
The Ames Stereo Pipeline:
NASA's Open Source Automated Stereogrammetry Software

Version 2.6.2

Intelligent Robotics Group

NASA Ames Research Center

stereo-pipeline-owner@lists.nasa.gov

June 17, 2019



ii



Credits

The Ames Stereo Pipeline (ASP) was developed by the Intelligent Robotics Group (IRG), in the Intelligent
Systems Division at the National Aeronautics and Space Administration (NASA) Ames Research Center
in Mo�ett Field, CA. It builds on over ten years of IRG experience developing surface reconstruction tools
for terrestrial robotic �eld tests and planetary exploration.

Project Lead

• Dr. Ross Beyer (NASA/SETI Institute)

Development Team

• Oleg Alexandrov (NASA/Stinger-Gha�arian Technologies)

• Scott McMichael (NASA/Stinger-Gha�arian Technologies)

Former Developers

• Zachary Moratto (NASA/Stinger-Gha�arian Technologies)

• Michael J. Broxton (NASA/Carnegie Mellon University)

• Dr. Ara Ne�an (NASA/Carnegie Mellon University)

• Matthew Hancher (NASA)

• Mike Lundy (NASA/Stinger-Gha�arian Technologies)

• Vinh To (NASA/Stinger-Gha�arian Technologies)

Contributing Developer & Former IRG Terrain Reconstruction Lead

• Dr. Laurence Edwards (NASA)

A number of student interns have made signi�cant contributions to this project over the years: Kyle
Husmann (California Polytechnic State University), Sasha Aravkin (Washington State University), Alek-
sandr Segal (Stanford), Patrick Mihelich (Stanford University), Melissa Bunte (Arizona State University),
Matthew Faulkner (Massachusetts Institute of Technology), Todd Templeton (UC Berkeley), Morgon Kan-
ter (Bard College), Kerri Cahoy (Stanford University), and Ian Saxton (UC San Diego).

The open source Stereo Pipeline leverages stereo image processing work, past and present, led by Michael
J. Broxton (NASA/CMU), Dr. Laurence Edwards (NASA), Eric Zbinden (formerly NASA/QSS Inc.),
Dr. Michael Sims (NASA), and others in the Intelligent Systems Division at NASA Ames Research Center.
It has bene�ted substantially from the contributions of Dr. Keith Nishihara (formerly NASA/Stanford),
Randy Sargent (NASA/Carnegie Mellon University), Dr. Judd Bowman (formerly NASA/QSS Inc.), Clay
Kunz (formerly NASA/QSS Inc.), and Dr. Matthew Deans (NASA).

iii



Acknowledgments

The initial adaptation of Ames' stereo surface reconstruction tools to orbital imagers was a result of a NASA
funded, industry led project to develop automated Digital elevation model (DEM) generation techniques for
the Mars Global Surveyor (MGS) mission. Our work with that project's Principal Investigator, Dr. Michael
Malin of Malin Space Science Systems (MSSS), and Co-Investigator, Dr. Laurence Edwards of NASA Ames,
inspired the idea of making stereo surface reconstruction technology available and accessible to a broader
community. We thank Dr. Malin and Dr. Edwards for providing the initial impetus that in no small way
made this open source stereo pipeline possible, and we thank Dr. Michael Caplinger, Joe Fahle and others
at MSSS for their help and technical assistance.

We'd also like to thank our friends and collaborators Dr. Randolph Kirk, Dr. Brent Archinal, Trent Hare, and
Mark Rosiek of the United States Geological Survey's (USGS's) Astrogeology Science Center in Flagsta�,
AZ, for their encouragement and willingness to share their experience and expertise by answering many of
our technical questions. We also thank them for their ongoing support and e�orts to help us evaluate our
work. Thanks also to the USGS Integrated Software for Imagers and Spectrometers (ISIS) team, especially
Je� Anderson and Kris Becker, for their help in integrating stereo pipeline with the USGS ISIS software
package.

Thanks go also to Dr. Mark Robinson, Jacob Danton, Ernest Bowman-Cisneros, Dr. Sam Laurence, and
Melissa Bunte at Arizona State University for their help in adapting the Ames Stereo Pipeline to lunar
data sets including the Apollo Metric Camera.

We'd also like to thank David Shean, Dr. Ben Smith, and Dr. Ian Joughin of the Applied Physics Laboratory
at the University of Washington for providing design direction for adapting Ames Stereo Pipeline to Earth
sciences.

Finally, we thank Dr. Ara Ne�an, and Dr. Laurence Edwards for their contributions to this software, and
Dr. Terry Fong (IRG Group Lead) for his management and support of the open source and public software
release process.

Portions of this software were developed with support from the following NASA Science Mission Directorate
(SMD) and Exploration Systems Mission Directorate (ESMD) funding sources: the Mars Technology Pro-
gram, the Mars Critical Data Products Initiative, the Mars Reconnaissance Orbiter mission, the Applied
Information Systems Research program grant #06-AISRP06-0142, the Lunar Advanced Science and Explo-
ration Research (LASER) program grants #07-LASER07-0148 and #11-LASER11-0112, the ESMD Lunar
Mapping and Modeling Program (LMMP), and the SMD Cryosphere Program.

Any opinions, �ndings, and conclusions or recommendations expressed in this documentation are those of
the authors and do not necessarily re�ect the views of the National Aeronautics and Space Administration.

iv



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Human vs. Computer: When to Choose Automation? . . . . . . . . . . . . . . . . . . . . . 2

1.3 Software Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 NASA Vision Workbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 The USGS Integrated Software for Imagers and Spectrometers . . . . . . . . . . . . 3

1.4 Getting Help and Reporting Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Typographical Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Referencing the Ames Stereo Pipeline in Your Work . . . . . . . . . . . . . . . . . . . . . . 5

1.7 Warnings to Users of the Ames Stereo Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Getting Started 7

2 Installation 9

2.1 Binary Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Quick Start for ISIS Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Quick Start for Digital Globe Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Quick Start for Aerial and Historical Imagery . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Common Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Installation from Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Settings Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Performance Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Logging Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Tutorial: Processing Mars Orbiter Camera Imagery 15

3.1 Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Preparing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Loading and Calibrating Images using ISIS . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Aligning Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

v



CONTENTS

4 Tutorial: Processing Earth Digital Globe Imagery 19

4.1 Processing Raw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Processing Map-Projected Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Handling CCD Boundary Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Managing Camera Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Dealing with Terrain Lacking Large-Scale Features . . . . . . . . . . . . . . . . . . . . . . . 22

4.6 Processing Multi-Spectral Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 The Next Steps 25

5.1 Stereo Pipeline in More Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Stereo Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.2 Setting Options in the stereo.default File . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.3 Performing Stereo Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1.4 Running the GUI Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.5 Specifying Settings on the Command Line . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.6 Stereo on Multiple Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.7 Running Stereo with Map-projected Images . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.8 Multi-View Stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.9 Diagnosing Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.10 Dealing with Long Run-times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Visualizing and Manipulating the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Building a 3D Mesh Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.2 Building a Digital Elevation Model and Ortho Image . . . . . . . . . . . . . . . . . . 35

5.2.3 Orthorecti�cation of an Image From a Di�erent Source . . . . . . . . . . . . . . . . . 36

5.2.4 Correcting Camera Positions and Orientations . . . . . . . . . . . . . . . . . . . . . . 38

5.2.5 Alignment to Point Clouds From a Di�erent Source . . . . . . . . . . . . . . . . . . . 38

5.2.6 Alignment and Orthoimages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.7 Creating DEMs Relative to the Geoid/Areoid . . . . . . . . . . . . . . . . . . . . . . 39

5.2.8 Converting to the LAS Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.9 Generating Color Hillshade Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.10 Building Overlays for Moon and Mars Mode in Google Earth . . . . . . . . . . . . . 41

5.2.11 Using DERT to Visualize Terrain Models . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Tips and Tricks 43

vi



II The Stereo Pipeline in Depth 45

7 Stereo Correlation 47

7.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2 Disparity Map Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2.1 Debugging Disparity Map Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.2.2 Search Range Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2.3 Local Homography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2.4 Semi-Global Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3 Sub-pixel Re�nement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.4 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Bundle Adjustment 61

8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.2 Bundle adjustment using ASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.2.1 Floating intrinsics and using a lidar or DEM ground truth . . . . . . . . . . . . . . . 62

8.3 Bundle adjustment using ISIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.3.1 Tutorial: Processing Mars Orbital Camera Imagery . . . . . . . . . . . . . . . . . . . 69

9 Solving for Camera Poses Based on Images 75

9.1 Camera Solve Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.2 Example: Apollo 15 Metric Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.3 Example: IceBridge DMS Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.4 Solving for Pinhole cameras using GCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.5 Solving For Intrinsic Camera Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10 Shape-from-Shading 87

10.1 How to get good test imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10.2 Running sfs at 1 meter/pixel using a single image . . . . . . . . . . . . . . . . . . . . . . . . 88

10.3 SfS with multiple images in the presence of shadows . . . . . . . . . . . . . . . . . . . . . . 90

10.4 Dealing with large camera errors and LOLA comparison . . . . . . . . . . . . . . . . . . . . 92

10.5 Running SfS with an external initial guess DEM . . . . . . . . . . . . . . . . . . . . . . . . 95

10.6 Insights for getting the most of SfS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

11 Data Processing Examples 97

11.1 Guidelines for Selecting Stereo Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

11.2 Mars Reconnaissance Orbiter HiRISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vii



CONTENTS

11.2.1 Columbia Hills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

11.3 Mars Reconnaissance Orbiter CTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

11.3.1 North Terra Meridiani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

11.4 Mars Global Surveyor MOC-NA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

11.4.1 Ceraunius Tholus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

11.5 Mars Exploration Rovers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11.5.1 PANCAM, NAVCAM, HAZCAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11.6 K10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

11.7 Lunar Reconnaissance Orbiter LROC NAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.7.1 Lee-Lincoln Scarp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.8 Apollo 15 Metric Camera Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.8.1 Ansgarius C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.9 Mars Express High Resolution Stereo Camera (HRSC) . . . . . . . . . . . . . . . . . . . . . 108

11.10Cassini ISS NAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

11.10.1Rhea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

11.11Digital Globe Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

11.12RPC Imagery, including GeoEye, Astrium, Cartosat-1, and PeruSat-1 . . . . . . . . . . . . . 112

11.13SPOT5 Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

11.14Dawn (FC) Framing Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

11.15ASTER Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.16SkySat Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11.16.1The input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

11.16.2 Initial camera models and a reference DEM . . . . . . . . . . . . . . . . . . . . . . . 119

11.16.3Bundle adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11.16.4Creating terrain models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.16.5Mosaicking and alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

11.16.6Alignment of cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.16.7Mapprojection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11.16.8When things fail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.16.9Structure from motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.16.10RPC models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.16.11Bundle adjustment using reference terrain . . . . . . . . . . . . . . . . . . . . . . . . 125

11.16.12Floating the camera intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11.17Declassi�ed satellite images: KH-4B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

11.17.1Fetching the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

viii



11.17.2Stitching the images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

11.17.3Fetching a ground truth DEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

11.17.4Creating camera �les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

11.17.5Bundle adjustment and stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

11.17.6Floating the intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

11.17.7Modeling the camera models as pinhole cameras with RPC distortion . . . . . . . . . 131

11.18Declassi�ed satellite images: KH-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

11.19Declassi�ed satellite images: KH-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

III Appendices 139

A Tools 141

A.1 stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.1.1 Entry Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.1.2 Decomposition of Stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.2 stereo_gui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2.1 Use as an Image Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2.2 Other Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.3 parallel_stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.4 bundle_adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.4.1 Ground Control Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.5 parallel_bundle_adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.6 point2dem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.6.1 Comparing with MOLA Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.6.2 Post Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.6.3 Using with LAS or CSV Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.7 point2mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.8 dem_mosaic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.9 image_mosaic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.10 dem_geoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.11 dg_mosaic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.12 mapproject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.13 cam2rpc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.14 disparitydebug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.15 orbitviz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

ix



CONTENTS

A.16 camera_footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.17 cam2map4stereo.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.18 pansharp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.19 datum_convert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.20 point2las . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.21 pc_align . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.21.1 The input point clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.21.2 Alignment method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.21.3 File formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.21.4 The alignment transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.21.5 Applying an initial transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.21.6 Interpreting the transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.21.7 Error metrics and outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.21.8 Output point clouds and convergence history . . . . . . . . . . . . . . . . . . . . . . 185

A.21.9 Manual alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.21.10Creating a point cloud from a DEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.21.11Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.22 n_align . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.23 pc_merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.24 wv_correct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.25 hiedr2mosaic.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.26 lronac2mosaic.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.27 image_calc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.28 hsv_merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.29 colormap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A.30 hillshade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A.31 image2qtree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.32 geodi� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A.33 aster2asp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

A.34 add_spot_rpc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.35 sfs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.36 parallel_sfs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.37 undistort_image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.38 camera_calibrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.39 camera_solve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

x



A.40 convert_pinhole_model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A.41 cam_gen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

A.42 ip�nd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

A.43 ipmatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

A.44 icebridge_kmz_to_csv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.45 lvis2kml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.46 GDAL Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

B The stereo.default File 213

B.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

B.2 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

B.3 Subpixel Re�nement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

B.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

B.5 Post-Processing (Triangulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

C Guide to Output Files 223

D Frame Camera Models 227

D.1 Pinhole Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

D.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

D.2.1 File Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

D.2.2 How the Pinhole model is applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

D.3 Panoramic Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

E Papers that used ASP 235

Bibliography 241

xi



xii



Chapter 1

Introduction

The NASA Ames Stereo Pipeline (ASP) is a suite of free and open source automated geodesy and stere-
ogrammetry tools designed for processing stereo images captured from satellites (around Earth and other
planets), robotic rovers, aerial cameras, and historical images, with and without accurate camera pose in-
formation. It produces cartographic products, including digital elevation models (DEMs), ortho-projected
images, 3D models, and bundle-adjusted networks of cameras. ASP's data products are suitable for science
analysis, mission planning, and public outreach.

1.1 Background

The Intelligent Robotics Group (IRG) at the NASA Ames Research Center has been developing 3D sur-
face reconstruction and visualization capabilities for planetary exploration for more than a decade. First
demonstrated during the Mars Path�nder Mission, the IRG has delivered tools providing these capabil-
ities to the science operations teams of the Mars Polar Lander (MPL) mission, the Mars Exploration
Rover (MER) mission, the Mars Reconnaissance Orbiter (MRO) mission, and most recently the Lunar Re-
connaissance Orbiter (LRO) mission. A critical component technology enabling this work is the Ames Stereo
Pipeline (ASP). The Stereo Pipeline generates high quality, dense, texture-mapped 3D surface models from
stereo image pairs. In addition, ASP provides tools to perform many other cartography tasks including map
projection, point cloud and DEM registration, automatic registration of cameras, data format conversion,
and data visualization.

Although initially developed for ground control and scienti�c visualization applications, the Stereo Pipeline
has evolved to address orbital stereogrammetry and cartographic applications. In particular, long-range
mission planning requires detailed knowledge of planetary topography, and high resolution topography is
often derived from stereo pairs captured from orbit. Orbital mapping satellites are sent as precursors to
planetary bodies in advance of landers and rovers. They return a wealth of images and other data that
helps mission planners and scientists identify areas worthy of more detailed study. Topographic information
often plays a central role in this planning and analysis process.

Our recent development of the Stereo Pipeline coincides with a period of time when NASA orbital mapping
missions are returning orders of magnitude more data than ever before. Data volumes from the Mars and
Lunar Reconnaissance Orbiter missions now measure in the tens of terabytes. There is growing consensus
that existing processing techniques, which are still extremely human intensive and expensive, are no longer
adequate to address the data processing needs of NASA and the Planetary Science community. To pick an
example of particular relevance, the High Resolution Imaging Science Experiment (HiRISE) instrument has
captured a few thousand stereo pairs. Of these, only about two hundred stereo pairs have been processed to
date; mostly on human-operated, high-end photogrammetric workstations. It is clear that much more value

1



Chapter 1

Figure 1.1: This 3D model was generated from a Mars Orbiter Camera (MOC) image pair M01/00115
and E02/01461 (34.66N, 141.29E). The complete stereo reconstruction process takes approximately thirty
minutes on a 3.0 GHz workstation for input images of this size (1024 × 8064 pixels). This model, shown
here without vertical exaggeration, is roughly 2 km wide in the cross-track dimension.

could be extracted from this valuable raw data if a more streamlined, e�cient process could be developed.

The Stereo Pipeline was designed to address this very need. By applying recent advances in computer
vision, we have created an automated process that is capable of generating high quality Digital elevation
models (DEMs) with minimal human intervention. Users of the Stereo Pipeline can expect to spend some
time picking a handful of settings when they �rst start processing a new type of image, but once this is
done, the Stereo Pipeline can be used to process tens, hundreds, or even thousands of stereo pairs without
further adjustment. With the release of this software, we hope to encourage the adoption of this tool chain
at institutions that run and support these remote sensing missions. Over time, we hope to see this tool
incorporated into ground data processing systems alongside other automated image processing pipelines.
As this tool continues to mature, we believe that it will be capable of producing digital elevation models of
exceptional quality without any human intervention.

1.2 Human vs. Computer: When to Choose Automation?

When is it appropriate to choose automated stereo mapping over the use of a conventional, human-operated
photogrammetric workstation? This is a philosophical question with an answer that is likely to evolve over
the coming years as automated data processing technologies become more robust and widely adopted. For
now, our opinion is that you should always rely on human-guided, manual data processing techniques for
producing mission critical data products for missions where human lives or considerable capital resources
are at risk. In particular, maps for landing site analysis and precision landing absolutely require the bene�t
of an expert human operator to eliminate obvious errors in the DEMs, and also to guarantee that the proper
procedures have been followed to correct satellite telemetry errors so that the data have the best possible
geodetic control.

2



Introduction

When it comes to using DEMs for scienti�c analysis, both techniques have their merits. Human-guided
stereo reconstruction produces DEMs of unparalleled quality that bene�t from the intuition and experience
of an expert. The process of building and validating these DEMs is well-established and accepted in the
scienti�c community.

However, only a limited number of DEMs can be processed to this level of quality. For the rest, automated
stereo processing can be used to produce DEMs at a fraction of the cost. The results are not necessarily
less accurate than those produced by the human operator, but they will not bene�t from the same level of
scrutiny and quality control. As such, users of these DEMs must be able to identify potential issues, and
be on the lookout for errors that may result from the improper use of these tools.

We recommend that all users of the Stereo Pipeline take the time to thoroughly read this documentation
and build an understanding of how stereo reconstruction and bundle adjustment can be best used together
to produce high quality results. You are welcome to contact us if you have any questions (section 1.4).

1.3 Software Foundations

1.3.1 NASA Vision Workbench

The Stereo Pipeline is built upon the VisionWorkbench software which is a general purpose image processing
and computer vision library also developed by the IRG. Some of the tools discussed in this document
are actually Vision Workbench programs, and any distribution of the Stereo Pipeline requires the Vision
Workbench. This distinction is important only if compiling this software.

1.3.2 The USGS Integrated Software for Imagers and Spectrometers

For processing non-terrestrial NASA satellite images, Stereo Pipeline must be installed alongside a copy of
United States Geological Survey (USGS) Integrated Software for Imagers and Spectrometers (ISIS). ISIS
is however not required for processing Digital Globe images of Earth.

ISIS is widely used in the planetary science community for processing raw spacecraft images into high level
data products of scienti�c interest such as map-projected and mosaicked images [6, 40, 150]. We chose
ISIS because (1) it is widely adopted by the planetary science community, (2) it contains the authoritative
collection of geometric camera models for planetary remote sensing instruments, and (3) it is open source
software that is easy to leverage.

By installing the Stereo Pipeline, you will be adding an advanced stereo image processing capability that
can be used in your existing ISIS work�ow. The Stereo Pipeline supports the ISIS �cube� (.cub) �le format,
and can make use of the ISIS camera models and ancillary information (i.e. SPICE kernels) for imagers
on many NASA spacecraft. The use of this single standardized set of camera models ensures consistency
between products generated in the Stereo Pipeline and those generated by ISIS. Also by leveraging ISIS
camera models, the Stereo Pipeline can process stereo pairs captured by just about any NASA mission.

3



Chapter 1

1.4 Getting Help and Reporting Bugs

All bugs, feature requests, and general discussion should be posted on the ASP support forum:

https://groups.google.com/forum/#!forum/ames-stereo-pipeline-support

To contact the developers and project manager directly, send an email to:

stereo-pipeline-owner@lists.nasa.gov

When you submit a bug report, it may be helpful to attach the logs output by stereo and other tools
(section 2.3.2).

1.5 Typographical Conventions

Names of programs that are meant to be run on the command line are written in a constant-width font,
like the stereo program, as are options to those programs.

An indented line of constant-width text can be typed into your terminal, these lines will either begin with
a `>' to denote a regular shell, or with `ISIS' which denotes an ISIS-enabled shell (which means you have
to set the ISISROOT environment variable and sourced the appropriate ISIS 3 Startup script, as detailed in
the ISIS 3 instructions).

> ls

ISIS 3> pds2isis

Italicized constant-width text denotes an option or argument that a user will need to supply. For example,
`stereo E0201461.map.cub M0100115.map.cub out' is speci�c, but `stereo left-image right-image

out' indicates that left-image and right-image are not the names of speci�c �les, but dummy pa-
rameters which need to be replaced with actual �le names.

Square brackets denote optional options or values to a command, and items separated by a vertical bar are
either aliases for each other, or di�erent, speci�c options. Default arguments are pre�xed by an equals sign
within parentheses, and line continuation with a backslash:

point2dem [--help|-h] [-r moon|mars] [-s float(=0) ] \
[-o output-filename ] pointcloud -PC.tif

The above indicates a run of the point2dem program. The only argument that it requires is a point cloud
�le, which is produced by the stereo program and ends in -PC.tif, although its pre�x could be anything
(hence the italics for that part). Everything else is in square brackets indicating that they are optional.

Here, --help and -h refer to the same thing. Similarly, the argument to the -r option must be either moon
or mars. The -s option takes a �oating point value as its argument, and has a default value of zero. The
-o option takes a �lename that will be used as the output DEM.

Although there are two lines of constant-width text, the backslash at the end of the �rst line indicates that
the command continues on the second line. You can either type everything into one long line on your own
terminal, or use the backslash character and a return to continue typing on a second line in your terminal.

4

https://groups.google.com/forum/#!forum/ames-stereo-pipeline-support
mailto:stereo-pipeline-owner@lists.nasa.gov


Introduction

1.6 Referencing the Ames Stereo Pipeline in Your Work

In general, please use this reference for the Ames Stereo Pipeline:

Beyer, Ross A., Oleg Alexandrov, and Scott McMichael. 2018. The Ames Stereo Pipeline: NASA's
open source software for deriving and processing terrain data. Earth and Space Science, 5. https:

//doi.org/10.1029/2018EA000409.

If you are using ASP for application to Earth images, or need a reference which details the quality of output,
then we suggest also referencing:

Shean, D. E., O. Alexandrov, Z. Moratto, B. E. Smith, I. R. Joughin, C. C. Porter, Morin, P. J. 2016. An
automated, open-source pipeline for mass production of digital elevation models (DEMs) from very
high-resolution commercial stereo satellite imagery. ISPRS Journal of Photogrammetry and Remote
Sensing. 116.

In addition to using the references above, in order to help you better cite the speci�c version of ASP that
you are using in a work, as of ASP version 2.6.0, we have started using Zenodo to create digital object
identi�ers (DOIs) for each ASP release. For example, the DOI for version 2.6.2 is 10.5281/zenodo.3247734,
and you can cite it like this:

Beyer, Ross A., Oleg Alexandrov, and Scott McMichael. 2019. NeoGeographyToolkit/StereoPipeline:
Ames Stereo Pipeline version 2.6.2. Zenodo. DOI: 10.5281/zenodo.3247734.

Of course, every new release of ASP will have its own unique DOI, and this link should always point to the
latest DOI for ASP.

If you publish a paper using ASP, please let us know. We'll cite your work in this document, in Appendix
E.

1.7 Warnings to Users of the Ames Stereo Pipeline

Ames Stereo Pipeline is a research product. There may be bugs or incomplete features. We reserve the
ability to change the API and command line options of the tools we provide. Although we hope you will �nd
this release helpful, you use it at your own risk. Please check each release's NEWS �le to see a summary
of our recent changes.

While we are con�dent that the algorithms used by this software are robust, the Ames Stereo Pipeline
has a lot of adjustable parameters, and even experienced operators can produce poor results. We strongly
recommend that if you have any concerns about the products that you (or others) create with this software,
please just get in contact with us. We can help you �gure out either how to make the product better, or
help you accurately describe the limitations of the data or the data products, so that you can use it to
con�dently make new and wonderful discoveries.

5

https://doi.org/10.1029/2018EA000409
https://doi.org/10.1029/2018EA000409
https://zenodo.org
https://doi.org/10.5281/zenodo.3247734
https://zenodo.org/badge/latestdoi/714891


6



Part I

Getting Started

7





Chapter 2

Installation

2.1 Binary Installation

This is the recommended method. Only the Stereo Pipeline binaries are required. ISIS is required only
for users who wish to process NASA non-terrestrial imagery. A full ISIS installation is not required for
operation of Stereo Pipeline programs (only the ISIS data directory is needed), but is required for certain
preprocessing steps before Stereo Pipeline programs are run for planetary data. If you only want to process
terrestrial Digital Globe imagery, skip to section 2.1.2.

Stereo Pipeline Tarball
The main Stereo Pipeline page is http://irg.arc.nasa.gov/ngt/stereo. Download the option that
matches the platform you wish to use. The recommended, but optional, ISIS version is listed next to
the name.

USGS ISIS
If you are working with non-terrestrial imagery, you will need to install ISIS so that you can perform
preprocessing such as radiometric calibration and ephemeris attachment. The ISIS installation guide
is at http://isis.astrogeology.usgs.gov/documents/InstallGuide. You must use their binaries
as-is; if you need to recompile, you can follow the Source Installation guide for the Stereo Pipeline in
Section 2.2. Note also that the USGS provides only the current version of ISIS and the previous version
(denoted with a `_OLD' su�x) via their rsync service. If the current version is newer than the version
of ISIS that the Stereo Pipeline is compiled against, be assured that we're working on rolling out a
new version. However, since Stereo Pipeline has its own self-contained version of ISIS's libraries built
internally, you should be able to use a newer version of ISIS with the now dated version of ASP. This
is assuming no major changes have taken place in the data formats or camera models by USGS. At
the very least, you should be able to rsync the previous version of ISIS if a break is found. To do so,
view the listing of modules that is provided via the `rsync isisdist.astrogeology.usgs.gov::'
command. You should see several modules listed with the `_OLD' su�x. Select the one that is
appropriate for your system, and rsync according to the instructions.

In closing, running the Stereo Pipeline executables only requires that you have downloaded the ISIS
secondary data and have appropriately set the ISIS3DATA environment variable. This is normally
performed for the user by ISIS startup script, $ISISROOT/scripts/isis3Startup.sh.

2.1.1 Quick Start for ISIS Users

Fetch Stereo Pipeline
Download the Stereo Pipeline from http://irg.arc.nasa.gov/ngt/stereo.

9

http://irg.arc.nasa.gov/ngt/stereo
http://isis.astrogeology.usgs.gov/documents/InstallGuide
http://irg.arc.nasa.gov/ngt/stereo


Chapter 2

Fetch ISIS Binaries
As detailed at http://isis.astrogeology.usgs.gov/documents/InstallGuide.

Fetch ISIS Data
As detailed at http://isis.astrogeology.usgs.gov/documents/InstallGuide.

Untar Stereo Pipeline
tar xzvf StereoPipeline-VERSION-ARCH-OS.tar.gz

Add Stereo Pipeline to Path (optional)
bash: export PATH="/path/to/StereoPipeline /bin:${PATH}"

csh: setenv PATH "/path/to/StereoPipeline /bin:${PATH}"

Set Up ISIS
bash:

export ISISROOT=/path/to/isisroot

source $ISISROOT/scripts/isis3Startup.sh

csh:
setenv ISISROOT /path/to/isisroot

source $ISISROOT/scripts/isis3Startup.csh

Try It Out
See Chapter 3 for an example.

2.1.2 Quick Start for Digital Globe Users

Fetch Stereo Pipeline
Download the Stereo Pipeline from http://irg.arc.nasa.gov/ngt/stereo.

Untar Stereo Pipeline
tar xvfz StereoPipeline-VERSION-ARCH-OS.tar.gz

Try It Out
Processing Earth imagery is described in the data processing tutorial in chapter 4.

2.1.3 Quick Start for Aerial and Historical Imagery

Fetch the software as before. Processing imagery without accurate camera pose information is described in
chapter 9.

2.1.4 Common Errors

Here are some errors you might see, and what it could mean. Treat these as templates for problems. In
practice, the error messages might be slightly di�erent.

**I/O ERROR** Unable to open [$ISIS3DATA/Some/Path/Here].

Stereo step 0: Preprocessing failed

You need to set up your ISIS environment or manually set the correct location for ISIS3DATA.

10

http://isis.astrogeology.usgs.gov/documents/InstallGuide
http://isis.astrogeology.usgs.gov/documents/InstallGuide
http://irg.arc.nasa.gov/ngt/stereo


Installation

point2mesh stereo-output-PC.tif stereo-output-L.tif

[...]

99% Vertices: [************************************************************] Complete!

> size: 82212 vertices

Drawing Triangle Strips

Attaching Texture Data

zsh: bus error point2mesh stereo-output-PC.tif stereo-output-L.tif

The source of this problem is an old version of OpenSceneGraph in your library path. Check your
LD_LIBRARY_PATH (for Linux), DYLD_LIBRARY_PATH (for OSX), or your DYLD_FALLBACK_LIBRARY_PATH (for
OSX) to see if you have an old version listed, and remove it from the path if that is the case. It is not
necessary to remove the old versions from your computer, you just need to remove the reference to them
from your library path.

bash: stereo: command not found

You need to add the bin directory of your deployed Stereo Pipeline installation to the environmental
variable PATH.

2.2 Installation from Source

This method is for advanced users. You will need to fetch the Stereo Pipeline source code from GitHub at
https://github.com/NeoGeographyToolkit/StereoPipeline and then follow the instructions speci�ed
in INSTALLGUIDE.

2.3 Settings Optimization

Finally, the last thing to be done for Stereo Pipeline is to setup up Vision Workbench's render and logging
settings. This step is optional, but for best performance some thought should be applied here.

Vision Workbench is a multi-threaded image processing library used by Stereo Pipeline. The settings by
which Vision Workbench processes is con�gurable by having a .vwrc �le hidden in your home directory.
Below is an example.

11

https://github.com/NeoGeographyToolkit/StereoPipeline


Chapter 2

1 # This is an example VW configuration file. Save this file to ~/.vwrc

2 # to adjust the VW log settings, even if the program is already running.

3
4 # General settings

5 [general]

6 default_num_threads = 16

7 write_pool_size = 40

8 system_cache_size = 1024000000 # ~ 1 GB

9
10 # The following integers are associated with the log levels throughout the

11 # Vision Workbench. Use these in the log rules below.

12 #

13 # ErrorMessage = 0

14 # WarningMessage = 10

15 # InfoMessage = 20

16 # DebugMessage = 30

17 # VerboseDebugMessage = 40

18 # EveryMessage = 100

19 #

20 # You can create a new log file or adjust the settings

21 # for the console log:

22 # logfile <filename>

23 # - or -

24 # logfile console

25
26 # Once you have created a logfile (or selected the console), you can

27 # add log rules using the following syntax. (Note that you can use

28 # wildcard characters '*' to catch all log_levels for a given

29 # log_namespace, or vice versa.)

30
31 # <log_level> <log_namespace>

32
33 # Below are examples of using the log settings.

34
35 # Turn on various logging levels for several subsystems, with the

36 # output going to the console (standard output).

37 [logfile console]

38 # Turn on error and warning messages for the thread subsystem.

39 10 = thread

40 # Turn on error, warning, and info messages for the asp subsystem.

41 20 = asp

42 # Turn on error, warning, info, and debug messages for the stereo subsystem.

43 30 = stereo

44 # Turn on every single message for the cache subsystem (this will be

45 # extremely verbose and is not recommended).

46 # 100 = cache

47 # Turn off all progress bars to the console (not recommended).

48 # 0 = *.progress

49
50 # Turn on logging of error and warning messages to a file for the

51 # stereo subsystem. Warning: This file will be always appended to, so

52 # it should be deleted periodically.

53 # [logfile /tmp/vw_log.txt]

54 # 10 = stereo

There are a lot of possible options that can be implemented in the above example. Let's cover the most
important options and the concerns the user should have when selecting a value.

12



Installation

2.3.1 Performance Settings

default_num_threads (default=2)
This sets the maximum number of threads that can be used for rendering. When stereo's subpixel_rfne
is running you'll probably notice 10 threads are running when you have default_num_threads set
to 8. This is not an error, you are seeing 8 threads being used for rendering, 1 thread for holding
main()'s execution, and �nally 1 optional thread acting as the interface to the �le driver.

It is usually best to set this parameter equal to the number of processors on your system. Be sure to
include the number of logical processors in your arithmetic if your system supports hyper-threading.
Adding more threads for rasterization increases the memory demands of Stereo Pipeline. If your
system is memory limited, it might be best to lower the default_num_threads option.

write_pool_size (default=21)
The write_pool_size option represents the max waiting pool size of tiles waiting to be written to
disk. Most �le formats do not allow tiles to be written arbitrarily out of order. Most however will
let rows of tiles to be written out of order, while tiles inside a row must be written in order. Because
of the previous constraint, after a tile is rasterized it might spend some time waiting in the `write
pool' before it can be written to disk. If the `write pool' �lls up, only the next tile in order can be
rasterized. That makes Stereo Pipeline perform like it is only using a single processor.

Increasing the write_pool_size makes Stereo Pipeline more able to use all processing cores in the
system. Having this value too large can mean excessive use of memory as it must keep more portions
of the image around in memory while they wait to be written. This number should be larger than
the number of threads, perhaps by about 20.

system_cache_size (default=805306368)
Accessing a �le from the hard drive can be very slow. It is especially bad if an application needs
to make multiple passes over an input �le. To increase performance, Vision Workbench will usually
leave an input �le stored in memory for quick access. This �le storage is known as the 'system cache'
and its max size is dictated by system_cache_size. The default value is 768 MB.

Setting this value too high can cause your application to crash. It is usually recommend to keep this
value around 1/4 of the maximum available memory on the system. The units of this property is in
bytes.

The recommendations for these values are based on use of the block matching algorithm in ASP.
When using memory intensive algorithms such as SGM you may wish to lower some of these values
(such as the cache size) to leave more memory available for the algorithm to use.

2.3.2 Logging Settings

The messages displayed in the console by Stereo Pipeline are grouped into several namespaces, and by level
of verbosity. An example of customizing Stereo Pipeline's output is given in the .vwrc �le shown above.

Several of the tools in Stereo Pipeline, including stereo, automatically append the information displayed
in the console to a log �le in the current output directory. These logs contain in addition some data about
your system and settings, which may be helpful in resolving problems with the tools.

It is also possible to specify a global log �le to which all tools will append to, as illustrated in .vwrc.

13



14



Chapter 3

Tutorial: Processing Mars Orbiter Camera

Imagery

3.1 Quick Start

The Stereo Pipeline package contains GUI and command-line programs that convert a stereo pair in the
ISIS .cub format into a 3D �point cloud� image (its format is described in section C). This is an intermediate
format that can be passed along to one of several programs that convert a point cloud into a mesh for 3D
viewing, a gridded digital elevation model (DEM) for GIS purposes, or a LAS/LAZ point cloud.

There are a number of ways to �ne-tune parameters and analyze the results, but ultimately this software
suite takes images and builds models in a mostly automatic way. To create a point cloud �le, you simply
pass two image �les to the stereo command:

ISIS 3> stereo left_input_image.cub right_input_image.cub stereo-output

Alternatively, the stereo_gui frontend can be invoked, with the same options, as described in section A.2.
This tool makes it possible to select small clips on which to run stereo.

The string stereo-output is an arbitrary output pre�x, it is used when generating names for stereo output
�les. For example, it can be set to results/output, in which case all output �les will be in the results

directory and start with the pre�x output. See section 5.1 for a more detailed discussion.

You can then make a visualizable mesh or a DEM �le with the following commands (the stereo-output -PC.tif
and stereo-output -L.tif �les are created by the stereo program above):

ISIS 3> point2mesh stereo-output-PC.tif stereo-output-L.tif

ISIS 3> point2dem stereo-output-PC.tif

More details are provided in section 5.2.

3.2 Preparing the Data

The data set that is used in the tutorial and examples below is a pair of Mars Orbital Camera (MOC)
[86, 85] images whose Planetary Data System (PDS) Product IDs are M01/00115 and E02/01461. This
data can be downloaded from the PDS directly, or they can be found in the examples/MOC directory of
your Stereo Pipeline distribution.

15



Chapter 3

Figure 3.1:
This �gure shows
E0201461.cub and
M0100115.cub open
in ISIS's qview
program. The view
on the left shows
their full extents
at the same zoom
level, showing how
they have di�erent
ground scales. The
view on the right
shows both images
zoomed in on the
same feature.

3.2.1 Loading and Calibrating Images using ISIS

These raw PDS images (M0100115.imq and E0201461.imq) need to be imported into the ISIS environment
and radiometrically calibrated. You will need to be in an ISIS environment (have set the ISISROOT envi-
ronment variable and sourced the appropriate ISIS 3 startup script, as detailed in the ISIS 3 instructions;
we will denote this state with the `ISIS 3>' prompt). Then you can use the mocproc program, as follows:

ISIS 3> mocproc from=M0100115.imq to=M0100115.cub Mapping=NO

ISIS 3> mocproc from=E0201461.imq to=E0201461.cub Mapping=NO

There are also Ingestion and Calibration parameters whose defaults are `YES' which will bring the image
into the ISIS format and perform radiometric calibration. By setting the Mapping parameter to `NO', the
resultant �le will be an ISIS cube �le that is calibrated, but not map-projected. Note that while we have
not explicitly run spiceinit, the Ingestion portion of mocproc quietly ran spiceinit for you (you'll �nd
the record of it in the ISIS Session Log, usually written out to a �le named print.prt). Refer to Figure 3.1
to see the results at this stage of processing.

Datasets for other type of cameras or other planets can be pre-processed similarly, using the ISIS tools
speci�c to them.

3.2.2 Aligning Images

Once the .cub �les are obtained, it is possible to run stereo right away, as

ISIS 3> stereo E0201461.cub M0100115.cub \

--alignment-method affineepipolar \

-s stereo.default.example results/output

16



Tutorial: Processing Mars Orbiter Camera Imagery

In this case, the �rst thing stereo does is to internally align (or rectify the images), which helps with �nding
stereo matches. Here we have used affineepipolar alignment. Another option is to use homography

alignment, as described in section 5.1.2.

Alternatively, the images can be aligned externally, by map-projecting them in ISIS. External alignment
can sometimes give better results than the simple internal alignment described earlier, especially if the
images are taken from very di�erent perspectives, or if the curvature of the planet/body being imaged is
non-negligible.

We will now describe how to do this alignment, but we also provide the cam2map4stereo.py program (page
179) which performs this work automatically for you. (Also note that ASP has its own internal way of
map-projecting images, which we believe is preferable. That approach is described in section 5.1.7.)

The ISIS cam2map program will map-project these images:

ISIS 3> cam2map from=M0100115.cub to=M0100115.map.cub

ISIS 3> cam2map from=E0201461.cub to=E0201461.map.cub map=M0100115.map.cub matchmap=true

Notice the order in which the images were run through cam2map. The �rst projection with M0100115.cub

produced a map-projected image centered on the center of that image. The projection of E0201461.cub
used the map= parameter to indicate that cam2map should use the same map projection parameters as
those of M0100115.map.cub (including center of projection, map extents, map scale, etc.) in creating the
projected image. By map-projecting the image with the worse resolution �rst, and then matching to that,
we ensure two things: (1) that the second image is summed or scaled down instead of being magni�ed up,
and (2) that we are minimizing the �le sizes to make processing in the Stereo Pipeline more e�cient.

Technically, the same end result could be achieved by using the mocproc program alone, and using its map=
M0100115.map.cub option for the run of mocproc on E0201461.cub (it behaves identically to cam2map).
However, this would not allow for determining which of the two images had the worse resolution and
extracting their minimum intersecting bounding box (see below). Furthermore, if you choose to conduct
bundle adjustment (see Chapter 8, page 61) as a pre-processing step, you would do so between mocproc (as
run above) and cam2map.

The above procedure is in the case of two images which cover similar real estate on the ground. If you have
a pair of images where one image has a footprint on the ground that is much larger than the other, only the
area that is common to both (the intersection of their areas) should be kept to perform correlation (since
non-overlapping regions don't contribute to the stereo solution). If the image with the larger footprint size
also happens to be the image with the better resolution (i.e. the image run through cam2map second with
the map= parameter), then the above cam2map procedure with matchmap=true will take care of it just �ne.
Otherwise you'll need to �gure out the latitude and longitude boundaries of the intersection boundary (with
the ISIS camrange program). Then use that smaller boundary as the arguments to the MINLAT, MAXLAT,
MINLON, and MAXLON parameters of the �rst run of cam2map. So in the above example, after mocproc with
Mapping= NO you'd do this:

ISIS 3> camrange from=M0100115.cub

... lots of camrange output omitted ...

Group = UniversalGroundRange

LatitudeType = Planetocentric

LongitudeDirection = PositiveEast

LongitudeDomain = 360

MinimumLatitude = 34.079818835324

MaximumLatitude = 34.436797628116

MinimumLongitude = 141.50666207418

17



Chapter 3

MaximumLongitude = 141.62534719278

End_Group

... more output of camrange omitted ...

ISIS 3> camrange from=E0201461.cub

... lots of camrange output omitted ...

Group = UniversalGroundRange

LatitudeType = Planetocentric

LongitudeDirection = PositiveEast

LongitudeDomain = 360

MinimumLatitude = 34.103893080982

MaximumLatitude = 34.547719435156

MinimumLongitude = 141.48853937384

MaximumLongitude = 141.62919740048

End_Group

... more output of camrange omitted ...

Now compare the boundaries of the two above and determine the intersection to use as the boundaries for
cam2map:

ISIS 3> cam2map from=M0100115.cub to=M0100115.map.cub DEFAULTRANGE=CAMERA \

MINLAT=34.10 MAXLAT=34.44 MINLON=141.50 MAXLON=141.63

ISIS 3> cam2map from=E0201461.cub to=E0201461.map.cub map=M0100115.map.cub matchmap=true

You only have to do the boundaries explicitly for the �rst run of cam2map, because the second one uses the
map= parameter to mimic the map-projection of the �rst. These two images are not radically di�erent in
spatial coverage, so this is not really necessary for these images, it is just an example.

Again, unless you are doing something complicated, using the cam2map4stereo.py program (page 179) will
take care of all these steps for you.

At this stage we can run the stereo program with map-projected images:

ISIS 3> stereo E0201461.map.cub M0100115.map.cub --alignment-method none \

-s stereo.default.example results/output

Here we have used alignment-method none since cam2map4stereo.py brought the two images into the
same perspective and using the same resolution. If you invoke cam2map independently on the two images,
without matchmap=true, their resolutions may di�er, and using an alignment method rather than none to
correct for that is still necessary.

Now you may skip to chapter 5 which will discuss the stereo program in more detail and the other tools
in ASP.

18



Chapter 4

Tutorial: Processing Earth Digital Globe

Imagery

In this chapter we will focus on how to process Earth imagery, or more speci�cally Digital Globe data. This
is di�erent from our previous chapter in that at no point will we be using ISIS utilities. This is because
ISIS only supports NASA instruments, while most Earth imagery comes from commercial providers.

In addition to Digital Globe's satellites, ASP supports any Earth imagery that uses the RPC camera model
format. How to process such data is described in section 11.12, although following this tutorial may still
be insightful even if your data is not from Digital Globe.

Digital Globe provides imagery from Quick Bird and the three World View satellites. These are the hardest
images to process with Ames Stereo Pipeline because they are exceedingly large, much larger than HiRISE
imagery (the GUI interface can be used to run stereo on just a portion of the images). There is also a wide
range of terrain challenges and atmospheric e�ects that can confuse ASP. Trees are particularly di�cult for
us since their texture is nearly nadir and perpendicular to our line of sight. It is important to know that the
driving force behind our support for Digital Globe imagery is to create models of ice and bare rock. That
is the type of imagery that we have tested with and have focused on. If we can make models of wooded or
urban areas, that is a bonus, but we can't provide any advice for how to perform or improve the results if
you choose to use ASP in that way.

ASP can only process Level 1B satellite imagery, and cannot process Digital Globe's aerial images.

The camera information for Digital Globe images is contained in an XML �le for each image. In addition
to the exact linear camera model, the XML �le also has its RPC approximation. In this chapter we will
focus only on processing data using the linear camera model. For more detail on RPC camera models we
refer as before to section 11.12.

Our implementation of the linear camera model only models the geometry of the imaging hardware itself and
velocity aberration. We do not currently model refraction due to light bending in Earth's atmosphere. It is
our understanding that this could represent misplacement of points up to a meter for some imagery. However
this is still smaller error than the error from measurement of the spacecraft's position and orientation. The
latter can be corrected using bundle adjustment, ideally used with ground control points (section A.4).
Alternatively, the pc_align tool discussed in section 5.2.5 can be used to align the terrain obtained from
ASP to an accurate set of ground measurements.

In the next two sections we will show how to process unmodi�ed and map-projected variants of World
View imagery. The imagery we are using is from the free stereo pair labeled "System-Ready (1B) Stereo,
50cm" which captures the city of Stockholm, found on Digital Globe's website [44]. These images represent
a non-ideal problem for us since this is an urban location, but at least you should be able to download this

19



Chapter 4

imagery yourself and follow along.

4.1 Processing Raw

After you have downloaded the example stereo imagery of Stockholm, you will �nd a directory titled

056082198020_01_P001_PAN

It has a lot of �les and many of them contain redundant information just displayed in di�erent formats.
We are interested only in the TIF or NTF imagery and the similarly named XML �les.

Some Worldview folders will contain multiple image �les. This is because Digital Globe breaks down a
single observation into multiple �les for what we assume are size reasons. These �les have a pattern string
of �_R[N]C1-�, where N increments for every subframe of the full observation. The tool named dg_mosaic

can be used to mosaic (and optionally reduce the resolution of) such a set of sub-observations into a single
image �le and create an appropriate camera �le

> dg_mosaic 12FEB16101327*TIF --output-prefix 12FEB16101327 --reduce-percent 50

and analogously for the second set. See section A.11 for more details. The stereo program can use either
the original or the mosaicked images. This sample data only contains two image �les so we do not need to
use the dg_mosaic tool.

Since we are ingesting these images raw, it is strongly recommended that you use a�ne epipolar alignment
to reduce the search range. The stereo command and a rendering of the results are shown below.

> stereo -t dg --subpixel-mode 1 --alignment-method affineepipolar \

12FEB16101327.r50.tif 12FEB16101426.r50.tif \

12FEB16101327.r50.xml 12FEB16101426.r50.xml dg/out

Alternatively, the stereo_gui frontend can be invoked, with the same options, as described in section A.2.

How to create a DEM and visualize the results of stereo is desribed in section 5.2.

Above, we have used subpixel-mode 1 which is less accurate but reasonably fast. More details about how
to set this and other stereo parameters can be found in section 5.1.2.

It is important to note that we could have performed stereo using the approximate RPC model instead of
the exact linear camera model (both models are in the same XML �le), by switching the session in the
stereo command above from -t dg to -t rpc. The RPC model is somewhat less accurate, so the results
will not be the same, in our experiments we've seen di�erences in the 3D terrains using the two approaches
of 5 meters or more.

4.2 Processing Map-Projected Imagery

ASP computes the highest quality 3D terrain if used with images map-projected onto a low-resolution DEM
that is used as an initial guess. This process is described in section 5.1.7.

20



Tutorial: Processing Earth Digital Globe Imagery

Figure 4.1: Example WorldView image section and colorized height map.

4.3 Handling CCD Boundary Artifacts

Digital Globe World View images [43] may exhibit slight subpixel artifacts which manifest themselves as
discontinuities in the 3D terrain obtained using ASP. We provide a tool named wv_correct, that can largely
correct such artifacts for World View-1 and World View-2 images for most TDI. It can be invoked as follows:

> wv_correct image_in.ntf image.xml image_out.tif

The corrected images can be used just as the originals, and the camera models do not change. When
working with such imagery, we recommend that CCD artifact correction happen �rst, on original un-
projected imagery. Afterward images can be mosaicked with dg_mosaic, map-projected, and the resulting
data used to run stereo and create terrain models.

This tool is described in section A.24, and an example of using it is in Figure 4.2.

Figure 4.2: Example of a hill-shaded terrain obtained using stereo without (left) and with (right) CCD
boundary artifact corrections applied using wv_correct.

21



Chapter 4

4.4 Managing Camera Jitter

In this section we will talk about the second largest source of inaccuracies in Digital Globe imagery, after
CCD artifacts, namely jitter, and how to correct it.

It is important to note that jitter correction is highly experimental, and while it usually works, it may not
be production-ready.

The order in which these corrections need to be handled is the following. First, CCD artifacts are corrected.
Then, optionally, images are mosaicked with dg_mosaic and map-projected. And jitter should be handled
last, during stereo. An exception is made for WV03 images, for which CCD artifacts do not appear to have
a signi�cant e�ect.

Camera jitter has its origin in the fact that the measured position and orientation of the image-acquiring
line sensor as speci�ed in a camera XML �le is usually not perfectly accurate, the sensor in fact wiggles
slightly from where it is assumed to be as it travels through space and appends rows of pixels to the image.
This results in slight errors in the �nal DEM created using stereo. Those are most clearly seen in the
intersection error map output by invoking point2dem --errorimage.

ASP provides support for correcting this jitter, at least its lower-frequency component. During stereo,
right before the triangulation step, so after the left-to-right image disparity is computed, it can solve for
adjustments to apply to the satellite position and orientation. Those adjustments are placed along-track
(hence at several lines in the image) with interpolation between them. This is quite analogous to what
bundle_adjust is doing, except that the latter uses just one adjustment for each image.

This process can be triggered by invoking stereo with --image-lines-per-piecewise-adjustment arg.
A recommended value here is 1000, though it is suggested to try several values. A smaller value of arg
will result in more adjustments being used (each adjustment being responsible for fewer image lines),
hence providing �ner-grained control, though making this number too small may result in over-�tting and
instability. A smaller value here will also require overall more interest point matches (as computed from
the disparity), which is set via --num-matches-for-piecewise-adjustment.

Jitter correction is more e�ective if stereo is preceded by bundle adjustment, with the adjusted cameras
then being passed to stereo via --bundle-adjust-prefix.

If it appears that the adjustments show some instability at the starting and ending lines due to not enough
matches being present (as deduced from examining the intersection error image), the locations of the
�rst and last adjustment (and everything in between) may be brought closer to each other, by modifying
--piecewise-adjustment-percentiles. Its values are by default 5 and 95, and could be set for example
to 10 and 90. For very tall images, it may be desirable to use instead values closer to 0 and 100.

Section B.5 has the full list of parameters used in jitter correction.

In order for jitter correction to be successful, the disparity map (*-F.tif) should be of good quality. If
that is not the case, it is suggested to redo stereo, and use, for example, map-projected images, and in the
case of terrain lacking large scale features, the value corr-seed-mode 3 (section 4.5).

An illustration of jitter correction is given in �gure 4.3.

4.5 Dealing with Terrain Lacking Large-Scale Features

Stereo Pipeline's approach to performing correlation is a two-step pyramid algorithm, in which low-
resolution versions of the input images are created, the disparity map (output_prefix -D_sub.tif) is
found, and then this disparity map is re�ned using increasingly higher-resolution versions of the input
images (section 7.2).

22



Tutorial: Processing Earth Digital Globe Imagery

Figure 4.3: Example of a colorized intersection error map before (left) and after jitter correction.

This approach usually works quite well for rocky terrain but may fail for snowy landscapes, whose only
features may be small-scale grooves or ridges sculpted by wind (so-called zastrugi) that disappear at low
resolution.

Stereo Pipeline handles such terrains by using a tool named sparse_disp to create output_prefix -D_sub.tif
at full resolution, yet only at a sparse set of pixels for reasons of speed. This low-resolution disparity is
then re�ned as earlier using a pyramid approach.

Figure 4.4: Example of a di�cult terrain obtained without (left) and with (right) sparse_disp. (In these
DEMs there is very little elevation change, hence the �at appearance.)

This mode can be invoked by passing to stereo the option --corr-seed-mode 3. Also, during pyramid
correlation it is suggested to use somewhat fewer levels than the default --corr-max-levels 5, to again
not subsample the images too much and lose the features.

Here is an example:

> stereo -t dg --corr-seed-mode 3 --corr-max-levels 2 \

left_mapped.tif right_mapped.tif \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \

23



Chapter 4

12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML \

dg/dg srtm_53_07.tif

If sparse_disp is not working well for your images you may be able to improve its results by experimenting
with the set of sparse_disp options which can be passed into stereo through the --sparse-disp-options
parameter. sparse_disp has so far only been tested with affineepipolar image alignment so you may
not get good results with other alignment methods.

Since sparse_disp is written in Python it depends on a variety of binary Python modules. These modules
cannot be distributed with Stereo Pipeline as they depend on the version of Python installed on your
system. One way to get these Python modules is to install them yourself. We recommend the Conda Python
management system (https://conda.io/docs/index.html) as an easy way to install these dependencies.

sparse_disp has been tested on Ubuntu 16.04 using Conda with following additional packages installed:

scipy=1.0.0

numpy=1.14.0

simplekml=1.3.0

pyfftw=0.10.4

proj4=4.9.3

gdal=2.2.2

geos=3.6.2

blas=1.0

Note that the simplekml and pyfftw packages needed the argument -c conda-forge added to their conda
install command.

Another way to get these dependencies is to use an installation script provided by ASP. It will download
and compile the dependencies of this tool for your platform. The script and instructions are at

https://github.com/NeoGeographyToolkit/BinaryBuilder/tree/master/build_python_modules

After building the sparse_disp dependencies, per the instructions, the path to the Python modules must
be set, for example as:

export ASP_PYTHON_MODULES_PATH=<path to python modules>

(once the script from the above location will �nish, it will print the value of this variable that must then
be set).

This path does not need to be set if you are relying on your own Python installation such as from Conda.

4.6 Processing Multi-Spectral Images

In addition to panchromatic (grayscale) imagery, the Digital Globe satellites also produce lower-resolution
multi-spectral (multi-band) images. Stereo Pipeline is designed to process single-band images only. If
invoked on multi-spectral data, it will quietly process the �rst band and ignore the rest. To use one of the
other bands it can be singled out by invoking dg_mosaic (section 4.1) with the --band <num> option. We
have evaluated ASP with Digital Globe's multi-spectral images, but support for it is still experimental. We
recommend using the panchromatic imagery whenever possible.

24

https://conda.io/docs/index.html
https://github.com/NeoGeographyToolkit/BinaryBuilder/tree/master/build_python_modules


Chapter 5

The Next Steps

This chapter will discuss in more detail ASP's stereo process and other tools available to either pre-process
the input images/cameras or to manipulate stereo's outputs, both in the context of planetary ISIS data
and for Earth imagery. This includes how to (a) customize stereo's settings (b) use point2dem to create
3D terrain models, (c) visualize the results, (d) align the obtained point clouds to another data source, (e)
perform 3D terrain adjustments in respect to a geoid, etc.

5.1 Stereo Pipeline in More Detail

5.1.1 Stereo Algorithms

The default stereo algorithm in ASP is block-matching, with various values for subpixel re�nement, as
seen below. The latest version of ASP includes the SGM and MGM algorithms, which overall can perform
better, but are more experimental. For details about how to invoke these algorithms, see section 7.2.4.

5.1.2 Setting Options in the stereo.default File

The stereo program requires a stereo.default �le that contains settings that a�ect the stereo recon-
struction process. Its contents can be altered for your needs; details are found in appendix B on page 213.
You may �nd it useful to save multiple versions of the stereo.default �le for various processing needs.
If you do this, be sure to specify the desired settings �le by invoking stereo with the -s option. If this
option is not given, the stereo program will search for a �le named stereo.default in the current working
directory. If stereo does not �nd stereo.default in the current working directory and no �le was given
with the -s option, stereo will assume default settings and continue.

An example stereo.default �le is available in the examples/ directory of ASP. The actual �le has a lot
of comments to show you what options and values are possible. Here's a trimmed version of the important
values in that �le.

alignment-method affineepipolar

cost-mode 2

corr-kernel 21 21

subpixel-mode 1

subpixel-kernel 21 21

All these options can be overridden from the command line, as described in section 5.1.5.

25



Chapter 5

Alignment Method

The most important line in stereo.default is the �rst one, specifying the alignment method. For raw
images, alignment is always necessary, as the left and right images are from di�erent perspectives. Several
alignment methods are supported, including affineepipolar and homography (see section B.1 for details).

Alternatively, stereo can be performed with map-projected images (section 5.1.7). In e�ect we take a smooth
low-resolution terrain and map both the left and right raw images onto that terrain. This automatically
brings both images into the same perspective, and as such, for map-projected images the alignment method
is always set to none.

Correlation Parameters

The second and third lines in stereo.default de�ne what correlation metric (normalized cross correlation)
we'll be using and how big the template or kernel size should be (21 pixels square). A pixel in the left image
will be matched to a pixel in the right image by comparing the windows of this size centered at them.

Making the kernel sizes smaller, such as 15 × 15, or even 11 × 11, may improve results on more complex
features, such as steep cli�s, at the expense of perhaps introducing more false matches or noise.

Subpixel Re�nement Parameters

A highly critical parameter in ASP is the value of subpixel-mode, on the fourth line. When set to 1,
stereo performs parabola subpixel re�nement, which is very fast but not very accurate. When set to 2, it
produces very accurate results, but it is about an order of magnitude slower. When set to 3, the accuracy
and speed will be somewhere in between the other methods.

The �fth line sets the kernel size to use during subpixel re�nement (also 21 pixels square).

Search Range Determination

Using these settings alone, ASP will attempt to work out the minimum and maximum disparity it will
search for automatically. However if you wish to, you can explicitly set the extent of the search range by
adding the option:

corr-search -80 -2 20 2

More details about this option and the inner workings of stereo correlation can be found in chapter 7.

5.1.3 Performing Stereo Correlation

As already mentioned, the stereo program can be invoked for ISIS images as

ISIS 3> stereo left_image.cub right_image.cub \

-s stereo.default results/output

For Digital Globe imagery the cameras need to be speci�ed separately:

> stereo left.tif right.tif left.xml right.xml \

-s stereo.default results/output

26



The Next Steps

Figure 5.1: These are the four viewable .tif
�les created by the stereo program. On
the left are the two aligned, pre-processed
images: (results/output-L.tif and
results/output-R.tif). The next two are
mask images (results/output-lMask.tif
and results/output-rMask.tif), which
indicate which pixels in the aligned images
are good to use in stereo correlation. The
image on the right is the �Good Pixel map�,
(results/output-GoodPixelMap.tif),
which indicates (in gray) which were suc-
cessfully matched with the correlator, and
(in red) those that were not matched.

As stated in section 3.1, the string results/output is arbitrary, and in this case we will simply make all
outputs go to the results directory.

When stereo �nishes, it will have produced a point cloud image. Section 5.2 describes how to convert it
to a digital elevation model (DEM) or other formats.

The stereo command can also take multiple input images, performing multi-view stereo (section 5.1.8).

5.1.4 Running the GUI Frontend

The stereo_gui program is a GUI frontend to stereo. It is invoked with the same options as stereo. It
displays the input images, and makes it possible to zoom in and select smaller regions to run stereo on.
The GUI is described in section A.2.

5.1.5 Specifying Settings on the Command Line

All the settings given via the stereo.default �le can be over-ridden from the command line. Just add
a double hyphen (--) in front the option's name and then �ll out the option just as you would in the
con�guration �le. For options in the stereo.default �le that take multiple numbers, they must be
separated by spaces (like `corr-kernel 25 25') on the command line. Here is an example in which we
override the search range and subpixel mode from the command line.

ISIS 3> stereo E0201461.map.cub M0100115.map.cub \

-s stereo.map --corr-search -70 -4 40 4 \

--subpixel-mode 0 results/output

5.1.6 Stereo on Multiple Machines

If the input images are really large it may desirable to distribute the work over several computing nodes.
ASP provides a tool named parallel_stereo for that purpose. Its usage is described in section A.3.

27



Chapter 5

5.1.7 Running Stereo with Map-projected Images

The way stereo correlation works is by matching a neighborhood of each pixel in the left image to a similar
neighborhood in the right image. This matching process can fail or become unreliable if the two images
are too di�erent, which can happen for example if the perspectives of the two cameras are very di�erent or
the underlying terrain has steep portions. This will result in ASP producing terrains with noise or missing
data.

ASP can mitigate this by map-projecting the left and right images onto some pre-existing low-resolution
smooth terrain model without holes, and using the output images to do stereo. In e�ect, this makes the
images much more similar and more likely for stereo correlation to succeed.

In this mode, ASP does not create a terrain model from scratch, but rather uses an existing terrain model
as an initial guess, and improves on it.

For Earth, an existing terrain model can be, for example, NASA SRTM, GMTED2010, USGS's NED data,
or NGA's DTED data. There exist pre-made terrain models for other planets as well, for example the Moon
LRO LOLA global DEM and the Mars MGS MOLA DEM.

Alternatively, a low-resolution smooth DEM can be obtained by running ASP itself as described in previous
sections. In such a run, subpixel mode may be set to parabola (subpixel-mode 1) for speed. To make it
su�ciently coarse and smooth, the resolution can be set to about 40 times coarser than either the default
point2dem resolution or the resolution of the input images. If the resulting DEM turns out to be noisy or
have holes, one could change in point2dem the search radius factor, use hole-�lling, invoke more aggressive
outlier removal, and erode pixels at the boundary (those tend to be less reliable). Alternatively, holes can
be �lled with dem_mosaic.

The tool used for map-projecting the images is called mapproject (section A.12). It is very important
to specify correctly the output resolution (the --tr option for mapproject) when creating map-projected
images. For example, if the input images are about 1 meter/pixel, the same number should be used in
mapproject (if the desired projection is in degrees, this value should be converted to degrees). If the
output resolution is not correct, there will be artifacts in the stereo results.

Some experimentation on a small area may be necessary to obtain the best results. Once images are map-
projected, they can be cropped to a small shared region using gdal_translate -projwin and then stereo
with these clips can be invoked.

Example for ISIS images

In this example we illustrate how to run stereo with map-projected images for ISIS data. We start
with LRO NAC Lunar images M1121224102LE and M1121209902LE from ASU's LRO NAC web site,
http://lroc.sese.asu.edu/. We convert them to ISIS cubes using the ISIS program lronac2isis, then we
use the ISIS tools spiceinit, lronaccal, and lrnonacecho to update the SPICE kernels and to do radio-
metric and echo correction. We name the two obtained .cub �les left.cub and right.cub.

Here we decided to run ASP to create the low-resolution DEM needed for map-projection, rather than get
them from an external source. For speed, we process just a small portion of the images:

parallel_stereo left.cub right.cub \

--left-image-crop-win 1984 11602 4000 5000 \

--right-image-crop-win 3111 11027 4000 5000 \

--job-size-w 1024 --job-size-h 1024 \

--subpixel-mode 1 \

run_nomap/run

28



The Next Steps

Figure 5.2: A DEM obtained using plain stereo (left) and stereo with map-projected images (right). Their
quality will be comparable for relatively �at terrain and the second will be much better for rugged terrain.
The right image has some artifacts, but those are limited to areas close to the boundary.

(the crop windows can be determined using stereo_gui). The input images have resolution of about 1
meter, or 3.3× 10−5 degrees on the Moon. We create the low-resolution DEM using a resolution 40 times
as coarse, so we use a grid size of 0.0013 degrees (we use degrees since the default point2dem projection
invoked here is longlat).

point2dem --search-radius-factor 5 --tr 0.0013 run_nomap/run-PC.tif

As mentioned earlier, some tweaks to the parameters used by point2dem may be necessary for this low-
resolution DEM to be smooth enough and with no holes.

Note that we used --search-radius-factor 5 to expand the DEM a bit, to counteract future erosion in
stereo due to the correlation kernel size.

If this terrain is close to the poles, say within 25 degrees of latitude, it is advised to use a stereographic
projection, centered either at the nearest pole, or close to the center of the current DEM. Its center's
longitude and latitude can be found with gdalinfo -stats, which can then be passed to point2dem such
as

point2dem --stereographic --proj-lon <lon_ctr> --proj-lat <lat_ctr> ...

By calling gdalinfo -proj4, the PROJ.4 string of the obtained DEM can be found, which can be used in
mapprojection later, and with the resolution switched to meters from degrees (see section 5.1.7 for more
details).

29



Chapter 5

Next, we map-project the images onto this DEM, using the original resolution of 3.3× 10−5 degrees.

mapproject --tr 0.000033 run_nomap/run-DEM.tif left.cub left_proj.tif \

--t_projwin 3.6175120 25.5669989 3.6653695 25.4952127

mapproject --tr 0.000033 run_nomap/run-DEM.tif right.cub right_proj.tif \

--t_projwin 3.6175120 25.5669989 3.6653695 25.4952127

Notice that we restricted the area of computation using --t_projwin to again make the process faster.

Next, we do stereo with these map-projected images.

parallel_stereo --job-size-w 1024 --job-size-h 1024 \

--subpixel-mode 3 \

left_proj.tif right_proj.tif left.cub right.cub \

run_map/run run_nomap/run-DEM.tif

Notice that even though we use map-projected images, we still speci�ed the original images as the third
and fourth arguments. That because we need the camera information from those �les. The �fth argument
is the output pre�x, while the sixth is the low-resolution DEM we used for map-projection. We have used
here --subpixel-mode 3 as this will be the �nal point cloud and we want the increased accuracy.

Lastly, we create a DEM at 1 meter resolution:

point2dem --nodata-value -32768 --tr 0.000033 run_map/run-PC.tif

Note here that we could have used a coarser resolution for the �nal DEM, such as 4 meters/pixel, since we
won't see detail at the level of 1 meter in this DEM, as the stereo process is lossy. This is explained in
more detail in section A.6.2.

In �gure 5.2 we show the e�ect of using map-projected images on accuracy of the �nal DEM.

It is important to note that we could have map-projected the images using the ISIS tool cam2map, as
described in section 3.2.2. The current approach could be preferable since it allows us to choose the DEM
to map-project onto, and it is much faster, since ASP's mapproject uses multiple processes, while cam2map
is restricted to one process and one thread.

Example for Digital Globe Images

In this section we will describe how to run stereo with map-projected images for Digital Globe cameras for
Earth. The same process can be used with very minor modi�cations for any satellite imagery that uses the
the RPC camera model. All that is needed is to replace the stereo session when invoking stereo below
with rpcmaprpc from dgmaprpc.

Unlike the previous section, here we will use an external DEM to map-project onto, rather than creating
our own. We will use a variant of NASA SRTM data with no holes. Other choices have been mentioned
earlier.

It is important to note that ASP expects the input low-resolution DEM to be in reference to a datum
ellipsoid, such as WGS84 or NAD83. If the DEM is in respect to either the EGM96 or NAVD88 geoids,
the ASP tool dem_geoid can be used to convert the DEM to WGS84 or NAD83 (section A.10). (The same
tool can be used to convert back the �nal output ASP DEM to be in reference to a geoid, if desired.)

30



The Next Steps

Not applying this conversion might not properly negate the parallax seen between the two images, though it
will not corrupt the triangulation results. In other words, sometimes one may be able to ignore the vertical
datums on the input but we do not recommend doing that. Also, you should note that the geoheader
attached to those types of �les usually does not describe the vertical datum they used. That can only be
understood by careful reading of your provider's documents.

In this example we use as an input low-resolution DEM the �le srtm_53_07.tif, a 90 meter resolution tile
from the CGIAR-CSI modi�cation of the original NASA SRTM product [39]. The NASA SRTM square for
this example spot in India is N26E080.

Below are the commands for map-projecting the input and then running through stereo. You can use any
projection you like as long as it preserves detail in the imagery. Note that the last parameter in the stereo
call is the input low-resolution DEM. The dataset is the same as the one used in section 4.1.

For best quality results, the resolution used for mapprojection should be very similar to the documented
ground sample distance (GSD) for your camera.

Figure 5.3: Example colorized height map and ortho image output.

Commands

mapproject -t rpc --t_srs "+proj=eqc +units=m +datum=WGS84" \

--tr 0.5 srtm_53_07.tif \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.TIF \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \

left_mapped.tif

mapproject -t rpc --t_srs "+proj=eqc +units=m +datum=WGS84" \

--tr 0.5 srtm_53_07.tif \

12FEB12053341-P1BS_R2C1-052783824050_01_P001.TIF \

12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML \

right_mapped.tif

stereo -t dgmaprpc --subpixel-mode 1 --alignment-method none \

left_mapped.tif right_mapped.tif \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \

12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML \

dg/dg srtm_53_07.tif

If the --t_srs option is not speci�ed, it will be read from the low-resolution input DEM.

The complete list of options for mapproject is described in section A.12.

31



Chapter 5

In the stereo command, we have used subpixel-mode 1 which is less accurate but reasonably fast. We
have also used alignment-method none, since the images are map-projected onto the same terrain with
the same resolution, thus no additional alignment is necessary. More details about how to set these and
other stereo parameters can be found in section 5.1.2.

It is important to note here that any Digital Globe camera �le has two models in it, the exact linescan
model (which we name DG), and its RPC approximation. Above, we have used the approximate RPC model
for map-projection, since map-projection is just a pre-processing step to make the images more similar to
each other, this step will be undone during stereo triangulation, and hence using the RPC model is good
enough, while being much faster than the exact DG model. At the stereo stage, we see above that we invoked
the dgmaprpc session, which suggests that we have used the RPC model during map-projection, but we
would like to use the accurate DG model when performing actual triangulation from the cameras to the
ground.

RPC and Pinhole Camera Models

Map-projected images can also be used with RPC and Pinhole camera models. The mapproject command
needs to be invoked with -t rpc and -t pinhole respectively. As earlier, when invoking stereo the the
�rst two arguments should be the map-projected images, followed by the camera models, output pre�x, and
the name of the DEM used for map-projection. The session name passed to stereo should be rpcmaprpc

and pinholemappinhole respectively.

5.1.8 Multi-View Stereo

ASP supports multi-view stereo at the triangulation stage. This mode is somewhat experimental, and not
used widely. We have obtained higher quality results by doing pairwise stereo and merging the result, as
described later on in thi section.

In the multiview scenario, the �rst image is set as reference, disparities are computed from it to all the other
images, and then joint triangulation is performed [136]. A single point cloud is generated with one 3D point
for each pixel in the �rst image. The inputs to multi-view stereo and its output point cloud are handled in
the same way as for two-view stereo (e.g., inputs can be map-projected, the output can be converted to a
DEM, etc.).

It is suggested that images be bundle-adjusted (section section 8.2) before running multi-view stereo.

Example (for ISIS with three images):

stereo file1.cub file2.cub file3.cub results/run

Example (for Digital Globe data with three map-projected images):

stereo file1.tif file2.tif file3.tif file1.xml file2.xml file3.xml \

results/run input-DEM.tif

The parallel_stereo tool can also be used with multiple images (section A.3).

For a sequence of images, multi-view stereo can be run several times with each image as a reference, and
the obtained point clouds combined into a single DEM using point2dem (section A.6).

The ray intersection error, the fourth band in the point cloud �le, is computed as twice the mean of distances
from the optimally computed intersection point to the individual rays. For two rays, this agrees with the

32



The Next Steps

intersection error for two-view stereo which is de�ned as the minimal distance between rays. For multi-view
stereo this error is much less amenable to interpretation than for two-view stereo, since the number of valid
rays corresponding to a given feature can vary across the image, which results in discontinuities in the
intersection error.

Other ways of combining multiple images

As an alternative to multi-view stereo, point clouds can be generated from multiple stereo pairs, and then
a single DEM can be created with point2dem (section 5.2.2). Or, multiple DEMs can be created, then
combined into a single DEM with dem_mosaic (section A.8).

In both of these approaches, the point clouds could be registered to a trusted dataset using pc_align before
creating a combined terrain model (section 5.2.5).

The advantage of creating separate DEMs and then merging them (after alignment) with dem_mosaic,
compared to multiview triangulation, is that this approach will not create visible seams, while likely it will
still increase the accuracy compared to the individual input DEMs.

5.1.9 Diagnosing Problems

Once invoked, stereo proceeds through several stages that are detailed on page 142. Intermediate and
�nal output �les are generated as it goes. See Appendix C, page 223 for a comprehensive listing. Many
of these �les are useful for diagnosing and debugging problems. For example, as Figure 5.1 shows, a quick
look at some of the TIFF �les in the results/ directory provides some insight into the process.

Perhaps the most accessible �le for assessing the quality of your results is the good pixel image,
(results/output-GoodPixelMap.tif). If this �le shows mostly good, gray pixels in the overlap area (the
area that is white in both the results/output-lMask.tif and results/output-rMask.tif �les), then
your results are just �ne. If the good pixel image shows lots of failed data, signi�ed by red pixels in the
overlap area, then you need to go back and tune your stereo.default �le until your results improve. This
might be a good time to make a copy of stereo.default as you tune the parameters to improve the results.

Whenever stereo, point2dem, and other executables are run, they create log �les in given tool's results
directory, containing a copy of the con�guration �le, the command that was run, your system settings, and
tool's console output. This will help track what was performed so that others in the future can recreate
your work.

Another handy debugging tool is the disparitydebug program, which allows you to generate viewable
versions of the intermediate results from the stereo correlation algorithm. disparitydebug converts infor-
mation in the disparity image �les into two TIFF images that contain horizontal and vertical components
of the disparity (i.e. matching o�sets for each pixel in the horizontal and vertical directions). There are ac-
tually three �avors of disparity map: the -D.tif, the -RD.tif, and -F.tif. You can run disparitydebug

on any of them. Each shows the disparity map at the di�erent stages of processing.

> disparitydebug results/output-F.tif

If the output H and V �les from disparitydebug look good, then the point cloud image is most likely ready
for post-processing. You can proceed to make a mesh or a DEM by processing results/output-PC.tif

using the point2mesh or point2dem tools, respectively.

Figure 5.4 shows the outputs of disparitydebug.

33



Chapter 5

If the input images are map-projected (georeferenced) and the alignment method is none, all images output
by stereo are georeferenced as well, such as GoodPixelMap, D_sub, disparity, etc. As such, all these data
can be overlayed in stereo_gui. disparitydebug also preserves any georeference.

5.1.10 Dealing with Long Run-times

If stereo_corr takes unreasonably long, it may have encountered a portion of the image where, due to
noise (such as clouds, shadows, etc.) the determined search range is much larger than what it should be.
The option --corr-timeout integer can be used to limit how long each 1024×1024 pixel tile can take. A
good value here could be 300 (seconds) or more if your terrain is expected to have large height variations.

5.2 Visualizing and Manipulating the Results

When stereo �nishes, it will have produced a point cloud image. At this point, many kinds of data products
can be built from the results/output-PC.tif point cloud �le.

Figure 5.4: Disparity images pro-
duced using the disparitydebug

tool. The two images on the left are
the results/output-D-H.tif and
results/output-D-V.tif �les, which
are normalized horizontal and verti-
cal disparity components produced
by the disparity map initialization
phase. The two images on the right
are results/output-F-H.tif and
results/output-F-V.tif, which are the
�nal �ltered, sub-pixel-re�ned disparity
maps that are fed into the Triangulation
phase to build the point cloud image.
Since these MOC images were acquired
by rolling the spacecraft across-track,
most of the disparity that represents
topography is present in the horizontal
disparity map. The vertical disparity
map shows disparity due to �wash-
boarding,� which is not from topography
but from spacecraft movement. Note
however that the horizontal and vertical
disparity images are normalized indepen-
dently. Although both have the same
range of gray values from white to black,
they represent signi�cantly di�erent
absolute ranges of disparity.

34



The Next Steps

Figure 5.5: The
results/output.osgb

�le displayed in the OSG
Viewer.

5.2.1 Building a 3D Mesh Model

If you wish to see the data in an interactive 3D browser, then you can generate a 3D object �le using the
point2mesh command (page 163). The resulting �le is stored in Open Scene Graph binary format [27]. It
can be viewed with osgviewer (the Open Scene Graph Viewer program, distributed with the binary version
of the Stereo Pipeline). The point2mesh program takes the point cloud �le and the left normalized image
as inputs:

> point2mesh results/output-PC.tif results/output-L.tif

> osgviewer results/output.osgb

The image displayed by osgviewer is shown in �gure 5.5.

When the osgviewer program starts, you may want to toggle the lighting with the `L' key, toggle texturing
with the 'T' key, and toggle wireframe mode with the 'W'. Press '?' to see a variety of other interactive
options.

If you already have a DEM and an ortho image (section 5.2.2), they can be used to build a mesh as well,
in the same way as done above:

> point2mesh results/output-DEM.tif results/output-DRG.tif

5.2.2 Building a Digital Elevation Model and Ortho Image

The point2dem program (page 158) creates a Digital Elevation Model (DEM) from the point cloud �le.

> point2dem results/output-PC.tif

The resulting TIFF �le is map-projected and will contain georeferencing information stored as GeoTIFF
tags.

The tool will infer the datum and projection from the input images, if present. You can explicitly specify a
coordinate system (e.g., mercator, sinusoidal) and a reference spheroid (i.e., calculated for the Moon, Mars,
or Earth). Alternatively, the datum semi-axes can be set or a PROJ.4 string can be passed in.

> point2dem -r mars results/output-PC.tif

35



Chapter 5

The output DEM will be named results/output-DEM.tif. It can be imported into a variety of GIS
platforms. The DEM can be transformed into a hill-shaded image for visualization (section 5.2.9). Both
the DEM itself and its hill-shaded version can be examined in stereo_gui.

The point2dem program can also be used to orthoproject raw satellite imagery onto the DEM. To do this,
invoke point2dem just as before, but add the --orthoimage option and specify the use of the left image
�le as the texture �le to use for the projection:

> point2dem results/output-PC.tif --orthoimage results/output-L.tif

The texture �le must always be speci�ed after the point cloud �le in this command. See �gure 5.6 on the
right for the output image.

To �ll in any holes in the obtained orthoimage, one can invoke it with a larger value of the grid size (the
--tr option) and/or with a variation of the options:

--no-dem --orthoimage-hole-fill-len 100 --search-radius-factor 2

The point2dem program is also able to accept output projection options the same way as the tools in GDAL.
Well-known EPSG, IAU2000 projections, and custom PROJ.4 strings can applied with the target spatial
reference set �ag, --t_srs. If the target spatial reference �ag is applied with any of the reference spheroid
options, the reference spheroid option will overwrite the datum de�ned in the target spatial reference set.
The following examples produce the same output. However, the last two results will also show correctly
the name of the datum in the geoheader, not just the values of its axes.

point2dem --t_srs "+proj=longlat +a=3396190 +b=3376200"

results/output-PC.tif

point2dem --t_srs http://spatialreference.org/ref/iau2000/49900/ \

results/output-PC.tif

point2dem --t_srs 'GEOGCS["Geographic Coordinate System",

DATUM["D_Mars_2000",

SPHEROID["Mars_2000_IAU_IAG",3396190,169.894447223611]],

PRIMEM["Greenwich",0],

UNIT["degree",0.0174532925199433]]' results/output-PC.tif

The point2dem program can be used in many di�erent ways. The complete documentation is in section
A.6.

5.2.3 Orthorecti�cation of an Image From a Di�erent Source

If you have already obtained a DEM, using ASP or some other approach, and have an image and camera
pair which you would like to overlay on top of this terrain, use the mapproject tool (section A.12).

36



The Next Steps

Figure 5.6: The image on
the left is a normalized DEM
(generated using point2dem's
-n option), which shows low
terrain values as black and
high terrain values as white.
The image on the right is
the left input image projected
onto the DEM (created using
the --orthoimage option to
point2dem).

37



Chapter 5

Figure 5.7: Example of using
pc_align to align a DEM ob-
tained using stereo from CTX
images to a set of MOLA
tracks. The MOLA points are
colored by the o�set error ini-
tially (left) and after pc align
was applied (right) to the ter-
rain model. The red dots in-
dicate more than 100 m of er-
ror and blue less than 5 m.
The pc_align algorithm de-
termined that by moving the
terrain model approximately
40 m south, 70 m west, and 175
m vertically, goodness of �t
between MOLA and the CTX
model was increased substan-
tially.

5.2.4 Correcting Camera Positions and Orientations

The bundle_adjust program can be used to adjust the camera positions and orientations before running
stereo. These adjustments only makes the cameras self-consistent. For the adjustments to be absolute, it
is necessary to use bundle_adjust with ground control points. This tool is described in section A.4.

5.2.5 Alignment to Point Clouds From a Di�erent Source

Often the 3D terrain models output by stereo (point clouds and DEMs) can be intrinsically quite accurate
yet their actual position on the planet may be o� by several meters or several kilometers, depending on the
spacecraft. This can result from small errors in the position and orientation of the satellite cameras taking
the pictures.

Such errors can be corrected in advance using bundle adjustment, as described in the previous section.
That requires using ground control points, that may not be easy to collect. Alternatively, the images and
cameras can be used as they are, and the absolute position of the output point clouds can be corrected in
post-processing. For that, ASP provides a tool named pc_align. It aligns a 3D terrain to a much more
accurately positioned (if potentially sparser) dataset. Such datasets can be made up of GPS measurements
(in the case of Earth), or from laser altimetry instruments on satellites, such as ICESat/GLASS for Earth,
LRO/LOLA on the Moon, and MGS/MOLA on Mars. Under the hood, pc_align uses the Iterative
Closest Point algorithm (ICP) (both the point-to-plane and point-to-point �avors are supported, and with
point-to-point ICP it is also possible to solve for a scale change).

The pc_align tool requires another input, an a priori guess for the maximum displacement we expect to
see as result of alignment, i.e., by how much the points are allowed to move when the alignment transform
is applied. If not known, a large (but not unreasonably so) number can be speci�ed. It is used to remove
most of the points in the source (movable) point cloud which have no chance of having a corresponding
point in the reference (�xed) point cloud.

Here is how pc_align can be called (the denser cloud is speci�ed �rst).

38



The Next Steps

> pc_align --max-displacement 200 --datum MOLA \

--save-inv-transformed-reference-points \

--csv-format '1:lon 2:lat 3:radius_m' \

stereo-PC.tif mola.csv

It is important to note here that there are two widely used Mars datums, and if your CSV �le has, unlike
above, the heights relative to a datum, the correct datum name must be speci�ed via --datum. Section
A.6.1 talks in more detail about the Mars datums.

Figure 5.7 shows an example of using pc_align. The complete documentation for this program is in section
A.21.

5.2.6 Alignment and Orthoimages

Two related issues are discussed here. The �rst is that sometimes, after ASP has created a DEM, and the
left and right images are map-projected to it, they are shifted in respect to each other. That is due to the
errors in camera positions. To rectify it, one has to run bundle_adjust �rst, then rerun the stereo and
mapprojection tools, with the adjusted cameras being passed to both via --bundle-adjust-prefix.

Note that this approach will create self-consistent outputs, but not necessarily aligned with pre-existing
ground truth. That we deal with next.

Once an ASP-generated DEM has been aligned to known ground data using pc_align, it may be desired
to create orthoimages that are also aligned to the ground. That can be accomplished in two ways.

The point2dem --orthoimage approach be used, and one can pass to it the point cloud after alignment
and the L image before alignment (all this tool does is copy pixels from the texture image, so position errors
are not a problem).

Alternatively, one can invoke the mapproject tool again. Yet, there is a challenge, because this tool uses
the original cameras, before alignment, but will project onto the DEM after alignment, so the obtained
orthoimage location on the ground will be wrong.

The solution is to invoke bundle_adjust on the two input images and cameras, while passing to it
the transform obtained from pc_align via the --initial-transform option. This will shift the cam-
eras to the right place, and then mapproject can be called with the adjusted cameras, using again the
--bundle-adjust-prefix option. If all that is wanted is to shift the cameras, without doing any actual
adjustments, the tool can be invoked with 0 iterations.

5.2.7 Creating DEMs Relative to the Geoid/Areoid

The DEMs generated using point2dem are in reference to a datum ellipsoid. If desired, the dem_geoid

program can be used to convert this DEM to be relative to a geoid/areoid on Earth/Mars respectively.
Example usage:

> dem_geoid results/output-DEM.tif

5.2.8 Converting to the LAS Format

If it is desired to use the stereo generated point cloud outside of ASP, it can be converted to the LAS
�le format, which is a public �le format for the interchange of 3-dimensional point cloud data. The tool
point2las can be used for that purpose (section A.20). Example usage:

39



Chapter 5

> point2las --compressed -r Earth results/output-PC.tif

5.2.9 Generating Color Hillshade Maps

Once you have generated a DEM �le, you can use the colormap and hillshade tools to create colorized
and/or shaded relief images.

To create a colorized version of the DEM, you need only specify the DEM �le to use. The colormap is
applied to the full range of the DEM, which is computed automatically. Alternatively you can specify your
own min and max range for the color map.

> colormap results/output-DEM.tif -o hrad-colorized.tif

To create a hillshade of the DEM, specify the DEM �le to use. You can control the azimuth and elevation
of the light source using the -a and -e options.

> hillshade results/output-DEM.tif -o hrad-shaded.tif -e 25 -a 300

To create a colorized version of the shaded relief �le, specify the DEM and the shaded relief �le that should
be used:

> colormap results/output-DEM.tif -s hrad-shaded.tif -o hrad-color-shaded.tif

See �gure 5.8 showing the images obtained with these commands.

The complete documentation for colormap is in section A.29, and for hillshade in section A.30.

40



The Next Steps

5.2.10 Building Overlays for Moon and Mars Mode in Google Earth

Sometimes it may be convenient to see how the DEMs and orthoimages generated by ASP look on top of
existing imagery in Google Earth. ASP provides a tool named image2qtree for that purpose. It creates
multi-resolution image tiles and a metadata tree in KML format that can be loaded into Google Earth from
your local hard drive or streamed from a remote server over the Internet.

The image2qtree program can only be used on 8-bit image �les with georeferencing information (e.g.
grayscale or RGB GeoTIFF images). In this example, it can be used to process

results/output-DEM-normalized.tif, results/output-DRG.tif, hrad-shaded.tif,
hrad-colorized.tif, and hrad-shaded-colorized.tif.

These images were generated respectively by using point2dem with the -n option creating a normalized
DEM, the --orthoimage option to point2dem which projects the left image onto the DEM, and the images
created earlier with colormap.

Here's an example of how to invoke this program.

> image2qtree hrad-shaded-colorized.tif -m kml --draw-order 100

Figure 5.9 shows the obtained KML �les in Google Earth.

The complete documentation is in section A.31.

Figure 5.8: The colorized DEM, the shaded relief image, and the colorized hillshade.

41



Chapter 5

5.2.11 Using DERT to Visualize Terrain Models

The open source Desktop Exploration of Remote Terrain (DERT) software tool can be used to explore
large digital terrain models, like those created by the Ames Stereo Pipeline. For more information, visit
https://github.com/nasa/DERT.

Figure 5.9: The colorized hillshade DEM as a KML overlay.

42

https://github.com/nasa/DERT


Chapter 6

Tips and Tricks

Here we summarize, in one place, some insights in how to get the most from ASP, particularly the highest
quality results in the smallest amount of time.

• Ask for help or if you have questions. We're always glad to share what we know, implement sugges-
tions, and �x issues (section 1.4).

• Use the GUI (section A.2) to get comfortable with ASP on a small region and to tune parameters
(section A.2). A solution speci�c to ISIS imagery is to crop your stereo pair (using the ISIS crop

command) to a small region of interest.

• The highest quality results with ASP can be obtained with map-projected images (section 5.1.7).

• Run stereo on multiple machines (section A.3).

• Improve the quality of the inputs to get better outputs. Bundle-adjustment can be used to �nd out
the camera positions more accurately (section 8.2). CCD artifact correction can be used to remove
artifacts from WorldView images (section 4.3). Jitter correction can be used for Digital Globe imagery
(section 4.4).

• Align the output point cloud to some known absolute reference with pc_align (section 5.2.5).

• Remove noise from the output point cloud. During stereo triangulation, points that are further or
closer than given distances from planet center or left camera center can be removed as outliers (section
B.5). During DEM generation (section A.6), points with large triangulation error can be removed
using --remove-outliers-params. Spikes can be removed with --median-filter-params. Points
close to the boundary, that tend to be less accurate, can be eroded (--erode-length).

• During stereo �ltering, islands can be removed with --erode-max-size.

• Remove noise from the low-resolution disparity (D_sub) that can greatly slow down a run using
--rm-quantile-percentile and --rm-quantile-multiple. Some care is needed with these to not
remove too much information.

• Fill holes in output orthoimages for nicer display (also in DEMs), during DEM and orthoimage gen-
eration with point2dem (section A.6). Holes in an existing DEM can also be �lled using dem_mosaic

(section A.8).

• To get good results if the images lack large-scale features (such as for ice plains) use a di�erent way
to get the low-resolution disparity (section 4.5).

43



Chapter 6

• If a run takes unreasonably long, decreasing the timeout parameter may be in order (section 5.1.10).

• Manually set the search range if the automated approach fails (section 7.2.2).

• To increase speed, the image pair can be subsampled. For ISIS imagery, the ISIS reduce command
can be used, while for Digital Globe data one can invoke the dg_mosaic tool (section A.11, though
note that this tool may introduce aliasing). With subsampling, you are trading resolution for speed,
so this probably only makes sense for debugging or �previewing� 3D terrain. That said, subsampling
will tend to increase the signal to noise ratio, so it may also be helpful for obtaining 3D terrain out
of noisy, low quality images.

• Photometric calibration (using the ISIS tools) can be used to improve the input images and hence
get higher quality stereo results.

• If your images have missing or inaccurate camera pose information, and they were acquired with frame
(pinhole cameras), such data can be solved for using structure-from-motion and bundle adjustment
(chapter 9).

• Shape-from-shading (chapter 10) can be used to further increase the level of detail of a DEM obtained
from stereo, though this is a computationally expensive process and its results are not easy to validate.

We'll be happy to add here more suggestions from community's accumulated wisdom on using ASP.

44



Part II

The Stereo Pipeline in Depth

45





Chapter 7

Stereo Correlation

In this chapter we will dive much deeper into understanding the core algorithms in the Stereo Pipeline. We
start with an overview of the �ve stages of stereo reconstruction. Then we move into an in-depth discussion
and exposition of the various correlation algorithms.

The goal of this chapter is to build an intuition for the stereo correlation process. This will help users to
identify unusual results in their DEMs and hopefully eliminate them by tuning various parameters in the
stereo.default �le (appendix B). For scientists and engineers who are using DEMs produced with the
Stereo Pipeline, this chapter may help to answer the question, �What is the Stereo Pipeline doing to the
raw data to produce this DEM?�

A related question that is commonly asked is, �How accurate is a DEM produced by the Stereo Pipeline?�
This chapter does not yet address matters of accuracy and error, however we have several e�orts underway
to quantify the accuracy of Stereo Pipeline-derived DEMs, and will be publishing more information about
that shortly. Stay tuned.

The entire stereo correlation process, from raw input images to a point cloud or DEM, can be viewed as a
multistage pipeline as depicted in Figure 7.1, and detailed in the following sections.

7.1 Pre-Processing

The �rst optional (but recommended) step in the process is least squares Bundle Adjustment, which is
described in detail in Chapter 8.

Next, the left and right images are roughly aligned using one of the four methods: (1) a homography
transform of the right image based on automated tie-point measurements, (2) an a�ne epipolar transform
of both the left and right images (also based on tie-point measurements as earlier), the e�ect of which
is equivalent to rotating the original cameras which took the pictures, (3) a 3D rotation that achieves
epipolar recti�cation (only implemented for Pinhole sessions for missions like MER or K10 � see sections
11.5 and 11.6) or (4) map-projection of both the left and right images using the ISIS cam2map command
or through the more general mapproject tool that works for any cameras supported by ASP (see section
5.1.7 for the latter). The �rst three options can be applied automatically by the Stereo Pipeline when
the alignment-method variable in the stereo.default �le is set to affineepipolar, homography, or
epipolar, respectively.

The latter option, running cam2map, cam2map4stereo.py, or mapproject must be carried out by the user
prior to invoking the stereo command. Map-projecting the images using ISIS eliminates any unusual
distortion in the image due to the unusual camera acquisition modes (e.g. pitching �ROTO� maneuvers
during image acquisition for MOC, or highly elliptical orbits and changing line exposure times for the High

47



Chapter 7

“Left” Image “Right” Image

Registration Adjusted Ephemeris 
or Automated 
Interest Points

Disparity Map Initialization

Outlier Rejection / Hole Filling 
Final Disparity Map

<output>-F.exr

Triangulation

Mesh Generation

Pre-processing

Bundle 
Adjustment

stereo

Sub-Pixel Refinement
Sub-pixel Disparity Map

<output>-R.exr

Approx. Disparity Map
<output>-D.exr

Point Cloud Image
<output>-PC.tif

DEM Generation
3D Mesh

<output>.ive

Digital Elevation Model
<output>-DEM.tif

point2dem point2mesh

isis_adjust

Figure 7.1: Flow of data through the Stereo Pipeline.

Resolution Stereo Camera, HRSC). It also eliminates some of the perspective di�erences in the image
pair that are due to large terrain features by taking the existing low-resolution terrain model into account
(e.g., the Mars Orbiter Laser Altimeter, MOLA; Lunar Orbiter Laser Altimeter, LOLA; National Elevation
Dataset, NED; or Uni�ed Lunar Coordinate Network, ULCN, 2005 models).

In essence, map-projecting the images results in a pair of very closely matched images that are as close to
ideal as possible given existing information. This leaves only small perspective di�erences in the images,
which are exactly the features that the stereo correlation process is designed to detect.

For this reason, we recommend map-projection for pre-alignment of most stereo pairs. Its only cost is
longer triangulation times as more math must be applied to work back through the transforms applied to
the images. In either case, the pre-alignment step is essential for performance because it ensures that the
disparity search space is bounded to a known area. In both cases, the e�ects of pre-alignment are taken
into account later in the process during triangulation, so you do not need to worry that pre-alignment will
compromise the geometric integrity of your DEM.

In some cases the pre-processing step may also normalize the pixel values in the left and right images to
bring them into the same dynamic range. Various options in the stereo.default �le a�ect whether or how
normalization is carried out, including individually-normalize and force-use-entire-range. Although
the defaults work in most cases, the use of these normalization steps can vary from data set to data set, so
we recommend you refer to the examples in Chapter 11 to see if these are necessary in your use case.

48



Stereo Correlation

Finally, pre-processing can perform some �ltering of the input images (as determined by
prefilter-mode) to reduce noise and extract edges in the images. When active, these �lters apply a kernel
with a sigma of prefilter-kernel-width pixels that can improve results for noisy images (prefilter-mode
must be chosen carefully in conjunction with cost-mode, see Appendix B). The pre-processing modes that
extract image edges are useful for stereo pairs that do not have the same lighting conditions, contrast, and
absolute brightness [114]. We recommend that you use the defaults for these parameters to start with, and
then experiment only if your results are sub-optimal.

7.2 Disparity Map Initialization

Correlation is the process at the heart of the Stereo Pipeline. It is a collection of algorithms that compute
correspondences between pixels in the left image and pixels in the right image. The map of these corre-
spondences is called a disparity map. You can think of a disparity map as an image whose pixel locations
correspond to the pixel (u, v) in the left image, and whose pixel values contain the horizontal and vertical
o�sets (du, dv) to the matching pixel in the right image, which is (u+ du, v + dv).

The correlation process attempts to �nd a match for every pixel in the left image. The only pixels skipped
are those marked invalid in the mask images. For large images (e.g. from HiRISE, Lunar Reconnaissance
Orbiter Camera, LROC, or WorldView), this is very expensive computationally, so the correlation process
is split into two stages. The disparity map initialization step computes approximate correspondences using
a pyramid-based search that is highly optimized for speed, but trades resolution for speed. The results of
disparity map initialization are integer-valued disparity estimates. The sub-pixel re�nement step takes these
integer estimates as initial conditions for an iterative optimization and re�nes them using the algorithm
discussed in the next section.

We employ several optimizations to accelerate disparity map initialization: (1) a box �lter-like accumulator
that reduces duplicate operations during correlation [143]; (2) a coarse-to-�ne pyramid based approach
where disparities are estimated using low-resolution images, and then successively re�ned at higher resolu-
tions; and (3) partitioning of the disparity search space into rectangular sub-regions with similar values of
disparity determined in the previous lower resolution level of the pyramid [143].

Naive correlation itself is carried out by moving a small, rectangular template window from the from left
image over the speci�ed search region of the right image, as in Figure 7.2. The �best� match is determined
by applying a cost function that compares the two windows. The location at which the window evaluates to
the lowest cost compared to all the other search locations is reported as the disparity value. The cost-mode
variable allows you to choose one of three cost functions, though we recommend normalized cross correlation
[94], since it is most robust to slight lighting and contrast variations between a pair of images. Try the
others if you need more speed at the cost of quality.

Our implementation of pyramid correlation is a little unique in that it is actually split into two levels
of pyramid searching. There is a output_prefix -D_sub.tif disparity image that is computed from the
greatly reduced input images *-L_sub.tif and output_prefix -R_sub.tif. Those �sub� images have their
size chosen so that their area is around 2.25 megapixels, a size that is easily viewed on the screen unlike
the raw source imagery. The low-resolution disparity image then de�nes the per thread search range of the
higher resolution disparity, output_prefix -D.tif.

This solution is imperfect but comes from our model of multi-threaded processing. ASP processes individual
tiles of the output disparity in parallel. The smaller the tiles, the easier it is to distribute evenly among
the CPU cores. The size of the tile unfortunately limits the max number of pyramid levels we can process.
We've struck a balance where every 1024 by 1024 pixel area is processed individually in a tile. This practice
allows only 5 levels of pyramid processing. With the addition of the second tier of pyramid searching with
output_prefix -D_sub.tif, we are allowed to process beyond that limitation.

49



Chapter 7

Figure 7.2: The correlation algorithm in disparity map initialization uses a sliding template window from
the left image to �nd the best match in the right image. The size of the template window can be adjusted
using the H_KERN and V_KERN parameters in the stereo.default �le, and the search range can be adjusted
using the {H,V}_CORR_{MIN/MAX} parameters.

Any large failure in the low-resolution disparity image will be detrimental to the performance of the higher
resolution disparity. In the event that the low-resolution disparity is completely unhelpful, it can be
skipped by adding corr-seed-mode 0 in the stereo.default �le and using a manual search range (sec-
tion 7.2.2). This should only be considered in cases where the texture in an image is completely lost
when subsampled. An example would be satellite imagery of fresh snow in the Arctic. Alternatively,
output_prefix -D_sub.tif can be computed at a sparse set of pixels at full resolution, as described in
section 4.5.

An alternative to computing output_prefix -D.tif from sub-sampled images (corr-seed-mode 1) or
skipping it altogether (corr-seed-mode 0), is to compute it from a lower-resolution DEM of the area
(corr-seed-mode 2). In this situation, the low-resolution DEM needs to be speci�ed together with its
estimated error. See section B.2 for more detailed information as to how to specify these options. In our
experiments, if the input DEM has a resolution of 1 km, a good value for the DEM error is about 10 m, or
higher if the terrain is very variable.

7.2.1 Debugging Disparity Map Initialization

Never will all pixels be successfully matched during stereo matching. Though a good chunk of the image
should be correctly processed. If you see large areas where matching failed, this could be due to a variety
of reasons:

50



Stereo Correlation

Figure 7.3: The e�ect of increasing the correlation kernel size from 35 (left) to 75 (right). This location is
covered in snow and several regions lack texture for the correlator to use but a large kernel increases the
chances of �nding useful texture for a given pixel.

• In regions where the images do not overlap, there should be no valid matches in the disparity map.

• Match quality may be poor in regions of the images that have di�erent lighting conditions, contrast,
or specular properties of the surface.

• Areas that have image content with very little texture or extremely low contrast may have an insuf-
�cient signal to noise ratio, and will be rejected by the correlator.

• Areas that are highly distorted due to di�erent image perspective, such as crater and canyon walls,
may exhibit poor matching performance. This could also be due to failure of the preprocessing step
in aligning the images. The correlator can not match images that are rotated di�erently from each
other or have di�erent scale/resolution. Mapprojection is used to at least partially rectify these issues
(section 5.1.7).

Bad matches, often called �blunders� or �artifacts� are also common, and can happen for many of the same
reasons listed above. The Stereo Pipeline does its best to automatically detect and eliminate these blunders,
but the e�ectiveness of these outlier rejection strategies does vary depending on the quality of the input
imagery.

When tuning up your stereo.default �le, you will �nd that it is very helpful to look at the raw output of
the disparity map initialization step. This can be done using the disparitydebug tool, which converts the
output_prefix -D.tif �le into a pair of normal images that contain the horizontal and vertical components
of disparity. You can open these in a standard image viewing application and see immediately which pixels
were matched successfully, and which were not. Stereo matching blunders are usually also obvious when
inspecting these images. With a good intuition for the e�ects of various stereo.default parameters and
a good intuition for reading the output of disparitydebug, it is possible to quickly identify and address
most problems.

If you are seeing too many holes in your disparity images, one option that may give good results is to
increase the size of the correlation kernel used by stereo_corr with the �corr-kernel option. Increasing
the kernel size will increase the processing time but should help �ll in regions of the image where no match
was found.

51



Chapter 7

Figure 7.4: The e�ect of using the rm-quantile �ltering option in stereo_corr. In the left image there
are a series of high disparity "islands" at the bottom of the image. In the right image quantile �ltering has
removed those islands while leaving the rest of the image intact.

7.2.2 Search Range Determination

In some circumstances, the low-resolution disparity D_sub.tif may fail to get computed, or it may be
inaccurate. This can happen for example if only very small features are present in the original images, and
they disappear during the resampling that is necessary to obtain D_sub.tif. In this case, it is possible
to set corr-seed-mode to 0, and manually set a search range to use for full-resolution correlation via the
parameter corr-search. In stereo.default this parameter's entry will look like:

corr-search -80 -2 20 2

The exact values to use with this option you'll have to discover yourself. The numbers right of corr-search
represent the horizontal minimum boundary, vertical minimum boundary, horizontal maximum boundary,
and �nally the horizontal maximum boundary within which we will search for the disparity during correla-
tion.

It can be tricky to select a good search range for the stereo.default �le. That's why the best way is to
let stereo perform an automated guess for the search range. If you �nd that you can do a better estimate
of the search range, take look at the intermediate disparity images using the disparitydebug program to
�gure out which search directions can be expanded or contracted. The output images will clearly show
good data or bad data depending on whether the search range is correct.

The worst case scenario is to determine the search range manually. For example, for ISIS images, both
images could be opened in qview and the coordinates of points that can be matched visually can be
compared. Subtract line,sample locations in the �rst image from the coordinates of the same feature in the
second image, and this will yield o�sets that can be used in the search range. Make several of these o�set
measurements and use them to de�ne a line,sample bounding box, then expand this by 50% and use it for
corr-search. This will produce good results in most images.

Also, if you are using an alignment option, you'll instead want to make those disparity measurements
against the written L.tif and R.tif �les (see chapter C) instead of the original input �les.

52



Stereo Correlation

7.2.3 Local Homography

Local homography decomposes the left image into tiles, and tries to �nd the best homography transform
from each tile to the right image before computing the correlation. This is more �ne-grained than using a
global homography transform.

This approach is experimental. We suggest instead the map-projection approach be used (section 5.1.7),
as that one is even more �ne-grained, and does not su�er from artifacts that may arise from the local
homography piecewise approach.

This option can be turned on with the �ag use-local-homography.

7.2.4 Semi-Global Matching

A new option for integer stereo correlation available in ASP is the popular semi-global matching algorithm
introduced in [58]. The algorithm is not typically used for DEM generation but it has been used successfully
to process HRSC images [59]. The version of the algorithm implemented by ASP has a few modi�cations
relative to the original implementation. The most signi�cant di�erence is that ASP's implementation
performs a 2D disparity search, similar to what is done in the NG-fSGM algorithm [156]. Since ASP
processes a wide variety of cameras with varying degrees of metadata quality, the standard assumption
with SGM that the disparity search can be performed only along a one-dimensional epipolar line does not
hold. The other major change is that ASP uses a multi- resolution hierarchical search combined with a
compressed memory scheme similar to what is used in the SGM algorithm [131]. With these two features
the SGM algorithm can be used for unrecti�ed, larger images. ASP also supports a mode using the MGM
algorithm [33], referred to in some places in the documentation as Smooth SGM. This algorithm reduces
the amount of high frequency artifacts in textureless regions at the cost of a longer run time. ASP also
o�ers the option of a hybrid SGM/MGM mode where MGM is used only for the �nal resolution level which
obtains results somewhere between the pure SGM and MGM options.

The greatest advantage of the SGM algorithm over the normal ASP correlation algorithm is an improved
ability to �nd disparity matches in areas of repetitive or low texture. SGM can also discern �ner resolution
features than the standard correlation algorithm since it tends to use much smaller matching kernels. Along
with these advantages come several disadvantages. First, SGM is computationally expensive and requires
a lot of memory. Second, in some situations it can produce noticeable artifacts at tile boundaries. Third,
it can sometimes produce inaccurate results in textureless regions. With careful parameter selection and
usage these disadvantages can be mitigated.

In order to use SGM, pass in stereo-algorithm. Use 1 to use SGM or 2 to use MGM. To process large
images you must use the parallel_stereo program instead of the stereo program. parallel_stereo

replaces the re�nement stage with a new seam blending stage to suppress artifacts along tile borders.
Without this step SGM can produce artifacts along tile borders. The stereo program can be used as long
as the corr-tile-size command is set large enough to �t the entire image into a single processing tile.
When running SGM, a single ASP process will handle only one tile at a time but it will use multiple threads
per tile, as opposed to normal stereo where each tile uses its own thread. MGM is currently limited to using
8 simultaneous threads but SGM does not have a limit. When running parallel_stereo use the following
options:

• Specify the sgm-collar-size option or leave it at the default value. Increasing this value decreases
the chances of seeing artifacts along tile borders but increases processing time and memory usage.

• Set the corr-tile-size option to determine the tile size, keeping in mind that larger tile sizes produce
better results but consume more memory. The collar size you selected will enlarge the processed tile
size.

53



Chapter 7

• Set the processes option keeping in mind memory constraints as discussed earlier. Each process will
run one simultaneous SGM instance and consume memory.

• The corr-memory-limit-mb parameter limits the number of megabytes of memory that can be used
by SGM/MGM. This limit is per-process. To be safe, make sure that you have more RAM available
than the value of this parameter multiplied by the number of processes.

• job-size-w and job-size-h are set equal to corr-tile-size. Do not override them!

By setting these parameters in the manner described, each process will generate a single SGM tile which will
then be blended in the new blend step. Each process can use multiple threads with threads-singleprocess

without a�ecting the stereo results.

When SGM or MGM is speci�ed, certain stereo parameters have their default values replaced with values
that will work with SGM. You can still manually specify these options.

• Cost Mode (default 4). Mean absolute distance (MAD) (cost-mode <= 2) usually does not work well.
The census transform mode (cost-mode 3) [159] tends to perform better overall but can produce arti-
facts on featureless terrain. The ternary census transform mode (cost-mode 4) [60] is a modi�cation
of the census transform that is more stable on low contrast terrain but may be less accurate elsewhere.

• Kernel size. SGM kernels must always be symmetric. The SGM algorithm works with much smaller
kernel sizes than the regular integer correlator so the default large kernel is not recommended. The
MAD cost mode can be used with any odd kernel size (including size 1) but the census cost modes
can only be used with kernel sizes 3, 5, 7, and 9. Size 7 is usually a good choice.

• Xcorr-Threshold. By default, this is disabled in order to nearly halve the (long) run time of the
SGM algorithm. Set xcorr-threshold to >= 0 to turn it back on. If you set the min-xcorr-level
parameter to 1 you can perform cross correlation on the smaller resolution levels without spending
the time to run it on the largest resolution level.

• The median and texture �lters in the stereo_fltr tool (defaults 3, 11, 0.13). These �lters were de-
signed speci�cally to clean up output from the SGM algorithm and are especially useful in suppressing
image artifacts in low-texture portions of the image. A median �lter size of 3 and a texture �lter size of
11 are good starts but the best values will depend on your input images. The texture-smooth-scale
parameter will have to be adjusted to taste, but a range of 0.13 to 0.15 is typical for icy images.
These values are enabled by default and must be manually disabled. If your images have good tex-
ture throughout it may be best to disable these �lters.

• The prefilter-mode setting is ignored when using SGM.

• The subpixel-mode If not set or set to values 7-12 SGM will perform subpixel interpolation during the
stereo correlation step and will not do additional work in the stereo re�nement step. This means that
after dealing with the long SGM processing time you do not need to follow it up with a slow subpixel
option! If desired, you can specify modes 1-4 to force those subpixel operations to be performed after
the default SGM subpixel method.

Figure 7.5 shows a comparison between two stereo modes. The DEM on the left was generated using
the default stereo parameters and --subpixel-mode 3. The DEM on the right was generated using the
command:

stereo --stereo-algorithm 1 --threads 1 --xcorr-threshold -1 --corr-kernel 7 7 \

--corr-tile-size 6400 --cost-mode 4 --median-filter-size 3 \

--texture-smooth-size 13 --texture-smooth-scale 0.13

54



Stereo Correlation

Figure 7.5: A section of a NASA IceBridge image with a pair of hill-shaded DEMs below it showing the
di�erence between default ASP processing and processing using the SGM algorithm.

55



Chapter 7

Some grid pattern noise is visible in the image produced using SGM. Using --stereo-algorithm 2 should
reduce it. And, as mentioned earlier, for large images which won't �t in memory, --corr-tile-size can
be set to a value like 4096, and parallel_stereo should be used.

7.3 Sub-pixel Re�nement

Once disparity map initialization is complete, every pixel in the disparity map will either have an estimated
disparity value, or it will be marked as invalid. All valid pixels are then adjusted in the sub-pixel re�nement
stage based on the subpixel-mode setting.

The �rst mode is parabola-�tting sub-pixel re�nement (subpixel-mode 1). This technique �ts a 2D
parabola to points on the correlation cost surface in an 8-connected neighborhood around the cost value
that was the �best� as measured during disparity map initialization. The parabola's minimum can then be
computed analytically and taken as as the new sub-pixel disparity value.

This method is easy to implement and extremely fast to compute, but it exhibits a problem known as
pixel-locking: the sub-pixel disparities tend toward their integer estimates and can create noticeable �stair
steps� on surfaces that should be smooth [140, 145]. See for example Figure 7.6(b). Furthermore, the
parabola subpixel mode is not capable of re�ning a disparity estimate by more than one pixel, so although
it produces smooth disparity maps, these results are not much more accurate than the results that come
out of the disparity map initialization in the �rst place. However, the speed of this method makes it very
useful as a �draft� mode for quickly generating a DEM for visualization (i.e. non-scienti�c) purposes. It
is also bene�cial in the event that a user will simply downsample their DEM after generation in Stereo
Pipeline.

For high quality results, we recommend subpixel-mode 2: the Bayes EM weighted a�ne adaptive window
correlator. This advanced method produces extremely high quality stereo matches that exhibit a high
degree of immunity to image noise. For example Apollo Metric Camera images are a�ected by two types of
noise inherent to the scanning process: (1) the presence of �lm grain and (2) dust and lint particles present
on the �lm or scanner. The former gives rise to noise in the DEM values that wash out real features, and
the latter causes incorrect matches or hard to detect blemishes in the DEM. Attenuating the e�ect of these
scanning artifacts while simultaneously re�ning the integer disparity map to sub-pixel accuracy has become
a critical goal of our system, and is necessary for processing real-world data sets such as the Apollo Metric
Camera data.

The Bayes EM subpixel correlator also features a deformable template window from the left image that
can be rotated, scaled, and translated as it zeros in on the correct match in the right image. This adaptive
window is essential for computing accurate matches on crater or canyon walls, and on other areas with
signi�cant perspective distortion due to foreshortening.

This a�ne-adaptive behavior is based on the Lucas-Kanade template tracking algorithm, a classic algorithm
in the �eld of computer vision [10]. We have extended this technique; developing a Bayesian model that
treats the Lucas-Kanade parameters as random variables in an Expectation Maximization (EM) framework.
This statistical model also includes a Gaussian mixture component to model image noise that is the basis
for the robustness of our algorithm. We will not go into depth on our approach here, but we encourage
interested readers to read our papers on the topic [109, 21].

However we do note that, like the computations in the disparity map initialization stage, we adopt a multi-
scale approach for sub-pixel re�nement. At each level of the pyramid, the algorithm is initialized with the
disparity determined in the previous lower resolution level of the pyramid, thereby allowing the subpixel
algorithm to shift the results of the disparity initialization stage by many pixels if a better match can
be found using the a�ne, noise-adapted window. Hence, this sub-pixel algorithm is able to signi�cantly
improve upon the results to yield a high quality, high resolution result.

56



Stereo Correlation

(a) Left Image (b) Parabola Subpixel Mode (c) Bayes EM Subpixel Mode

(d) Right Image (e) Parabola Hillshade (f) Bayes EM Hillshade

Figure 7.6: Left: Input images. Center: results using the parabola draft subpixel mode (subpixel-mode =

1). Right: results using the Bayes EM high quality subpixel mode (subpixel-mode = 2).

Another option when run time is important is subpixel-mode 3: the simple a�ne correlator. This is essen-
tially the Bayes EM mode with the noise correction features removed in order to decrease the required run
time. In data sets with little noise this mode can yield results similar to Bayes EM mode in approximately
one �fth the time.

A di�erent option is Phase Correlation, subpixel-mode 4, which implements the algorithm from [47]. It is
slow and does not work well on slopes but since the algorithm is very di�erent it might perform in situations
where the other algorithms are not working well.

7.4 Triangulation

When running an ISIS session, the Stereo Pipeline uses geometric camera models available in ISIS [7].
These highly accurate models are customized for each instrument that ISIS supports. Each ISIS �cube�
�le contains all of the information that is required by the Stereo Pipeline to �nd and use the appropriate
camera model for that observation.

Other sessions such as DG (Digital Globe) or Pinhole, require that their camera model be provided as
additional arguments to the stereo command. Those camera models come in the form of an XML document
for DG and as *.pinhole, *.tsai, *.cahv, *.cahvor for Pinhole sessions. Those �les must be the third
and forth arguments or immediately follow after the 2 input images for stereo.

57



Chapter 7

(a) Framing Camera Model (b) Pushbroom Camera Model

Figure 7.7: Most remote sensing cameras fall into two generic categories based on their basic geometry.
Framing cameras (left) capture an instantaneous two-dimensional image. Linescan cameras (right) capture
images one scan line at a time, building up an image over the course of several seconds as the satellite
moves through the sky.

Figure 7.8: Once a disparity map has been generated and re�ned, it can be used in combination with the
geometric camera models to compute the locations of 3D points on the surface of Mars. This �gure shows
the position (at the origins of the red, green, and blue vectors) and orientation of the Mars Global Surveyor
at two points in time where it captured images in a stereo pair.

ISIS camera models account for all aspects of camera geometry, including both intrinsic (i.e. focal length,
pixel size, and lens distortion) and extrinsic (e.g. camera position and orientation) camera parameters.
Taken together, these parameters are su�cient to �forward project� a 3D point in the world onto the image
plane of the sensor. It is also possible to �back project� from the camera's center of projection through a
pixel corresponding to the original 3D point.

Notice, however, that forward and back projection are not symmetric operations. One camera is su�cient
to �image� a 3D point onto a pixel located on the image plane, but the reverse is not true. Given only a
single camera and a pixel location x = (u, v), that is the image of an unknown 3D point P = (x, y, z), it
is only possible to determine that P lies somewhere along a ray that emanates from the camera's center of
projection through the pixel location x on the image plane (see Figure 7.7).

Alas, once images are captured, the route from image pixel back to 3D points in the real world is through
back projection, so we must bring more information to bear on the problem of uniquely reconstructing our
3D point. In order to determine P using back projection, we need two cameras that both contain pixel
locations x1 and x2 where P was imaged. Now, we have two rays that converge on a point in 3D space (see
Figure 7.8). The location where they meet must be the original location of P .

58



Stereo Correlation

In practice, the two rays rarely intersect perfectly because any slight error in the camera position or pointing
information will e�ect the rays' positions as well. Instead, we take the closest point of intersection of the
two rays as the location of point P .

Additionally, the actual distance between the rays at this point is an interesting and important error metric
that measures how self-consistent our two camera models are for this point. You will learn in the next
chapter that this information, when computed and averaged over all reconstructed 3D points, can be a
valuable statistic for determining whether to carry out bundle adjustment. Distance between the two rays
at their closest intersection is recorded in the fourth channel of the point cloud �le, output-prefix -PC.tif.
This information can be brought to the same perspective as the output DEM by using the --error argument
on the point2dem command.

This error in the triangulation, the distance between two rays, is not the true accuracy of the DEM. It is
only another indirect measure of quality. A DEM with high triangulation error is always bad and should
have its images bundle-adjusted. A DEM with low triangulation error is at least self consistent but could
still be bad. A map of the triangulation error should only be interpreted as a relative measurement. Where
small areas are found with high triangulation error came from correlation mistakes and large areas of error
came from camera model inadequacies.

59



60



Chapter 8

Bundle Adjustment

8.1 Overview

Satellite position and orientation errors have a direct e�ect on the accuracy of digital elevation models
produced by the Stereo Pipeline. If they are not corrected, these uncertainties will result in systematic
errors in the overall position and slope of the DEM. Severe distortions can occur as well, resulting in
twisted or �taco shaped� DEMs, though in most cases these e�ects are quite subtle and hard to detect. In
the worst case, such as with old mission data like Voyager or Apollo, these gross camera misalignments can
inhibit Stereo Pipeline's internal interest point matcher and block auto search range detection.

Errors in camera position and orientation can be corrected using a process called bundle adjustment. Bundle
adjustment is the process of simultaneously adjusting the properties of many cameras and the 3D locations
of the objects they see in order to minimize the error between the estimated, back-projected pixel locations
of the 3D objects and their actual measured locations in the captured images.

This complex process can be boiled down to this simple idea: bundle adjustment ensures that the observa-
tions in multiple images of a single ground feature are self-consistent. If they are not consistent, then the
position and orientation of the cameras as well as the 3D position of the feature must be adjusted until
they are. This optimization is carried out along with thousands (or more) of similar constraints involving
many di�erent features observed in other images. Bundle adjustment is very powerful and versatile: it can
operate on just two overlapping images, or on thousands. It is also a dangerous tool. Careful consideration

Figure 8.1: Bundle adjustment is illustrated here using a color-mapped, hill-shaded DEM mosaic from
Apollo 15, Orbit 33, imagery. (a) Prior to bundle adjustment, large discontinuities can exist between
overlapping DEMs made from di�erent images. (b) After bundle adjustment, DEM alignment errors are
minimized and no longer visible.

61



Chapter 8

is required to insure and verify that the solution does represent reality.

Bundle adjustment can also take advantage of Ground control points (GCPs), which are 3D locations of
features that are known a priori (often by measuring them by hand in another existing DEM). GCPs can
improve the internal consistency of your DEM or align your DEM to an existing data product. Finally,
even though bundle adjustment calculates the locations of the 3D objects it views, only the �nal properties
of the cameras are recorded for use by the Ames Stereo Pipeline. Those properties can be loaded into the
stereo program which uses its own method for triangulating 3D feature locations.

When using the Stereo Pipeline, bundle adjustment is an optional step between the capture of images
and the creation of DEMs. The bundle adjustment process described below should be completed prior to
running the stereo command.

Although bundle adjustment is not a required step for generating DEMs, it is highly recommended for users
who plan to create DEMs for scienti�c analysis and publication. Incorporating bundle adjustment into the
stereo work �ow not only results in DEMs that are more internally consistent, it is also the correct way to
co-register your DEMs with other existing data sets and geodetic control networks.

At the moment however, Bundle Adjustment does not automatically work against outside DEMs from
sources such as laser altimeters. Hand-picked GCPs are the only way for ASP to register to those types of
sources.

8.2 Bundle adjustment using ASP

Stereo Pipeline provides its own bundle adjustment tool, named bundle_adjust. Its usage is described in
section A.4.

Here is an example of using this tool on a couple of Apollo 15 images, and its e�ect on decreasing the stereo
triangulation error.

Running stereo without using bundle-adjusted camera models.

stereo AS15-M-1134.cub AS15-M-1135.cub run_noadjust/run

Performing bundle adjustment.

bundle_adjust AS15-M-1134.cub AS15-M-1135.cub -o run_ba/run

Running stereo while using the bundle-adjusted camera models.

stereo AS15-M-1134.cub AS15-M-1135.cub run_adjust/run \

--bundle-adjust-prefix run_ba/run

A comparison of the two ways of doing stereo is shown in �gure 8.2.

ASP also o�ers the tool parallel_bundle_adjust which can be much faster bundle adjusting many images
at once.

8.2.1 Floating intrinsics and using a lidar or DEM ground truth

This section documents some advanced functionality, and it suggested the reader study it carefully and
invest a certain amount of time to fully take advantage of these concepts.

62



Bundle Adjustment

Figure 8.2: Illustration of the triangulation error map for a pair of images before (left) and after (right)
using Stereo Pipeline's bundle_adjust. Red and black colors suggest higher error.

When the input cameras are of pinhole type, it is possible to optimize the intrinsic parameters, in addition
to the extrinsics. It is also possible to take advantage of an existing terrain ground truth, such as a lidar
�le or a DEM, to correct imperfectly calibrated intrinsic parameters, which can result in greatly improved
results, such as creating less distorted DEMs that agree much better with the ground truth.

A �rst attempt at �oating the intrinsics

We recommend that �rst bundle adjustment is run with the intrinsics �xed, to get the extrinsics mostly
correct, as optimizing for both of them at the same time may result in a non-convex problem which may
lead to a suboptimal local minimum. Then, we will jointly optimize the intrinsics and extrinsics.

Note that when solving for intrinsics, bundle_adjust will by default optimize all intrinsic parameters and
will share them across all cameras (which must be the same type). You can control this behavior with the
--intrinsics-to-float and --intrinsics-to-share parameters.

Hence, the �rst invocation of camera optimization should be like:

bundle_adjust -t nadirpinhole --inline-adjustments \

left.tif right.tif left.tsai right.tsai -o run_ba/run

It is suggested that one run stereo with the obtained cameras, and then examine the intersection error:

stereo -t nadirpinhole --alignment-method epipolar left.tif right.tif \

run_ba/run-left.tsai run_ba/run-right.tsai run_stereo/run

point2dem --tr RESOLUTION --errorimage run_stereo/run-PC.tif

63



Chapter 8

gdalinfo -stats run_stereo/run-IntersectionErr.tif

colormap run_stereo/run-IntersectionErr.tif

stereo_gui run_stereo/run-IntersectionErr_CMAP.tif

If desired, fancier stereo correlation algorithms can be used, such as MGM, as detailed in chapter 7. For
colormap, --min and --max bounds can be speci�ed if the automatic range is too large. We also suggest
inspecting the interest points:

stereo_gui left.tif right.tif run_ba/run

and then viewing the interest points from the menu.

If the interest points are not well-distributed, this may result in large ray intersection errors where they are
missing. If so, they can be re-created by modifying --ip-detect-method and --ip-per-tile. Or, one can
take advantage of the just-completed stereo run and invoke stereo_tri with the additional option

--num-matches-from-disp-triplets 10000

to create dense and uniformly distributed interest points with desired density (the latter creates a .match
�le that needs to be copied to the name bundle_adjust expects). This option also ensures that if three
images are present, and stereo is invoked on the �rst and second image, and then on the second and the
third, followed by interest point generation, many interest points will be triplets, that is, the same feature
will often will be identi�ed in all three images, which can be a very good constraint on bundle adjustment
later.

If the interest points are good and the mean intersection error is acceptable, but this error shows an odd
nonlinear pattern, that means it may be necessary to optimize the intrinsics. We do so by using the cameras
with the optimized extrinsics found earlier, that is:

bundle_adjust -t nadirpinhole --inline-adjustments \

--solve-intrinsics --camera-weight 1 \

left.tif right.tif run_ba/run-left.tsai run_ba/run-right.tsai \

-o run_ba_intr/run

It is important to note that only the non-zero intrinsics will be optimized, and the step size used in
optimizing a certain intrinsic parameter is proportional to it. Hence, if an intrinsic is 0 and it is desired to
optimize it, it should be set to small non-zero value suggestive of its �nal estimated scale. If the algorithm
fails to give a good solution, perhaps di�erent initial values for the intrinsics should be tried. For example,
one can try changing the sign of the initial distortion coe�cients, or make their values much smaller.

Sometimes the camera weight may need to be decreased, even all the way to 0, if it appears that the solver
is not aggressive enough, or it may need to be increased if perhaps it over�ts. This will become less of a
concern if there is some ground truth, as discussed later.

Next, one can run stereo as before, with the new cameras, and see if the obtained solution is more acceptable,
that is, if the intersection error is smaller. It is good to note that a preliminary investigation can already be
made right after bundle adjustment, by looking at the residual error �les before and after bundle adjustment.
They are in the output directory, with names containing the strings

initial_residuals_no_loss_function_pointmap

final_residuals_no_loss_function_pointmap

64



Bundle Adjustment

If desired, these csv �les can be converted to a DEM with point2dem, which can be invoked with

--csv-format 1:lon,2:lat,4:height_above_datum

then one can look at their statistics, also have them colorized, and viewed in stereo_gui.

This �le also shows how often each feature is seen in the images, so, if three images are present, hopefully
many features will be seen three times.

Using ground truth when �oating the intrinsics

If a ground truth lidar �le (or DEM) is present, say named lidar.csv, it can be used as part of bundle
adjustment. For that, the DEM obtained with the earlier stereo pass needs to be �rst aligned to this ground
truth, such as:

pc_align --max-displacement VAL run_stereo/run-DEM.tif lidar.csv -o run_align/run

(see the manual page of this tool in section A.21 for more details).

This alignment can then be applied to the cameras as well:

bundle_adjust -t nadirpinhole --inline-adjustments --max-iterations 0 \

--initial-transform run_align/run-inverse-transform.txt \

left.tif right.tif run_ba/run-left.tsai run_ba/run-right.tsai \

-o run_align/run

Here we have used 0 iterations because we simply want to move the cameras without any optimization.
Note that your lidar �le may have some conventions as to what each column means, and then any tools
that use this cloud must set --csv-format and perhaps also --datum and/or --csv-proj4.

If pc_align is called with the clouds in reverse order (the denser cloud should always be the �rst),
when applying the transform to the cameras in bundle_adjust one should use transform.txt instead
of inverse-transform.txt above.

Next, we will need to create a disparity from the left and right images that we will use during bundle
adjustment. For that we will take the disparity obtained in stereo and remove any intermediate transforms
stereo applied to the images and the disparity. This can be done as follows:

stereo_tri -t nadirpinhole --alignment-method epipolar left.tif right.tif \

run_ba/run-left.tsai run_ba/run-right.tsai run_stereo/run \

--unalign-disparity

and then bundle adjustment can be invoked with this disparity and the lidar/DEM �le. Note that we use
the cameras obtained after alignment:

bundle_adjust -t nadirpinhole --inline-adjustments --solve-intrinsics \

left.tif right.tif run_align/run-run-left.tsai run_align/run-run-right.tsai \

--reference-terrain lidar.csv --disparity-list run_stereo/run-unaligned-D.tif \

--camera-weight 0 --max-disp-error 50 --max-num-reference-points 1000000 \

--parameter-tolerance 1e-12 --reference-terrain-weight 5 -o run_ba_intr_lidar/run

65



Chapter 8

Here we set the camera weight all the way to 0, since it is hoped that having a reference terrain is a su�cient
constraint to prevent over-�tting.

This tool will write some residual �les of the form

initial_residuals_no_loss_function_reference_terrain.txt

final_residuals_no_loss_function_reference_terrain.txt

which may be studied to see if the error-to-lidar decreased. Each residual is de�ned as the distance, in
pixels, between a terrain point projected into the left camera image and then transferred onto the right
image via the unaligned disparity and its direct projection into the right camera.

If the initial errors in that �le are large to start with, say more than 2-3 pixels, there is a chance something
is wrong. Either the cameras are not well-aligned to each other or to the ground, or the intrinsics are o�
too much. In that case it is possible the errors are too large for this approach to reduce them e�ectively.

We strongly recommend that for this process one should not rely on bundle adjustment to create interest
points, but to use the dense and uniformly distributed ones created with stereo, as suggested earlier.

The hope is that after these directions are followed, this will result in a smaller intersection error and a
smaller error to the lidar/DEM ground truth (the later can be evaluated by invoking geodiff --absolute

on the ASP-created aligned DEM and the reference lidar/DEM �le).

When the lidar �le is large, in bundle adjustment one can use the �ag --lon-lat-limit to read only a
relevant portion of it. This can speed up setting up the problem but does not a�ect the optimization.

Using the heights from a reference DEM

In some situations the DEM obtained with ASP is, after alignment, quite similar to the reference DEM,
but the heights may be o�. This can happen, for example, if the focal length is not accurately known. It is
then possible after triangulating the interest point matches in bundle adjustment to replace their heights
above datum with values obtained from the reference DEM, which are presumably more accurate. These
triangulated points can be kept �xed while the extrinsics and intrinsics of the cameras are varied. The
option for this is --heights-from-dem arg. To allow these triangulated points to vary somewhat, one can
pass a positive value to --heights-from-dem-weight. The larger its value is, the more constrained those
points will be.

This option can be used instead of the --reference-terrain option or together with it, and the DEM
provided need not be the same for the two options.

It is important to note that here we assume that a simple height correction is enough. Hence this option is
an approximation, and perhaps it should be used iteratively, and a subsequent pass of bundle adjustment
should be done without it, or one should consider using a smaller weight above. This option can however
be more e�ective than using --reference-terrain when there is a large uncertainty in camera intrinsics.

Using multiple images

Everything mentioned earlier works with more than two images, in fact, having more images is highly
desirable, and ideally the images overlap a lot. For example, one can create stereo pairs consisting of �rst
and second images, second and third, third and fourth, etc., invoke the above logic for each pair, that is,
run stereo, alignment to the ground truth, dense interest point generation, creation of unaligned disparities,
and transforming the cameras using the alignment transform matrix. Then, a directory can be made in
which one can copy the dense interest point �les, and run bundle adjustment with intrinsics optimization
jointly for all cameras. Hence, one should use a command as follows (the example here is for 4 images):

66



Bundle Adjustment

disp1=run_stereo12/run-unaligned-D.tif

disp2=run_stereo23/run-unaligned-D.tif

disp3=run_stereo34/run-unaligned-D.tif

bundle_adjust -t nadirpinhole --inline-adjustments \

--solve-intrinsics --camera-weight 0 \

img1.tif img2.tif img3.tif img4.tif \

run_align_12/run-img1.tsai run_align12/run-img2.tsai \

run_align_34/run-img3.tsai run_align34/run-img4.tsai \

--reference-terrain lidar.csv \

--disparity-list "$disp1 $disp2 $disp3" \

--max-disp-error 50 --max-num-reference-points 1000000 \

--overlap-limit 1 --parameter-tolerance 1e-12 \

--reference-terrain-weight 5 \

-o run_ba_intr_lidar/run

In case it is desired to omit the disparity between one pair of images, for example, if they don't overlap,
instead of the needed unaligned disparity one can put the word none in this list.

Notice that since this joint adjustment was initialized from several stereo pairs, the second camera picked
above, for example, could have been either the second camera from the �rst pair, or the �rst camera from
the second pair, so there was a choice to make. In section 11.16 an example is shown where a preliminary
bundle adjustment happens at the beginning, without using a reference terrain, then those cameras are
jointly aligned to the reference terrain, and then one continues as done above, but this time one need not
have dealt with individual stereo pairs.

The option --overlap-limit can be used to control which images should be tested for interest point
matches, and a good value for it is say 1 if one plans to use the interest points generated by stereo, though
a value of 2 may not hurt either. One may want to decrease --parameter-tolerance, for example, to
1e-12, and set a value for --max-disp-error, e.g, 50, to exclude unreasonable disparities (this last number
may be something one should experiment with, and the results can be somewhat sensitive to it). A larger
value of --reference-terrain-weight can improve the alignment of the cameras to the reference terrain.

Also note the earlier comment about sharing and �oating the intrinsics individually.

RPC lens distortion

If it is realized that the optimized intrinsics still do not make the ASP-generated DEMs agree very well
with the ground truth, and some residual and systematic error can be seen either by comparing these two
or in intersection error �les, it may be convenient to convert the current camera models to ones with the
distortion given by rational function coe�cients (RPC) of a desired degre (section D.1). An RPC model
can have a lot more coe�cients to optimize, hence a better �t can be found. However, it is suggested to
use low-degree polynomials as those are easy to �t, and go to higher degree only for re�nement if needed.

An example showing how to convert a camera model to RPC is given in section A.40.

Working with map-projected images

If stereo was done with map-projected images, one can still extract dense interest point matches and the
unaligned disparity from such a run, and these can be applied with the original unprojected images for the
purpose of bundle adjustment (after being renamed appropriately). This may be convenient since while
bundle adjustment must always happen with the original images, stereo could be faster and more accurate

67



Chapter 8

when images are map-projected. It is suggested that the unaligned disparity and interest points obtained
this way be examined carefully. Particularly the grid size used in mapprojection should be similar to the
ground sample distance for the raw images for best results.

8.3 Bundle adjustment using ISIS

In what follows we describe how to do bundle adjustment using ISIS's tool-chain. It also serves to describe
bundle adjustment in more detail, which is applicable to other bundle adjustment tools as well, including
Stereo Pipeline's own tool.

In bundle adjustment, the position and orientation of each camera station are determined jointly with the
3D position of a set of image tie-points points chosen in the overlapping regions between images. Tie points,
as suggested by the name, tie multiple camera images together. Their physical manifestation would be a
rock or small crater than can be observed across more than one image.

Tie-points are automatically extracted using ISIS's autoseed and pointreg (alternatively one could use a
number of outside methods such as the famous SURF[12]). Creating a collection of tie points, called a control
network, is a three step process. First, a general geographic layout of the points must be decided upon.
This is traditionally just a grid layout that has some spacing that allows for about 20-30 measurements
to be made per image. This shows up in slightly di�erent projected locations in each image due to their
slight misalignments. The second step is to have an automatic registration algorithm try to �nd the same
feature in all images using the prior grid as a starting location. The third step is to manually verify all
measurements visually, checking to insure that each measurement is looking at the same feature.

Bundle Adjustment in ISIS is performed with the jigsaw executable. It generally follows the method
described in [148] and determines the best camera parameters that minimize the projection error given by
ε =

∑
k

∑
j(Ik− I(Cj , Xk))2 where Ik are the tie points on the image plane, Cj are the camera parameters,

andXk are the 3D positions associated with features Ik. I(Cj , Xk) is an image formation model (i.e. forward
projection) for a given camera and 3D point. To recap, it projects the 3D point, Xk, into the camera with
parameters Cj . This produces a predicted image location for the 3D point that is compared against the
observed location, Ik. It then reduces this error with the Levenberg-Marquardt algorithm (LMA). Speed
is improved by using sparse methods as described in Hartley and Zisserman [54], Konolige [71], and Chen
et al. [23].

Even though the arithmetic for bundle adjustment sounds clever, there are faults with the base implemen-
tation. Imagine a case where all cameras and 3D points were collapsed into a single point. If you evaluate
the above cost function, you'll �nd that the error is indeed zero. This is not the correct solution if the
images were taken from orbit. Another example is if a translation was applied equally to all 3D points
and camera locations. This again would not a�ect the cost function. This fault comes from bundle adjust-
ment's inability to control the scale and translation of the solution. It will correct the geometric shape of
the problem, yet it cannot guarantee that the solution will have correct scale and translation.

ISIS attempts to �x this problem by adding two additional cost functions to bundle adjustment. First of
which is ε =

∑
j(C

initial
j − Cj)2. This constrains camera parameters to stay relatively close to their initial

values. Second, a small handful of 3D ground control points can be chosen by hand and added to the error
metric as ε =

∑
k(X

gcp
k − Xk)2 to constrain these points to known locations in the planetary coordinate

frame. A physical example of a ground control point could be the location of a lander that has a well known
location. GCPs could also be hand-picked points against a highly regarded and prior existing map such as
the THEMIS Global Mosaic or the LRO-WAC Global Mosaic.

Like other iterative optimization methods, there are several conditions that will cause bundle adjustment
to terminate. When updates to parameters become insigni�cantly small or when the error, ε, becomes
insigni�cantly small, then the algorithm has converged and the result is most likely as good as it will get.

68



Bundle Adjustment

However, the algorithm will also terminate when the number of iterations becomes too large in which case
bundle adjustment may or may not have �nished re�ning the parameters of the cameras.

8.3.1 Tutorial: Processing Mars Orbital Camera Imagery

This tutorial for ISIS's bundle adjustment tools is taken from [100] and [101]. These tools are not a product
of NASA nor the authors of Stereo Pipeline. They were created by USGS and their documentation is
available at [22].

What follows is an example of bundle adjustment using two MOC images of Hrad Vallis. We use images
E02/01461 and M01/00115, the same as used in Chapter 3. These images are available from NASA's PDS
(the ISIS mocproc program will operate on either the IMQ or IMG format �les, we use the .imq below in
the example). For reference, the following ISIS commands are how to convert the MOC images to ISIS
cubes.

ISIS 3> mocproc from=e0201461.imq to=e0201461.cub mapping=no

ISIS 3> mocproc from=m0100115.imq to=m0100115.cub mapping=no

Note that the resulting images are not map-projected. Bundle adjustment requires the ability to project
arbitrary 3D points into the camera frame. The process of map-projecting an image dissociates the camera
model from the image. Map-projecting can be perceived as the generation of a new in�nitely large camera
sensor that may be parallel to the surface, a conic shape, or something more complex. That makes it

jicfv∆
jicfu∆

Kc j

K f i

[u f ic j

v f
i
c

j
]

[ u f ic j

v f
i
c

j
]

World frame

Camera frame

Image plane

Figure 8.3: A feature observation in bundle adjustment, from Moore et al. [97]

69



Chapter 8

extremely hard to project a random point into the camera's original model. The math would follow the
transformation from projection into the camera frame, then projected back down to surface that ISIS uses,
then �nally up into the in�nitely large sensor. Jigsaw does not support this and thus does not operate on
map-projected imagery.

Before we can dive into creating our tie-point measurements we must �nish prepping these images. The
following commands will add a vector layer to the cube �le that describes its outline on the globe. It will
also create a data �le that describes the overlapping sections between �les.

ISIS 3> footprintinit from=e0201461.cub

ISIS 3> footprintinit from=m0100115.cub

ISIS 3> echo *cub | xargs -n1 echo > cube.lis

ISIS 3> findimageoverlaps from=cube.lis overlaplist=overlap.lis

At this point, we are ready to start generating our measurements. This is a three step process that requires
de�ning a geographic pattern for the layout of the points on the groups, an automatic registration pass, and
�nally a manual clean up of all measurements. Creating the ground pattern of measurements is performed
with autoseed. It requires a settings �le that de�nes the spacing in meters between measurements. For
this example, write the following text into a autoseed.def �le.

Group = PolygonSeederAlgorithm

Name = Grid

MinimumThickness = 0.01

MinimumArea = 1

XSpacing = 1000

YSpacing = 2000

End_Group

The minimum thickness de�nes the minimum ratio between the sides of the region that can have points
applied to it. A choice of 1 would de�ne a square and anything less de�nes thinner and thinner rectangles.
The minimum area argument de�nes the minimum square meters that must be in an overlap region. The
last two are the spacing in meters between control points. Those values were speci�cally chosen for this
pair so that about 30 measurements would be produced from autoseed. Having more control points just
makes for more work later on in this process. Run autoseed with the following instruction.

ISIS 3> autoseed fromlist=cube.lis overlaplist=overlap.lis \

onet=control.net deffile=autoseed.def networkid=moc \

pointid=???? description=hrad_vallis

The next step is to perform auto registration of these features between the two images using pointreg.
This program also requires a settings �le that describes how to do the automatic search. Copy the text box
below into a autoRegTemplate.def �le.

Object = AutoRegistration

Group = Algorithm

Name = MaximumCorrelation

Tolerance = 0.7

EndGroup

70



Bundle Adjustment

Figure 8.4: A visualization of the features laid out by autoseed in qnet. Note that the marks do not cover
the same features between images. This is due to the poor initial spice data for MOC imagery.

Group = PatternChip

Samples = 21

Lines = 21

MinimumZScore = 1.5

ValidPercent = 80

EndGroup

Group = SearchChip

Samples = 75

Lines = 1000

EndGroup

EndObject

The search chip de�nes the search range for which pointreg will look for matching imagery. The pattern
chip is simply the kernel size of the matching template. The search range is speci�c for this image pair.
The control network result after autoseed had a large vertical o�set in the ball park of 500 px. The large
misalignment dictated the need for the large search in the lines direction. Use qnet to get an idea for what
the pixel shifts look like in your stereo pair to help you decide on a search range. In this example, only one
measurement failed to match automatically. Here are the arguments to use in this example of pointreg.

71



Chapter 8

ISIS 3> pointreg fromlist=cube.lis cnet=control.net \

onet=control_pointreg.net deffile=autoRegTemplate.def

The third step is to manually edit the control and verify the measurements in qnet. Type qnet in the
terminal and then open cube.lis and lastly control_pointreg.net. From the Control Network Navigator
window, click on the �rst point listed as 0001. That opens a third window called the Qnet Tool. That
window will allow you to play a �ip animation that shows alignment of the feature between the two images.
Correcting a measurement is performed by left clicking in the right image, then clicking Save Measure, and
�nally �nishing by clicking Save Point.

In this tutorial, measurement 0025 ended up being incorrect. Your number may vary if you used di�erent
settings than the above or if MOC spice data has improved since this writing. When �nished, go back to
the main Qnet window. Save the �nal control network as control_qnet.net by clicking on File, and then
Save As.

Figure 8.5: A visualization of the features after manual editing in qnet. Note that the marks now appear
in the same location between images.

Once the control network is �nished, it is �nally time to start bundle adjustment. Here's what the call to
jigsaw looks like:

ISIS 3> jigsaw fromlist=cube.lis update=yes twist=no radius=yes \

cnet=control_qnet.net onet=control_ba.net

The update option de�nes that we would like to update the camera pointing, if our bundle adjustment
converges. The twist=no says to not solve for the camera rotation about the camera bore. That property

72



Bundle Adjustment

is usually very well known as it is critical for integrating an image with a line-scan camera. The radius=yes
means that the radius of the 3D features can be solved for. Using no will force the points to use height
values from another source, usually LOLA or MOLA.

The above command will spew out a bunch of diagnostic information from every iteration of the optimization
algorithm. The most important feature to look at is the sigma0 value. It represents the mean of pixel
errors in the control network. In our run, the initial error was 1065 px and the �nal solution had an error
of 1.1 px.

Producing a DEM using the newly created camera corrections is the same as covered in the Tutorial on
page 15. When using jigsaw, it modi�es a copy of the spice data that is stored internally to the cube �le.
Thus when we want to create a DEM using the correct camera geometry, no extra information needs to be
given to stereo since it is already contained in the �le. In the event a mistake has been made, spiceinit
will overwrite the spice data inside a cube �le and provide the original uncorrected camera pointing.

ISIS 3> stereo E0201461.cub M0100115.cub bundled/bundled

73



74



Chapter 9

Solving for Camera Poses Based on Images

The ASP tool camera_solve o�ers several ways to �nd the true position of frame camera images that
do not come with any attached pose metadata. This can be useful with aerial, hand-held, and historical
imagery for which such information may be incomplete or inaccurate.

An overview of the tool and examples are provided in this chapter. Reference information for this tool can
be found in Appendix A.39.

This tool can be optionally bypassed if, for example, the longitude and latitude of the corners of all images
are known (section 9.4).

9.1 Camera Solve Overview

The camera_solve tool is implemented as a Python wrapper around two other tools. The �rst of these
is the the THEIA software library, which is used to generate initial camera position estimates in a local
coordinate space. You can learn more about THEIA at http://www.theia-sfm.org/index.html. The
second tool is ASP's own bundle_adjust tool. The second step improves the solution to account for lens
distortion and transforms the solution from local to global coordinates by making use of additional input
data.

The tool only solves for the extrinsic camera parameters and the user must provide intrinsic camera infor-
mation. You can use the camera_calibrate tool (see Appendix A.38) or other camera calibration software
to solve for intrinsic parameters if you have access to the camera in question. The camera calibration infor-
mation must be contained in a .tsai pinhole camera model �le and must passed in using the --calib-file
option. You can �nd descriptions of our supported pinhole camera models in section D.1.

If no intrinsic camera information is known, it can be guessed by doing some experimentation. This is
discussed in section 9.5.

In order to transform the camera models from local to world coordinates, one of three pieces of information
may be used. These sources are listed below and described in more detail in the examples that follow:

• A set of ground control points of the same type used by pc_align. The easiest way to generate these
points is to use the ground control point writer tool available in the stereo-gui tool.

• A set of estimated camera positions (perhaps from a GPS unit) stored in a csv �le.

• A DEM which a local point cloud can be registered to using pc_align. This method can be more
accurate if estimated camera positions are also used. The user must perform alignment to a DEM,
that step is not handled by camera_solve.

75

http://www.theia-sfm.org/index.html


Chapter 9

Power users can tweak the individual steps that camera_solve goes through to optimize their results. This
primarily involves setting up a custom �ag �le for THEIA and/or passing in settings to bundle_adjust.

9.2 Example: Apollo 15 Metric Camera

To demonstrate the ability of the Ames Stereo Pipeline to process a generic frame camera we use images
from the Apollo 15 Metric camera. The calibration information for this camera is available online and we
have accurate digital terrain models we can use to verify our results.

First download a pair of images:

> wget http://apollo.sese.asu.edu/data/metric/AS15/png/AS15-M-0414_MED.png

> wget http://apollo.sese.asu.edu/data/metric/AS15/png/AS15-M-1134_MED.png

Figure 9.1: The two Apollo 15 images.

In order to make the example run faster we use downsampled versions of the original images. The images
at those links have already been downsampled by a factor of 4

√
2 from the original images. This means

that the e�ective pixel size has increased from �ve microns (0.005 millimeters) to 0.028284 millimeters.

The next step is to �ll out the rest of the pinhole camera model information we need. Using the data
sheets available at http://apollo.sese.asu.edu/SUPPORT_DATA/AS15_SIMBAY_SUMMARY.pdf we can �nd
the lens distortion parameters for metric camera. Looking at the ASP lens distortion models in section D.1,
we see that the description matches ASP's Brown-Conrady model. Using the example in the appendix we
can �ll out the rest of the sensor model �le (metric_model.tsai) so it looks as follows:

VERSION_3

fu = 76.080

fv = 76.080

cu = 57.246816

cv = 57.246816

u_direction = 1 0 0

76

http://apollo.sese.asu.edu/SUPPORT_DATA/AS15_SIMBAY_SUMMARY.pdf


Solving for Camera Poses Based on Images

v_direction = 0 1 0

w_direction = 0 0 1

C = 0 0 0

R = 1 0 0 0 1 0 0 0 1

pitch = 0.028284

BrownConrady

xp = -0.006

yp = -0.002

k1 = -0.13361854e-5

k2 = 0.52261757e-09

k3 = -0.50728336e-13

p1 = -0.54958195e-06

p2 = -0.46089420e-10

phi = 2.9659070

These parameters use units of millimeters so we have to convert the nominal center point of the images
from 2024 pixels to units of millimeters. Note that for some older images like these the nominal image
center can be checked by looking for some sort of marking around the image borders that indicates where
the center should lie. For these pictures there are black triangles at the center positions and they line up
nicely with the center of the image. Before we try to solve for the camera positions we can run a simple
tool to check the quality of our camera model �le:

> undistort_image AS15-M-0414_MED.png metric_model.tsai -o corrected_414.tif

It is di�cult to tell if the distortion model is correct by using this tool but it should be obvious if there
are any gross errors in your camera model �le such as incorrect units or missing parameters. In this case
the tool will fail to run or will produce a signi�cantly distorted image. For certain distortion models the
undistort_image tool may take a long time to run.

If your input images are not all from the same camera or were scanned such that the center point is not
at the same pixel, you can run camera_solve with one camera model �le per input image. To do so
pass a space-separated list of �les surrounded by quotes to the �calib-file option such as �calib-file
"c1.tsai c2.tsai c3.tsai".

If we do not see any obvious problems we can go ahead and run the camera_solve tool:

> camera_solve out/ AS15-M-0414_MED.png AS15-M-1134_MED.png --datum D_MOON \

--calib-file metric_model.tsai

We should get some camera models in the output folder and see a printout of the �nal bundle adjustment
error among the program output information:

Cost:

Initial 1.450385e+01

Final 7.461198e+00

Change 7.042649e+00

We can't generate a DEM with these local camera models but we can run stereo anyways and look at the
intersection error in the fourth band of the PC.tif �le. While there are many speckles in this example
where stereo correlation failed the mean intersection error is low and we don't see any evidence of lens
distortion error.

77



Chapter 9

> stereo AS15-M-0414_MED.png AS15-M-1134_MED.png out/AS15-M-0414_MED.png.final.tsai \

out/AS15-M-1134_MED.png.final.tsai -t pinhole s_local/out --corr-timeout 300 \

--erode-max-size 100

> gdalinfo -stats s_local/out-PC.tif

...

Band 4 Block=256x256 Type=Float32, ColorInterp=Undefined

Minimum=0.000, Maximum=56.845, Mean=0.340, StdDev=3.512

Metadata:

STATISTICS_MAXIMUM=56.844654083252

STATISTICS_MEAN=0.33962282293374

STATISTICS_MINIMUM=0

STATISTICS_STDDEV=3.5124044818554

The tool point2mesh (section A.7) can be used to obtain a visualizable mesh from the point cloud.

In order to generate a useful DEM, we need to move our cameras from local coordinates to global coordinates.
The easiest way to do this is to obtain known ground control points (GCPs) which can be identi�ed in
the frame images. This will allow an accurate positioning of the cameras provided that the GCPs and the
camera model parameters are accurate. To create GCPs see the instructions for the stereo_gui tool in
appendix A.4.1. For the Moon there are several ways to get DEMs and in this case we generated GCPs
using stereo_gui and a DEM generated from LRONAC images.

After running this command:

> camera_solve out_gcp/ AS15-M-0414_MED.png AS15-M-1134_MED.png --datum D_MOON \

--calib-file metric_model.tsai --gcp-file ground_control_points.gcp

we end up with results that can be compared with the a DEM created from LRONAC images. The stereo
results on the Apollo 15 images leave something to be desired but the DEM they produced has been moved
to the correct location. You can easily visualize the output camera positions using the orbitviz tool
with the �load-camera-solve option as shown below. Green lines between camera positions mean that a
su�cient number of matching interest points were found between those two images.

For GCP to be usable, they can be one of two kinds. The preferred option is for each of at least three
GCP to show up in more than one image. Then their triangulated positions can be determined in local
coordinates and in global (world) coordinates, and bundle_adjust will be able to compute the transform
between these coordinate systems, and convert the cameras to world coordinates.

If this is not possible, then at least two of the images should have at least three GCP each, and they need
not be shared among the images. For example, for each image the longitude, latitude, and height of each
of its four corners can be known. Then, one can pass such a GCP �le to camera_solve and also with the
�ag:

--bundle-adjust-params "--transform-cameras-using-gcp"

and it will attempt to transform the cameras to world coordinates.

Next, one can run stereo.

> stereo AS15-M-0414_MED.png AS15-M-1134_MED.png out_gcp/AS15-M-0414_MED.png.final.tsai \

out_gcp/AS15-M-1134_MED.png.final.tsai -t nadirpinhole s_global/out --corr-timeout 300 \

--erode-max-size 100

> orbitviz -t nadirpinhole -r moon out_gcp --load-camera-solve

78



Solving for Camera Poses Based on Images

(a) orbitviz display (b) KML Screenshot

Figure 9.2: (a) Solved for camera positions plotted using orbitviz. (b) A narrow LRONAC DEM overlaid
on the resulting DEM, both colormapped to the same elevation range.

ASP also supports the method of initializing the camera_solve tool with estimated camera positions. This
method will not move the cameras to exactly the right location but it should get them fairly close and at
the correct scale, hopefully close enough to be used as-is or to be re�ned using pc_align or some other
method. To use this method, pass additional bundle adjust parameters to camera_solve similar to the
following line:

--bundle-adjust-params '--camera-positions nav.csv \

--csv-format "1:file 12:lat 13:lon 14:height_above_datum" --camera-weight 0.2'

The nav data �le you use must have a column (the "�le" column) containing a string that can be matched
to the input image �les passed to camera_solve. The tool looks for strings that are fully contained inside
one of the image �le names, so for example the �eld value 2009_10_20_0778 would be matched with the
input �le 2009_10_20_0778.JPG.

Chapter 5 will discuss the stereo program in more detail and the other tools in ASP.

9.3 Example: IceBridge DMS Camera

The DMS (Digital Mapping System) Camera is a frame camera �own on as part of the NASA IceBridge
program to collect digital terrain imagery of polar and Antarctic terrain (http://nsidc.org/icebridge/
portal/).

79

http://nsidc.org/icebridge/portal/
http://nsidc.org/icebridge/portal/


Chapter 9

To process this data the steps are very similar to the steps described above for the Apollo Metric camera
but there are some aspects which are particular to IceBridge. You can download DMS images from ftp://

n5eil01u.ecs.nsidc.org/SAN2/ICEBRIDGE_FTP/IODMS0_DMSraw_v01/. A list of the available data types
can be found at https://nsidc.org/data/icebridge/instr_data_summary.html. This example uses
data from the November 5, 2009 �ight over Antarctica. The following camera model (icebridge_model.tsai)
was used (see section D.1 on Pinhole camera models):

VERSION_3

fu = 28.429

fv = 28.429

cu = 17.9712

cv = 11.9808

u_direction = 1 0 0

v_direction = 0 1 0

w_direction = 0 0 1

C = 0 0 0

R = 1 0 0 0 1 0 0 0 1

pitch = 0.0064

Photometrix

xp = 0.004

yp = -0.191

k1 = 1.31024e-04

k2 = -2.05354e-07

k3 = -5.28558e-011

p1 = 7.2359e-006

p2 = 2.2656e-006

b1 = 0.0

b2 = 0.0

Note that these images are RGB format which is not supported by all ASP tools. To use the �les with ASP,
�rst convert them to single channel images using a tool such as ImageMagick's convert, gdal_translate,
or gdal_edit.py. Di�erent conversion methods may produce slightly di�erent results depending on the
contents of your input images. Some conversion command examples are shown below:

convert rgb.jpg -colorspace Gray gray.jpg

gdal_calc.py --overwrite --type=Float32 --NoDataValue=-32768 \

-A rgb.tif --A_band=1 -B rgb.tif --B_band=2 -C rgb.tif \

--C_band=3 --outfile=gray.tif --calc="A*0.2989+B*0.5870+C*0.1140"

gdal_translate -b 1 rgb.jpg gray.jpg

In the third command we used gdal_translate to pick a single band rather than combining the three.

Obtaining ground control points for icy locations on Earth can be particularly di�cult because they are
not well surveyed or because the terrain shifts over time. This may force you to use estimated camera
positions to convert the local camera models into global coordinates. To make this easier for IceBridge data
sets, ASP provides the icebridge_kmz_to_csv tool (see appendix A.44) which extracts a list of estimated
camera positions from the kmz �les available for each IceBridge �ight at http://asapdata.arc.nasa.gov/
dms/missions.html.

Another option which is useful when processing IceBridge data is the --position-filter-dist option for
bundle_adjust. IceBridge data sets contain a large number of images and when processing many at once

80

ftp://n5eil01u.ecs.nsidc.org/SAN2/ICEBRIDGE_FTP/IODMS0_DMSraw_v01/
ftp://n5eil01u.ecs.nsidc.org/SAN2/ICEBRIDGE_FTP/IODMS0_DMSraw_v01/
https://nsidc.org/data/icebridge/instr_data_summary.html
http://asapdata.arc.nasa.gov/dms/missions.html
http://asapdata.arc.nasa.gov/dms/missions.html


Solving for Camera Poses Based on Images

you can signi�cantly decrease your processing time by using this option to limit interest-point matching to
image pairs which are actually close enough to overlap. A good way to determine what distance to use is
to load the camera position kmz �le from their website into Google Earth and use the ruler tool to measure
the distance between a pair of frames that are as far apart as you want to match. Commands using these
options may look like this:

icebridge_kmz_to_csv 1000123_DMS_Frame_Events.kmz camera_positions.csv

camera_solve out 2009_11_05_00667.JPG 2009_11_05_00668.JPG \

2009_11_05_00669.JPG 2009_11_05_00670.JPG 2009_11_05_02947.JPG 2009_11_05_02948.JPG \

2009_11_05_02949.JPG 2009_11_05_02950.JPG 2009_11_05_01381.JPG 2009_11_05_01382.JPG \

--datum WGS84 --calib-file icebridge_model.tsai \

--bundle-adjust-params '--camera-positions camera_positions.csv \

--csv-format "1:file 2:lon 3:lat 4:height_above_datum" --position-filter-dist 2000'

orbitviz out --load-camera-solve --hide-labels -r wgs84 -t nadirpinhole

Alternatively, the camera_solve executable can be bypassed altogether. If a given image has already an
orthoimage associated with it (check the IceBridge portal page), that provides enough information to guess
an initial position of the camera, using the ortho2pinhole tool. Later, the obtained cameras can be
bundle-adjusted. Here is how this tool can be used, on grayscale images:

ortho2pinhole raw_image.tif ortho_image.tif icebridge_model.tsai output_pinhole.tsai

(a) (b)

Figure 9.3: (a) Measuring the distance between estimated frame locations using Google Earth and an
IceBridge kmz �le. The kmz �le is from the IceBridge website with no modi�cations. Using a position
�lter distance of 2000 meters will mostly limit image IP matching in this case to each image's immediate
"neighbors". (b) Display of camera_solve results for ten IceBridge images using orbitviz.

Some IceBridge �ights contain data from the Land, Vegetation, and Ice Sensor (LVIS) lidar which can be
used to register DEMs created using DMS imagery. LVIS data can be downloaded at ftp://n5eil01u.
ecs.nsidc.org/SAN2/ICEBRIDGE/ILVIS2.001/. The lidar data comes in plain text �les that pc_align and
point2dem can parse using the following option:

81

ftp://n5eil01u.ecs.nsidc.org/SAN2/ICEBRIDGE/ILVIS2.001/
ftp://n5eil01u.ecs.nsidc.org/SAN2/ICEBRIDGE/ILVIS2.001/


Chapter 9

--csv-format "5:lat 4:lon 6:height_above_datum"

ASP provides the lvis2kml tool to help visualize the coverage and terrain contained in LVIS �les, see
Appendix A.45 for details. The LVIS lidar coverage is sparse compared to the image coverage and you
will have di�culty getting a good registration unless the region has terrain features such as hills or you
are registering very large point clouds that overlap with the lidar coverage across a wide area. Otherwise
pc_align will simply slide the �at terrain to an incorrect location to produce a low-error �t with the narrow
lidar tracks. This test case was speci�cally chosen to provide strong terrain features to make alignment
more accurate but pc_align still failed to produce a good �t until the lidar point cloud was converted into
a smoothed DEM.

stereo 2009_11_05_02948.JPG 2009_11_05_02949.JPG out/2009_11_05_02948.JPG.final.tsai \

out/2009_11_05_02949.JPG.final.tsai st_run/out -t nadirpinhole

point2dem ILVIS2_AQ2009_1105_R1408_055812.TXT --datum WGS_1984 \

--t_srs "+proj=stere +lat_0=-90 +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs" \

--csv-format "5:lat 4:lon 6:height_above_datum" --tr 30 \

--search-radius-factor 2.0 -o lvis

pc_align --max-displacement 1000 lvis-DEM.tif st_run/out-PC.tif -o align_run/out \

--save-transformed-source-points --datum wgs84 --outlier-ratio 0.55

point2dem align_run/out-trans_source.tif --datum WGS_1984 \

--t_srs "+proj=stere +lat_0=-90 +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs"

colormap align_run_big/out-trans_source-DEM.tif --min 200 --max 1500

colormap lvis-DEM.tif --min 200 --max 1500

image2qtree lvis-DEM_CMAP.tif

image2qtree align_run_big/out-trans_source-DEM_CMAP.tif

Other IceBridge �ights contain data from the Airborne Topographic Mapper (ATM) lidar sensor. Data
from this sensor comes packed in one of several formats (variants of .qi or .h5) so ASP provides the
extract_icebridge_ATM_points tool to convert them into plain text �les, which later can be read into
other ASP tools using the formatting:

--csv-format "1:lat 2:lon 3:height_above_datum"

To run the tool, just pass in the name of the input �le as an argument and a new �le with a csv extension
will be created in the same directory. Using the ATM sensor data is similar to using the LVIS sensor data.

For some IceBridge �ights, lidar-aligned DEM �les generated from the DMS image �les are available, see
the web page here: http://nsidc.org/data/iodms3 These �les are improperly formatted and cannot be
used by ASP as is. To correct them, run the correct_icebridge_l3_dem tool as follows:

correct_icebridge_l3_dem IODMS3_20120315_21152106_07371_DEM.tif fixed_dem.tif 1

The third argument should be 1 if the DEM is in the northern hemisphere and 0 otherwise. The corrected
DEM �les can be used with ASP like any other DEM �le.

Chapter 5 will discuss the stereo program in more detail and the other tools in ASP.

9.4 Solving for Pinhole cameras using GCP

If for a given image the intrinsics of the camera are known, and also the longitude and latitude (and
optionally the heights above the datum) of its corners (or of some other pixels in the image), one can bypass

82

http://nsidc.org/data/iodms3


Solving for Camera Poses Based on Images

Figure 9.4: LVIS lidar DEM overlaid on the ASP created DEM, both colormapped to the same elevation
range. The ASP DEM could be improved but the registration is accurate. Notice how narrow the LVIS
lidar coverage is compared to the �eld of view of the camera. You may want to experiment using the SGM
algorithm to improve the coverage.

the camera_solve tool and use bundle_adjust to get a rough initial camera position and orientation. This
simple approach is often bene�cial when, for example, one has historical images with rough geo-location
information. Once a rough camera is created for each image, the cameras can then be bundle-adjusted
jointly to re�ne them.

To achieve this, one creates a camera �le, say called init.tsai, with only the intrinsics, and using trivial
values for the camera center and rotation matrix:

VERSION_3

fu = 28.429

fv = 28.429

cu = 17.9712

cv = 11.9808

u_direction = 1 0 0

v_direction = 0 1 0

w_direction = 0 0 1

C = 0 0 0

R = 1 0 0 0 1 0 0 0 1

pitch = 0.0064

Photometrix

83



Chapter 9

xp = 0.004

yp = -0.191

k1 = 1.31024e-04

k2 = -2.05354e-07

k3 = -5.28558e-011

p1 = 7.2359e-006

p2 = 2.2656e-006

b1 = 0.0

b2 = 0.0

Next, one creates a ground control points (GCP) �le (section A.4.1), named, for example, gcp.gcp, con-
taining the pixel positions and longitude and latitude of the corners or other known pixels (the heights
above datum can be set to zero if not known). Here is a sample �le, where the image is named img.tif

(below the latitude is written before the longitude).

# id lat lon height sigmas image corners sigmas

1 37.62 -122.38 0 1 1 1 img.tif 0 0 1 1

2 37.62 -122.35 0 1 1 1 img.tif 2560 0 1 1

3 37.61 -122.35 0 1 1 1 img.tif 2560 1080 1 1

4 37.61 -122.39 0 1 1 1 img.tif 0 1080 1 1

Such a �le can be created with stereo_gui (section A.2.2).

One runs bundle adjustment with this data:

bundle_adjust -t nadirpinhole img.tif init.tsai gcp.gcp -o ba/run \

--datum WGS84 --inline-adjustments --camera-weight 0 --max-iterations 0 \

--robust-threshold 10

which will write the desired correctly oriented camera �le. Using a positive number of iterations will re�ne
the camera.

It is important to look at the residual �le

run/run-final_residuals_no_loss_function_pointmap_point_log.csv

after this. The third column in this �le is the optimized heights above the datum, while the fourth column
has the reprojection errors from the corners on the ground into the camera.

If bundle adjustment is invoked with a positive number of iterations, and with a small value for the
robust threshold, it tends to optimize only some of the corners and ignore the others, resulting in a large
reprojection error, which is not desirable. If however, this threshold is too large, it may try to optimize the
camera too aggressively, resulting in a poorly placed camera.

Sometimes it works to just get a rough camera estimate from this tool for each image individually, using
zero iterations, as above, and then bundle adjust all images together with the obtained rough cameras and
possibly also using the GCP �les, this time with a positive number of iterations.

One can also use the bundle adjustment option --fix-gcp-xyz to not move the GCP during optimization,
hence forcing the cameras to move more to conform to them.

ASP provides a tool named cam_gen which can also create a pinhole camera as above, and, in addition, is
able to extract the heights of the corners from a DEM (section A.41).

84



Solving for Camera Poses Based on Images

9.5 Solving For Intrinsic Camera Parameters

If nothing is known about the intrinsic camera parameters, it may be possible to guess them with some
experimentation. One can assume that the distortion is non-existent, and that the optical center is at the
image center, which makes it possible to compute cu and cv. The pitch can be set to some small number,
say 10−3 or 10−4. The focal length can be initialized to equal cu or a multiple of it. Then camera_solve

can be invoked, followed by stereo, point2mesh, and point2dem --errorimage. If, at least towards the
center of the image, things are not exploding, we are on a good track.

Later, the camera parameters, especially the focal length, can be modi�ed manually, and instead of using
camera_solve again, just bundle_adjust can be called using the camera models found earlier, with the
options to �oat some of the intrinsics, that is using --solve-intrinsics and --intrinsics-to-float.

If the overall results look good, but the intersection error after invoking point2dem around the image corners
looks large, it is time to use some distortion model and �oat it, again using bundle_adjust. Sometimes if
invoking this tool over many iterations the optical center and focal length may drift, and hence it may be
helpful to have them �xed while solving for distortion.

If a pre-existing DEM is available, the tool geodiff can be used to compare it with what ASP is creating.

Such a pre-existing DEM can be used as a constraint when solving for intrinsics, as described in section
8.2.1.

85



86



Chapter 10

Shape-from-Shading

ASP provides a tool, named sfs, that can improve the level of detail of DEMs created by ASP or any
other source using shape-from-shading (SfS). The tool takes as input one or more camera images, a DEM
at roughly the same resolution as the images, and returns a re�ned DEM.

sfs works only with ISIS cub images. It has been tested thoroughly with Lunar LRO NAC datasets, and
some experiments were done with Mars HiRISE images and with pictures from Charon, Pluto's moon. As
seen later in the text, it returns reasonable results on the Moon as far as 85◦ South.

Currently, sfs is computationally expensive, and is practical only for DEMs whose width and height are
several thousand pixels. It can be sensitive to errors in the position and orientation of the cameras, the
accuracy of the initial DEM, and to the value of the two weights it uses. Yet, with some e�ort, it can work
quite well.

A tool named parallel_sfs is provided (section A.36) that parallelizes sfs using multiple processes (op-
tionally on multiple machines) by splitting the input DEM into tiles with padding, running sfs on each
tile, and then blending the results.

The sfs program can model position-dependent albedo, di�erent exposure values for each camera, shadows
in the input images, and regions in the DEM occluded from the Sun. It can re�ne the positions and
orientations of the cameras.

The tool works by minimizing the cost function

∫ ∫ ∑
k

[Ik(φ)(x, y)− TkA(x, y)Rk(φ)(x, y)]2 + µ
∥∥∇2φ(x, y)

∥∥2 + λ [φ(x, y)− φ0(x, y)]
2 dx dy. (10.1)

Here, Ik(φ)(x, y) is the k-th camera image interpolated at pixels obtained by projecting into the camera 3D
points from the terrain φ(x, y), Tk is the k-th image exposure, A(x, y) is the per-pixel albedo, Rk(φ)(x, y)
is the re�ectance computed from the terrain for k-th image,

∥∥∇2φ(x, y)
∥∥2

is the sum of squares of all
second-order partial derivatives of φ, µ > 0 is a smoothing term, and λ > 0 determines how close we should
stay to the input terrain φ0 (smaller µ will show more detail but may introduce some artifacts, and smaller
λ may allow for more �exibility in optimization but the terrain may move too far from the input).

We use either the regular Lambertian re�ectance model, or the Lunar-Lambertian model [90], more specif-
ically as given in [80] (equations (3) and (4)). Also supported is the Hapke model, [66], [37], [52], [53].
Custom values for the coe�cients of these models can be passed to the program.

87



Chapter 10

10.1 How to get good test imagery

We obtain the images from http://wms.lroc.asu.edu/lroc/search (we search for EDR images of type
NACL and NACR).

A faster (but not as complete) interface is provided by http://ode.rsl.wustl.edu/moon/indexproductsearch.
aspx. The related site http://ode.rsl.wustl.edu/moon/indextools.aspx?displaypage=lolardr can
provide LOLA datasets which can be used as (sparse) ground truth.

We advise the following strategy for picking images. First choose a small longitude-latitude window in
which to perform a search for imagery. Pick two images that are very close in time and with a big amount
of overlap (ideally they would have consecutive orbit numbers). Those can be passed to ASP's stereo tool
to create an initial DEM. Then, search for other images close to the center of the maximum overlap of the
�rst two images. Pick one or more of those, ideally with di�erent illumination conditions than the �rst two.
Those (together with one of the �rst two images) can be used for SfS.

To locate the area of spatial overlap, the images can be map-projected (either with cam2map with a coarse
resolution) or with mapproject, using for example the LOLA DEM as the terrain to project onto, or the
DEM obtained from running stereo on those images. Then the images can be overlayed in stereo_gui.
A good sanity check is to examine the shadows in various images. If they point in di�erent directions in
the images and perhaps also have di�erent lengths, that means that illumination conditions are di�erent
enough, which will help constrain the sfs problem better.

10.2 Running sfs at 1 meter/pixel using a single image

In both this and the next sections we will work with LRO NAC images taken close to the Lunar South
Pole, at a latitude of 85◦ South (the tool was tested on equatorial regions as well). We will use four images,
M139939938LE, M139946735RE, M173004270LE, and M122270273LE.

We �rst retrieve the data sets.

wget http://lroc.sese.asu.edu/data/LRO-L-LROC-2-EDR-V1.0/\

LROLRC_0005/DATA/SCI/2010267/NAC/M139939938LE.IMG

wget http://lroc.sese.asu.edu/data/LRO-L-LROC-2-EDR-V1.0/\

LROLRC_0005/DATA/SCI/2010267/NAC/M139946735RE.IMG

wget http://lroc.sese.asu.edu/data/LRO-L-LROC-2-EDR-V1.0/\

LROLRC_0009/DATA/SCI/2011284/NAC/M173004270LE.IMG

wget http://lroc.sese.asu.edu/data/LRO-L-LROC-2-EDR-V1.0/\

LROLRC_0002/DATA/MAP/2010062/NAC/M122270273LE.IMG

Then we convert them to ISIS cubes, initialize the SPICE kernels, and perform radiometric calibration and
echo correction. Here are the steps, illustrated on the �rst image:

lronac2isis from = M139939938LE.IMG to = M139939938LE.cub

spiceinit from = M139939938LE.cub

lronaccal from = M139939938LE.cub to = M139939938LE.cal.cub

lronacecho from = M139939938LE.cal.cub to = M139939938LE.cal.echo.cub

We rename, for simplicity, the obtained four processed datasets to A.cub, B.cub, C.cub, and D.cub.

The �rst step is to run stereo to create an initial guess DEM. We picked for this the �rst two of these images.
These form a stereo pair, that is, they have a reasonable baseline and su�ciently close times of acquisition
(hence very similar illuminations). These conditions are necessary to obtain a good stereo result.

88

http://wms.lroc.asu.edu/lroc/search
http://ode.rsl.wustl.edu/moon/indexproductsearch.aspx
http://ode.rsl.wustl.edu/moon/indexproductsearch.aspx
http://ode.rsl.wustl.edu/moon/indextools.aspx?displaypage=lolardr


Shape-from-Shading

parallel_stereo --job-size-w 1024 --job-size-h 1024 A.cub B.cub \

--left-image-crop-win 0 7998 2728 2696 \

--right-image-crop-win 0 9377 2733 2505 \

--threads 16 --corr-seed-mode 1 --subpixel-mode 3 \

run_full1/run

Next we create a DEM at 1 meter/pixel, which is about the resolution of the input images. We use the
stereographic projection since this dataset is very close to the South Pole. Then we crop it to the region
we'd like to do SfS on.

point2dem -r moon --stereographic --proj-lon 0 \

--proj-lat -90 run_full1/run-PC.tif

gdal_translate -projwin -15471.9 150986 -14986.7 150549 \

run_full1/run-DEM.tif run_full1/run-crop-DEM.tif

This creates a DEM of size 456× 410 pixels.

Then we run sfs:

sfs -i run_full1/run-crop-DEM.tif A.cub -o sfs_ref1/run \

--reflectance-type 1 \

--smoothness-weight 0.08 --initial-dem-constraint-weight 0.0001 \

--max-iterations 10 --use-approx-camera-models \

--use-rpc-approximation --crop-input-images

The smoothness weight is a parameter that needs tuning. If it is too small, SfS will return noisy results, if
it is too large, too much detail will be blurred. Here we used the Lunar Lambertian model. The meaning
of the other sfs options can be looked up in section A.35.

We show the results of running this program in �gure 10.1. The left-most �gure is the hill-shaded original
DEM, which was obtained by running:

hillshade --azimuth 300 --elevation 20 run_full1/run-crop-DEM.tif \

-o run_full1/run-crop-hill.tif

The second image is the hill-shaded DEM obtained after running sfs for 10 iterations.

The third image is, for comparison, the map-projection of A.cub onto the original DEM, obtained via the
command:

mapproject --tr 1 run_full1/run-crop-DEM.tif A.cub A_map.tif --tile-size 128

The forth image is the colored absolute di�erence between the original DEM and the SfS output, obtained
by running:

geodiff --absolute sfs_ref1/run-DEM-final.tif run_full1/run-crop-DEM.tif

colormap --min 0 --max 2 --colormap-style binary-red-blue \

run-DEM-final__run-crop-DEM-diff.tif

It can be seen that the optimized DEM provides a wealth of detail and looks quite similar to the input
image. It also did not diverge signi�cantly from the input DEM. We will see in the next section that SfS
is in fact able to make the re�ned DEM more accurate than the initial guess (as compared to some known
ground truth), though that is not guaranteed, and most likely did not happen here where just one image
was used.

89



Chapter 10

Figure 10.1: An illustration of sfs. The images are, from left to right, the original hill-shaded DEM,
the hill-shaded DEM obtained from sfs, the image A.cub map-projected onto the original DEM, and the
absolute di�erence of the original and �nal DEM, where the brightest shade of red corresponds to a 2 meter
height di�erence.

10.3 SfS with multiple images in the presence of shadows

In this section we will run sfs with multiple images. We would like to be able to see if SfS improves the
accuracy of the DEM rather than just adding detail to it. We evaluate this using the following (admittedly
imperfect) approach. We resample the original images by a factor of 10, run stereo with them, followed by
SfS using the stereo result as an initial guess and with the resampled images. As ground truth, we create
a DEM from the original images at 1 meter/pixel, which we bring closer to the initial guess for SfS using
pc_align. We would like to know if running SfS brings us even closer to this �ground truth� DEM.

The most signi�cant challenge in running SfS with multiple images is that shape-from-shading is highly
sensitive to errors in camera position and orientation. The sfs tool can improve these by �oating them
during optimization and by using a coarse-to-�ne scheme, where the problem is �rst solved using subsampled
images and terrain then it is successively re�ned.

If possible, it may still be desirable to bundle-adjust the cameras �rst (section A.4). It is important to note
that bundle adjustment may fail if the images have su�ciently di�erent illumination, as it will not be able
to �nd matches among images. A solution to this is discussed in section 10.4.

To make bundle adjustment and stereo faster, we �rst crop the images, such as shown below (the crop
parameters can be determined via stereo_gui).

crop from = A.cub to = A_crop.cub sample = 1 line = 6644 nsamples = 2192 nlines = 4982

crop from = B.cub to = B_crop.cub sample = 1 line = 7013 nsamples = 2531 nlines = 7337

crop from = C.cub to = C_crop.cub sample = 1 line = 1 nsamples = 2531 nlines = 8305

crop from = D.cub to = D_crop.cub sample = 1 line = 1 nsamples = 2531 nlines = 2740

Then we bundle-adjust and run stereo

bundle_adjust A_crop.cub B_crop.cub C_crop.cub D_crop.cub \

--min-matches 1 -o run_ba/run

stereo A_crop.cub B_crop.cub run_full2/run --subpixel-mode 3 \

--bundle-adjust-prefix run_ba/run

This will result in a point cloud, run_full2/run-PC.tif, which will lead us to the �ground truth� DEM.
As mentioned before, we'll in fact run SfS with images subsampled by a factor of 10. Subsampling is done
by running the ISIS reduce command

90



Shape-from-Shading

for f in A B C D; do

reduce from = ${f}_crop.cub to = ${f}_crop_sub10.cub sscale = 10 lscale = 10

done

We run bundle adjustment and stereo with the subsampled images using commands analogous to the above:

bundle_adjust A_crop_sub10.cub B_crop_sub10.cub C_crop_sub10.cub D_crop_sub10.cub \

--min-matches 1 -o run_ba_sub10/run --ip-per-tile 100000

stereo A_crop_sub10.cub B_crop_sub10.cub run_sub10/run --subpixel-mode 3 \

--bundle-adjust-prefix run_ba_sub10/run

We'll obtain a point cloud named run_sub10/run-PC.tif.

We'll bring the �ground truth� point cloud closer to the initial guess for SfS using pc_align:

pc_align --max-displacement 200 run_full2/run-PC.tif run_sub10/run-PC.tif \

-o run_full2/run --save-inv-transformed-reference-points

This step is extremely important. Since we ran two bundle adjustment steps, and both were without ground
control points, the resulting clouds may di�er by a large translation, which we correct here. Hence we would
like to make the �ground truth� terrain aligned with the datasets on which we will perform SfS.

Next we create the �ground truth� DEM from the aligned high-resolution point cloud, and crop it to a
desired region:

point2dem -r moon --tr 10 --stereographic --proj-lon 0 --proj-lat -90 \

run_full2/run-trans_reference.tif

gdal_translate -projwin -15540.7 151403 -14554.5 150473 \

run_full2/run-trans_reference-DEM.tif run_full2/run-crop-DEM.tif

We repeat the same steps for the initial guess for SfS:

point2dem -r moon --tr 10 --stereographic --proj-lon 0 --proj-lat -90 \

run_sub10/run-PC.tif

gdal_translate -projwin -15540.7 151403 -14554.5 150473 \

run_sub10/run-DEM.tif run_sub10/run-crop-DEM.tif

After this, we run sfs itself. Since our dataset has many shadows, we found that specifying the shadow
thresholds for the tool improves the results. The thresholds can be determined using stereo_gui. This
can be done by turning on shadow-threshold mode from the GUI menu, and then clicking on a few points
in the shadows. Then the thresholded images can be visualized/updated from the menu as well, and this
process can be iterated.

sfs -i run_sub10/run-crop-DEM.tif A_crop_sub10.cub C_crop_sub10.cub \

D_crop_sub10.cub -o sfs_sub10_ref1/run --threads 4 \

--smoothness-weight 0.12 --initial-dem-constraint-weight 0.0001 \

--reflectance-type 1 --float-exposure \

--float-cameras --use-approx-camera-models \

--max-iterations 10 --use-approx-camera-models \

--use-rpc-approximation --crop-input-images \

--bundle-adjust-prefix run_ba_sub10/run \

--shadow-thresholds "0.00162484 0.0012166 0.000781663"

91



Chapter 10

We compare the initial guess to sfs to the �ground truth� DEM obtained earlier and the same for the �nal
re�ned DEM using geodiff as in the previous section. Before SfS:

geodiff --absolute run_full2/run-crop-DEM.tif run_sub10/run-crop-DEM.tif

gdalinfo -stats run-crop-DEM__run-crop-DEM-diff.tif | grep Mean=

and after SfS:

geodiff --absolute run_full2/run-crop-DEM.tif sfs_sub10_ref1/run-DEM-final.tif

gdalinfo -stats run-crop-DEM__run-DEM-final-diff.tif | grep Mean=

The mean error goes from 2.64 m to 1.29 m, while the standard deviation decreases from 2.50 m to 1.29 m.
Visually the re�ned DEM looks more detailed as well as seen in �gure 10.2. The same experiment can be
repeated with the Lambertian re�ectance model (re�ectance-type 0), and then it is seen that it performs a
little worse.

We also show in this �gure the �rst of the images used for SfS, A_crop_sub10.cub, map-projected upon the
optimized DEM. Note that we use the previously computed bundle-adjusted cameras when map-projecting,
otherwise the image will show as shifted from its true location:

mapproject sfs_sub10_ref1/run-DEM-final.tif A_crop_sub10.cub A_crop_sub10_map.tif \

--bundle-adjust-prefix run_ba_sub10/run

Figure 10.2: An illustration of sfs. The images are, from left to right, the hill-shaded initial guess DEM
for SfS, the hill-shaded DEM obtained from sfs, the �ground truth� DEM, and the �rst of the images used
in SfS map-projected onto the optimized DEM.

10.4 Dealing with large camera errors and LOLA comparison

SfS is very sensitive to errors in camera positions and orientations. These can be optimized as part of
the problem, but if they are too far o�, the solution will not be correct. In the previous section we used
bundle adjustment to correct these errors, and then we passed the adjusted cameras to sfs. However,
bundle adjustment may often fail, simply because the illumination conditions can be very di�erent among
the images, and interest point matching may not succeed.

The option -�coarse-levels int can be passed to sfs, to solve for the terrain using a multi-resolution
approach, �rst starting at a coarse level, where camera errors have less of an impact, and then jointly
optimizing the cameras and the terrain at ever increasing levels of resolution. Yet, this may still fail if the
terrain does not have large and pronounced features on the scale bigger than the errors in the cameras.

92



Shape-from-Shading

The approach that we found to work all the time is to manually select interest points in the images, as
the human eye is much more skilled at identifying a given landmark in multiple images, even when the
lightning changes drastically. Picking about 4 landmarks in each image is su�cient. Ideally they should be
positioned far from each other, to improve the accuracy.

Below is one example of how we manually select interest points, run SfS, and then how we compare to
LOLA, which is an independently acquired sparse dataset of 3D points on the Moon. According to [138],
the LOLA accuracy is on the order of 1 m. To ensure a meaningful comparison of stereo and SfS with
LOLA, we resample the LRO NAC images by a factor of 4, making them nominally 4 m/pixel. This is
not strictly necessary, the same exercise can be repeated with the original images, but it is easier to see
the improvement due to SfS when comparing to LOLA when the images are coarser than the LOLA error
itself.

We work with the same images as before. To resample them, we do:

for f in A B C D; do

reduce from = ${f}_crop.cub to = ${f}_crop_sub4.cub sscale=4 lscale=4

done

We run stereo and point2dem to get a �rst cut DEM. We don't do bundle adjustment at this stage yet.

stereo A_crop_sub4.cub B_crop_sub4.cub run_stereo_noba_sub4/run --subpixel-mode 3

point2dem --stereographic --proj-lon -5.7113451 --proj-lat -85.000351 \

run_stereo_noba_sub4/run-PC.tif --tr 4

We would like now to manually pick interest points for the purpose of doing bundle adjustment. We found
it it much easier to locate the landmarks if we �rst map-project the images, which brings them all into
the same perspective. We then pick interest points in stereo_gui, and then project them back into the
original cameras and do bundle adjustment. Here are the steps:

for f in A B C D; do

mapproject --tr 4 run_stereo_noba_sub4/run-DEM.tif ${f}_crop_sub4.cub \

${f}_crop_sub4_v1.tif --tile-size 128

done

stereo_gui A_crop_sub4_v1.tif B_crop_sub4_v1.tif C_crop_sub4_v1.tif \

D_crop_sub4_v1.tif run_ba_sub4/run

Interest points are selected by zooming and right-clicking with the mouse, one point at a time, from left to
right, and then saving them. An illustration is shown in Figure 10.3.

Then bundle adjustment happens:

P='A_crop_sub4_v1.tif B_crop_sub4_v1.tif' # to avoid long lines below

Q='C_crop_sub4_v1.tif D_crop_sub4_v1.tif run_stereo_noba_sub4/run-DEM.tif'

bundle_adjust A_crop_sub4.cub B_crop_sub4.cub C_crop_sub4.cub D_crop_sub4.cub \

-o run_ba_sub4/run --mapprojected-data "$P $Q" \

--min-matches 1

A good sanity check to ensure that at this stage cameras are aligned properly is to map-project using the
newly obtained camera adjustments and then overlay the obtained images in the GUI. The features in all
images should be perfectly on top of each other.

93



Chapter 10

Figure 10.3: An illustration of how interest points are picked manually for the purpose of bundle adjustment
and then SfS.

for f in A B C D; do

mapproject --tr 4 run_stereo_noba_sub4/run-DEM.tif ${f}_crop_sub4.cub \

${f}_crop_sub4_v2.tif --tile-size 128 --bundle-adjust-prefix run_ba_sub4/run

done

This will also show where the images overlap, and hence on what portion of the DEM we can run SfS.

Then we run stereo, followed by SfS.

stereo A_crop_sub4.cub B_crop_sub4.cub run_stereo_yesba_sub4/run \

--subpixel-mode 3 --bundle-adjust-prefix run_ba_sub4/run

point2dem --stereographic --proj-lon -5.7113451 --proj-lat -85.000351 \

run_stereo_yesba_sub4/run-PC.tif --tr 4

gdal_translate -srcwin 138 347 273 506 run_stereo_yesba_sub4/run-DEM.tif \

run_stereo_yesba_sub4/run-crop1-DEM.tif

sfs -i run_stereo_yesba_sub4/run-crop1-DEM.tif A_crop_sub4.cub \

C_crop_sub4.cub D_crop_sub4.cub -o sfs_sub4_ref1_th_reg0.12_wt0.001/run \

--shadow-thresholds '0.00149055 0.00138248 0.000747531' \

--threads 4 --smoothness-weight 0.12 --initial-dem-constraint-weight 0.001 \

--reflectance-type 1 --float-exposure --float-cameras --max-iterations 20 \

--use-approx-camera-models --use-rpc-approximation --crop-input-images \

--bundle-adjust-prefix run_ba_sub4/run

We fetch the portion of the LOLA dataset around the current DEM from the site described earlier, and
save it as RDR_354E355E_85p5S84SPointPerRow_csv_table.csv. It is necessary to align our stereo DEM
with this dataset to be able to compare them. We choose to bring the LOLA dataset into the coordinate
system of the DEM, using:

pc_align --max-displacement 280 run_stereo_yesba_sub4/run-DEM.tif \

94



Shape-from-Shading

RDR_354E355E_85p5S84SPointPerRow_csv_table.csv -o run_stereo_yesba_sub4/run \

--save-transformed-source-points

Then we compare to the aligned LOLA dataset the input to SfS and its output:

geodiff --absolute -o beg --csv-format '1:lon 2:lat 3:radius_km' \

run_stereo_yesba_sub4/run-crop1-DEM.tif run_stereo_yesba_sub4/run-trans_source.csv

geodiff --absolute -o end --csv-format '1:lon 2:lat 3:radius_km' \

sfs_sub4_ref1_th_reg0.12_wt0.001/run-DEM-final.tif \

run_stereo_yesba_sub4/run-trans_source.csv

We see that the mean error between the DEM and LOLA goes down, after SfS, from 1.14 m to 0.90 m,
while the standard deviation decreases from 1.18 m to 1.06 m.

10.5 Running SfS with an external initial guess DEM

Sometimes it is convenient to run SfS with a DEM not created using ASP's stereo. For example, for the
Moon, the LOLA gridded DEM is available. It is somewhat noisy and the nominal resolution is on the
order of 10 m/pixel, but it is available even for permanently shadowed regions.

The main challenge in such a situation is that the images, such as coming from LRO NAC, may not be
aligned well to this external DEM and among themselves, and then SfS will fail. To get an initial alignment,
what worked for us to coarsen both this DEM and the images to about 40 meters/pixel (using the ISIS
reduce command and dem_mosaic with the options to blur and change the grid size), and then run SfS over
a reasonably large area (say about 500× 500 pixels) with pronounced terrain and where images have a lot
of overlap with the option --float-all-cameras (and of course --float-exposure, and an appropriate
--shadow-threshold). Then, the SfS program will �nd adjustments to the cameras, writing them in the
output directory. The mapproject tool can be used to map-project the coarse images onto the input DEM
using --bundle-adjust-prefix pointing to the sfs output pre�x. This should be used to verify that
images are now aligned correctly, for example by overlaying them in stereo_gui. If so, these adjustments
can be used as input for SfS with images at �ner levels of resolution (after appropriately renaming the
adjustment �les and using the --bundle-adjust-prefix option of sfs).

Here, a higher value can be used for --initial-dem-constraint-weight to ensure we cameras have more
motivation to align to the terrain.

When it comes to running SfS with many large high-resolution images, one runs very fast into memory
constraints. It is then necessary to parallelize the problem using parallel_sfs, which will run sfs on
multiple tiles. Yet, the camera adjustments need to be determined before running this tool, and then kept
�xed when this tool is run, as otherwise each single tile will optimize its cameras independently, and as
result there will be discontinuities at tile boundaries.

If the camera adjustments are determined by �rst running sfs on a clip representative of the entire terrain,
far from that clip the cameras will start to disagree. For that reason, sfs makes it possible to optimize the
cameras on an entire collection of clips, chosen so they are reasonably spread out over the entire terrain,
and that each camera image is covered by at least a handful of such clips. The clips can be passed to sfs

as a quoted string via the -i option. As before, at the end the mapproject program can be used to verify
that the camera images mapprojected using the obtained camera adjustments are perfectly on top of each
other, and if not, more clips can be added to the joint optimization problem. When a good enough set of
camera adjustments is obtained, parallel_sfs can be run as before.

95



Chapter 10

10.6 Insights for getting the most of SfS

Here are a few suggestions we have found helpful when running sfs:

• First determine the appropriate smoothing weight µ by running a small clip, and using just one image.
A value between 0.06 and 0.12 seems to work all the time with LRO NAC, even when the images are
subsampled. The other weight, λ, can be set to something small, like 0.0001. This can be increased
to 0.001 if noticing that the output DEM strays too far.

• As stated before, more images with more diverse illumination conditions result in more accurate
terrain. Ideally there should be at least 3 images, with the shadows being, respectively, on the left,
right, and then perhaps missing or small.

• Bundle-adjustment for multiple images is crucial, to eliminate camera errors which will result in sfs

converging to a local minimum. This is described in section 10.4.

• Floating the albedo (option --float-albedo) can introduce instability and divergence, it should be
avoided unless obvious albedo variation is seen in the images.

• Floating the DEM at the boundary (option --float-dem-at-boundary) is also suggested to be
avoided.

• Overall, the best strategy is to �rst use SfS for a single image and not �oat any variables except the
DEM being optimized, and then gradually add images and �oat more variables and select whichever
approach seems to give better results.

• If an input DEM is large, it may not be completely covered by a single set of imagery with various
illumination conditions. It should then be broken up into smaller regions (with overlap), the SfS prob-
lem can be solved on each region, and then every output terrain can be transformed using pc_align

into LOLA's global coordinate system, where they can be mosaicked together using dem_mosaic. Or,
sfs can be run not on one clip, but on an entire collection of clips covering this area to get the
adjustments, and then parallel_sfs can be run as described in the previous section.

The easier case is when at least the two images in the stereo pair cover the entire terrain. Then,
portions of this terrain can be used as an initial guess for each SfS sub-problem (even as the other
images used for SfS change), the results can be mosaicked, and the alignment to LOLA can happen
just once, after mosaicking. This approach is preferable, if feasible, as alignment to LOLA is more
accurate if the terrain to align is larger in extent.

• The mapproject program can be used to map-project each image onto the resulting SfS DEM (with
the camera adjustments solved using SfS). These orthoimages can be mosaicked using dem_mosaic. If
the --max option is used with this tool, it create a mosaic with the most illuminated pixels from this
image. If during SfS the camera adjustments were solved accurately, this mosaic should have little or
no blur. An alterantive is to use the --block-max option which will pick the most lit of the images
per each block, with the latter being speci�ed via --block-size.

96



Chapter 11

Data Processing Examples

This chapter showcases a variety of results that are possible when processing di�erent data sets with the
Stereo Pipeline. It is also a shortened guide that shows the commands used to process speci�c mission
data. There is no de�nitive method yet for making elevation models as each stereo pair is unique. We hope
that the following sections serve as a cookbook for strategies that will get you started in processing your
own data. We recommend that you second check your results against another source.

11.1 Guidelines for Selecting Stereo Pairs

When choosing image pairs to process, images that are taken with similar viewing angles, lighting conditions,
and signi�cant surface coverage overlap are best suited for creating terrain models. Depending on the
characteristics of the mission data set and the individual images, the degree of acceptable variation will
di�er. Signi�cant di�erences between image characteristics increases the likelihood of stereo matching error
and artifacts, and these errors will propagate through to the resulting data products.

Although images do not need to be map-projected before running the stereo program, we recommend
that you do run cam2map (or cam2map4stereo.py) beforehand, especially for image pairs that contain large
topographic variation (and therefore large disparity di�erences across the scene, e.g., Valles Marineris).
Map-projection is especially necessary when processing HiRISE images. This removes the large disparity
di�erences between HiRISE images and leaves only the small detail for the Stereo Pipeline to compute.
Remember that ISIS can work backwards through a map-projection when applying the camera model, so
the geometric integrity of your images will not be sacri�ced if you map-project �rst.

An alternative way of map-projection, that applies to non-ISIS imagery as well, is with the mapproject

tool (section 5.1.7).

Excessively noisy images will not correlate well, so images should be photometrically calibrated in whatever
fashion suits your purposes. If there are photometric problems with the images, those photometric defects
can be misinterpreted as topography.

Remember, in order for stereo to process stereo pairs in ISIS cube format, the images must have had
SPICE data associated by running ISIS's spiceinit program run on them �rst.

11.2 Mars Reconnaissance Orbiter HiRISE

HiRISE is one of the most challenging cameras to use when making 3D models because HiRISE exposures
can be several gigabytes each. Working with this data requires patience as it will take time.

97



Chapter 11

One important fact to know about HiRISE is that it is composed of multiple linear CCDs that are arranged
side by side with some vertical o�sets. These o�sets mean that the CCDs will view some of the same terrain
but at a slightly di�erent time and a slightly di�erent angle. Mosaicking the CCDs together to a single
image is not a simple process and involves living with some imperfections.

One cannot simply use the HiRISE RDR products, as they do not have the required geometric stability.
Instead, the HiRISE EDR products must be assembled using ISIS noproj. The USGS distributes a script
in use by the HiRISE team that works forward from the team-produced `balance' cubes, which provides
a de-jittered, noproj'ed mosaic of a single observation, which is perfectly suitable for use by the Stereo
Pipeline (this script was originally engineered to provide input for SOCET SET). However, the `balance'
cubes are not available to the general public, and so we include a program (hiedr2mosaic.py, written in
Python) that will take PDS available HiRISE EDR products and walk through the processing steps required
to provide good input images for stereo.

The program takes all the red CCDs and projects them using the ISIS noproj command into the perspective
of the RED5 CCD. From there, hijitreg is performed to work out the relative o�sets between CCDs.
Finally the CCDs are mosaicked together using the average o�set listed from hijitreg using the handmos
command, and the mosaic is normalized with cubenorm. Below is an outline of the processing.

hi2isis # Import HiRISE IMG to Isis

hical # Calibrate

histitch # Assemble whole-CCD images from the channels

spiceinit

spicefit # For good measure

noproj # Project all images into perspective of RED5

hijitreg # Work out alignment between CCDs

handmos # Mosaic to single file

cubenorm # Normalize the mosaic

To use our script, �rst download a set of HiRISE data. Here is an example, using wget to fetch all RED
CCDs for a dataset and process them.

wget -r -l1 -np \

"http://hirise-pds.lpl.arizona.edu/PDS/EDR/ESP/ORB_029400_029499/ESP_029421_2300/" \

-A "*RED*IMG"

Alternately, you can pass the --download-folder option to hiedr2mosaic.py and pass in the URL of
the web page containing the EDR �les as the only positional argument. This will cause the tool to �rst
download all of the RED CCD images to the speci�ed folder and then continue with processing.

hiedr2mosaic.py --download-folder hirise_example/ \

http://hirise-pds.lpl.arizona.edu/PDS/EDR/ESP/ORB_029400_029499/ESP_029421_2300/

Assuming you downloaded the �les manually, go to the directory containing the �les. You can run the
hiedr2mosaic.py program without any arguments to view a short help statement, with the -h option to
view a longer help statement, or just run the program on the EDR �les like so:

hiedr2mosaic.py *.IMG

98

http://www.python.org


Data Processing Examples

If you have more than one observation's worth of EDRs in that directory, then limit the program to just
one observation's EDRs at a time, e.g. hiedr2mosaic.py PSP_001513_1655*IMG. If you run into problems,
try using the -k option to retain all of the intermediary image �les to help track down the issue. The
hiedr2mosaic.py program will create a single mosaic �le with the extension .mos_hijitreged.norm.cub.
Be warned that the operations carried out by hiedr2mosaic.py can take many hours to complete on the
very large HiRISE images.

An example of using ASP with HiRISE data is included in the examples/HiRISE directory (just type 'make'
there).

11.2.1 Columbia Hills

HiRISE observations PSP_001513_1655 and PSP_001777_1650 are on the �oor of Gusev Crater and
cover the area where the MER Spirit landed and has roved, including the Columbia Hills.

(a) 3D Rendering (b) KML Screenshot

Figure 11.1: Example output using HiRISE images PSP_001513_1655 and PSP_001777_1650 of the
Columbia Hills.

Commands

Download all 20 of the RED EDR .IMG �les for each observation.

ISIS 3> hiedr2mosaic.py PSP_001513_1655_RED*.IMG

ISIS 3> hiedr2mosaic.py PSP_001777_1650_RED*.IMG

ISIS 3> cam2map4stereo.py PSP_001777_1650_RED.mos_hijitreged.norm.cub \

PSP_001513_1655_RED.mos_hijitreged.norm.cub

ISIS 3> stereo PSP_001513_1655.map.cub \

PSP_001777_1650.map.cub result/output

99

http://hirise.lpl.arizona.edu/PSP_001513_1655
http://hirise.lpl.arizona.edu/PSP_001777_1650


Chapter 11

stereo.default

The stereo.default example �le (appendix B) should apply well to HiRISE. Just set alignment-method to
none if using map-projected imagery. If you are not using map-projected imagery, set alignment-method
to homography or affineepipolar. The corr-kernel value can usually be safely reduced to 21 pixels to
resolve �ner detail and faster processing for images with good contrast.

11.3 Mars Reconnaissance Orbiter CTX

Context Camera (CTX) is a moderate camera to work with. Processing times for CTX can be pretty long
when using Bayes EM subpixel re�nement. Otherwise the disparity between images is relatively small,
allowing e�cient computation and a reasonable processing time.

11.3.1 North Terra Meridiani

In this example, we use map-projected images. Map-projecting the images is the most reliable way
to align the images for correlation. However when possible, use non-map-projected images with the
alignment-method affineepipolar option. This greatly reduces the time spent in triangulation. For all
cases using linescan cameras, triangulation of map-projected images is 10x slower than non-map-projected
images.

This example is distributed in the examples/CTX directory (type 'make' there to run it).

(a) 3D Rendering (b) KML Screenshot

Figure 11.2: Example output possible with the CTX imager aboard MRO.

100



Data Processing Examples

Commands

Download the CTX images P02_001981_1823_XI_02N356W.IMG and P03_002258_1817_XI_01N356W.IMG
from the PDS.

ISIS 3> mroctx2isis from=P02_001981_1823_XI_02N356W.IMG to=P02_001981_1823.cub

ISIS 3> mroctx2isis from=P03_002258_1817_XI_01N356W.IMG to=P03_002258_1817.cub

ISIS 3> spiceinit from=P02_001981_1823.cub

ISIS 3> spiceinit from=P03_002258_1817.cub

ISIS 3> ctxcal from=P02_001981_1823.cub to=P02_001981_1823.cal.cub

ISIS 3> ctxcal from=P03_002258_1817.cub to=P03_002258_1817.cal.cub

you can also optionally run ctxevenodd on the cal.cub �les, if needed
ISIS 3> cam2map4stereo.py P02_001981_1823.cal.cub P03_002258_1817.cal.cub

ISIS 3> stereo P02_001981_1823.map.cub P03_002258_1817.map.cub results/out

stereo.default

The stereo.default example �le (appendix B) works generally well with all CTX pairs. Just set alignment-method
to homography or affineepipolar.

101



Chapter 11

11.4 Mars Global Surveyor MOC-NA

In the Stereo Pipeline Tutorial in Chapter 3, we showed you how to process a narrow angle MOC stereo
pair that covered a portion of Hrad Vallis. In this section we will show you more examples, some of which
exhibit a problem common to stereo pairs from linescan imagers: �spacecraft jitter� is caused by oscillations
of the spacecraft due to the movement of other spacecraft hardware. All spacecraft wobble around to some
degree but some are particularly susceptible.

Jitter causes wave-like distortions along the track of the satellite orbit in DEMs produced from linescan
camera images. This e�ect can be very subtle or quite pronounced, so it is important to check your
data products carefully for any sign of this type of artifact. The following examples will show the typical
distortions created by this problem.

Note that the science teams of HiRISE and Lunar Reconnaissance Orbiter Camera (LROC) are actively
working on detecting and correctly modeling jitter in their respective SPICE data. If they succeed in this,
the distortions will still be present in the raw imagery, but the jitter will no longer produce ripple artifacts
in the DEMs produced using ours or other stereo reconstruction software.

11.4.1 Ceraunius Tholus

Ceraunius Tholus is a volcano in northern Tharsis on Mars. It can be found at 23.96 N and 262.60 E. This
DEM crosses the volcano's caldera.

(a) 3D Rendering (b) KML Screenshot

Figure 11.3: Example output for MOC-NA of Ceraunius Tholus. Notice the presence of severe washboarding
artifacts due to spacecraft �jitter.�

Commands

Download the M08/06047 and R07/01361 images from the PDS.

ISIS 3> moc2isis f=M0806047.img t=M0806047.cub

102



Data Processing Examples

ISIS 3> moc2isis f=R0701361.img t=R0701361.cub

ISIS 3> spiceinit from=M0806047.cub

ISIS 3> spiceinit from=R0701361.cub

ISIS 3> cam2map4stereo.py M0806047.cub R0701361.cub

ISIS 3> stereo M0806047.map.cub R0701361.map.cub result/output

stereo.default

The stereo.default example �le (appendix B) works generally well with all MOC-NA pairs. Just set
alignment-method to none when using map-projected imagery. If the images are not map-projected,
use homography or affineepipolar.

11.5 Mars Exploration Rovers

The Mars Exploration Rovers (MER) have several cameras on board and they all seem to have a stereo
pair. With ASP you are able to process the PANCAM, NAVCAM, and HAZCAM camera imagery. ISIS
has no telemetry or camera intrinsic supports for these images. That however is not a problem as their raw
imagery contains the cameras' information in JPL's CAHV, CAHVOR, and CHAVORE formats.

These cameras are all variations of a simple pinhole camera model so they are processed with ASP in the
Pinhole session instead of the usual ISIS. ASP only supports creating of point clouds. The *-PC.tif is a
raw point cloud with the �rst 3 channels being XYZ in the rover site's coordinate frame. We don't support
the creation of DEMs from these images and that is left as an exercise for the user.

An example of using ASP with MER data is included in the examples/MER directory (just type 'make'
there).

11.5.1 PANCAM, NAVCAM, HAZCAM

All of these cameras are processed the same way. We'll be showing 3D processing of the front hazard
cams. The only new things in the pipeline is the new executable mer2camera along with the use of
alignment-method epipolar. This example is also provided in the MER data example directory.

103



Chapter 11

(a) Rectified Input (b) Output Point Cloud

Figure 11.4: Example output possible with the front hazard cameras.

Commands

Download 2f194370083e�ap00p1214l0m1.img and 2f194370083e�ap00p1214r0m1.img from the PDS.

ISIS 3> mer2camera 2f194370083effap00p1214l0m1.img

ISIS 3> mer2camera 2f194370083effap00p1214r0m1.img

ISIS 3> stereo 2f194370083effap00p1214l0m1.img 2f194370083effap00p1214r0m1.img \

2f194370083effap00p1214l0m1.cahvore 2f194370083effap00p1214r0m1.cahvore \

fh01/fh01

stereo.default

The default stereo settings will work but change the following options. The universe option �lters out
points that are not triangulated well because they are too close robot's hardware or are extremely far away.

additional settings for MER
alignment-method epipolar

force-use-entire-range

# This deletes points that are too far away

# from the camera to truly triangulate.

universe-center Camera

near-universe-radius 0.7

far-universe-radius 80.0

104



Data Processing Examples

11.6 K10

K10 is an Earth-based research rover within the Intelligent Robotics Group at NASA Ames, the group
ASP developers belong to. The cameras on this rover use a simple Pinhole model. The use of ASP with
these cameras is illustrated in the examples/K10 directory (just type 'make' there). Just as for the MER
datatset (section 11.5), only the creation of a point cloud is supported.

105



Chapter 11

11.7 Lunar Reconnaissance Orbiter LROC NAC

11.7.1 Lee-Lincoln Scarp

This stereo pair covers the Taurus-Littrow valley on the Moon where, on December 11, 1972, the astronauts
of Apollo 17 landed. However, this stereo pair does not contain the landing site. It is slightly west; focusing
on the Lee-Lincoln scarp that is on North Massif. The scarp is an 80 m high feature that is the only visible
sign of a deep fault.

(a) 3D Rendering (b) KML Screenshot

Figure 11.5: Example output possible with a LROC NA stereo pair, using both CCDs from each observation
courtesy of the lronac2mosaic.py tool.

Commands

Download the EDRs for the left and right CCDs for observations M104318871 and M104318871 from
http://wms.lroc.asu.edu/lroc/search. Alternatively you can search by original IDs of 2DB8 and 4C86
in the PDS.

All ISIS preprocessing of the EDRs is performed via the lronac2mosaic.py command. This runs lronac2isis,
lronaccal, lronacecho, spiceinit, noproj, and handmos to create a stitched unprojected image for a sin-
gle observation. In this example we don't map-project the images as ASP can usually get good results.
More aggressive terrain might require an additional cam2map4stereo.py step.

ISIS 3> lronac2mosaic.py M104318871LE.img M104318871RE.img

ISIS 3> lronac2mosaic.py M104311715LE.img M104311715RE.img

ISIS 3> stereo M104318871LE*.mosaic.norm.cub M104311715LE*.mosaic.norm.cub \

result/output --alignment-method affineepipolar

106

http://wms.lroc.asu.edu/lroc/search


Data Processing Examples

stereo.default

The defaults work generally well with LRO-NAC pairs, so you don't need to provide a stereo.default
�le. Map-projecting is optional. When map-projecting the images use alignment-method none, otherwise
use alignment-method affineepipolar. Better map-project results can be achieved by projecting on a
higher resolution elevation source like the WAC DTM. This is achieved using the ISIS command demprep

and attaching to cube �les via spiceinit's SHAPE and MODEL options.

11.8 Apollo 15 Metric Camera Images

Apollo Metric images were all taken at regular intervals, which means that the same stereo.default can
be used for all sequential pairs of images. Apollo Metric images are ideal for stereo processing. They
produce consistent, excellent results.

The scans performed by ASU are su�ciently detailed to exhibit �lm grain at the highest resolution. The
amount of noise at the full resolution is not helpful for the correlator, so we recommend subsampling the
images by a factor of 4.

Currently the tools to ingest Apollo TIFFs into ISIS are not available, but these images should soon be
released into the PDS for general public usage.

11.8.1 Ansgarius C

Ansgarius C is a small crater on the west edge of the far side of the Moon near the equator. It is east of
Kapteyn A and B.

(a) 3D Rendering (b) KML Screenshot

Figure 11.6: Example output possible with Apollo Metric frames AS15-M-2380 and AS15-M-2381.

107



Chapter 11

Commands

Process Apollo TIFF �les into ISIS.

ISIS 3> reduce from=AS15-M-2380.cub to=sub4-AS15-M-2380.cub sscale=4 lscale=4

ISIS 3> reduce from=AS15-M-2381.cub to=sub4-AS15-M-2381.cub sscale=4 lscale=4

ISIS 3> spiceinit from=sub4-AS15-M-2380.cub

ISIS 3> spiceinit from=sub4-AS15-M-2381.cub

ISIS 3> stereo sub4-AS15-M-2380.cub sub4-AS15-M-2381.cub result/output

stereo.default

The stereo.default example �le (appendix B) works generally well with all Apollo pairs. Just set alignment-method
to homography or affineepipolar.

11.9 Mars Express High Resolution Stereo Camera (HRSC)

The HRSC camera on the Mars Express satellite is a complicated system, consisting of multiple channels
pointed in di�erent directions plus another super resolution channel. The best option to create DEMs is to
use the two dedicated stereo channels. These are pointed ahead of and behind the nadir channel and collect
a stereo observation in a single pass of the satellite. Data can be downloaded from the Planetary Data
System (PDS) http://pds-geosciences.wustl.edu/missions/mars_express/hrsc.htm or you can use
the online graphical tool located at http://hrscview.fu-berlin.de/cgi-bin/ion-p?page=entry2.ion.
Since each observation contains both stereo channels, one observation is su�cient to create a DEM.

HRSC data is organized into categories. Level 2 is radiometrically corrected, level 3 is corrected and map
projected onto MOLA, and level 4 is corrected and map projected on to a DEM created from the HRSC
data. You should use the level 2 data for creating DEMs with ASP. If you would like to download one of
the already created DEMs, it may be easiest to use the areoid referenced version (.da4 extension) since that
is consistent with MOLA.

What follows is an example for how to process HRSC data. One starts by fetching the two stereo channels
from:

http://pds-geosciences.wustl.edu/mex/mex-m-hrsc-3-rdr-v3/mexhrs_1001/data/1995/h1995_0000_s12.img

http://pds-geosciences.wustl.edu/mex/mex-m-hrsc-3-rdr-v3/mexhrs_1001/data/1995/h1995_0000_s22.img

Commands

You may need to download the HRSC kernel �les in case using web=true with spiceinit does not work.
You will also probably need to include the ckpredicted=true �ag with spiceinit. HRSC images are
large and may have compression artifacts so you should experiment on a small region to make sure your
stereo parameters are working well. For this frame, the MGM stereo algorithm performed better than block
matching with subpixel mode 3.

ISIS 3> hrsc2isis from=h1995_0000_s12.img to=h1995_0000_s12.cub

ISIS 3> hrsc2isis from=h1995_0000_s22.img to=h1995_0000_s22.cub

ISIS 3> spiceinit from=h1995_0000_s12.cub ckpredicted=true

ISIS 3> spiceinit from=h1995_0000_s22.cub ckpredicted=true

108

http://pds-geosciences.wustl.edu/missions/mars_express/hrsc.htm
http://hrscview.fu-berlin.de/cgi-bin/ion-p?page=entry2.ion


Data Processing Examples

ISIS 3> stereo h1995_0000_s12.cub h1995_0000_s22.cub \

--stereo-algorithm 2 --cost-mode 3 mgm/out

(a) Cropped input (b) Block matching with

subpixel mode 3

(c) MGM algorithm with cost

mode 3

Figure 11.7: Sample outputs from a cropped region of HRSC frame 1995

109



Chapter 11

11.10 Cassini ISS NAC

This is a proof of concept showing the strength of building the Stereo Pipeline on top of ISIS. Support
for processing ISS NAC stereo pairs was not a goal during our design of the software, but the fact that a
camera model exists in ISIS means that it too can be processed by the Stereo Pipeline.

Identifying stereo pairs from spacecraft that do not orbit their target is a challenge. We have found that
one usually has to settle with images that are not ideal: di�erent lighting, little perspective change, and
little or no stereo parallax. So far we have had little success with Cassini's data, but nonetheless we provide
this example as a potential starting point.

11.10.1 Rhea

Rhea is the second largest moon of Saturn and is roughly a third the size of our own Moon. This example
shows, at the top right of both images, a giant impact basin named Tirawa that is 220 miles across. The
bright white area south of Tirawa is ejecta from a new crater. The lack of texture in this area poses a
challenge for our correlator. The results are just barely useful: the Tirawa impact can barely be made out
in the 3D data while the new crater and ejecta become only noise.

Commands

Download the N1511700120_1.IMG and W1567133629_1.IMG images and their label (.LBL) �les from the
PDS.

ISIS 3> ciss2isis f=N1511700120_1.LBL t=N1511700120_1.cub

ISIS 3> ciss2isis f=W1567133629_1.LBL t=W1567133629_1.cub

ISIS 3> cisscal from=N1511700120_1.cub to=N1511700120_1.lev1.cub

ISIS 3> cisscal from=W1567133629_1.cub to=W1567133629_1.lev1.cub

ISIS 3> fillgap from=W1567133629_1.lev1.cub to=W1567133629_1.fill.cub %Only one image

%exhibits the problem

ISIS 3> cubenorm from=N1511700120_1.lev1.cub to=N1511700120_1.norm.cub

ISIS 3> cubenorm from=W1567133629_1.fill.cub to=W1567133629_1.norm.cub

ISIS 3> spiceinit from=N1511700120_1.norm.cub

ISIS 3> spiceinit from=W1567133629_1.norm.cub

ISIS 3> cam2map from=N1511700120_1.norm.cub to=N1511700120_1.map.cub

ISIS 3> cam2map from=W1567133629_1.norm.cub map=N1511700120_1.map.cub \

ISIS 3> to=W1567133629_1.map.cub matchmap=true

ISIS 3> stereo N1511700120_1.map.equ.cub W1567133629_1.map.equ.cub result/rhea

110



Data Processing Examples

(a) Original Left Image (b) Original Right Image

(c) Map-Projected Left (d) 3D Rendering

Figure 11.8: Example output of what is possible with Cassini's ISS NAC

111



Chapter 11

stereo.default

stereo.default for Cassini ISS
### PREPROCESSING

alignment-method none

force-use-entire-range

individually-normalize

### CORRELATION

prefilter-mode 2

prefilter-kernel-width 1.5

cost-mode 2

corr-kernel 25 25

corr-search -55 -2 -5 10

subpixel-mode 3

subpixel-kernel 21 21

### FILTERING

rm-half-kernel 5 5

rm-min-matches 60 # Units = percent

rm-threshold 3

rm-cleanup-passes 1

11.11 Digital Globe Imagery

Processing of Digital Globe images is described extensively in the tutorial in chapter 4.

11.12 RPC Imagery, including GeoEye, Astrium, Cartosat-1, and PeruSat-
1

Some vendors, such as GeoEye with its Ikonos and two GeoEye satellites, and Astrium, with its SPOT
and Pleiades satellites, the Indian Cartosat-1 satellite provide only Rational Polynomial Camera (RPC)
models. Digital Globe provides both exact linescan camera models and their RPC approximations and
ASP supports both. Apparently such is the case as well for PeruSat-1, but ASP supports only the RPC
model for this satellite.

RPC represents four 20-element polynomials that map geodetic coordinates (longitude-latitude-height above
datum) to image pixels. Since they are easy to implement and fast to evaluate, RPC represents a universal
camera model providing a simple approximation to complex exact camera models that are unique to each
vendor. The only downside is that it has less precision in our opinion compared to the exact camera models.

In addition to supporting vendor-provided RPC models, ASP provides a tool named cam2rpc (section
A.13), that can be used to create RPC camera models from ISIS and all other cameras that ASP under-
stands, including for non-Earth planets (currently only the Earth, Moon and Mars are supported). In such
situations, the planet datum must be passed to the tools reading the RPC models, as shown below.

Our RPC read driver is GDAL. If the command gdalinfo can identify the RPC information inside the
headers of your image �les (whether that information is actually embedded in the images, or stored sep-
arately in some auxiliary �les with a convention GDAL understands), ASP will likely be able to see it as

112



Data Processing Examples

well. This means that sometimes we can get away with only providing a left and right image, with no extra
�les containing camera information. This is speci�cally the case for GeoEye, and Cartosat-1. Otherwise,
the camera �les must be speci�ed separately in XML �les, as done for Digital Globe images (section 4.1)
and PeruSat-1.

For a �rst test, you can download an example stereo pair from GeoEye's website at [41]. When we accessed
the site, we downloaded a GeoEye-1 image of Hobart, Australia. As previously stated in the Digital Globe
section, these types of images are not ideal for ASP. This is both a forest and a urban area which makes
correlation di�cult. ASP was designed more for modeling bare rock and ice. Any results we produce in
other environments is a bonus but is not our objective.

Figure 11.9: Example colorized height map and ortho image output.

Command

stereo -t rpc po_312012_pan_0000000.tif po_312012_pan_0010000.tif geoeye/geoeye

(For Cartosat data sometimes one should overwrite the *RPC.TXT �les that are present with the ones that
end in RPC_ORG.TXT.)

If RPC cameras are speci�ed separately, the stereo command looks as follows. This example is for Mars,
with the RPC models created with cam2rpc from ISIS cubes. So the datum has to be set.

stereo -t rpc --datum D_MARS left.tif right.tif left.xml right.xml run/run

For terrains having steep slopes, we recommend that images be map-projected onto an existing DEM before
running stereo. This is described in section 5.1.7. As above, if the cameras are speci�ed separately (as xml
�les), they should be on the command line, otherwise they can be omitted.

If the RPC coe�cients are not stored in the original Tif images, but rather in associated .RPB or _RPC.TXT
�les, mapproject creates these �les automatically for each map-projected image.

stereo.default

The stereo.default example �le (appendix B) works generally well with all GeoEye pairs. Just set alignment-method
to affineepipolar or homography.

113



Chapter 11

11.13 SPOT5 Imagery

SPOT5 is a CNES (Space Agency of France) satellite launched on May 2002 and decommissioned in March
2015. SPOT5 contained two High Resolution Stereoscopic (HRS) instruments with a ground resolution of
5 meters. These two cameras were pointed forwards and backwards, allowing capture of a stereo image pair
in a single pass of the satellite.

ASP supports only images from the HRS sensors on SPOT5. These images come in two parts, the data
�le (extension .bil or .tif) and the header �le the data �le (extension .dim). The data �le can be either
a plain binary �le with no header information or a GeoTIFF �le. The header �le is a plain text XML �le.
When using SPOT5 images with ASP tools, pass in the data �le as the image �le and the header �le as
the camera model �le.

All ASP tools can handle .bil images (and also .bip and .bsq) as long as a similarly named .dim �le exists
that can be looked up. The lookup succeeds if, for example, the .dim and .bil �les di�er only by extension
(lower or upper case), or, as below, when an IMAGERY.BIL �le has a corresponding METADATA �le.

You can �nd a sample SPOT5 image at http://www.geo-airbusds.com/en/23-sample-imagery.

One issue to watch out for is that SPOT5 data typically comes in a standard directory structure where the
image and header �les always have the same name. The header (camera model) �les cannot be passed into
the bundle_adjust tool with the same �le name even if they are in di�erent folders. A simple workaround
is to create symbolic links to the original header �les with di�erent names:

> ln -s front/SEGMT01/METADATA.DIM front/SEGMT01/METADATA_FRONT.DIM

> ln -s back/SEGMT01/METADATA.DIM back/SEGMT01/METADATA_BACK.DIM

> bundle_adjust -t spot5 front/SEGMT01/IMAGERY.BIL back/SEGMT01/IMAGERY.BIL \

front/SEGMT01/METADATA_FRONT.DIM back/SEGMT01/METADATA_BACK.DIM -o ba_run/out

> stereo -t spot5 front/SEGMT01/IMAGERY.BIL back/SEGMT01/IMAGERY.BIL \

front/SEGMT01/METADATA_FRONT.DIM back/SEGMT01/METADATA_BACK.DIM \

st_run/out --bundle-adjust-prefix ba_run/out

You can also map project the SPOT5 images before they are passed to the stereo tool. In order to do so,
you must �rst use the add_spot_rpc tool to generate an RPC model approximation of the SPOT5 sensor
model, then use the spot5maprpc session type when running stereo on the map projected images.

> add_spot_rpc front/SEGMT01/METADATA.DIM -o front/SEGMT01/METADATA.DIM

> add_spot_rpc back/SEGMT01/METADATA.DIM -o back/SEGMT01/METADATA.DIM

> mapproject sample_dem.tif front/SEGMT01/IMAGERY.BIL front/SEGMT01/METADATA.DIM

front_map_proj.tif -t rpc

> mapproject sample_dem.tif back/SEGMT01/IMAGERY.BIL back/SEGMT01/METADATA.DIM

back_map_proj.tif -t rpc

> stereo -t spot5maprpc front_map_proj.tif back_map_proj.tif \

front/SEGMT01/METADATA.DIM back/SEGMT01/METADATA.DIM \

st_run/out sample_dem.tif

11.14 Dawn (FC) Framing Camera

This is a NASA mission to visit two of the largest objects in the asteroid belt, Vesta and Ceres. The
framing camera on board Dawn is quite small and packs only a resolution of 1024x1024 pixels. This means

114

http://www.geo-airbusds.com/en/23-sample-imagery


Data Processing Examples

Figure 11.10: Cropped region of SPOT5 image and a portion of the associated stereo DEM overlaid on a
low resolution Bedmap2 DEM.

processing time is extremely short. To its bene�t, it seems that the mission planners leave the framing
camera on taking shots quite rapidly. On a single pass, they seem to usually take a chain of FC images
that have a high overlap percentage. This opens the idea of using ASP to process not only the sequential
pairs, but also the wider baseline shots. Then someone could potentially average all the DEMs together to
create a more robust data product.

For this example, we downloaded the images

FC21A0010191_11286212239F1T.IMG and FC21A0010192_11286212639F1T.IMG

which show the Cornelia crater. We found these images by looking at the popular anaglyph shown on the
Planetary Science Blog [84].

Commands

First you must download the Dawn FC images from PDS.

ISIS3 > dawnfc2isis from=FC21A0010191_11286212239F1T.IMG \

to=FC21A0010191_11286212239F1T.cub

ISIS3 > dawnfc2isis from=FC21A0010192_11286212639F1T.IMG \

to=FC21A0010192_11286212639F1T.cub

115



Chapter 11

Figure 11.11: Example colorized height map and ortho image output.

ISIS3 > spiceinit from=FC21A0010191_11286212239F1T.cub

ISIS3 > spiceinit from=FC21A0010192_11286212639F1T.cub

ISIS3 > stereo FC21A0010191_11286212239F1T.cub \

FC21A0010192_11286212639F1T.cub stereo/stereo

ISIS3 > point2dem stereo-PC.tif --orthoimage stereo-L.tif \

--t_srs "+proj=eqc +lat_ts=-11.5 +a=280000 +b=229000 +units=m"

stereo.default

The stereo.default example �le (appendix B) works well for this stereo pair. Just set alignment-method to
affineepipolar or homography.

11.15 ASTER Imagery

In this example we will describe how to process ASTER Level 1A VNIR imagery. The data can be
obtained for free from https://search.earthdata.nasa.gov/search. Select a region on the map, search
for AST_L1A, and choose �ASTER L1A Reconstructed Unprocessed Instrument Data V003�. (The same
interface can be used to obtain pre-existing ASTER DEMs.)

There are two important things to keep in mind when ordering the data. First, at the very last step, when
�nalizing the order options, choose GeoTIFF as the data format, rather than HDF-EOS. This way the
imagery and metadata will come already extracted from the HDF �le.

Second, note that ASP cannot process ASTER Level 1B imagery, as those images lack camera information.

Below, we will use the dataset AST_L1A_00307182000191236_20160404141337_21031 near San Luis Reser-
voir in Northern California. This dataset will come as a directory containing TIFF imagery and meta-
information as text �les. We use the tool aster2asp (section A.33) to parse it (also there is described the
data contained in this directory):

aster2asp 030353697511879 -o out

116

https://search.earthdata.nasa.gov/search


Data Processing Examples

This command will create 4 �les, named

out-Band3N.tif out-Band3B.tif out-Band3N.xml out-Band3B.xml

We refer again to the tool's documentation page regarding details of how these �les were created.

Next, we run stereo. We can use either the exact camera model (-t aster), or its RPC approximation (-t
rpc). The former is much slower but more accurate.

stereo -t aster --subpixel-mode 3 out-Band3N.tif out-Band3B.tif \

out-Band3N.xml out-Band3B.xml out_stereo/run

or

stereo -t rpc --subpixel-mode 3 out-Band3N.tif out-Band3B.tif \

out-Band3N.xml out-Band3B.xml out_stereo/run

This is followed by DEM creation:

point2dem -r earth --tr 0.000277777777778 out_stereo/run-PC.tif

The value 0.000277777777778 is the desired output DEM resolution, speci�ed in degrees. It is approximately
31 meters/pixel, the same as the publicly available ASTER DEM, and about twice the 15 meters/pixel
image resolution.

Much higher quality results, but still not as detailed as the public ASTER DEM can be obtained by doing
stereo as before, followed by map-projection onto a coarser and smoother version of the obtained DEM, and
then redoing stereo with map-projected images (per the suggestions in chapter 6). Using --subpixel-mode

2, while much slower, yields the best results. The �ow is as follows:

# Initial stereo

stereo -t aster --subpixel-mode 3 out-Band3N.tif out-Band3B.tif \

out-Band3N.xml out-Band3B.xml out_stereo/run

# Create a coarse and smooth DEM at 300 meters/pixel

point2dem -r earth --tr 0.0026949458523585 out_stereo/run-PC.tif \

-o out_stereo/run-300m

# Map-project onto this DEM at 10 meters/pixel

mapproject --tr 0.0000898315284119 out_stereo/run-300m-DEM.tif \

out-Band3N.tif out-Band3N.xml out-Band3N_proj.tif

mapproject --tr 0.0000898315284119 out_stereo/run-300m-DEM.tif \

out-Band3B.tif out-Band3B.xml out-Band3B_proj.tif

# Run stereo with the map-projected images with subpixel-mode 2

stereo -t aster --subpixel-mode 2 out-Band3N_proj.tif out-Band3B_proj.tif \

out-Band3N.xml out-Band3B.xml out_stereo_proj/run \

out_stereo/run-300m-DEM.tif

# Create the final DEM

point2dem -r earth --tr 0.000277777777778 out_stereo_proj/run-PC.tif

117



Chapter 11

Here we could have again used -t rpc instead of -t aster. The map-projection was done using --tr

0.0000898315284119 which is about 10 meters/pixel.

It is possible to increase the resolution of the �nal DEM slightly by instead map-projecting at 7 meters/pixel,
hence using

--tr .0000628820698883

or smaller correlation and subpixel-re�nement kernels, that is

--corr-kernel 15 15 --subpixel-kernel 25 25

instead of the defaults (21 21 and 35 35) but this comes with increased noise as well, and using a �ner
resolution results in longer run-time.

We also tried to �rst bundle-adjust the cameras, using ASP's bundle_adjust. We did not notice a noticeable
improvement in results.

11.16 SkySat Imagery

In this section we will discuss how to process the SkySat �Video� product.

It is very important to note that this is a very capricious dataset, so some patience will be needed to work
with it. That is due to the following factors:

• The baseline can be small, so the perspective of the left and right image can be too similar.

• The footprint on the ground is small, on the order of 2 km.

• The terrain can be very steep.

• The known longitude-latitude corners of each image have only a few digits of precision, which can
result in poor initial estimated cameras.

Below a recipe for how to deal with this data is described, together with things to watch for and advice
when things don't work.

11.16.1 The input data

We will use as an illustration a mountainous terrain close to Breckenridge, Colorado. The dataset we
fetched is called s4_20181107T175036Z_video.zip. We chose to work with the following four images from
it:

1225648254.44006968_sc00004_c1_PAN.tiff

1225648269.40892076_sc00004_c1_PAN.tiff

1225648284.37777185_sc00004_c1_PAN.tiff

1225648299.37995577_sc00004_c1_PAN.tiff

A sample picture from this image set is shown in �gure 11.12.

It is very important to pick images that have su�cient di�erence in perspective, but which are still reason-
ably similar, as otherwise the procedure outlined in this section will fail.

118



Data Processing Examples

Figure 11.12: An image used in the SkySat example. Reproduced with permission.

11.16.2 Initial camera models and a reference DEM

Based on vendor's documentation, these images are 2560× 1080 pixels. We use the geometric center of the
image as the optical center, which turned out to be a reasonable enough assumption (veri�ed by allowing it
to �oat later). Since the focal length is given as 3.6 m and the pixel pitch is 6.5× 10−6 m, the focal length
in pixels is

3.6/6.5× 10−6 = 553846.153846.

We will fetch an SRTM DEM of the area, which will be used as a reference for registration, from location:

https://e4ftl01.cr.usgs.gov/provisional/MEaSUREs/NASADEM/NorthAmerica/hgt_merge/n39w107.hgt.zip

After unzipping it, we clip it to the area of interest:

gdal_translate -projwin -106.1679167 39.5120833 -106.0034722 39.3895833 \

n39w107.hgt ref_dem_clipped.tif

It is good to be a bit generous with clipping, so that the output DEM goes a few km or more beyond the
region of interest. If the region of interest is not fully covered by an SRTM tile, a neighboring one can be
downloaded as well. They can be merged with dem_mosaic and then cropped as before.

It appears that SRTM stores heights above the geoid, rather than above the datum. Hence it needs to be
adjusted, as follows:

dem_geoid --reverse-adjustment ref_dem_clipped.tif -o run/run

mv run/run-adj.tif ref_dem.tif

This may adjust the DEM by up to 100 meters.

Using the tool cam_gen (section A.41) bundled with ASP, we create an initial camera model and a GCP
�le (section A.4.1) for the �rst image as as follows:

cam_gen output/video/frames/1225648254.44006968_sc00004_c1_PAN.tiff \

--reference-dem ref_dem.tif --focal-length 553846.153846 \

--optical-center 1280 540 --pixel-pitch 1 --height-above-datum 4000 \

--refine-camera --frame-index output/video/frame_index.csv \

--gcp-std 1 -o v1.tsai --gcp-file v1.gcp

119



Chapter 11

This tool works by reading the longitude and latitude of each image corner on the ground from the �le
frame_index.csv, and �nding the position and orientation of the camera that best �ts this data. The
camera is written to v1.tsai. A GCP �le is written to v1.gcp. This will help later with bundle adjustment.

In this command, the optical center and focal length are as mentioned earlier. The reference SRTM DEM
is used to infer the height above datum for each image corner based on its longitude and latitude. The
height value speci�ed via --height-above-datum is used as a fallback option, if for example, the DEM is
incomplete, and is not strictly necessary for this example. This tool also accepts the longitude and latitude
of the corners as an option, via --lon-lat-values.

The �ag --refine-camera makes cam_gen solve a least square problem to re�ne the output camera. In
some rare cases it can get the re�nement wrong, though by and large it it greatly improves the cameras.

For simplicity of notation, we will create a symbolic link from this image to the shorter name v1.tif, and
the GCP �le needs to be edited to re�ect this. The same will apply to the other �les. We will have then
four images, v1.tif, v2.tif, v3.tif, v4.tif, and corresponding camera and GCP �les.

A good sanity check is to visualize these computed cameras in ASP's orbitviz tool. It can be invoked as:

orbitviz v[1-4].tif v[1-4].tsai -o orbit.kml

The output KML �le can then be opened in Google Earth. We very strongly recommend this step, since it
may catch inaccurate cameras which will cause problems later.

Another important check is to map-project these images using the cameras and overlay them in stereo_gui

on top of the reference DEM. Here is an example for the �rst image:

mapproject --t_srs \

'+proj=stere +lat_0=39.4702 +lon_0=253.908 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m' \

ref_dem.tif v1.tif v1.tsai v1_map.tif

Notice that we used above a longitude and latitude around the area of interest. This will need to be
modi�ed for your speci�c example.

11.16.3 Bundle adjustment

At this stage, the cameras should be about right, but not quite exact. We will take care of this using bundle
adjustment. We will invoke this tool twice. In the �rst call we will make the cameras self-consistent, which
can make them move away, however, and in the second call we will bring them back to the original location.

parallel_bundle_adjust -t nadirpinhole --disable-tri-ip-filter \

--disable-pinhole-gcp-init --skip-rough-homography \

--force-reuse-match-files --ip-inlier-factor 2.0 \

--ip-uniqueness-threshold 0.9 --ip-per-tile 2000 \

--datum WGS84 --inline-adjustments --camera-weight 0 \

--overlap-limit 10 --robust-threshold 10 \

--remove-outliers-params '75 3 4 5' \

--ip-num-ransac-iterations 1000 \

--num-passes 2 --num-iterations 2000 \

v[1-4].tif v[1-4].tsai -o ba/run

parallel_bundle_adjust -t nadirpinhole --datum WGS84 \

120



Data Processing Examples

--force-reuse-match-files --inline-adjustments \

--num-passes 1 --num-iterations 0 \

--transform-cameras-using-gcp \

v[1-4].tif ba/run-v[1-4].tsai v[1-4].gcp -o ba/run

It is very important to not use the �pinhole� session here, rather �nadirpinhole� as the former does not �lter
well interest points in this steep terrain.

The output optimized cameras will be named ba/run-run-v[1-4].tsai. The reason one has the word
�run� repeated is because we ran this tool twice. The intermediate cameras from the �rst run were called
ba/run-v[1-4].tsai.

Here we use --ip-per-tile 2000 to create a lot of interest points. This will help with alignment later. It is
suggested that the user study all these options and understand what they do. We also used --robust-threshold
10 to force the solver to work the bigger errors. That is necessary since the initial cameras could be pretty
inaccurate.

It is very important to examine the residual �le named

ba/run-final_residuals_no_loss_function_pointmap_point_log.csv

Here, the third column are the heights of triangulated interest points, while the fourth column are the
reprojection errors. Normally these errors should be a fraction of a pixel, as otherwise the solution did not
converge. The last entries in this �le correspond to the GCP, and those should be looked at carefully as
well. The reprojection errors for GCP should be on the order of tens of pixels because the longitude and
latitude of each GCP are not well-known.

It is also very important to examine the obtained match �les in the output directory. If there are too few
matches, particularly among very similar images, one may need to increase the value of --epipolar-threshold
(or of --ip-inlier-factor for the not-recommended pinhole session). Note that a large value here may
allow more outliers.

Another thing one should keep an eye on is the height above datum of the camera centers as printed by
bundle adjustment towards the end. Any large di�erence in camera heights (say more than a few km) could
be a symptom of some failure.

11.16.4 Creating terrain models

The next step is to run stereo and create DEMs.

We will run the following command for each pair of images. Note that we reuse the �ltered match points
created by bundle adjustment.

i=1

((j=i+1))

st=stereo_v${i}${j}

rm -rfv $st

mkdir -p $st

cp -fv ba/run-v${i}__v${j}-clean.match $st/run-v${i}__v${j}.match

parallel_stereo --skip-rough-homography -t nadirpinhole --stereo-algorithm 2 \

v${i}.tif v${j}.tif ba/run-run-v${i}.tsai ba/run-run-v${j}.tsai $st/run

point2dem --stereographic --proj-lon 253.90793 --proj-lat 39.47021 --tr 4 \

--errorimage $st/run-PC.tif

121



Chapter 11

(Repeat this for other values of i.)

Here we chose to use a stereographic projection in point2dem centered on this region to create the DEM
in units of meter. One can can also use a di�erent projection that can be passed to the option --t_srs, or
if doing as above, the center of the projection would need to change if working on a di�erent region.

It is important to examine the mean intersection error for each DEM:

gdalinfo -stats stereo_v12/run-IntersectionErr.tif | grep Mean

which should hopefully be no more than 0.5 meters, otherwise likely bundle adjustment failed. One should
also compare the DEMs among themselves:

geodiff --absolute stereo_v12/run-DEM.tif stereo_v23/run-DEM.tif -o tmp

gdalinfo -stats tmp-diff.tif | grep Mean

(And so on for any other pair.) Here the mean error should be on the order of 2 meters, or hopefully less.

11.16.5 Mosaicking and alignment

If more than one image pair was used, the obtained DEMs can be mosaicked:

dem_mosaic stereo_v12/run-DEM.tif stereo_v23/run-DEM.tif \

stereo_v34/run-DEM.tif -o mosaic.tif

This DEM can be hillshaded and overlayed on top of the reference DEM.

The next step is aligning it to the reference.

pc_align --max-displacement 1000 --save-transformed-source-points \

--alignment-method similarity-point-to-point \

ref_dem.tif mosaic.tif -o align/run

It is important to look at the errors printed by this tool before and after alignment, as well as details about
the alignment that was applied. The obtained aligned cloud can be made into a DEM again:

point2dem --stereographic --proj-lon 253.90793 --proj-lat 39.47021 --tr 4 \

align/run-trans_source.tif

The absolute di�erence before and after alignment can be found as follows:

geodiff --absolute mosaic.tif ref_dem.tif -o tmp

gdalinfo -stats tmp-diff.tif | grep Mean

geodiff --absolute align/run-trans_source-DEM.tif ref_dem.tif -o tmp

gdalinfo -stats tmp-diff.tif | grep Mean

In this case the mean error after alignment was about 6.5 m, which is not too bad given that the reference
DEM resolution is about 30 m/pixel.

122



Data Processing Examples

11.16.6 Alignment of cameras

The transform computed with pc_align can be used to bring the cameras in alignment to the reference
DEM. That can be done as follows:

parallel_bundle_adjust -t nadirpinhole --datum wgs84 \

--force-reuse-match-files \

--inline-adjustments --num-passes 1 --num-iterations 0 \

--initial-transform align/run-transform.txt \

v[1-4].tif ba/run-run-v[1-4].tsai -o ba/run

creating the aligned cameras ba/run-run-run-v[1-4].tsai. If pc_align was called with the reference
DEM being the second cloud, one should use above the �le

align/run-inverse-transform.txt

as the initial transform.

11.16.7 Mapprojection

If the steep topography prevents good DEMs from being created, one can map-project the images �rst onto
the reference DEM:

for i in 1 2 3 4; do

mapproject ref_dem.tif v${i}.tif ba/run-run-run-v${i}.tsai v${i}_map.tif

done

and then run stereo with the mapprojected images, such as:

i=1

((j=i+1))

rm -rfv stereo_map_v${i}${j}

stereo v${i}_map.tif v${j}_map.tif \

ba/run-run-run-v${i}.tsai ba/run-run-run-v${j}.tsai \

stereo_map_v${i}${j}/run ref_dem.tif --session-type pinhole \

--cost-mode 4 --stereo-algorithm 2 --corr-seed-mode 1 \

--alignment-method none --corr-tile-size 9000

point2dem --stereographic --proj-lon 253.90793 --proj-lat 39.47021 --tr 4 \

--errorimage stereo_map_v${i}${j}/run-PC.tif

It is important to note that here we used the cameras that were aligned with the reference DEM. We could
have as well mapprojected onto a lower-resolution version of the mosaicked and aligned DEM with its holes
�lled.

123



Chapter 11

11.16.8 When things fail

Processing SkySat images is di�cult, for various reasons mentioned earlier. A few suggestions were also
o�ered along the way when things go wrong.

Problems are usually due to cameras being initialized inaccurately by cam_gen or bundle adjustment not
optimizing them well. The simplest solution is often to just try a di�erent pair of images from the sequence,
say from earlier or later in the �ight, or a pair with less overlap, or with more time elapsed between the
two acquisitions. Modifying various parameters may help as well.

We have experimented su�ciently with various SkySat datasets to be sure that the intrinsics (focal length,
optical center, and pixel pitch) are usually not the issue, rather the positions and orientations of the cameras.

11.16.9 Structure from motion

In case cam_gen does not create su�ciently good cameras, one can attempt to use the camera_solve tool
(chapter 9). This will create hopefully good cameras but in an arbitrary coordinate system. Then we will
transfer those to the world coordinates using GCP.

Here is an example for two cameras:

out=out_v12

ba_params="--num-passes 1 --num-iterations 0 --transform-cameras-using-gcp"

theia_overdides="--sift_num_levels=6 --lowes_ratio=0.9

--min_num_inliers_for_valid_match=10

--min_num_absolute_pose_inliers=10

--bundle_adjustment_robust_loss_function=CAUCHY

--post_rotation_filtering_degrees=180.0 --v=2

--max_sampson_error_for_verified_match=100.0

--max_reprojection_error_pixels=100.0

--triangulation_reprojection_error_pixels=100.0

--min_num_inliers_for_valid_match=10

--min_num_absolute_pose_inliers=10"

rm -rfv $out

camera_solve $out --datum WGS84 --calib-file v1.tsai \

--bundle-adjust-params "$ba_params v1.gcp v2.gcp" v1.tif v2.tif

The obtained cameras should be bundle-adjusted as done for the outputs of cam_gen. Note that this tool is
capricious and its outputs can be often wrong. In the future it will be replaced by something more robust.

11.16.10 RPC models

Some SkySat datasets come with RPC camera models, typically embedded in the images. This can be
veri�ed by running

gdalinfo -stats output/video/frames/1225648254.44006968_sc00004_c1_PAN.tiff

We found that these models are not su�ciently robust for stereo. But they can be used to create initial
guess cameras with cam_gen instead of using longitude and latitude of corners. Here is an example:

124



Data Processing Examples

img=output/video/frames/1225648254.44006968_sc00004_c1_PAN.tiff

cam_gen $img --reference-dem ref_dem.tif --focal-length 553846.153846 \

--optical-center 1280 540 --pixel-pitch 1 --height-above-datum 4000 \

--refine-camera --gcp-std 1 --input-camera $img \

-o v1_rpc.tsai --gcp-file v1_rpc.gcp

(Note that the Breckenridge dataset does not have RPC data, but other datasets do.)

Then one can proceed as earlier (particularly the GCP �le can be edited to re�ect the shorter image name).

One can also regenerate the provided SkySat RPC model as:

cam2rpc -t rpc --dem-file dem.tif input.tif output.xml

Here, the reference DEM should go beyond the extent of the image. This tool makes it possible to decide
how �nely to sample the DEM, and one can simply use longitude-latitude and height ranges instead of the
DEM.

We assumed in the last command that the input image implicitly stores the RPC camera model, as is the
case for SkySat.

Also, any pinhole camera models obtained using our software can be converted to RPC models as follows:

cam2rpc --dem-file dem.tif input.tif input.tsai output.xml

11.16.11 Bundle adjustment using reference terrain

At this stage, if desired, but this is rather unnecessary, one can do joint optimization of the cameras using
dense and uniformly distributed interest points, and using the reference DEM as a constraint. This should
make the DEMs more consistent among themselves and closer to the reference DEM.

It is also possible to �oat the intrinsics, per section 8.2.1, which sometimes can improve the results further.

For that, one should repeat the stereo_tri part of of the stereo commands from section 11.16.4 with
the �ags --num-matches-from-disp-triplets 10000 and --unalign-disparity to obtain dense interest
points and unaligned disparity.

The match points can be examined as:

stereo_gui v1.tif v2.tif stereo_v12/run-disp-v1__v2.match

and the same for the other image pairs. Hopefully they will �ll as much of the images as possible. One
should also study the unaligned disparities, for example

stereo_v12/run-v1__v2-unaligned-D.tif

by invoking disparitydebug on it and then visualizing the two obtained images. Hopefully these disparities
are dense and with few holes.

The dense interest points should be copied to the new bundle adjustment directory, such as

mkdir -p ba_ref_terrain

cp stereo_v12/run-disp-v1__v2.match ba_ref_terrain/run-v1__v2.match

125



Chapter 11

and the same for the other ones (note the convention for match �les in the new directory). The unaligned
disparities can be used from where they are.

Then bundle adjustment using the reference terrain constraint proceeds as follows:

disp_list=$(ls stereo_v[1-4][1-4]/*-unaligned-D.tif)

bundle_adjust v[1-4].tif ba/run-run-run-v[1-4].tsai -o ba_ref_terrain/run \

--reference-terrain ref_dem.tif --disparity-list "$disp_list" \

--max-num-reference-points 10000000 --reference-terrain-weight 50 \

--parameter-tolerance 1e-12 -t nadirpinhole --max-iterations 500 \

--overlap-limit 1 --inline-adjustments --robust-threshold 2 \

--force-reuse-match-files --max-disp-error 100 --camera-weight 0

If invoking this creates new match �les, it means that the dense match �les were not copied successfully to
the new location. If this optimization is slow, perhaps too many reference terrain points were picked.

This will create, as before, the residual �le named

ba_ref_terrain/run-final_residuals_no_loss_function_pointmap_point_log.csv

showing how consistent are the cameras among themselves, and in addition, a �le named

ba_ref_terrain/run-final_residuals_no_loss_function_reference_terrain.txt

which tells how well the cameras are aligned to the reference terrain. The errors in the �rst �le should be
under 1 pixel, and in the second one should be mostly under 2-3 pixels (both are the fourth column in these
�les).

The value of --reference-terrain-weight can be increased to make the alignment to the reference terrain
a little tighter.

It is hoped that after running stereo with these re�ned cameras, the obtained DEMs will di�er by less than
2 m among themselves, and by less than 4 m as compared to the reference DEM.

11.16.12 Floating the camera intrinsics

If desired to �oat the focal length as part of the optimization, one should pass in addition, the options

--solve-intrinsics --intrinsics-to-float 'focal_length'

Floating the optical center can be done by adding it in as well.

It is important to note that for SkySat the intrinsics seem to be already quite good, and �oating them is not
necessary and is only shown for completeness. If one wants to �oat them, one should vary the focal length
while keeping the optical center �xed, and vice versa, and compare the results. Then, with the result that
shows most promise, one should vary the other parameter. If optimizing the intrinsics too aggressively, it is
not clear if they will still deliver better results with other images or if comparing with a di�erent reference
terrain.

Yet, if desired, one can �oat even the distortion parameters. For that, the input camera �les need to be
converted to some camera model having these (see section D.1), and their values can be set to something
very small. One can use the Brown-Conrady model, for example, so each camera �le must have instead of
NULL at the end the �elds:

126



Data Processing Examples

BrownConrady

xp = -1e-12

yp = -1e-12

k1 = -1e-10

k2 = -1e-14

k3 = -1e-22

p1 = -1e-12

p2 = -1e-12

phi = -1e-12

There is always a chance when solving these parameters that the obtained solution is not optimal. Hence,
one can also try using as initial guesses di�erent values, for example, by negating the above numbers.

One can also try to experiment with the option --heights-from-dem, and also with --robust-threshold

if it appears that the large errors are not minimized enough.

11.17 Declassi�ed satellite images: KH-4B

ASP supports the declassi�ed high-resolution CORONA KH-4B images. These images can be processed
using either optical bar (panoramic) camera models or as pinhole camera models with RPC distortion.
Most of the steps are similar to the example in section 11.12. The optical bar camera model is based on
[132] and [139], whose format is described in section D.3.

11.17.1 Fetching the data

KH-4B images are available via the USGS Earth Explorer, at

https://earthexplorer.usgs.gov/

(an account is required to download the data). We will work with the KH-4B image pair

DS1105-2248DF076

DS1105-2248DA082

To get these from Earth Explorer, click on the Data Sets tab and select the three types of declassi�ed data
available, then in the Additional Criteria tab choose Declass 1, and in the Entity ID �eld in that tab
paste the above frames (if no results are returned, one can attempt switching above to Declass 2, etc).
Clicking on the Results tab presents the user with information about these frames.

Clicking on Show Metadata and Browse for every image will pop-up a table with meta-information. That
one can be pasted into a text �le, named for example, DS1105-2248DF076.txt for the �rst image, from
which later the longitude and latitude of each image corner will be parsed. Then one can click on Download

Options to download the data.

11.17.2 Stitching the images

Each downloaded image will be made up of 2-4 portions, presumably due to the limitations of the scanning
equipment. They can be stitched together using ASP's image_mosaic tool (section A.9).

127

https://earthexplorer.usgs.gov/


Chapter 11

For some reason, the KH-4B images are scanned in an unusual order. To mosaic them, the last image must
be placed �rst, the next to last should be second, etc. In addition, as seen from the tables of metadata
discussed earlier, some images correspond to the Aft camera type. Those should be rotated 180 degrees after
mosaicking, hence below we use the --rotate �ag for that one. The overlap width is manually determined
by looking at two of the sub images in stereo_gui.

With this in mind, image mosaicking for these two images will happen as follows:

image_mosaic DS1105-2248DF076_d.tif DS1105-2248DF076_c.tif \

DS1105-2248DF076_b.tif DS1105-2248DF076_a.tif -o DS1105-2248DF076.tif \

--ot byte --overlap-width 7000 --blend-radius 2000

image_mosaic DS1105-2248DA082_d.tif DS1105-2248DA082_c.tif \

DS1105-2248DA082_b.tif DS1105-2248DA082_a.tif -o DS1105-2248DA082.tif \

--ot byte --overlap-width 7000 --blend-radius 2000 --rotate

In order to process with the optical bar camera model these images need to be cropped to remove the most
of empty area around the image. The four corners of the valid image area can be manually found by clicking
on the corners in stereo_gui. Note that for some input images it can be unclear where the proper location
for the corner is due to edge artifacts in the �lm. Do your best to select the image corners such that obvious
artifacts are kept out and all reasonable image sections are kept in. ASP provides a simple Python tool
called historical_helper.py to rotate the image so that the top edge is horizontal while also cropping
the boundaries. Pass in the corner coordinates as shown below in the order top-left, top-right, bot-right,
bot-left (column then row). This is also a good opportunity to simplify the �le names going forwards.

historical_helper.py rotate-crop --input-path DS1105-2248DA082.tif --output-path aft.tif \

--interest-points '4523 1506 114956 1450 114956 9355 4453 9408'

historical_helper.py rotate-crop --input-path DS1105-2248DF076.tif --output-path for.tif \

--interest-points '6335 1093 115555 1315 115536 9205 6265 8992'

11.17.3 Fetching a ground truth DEM

To create initial cameras to use with these images, and to later re�ne and validate the terrain model made
from them, we will need a ground truth source. Several good sets of DEMs exist, including SRTM, ASTER,
and TanDEM-X. Here we will work with SRTM, which provides DEMs with a 30-meter post spacing. The
bounds of the region of interest are inferred from the tables with meta-information from above. We will
use wget to fetch

https:

//e4ftl01.cr.usgs.gov/provisional/MEaSUREs/NASADEM/Eurasia/hgt_merge/n31e099.hgt.zip

and also tiles n31e100 and n31e101. After unzipping, these can be merged and cropped as follows:

dem_mosaic n*.hgt --t_projwin 99.6 31.5 102 31 -o dem.tif

Determining these bounds and the visualization of all images and DEMs can be done in stereo_gui.

The SRTM DEM may need adjustment, as discussed in section 11.16.2.

128

https://e4ftl01.cr.usgs.gov/provisional/MEaSUREs/NASADEM/Eurasia/hgt_merge/n31e099.hgt.zip
https://e4ftl01.cr.usgs.gov/provisional/MEaSUREs/NASADEM/Eurasia/hgt_merge/n31e099.hgt.zip


Data Processing Examples

11.17.4 Creating camera �les

ASP provides the tool named cam_gen that, based on a camera's intrinsics and the positions of the image
corners on Earth's surface will create initial camera models that will be the starting point for aligning the
cameras.

To create optical bar camera models, an example camera model �le is needed. This needs to contain all of
the expected values for the camera, though image_size, image_center, iC, and IR can be any value since
they will be recalculated. The pitch is determined by the resolution of the scanner used, which is seven
microns. The other values are determined by looking at available information about the satellite. For the
�rst image (DS1105-2248DF076) the following values were used:

VERSION_4

OPTICAL_BAR

image_size = 13656 1033

image_center = 6828 517

pitch = 7.0e-06

f = 0.61000001430511475

scan_time = 0.5

forward_tilt = 0.2618

iC = -1030862.1946224371 5468503.8842079658 3407902.5154047827

iR = -0.95700845635275322 -0.27527006183758934 0.091439638698163225 \

-0.26345593052063937 0.69302501329766897 -0.67104940475144637 \

0.1213498543172795 -0.66629027007731101 -0.73575232847574434

speed = 7700

mean_earth_radius = 6371000

mean_surface_elevation = 4000

motion_compensation_factor = 1.0

scan_dir = right

For a description of each value, see D.3. For the other image (aft camera) the forward tilt was set to -0.2618
and scan_dir was set to 'left'. The correct values for scan_dir (left or right) and use_motion_compensation
(1.0 or -1.0) are not known for certain due to uncertainties about how the images were recorded and may
even change between launches of the KH-4 satellite. You will need to experiment to see which combination
of settings produces the best results for your particular data set.

The metadata table from Earth Explorer has the following entries for DS1105-2248DF076:

NW Corner Lat dec 31.266

NW Corner Long dec 99.55

NE Corner Lat dec 31.55

NE Corner Long dec 101.866

SE Corner Lat dec 31.416

SE Corner Long dec 101.916

SW Corner Lat dec 31.133

SW Corner Long dec 99.55

These correspond to the upper-left, upper-right, lower-right, and lower-left pixels in the image. We will
invoke cam_gen as follows:

cam_gen --sample-file sample_kh4b_for_optical_bar.tsai --camera-type opticalbar \

129



Chapter 11

--lon-lat-values '99.55 31.266 101.866 31.55 101.916 31.416 99.55 31.133' \

for.tif --reference-dem dem.tif --refine-camera -o for.tsai

cam_gen --sample-file sample_kh4b_aft_optical_bar.tsai --camera-type opticalbar

--lon-lat-values '99.566 31.266 101.95 31.55 101.933 31.416 99.616 31.15' \

aft.tif --reference-dem dem.tif --refine-camera -o aft.tsai

It is very important to note that if, for example, the upper-left image corner is in fact the NE corner from
the metadata, then that corner should be the �rst in the longitude-latitude list when invoking this tool.

An important sanity check is to mapproject the images with these cameras, for example as:

mapproject dem.tif for.tif for.tsai for.map.tif

and then overlay the mapprojected image on top of the DEM in stereo_gui. If it appears that the image
was not projected correctly, likely the order of image corners was incorrect. At this stage it is not unusual
that the mapprojected images are shifted from where they should be, that will be corrected later.

11.17.5 Bundle adjustment and stereo

Before processing the input images it is a good idea to experiment with reduced resolution copies in order
to accelerate testing. You can easily generate reduced resolution copies of the images using stereo_gui

as shown below. When making a copy of the camera model �les, make sure to update image_size, im-
age_center (divide by N), and the pitch (multiply by N) to account for the downsample amount.

stereo_gui for.tif aft.tif --create-image-pyramids-only

ln -s for_sub8.tif for_small.tif

ln -s aft_sub8.tif aft_small.tif

cp for.tsai for_small.tsai

cp aft.tsai aft_small.tsai

You can now run bundle adjustment on the downsampled images:

bundle_adjust for_small.tif aft_small.tif \

for_small.tsai aft_small.tsai \

-o ba_small/run --max-iterations 100 --camera-weight 0 \

--disable-tri-ip-filter --disable-pinhole-gcp-init \

--skip-rough-homography --inline-adjustments \

--ip-detect-method 1 -t opticalbar --datum WGS84

Followed by stereo and DEM creation:

parallel_stereo for_small.tif aft_small.tif \

ba_small/run-for_small.tsai ba_small/run-aft_small.tsai \

stereo_small_mgm/run --alignment-method affineepipolar \

-t opticalbar --skip-rough-homography --disable-tri-ip-filter \

--skip-low-res-disparity-comp --ip-detect-method 1 \

--stereo-algorithm 2

point2dem --stereographic --proj-lon 100.50792 --proj-lat 31.520417 \

--tr 30 stereo_small_mgm/run-PC.tif

130



Data Processing Examples

This will create a very rough initial DEM. It is su�cient however to align and compare with the SRTM
DEM:

pc_align --max-displacement -1 \

--initial-transform-from-hillshading similarity \

--save-transformed-source-points --num-iterations 0 \

--max-num-source-points 1000 --max-num-reference-points 1000 \

dem.tif stereo_small_mgm/run-DEM.tif -o stereo_small_mgm/run

point2dem --stereographic --proj-lon 100.50792 --proj-lat 31.520417 \

--tr 30 stereo_small_mgm/run-trans_source.tif

This will hopefully create a DEM aligned to the underlying SRTM. There is a chance that this may fail as
the two DEMs to align could be too di�erent. In that case, one can re-run point2dem to re-create the DEM
to align with a coarser resolution, say with --tr 120, then re-grid the SRTM DEM to the same resolution,
which can be done as:

pc_align --max-displacement -1 dem.tif dem.tif -o dem/dem \

--num-iterations 0 --max-num-source-points 1000 \

--max-num-reference-points 1000 --save-transformed-source-points

point2dem --stereographic --proj-lon 100.50792 --proj-lat 31.520417 \

--tr 120 dem/dem-trans_source.tif

You can then try to align the newly obtained coarser SRTM DEM to the coarser DEM from stereo.

11.17.6 Floating the intrinsics

The obtained alignment transform can be used to align the cameras as well, and then one can experiment
with �oating the intrinsics, as in section 11.16.

11.17.7 Modeling the camera models as pinhole cameras with RPC distortion

Once su�ciently good optical bar cameras are produced and the DEMs from them are reasonably similar
to some reference terrain ground truth, such as SRTM, one may attempt to improve the accuracy further
by modeling these cameras as simple pinhole models with the nonlinear e�ects represented as a distortion
model given by Rational Polynomial Coe�cients (RPC) of any desired degree (see section D.1). The best
�t RPC representation can be found for both optical bar models, and the RPC can be further optimized
using the reference DEM as a constraint.

To convert from optical bar models to pinhole models with RPC distortion one does

convert_pinhole_model for_small.tif for_small.tsai -o for_small_rpc.tsai \

--output-type RPC --sample-spacing 50 --rpc-degree 2

and the same for the other camera. The obtained cameras should be bundle-adjusted as before. One can
create a DEM and compare it with the one obtained with the earlier cameras. Likely some shift in the
position of the DEM will be present, but hopefully not too large. The pc_align tool can be used to make
this DEM aligned to the reference DEM.

131



Chapter 11

Next, one follows the same process as outlined in sections 11.16 and 8.2.1 to re�ne the RPC coe�cients.
We will �oat the RPC coe�cients of the left and right images independently, as they are unrelated. Hence
the command we will use is:

bundle_adjust for_small.tif aft_small.tif for_small_rpc.tsai aft_small_rpc.tsai \

-o ba_rpc/run --max-iterations 200 --camera-weight 0 \

--disable-tri-ip-filter --disable-pinhole-gcp-init \

--skip-rough-homography --inline-adjustments \

--ip-detect-method 1 -t nadirpinhole --datum WGS84 \

--force-reuse-match-files --reference-terrain-weight 1000 \

--parameter-tolerance 1e-12 --max-disp-error 100 \

--disparity-list stereo/run-unaligned-D.tif \

--max-num-reference-points 40000 --reference-terrain srtm.tif \

--solve-intrinsics --intrinsics-to-share 'focal_length optical_center' \

--intrinsics-to-float other_intrinsics --robust-threshold 10 \

--initial-transform pc_align/run-transform.txt

Here it is suggested to use a match �le with dense interest points. The initial transform is the transform
written by pc_align applied to the reference terrain and the DEM obtained with the camera models
for_small_rpc.tsai and aft_small_rpc.tsai (with the reference terrain being the �rst of the two clouds
passed to the alignment program). The unaligned disparity in the disparity list should be from the stereo
run with these initial guess camera models (hence stereo should be used with the �-unalign-disparity

option). It is suggested that the optical center and focal lengths of the two cameras be kept �xed, as RPC
distortion should be able model any changes in those quantities as well.

One can also experiment with the option --heights-from-dem instead of --reference-terrain. The
former seems to be able to handle better large height di�erences between the DEM with the initial cameras
and the reference terrain, while the former is better at re�ning the solution.

Then one can create a new DEM from the optimized camera models and see if it is an improvement.

11.18 Declassi�ed satellite images: KH-7

KH-7 was an e�ective observation satellite that followed the Corona program. It contained an index (frame)
camera and a single strip (pushbroom) camera. ASP does currently have a dedicated camera model for this
camera, so we will have to try to approximate it with a pinhole model. Without a dedicated solution for
this camera, you may only be able to get good results near the central region of the image.

For this example we �nd the following images in Earth Explorer declassi�ed collection 2:

DZB00401800038H025001

DZB00401800038H026001

Make note of the lat/lon corners of the images listed in Earth Explorer, and note which image corners
correspond to which compass locations.

After downloading and unpacking the images, we merge them with the image_mosaic tool. These images
have a large amount of overlap and we need to manually lower the blend radius so that we do not have
memory problems when merging the images. Note that the image order is di�erent for each image.

image_mosaic DZB00401800038H025001_b.tif DZB00401800038H025001_a.tif \

132



Data Processing Examples

-o DZB00401800038H025001.tif --ot byte --blend-radius 2000 --overlap-width 10000 \

image_mosaic DZB00401800038H026001_a.tif DZB00401800038H026001_b.tif \

-o DZB00401800038H026001.tif --ot byte --blend-radius 2000 --overlap-width 10000 \

For this image pair we will use the following SRTM images from Earth Explorer:

n22_e113_1arc_v3.tif

n23_e113_1arc_v3.tif

dem_mosaic n22_e113_1arc_v3.tif n23_e113_1arc_v3.tif -o srtm_dem.tif

(The SRTM DEM may need adjustment, as discussed in section 11.16.2.)

Next we crop the input images so they only contain valid image area.

historical_helper.py rotate-crop --input-path DZB00401800038H025001.tif \

--output-path 5001.tif --interest-points '1847 2656 61348 2599 61338 33523 1880 33567'

historical_helper.py rotate-crop --input-path DZB00401800038H026001.tif \

--output-path 6001.tif --interest-points '566 2678 62421 2683 62290 33596 465 33595'

We will try to approximate the KH7 camera using a pinhole model. The pitch of the image is determined
by the scanner, which is 7.0e-06 meters per pixel. The focal length of the camera is reported to be 1.96
meters, and we will set the optical center at the center of the image. We need to convert the optical center
to units of meters, which means multiplying the pixel coordinates by the pitch to get units of meters.

Using the image corner coordinates which we recorded earlier, use the cam_gen tool to generate camera
models for each image, being careful of the order of coordinates.

cam_gen --pixel-pitch 7.0e-06 --focal-length 1.96 \

--optical-center 0.2082535 0.1082305 \

--lon-lat-values '113.25 22.882 113.315 23.315 113.6 23.282 113.532 22.85' \

5001.tif --reference-dem srtm_dem.tif --refine-camera -o 5001.tsai

cam_gen --pixel-pitch 7.0e-06 --focal-length 1.96 \

--optical-center 0.216853 0.108227 \

--lon-lat-values '113.2 22.95 113.265 23.382 113.565 23.35 113.482 22.915' \

6001.tif --reference-dem srtm_dem.tif --refine-camera -o 6001.tsai

A quick way to evaluate the camera models is to use the camera_footprint tool to create KML footprint
�les, then look at them in Google Earth. For a more detailed view, you can map project them and overlay
them on the reference DEM in stereo_gui.

camera_footprint 5001.tif 5001.tsai --datum WGS_1984 --quick \

--output-kml 5001_footprint.kml -t nadirpinhole --dem-file srtm_dem.tif

camera_footprint 6001.tif 6001.tsai --datum WGS_1984 --quick \

--output-kml 6001_footprint.kml -t nadirpinhole --dem-file srtm_dem.tif

The output �les from cam_gen will be roughly accurate but they may still be bad enough that bundle_adjust
has trouble �nding a solution. One way to improve your initial models is to use ground control points. For
this test case I was able to match features along the rivers to the same rivers in a hillshaded version of the
reference DEM. I used three sets of GCPs, one for each image individually and a joint set for both images.
I then ran bundle_adjust individually for each camera using the GCPs.

133



Chapter 11

bundle_adjust 5001.tif 5001.tsai gcp_5001.gcp -t nadirpinhole --inline-adjustments \

--num-passes 1 --camera-weight 0 --ip-detect-method 1 -o bundle_5001/out \

--max-iterations 30 --fix-gcp-xyz

bundle_adjust 6001.tif 6001.tsai gcp_6001.gcp -t nadirpinhole --inline-adjustments \

--num-passes 1 --camera-weight 0 --ip-detect-method 1 -o bundle_6001/out \

--max-iterations 30 --fix-gcp-xyz

At this point it is a good idea to experiment with downsampled copies of the input images before running
processing with the full size images. You can generate these using stereo_gui. Also make copies of the
camera model �les and scale the image center and pitch to match the downsample amount.

stereo_gui 5001.tif 6001.tif --create-image-pyramids-only

ln -s 5001_sub16.tif 5001_small.tif

ln -s 6001_sub16.tif 6001_small.tif

cp 5001.tsai 5001_small.tsai

cp 6001.tsai 6001_small.tsai

Now we can run bundle_adjust and stereo. If you are using the GCPs from earlier, the pixel values will
need to be scaled to match the downsampling applied to the input images.

bundle_adjust 5001_small.tif 6001_small.tif bundle_5001/out-5001_small.tsai \

bundle_6001/out-6001_small.tsai gcp_small.gcp -t nadirpinhole \

-o bundle_small_new/out --force-reuse-match-files --max-iterations 30 \

--camera-weight 0 --disable-tri-ip-filter --disable-pinhole-gcp-init \

--skip-rough-homography --inline-adjustments --ip-detect-method 1 \

--datum WGS84 --num-passes 2

stereo --alignment-method homography --skip-rough-homography \

--disable-tri-ip-filter --ip-detect-method 1 --session-type nadirpinhole \

5001_small.tif 6001_small.tif bundle_small_new/out-out-5001_small.tsai \

bundle_small_new/out-out-6001_small.tsai st_small_new/out

gdal_translate -b 4 st_small_new/out-PC.tif st_small_new/error.tif

Looking at the error result, it is clear that the simple pinhole model is not doing a good job modeling the
KH7 camera. We can try to improve things by adding a distortion model to replace the NULL model in
the .tsai �les we are using.

BrownConrady

xp = -1e-12

yp = -1e-12

k1 = -1e-10

k2 = -1e-14

k3 = -1e-22

p1 = -1e-12

p2 = -1e-12

phi = -1e-12

134



Data Processing Examples

Once the distortion model is added, you can use bundle_adjust to optimize them. See the section on
solving for pinhole intrinsics in the KH4B example for details. We hope to provide a more rigorous method
of modeling the KH7 camera in the future.

11.19 Declassi�ed satellite images: KH-9

The KH-9 satellite contained one frame camera and two panoramic cameras, one pitched forwards and one
aft. The frame camera is a normal pinhole model so this example describes how to set up the panoramic
cameras for processing. Processing this data is similar to processing KH-4B data except that the images
are much larger.

For this example we use the following images from the Earth Explorer declassi�ed collection 3:

D3C1216-200548A041

D3C1216-200548F040

Make note of the lat/lon corners of the images listed in Earth Explorer, and note which image corners
correspond to which compass locations.

After downloading and unpacking the images, we merge them with the image_mosaic tool.

image_mosaic D3C1216-200548F040_a.tif D3C1216-200548F040_b.tif D3C1216-200548F040_c.tif \

D3C1216-200548F040_d.tif D3C1216-200548F040_e.tif D3C1216-200548F040_f.tif \

D3C1216-200548F040_g.tif D3C1216-200548F040_h.tif D3C1216-200548F040_i.tif \

D3C1216-200548F040_j.tif D3C1216-200548F040_k.tif D3C1216-200548F040_l.tif \

--ot byte --overlap-width 3000 -o D3C1216-200548F040.tif

image_mosaic D3C1216-200548A041_a.tif D3C1216-200548A041_b.tif D3C1216-200548A041_c.tif \

D3C1216-200548A041_d.tif D3C1216-200548A041_e.tif D3C1216-200548A041_f.tif \

D3C1216-200548A041_g.tif D3C1216-200548A041_h.tif D3C1216-200548A041_i.tif \

D3C1216-200548A041_j.tif D3C1216-200548A041_k.tif --overlap-width 1000 \

--ot byte -o D3C1216-200548A041.tif --rotate

These images also need to be cropped to remove most of the area around the images:

historical_helper.py rotate-crop --input-path D3C1216-200548F040.tif --output-path for.tif \

--interest-points '2414 1190 346001 1714 345952 23960 2356 23174'

historical_helper.py rotate-crop --input-path D3C1216-200548A041.tif --output-path aft.tif \

--interest-points '1624 1333 346183 1812 346212 24085 1538 23504'

For this example there are ASTER DEMs which can be used for reference. They can be downloaded from
https://gdex.cr.usgs.gov/gdex/ as single GeoTIFF �les. To cover the entire area of this image pair you
may need to download two �les separately and merge them using dem_mosaic.

As with KH-4B, this satellite contains a forward pointing and aft pointing camera that need to have di�erent
values for "forward_tilt" in the sample camera �les. The suggested values are -0.174533 for the aft camera
and 0.174533 for the forward camera. Note that some KH9 images have a much smaller �eld of view
(horizontal size) than others!

VERSION_4

135

https://gdex.cr.usgs.gov/gdex/


Chapter 11

OPTICAL_BAR

image_size = 62546 36633

image_center = 31273 18315.5

pitch = 7.0e-06

f = 1.5

scan_time = 0.7

forward_tilt = 0.174533

iC = -1053926.8825477704 5528294.6575468015 3343882.1925249361

iR = -0.96592328992496967 -0.16255393156297787 0.20141603042941184 \

-0.23867502833024612 0.25834753840712932 -0.93610404349651921 \

0.10013205696518604 -0.95227767417513032 -0.28834146846321851

speed = 8000

mean_earth_radius = 6371000

mean_surface_elevation = 0

motion_compensation_factor = 1

scan_dir = right

Camera �les are generated using cam_gen from a sample camera �le as in the previous examples.

cam_gen --sample-file sample_kh9_for_optical_bar.tsai --camera-type opticalbar \

--lon-lat-values '-151.954 61.999 -145.237 61.186 -145.298 60.944 -152.149 61.771' \

for.tif --reference-dem aster_dem.tif --refine-camera -o for.tsai

cam_gen --sample-file sample_kh9_aft_optical_bar.tsai --camera-type opticalbar \

--lon-lat-values '-152.124 61.913 -145.211 61.156 -145.43 60.938 -152.117 61.667' \

aft.tif --reference-dem aster_dem.tif --refine-camera -o aft.tsai

As with KH-4B, it is best to �rst experiment with low resolution copies of the images. Don't forget to scale
the image size, center location, and pixel size in the new camera �les!

stereo_gui for.tif aft.tif --create-image-pyramids-only

ln -s for_sub32.tif for_small.tif

ln -s aft_sub32.tif aft_small.tif

cp for.tsai for_small.tsai

cp aft.tsai aft_small.tsai

From this point KH-9 data can be processed in a very similar manner to the KH-4B example. Once again,
you may need to vary some of the camera parameters to �nd the settings that produce the best results.
For this example we will demonstrate how to use bundle_adjust to solve for intrinsic parameters in optical
bar models.

Using the DEM and the input images it is possible to collect rough ground control points which can be
used to roughly align the initial camera models.

bundle_adjust for_small.tif for_small.tsai ground_control_points.gcp -t opticalbar \

--inline-adjustments --num-passes 1 --camera-weight 0 --ip-detect-method 1 \

-o bundle_for_small/out --max-iterations 30 --fix-gcp-xyz

bundle_adjust aft_small.tif aft_small.tsai ground_control_points.gcp -t opticalbar \

--inline-adjustments --num-passes 1 --camera-weight 0 --ip-detect-method 1 \

-o bundle_aft_small/out --max-iterations 30 --fix-gcp-xyz

136



Data Processing Examples

Now we can do a joint bundle adjustment. While in this example we immediately attempt to solve for
intrinsics, you can get better results using techniques such as the --disparity-list option described in
11.17 and 11.16 along with the reference DEM. We will try to solve for all intrinsics but will share the
focal length and optical center since we expect them to be very similar. If we get good values for the
other intrinsics we could do another pass where we don't share those values in order to �nd small di�erence
between the two cameras. We specify intrinsic scaling limits here. The �rst three pairs are for the focal
length and the two optical center values. For an optical bar camera, the next three values are for speed,
motion_compensation_factor, and scan_time. We are fairly con�dent in the focal length and the optical
center but we only have guesses for the other values so we allow them to vary in a wider range.

bundle_adjust left_small.tif right_small.tif bundle_for_small/out-for_small.tsai \

bundle_aft_small/out-aft_small.tsai -t opticalbar -o bundle_small/out \

--force-reuse-match-files --max-iterations 30 --camera-weight 0 \

--disable-tri-ip-filter --skip-rough-homography --inline-adjustments \

--ip-detect-method 1 --datum WGS84 --num-passes 2 --solve-intrinsics \

--intrinsics-to-float "focal_length optical_center other_intrinsics" \

--intrinsics-to-share "focal_length optical_center" --ip-per-tile 1000 \

--intrinsics-limits "0.95 1.05 0.90 1.10 0.90 1.10 0.5 1.5 -5.0 5.0 \

0.3 2.0" --num-random-passes 2

These limits restrict our parameters to reasonable bounds but unfortunately they greatly increase the
run time of bundle_adjust. Hopefully you can �gure out the correct values for scan_dir doing long
optimization runs using the limits. The --intrinsic-limits option is useful when used in conjunction
with the --num-random-passes option because it also sets the numeric range in which the random initial
parameter values are chosen from. Note that --num-passes is intended to �lter out bad interest points
while --num-random-passes tries out multiple random starting seeds to see which one leads to the result
with the lowest error.

137



138



Part III

Appendices

139





Appendix A

Tools

This chapter provides a overview of the various tools that are provided as part of the Ames Stereo Pipeline,
and a summary of their command line options.

A.1 stereo

The stereo program is the primary tool of the Ames Stereo Pipeline. It takes a stereo pair of images that
overlap and creates an output point cloud image that can be processed into a visualizable mesh or a DEM
using point2mesh (section A.7) and point2dem (section A.6), respectively.

Usage:

ISIS 3> stereo [options] <images> [<cameras>] output_file_prefix

Example (for ISIS):

stereo file1.cub file2.cub results/run

For ISIS, a .cub �le has both image and camera information, as such no separate camera �les are speci�ed.

Example (for Digital Globe Earth images):

stereo file1.tif file2.tif file1.xml file2.xml results/run

Multiple input images are also supported (section 5.1.8).

This tool is is primarily designed to process USGS ISIS .cub �les and Digital Globe data. However,
Stereo Pipeline does have the capability to process other types of stereo image pairs (e.g., image �les with a
CAHVOR camera model from the NASA MER rovers). If you would like to experiment with these features,
please contact us for more information.

The output_file_prefix is prepended to all output data �les. For example, setting output_file_prefix

to `out' will yield �les with names like out-L.tif and out-PC.tif. To keep the Stereo Pipeline re-
sults organized in sub-directories, we recommend using an output pre�x like `results-10-12-09/out' for
output_file_prefix . The stereo program will create a directory called results-10-12-09/ and place
�les named out-L.tif, out-PC.tif, etc. in that directory.

141



Chapter A

Table A.1: Command-line options for stereo

Option Description

--help|-h Display the help message
--session-type|-t string Select the stereo session type to use for pro-

cessing. Usually the program can select this
automatically by the �le extension. Op-
tions: pinhole isis dg rpc spot5 aster optical-
bar pinholemappinhole isismapisis dgmaprpc
rpcmaprpc astermaprpc.

--stereo-file|-s filename(=./stereo.default) De�ne the stereo.default �le to use.
--entry-point|-e integer(=0 to 5) Stereo Pipeline entry point (start at this

stage).
--stop-point|-e integer(=1 to 6) Stereo Pipeline stop point (stop at the stage

right before this value).
--corr-seed-mode integer(=0 to 3) Correlation seed strategy (section B.2).
--threads integer(=0) Set the number of threads to use. 0 means

use as many threads as there are cores.
--no-bigtiff Tell GDAL to not create bigti�s.
--tif-compress None|LZW|Deflate|Packbits TIFF compression method.

More information about additional options that can be passed to stereo via the command line or via
the stereo.default con�guration �le can be found in Appendix B on page 213. stereo creates a set of
intermediate �les, they are described in Appendix C on page 223.

A.1.1 Entry Points

The stereo -e number option can be used to restart a stereo job partway through the stereo correlation
process. Restarting can be useful when debugging while iterating on stereo.default settings.

Stage 0 (Preprocessing) normalizes the two images and aligns them by locating interest points and matching
them in both images. The program is designed to reject outlying interest points. This stage writes out the
pre-aligned images and the image masks.

Stage 1 (Disparity Map Initialization) performs pyramid correlation and builds a rough disparity map that
is used to seed the sub-pixel re�nement phase.

Stage 2 (Blend) blend the borders of adjacent tiles. Only needed for parallel stereo with the SGM/MGM
algorithms. Skipped otherwise.

Stage 3 (Sub-pixel Re�nement) performs sub-pixel correlation that re�nes the disparity map.

Stage 4 (Outlier Rejection and Hole Filling) performs �ltering of the disparity map and (optionally) �lls in
holes using an inpainting algorithm. This phase also creates a �good pixel� map.

Stage 5 (Triangulation) generates a 3D point cloud from the disparity map.

A.1.2 Decomposition of Stereo

The stereo executable is a python script that makes calls to separate C++ executables for each entry
point.

Stage 0 (Preprocessing) calls stereo_pprc. Multi-threaded.

142



Tools

Stage 1 (Disparity Map Initialization) calls stereo_corr. Multi-threaded.

Stage 2 (Blend) class stereo_blend. Multi-threaded.

Stage 3 (Sub-pixel Re�nement) class stereo_rfne. Multi-threaded.

Stage 4 (Outlier Rejection and Hole Filling) calls stereo_fltr. Multi-threaded.

Stage 5 (Triangulation) calls stereo_tri. Multi-threaded, except for ISIS input data.

All of the sub-programs have the same interface as stereo. Users processing a large number of stereo pairs
on a cluster may �nd it advantageous to call these executables in their own manner. An example would
be to run stages 0-4 in order for each stereo pair. Then run several sessions of stereo_tri since it is
single-threaded for ISIS.

It is important to note that each of the C++ stereo executables invoked by stereo have their own command-
line options. Those options can be passed to stereo which will in turn pass them to the appropriate
executable. By invoking each executable with no options, it will display the list of options it accepts.

As explained in more detail in section 5.1.3, each such option has the same syntax as used in stereo.default,
while being prepended by a double hyphen (--). A command line option takes precedence over the same
option speci�ed in stereo.default. Chapter B documents all options for the individual sub-programs.

Note that the stereo tools operate only on single channel (grayscale) images. If you need to run stereo on
multi-channel images you must �rst convert them to grayscale or extract a single channel to operate on.

A.2 stereo_gui

The stereo_gui program is a GUI frontend to stereo, and has the same command-line options. It can
display the input images side-by-side (and in other ways, as detailed later). One can zoom in by dragging
the mouse from upper-left to lower-right, and zoom out via the reverse motion.

By pressing the Control key while dragging the mouse, regions can be selected in the input images, and then
stereo can be run on these regions from the menu via Run→Stereo. The stereo command that is invoked
(with appropriately populated parameter values for --left-image-crop-win and --right-image-crop-win
for the selected regions) will be displayed on screen, and can be re-run on a more powerful machine/cluster
without GUI access.

Additional navigation options are using the mouse wheel or the +/- keys to zoom, and the arrow keys to
pan (one should �rst click to bring into focus the desired image before using any keys).

Usage:

ISIS 3> stereo_gui [options] <images> [<cameras>] output_file_prefix

A.2.1 Use as an Image Viewer

This program can be also used as a general-purpose image viewer, case in which no stereo options or camera
information is necessary. It can display arbitrarily large images with integer, �oating-point, or RGB pixels,
including ISIS .cub �les and DEMs. It handles large images by building on disk pyramids of increasingly
coarser subsampled images and displaying the subsampled versions that are appropriate for the current
level of zoom.

The images can be shown either side-by-side, as tiles on a grid (using --grid-cols integer), or on top of
each other (using --single-window), with a dialog to choose among them. In the last usage scenario, the

143



Chapter A

Figure A.1: An illustration of stereo_gui. The stereo command will be run on the regions selected by red
rectangles.

option --use-georef will overlay the images correctly if georeference information is present. It is possible
to switch among these modes once the GUI has been open, from the GUI View menu.

When the images are shown side-by-side, the GUI can zoom in all images to the same region, for easier
comparison among them.

When the images are in a single window, an individual image can be turned on or o� via a checkbox.
Clicking on an image's name will zoom to it and display it on top of other images. By right-clicking the
list of images, other operations can be performed, such as deleting an image from the view, etc.

stereo_gui can show hillshaded DEMs, either via the --hillshade option, or by choosing from the GUI
View menu the Hillshaded images option.

This program can also display the output of the ASP colormap tool (section A.29).

When clicking on a pixel, the pixel indices and value will be printed on screen. When selecting a region by
pressing the Control key while dragging the mouse, its bounds will be displayed on screen. If the image is
geo-referenced, the extent of the region in projected coordinates and in the longitude-latitude domain will
be shown as well.

The program can also save a screenshot to disk in the BMP or XPM format.

A.2.2 Other Functionality

View/create/move/delete/save interest point matches, GCP, and VWIP �les

stereo_gui can be used to view interest point matches (*.match �les), such as generated by ipmatch,
bundle_adjust, or stereo. It can also manually create and delete matches (useful in situations when
automatic interest point matching is unreliable due to large changes in illumination). Interest point matches
can be created or deleted with the right-mouse click. To move interest points, right click on a panel and
check "Move match point". While this is checked you can move interest points by clicking and dragging
them within the panel. Uncheck "Move match point" to stop moving interest points.

144



Tools

The match �le to load can be speci�ed via --match-file. It may also be auto-detected if stereo_gui was
invoked like stereo, with an output pre�x (auto-detection works only when images are not map-projected
and alignment is homography or a�ne epipolar). Match �les can be created with the ipmatch tool or by
using stereo_pprc.

When working with N images, N-1 match �les are needed to describe all of the interest points. For image i,
the match �le must contain the matches from image i-1 or from image 0. You can provide these match �les
to stereo_gui by conforming to its naming convention (pre�x-fname1__fname2.match) or by selecting
them from the GUI when prompted. All match �les must describe the same set of interest points, the
tool will check the positions of loaded points and discard any that do not correspond to the already loaded
points. If one of the match �les fails to load or does not contain enough matching points, the missing points
will be added to an arbitrary position and �agged as invalid. You must either validate these points by
manually moving them to the correct position or else delete them.

This tool can show the interest points from a GCP �le (but cannot edit them with this interface, creating
such points is described later in this section). The --gcp-file option is used.

The stereo_gui program can also display .vwip �les. Those are interest points created by ipfind,
bundle_adjust, or stereo, before they are matched across images. One should specify as many such
�les as images when launching this program.

Creating GCP with a georeferenced image and a DEM

There exist situations when one has one or more images for which the camera �les are either inaccurate
or, for Pinhole camera models, just the intrinsics may be known. Given a DEM of the area, and op-
tionally a georeferenced image, it is possible to create GCP �les (section A.4.1) that can later be used
with bundle_adjust to either improve the alignment of these cameras to the DEM, or create new Pinhole
cameras from scratch (the latter is shown in section 9.4).

One starts by opening these desired images and the georeferenced image in the GUI, in this order (hence
the georeferenced image is the last). If no georeferenced image exists, one can use the given DEM instead
(and it can be hillshaded after loading to easier identify features).

Next, a feature is identi�ed and manually added as an interest point in all open images, using the right-click
menu, and this process is repeated a few times. Thus created interest points can also be moved around by
right-clicking to turn on this mode, and then dragging them with the mouse (this can be slow).

If the input images and the georeferenced image are very similar visually, one can also try to automatically
detect interest point matches in them using ipfind/ipmatch and load the .match �les as described in the
earlier section on creating interest points.

When you are �nished creating interest points, use the "IP matches"->"Write GCP �le" menu item to
generate a ground control point �le containing the selected points. You will be prompted for the reference
DEM and for the desired output �le name, unless this DEM was already speci�ed via --dem-file upon
launch and the GCP �le was already speci�ed via --gcp-file. The last image, that is the reference, is
only used to �nd the positions on the ground, which in turn are used to �nd the heights for the GCPs from
the DEM. The selected interest points from the reference image are not saved to the GCP �le.

Creating manual interest point matches using map-projected images

To make it easier to pick interest point matches in situations when the images are very di�erent or taken
from very diverse perspectives, it is easier to �rst mapproject them onto a DEM, as then the images look
a lot more similar. Once interest points are created among the map-projected images in the GUI, some
functionality can be invoked to transfer them to the original images.

145



Chapter A

Here is an example. Given three images A.tif, B.tif, and C.tif, and a DEM named dem.tif, map-project them
onto the DEM, obtaining the images A.map.tif, B.map.tif, and C.map.tif. Then one can invoke stereo_gui
as

stereo_gui A.map.tif B.map.tif C.map.tif run/run

pick interest points by right-clicking, save them, and quit the GUI. Then one runs:

bundle_adjust A.tif B.tif C.tif <cameras> run/run \

--mapprojected-data 'A.map.tif B.map.tif C.map.tif dem.tif' --min-matches 0

which will create match �les among the original images and run bundle adjustment.

One can then invoke

stereo_gui A.tif B.tif C.tif run/run

and turn on viewing of interest point matches to study if they were �unmapped� to the right locations.

Polygon editing

stereo_gui is able to draw and edit polygonal shapes on top of georeferenced images, and load/save them
as shape �les (*.shp). This functionality can be accessed by turning on polygon editing from the Vector
Layer menu, and then right-clicking with the mouse to access the various functions. Subsequently, one can
use gdal_rasterize to keep or exclude the portion of a given image/DEM that is within or outside the
selected polygon.

Shadow threshold

stereo_gui can be used to �nd the shadow threshold for each of a given set of images (useful for shape-from-
shading, see chapter 10). This can be done by turning on from the menu the Shadow threshold detection

mode, and then clicking on pixels in the shadow. The largest of the chosen pixel values will be set to the
shadow threshold for each image and printed to the screen. To see the images with the pixels below the
shadow threshold highlighted, select from the menu the View shadow-thresholded images option.

Somewhat related to this, if the viewer is invoked with --nodata-value double , it will display any pixels
(presumably in the background) with values less than or equal to this as transparent.

146



Tools

Listed below are the options speci�c to stereo_gui. It will accept all other stereo options as well.

Table A.2: Command-line options for stereo_gui

Option Description

-h | --help Display this help message.
--grid-cols arg Display images as tiles on a grid with this

many columns. Default: Use one row.
--window-size arg (=1200 800) The width and height of the GUI window in

pixels.
-w | --single-window Show all images in the same window (with

a dialog to choose among them) rather than
next to each other.

--use-georef Plot the images in the projected coordinate
system given by image georeferences.

--nodata-value double(=NaN) Pixels with values less than or equal to this
number are treated as no-data and displayed
as transparent. This overrides the no-data
values from input images.

--hillshade Interpret the input images as DEMs and hill-
shade them.

--hillshade-azimuth The azimuth value when showing hillshaded
images.

--hillshade-elevation The elevation value when showing hillshaded
images.

--view-matches Locate and display the interest point
matches.

--match-file Display this match �le instead of looking
one up based on existing conventions (implies
--view-matches).

--gcp-file Display the GCP pixel coordinates for this
GCP �le (implies --view-matches). Also
save here GCP if created from the GUI.

--dem-file Use this DEM when creating GCP from im-
ages.

--delete-temporary-files-on-exit Delete any subsampled and other �les created
by the GUI when exiting.

--create-image-pyramids-only Without starting the GUI, build multi-
resolution pyramids for the inputs, to be able
to load them fast later.

A.3 parallel_stereo

The parallel_stereo program is a modi�cation of stereo designed to distribute the stereo processing over
multiple computing nodes. It uses GNU Parallel to manage the jobs, a tool which is distributed along with
Stereo Pipeline. It expects that all nodes can connect to each other using ssh without password and that
they share the same storage space. parallel_stereo can also be useful when processing extraterrestrial
data on a single computer. This is because ISIS camera models are restricted to a single thread, but
parallel_stereo can run multiple processes in parallel to reduce computation times.

147



Chapter A

At the simplest, parallel_stereo can be invoked exactly like stereo, with the addition of the list of nodes
to use (if using multiple nodes).

parallel_stereo --nodes-list machines.txt <other stereo options>

It will create the same output �les as stereo. Internally some of them will be GDAL VRT �les, that is,
plain text virtual mosaics of �les created by individual processes, with the actual �les in subdirectories;
ASP and GDAL tools are able to use these virtual �les in the same way as regular binary TIF �les.

If your jobs are launched on a cluster or supercomputer, the name of the �le containing the list of nodes
may exist as an environmental variable. For example, on NASA's Pleiades Supercomputer, which uses the
Portable Batch System (PBS), the list of nodes can be retrieved as $PBS_NODEFILE.

It is important to note that when invoking this tool only the correlation, blending, subpixel re�nement,
and triangulation stages of stereo (section A.1.2) are spread over multiple machines, with the preprocessing
and �ltering stages using just one node, as they require global knowledge of the data. In addition, not all
stages of stereo bene�t equally from parallelization. Most likely to gain are stages 1 and 2 (correlation and
re�nement) which are the most computationally expensive.

For these reasons, while parallel_stereo can be called to do all stages of stereo generation from start to
�nish in one command, it may be more resource-e�cient to invoke it using a single node for stages 0 and
3, many nodes for stages 1 and 2, and just a handful of nodes for stage 4 (triangulation). For example, to
invoke the tool only for stage 2, one uses the options:

--entry-point 2 --stop-point 3

By default, stages 1, 2, and 4 of parallel_stereo use as many processes as there are cores on each node,
and one thread per process. These can be customized as shown below.

Table A.3: Command-line options for parallel_stereo

Options Description

--help|-h Display the help message.
--nodes-list filename The list of computing nodes, one per line. If

not provided, run on the local machine.
--ssh filename Specify the path to an alternate version of the

ssh tool to use.
--entry-point|-e integer(=0 to 4) Stereo Pipeline entry point (start at this

stage).
--stop-point|-e integer(=1 to 5) Stereo Pipeline stop point (stop at the stage

right before this value).
--corr-seed-mode integer(=0 to 3) Correlation seed strategy (section B.2).
--sparse-disp-options string Options to pass directly to sparse_disp (sec-

tion 4.5).
--verbose Display the commands being executed.
--job-size-w integer(=2048) Pixel width of input image tile for a single

process.
--job-size-h integer(=2048) Pixel height of input image tile for a single

process.
--processes integer The number of processes to use per node.
--threads-multiprocess integer The number of threads to use per process.

148



Tools

--threads-singleprocess integer The number of threads to use when running
a single process (for pre-processing and �lter-
ing).

149



Chapter A

A.4 bundle_adjust

The bundle_adjust program performs bundle adjustment on a given set of images and cameras. An
introduction to bundle adjustment, and some advanced usage, including solving for intrinsics, can be found
in chapter 8.

This tool can use several underlying least-squares minimization algorithms, the default is Google's Ceres
Solver (http://ceres-solver.org/).

Usage:

bundle_adjust <images> <cameras> <optional ground control points> \

-o <output prefix> [options]

Example (for ISIS):

bundle_adjust file1.cub file2.cub file3.cub -o run_ba/run

Example (for Digital Globe Earth data, using ground control points):

bundle_adjust file1.tif file2.tif file1.xml file2.xml gcp_file.gcp \

--datum WGS_1984 -o run_ba/run --num-passes 2

Here, we invoked the tool with two passