkiTtLAMMSZIkSZJUewYYkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj0DDEmSJEmSVHu7d7oA1U9EzAROB44FbgAuzMwcZuwR5bjdgJWZuXKIMX3Az4CtmfnF6v7MXDL4OUI9MXj9iFgALAYeBt6Zmb9pG/s84OHMXFW59mXAkZl52XDX2Nzfz7pTTh3usKah7t5e5iw6qdNlSJIkSSoZYOiPZOYWYGlEdAEzgDdGxH7AFcCJwEBmLi6HH5eZFwyeGxFvAWYCdwGHAJuAOcCTgGUR8UrgcOBjwMKIOBroiYgzgAfK8Y8FHgK2lOd+NyLuycy7y8tcBWwFnh4RC4EHgYFy7P3AwRFxV2b+esx/OJoWWs0mgAGGJEmSVCMGGNqeBC4GzgKOBzYAB0TE7MzcNDgoIk4FWsCczFwcEYspg46IuAD4QWZeHRGvA+4DDgPWZOb1EfFnmbk0Is4GHgesBh5FEUZcnpk/a6vpOOBO4JfArynCkTuAy4EnAHePNryY1dPD/EuXjeYUTWF240iSJEn14xoY2p6BzBygCDJWAPOA9ZXw4poyeHgERVfEAxFxJnATcH9EnMwfBmUHUfze7UbxdMhx5XmU11gJ7Av8cPD6EfHUiGhU5rgmMy8CGhShyezBsRQBy8siYp8xuXtJkiRJUi3YgaFhVdelqGzf3jbmFuCW7Uz1pcr4vsr+r5af17Rfr809lfPXAmvL7U+Xu7/QNravMn5wzrXbqVGSJEmSVGN2YEiSJEmSpNozwJAkSZIkSbXnIySSNIRWszlpF/P0FbCSJEmaiuzAkKQppNVssnH58k6XIUmSJI05OzAkaQhdjcakfLXuZO0akSRJkrbHDgxJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtGWBIkiRJkqTacxFPjZuImAmcDhwL3ABcmJk5zNgjynG7ASszc+UQY/qAnwFbM/OL1f2ZuWTwc4R6Yrjrb+7vd/FD/V6r2aSr0eh0GZIkSZIqDDA0bjJzC7A0IrqAGcAbI2I/4ArgRGAgMxeXw4/LzAsGz42ItwAzgbuAQ4BNwBzgScCyiHglcDjwMWBhRBwN9ETEGcAD5fjHAg8BW8pzL6cIQKQRdTUadPf2droMSZIkSRUGGJooCVwMnAUcD2wADoiI2Zm5aXBQRJwKtIA5mbk4IhZTBh0RcQHwg8y8OiJeB9wHHAasyczrI+LPMnNpRJwNPA5YDTwKuB+4PDOHDS9m9fRMyldmSpIkSdJ04RoYmigDmTlAEWSsAOYB6yvhxTVl8PAIYCvwQEScCdwE3B8RJ/OHgdtBFL+/u1E8HXJceR7lNVYC+wI/HLz+uN2ZJEmSJGnc2YGhcVddl6KyfXvbmFuAW7Yz1Zcq4/sq+79afl7Tfj1pOmo1m67poj/gui6SJGkqsANDkqQpznVdJEnSVGAHhiRNMV2Nhmu6SJIkacqxA0OSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtGWBIkiRJkqTaM8CQJEmSJEm1t3unC5Ai4gjgWIpAbWVmrhxhbB/wM2BrZn6xbf9lwJGZedloa9jc38+6U04dde1S3bSaTboajU6XIUmSJI05AwzVwXGZeQFARLwlIp4B3AUcDMwstw8BNgFzgCcBy8rQYivw3epkEdELHAl8DXgh8ADwmczcMjG3I3VOV6NBd29vp8uQJEmSxpwBhmojIk4F5mTm4ohYDAwMsX0B8IPMvDoiXg8sB/Zvm2pv4KfAs4Am8AQgRrr2rJ4e5l+6bKxvSZIkSZI0RlwDQ3VwTUScDTwCyIg4E7gJeKCyfX9EnMwfhm63AN0UHRpVB1MEFrsB+wB7Ao8c1zuQJEmSJI0rOzDUcZl5C0UYsSO+VDnvwsr+W8vPtWNUliRJkiSpRuzAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj0DDEmSJEmSVHsGGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbW3e6cL0OQUEecCDwGPBj6amfcPM64vM5eU26cBKzLznrYxC4AjM/Oykc4fRW0nAIeN5rzN/f2sO+XU0VxG6rju3l7mLDqp02VIkiRJE8IAQztrW2Z+LCIeDbwiIvaj6OhZDrwwM5dERB+wX0S8geJ37TdARMQHgYeBKzLzzsEJI+Ii4DZgH6AfOAg4NCIOBU4EBoDPA+8GNgN3APsD3wKOAx4JnAEcBhwYEYuABZl5YUSck5kfHM8fiDSRWs0mgAGGJEmSpg0DDI2VGcCHgDcBRMSMcv/mzLw4It5HEWDMBOYBK4H5wJ2VOe7LzGVl8PH0zFwcERcAxwMbgAOA2cC3y3muBk4pz70KeAJFRwjATzLz8oh4YUS8ubzesGb19DD/0mU7ffPSRLNjSJIkSdONa2BoZ82IiLcCbwW+DGwF3kERKswGBv+6mlV2YAw+YrIFWF+O+VHbnNsq27dGxKkUIccKitBjPbCpvFZWPgfPTSDK7+sj4jXANcCLM3PEAEOSJEmSVG92YGinZOb5bbuq32/dzunnts21Flhb+V5du2KwLeL2yr61le3q2FXt+yLiGOBL26lHkiRJklRzBhia0jLzuk7XIEmSJEnadT5CIkmSJEmSas8ODEmapFrNZkcW8/T1rZIkSeoEOzAkSTus1WyycfnyTpchSZKkacgODEmapLoajQl//a+vb5UkSVKn2IEhSZIkSZJqzwBDkiRJkiTVngGGJEmSJEmqPQMMSZIkSZJUewYYqr2IeH/52RsRC9uOPS8ijoyIQyLiwM5UKEmSJEkab76FRJPBPRExF1gIbIyIpwNbgDnA/cDBwGrgFxHxKuA+oBv4HTATuCsz/2OkC2zu7/ftCppUWs0mXY1Gp8uQJEmSJowdGJoMvgK8EngX8ACwd7n/cmAd8HXg1+W+AeDz5faczPwI8MyJK1WaGF2NBt29vZ0uQ5IkSZowdmCo9jLznoh4HvC3wL7A3cCjKcKKDcBrgVXAPRS/068DtgK/i4gzgZu2d41ZPT3Mv3TZ+NyAJEmSJGmXGWBoUsjMlw1z6B6gb/BLRDwCOBpYnpk3T0BpkiRJkqQJYIChKSUzrwWu7XQdkiRJkqSx5RoYkiRJkiSp9gwwJEmSJElS7fkIiSRpVFrN5ri+dri7t5c5i04at/klSZI0OdmBIUmqjVazycblyztdhiRJkmrIDgxJ0qh0NRrj9trh8ezskCRJ0uRmB4YkSZIkSao9AwxJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtuYinxk1EzAROB44FbgAuzMzczrhrgT0y84Ly2CHAlsz8SUTE4PkR0ZeZS8rtHwIN4L3AXZl52Whr3dzf7+KB2iW++lOSJEkaXwYYGjeZuQVYGhFdwAzgjRGxH3AFcCIwkJmLq+Myc2lEnBsRpwP7Ad8GWhFxFvCNiHgy8GDbpVYDxwB7AEREL3Ak8DXgZOA2YJ/M/Pi43rCmrVazCWCAIUmSJI0jAwxNlAQuBs4Cjgc2AAdExOzM3DTC2EHrMvMrEfEU4PPAGyrHbgdeB3wB2AvYG/gp8CzgvsxcFhF9IxU3q6dn3F4LqanP7h1JkiRp/LkGhibKQGYOUIQTK4B5wPohwov2sb/fV35uAl4+xDnnAt8vtw8GguL3e9sY1C5JkiRJ6jA7MDTuBteqaNu+fbhx7Z+lVUPs+6P5gbXbq0GSJEmSNPnYgSFJkiRJkmrPAEOSJEmSJNWej5BI0hhoNZvTYjHPVrNJV6PR6TIkSZI0DdmBIUnaYV2NBt29vZ0uQ5IkSdOQHRiSNAa6Gg1fxStJkiSNIzswJEmSJElS7RlgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas9FPLXDImImcDpwLHADcGFm5jBjzwN+Cvw7sDwzn105tgA4EliQmUtGcf1jgJcCazLznyv7+0Yzz1A29/dPi1dganz4alFJkiRp/BlgaIdl5hZgaUR0ATOAN0bEfsAVwInAQGYuLodvBbqBXuC6iJgLnAzMBT5bjjk0Il4MPB7oogg8HgtsBq4EzgA2AR/LzHsrpTwQEf8HOBQ4CyAiXgQ8GbgROByYCdwFHAfcBuyTmR8fy5+HNMhXi0qSJEnjzwBDOyuBiykChOOBDcABETE7MzeVYzYATwE2ArPLcw6szHF7Zn49Ii4BrgPmUIQORwCPowhJ7qUIOAYDjMuBWyg6QbYAB5X7n52Z7wWIiBdk5uKIWAzcl5nLIqJvpJuZ1dPjKzAlSZIkqcZcA0M7ayAzByhCiRXAPGB9JbwAWA58ptzuKcfOrhz/TUS8nKJrYh/g7vIT4LfANopOjvVt194TeAxFADf4O/ydiHh7RDybokPjTOCmcg5JkiRJ0iRnB4ZGrbreRGX79mHGbAAGt1cCnyi31+7Apd7ZNud1la/nVrZvKz+/UX5+p3LsP9prliRJkiRNPnZgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj3fQiLp/2fv3uPzqMv8/78uCrSiFghnrZAGJPly1G1V8LCgoJaAq1+0iyf8Ud31ALqwohIoinVFiwfEVZZ1+bJl8bBWxcMCpS6oxS5SpBUsiomwJRWqRSBIObW0zfX7YyY6xqRNadp77vT1fDzyuOee+cxnrrmTf+53rpmRamV1dzfLT35bo8uQpM2yurubCR0djS5DksYUOzAkSZKkUTaho4OJJ5zQ6DIkaUyxA0OSVCsTOjrY78tXNLoMSZIk1YwdGJIkSZIkqfbswFBDRMRMYA0wLjMvqKzvyszZQ4xvBWYBNwN3Z+a1lW2nAPOBNuAXmblqU+t58u67veZeY8rEE05g15P+ttFlSJIkSaPGDgw1yvrM/AzwjIjogiK8GNgYEVdHxPsj4rBB+z0EHB4Rz46I8yPiDcB+wEnA/ynn+0T5MykivlrOc+xWOi+p4VZ3d7Pq6qsbXYYkSZI0quzAUKOMi4h3Az8FDh5YB6wvl28H/h34/4Cl5bprM/PrZdDxUuCrmXlHRDyDogNjGrAD8Bvgx8BLgDuAzwEfAq4frpgdJ0/2mnuNGXYTSZIkaSyyA0ONsj4z/zUzrwLWRMTJwM6V7YcD/wgsGGb//wHeUnZg9AJvpwhAnqToyHgrcGN5nARiS5yEJEmSJGnrsANDDVG9z0Vmfm6IIT8eNKaXIqio7juzMn5BZfnsyvLswceTJEmSJDUfOzBUSwYOkiRJkqQqAwxJkiRJklR7XkIiSWPQ6u7uzbqZp49hlSRJUt3YgSFJ+jM+hlWSJEl1ZAeGJI1BEzo6nvKjgX0MqyRJkurIDgxJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtGWBIkiRJkqTa8yaeIiJ2AE4DjgFuBC7IzBxm7EzgMeC2zFwQETHc2EH7dWXm7MHrgDXA8sz89mbUfzSwGngIWJuZyzZ1jifvvtsbF2rMWN3dzYSOjkaXIUmSJI0qAwyRmWuBiyJiAjAOODUi9gSuBF4P9GfmrEG7PRQR3wU+HRGvowgiPg9cBCwBlgLtQD9wLXBYRJwH3JiZ10fEIcAvM/MqgIj4B2AH4FfAscBtwC7AqvL12cCFwOnAeuBTwNlAT3mMA4DFwH0R8WaK7qKrgXcDN1MEG0/tkQxSk5nQ0cHEE05odBmSJEnSqDLA0GAJXAKcBUwDVgDPiYjxmbkGWJ+ZFwFExE+BtRShx/3AvsAdwOeADwE7ZeZ55dg7gE8AHwSurxxrwK6ZOSsiZgEPZuYVZYfGKuCbwMnAy8r3CTwP+HFmzis7MHqACeVc44BPA++l6O64rJxrWDtOnvyUHzkpSZIkSdryvAeGBuvPzH6KkGA+MAm4pwwv/mIs8AuKjoh1wD0UAUcCQdEN8Z6IaAXWlfMGQGb+Ajg0Iv4xIk6k6Og4k6JbYv2g4wy8XwjsDDwM3AL8dUTMoAhZXkfRqUFZyweA64aYS5IkSZLUhGIEty+QxrypU6fm4sWLG12GVAsD94NpRFdSI48tSZI2z0lfugmAue86ssGVqNlFxJLMnDp4vR0YkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj0DDEmSJEmSVHvbN7oASVL9rO7uZvnJb2vIcSd0dGz140qSJKn+7MDQRkXEhyNiRkQcERFHD7E9IqKrXO4aYvtfrBu0fXFEtAw3bmPzj6D+Td5HUmNM6Ohg4gknNLoMSZIk1ZAdGBqJtcAk4E6AiDiXIvy6GngX8H3gsIg4HtgjIk4DdszMz5X7HxAR7wX+ADw7My+IiHMy8xPl9uuAU8q59y3nDOBS4BzgK8CUiGgHXhwRnwUuA14FPAv4GnAU8CQwAbgX2Kd8f+3AvpnZM9wJPnn33Q35b7PqZ+IJJ7DrSX/b6DIabkJHB/t9+YpGlyFJkiT9kR0YGqm5wEnl8jjgM8CxwPLM/DawNDOvAR7KzIspgoQBD2TmF4EDgFsj4n3Awsr2h8vXicCRwJcpQog9gR9l5g3AkjKA+ClwMXAoRchxN/BW4FfAi4CHgF3L9y3AY5V9pQ1a3d3NqquvbnQZkiRJkoZgB4ZGJDN/HRHPKN+uAz4AXAW8ulz3SEScWG4DyMruu5cdGMuA64H3Z+YXBh3iPyg6OS4B3k0RTlwLTC63T4qIg8r5+8vtTwIryxpmlWN3AW6lCD8A9hrYNzPvGO78dpw82f82yy4cSZIkqcYMMLRRmTm7fJ1RrlpQ2Xxrue3iofYpl/9uYLm8h8Z/DjN2avk6s7L57nLMe8v3AyFEb2XMd8rXLw1zCu8dZr0kSZIkqUkYYGiryswFja5BkiRJktR8vAeGJEmSJEmqPQMMSZIkSZJUe15CIkkVq7u7N/tmnj6KVZIkSRp9dmBI0ijyUaySJEnSlmEHhiRVTOjo2KxH6vooVkmSJGnLsANDkiRJkiTVngGGJEmSJEmqPQMMSZIkSZJUe94DQ00pImYCjwG3ZeaCyvrIzGxYYZIkSZKkLcIAQ81sB+DwiDgGuAyYCXwlIl4J7AecDbwPCGBWZj423ERP3n23N18Uq7u7mdDR0egyJEmSJA3BS0jUrNYD/wn0A23luh8B+wBzgEXA/uW6BcAhW79ENZsJHR1MPOGERpchSZIkaQh2YKiZTQYSGF++7wduAt5NEWp8j0oHxoYm2nHy5M16dKYkSZIkacsywFBTyszZ5eJC4Ivlcm9EjAOWAxOAFZl5ViPq07ZtdXd3U1+S5KU0kiRJqiMDDI0pmbke+NdG1yE1My+lkSRJUh0ZYEjSKJvQ0eElSZIkSdIo8yaekiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj0DDEmSJEmSVHvbN7oAaSQiYiawBhiXmRdsYNwpwPzMXLkp8z95990sP/ltm1ekBKzu7mZCR0ejy5AkSZLGHAMMNYv1mfmZiFgbEY8A/wvcBxwFfAs4Fbi1HHtKROwDfBZ4FxDAzMzMBtStbcyEjg4mnnBCo8uQJEmSxhwDDDWLcRHxbuDvgGcBPwJOB8YBLwW+mpl3lB0YXwFOBo4Evgy8AtiTIvAY0o6TJ7Pfl6/YoicgSZIkSXrqvAeGmsX6zPxXitBtJ2Bn4GnA/5Q/b4mIN5Rj1wEJ/IQiyJgE/H6rVyxJkiRJGjV2YKgpZObs8vUygIjYC5iQmf9TDpk5aJfZw6yXJEmSJDUhAww1pcy8Dzin0XVIkiRJkrYOLyGRJEmSJEm1Z4AhSZIkSZJqzwBDkiRJkiTVngGGJEmSJEmqPQMMSZIkSZJUewYYkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2tu+0QVo2xQRbwFagbuA5Zm5aAscoyszZ49kbO+qXmbMnzHaJUhjQmdbJ9MPnN7oMiRJkrSNM8BQo+wFLAcmAMdHxBPA0RR/kz8GXgm8ADgVOB1YD3wKOBvoAZYCxwEJfB04odz3B8BrgJ8C4yLiNGDPzDxva52YNJb09PUAGGBIkiSp4Qww1BCZeWFEHAxcA7wR6AeeBA4CxgGfBj4CvAxYRRFUPA/4cWbOi4gPAZ8FuoCdBu17YWY+FhFTgEuAszZWT+vEVuZMmzOq5yiNBXYmSZIkqS68B4YaIiJeQ9FBsQR4HUX48BgwHvgRRehwOLAQ2Bl4GLgF+OuImEHRaXEmfwouBvb9b+D9EfFqoD8z+ynCD0mSJElSE7MDQw2RmVcBVw2x6YqI2AWYCtyWmb/jzzsouirLSwbvW77eVr5+vzzWiO6DIUmSJEmqLwMM1U5m/oHi0g9JkiRJkgAvIZEkSZIkSU3ADgxJ0gZ193XX4maePs5VkiRp22YHhiSp9nr6epi3bF6jy5AkSVID2YEhSdqgjpaOhj9muA4dIJIkSWosOzAkSZIkSVLtGWBIkiRJkqTaM8CQJEmSJEm1Z4AhSZIkSZJqz5t41lhEHAEcA0wALsvM3o2MvwD4HfBj4FWZOXsExzgAOBlYB8zLzCUbGR+ZmRHRlZmzB143MH4acBiwA/DJzOwfYswpwPzMXLmBeYY8TkQsBl4FvHO4OjZWI0Dvql5vEigNoaevh/aW9kaXIUmSJBlg1NwrMvP8iNgeeH9E7A3cBuwC/Ar4K2BtZl44aL+HACLiMOD1QD9wC9ALfAq4FLg9M5cBbwBmZWZ/RJwTEa8sg4lzgGXAPsCjwFpgV2Au8FvgsIg4HtgjIk4DdgR+MURNz8/MT5b1nBIR84FTgC8DpwK3luMOiYjXAY+Xx3moXD+w/MOIaKMIW27OzPnl9uvK+YiIfYDTgfXAFcAbgZuBtog4KTPnjvBzl1Rqb2mns62z0WVIkiRJBhhN5sHMvCIiuig6M7qBfSvbH8rMiwAiAmAasAJ4DrAE+AiwlCJU+N4wx1gWEa8tx00DFgMtQB8wNzN/W45bmpnXRMTzM/PiiDh7mJpy0HIA44CXAl/NzDvKDoy/A94MfDgzZ0XELKB/YLk876dThCnPqMz5cPk6EXgZsKo8zurK2GUbCy9aJ7Y2/DGRkiRJkqTheQ+MevthRJwLnAd8g6KzYMAPgL2BOzew/3xgEnBPZt4HPBe4BGirjPkW8NGI+DDwfeBq4NxyeSGwG/Drcmz18o9HIuJEiktPoAgNhqrp5xHxoYiYCdwOvJ2iS+N/gLdExBvKcZ8FzgLujojTgbsGLQPsTtGhUQ1IAP6D4jKShcDO/CnUGBh7T0S8fQOfkyRJkiSp5iIzNz5KGuOmTp2aixcvbnQZkoYxcI8aO6UkSaqvk750E3f8bhUH7TOx0aVoGK993rN584sG/z+4fiJiSWZOHbzeDgxJkiRJksa4O363iu/dtqLRZWwW74EhSZIkSRoVB+0zkbnvOrLRZWgIJ33ppkaXsNkMMCRJTaG7r3vMP+64s62T6QdOb3QZkiRJteQlJJIk1UBPXw/zls1rdBmSJEm1ZQeGJKkpdLR0jOmbeI717hJJkqTNZQeGJEmSJEmqPQMMSZIkSZJUewYYkiRJkiSp9gwwJEmSJElS7XkTz21IROwAnAYcA9wIXJCZOczYtwCtwF3AbcBa4G8zc/Yo1PEKYEpmfrp835WZswdeN7DfBrdXxp0CzM/MlSOtqXdVrzfQ0zbHR3ZKkiSpmRhgbEMycy1wUURMAMYBp0bEnsCVwOuB/sycVQ7fC1gOXAccBqwGiIjDBsYC/wGcAzwKnA+8H7gXuJoiKFkPfCwz10TECcCBwDrgWUB3Od9+wJSIaAdeHBGfBS4D/qYc+7PM/GH1PCJif+AEir/fJUAnMBH4JbAD0Ae8IyKeWdbyQuDmzLxxFD5GaUzo6esBMMCQJElS0zDA2HYlcAlwFjANWAE8JyLGZ+aazLwwIg4GLgQur+z3x7HAeOAG4LfAAcCKzLwkIv4WWFUeY0/gHoqOi1kRMYsivJgPkJnLI2JJZvZExE+BrwEvAKZShA97D1H7TsCTwEEUAcZ/AUcDF5fnA0UoM6089hHlPsNqndg6ph/PKA1mx5EkSZKajffA2Hb1Z2Y/RcgwH5gE3JOZawAi4jXAccB9g/b741hgDUWXRVL8LT0rIt4D3ATsDDwM3F/utzgi3g88MEQtkyLiIIqOi34ggFsouip+VRn3kog4A/gr4DGKAIVyv3WV84GiS+RZ5RyPAJNH+sFIkiRJkurHDoxtUPU+EpXlpYPGXAVcNWjXRUOM7a0s31RZPquyTGZeA1wzTD3vLRfvGGLO6rjXDFp1xeDahrlHxu1DzSdJkiRJah52YEiSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPe2BI0jaqu6+7aZ5G0tPXQ3tLe6PLkCRJUgPZgSFJqr32lnY62zobXYYkSZIayA4MSdpGdbR0MGfanEaXIUmSJI2IHRiSJEmSJKn2DDAkSZIkSVLtGWBIkiRJkqTaM8AYQyJih4g4IyKuioiuiIgNjH1LRMyMiJMi4uiIOGITj3VKROw9gnFdg94fHREXRcSXImLcEONbI+KNm1hLV/l63KbsJ0mSJElqHt7EcwzJzLXARRExARgHnBoRewJXAq8H+jNzVjl8L2A5cB1wGHBiRLwDeC/wbqAN+BIwCfhH4GxgX+DFwJJyjlMiYh/g48CbgD2Ay4BzgEeB84GIiPcD38nMu8v9vg4cBDwjIs4F1gBfAM4EHge6y1BiHfAzoLOs9bnAauBy4P3ADcB6oC0iTgImR8RC4MNAALOArwBLgbmZecdwn13vqt6meZykNBp8LGk9NdOjbTdXZ1sn0w+c3ugyJElSE7EDY+xK4BKKL/zTgBXA9hExHiAzLwRuBS4sx/8XcBOwN8WX/5Zyn6OAnwPvAH4A/A54ZrnPV4CVwPjyeG3l+huAq4ADgJcDyyrhBRRhx98A7RRBy/3l2P8FvlOOmQo8UNbzh8z8Qvn+EuBQ4P7M/DJFqLEsM+eW+x0M/AhYABwCLKYIPA7dlA9PGut8LKkaqaevh3nL5jW6DEmS1GTswBi7+jOzPyISmA+8AbgnM9cARMRrKAKE+8rx64B+io6LpwE7UAQZBwBnAHOAHctxk4DflMsJTC5fx5dzrS/fB/BD4FkRcUhm/qLc/p/l2I5y7DrgTuBVwKvLuW8BJgILKTo/AJ6szLtHRLwXuBtYHxFvL8f8kj/vwHh5ZZ9htU5s9XGSkhpuW3m07bbSZSJJkkaXAcYYlJmzh1heOmjMVRRdElWLytcbK+tOKl+nla8XD9pnYP6FwBfL5d4h5hw47oLhK+e8YdbfWu47cKzeiGjNzC8OM/6sIerrHWKcJEmSJKlJeAmJmlI1pJEkSZIkjX0GGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPAEOSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7BhiSJEmSJKn2tm90AWp+EXEx8IXM7B7h+ACmZea1m3CMdwNPA/YBujKzPyIiM7My5gLga8DfAd8CbgVOzczZEXHcho7Xu6qXGfNnjLQcqTY62zqZfuD0RpchSZIkbXEGGNosEbE3MB94aUSsBj4MPAncDuxNESS8HugH/gOYCVwMHB4RuwK7AQuAQ4GpwEXAucDNwNrMvCIingmMy8zPVY77XeDTEXEwcBjwaaANeDHF3/VBwF3AlIiYAhwOjDgwkZpBT18PgAGGJEmStgkGGNpcx1OEEPsD1wM/AnYArgNOBqYBK4DnAOOBH2XmbRExDWjPzPMAIuII4EHgecDyzLwsIrqqByrDkjOBTwA/BRYBU4C1wM7AEoqQ4iFgArAeWJKZSyLilRs6idaJrcyZNmfzPglpK7NrSJIkSdsS74GhzbVHZn4KmEsRZKwDsvI6H5gE3AOsoejEGNATEe+NiEMpApDtyp/11QNk5iPlujeWc6wv59kJ2IsiiBvub3nniHjR5p+mJEmSJKmR7MDQZsnM2eXrD8tVSyqbZ5evSyvreqv7VXQNev9nYzLzXwdtHtg2s7LutuoxSmeXrzcPnl+SJEmS1DzswJAkSZIkSbVngCFJkiRJkmrPS0gkqYl193V7M88xoqevh/aW9kaXIUmSVFt2YEiSVAPtLe10tnU2ugxJkqTasgNDkppYR0uHjwCWJEnSNsEODEmSJEmSVHsGGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNrzJp4aVRGxA3AacAxwI3BBZuYwY19QjtsOWJiZCyMihhs/zBznAvcC/wVcDbwGaAOOyczZI52nd1Wvj6JU0/Gxm5IkSdqWGGBoVGXmWuCiiJgAjANOjYg9gSuB1wP9mTmrHH5sZn5yYN+I+AywNCKeDkygCCbGAfsAjwJrgV2AZ2fmB8vd1gETgROABcAzgf3L+fYBTgfWAx/LzDVb6LSlhvCxm5IkSdqWGGBoS0rgEuAsYBqwAnhORIyvhgkR8TZgNdCXmVdExOUUYcSuwGHAYqAF6AO+CZw86DgrgEOBVYPWv6xcl8CewD3DFdo6sdVHUUqSJElSjXkPDG1J/ZnZTxEgzAcmAfdUwovrI+Js4OkUnRT95fqbKDoteoCFwG7Ar8tt64c4ztXApUOsXwjsDDwM3L+5JyNJkiRJahw7MLRFVO8/UVleOmjMLcAtQ+z7pY1MP9TcKyrreytjzxpZxZIkSZKkOrMDQ5IkSZIk1Z4dGJIkaavr7uv+49OfOts6mX7g9AZXJEmS6s4ODEmS1DA9fT3MWzav0WVIkqQmYIAhSZK2uo6WDuZMm0N7S3ujS5EkSU3CAEOSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtbd/oAqSRioi3AK3AXcDyzFw0WnP3ruplxvwZozWd1PQ62zqZfuD0RpchSZIk/ZEBhprJXsByYC1wYkS8A3gv8G6gLTNPj4jvAEuBucDfAOuAn2XmDxtUs9R0evp6AAwwJEmSVCsGGGoamXlhRBwMXAO8FTgQ2BsIoCUiJgKLga8BLwSmAleXYzaodWIrc6bN2VKlS03FbiRJkiTVkQGGmkZEvAZoB+6j6KzoByYBTwN2oLiny3ogKUKNW4CJwMJG1CtJkiRJGj0GGGoamXkVcBXwmXLVwD0wbqwMm12+9m6lsiRJkiRJW4FPIZEkSZIkSbVngCFJkiRJkmrPS0gkSX+hu6+7KW7m6eNeJUmSth12YEiSmlJPXw/zls1rdBmSJEnaSuzAkCT9hY6Wjto/WrgZOkQkSZI0euzAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj1v4qmGi4iuzJwdEUcAE4CnZea1le2twBGZ+fXKuqOBt2Xm2wf235waelf1ekNAqdTT10N7S3ujy5AkSZL+jAGG6mBcRJwB7Ad8Dzg8Ih4AXgm8APhH4FURcRRwbmY+WO73eEQ8FyAi3gbsCjxUbhtY3hdYAUzKzH/aSucjNbX2lnY62zobXYYkSZL0ZwwwVAfrM/OiSgcGwMuBTwMfKd//EPgtcAAwEGB8HXgjsBaYnJmzImIW0F9ZXg1cDpy1oQJaJ7bW/pGRkiRJkrQt8x4YqqsfUYQOh5fv1wH9QFTGrAPuBXYA7o6I04G7Bi1nZuZWq1qSJEmStEXYgaGGG7h/RWYuKlctiIhdgKnAbZnZC/QO2mdBubiIEdjce2RIkiRJkhrLAEO1lJl/AC5pdB2SJEmSpHrwEhJJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtGWBIkiRJkqTaM8CQJEmSJEm1Z4AhSZIkSZJqzwBDkiRJkiTV3vaNLkCSpKequ6+bGfNnNLoMbaKevh7aW9obXYYkSWoydmA0UETMjIh/jIjLhtjWNeh9a0S8cdC6loiYFRFnRsSUERzvuOHm34SauwYvb2yuiPiHiDgrIqaNYP6jI+KIp1hba0S8MSLOiIgpo3G+kqTR197STmdbZ6PLkCRJTcYOjMZbCzwZEa3AEcDKct2UMpQ4EbgXuB54VUQcBZybmQ8CbwI+m5mrACLincBhwEzgbGAJ8AxgR+C/gcMjYntgf+CwiHg7cBXwd8DszMyIOKGs43vl/LcBuwB3D+xXqf2wiDge2CMiTiuP8wvgr4C1mXlhOW4P4FZgYUR0ZebsMlBYBBwL7AycC3yknOOrlXM5C/i38lyWAu1APzAf+HvgCeDKzLyjPNY7ys9nSUR0Vc93Q7+E3lW9/hdXTaezrZPpB05vdBkN1dHSwZxpcxpdhiRJkrYCOzAaa31mfhH4FZBAAOOA9RRf2O8FVmTmJRShxg+BbwIHVOZIgIgYB0wox7UCvwOeCfwS2LWcF+CvMvMiYDlwJfBW4PHMzHL7M8vjHgk8mJlXADsN2m/A0sy8BngoMy8uj38McB9FcDLgI+WcF1TWDdRzLfAz4HkUIcv15baBc9kfuAP4HDAF2LP8PB4DJlEEPvtV5v0t0FF5P1TdUtPr6eth3rJ5jS5DkiRJ2mrswGiscRFxBsUX8JXAi4AngW9TdCW0As+KiPdQfLFfR9F9EOX+Xwc+GBEPA4uBvSh+p9uVYydRfKF/HJhc7nNrRLwN2C8zH46Ig4GPVWo6AHignGN9Zf0f96useyQiTiyPBUWY8gOKoOHOyrg3A8+mCDFuL7s1OoAby2Mk8L8UHRVPp+j+qJ7L+rI7JID7ys9jPnAPMH7Qsa4FtouI12yg7r/QOrHV/+KqqdgxJEmSpG2NAUYDZeb5g1adUVleVL7eXFlX/aJOeRnJRyqrbqgs31pZnl++XldZd0VEHAAsy8zfVOb8pyHqnF3dr7L+4mHGXTdo/VcHzwlU9x041/Mq6xZWlm8bog4oLpWpHqcX6K2sumqouiVJkiRJzccAYxuWmXcBn2h0HZIkSZIkbYz3wJAkSZIkSbVngCFJkiRJkmrPS0gkqUl193Vv8s08ffSqJEmSmpUdGJK0jfDRq5IkSWpmdmBIUpPqaOnYpMf/+uhVSZIkNTM7MCRJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPm3iqoSKiKzNnR8QbgUWZ2VuuPxdYkJn/M2h8ZGZW3h+Xmddubh29q3q9waGaSk9fD+0t7Y0uQ5IkSdpqDDBUJ5+LiKXA94HDge9FxAVAALOAr5ZjTqD4250LHB4RhwAXAl3AT4G/AtYCPwOOBXYGzsjM9Vv5fKQtpr2lnc62zkaXIUmSJG01Bhiqix2AxcDXgBcCS4CdgB9RXOp0CEU4sQaYD0yo7HsD8H+B+4FjgG5g33LbtcCBwO7AfcMdvHVi6yY9jlKSJEmStHUZYKjRfh4RZwG7AKuApOi4APgl8GH+1IHxcuAX5fLTgH8HyMyfRsSFwOuBw4ApwJ3lHOsHzSlt07r7usfM5VJeRiNJkrRtMcBQQ5X3rxh8D4veyvJZleXZABFxG/ACoDszF5fzvLQcc135U7VolMqVVCNeRiNJkrRtMcBQ08nMLwNfbnQdUjPqaOnwcilJkiQ1JR+jKkmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj0DDEmSJEmSVHsGGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbW3faML0IZFxA7AacAxwI3ABZmZGxn3A+DzAEONHcExY0P7RcS5wILM/J+IOAWYD0wD5mfmymH2OQZ4ObAc+DbQlpm3DHfsoWqIiKuBDwD7A6/IzDOH2L8rM2eP5Dyqelf1MmP+jJEMlZpWT18P7S3tjS5DkiRJekoMMGouM9cCF0XEBGAccGpE7AlcCbwe6M/MWYPG3QZ8HPhGRJwI9AP/ArwJ2AP4PvBC4GbgZZk5OyK6KP4eVgDrImJ34NHMvBT+GFpsB1wNHA58ryxxP+Ak4FHglIjYB5gNnA6sBz6WmWuAvYCV5f7PBPaPiKnABOBeoL089qSIuBe4KyJeAPwhM/+9PNYi4BVlHfdHxPMpQpE/APdTBBuHRcTRwCur55+Zs576b0EaG9pb2uls62x0GZIkSdJTYoDRXBK4BDiLouNhBfCciBhfhgRV1wCvHhgD7FTu3wb8L3BEuW7AOIov+nMi4ovAYqBl0PZPA+8FlmTm7eX65fypA+MrwMnAy4BV5fH2BO7JzK9FxGTgM8B55b4vAhYAu1aOfU75+tfAw8DBlRrWUQQeDwHPoAhCBsasysxZEfHJoc5/mM/oj1ontjJn2pzhNkuSJEmSGswAo7n0Z2Z/RCRFaPAGinBgqC/m/dUxwL4UgcJ4YHfgEWAysCYiTgZ2BvrKfRcCk4CeynzrKC7fuIoiGBjQC7wduK8ck+X+UyjCjfsBykDiBeVx15X73gTsAtzKn8KS/vK1A3isrLfqK8DjFEFKdcytEfE2io6Qvzj/DYUXkqTG6u7r9jI+/ZnOtk6mHzi90WVIkmomnsItEqQxZ+rUqbl48eJGlyFJ25wZ82fQ3ddNR0tHo0tRTQzcr8fOSKn5nPSlmwCY+64jG1yJhtJMv5+IWJKZUwevtwNDkiQ1VEdLh19W9Ud240iShuNjVCVJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPAEOSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7BhiSJEmSJKn2tm90AaqHiJgJrAEmZObHK+t3A9oy85byfVdmzh5i/8jMHGbunYGPAx/LzPsH5hhursp+m7Q9Il4KvDIzzxuoCThrQ3MM6F3Vy4z5MzY2TNpiOts6mX7g9EaXIUmSJNWWAYYGrM/Mz0TEqRGxB/AmYA/gMmD/MhxYA+waEW8E9gEeBdYCuwK/j4hnAj/JzKURsS/wLiCAhRR/a49GxHhgSkQcBUyOiDOAh8q59wEezcxLq4UNmuta4AXAzcBhEXF8Zl5TDu0AeiLi6cAsYGm5/18De2fmN0b5M5NGRU9fD4ABhiRJkrQBBhgaMC4iPgJMBMYDCbRVtk/MzFkR8UngpcBioAXoA+aW+50ATCjHHwl8GXhFOeaGzHwCICKWZOYNEfGyzLwoIs4Gnl2Zc7DqXL8BXgTsBCwdCC8iYnvgxcAyoBPoy8wrIuIc4MTMPGNDJ986sZU50+aM7JOSRpndP5IkSdLGeQ8MDVifmR+jCBsmUwQY4yvb+yLiTRSh10JgN+DX5bb+8v0qYP9y3U+Ak4FJwO8HHSsi4lhgXfk+h5gTYL+yQ+O3lbkmAo+UNT4SESeWY48B/rm8/GVyWdNAbXMi4t2b8mFIkiRJkurFDgwBMHCfiMz8RLlqIfDFcrm3MvQ/h5liJXBjZb57gJmV7XdXtn2yXLy+euwhanpP5e3CyvLtQ4z9fmX5U5Xlgbl/PkzdkiRJkqQmYAeGJEmSJEmqPQMMSZIkSZJUe15CIkk10N3XXcubefp4V0mSJNWFHRiSpCH19PUwb9m8RpchSZIkAXZgSFItdLR01O5RvnXsCJEkSdK2yw4MSZIkSZJUewYYkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2vMmnqqNiHgL0ArcBdwHrM7MRUOMi8zMiPhoZn40Ir6fma8eeD/U2I0du3dVrzcsVMP09PXQ3tLe6DIkSZKkWjPAUJ3sBSwHrgNeAxwQEU8AR1P8rS4BXglcDtwJPBERhwDdEdEB9EXEO4HDgLOAfwMuj4hjgF9n5r9v3dORRqa9pZ3Ots5GlyFJkiTVmgGGaiMzL4yIg4ELKUKKHqAfeBI4iCLAuCYz7yx3WQycBnyGIrC4DHgRsBbYH/hlZl4XEc8Bdt7QsVsnttbuEZaSJEmSpD/xHhiqjYh4DXAcxeUjK4DXUQQXjwHjy2H9lV1uBg7LzP8FDgfuoOji2J7ib7s/IgJ4BrBXRIzbCqchSZIkSdoC7MBQbWTmVcBVlVVdleUrhhj/KPCScvlF5eqZlSG3la//PHpVStuW7r7uht0fprOtk+kHTm/IsSVJklQ/dmBIkmqnp6+HecvmNboMSZIk1YgdGJKkYXW0dDTk/jA+FUiSJEmD2YEhSZIkSZJqzwBDkiRJkiTVngGGJEmSJEmqPQMMSZIkSZJUewYYkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2tu+0QU0g4jYATgNOAa4EbggM3OYsV2ZOXuYbZGZGRGtwBGZ+fVB23cGPg58LDPvH5hrQ3OW+10C/Bb4NXAbsDYzl23C+e0GnFye33eBPTZyvAuAh4BHMvPiyvqjgdWZuWiIfWK4z6zc3g7MAD6amas34dy7gJ8BewEPZOa1GzzZYfSu6mXG/BlPZVdpzOrp66G9pb3RZUiSJEmAAcaIZOZa4KKImACMA06NiD2BK4HXA/2ZOau6T0RsRxFGAPwLcAFwRUQcAzwOdJfj9gXeBQSwkOJ38mhEjAemRMRRwOSIOIMiNFgD7AM8mpmXlvMvL+d/V7ltdfnF/mZgbTn3TsChwC3AjsB/Ay/IzG9k5oMD55eZl0XEZyPitHLcL4C/oghFLiyP91AZLpwaEa8c2A48CBwQES8C5gKnAF8HZgIXR8SpwKPA+Zn5YERMAY4Dstx3dRle7Fae+xTgsIg4jyI4ei4wAbg3M79Z1vJC4MHMvDQiuiLiV8A5A8cBPgQ8Atw1ODCStGHtLe10tnU2ugxJkiQJMMB4KhK4BDgLmAasAJ4TEeMzc01l3B7Ab4AfAy8Bfgn8HGgFFgH/pxx3JPBl4BVAH3BDZj4BEBFLMvOGiHhZZl4UEWcDzwYWAy2VY+0H/Bvw/cq65WUY0QWMy8zzI+KfyjpeUa77xjDn+FBmXlwe7xiKsGXfyvZdI+JTwMpB238G9ADtFKHJuHL8j4A/ADdQdIocQBFYHAN8Fugq57gNoAw3lmTmkoi4A/gE8MHyM1sA7Fqp5T5g/4iIyrqB4xxC0ZWyiCK8GVbrxFbmTJuzoSGSJEmSpAbyHhibrj8z+ymCjPnAJOCeSngxruyW+GuKYOGtFN0D/cDvgWcBr67M9xOKyzcmldurIiKOBdaV75OiS2M3ii/mA5YD76QIBAZ+p+sr239Xdj/sSRF8PE7R1fHGYc6xerwfAHsDd1a2P5SZHyprvrGyfQXwOoqg5u0UnRmU5z5QU1KEG5Rznwk8OUQNO5edHOvKzzuAm4BdKEKS6rl/laLrYsDAcdYCHcBJlXOSJEmSJDWh2MBtCTRGRMRBwCspLju5rNH1bE0R8TrgpcAXMnP5cOOmTp2aixcv3mp1SdqwgXvS2Bk19vm71mD+TUjN66Qv3QTA3Hcd2eBKNJRm+v2UHflTB6/3EpJtQGbeAdzR6DoaITO/S3FjUkmSJElSEzPAkCTVUndfd1M+HaizrZPpB05vdBmSJEljjvfAkCRplPT09TBv2bxGlyFJkjQm2YEhSaqljpaOprsGvhk7RiRJkpqFHRiSJEmSJKn2DDAkSZIkSVLtGWBIkiRJkqTaM8CQJEmSJEm1Z4AhSZIkSZJqzwCjZiLihRFxTkR0RcSUiHjjJux7SkR8OCL+fhTq6BpmfWxkv7dFxJvL5daIeOPA6wb2OT4ivlbWfnB1bEQcN/jY1drKz2m/iPhYRLw4IiZuyvlIkiRJkpqDj1Gtn2My8xNQBADAcyPiH4AdgF8BzwceAq4CTgPWAx/LzDWVOdZExNHAscDOQBfwYaAHWAocBySwApgPnAJ8HTgHeBQ4H5gSEVOA1wNPAFcCpwPfj4j/U9ZwaWaujYi3AbuW614JXFHWsR9wFHAP8KqIOAo4FzhzYM7MvCMzr4mIPcpaJgwae3hE7FXO3xcRuwKHVc51Z+BU4GzgbcCyiLgEWFKe66HAmnL/YfWu6vXxh9pqOts6mX7g9EaXIUmSJDUVOzDqJ4dYt2tmfhZ4EdBN8aX9SGAVReCwZ2XspZk5ECBcC/wMOAT4cWbOAY4BPgvsWB4rgHHl+BsogpEDKAKAe4BJwEqKMGJ5Zn67UsNAN8bkzPw8sD/wy8y8rly/vJxzBfBD4Jvl3NU5h1IdO2Au0JqZF5XzDngCeBpQ7by4A/gcMAWYmJn/AvQPcyxpq+rp62HesnmNLkOSJElqOnZg1M+CiDibIlwYCAIeiogzgZuBfYCdgJsovqAvB+6v7P/3EfEgxZf49eU89wD/t+xk+AFFB8STwM+BtwN/BXy1Mj4oAorJ5b7jgTuBw8tj7FLWsHN57Lsj4nTgLuDZlVoeBF5CEWCsowgRths051AGxlYvV+kHbi27ParBx5MUnRr/RNGhArA+M7O85KQvIt7ERv7WWye2MmfanA0NkUaFnT6SJEnSU2OAUTOZuQhYVFm1ZAPDzxq07+VDjBmYq3oPiOqct1WWe4fY7+bKutnlcS4bdNwrGEJmPgK8b4hNNw0x9vKN1AHwX+XrH4+XmbPLxdOHqHN2Zd1/DlWjJEmSJKk5eAmJJEmSJEmqPQMMSZIkSZJUewYYkiRJkiSp9rwHhiRtZd193d7McyN6+npob2lvdBmSJEmqETswJEm1097STmdbZ6PLkCRJUo3YgSFJW1lHS4eP7ZUkSZI2kR0YkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2vMeGJIkjSKfMrNpfOKMJEkaKQOMbVxEvA54HvBrYDHwFuAh4IvAx8thM4H3ARMyc/YQc1wMfCEzu8v3bwFagbsyc+5TrOsI4BhgAnBZZvaW67uGqmFz9a7q9QuHtgq/rEl/zifOSJKkkTLA2MZl5ncj4gfAqcBeFKHF+4HDgeuAAA7PzIsiogsgIv42M79RLu8NzAdeCnSX0+4FLAeui4ijgWnAWuBTwNuBNuAc4MNAD7AEeD3Qn5mzyjlekZnnR8T2wPsjYi2wBtg1Is7KzAsi4hzgUeBJ4BbgBOBmYBdgn3LbM4EvAB/KzPNH8aOTnhK/rI19PmVGkiRpyzDA2MZFxDjgQ8CngXeMZJ+B8KJ0PLAbsD/w/8rtF0bEwcCFwOXAj4CnUQQXAbQAU4EfZ+a8iPgQsAJ4TkSMz8w1Qxx2YmbOiohPArdGxPuAhRQdGi8AHqAILJ5BEaYsLo9zNfAeoHdD59Q6sdUvHJIkSZJUY97EU/8EjAeOBOZRXC6yGvg5cCzFZRw/j4g3AS+JiP0i4o2V/ffIzE8BcyNiCkBEvAY4DrivHPNq4ChgHUWQsQNwJ/DXETGDooNjEnBPJbz4YUScC5wHfAPoK2vYHrgeOD4zF1J0W0BxycrjwL4UwcZuwK8z89fAK4DvbP5HJUmSJElqFDswtnGZec6gVR+tLJ9dWf7P8geKy0MG9p9dvv6wsu4q4CqA8hKSb2TmonLzLytzdlWWlw6qaxGwqLLqCwN1lHP+Zznum5UxNww6FyLi+cAPMvPxwdskSZIkSc3DAENbVGYuaOScmXkrcOto1yBJkiRJ2rq8hESSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtGWBIkiRJkqTaM8CQJEmSJEm1Z4AhSZIkSZJqb/tGFyBtjojoyszZmztP76peZsyfMRolSSPS2dbJ9AOnN7oMSZIkqWnYgaFmt0NEnB4Rn4+IgyLiVRFxbUQ8LyL+JiJmR4TfElUrPX09zFs2r9FlSJIkSU3FDgw1uyh/WoAVwFuAnwPvALqAycAzNzZJ68RW5kybswXLlP7Ebh9JkiRp09mBoWa3BngasANFkHEA8HngucCOwDpgUsOqkyRJkiSNCjsw1LQi4jnAnpl5ZmX1SeXrtPL14q1blSRJkiRpSzDAUNPKzHuAMzc6UJIkSZLU9LyERJIkSZIk1Z4dGJLUAN193d7Mcwzq6euhvaW90WVIkiSNSXZgSJI0Stpb2uls62x0GZIkSWOSHRiS1AAdLR0+uleSJEnaBHZgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z438VRDRcQLgWOBfuCezPxquf64zLx2mH1agSMy8+ujVUfvql4faamtxkdtSpIkSZvOAEONdkxmfqIMJT4SES8FzgUOj4i9gF2AZwOfAt4E7AFcDxwVETcB7wQCuBG4uxx3KXA78FlgKTA3M+/YmiclbYiP2pQkSZI2nQGGGi0ryz8EfgscUFn3TeBkYHw5tg1YDtwAHAF8GXgFsBj4CEVg8fzM/F5ELAa+BrwQ2GCA0Tqx1UdaSpIkSVKNeQ8MNdqCiDgbeCNFQNFP0VExYH35OrncPh54EHgJ8BOKcGMS8HvgucAlFCHHwL45aD5JkiRJUhOyA0MNlZmLgEVDbKqum12+LgS+WC6/r3ydWRn3qvL1beXcA/v1bnahkiRJkqSGsgNDkiRJkiTVngGGJEmSJEmqPQMMSZIkSZJUewYYkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1d72jS5AY0dEXAx8ITO7N3G/VuCIzPz6UzhmK/DvmfmKiOjKzNmbOgdA76peZsyf8VR2lTaos62T6QdOb3QZktRUbr31KE5aflOjy5C0ie743SoO2mdio8vQGGaAoVEREXsD84GXRsRq4CPA3cC/A6eVwy4B3g3cC3wLeBOwB3BZOUcX8M/AO4H9gCXAM4HVwI7AfwN/DzwBXJmZd5Tz9kTEK8o5TgAOBNZRdBjdBHQCf8jMz22h05eG1NPXA2CAIUmStgkH7TOR1z7v2Y0uQ2OYAYZGy/HAbsD+wPXAzeXPscBvgB8DLwZWZOYlETEJSKCtMsd9FOHFd4B3Z+ZXIuI84FrgFRRhxyRgIUXAMRBg3AAcRRFsTMnMWRExiyIAeS3QCzxjQ8W3TmxlzrQ5m3P+0l+wq0eSnprnP/8G5kw7pdFlSJJqxntgaLTskZmfAuZSBBkvAd5MEWbsB7wV+AnwrIh4DzCZIsAYX5njSuBlmbkcGF+O+wPQAjwO7AzcU+5z56Dj3wi0Aosj4v3AA+W6/YGHgUdH93QlSZIkSVuTHRgaFQP3nsjMH5b3pZhXuafF2ZWh51aWFwJfLJd7I+JEYKAN4veZeUll7Pzy9bpBx+2l6LCA4hITgGsqQ07apBORJEmSJNWSAYZG3aBQYVP2+3Zl+SndjFOSJEmSNDZ5CYkkSZIkSao9OzAkaQvq7utu2M08fYSrJEmSxhI7MCRpDOrp62HesnmNLkOSJEkaNXZgSNIW1NHS0ZBH9PoIV0mSJI01dmBIkiRJkqTaM8CQJEmSJEm1Z4AhSZIkSZJqzwBDkiRJkiTV3gYDjIiYGRGnR8Q/RURLuS4GjbkwIs6MiIMjoquyPgbPNxLVOZ7i/oPr6ypfj4iIoze1hpHWM5LzHcm8EXFMRHw8Iv4+Iloj4o0jmPfMiHhGRPy/iHhORJy3oRqrtUbEiyNi4saOMYIaNvkzG2r/je1b/k3+Y0RcNoI5R/T5SZIkSZLqb2NPIVmfmZ+PiN2BN0TEFOD7wLcrY3YB/gu4A5gZEccDLweWRsRy4Mhy22HACmASMB94JfAC4FTgdGA98DGAiHgbsCvwEPCszJwdEecAy4B9gEcz89Jy7LkUQczVwLuA70fE9pn5jbK+cRFxBrAf8L1B4/8aeBbwNeCozPz8cB9ERBwGvB7oB/4FeBOwB3AZMBO4OCJOBR4FzgfOBJ4ArgTeAPyhMtd+wJSIOBx4MxDArMx8DNgLWFnWdyBwVETcBLyzHHcp8GHgbuD/ZebvgJ8CLwLuBI4Y4jPcd+Czj4h7gX0j4hPAh8r1yyLiEmAJsBQ4GFgNTM7MgWDhneXv8Czg3ypjDwXWlMca/JlNAY4DEngA+AbwbmAecCLQn5mzyuFtEXFS+fs6Ddiz/OxeP2gcwFrgyYh4RvlZBDCL4vf4G6C7/Ow+B3RGxPOBi8rPaki9q3p9aoNGXU9fD+0t7Y0uQ5IkSRoTNvUSkuWZ+e1B695D8eX1/cDSzLwG6MvMK4BnAr8HplAEFJdTfPl8OfBp4BfAy4BVFF/89yznnFyGCftTfLl+LcWX5ZdSfCF/ZuX444DPAMcO1FcJL6AIYS4C5g4xPiiCgLcCv9rIuU+j+LK/PbATxZfytnLbjygCihuAq4ADKIKalRTBSQD/MTBRZi6nCAAmlPsuAA4pt30NuKascUU55xHAl4F7y8/o5vI4LyynvIUiELidIqxYNegz7M/MOeVnMQf4T4rfW2/l/O6g+MI/BXhGZn6J4ndFRIwra11bzlcdOzEz/4Ui2BnsGOCzwI4UIdeJwDrg1QOfZUSML8cuy8y55ed6CUWAMm2Icesz84sUv68pgz6/WyjCtZ+Xnz3AT8rzHfispK2mvaWdzrbORpchSZIkjQkb68AYFxGnA7sDFwLviohdgCMyc3455h+BpwOLKf7DfyJ/+jL7XKCvPE5mZpZXL/yI4j/5h1N0M0wBlgP3l/vdXR73LopOhBuAF5fHmQT0VGpcB3yA4gv9qwEi4o2Z+fVhzqk6/sUUX3RfTfEf/KEcWnZwzKfopLiHIiRIYOBL9cD5ri/Xb1eOG0/RFXE4xZf3qkkUHRon8qcOAiLiryk6Ux4B7gNeAnyKonMhgGvLdfsDFwFk5uqIOAg4F+gEvgo8t/IZPrtaZ2b+OiI+RdH98bcDtZe/nwAej4j3VM5vJ4rOkO3Lc6uO7YuIN/Hnf0sDn9mNFJ0oT2bm7yLilRTBzJMDn2Vmrin3uSci3k4RtvRHRFY/88q4akfNnPKcBz6/l5ef/7ryFYrfcdvAZzWc1omtzJk2Z0NDJEmSJEkNFJm58VGjfdAiBHkTsE9mfmSrF9DEIqKVIkAaLqAZyRzPB16amV8YZvuLKC6v+XVmfu+pHqeZTJ06NRcvXtzoMqRRM2P+DLr7uulo6djkfTvbOpl+4PQtUJUkbdzAJZ3+Y0GSRtdJX7oJgLnvOrLBlWxcRCzJzKmD12+sA2OLyMw/UFwmoE2Umb38+aUfT2WOW4FbN7D9ZorLVCRtY3r6igY3AwxJkiTVTUMCDEnSltfR0rHJ/8H0ZraSJEmqq029iackSZIkSdJWZ4AhSZIkSZJqzwBDkiRJkiTVngGGJEmSJEmqPQMMSZIkSZJUewYYkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2tu+0QWoOUREV2bOHuHYyMwchWOeCyzIzP8p338I+Hlmfn+o41RrjIjjMvPakR6rd1UvM+bP2NySpdro6euhvaW90WVIkiRJo8YAQ5ssIt4MTAUuAk4EngV8DTgKeA6wNCKeDkwA7gXagRXAJOAq4DXAT4FdgX2ARzPz0nLucyk6g64GDge+V67fEfgdsF/5/rvApyPiYOAw4CzgryLiTOAXwOERsRh4E7BHZn54i30gUg21t7TT2dbZ6DIkSZKkUWOAoafi6cCDwPOAAO4G3gr8N/D0zLwiIi4HFlCEFOuByylChlcBF2bmYxHxRWAx0FKZexzwaeC9wJLMvL1c/yqgDWiNiCsoApBFwBRgLbA/sCwzPxsR5wFrgPFAlvttUOvEVuZMm/MUPgpp7Onu697iHUmdbZ1MP3D6Fj2GJEmSxhbvgaGRGhcRZ0TEGyjCgu3KnyeBlcABwE1Afzn+JmAXoAfIyqUe/w28PyJeDSwEdgN+XTnOOuADwHWDjn9IZs4C/gk4vjzOTsBeFEHcdsDkiPgAcHO5z2SKAGP85p68pNHT09fDvGXzGl2GJEmSmowdGBqRzDy/8vZbQwz5Tvk6uxz/pcq2G8p1A/fQuG2Ex7m1sn5g3mXAssqYmZXlkyrL88vXhcAXhzuepL/U0dKxRTuSvN+MJEmSngo7MCRJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPAEOSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtbd/oArT5ImIH4DTgGOBG4ILMzGHGzgQeBw7JzHeU6wKYlpnXlu+7MnP2ZtbUlZmzNzZXWc8aYEJmfjwijhuoYwP7RGZmRHQB/wm8A/hoZvYPM74dWJuZy4abs3dVLzPmzxjJqUljWk9fD+0t7Y0uQ5IkSfoLBhhjQGauBS6KiAnAOODUiNgTuBJ4PdCfmbMqu6wFngSIiO8CnwYOj4jtgf2BwyLiBcArgRcApwKnA+uBj2Xmmog4ATgQWAesAnYBnp2ZHyyP0RYRJwHjIuI0YLh61mfmZyLi1PL94RFxeBl+nAMsA/YBHi3r3hWYC/wW2Lms7WzgHyLiJqAT+APwX8AJFH/jS4DV5VySNqC9pZ3Ots5GlyFJkiT9BQOMsSeBS4CzgGnACuA5ETE+M9dQBAZfjIh/iIidgJ9m5o0R8TLgrzJzVkR8Eng5RbDxEeBlFCFFUgQR9wBTyrGzym3fBE6u1LEsM+eWIcSG6hkXER8BJlb3jYjXAkvLfRYDLUAfMDczf1uOewLYvdx3GfBaoBd4BrATRUhzEEWAsUGtE1uZM23ORj9cSZIkSVJjeA+Msae/vJQigfnAJOCeMiyAIjA4A5hMEQBUL7u4NSLeBuwH/IgidDgcWEjR7fAwcH85dnFEvB94oHy/flAd90TE20dQz/rM/BjQFxGt5bqrgXOB75fH3g349cD5VY7xZDluFkVIsX9Z46MUwcVjwPiNfF6SJEmSpCYQw9wqQdu4iNgFeBOwT2Z+pMHlbHFTp07NxYsXN7oMaZswY/4Muvu66WjpaHQpW1xnWyfTD5ze6DKkpjJwTyo7IyVpdJ30pZsAmPuuIxtcycZFxJLMnDp4vZeQaEiZ+QeKSz8kSU9BT18PgAGGJEnSKDHAkCRtdR0tHWP+v6s+2UiSJGl0eQ8MSZIkSZJUewYYkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1d72jS5A9RYRM4FHgd2Bz2Vm3yjP/2LgF8CpmTk7Iroyc3Zl+4uAFmBv4AlgPfDLzLyj3H40sDozF21OHb2repkxf8bmTCE1vc62TqYfOL3RZUiSJElDMsDQxqzPzM9HxO7AGyLiUWAqcBFwLnAzsBZYB+wGLACOL9//DDgSeAi4NDPXRsQZwL3AzsDEcttyYEpETAEOi4jzgBsz8/pyjg8CD1L8ve4DLIuIc4EEbgTGRcQHga8A04C9hjv+FvqMpKbX09cDYIAhSZKk2jLA0KZ6OkWY8DxgeWZeFhFdwNMy8zyAMoC4mqJrohs4EIhy/ycoQojVlTnXA0syc0lE3AF8giK0uL4MPXYs9x+Y4xjgs0BXZf/tgNcCc4FLN3D8IbVObGXOtDmb/GFIY4UdSJIkSao774GhjRkXEacDpwPfBPan+LvZjiI4GNATEe+NiEOBWyi6K34F7ALsRNFxQblt33J7T2X/ncvLRdZlZj9/HjgEsBJ4BHgc+AFwJvBkZcwiYGpmPrSR40uSJEmSmpAdGNqgzDx/0KquIcbMHrTq9sryrYPG/ozi0o7Bzi5fbx4850BnxyBLhlh3Qzn+guGOL0mSJElqTnZgSJIkSZKk2jPAkCRJkiRJteclJJIkALr7urfKzTx7+npob2nf4seRJEnS2GIHhiRpq2pvaaezrbPRZUiSJKnJ2IEhSQKgo6XDxwlLkiSptuzAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z73wJAkaQvZWk92qYvOtk6mHzi90WVIkqQxygBDTSMiZgJrgHGZeUG5riszZw+8PtW5e1f1blNfMqTBfLSpNldPXw+AAYYkSdpiDDDUTNZn5mci4s6I2Av4PDAlIo6qvL6M4tKoq4F3AzcDazPzioZVLTUBH226ZWxLT3YxBJYkSVuaAYaaybiIeDfwz8BE4HBgSWbeEBFHlq9HA58G3gssz8zLIqJrYxO3TmzdZr5kSJIkSVIz8iaeaibrM/NfgWdT/O1uB0REHFt5XQd8ALgOWN+wSiVJkiRJo8oODDWNgXtcZGa1o+K75ev1g14Bbq3uJ0mSJElqXnZgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj0DDEmSJEmSVHsGGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNrbvtEFaNsVETOBx4FDMvMdERGZmSPYryszZ4/wGC8HnsjMRRsa17uqlxnzZ4yobqkROts6mX7g9EaXIUmSJDWMAYYabS3wZER8F/h0RBwMHAZ8Ejge+DkwEXg58ARwJTA5Is4AHgLWAPsAjwKLy3F/APqBXYE+4ICI+FVmPrzVzkoaRT19PQAGGJIkSdqmGWCokdZn5hcj4h+Ae4BFwBSKUGO38uevgSuAk4GFwH7APZl5UUScDTybIrhoAZ4JPAwcDNwOzAUOBHo2Fl60TmxlzrQ5o3+G0iiwO0iSJEnyHhhqrHFlJ8VkIIGdgL0ogrXtgHuBpwG/pwg4xgN3AuvK/ZMi1NgN+DXQAawux0HRhbECeF1E7LLFz0aSJEmStMXYgaGGyczzh1g9s7J82zDrZ5f7D3cfjK9WllcCXU+lPkmSJElSfdiBIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj3vgSFJTaC7r9unkTSZnr4e2lvaG12GJEnSmGEHhiRJW0B7SzudbZ2NLkOSJGnMsANDkppAR0sHc6bNaXQZkiRJUsPYgSFJkiRJkmrPAEOSJEmSJNWeAYYkSZIkSao9AwzVSkS8ICK6IuKciPjwMGNOiYi9I+K4Qeu7NjBvjHatkiRJkqStx5t4qm6OzcxPQhFIRMQewJuAPYBLgfcArcB84PCIeBw4ErgDaIuIk4DxwK7AQ8C+wArgW8Ajwx20d1Wvj6hUbfk4TkmSJMkODNVURLwN2JEijEigDXgxcDmwqDL0mcDvgSnAssycC0zOzM8D+wP9mTknM4cNL6S683GckiRJkh0Yqp/rI+Js4A/AOmAyRYAxHriJohvjIGBuOf65QB/F3/I9EfF24O6IOB24C3j2SA7aOrHVR1RKkiRJUo0ZYKhWMvMW4JZBqxcCXyyXZ1fWz0aSJEmStE3wEhJJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtGWBIkiRJkqTaM8CQJEmSJEm1Z4AhSZIkSZJqzwBDkiRJkiTV3vaNLkCSJI0N3X3dzJg/o9FlqMn19PXQ3tLe6DIkSTVkB4YkSZJqo72lnc62zkaXIUmqITswJEnSqOho6WDOtDmNLkOSJI1RBhj6CxExE3gMuC0zF0REZGaOYL+uzJwdEUcAEzJzwaDtQ84zsN8Q648GXgssB64CXpCZXx9i3J/NGxHHAU8AqzNz0cbqBuhd1Wvbs8aUzrZOph84vdFlSJIkSaPGAEMb8lBEfBf4XER0AgHMAr4G/AboBg7MzNPL8eMi4gxgP+B7EdEFrAN+BnQCSyPi6cAE4N7M/GZE7AZMiYgpwOvLef4lM++t1LEOmAQcFRELgfcB64GPAXOBT0fEB4Cl5fvDgd8BB0TEi8p6/w6YPZIgRmp2PX09AAYYkiRJGlMMMDSU9Zl5EUBE/BRYDfyI4p4phwC3ADcCa4GJg/cb6MAApgJXA3sDfZl5RURcDiwAdgXIzAcjYglwL0Uo8mPgJRRBBMDczFwUEa3ADeW2VUACewI/zcwby26NrwEvLPdbDvQAvwLeDjy+ofCidWKrbc8aM+wmkiRJ0ljkTTy1Mf3AL4GXA0cDv6DoiMjK63BuoQg4flXOA3ATsAtFuDBgZ6CVonPjrRThyICTyq6OBynCi5vK8Q8D91fmXV/WEuX7FcDryvcHA98Z0dlKkiRJkmrJDgz9her9KCrLZ1WGVO9XsWjw2Mp9JxZUxt1abvvSEMc7u1y8edD6BYPmeN9wtVTq7K1s64qIA4BlmfmbwceVJEmSJDUPAwyNaZl5F/CJRtchSZIkSdo8XkIiSZIkSZJqzw4MSRqDuvu6N/tmnj6KVZIkSXViB4Yk6S/09PUwb9m8RpchSZIk/ZEdGJI0BnW0dGzWo4F9FKskSZLqxg4MSZIkSZJUewYYkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2vMmnmqIiHghcCzQD1yamQ9uYGxXZs4ul08B5mfmytGsp3dVrzct1JjR09dDe0t7o8uQJEmSRpUBhhrlmMz8RETsAbylfP0+8ELgZmBX4Ajge8CeEfEeir/XRwAi4p3AYcBZwL8BS4ClQDtFKHIt8KqBMZn52FY8N6mh2lva6WzrbHQZkiRJ0qgywFCjZPk6vlxuA/6XIrTYCXgmcC9wJPBkZl4SER+lCDDGAROAtcD+wB3A54APATtl5nkRMXjM0g0V0zqxdbMeOSlJkiRJ2rIMMNQoCyLibIq/we0ogozdKQKKycBewAPlth3LDoy+ct/tyu0D+67PzIyIAO4rx/7PoDGSJEmSpCZmgKGGyMxFwKIhNt0+wilmVpZvK+ec/RTnkjSE7r5u7w1T0dnWyfQDpze6DEmSpG2W/5mWJGkjevp6mLdsXqPLkCRJ2qbZgSFJGlJHS4f3hinZiSJJktR4dmBIkiRJkqTaM8CQJEmSJEm1Z4AhSZIkSZJqzwBDkiRJkiTVngGGJEmSJEmqPQMMSZIkSZJUewYYkiRJkiSp9rZvdAFqfhGxA3AacAxwI3BBZuYwY2cCjwK7A5/LzL6NzB2ZmRHRlZmzB143MH7Y7QNzDbWtd1UvM+bP2FAp0jalp6+H9pb2RpchSZIk/ZEBhjZbZq4FLoqICcA44NSI2BO4Eng90J+Zs8rh6zPz8xGxO/CGiGgB1gE/A9qBCcC95fIK4FvAI8B+EXEG8JKIaAWOAFYCq4H3AUuApcBhEXE8sO8G5pK0Ee0t7XS2dTa6DEmSJOmPDDA02hK4BDgLmEYRHDwnIsZn5pohxk8Frgb2Bl4ELAB2pQg95lTGLc/MgZAkgaAISwDuAD4HfAhYmpnXRMTlG5jrL7RObGXOtA0OkSRJkiQ1kPfA0Gjrz8x+ipBhPjAJuKcSXoyLiNOB04FvArcAE4FfATcBuwA9QP8GjrGSIux4dfl+fXlpSACPRMSJmzCXJEmSJKkJ2IGhUVO990RleemgMecP2u2CyvKtleUbhpq7Mu8Zlc2LBh9/kBuGWS9JkiRJahJ2YEiSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPAEOSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7PkZVkqQR6O7rZsb8GY0uo7Z6+npob2lvdBmSJGkMswNDkiRttvaWdjrbOhtdhiRJGsPswJAkaQQ6WjqYM21Oo8uQJEnaZhlgqPYiYiawBnh6Zs4atK0rM2dv7jF6V/XaGr4N6mzrZPqB0xtdhiRJkqQRMMBQM1ifmZ+JiLUR8QngVKANuBCYEhGHA28GAjgfOKdcngV8BVgKzM3MOxpSvWqpp68HwABDkiRJahIGGGoG4yLi3cDHgKdRhBMtwEPAEmAC8COKe7p0VJYPARYDXwNeCAwbYLRObLU1fBtjx40kSZLUXLyJp5rB+sz8V2AtsAdFiLEDxd/vJOAJ4OXA0UB3ZfkXwHogKUIPSZIkSVKTsgNDtTdwj4vKvS4+Wdn83vJ1aWXdWZXlgX16t0hxkiRJkqStwg4MSZIkSZJUewYYkiRJkiSp9ryERNI2q7uvu2E38/QRrpIkSdKmsQNDkraynr4e5i2b1+gyJEmSpKZiB4akbVZHS0dDHp/rI1wlSZKkTWcHhiRJkiRJqj0DDEmSJEmSVHsGGJIkSZIkqfYMMCRJkiRJUu15E09tUES8BWgF7srMucOMaQfWZuayjcx1CfA74PbM/E5EBDAtM68dZvzRwOrMXDTEtpnAGmBCZn585GckSZIkSWpGBhjamL2A5cB1EbE/cALF382jwDeAdwOLgCciogu4GVgLBLATcGhmnlrOtRy4APhoRLwBuBw4PCL2rcz1jcoxHgAOiIgngBOB/sycVc61PjM/ExGnRsTbgauAvxu0/xLgWGBn4IzMXD/cSfau6vXJENuYnr4e2lvaG12GJEmSpBHyEhJtUGZeCNwKXEgRSDwJHAj8F0WosA7IcvjyzLwMeBYwKTMvAR6sTPcc4HSKkOGXmXldub46V/UYy4FrgFcDK4DtI2J8uc+4iPgI0AZcCbwVeHzQ/gDXAj8Ddh+Fj0NjSHtLO51tnY0uQ5IkSdII2YGhDYqI1wDtwH3AQcBjwPjM/F1EvBL4DPCMcni1w+F3EXEqsGdl3T2ZeVFlXgAGzfXHY1CEFu8A5lF0UtyTmWsGjpWZ50fEOcCuwMHAx4AjK/sP1JQUHSHDap3Yypxpc0b0mUiSJEmStr7IzI2PkjZRRBwEvBJ4tOzK2JLHOgD428z8xFOdY+rUqbl48eJRrEoa3oz5M+ju66ajpaPRpWiEBi45MuiUJEnN6qQv3QTA3Hcd2eBKNi4ilmTm1MHr7cDQFpGZdwB3bKVj3QU85fBCkjbGS44kSZIazwBDkhqgo6XD/+ZLkiRJm8CbeEqSJEmSpNozwJAkSZIkSbVngCFJkiRJkmrPAEOSJEmSJNWeAYYkSZIkSao9AwxJkiRJklR7BhiSJEmSJKn2DDAkSZIkSVLtbd/oArR5IuJi4AvAauAIoDUzZ5fbjgCOAZ4G/HtmLqvsd1xmXjtorq6BfUdw3FOA+cA0YH5mrhxm3HmZOSsirgJOBGZm5keHGTvk8SMiMjOHWH8V8APgXzNz9QbGHQ2szsxFw51P76peZsyfMdxmaVT19PXQ3tLe6DIkSZKkpmKA0cQiYm+KEOGlwPVDDHlFZp4fEdsDZ5Zf8GdHRFe5/w3ALGANRQgyJSKmZOaSiJgCHAckcCNwLLAzcEZmrgf2A04CHgVOiYh9gNnA6cB64GOZuQZYFhGHAD3AFKA/It4DTADuBfYBngSuLY9/OPDWsqbPAxcBl5eByRJgaWZWz/UJ4AMRsaKcexfgIWBfYAUwCfgNcEBE/CozH34qn7U0mtpb2uls62x0GZIkSVJTMcBobscDuwH7M3SAUfUY8IxyeRxFyHBIuXw/xRf9JZm5pBxzDPBZoKt8fy1wILA7cB+wnD91YHwFOBl4GbCKIvTYE7gH+Ek5x+eBGcBNwAnAAmBX4FfAC8r6lgDjKzXtC/wyM6+LiBcCnwM+VDnXGzPzSxFxTmbOqXR7zKLoSLkcOKustWdD4UXrxFbmTJuzkY9QkiRJktQo3gOjue2RmZ8C5lIEGYP9MCJmUgQR/wWsiYiTKTopAH5BEWSsowgbdo6IF5XbfgCcSdEdQTkugSjf9wJvpwgb1pXbFpZzP0wRQJCZ/wtMBX4JtFN0c9wE7ELRlbFLOd9eFCHKo4Nq6h84fnl5yMDxqwbG3B0RpwN3FYf+4+UkK4DXld0ZkiRJkqQmFEPcMkBjTES8GvifzHys0bXU1dSpU3Px4sWNLkOSJEmStoiTvnQTAHPfdWSDK9m4iFiSmVMHr/cSkm1AZn6/0TVIkiRJkrQ5vIREkiRJkiTVngGGJEmSJEmqPQMMSZIkSZJUewYYkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSam/7RhcgDSUiPgzcC/wKmJCZC8r1XZk5e4RzzACuzcyVGx38wJ0w5/inXrCkzXfoG2DqjEZXIUmSpJoywFBdrQUmAXcCR0TEVOBnwGERcTzwXOBJ4B7gAOBBYFfgIWBfYAXwDOCQiHhdZv7r1j8FSSO28vbi1QBDkiRJwzDAUJ3NBd4HvAn4ALA3sDQzr4mIf6QIMA4E/gBMzsxZETELWJOZcyLiFODvgDdv9Ei7PxdmXLNFTkLSCNgBJUmSpI3wHhiqrcz8NUUXxaeBiRSXkzwSEScCy4HxQCtwE3B3RJwO3AX0V6b5LHDWVixbkiRJkrQF2IGhWhq4z0VmDu4nv3WYXe4YYo7Ly8VbRq8ySZIkSVIj2IEhSZIkSZJqzwBDkiRJkiTVnpeQSJLqYeXSLXczTx/RKkmS1PTswJAkjW0rb4fbv9XoKiRJkrSZ7MCQJNXD3odtmccZ+4hWSZKkMcEODEmSJEmSVHsGGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNrzJp5qqIh4IXAs0A9cCrQBx2Tm7GHGd2Xm7IhoB9Zm5rLB28rlU4D5mblyRIU8cKc3+pMaaeXtsPehja5CkiRJNWaAoUY7JjM/ARARrcD+wGERcTxwKPDPwDsz86JB++0DrI6ItwAPAhOBPSLiNGDH8v1JEfEoxd/5f2fm3VvhfCQ9FXsfCoe+odFVSJIkqcYMMNRoOcS6pZl5TUTsCbwT+M4G9u8H/gN4H/BQZl4cEWcDy4H5wL7AK4BxG6xi9+dumcc3SpIkSZJGhffAUKMtiIizI6IL2K1c90hEnAhcCbwsM5dXxr8kIs4AJpXvtwf+HlhX/kARivQCbwf2AB4HJm/Jk5AkSZIkbVl2YKihMnMRsKiyasnAQhlizBk0/jXV9xHxdOAo4OrM/Gk5ZuD+GQu2QMmSJEmSpAYwwFBtZea3RzDmB8APtkI5kiRJkqQG8hISSZIkSZJUe3ZgSJLGvpVLh39U8qFvgKkztm49kiRJ2mR2YEiStl0rb4fbv9XoKiRJkjQCdmBIksa+vQ8b+lHJw3VlSJIkqXbswJAkSZIkSbVngCFJkiRJkmrPAEOSJEmSJNWeAYYkSZIkSao9b+LZxCLiXOBe4L+AqzPzxeX6yMwslw8G/g64NzM/O8QcuwFtwDGZOTsiujJz9qAxJwGTgF2BL2TmfSOs7y/mKte/CGgB9gaeANYDv8zMOzY0R0Qcl5nXburxRuSBO72ZnzQSPnJUkiRJDWKA0dzWAROBE4AFEdEKzAQuBm4rx7QAq4DvAETE94DfAN3AgcDngP2BwyLieGCPiDgN2DEzP1fO0ZaZnyz33y4iPlGuvwR4D0UIcSXwNuDXmfnv5faBOfcHdgB+lZnzgJ8BHwQepPgb3Ae4KyLeD/wBSGBH4L/LOc4DbgQOj4hfAecAjwLnAx8CHgHuAaZExFHAyyi6i64G3g3cDKzNzCue0qcsqbDy9uLVAEOSJEkNYIDR/FYAh1KEFAA/yszbBjZm5sKIuAs4LyI+BtxCEQaspQg/BizNzGsi4vmZeXFEnF09SETsBHQBP6AIQH4MvJiiM2MhsB/wa2DnIeY8LzNnRcQsYF5mro2IHYEofwCeCTwMHAzMBV4BjAPuAD5BEXgMuAH4LXBIecxF5WewJDNviIijgU8D7wWWZ+ZlEdG1wU9x9+cO/YhFSX9il5IkSZIayHtgNL+rgUsr7/sj4nURMQEgIg4H3kzxu36EomsjK68DHomIE8v1DNq2jKLTYi3FJSv7AW8FfkLR+TAeuAt4BrBXRIwbNOdDEXEmRSfEgABWljU9DnQAq8u5Wsp1k4F1mdnPn4IOKC45ybKeDuCksu6IiGPL5Q8A15VjJUmSJElNzg6MJla538MKYGC5d9CYnwM/r6yq3iNi0VD7DJqbzJw7aHO1O2NmZfnOQXNcPHTlkJnnDbPpq+Xr/PL1usH1VOuNiD2BlwK3ZOa3ytXXV8beOsT+kiRJkqQmY4ChppaZ3wW+2+AyJEmSJElbmJeQSJIkSZKk2rMDQ5I0ciuXNt/NPFfeDnsf2ugqJEmStJnswJAkjW17HwqHvqHRVUiSJGkz2YEhSRq5vQ/zkcOSJElqCDswJEmSJElS7dmBIUnatjXjfT1Gy6FvgKkzGl2FJEnSiNiBIUnStmjl7XD7txpdhSRJ0ojZgSFJ2rZtq/f12Fa7TiRJUtOyA0NbVEQcHRFfL5dfHhEzI+IfBo25MiJ2HsFcMcS61oi4vlz+j4g4YrRqlyRJkiTVhx0Y2qIyc8FAqJCZP4qIHwMfGdgeES8APgccFxErgWOBnYFzy5/tgbnA+4ArIuIw4OvAUZn5lXKa+yLicGBdOWdXufwz4ATgNmCXzPznYQt94E7/GyltzMrbi0eSSpIkSQ1gB4a2tg8Bl1beHwNMLX8ArqUIHp4HzAeuL9f/MjO/TxFMnAR8uzLH94HPAAM94FOBB4C9gQcz8wpgp9E+EWmbs/ehxU0fJUmSpAawA0NbVNkZ8ZKIOA7YF2gDjgS+GRHbAesz86KIeBuwF7AcSOB/gX8Engb8O9BfTnk1cEZmPl45zJPAu8r5AW4BJgILK+s2bPfnbpvXwEuSJElSkzDA0BaVmT8HXlNZ9aXKtn7g0+XyFZUxiwAi4jbgBUB3Zi4ut72KItAYmKMX6C3fLqvuX7q1HDd7s05EkiRJktRQBhiqrcz8MvDlQesublA5kiRJkqQG8h4YkiRJkiSp9gwwJEmSJElS7RlgSJIkSZKk2jPAkCRJkiRJtWeAIUmSJEmSas8AQ5IkSZIk1Z4BhiRJkiRJqj0DDEmSJEmSVHsGGGoKEbFDRJwREVdFxNkRMTki3riRfY7bWvVJkiRJkras7RtdgDQSmbkWuCgiJpSr9gWOioibgNcCewCXAecAjwLnA4dHRD9wCHBTZv5k2AM8cCfMOX4LnoGkWlp5O+x9aKOrkCRJ0ggYYKhZLQduANYDCbSV628AfgscUL5/cWaet/XLk9QU9j4UDn1Do6uQJEnSCBhgqFk9CLwEWEERYIwv1w8EGlG+/0lEvB9YtMEOjN2fCzOu2XLVSpIkSZI2iwGGmkpmzq68fV/5uhD4YrncW9m+qHz9/hYuS5IkSZK0hXkTT0mSJEmSVHsGGJIkSZIkqfYMMCRJkiRJUu0ZYEiSJEmSpNozwJAkSZIkSbXnU0gkSdpWrVwKc45vdBV/6dA3wNQZja5CkiTVjB0YkiSpPlbeDrd/q9FVSJKkGrIDQ5KkbdXeh8GMaxpdxZ+rY0eIJEmqBTswJEmSJElS7RlgSJIkSZKk2vMSEv2FiPg4MAv4SGZ+eIjtXZk5ewTzHA38DXA/8MPMvHkj47uAlcD8zFw5aFtrWdMvgF9k5rUbmeuUoeYZ1gN32rYsNYo3bJQkSdIIGGBoKFcA3wAWRMSZwBLgWGBn4Axgx4iYCVwOvA9YD3wKOBdYA3w+M+8v5/pGZi6KiHMioh3YFXio3DawPA54GjCZIsCIiPgE8ARwZWbeUY6/NjO/Xs61Eng58AegH9gFeDbwBeA9QCvQHRFHADsBP8nM3tH7iCSNipW3F68GGJIkSdoIAwz9hcz8dUT8DHgSOIgiwLgWOBDYHXgz8CbgJcAqIIHnUQQR9wP7lq+DTc7MWRExC+gfYvmT5bgdgEnAQmA/4I4h5nom8DBwMHA78E3gZODFFMHKNKAXOArYLjO/tsGT3v259buRnbQtsPNJkiRJI+Q9MDSc7YDHgPHl+/UUQUUA/wEcB9xI0ZXxMHBLOWYdcE9lnr+NiLOBHwB3R8TpwF2Dlnsj4o3AbuU+a8s5xgN3VuY6LiI+CNwKdACrB9UHcBPwf4Ep5fvfA8uf8qcgSZIkSaoFOzA0pMycVS5eUVm9qHz9ZGXdWZXlDw6aYwGwoLJqg/fAAL5eWZ45aK5e4P8bYp+vVpZnV18jYifg/wDnbeS4kiRJkqSaM8DQmJWZjwMfanQdkiRJkqTN5yUkkiRJkiSp9uzAkCQ11sqlm3YzTx+7KkmStE2yA0OS1DxW3g63f6vRVUiSJKkB7MCQJDXW3oeN/DHGPnZVkiRpm2UHhiRJkiRJqj0DDEmSJEmSVHsGGJIkSZIkqfYMMCRJkiRJUu15E0/VTkRcDHwhM7tHMLYrM2dv9kEfuNObA0qNsPJ22PvQRlchSZKkJmCAoVqJiL2B+cBLI+KDwJPw/7d3/0F21eUdx9+PS0xAMEBCWDQIFSIY3ARhCygIFBRJA+MUMq0dS4eAKD+qIKis/BADQgMoUpWJ1SKIP0oKjFMQE6sCgQoBNxazEsEgGmPIKolIjJCQ7D7945x1LpfdZTfZzT2bvF//3HPP+Z7vec6dnWHy4TnfQwfQDHwNOIHi73YBMA04JCL2AM4FuoBbgLcCncDGcvyizLxtC9+KpIFoboGWGY2uQpIkSSOAAYaqZjowDjgW+DowCvg+cAqwA0WgMRloAq4FLgPeAawBElgHRHl8PbAS2OkVrzp+0sBf4yhJkiRJ2uJcA0NVs1tmXgPMBfaiCCU2lp+TgT8Do4F7gfcDbwYeAMYCzwF/BA4F3l3OtxGYuOXKlyRJkiQNBzswVCk961lk5lfrDtWuc3FL+flj4Ivl9oU1x8+r2X5oKOuTJEmSJDWGHRiSJEmSJKnyDDAkSZIkSVLl+QiJJGlk6Vzsa4+Hgq+wlSRJI4wdGJIkbYt8ha0kSRph7MCQJI0szVN87bEkSdI2yA4MSZIkSZJUeQYYkiRJkiSp8gwwJEmSJElS5RlgSJIkSZKkynMRT1VKRFwK/Bb4OTAmM++rO340sC4zF/Zy7jRgambOjoi2zJw94AuvWuprGaWh0DIDWmc2ugpJkiRthQwwVDUbgInAUuB1EXEdcD1wNvAL4CngpIg4HfhiOfY1wE+AqbUTRcR7gT2AtZn5lS11A9I2q7Oj+DTAkCRJ0jAwwFAVzQU+BCwGVgMHUoQXY8vjdwJvAjqBaUBk5n9FRP08RwDtwK6veMXxk3wto7S57GKSJEnSMHINDFVOZv4C2BE4neJvtKn8vnu5vRHoBgJYDzzXx1QPAOMowg9JkiRJ0ghmB4YqpWfdisx8pR70njUwPld/bv22JEmSJGnkswNDkiRJkiRVnh0YkiSpWjoXu6aKVM+3PEmSAYYkaQgN9z88OzuguWX45pekKvItT5IEGGBIkkaS5pbi/0Jq69Y8xTdDSbXsSJIkwABDkjSU/IenJEmShomLeEqSJEmSpMozwJAkSZIkSZVngCFJkiRJkirPAEOSJEmSJFWei3hqUCLifcDewJPAo8CGzHyqj7FvB36WmWtq9rVl5uxye1pmzuvlvL2Bw4CFwGGZeWsf8+8NzAJeAC7KzD/UHOt17j6tWuoK39Lm8hWnkiRJGkYGGBqs3YFlwPeBKcC6iGgDHgY2AAHsALQAjwBPRcQcYBGwGLinZq6pwLyI+HZ5bG5mLgH2Ao4ClgPHRcRRwCXABRRhxR3lOIB5wJ+AnSLieKAVuB6YGhEvAO8ExgLnZWbX0P8ckv7CV5xKkiRpGBlgaFAy87qIOAC4Dri53L0sM28sg4ymzLwyIq6oOW0J8Dng45l5dS/TtgPfAg4pxy4DFgArKAKPp4F9gYnAAxQBR0+AMQ0YD7wPeA2wGjiwZu55wJvKMb/r88bGT/LVj5IkSZJUYQYYGpSIOBHYj5eGAbWdDSsj4mxgAvDLnuOZmRERfUzbBSRF9wYUIcThFAHGRqCbYr2W5cBoYGnNufOAnwBnAOOAP/PStV3q55YkSZIkjUAGGBqUzLwLuKtu98Ly2OyImAy8C3gkM28uj8/uOV43V/3+X5ff/wR8qJfLP1R3/q97zgGu7afshf0ckyRJkiSNAAYYGlLl2hRLXnGgJEmSJEmD4GtUJUmSJElS5RlgSJIkSZKkyjPAkCRJkiRJlWeAIUmSJEmSKs8AQ5IkSZIkVZ4BhiRJkiRJqjwDDEmSJEmSVHkGGJIkSZIkqfIMMPQSEXFJRJwaEbtGxIO9HG8rP6cNwbXaaj/7GTcnIj4aEZ8c7NySJEmSpK3Ddo0uQJWzEXgtcAJwX0QcDawD9gfuBQ6OiP2AqRFxMLACmFh+3gW8H5idmRkRHwZGAT8H3gk8CuycmZ+PiNHlXEcBfxUR5wHPAuuBPYC1mfmVsqbucp415TWnAVlecz5wKnArcBGwFriynPtgoBV4DGjKzAV93vWqpXDT9E3+0STVaZkBrTMbXYUkSZK2InZgqDcrgDcCayiCggCaKMKFRZn5RDmuC7gZ2ADcAfwT8HxmZnl8l8z8LHAosDozbwF2AMjMnrkWAMsz83rgdcARFEHGTjX1LM/MfwW2B44FPgu8uq42gAUUIcq+5dyLgJ3LOe8fgt9F0kB0dkDH7Y2uQpIkSVsZOzDUm+8AC4FTgF8A5wK7A3cDEyNicjkuy04LMvO5iDgAuLxmnmcj4gLgYWBKL9eJiHgnRdcHFIHEAxQdHU/UjNsrIj4GvFAevwB4EfgpcBpwEPBNikClJ9QYGxGHAj8BDqwJVXo3fhLMvLv/X0XSwNjNJEmSpGFggKGXyMzZ5eYKoGe7dj2Jfyk/l9SeExH7Ak9l5m9q9n++5rzv1s1P2VUB8IP6Y3U1nVW3a1HN9qM127+u2V4IEBFXAF/qbV5JkiRJ0shhgKEhkZlPAlc1uo56mXlpo2uQJEmSJG0+18CQJEmSJEmVZ4AhSZIkSZIqz0dIJElDr3Pxpi/m6StYJUmS1As7MCRJ1eErWCVJktQHOzAkSUOvecqmvZrYV7BKkiSpD3ZgSJIkSZKkyjPAkCRJkiRJlWeAIUmSJEmSKs8AQ5IkSZIkVZ6LeGpQImIUcA5wLPAj4OrMzH7G3wB8AUhgJvCpzFwXEYcDHZm5ZoDXHQecD/wJ+Glmztu8O6mzaqmLB0pDpbMDmlsaXYUkSZK2MgYYGpTM3ABcHxFjgCbg7IiYANwBnAx0Z+YsgIhoBuYDR1D8ra0DPhoRK4Adgaci4kLgt8DtwD8CuwE3AhcBa4ErM3M18F7gmsx8LiIuiYipmTk7ItqA7/ZcG/gycC7QBVwO3AosBuZm5pJh/nkkQRFetMxodBWSJEnayhhgaHMkMAe4EDgeWAHsGRGjM3M9MB0YB+wD/CfwKHBMZt4UEacCrwZWZOaciJhYzvfGcu4FwNPAvsDquuuuBcaU20211waOBNaUc00A2oFvAYcAfQcY4ydt2isfJUmSJElbhAGGNkd3ZnZHRFJ0WswAlpfhBcBuZZfEMcDBFI+cdNec/yLwuog4C/gZRegwujzWVX6P8vutwMcjogn4PjAmIs4B9geu7bk2cD9wELAMeKaXeSRVXediH+nalvkIkiRJ6oMBhjZJZs7uZXtxb2My8x7gnnL3wnLfzeX3S2pOeQD4Yrn967q5VgMXR8QBQFdmPl4euqGXa19Ys91T20vmkyRVlI8gSZKkPhhgaETJzMcaXYOkYdY8xUe6JEmS9DK+RlWSJEmSJFWeAYYkSZIkSao8AwxJkiRJklR5BhiSJEmSJKnyDDAkSZIkSVLl+RYSSZIkqeL+4TfvgX9/qNFlSBrBlqxcw+Q9XtvoMjaLHRiSJEmSJG3lJu/xWt5z4OsbXcZmsQNDkiRJqri5b/hvmPmBRpchSQ1lgKEBiYhRwDnAscCPgKszM/sY+z5gb+DJzJw7iGvsDRyWmbfW7R8LfBq4PDOfiYjvAB8F9gGOycwL+phvWmbOG9DFVy2Fm6YPtFRJw6WzA5pbGl2FJEmSKsgAQwOSmRuA6yNiDNAEnB0RE4A7gJOB7sycVQ7fHVgGfD8iDgamAQmsAOYDpwK3AhcBa4ErgQuB54HHASLiDcAHgQAeoPhbXVvOvxA4huIRqGcioi0zZ0dEG7AU2A14EJgaESuBE4FHMvN7w/DTSBpKzS3QMqPRVUiSJKmCDDC0KRKYQxE6HE8RTOwZEaMzc31mXhcRBwDXAUuAzwJt5XlBEYAALACeBt4C/JIimHhzeextwNcpgoo/AAsy84Xy2EZgDPAssGNNXU3AY8AJ5XGA44DrMvPP/d7R+Ekw8+7B/QqSJEmSpC3GRTy1Kbozs5sikJgPTASWZ+Z6gIg4kaLr4nfAD4ELgBeBnwKnAQeV83SVc2wAXge8u+YaDwKnlHP/vpcavgHcVm53RMQ5wP7AOGANxeMlAP8DnB8R7375FJIkSZKkkSL6WMZA2qa0trZme3t7o8uQJEl6uZ51uuwWlbSNiIhFmdlav98ODEmSJEmSVHkGGJIkSZIkqfIMMCRJkiRJUuUZYEiSJEmSpMozwJAkSZIkSZVngCFJkiRJkirPAEOSJEmSJFWeAYYkSZIkSao8AwxJkiRJklR52zW6AI1MEXED8IXMfLz8fjGwHmgCIjNnD2KuaZk5r5f9ewOHAQuBwzLz1j7OnwB8CvgVMCcz1w7uboBVS+Gm6YM+rXJaZkDrzEZXIUmSJElDzg4MDVpENAPzgSNqdndl5meAHcsxoyLi3Ij4t4h4TUTMjoiZETElImZFxGU1504tz/l2eWxyuX8v4Cjg9cBxETEnIsZFxFURcWnNuB2BDcC8zFwbEW0RsXdEvDcivhwRp0fEPw/fL1IRnR3QcXujq5AkSZKkYWEHhjbFdGAcsA/wH+W+pog4E3gEOADYHghgV6AVuD8zvxsRHwdWAHtGxOjMXF8zbzvwLeAQYAmwDFhQjr8HeBrYF5gIPEARcCzJzKciYhbwkYjYvqee8nNZZt4YEW393tH4STDz7k36MSpja+ggkSRJkqQ+2IGhTbFbZl4DzI2Ig8t9XZn5pcy8q2cMRYgxClgKHBkRMyk6NyYCy+vCC4AuICmCD4DVwOHAnsBGoJvib3Y5MLqcl4jYCzgNGA/8vvz8u5o5JUmSJEkjXGRmo2uQGq61tTXb29sbXcbm6enAGOmdJJIk6aX8b7ykbUxELMrM1vr9dmBIkiRJkqTKM8CQJEmSJEmV5yKe0takc7GLeVaZr7mVJEmSNpkdGJK0JfiaW0mSJGmz2IEhbU2ap7jAV1XZGSNJkiRtFjswJEmSJElS5RlgSJIkSZKkyjPAkCRJkiRJlWeAIUmSJEmSKs9FPPWKIqItM2fXf77COU3AJ4A7gA8CVwEnZ+acgVyrl/3HAgdl5rW9jY2IU4H5mdkZEdOAB4FPA5dn5jOveJOrlo78RRY7O6C5pdFVSJIkSdKwMMDQgETEXsDBEbEfcE9EfBh4EbgtM1dHxFuBvwH+mJlfzcyuiNgO+GvgKeDtwIMRcTUQwCzgG8BiYC4wA/hjea2zgDHAb4H9gBXAW4CO2hCln3KnAknx931YREwGNmTmdUP4k1RPcwu0zGh0FZIkSZI0LAwwNCCZuSwiFmXmEwARMZYinIhyyE7Ac8ABNae9CIwFngaOBFYC91I8uvQWoB34FnBIOc/XgLOAQ4H7gF2A7sy8qafDAji1nLsJ6Oqn5MeBnYHDy+039HuD4yf5+lFJkiRJqjDXwNBgTCy7GaAIBwB2Lz/3B9YBo2vG/x/wemAhsA/wGEWXxtHAzygCiKQIL9YDJ5XnPVTO/wTQXVfD+og4hSIYqXdGRJxWt++HQDOwdAD3J0mSJEmqqMjMRtcgNVxra2u2t7c3ugxtzW6aDp2LoXlKoyuptpYZ0Dqz0VVIUrX0rNNlt6ikbUTZ/d9av98ODElSNXR2QMftja5CkiRJFeUaGJK0pTRP8f+e9WekvwlIkiRJw8oODEmSJEmSVHkGGJIkSZIkqfIMMCRJkiRJUuUZYEiSJEmSpMozwJAkSZIkSZVngCFJkiRJkirPAEOSJEmSJFWeAYYGJSJGRcR5EXFXRLRFRPQzti0idomIqyNiakS8sZ+xp0ZEcy/7PxkRH4uIt29CrUdHxGGDPU+SJEmSVD3bNboAjSyZuQG4PiLGAE3A2RExAbgDOBnozsxZ5fBXAZcCFwOHAttHRBvwMLABCGAHoAW4AXg+ImYDizLztnKOccB8oD0iLgFWArsC3+u5HvBl4FygC7gG+ATwBPAr4KSIOB04MzO7+ryxVUvhpumb+etI/ejsgOaWRlchSZIkjVgGGNocCcwBLgSOB1YAe0bE6MxcTxEubAB2qzlnWWbeWAYZTZl5ZURckZmPld0cK4GdasafDxwJfApYB3yz/nrl8TVlPQcC92fmdyPiaOBO4E3AeOB3Q/0DSAPW3AItMxpdRfV1LjZMlKR6huCSBBhgaPN0Z2Z3RCRFl8QMYHkZXvS4hKIr4n8pAofaLoiVEXE2MKH8vjOwEZhYM+YDwC7AMoog5AyKYOQv1wPuBw4qx/wY+GRE7E7RgbGxHN/noy4AjJ8EM+8exK1LkiRtIYbgkgRAZGaja9A2KiImA+8C1mbmjQMY35aZs4ejltbW1mxvbx+OqSUNVE/nhWGiJEnSNi0iFmVma/1+OzDUMJm5BFgyiPHDEl5IkiRJkqrPt5BIkiRJkqTKM8CQJEmSJEmVZ4AhSZIkSZIqzwBDkiRJkiRVngGGJEmSJEmqPAMMSZIkSZJUeQYYkiRJkiSp8gwwJEmSJElS5RlgSJIkSZKkytuu0QWoGiJiFHAOcCzwI+DqzMw+xl4MrAeagMjM2eX+/YANwN/37Ks7r61+f/2+iDgaWJeZC8vv0zJzXi9zXQesAOYDJ/ZxvejrHl5m1VK4afqAhkoaJp0d0NzS6CokSZJUUQYYAiAzNwDXR8QYimDi7IiYANwBnAx0Z+ascnhXZn4mIq4A1kXEOcAE4F5gHUBE7AOcQPE3tgCYBhwSEXsA5wJdwOXl2EuAlcCuwI+BkyLidOBMYGpEPA+8DViSmXeWNewM3AksAS6OiOnAPsAo4OfAMcDiiNgjM6+OiIsy86oh/+EkDZ3mFmiZ0egqJEmSVFEGGOpNAnOAC4HjKTod9oyI0Zm5HmiKiDOBR4CWmrG1dgBeBCZTBCLXApcB7wDWlNeYUI59FfDNmjnuBN4EjC+/7wT8Hji4PAZwFvC3wPnA4sy8OyIuy8xZETEL+ENm3hIRx0XEh4AH+r3j8ZNg5t0D/HkkSZIkSVuaa2CoN92Z2U0RMswHJgLLy/ACig6ML2XmXXVja00G/gyMpujMeD/wZoogYSzwHPBMz/WAM8pPgI3ldpTfJ1F0bNQGbh8BDgKeBP4UEScBz0bEBcDDNXP9AJiemf0HGJIkSZKkSouBLhEgDZfe1sYYwrmPBvbKzK/1N661tTXb29uHowRJkiRJ0iBExKLMbK3f7yMkarjhCi/Kue8brrklSZIkSVuOj5BIkiRJkqTKM8CQJEmSJEmV5xoYEhARzwDLGl2HJEmSJIm9MnO3+p0GGJIkSZIkqfJ8hESSJEmSJFWeAYYkSZIkSao8AwxJkiRJklR5BhiSJEmSJKnyDDAkSZIkSVLl/T+1U4KL0AzAdAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from scipy.cluster.hierarchy import ward, dendrogram\n", "\n", "linkage_matrix = ward(dist) #define the linkage_matrix using ward clustering pre-computed distances\n", "\n", "fig, ax = plt.subplots(figsize=(15, 20)) # set size\n", "ax = dendrogram(linkage_matrix, orientation=\"right\", labels=titles);\n", "\n", "plt.tick_params(\\\n", " axis= 'x', # changes apply to the x-axis\n", " which='both', # both major and minor ticks are affected\n", " bottom=False, # ticks along the bottom edge are off\n", " top=False, # ticks along the top edge are off\n", " labelbottom=False)\n", "\n", "plt.tight_layout() #show plot with tight layout\n", "plt.savefig(os.path.join(outputs,'ward_clusters.png'), dpi=200)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3.1.9 - Latent Dirichlet Allocation" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [], "source": [ "#strip any proper names from a text...unfortunately right now this is yanking the first word from a sentence too.\n", "import string\n", "def strip_proppers(text):\n", " # first tokenize by sentence, then by word to ensure that punctuation is caught as it's own token\n", " tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent) if word.islower()]\n", " return \"\".join([\" \"+i if not i.startswith(\"'\") and i not in string.punctuation else i for i in tokens]).strip()" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [], "source": [ "#strip any proper nouns (NNP) or plural proper nouns (NNPS) from a text\n", "from nltk.tag import pos_tag\n", "\n", "def strip_proppers_POS(text):\n", " tagged = pos_tag(text.split()) #use NLTK's part of speech tagger\n", " non_propernouns = [word for word,pos in tagged if pos != 'NNP' and pos != 'NNPS']\n", " return non_propernouns" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 2.24 s, sys: 1.59 ms, total: 2.24 s\n", "Wall time: 2.24 s\n", "CPU times: user 250 ms, sys: 7.73 ms, total: 257 ms\n", "Wall time: 257 ms\n" ] } ], "source": [ "#Latent Dirichlet Allocation implementation with Gensim\n", "from gensim import corpora, models, similarities \n", "\n", "#remove proper names\n", "preprocess = [strip_proppers(doc) for doc in synopses]\n", "\n", "%time tokenized_text = [tokenize_and_stem(text) for text in preprocess]\n", "%time texts = [[word for word in text if word not in stopwords] for text in tokenized_text]" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1836\n" ] } ], "source": [ "#print(len([word for word in texts[0] if word not in stopwords]))\n", "print(len(texts[0]))" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [], "source": [ "dictionary = corpora.Dictionary(texts)\n", "dictionary.filter_extremes(no_below=1, no_above=0.8)\n", "corpus = [dictionary.doc2bow(text) for text in texts]" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "100" ] }, "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(corpus)" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 18.9 s, sys: 399 ms, total: 19.3 s\n", "Wall time: 19.3 s\n" ] } ], "source": [ "%time lda = models.LdaModel(corpus, num_topics=5, id2word=dictionary, update_every=5, chunksize=10000, passes=100)" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(1, 0.1334048), (2, 0.68830603), (4, 0.17804088)]\n" ] } ], "source": [ "print(lda[corpus[0]])" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [], "source": [ "topics = lda.print_topics(5, num_words=20)" ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0,\n", " '0.006*\"film\" + 0.005*\"father\" + 0.004*\"polic\" + 0.004*\"apart\" + 0.004*\"night\" + 0.004*\"also\" + 0.003*\"come\" + 0.003*\"becom\" + 0.003*\"home\" + 0.003*\"fight\"'),\n", " (1,\n", " '0.006*\"famili\" + 0.005*\"love\" + 0.005*\"friend\" + 0.004*\"sing\" + 0.004*\"show\" + 0.004*\"n\\'t\" + 0.004*\"work\" + 0.004*\"end\" + 0.004*\"play\" + 0.004*\"perform\"'),\n", " (2,\n", " '0.006*\"kill\" + 0.005*\"car\" + 0.005*\"ask\" + 0.005*\"two\" + 0.005*\"n\\'t\" + 0.004*\"meet\" + 0.004*\"arriv\" + 0.004*\"run\" + 0.004*\"go\" + 0.004*\"say\"'),\n", " (3,\n", " '0.006*\"kill\" + 0.006*\"soldier\" + 0.005*\"men\" + 0.005*\"friend\" + 0.005*\"famili\" + 0.005*\"prison\" + 0.004*\"home\" + 0.004*\"night\" + 0.004*\"day\" + 0.004*\"arriv\"'),\n", " (4,\n", " '0.006*\"shark\" + 0.006*\"kill\" + 0.006*\"boat\" + 0.004*\"famili\" + 0.004*\"say\" + 0.004*\"father\" + 0.003*\"water\" + 0.003*\"ask\" + 0.003*\"son\" + 0.003*\"marri\"')]" ] }, "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lda.show_topics()" ] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [], "source": [ "topics_matrix = lda.show_topics(formatted=False, num_words=20)" ] }, { "cell_type": "code", "execution_count": 81, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(0,\n", " [('film', 0.005633981),\n", " ('father', 0.004661785),\n", " ('polic', 0.0043101595),\n", " ('apart', 0.004209941),\n", " ('night', 0.003616877),\n", " ('also', 0.0035339599),\n", " ('come', 0.0034339158),\n", " ('becom', 0.0033929695),\n", " ('home', 0.0032891037),\n", " ('fight', 0.003231549),\n", " ('say', 0.003224314),\n", " ('call', 0.0030331658),\n", " ('first', 0.0030297001),\n", " ('ask', 0.002943017),\n", " ('later', 0.0027855178),\n", " ('go', 0.0027850103),\n", " ('way', 0.0027607286),\n", " ('end', 0.00275707),\n", " ('kill', 0.0026485864),\n", " ('shoot', 0.002609215)])" ] }, "execution_count": 81, "metadata": {}, "output_type": "execute_result" } ], "source": [ "topics_matrix[0]" ] }, { "cell_type": "code", "execution_count": 82, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "
\n", "" ], "text/plain": [ "PreparedData(topic_coordinates= x y topics cluster Freq\n", "topic \n", "2 0.017854 0.020652 1 1 39.337338\n", "3 0.052305 0.068880 2 1 17.624207\n", "1 -0.073753 -0.049296 3 1 14.881194\n", "4 0.067975 -0.077047 4 1 14.080544\n", "0 -0.064381 0.036811 5 1 14.076717, topic_info= Term Freq Total Category logprob loglift\n", "5516 shark 108.000000 108.000000 Default 30.0000 30.0000\n", "1670 boat 112.000000 112.000000 Default 29.0000 29.0000\n", "247 famili 339.000000 339.000000 Default 28.0000 28.0000\n", "610 soldier 199.000000 199.000000 Default 27.0000 27.0000\n", "257 film 229.000000 229.000000 Default 26.0000 26.0000\n", "... ... ... ... ... ... ...\n", "722 wife 38.847731 239.979776 Topic5 -6.0486 0.1397\n", "406 meet 42.526294 393.106960 Topic5 -5.9581 -0.2633\n", "371 kill 43.574604 598.874244 Topic5 -5.9337 -0.6599\n", "395 love 38.224415 279.602025 Topic5 -6.0647 -0.0292\n", "557 run 38.480732 323.960124 Topic5 -6.0580 -0.1698\n", "\n", "[432 rows x 6 columns], token_table= Topic Freq Term\n", "term \n", "3509 3 0.969983 abbey\n", "5706 1 0.109212 accent\n", "5706 5 0.764486 accent\n", "3162 2 0.971327 acrophobia\n", "4939 4 0.958680 afterlif\n", "... ... ... ...\n", "2311 3 0.061693 wound\n", "2311 4 0.061693 wound\n", "2311 5 0.053981 wound\n", "4305 3 0.057717 yacht\n", "4305 4 0.923466 yacht\n", "\n", "[891 rows x 3 columns], R=30, lambda_step=0.01, plot_opts={'xlab': 'PC1', 'ylab': 'PC2'}, topic_order=[3, 4, 2, 5, 1])" ] }, "execution_count": 82, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pyLDAvis.enable_notebook()\n", "pyLDAvis.gensim_models.prepare(lda, corpus, dictionary)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 3.1.10 - [Enhancing TM Models](https://datascience.blog.wzb.eu/2017/11/09/topic-modeling-evaluation-in-python-with-tmtoolkit/)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#TBD" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }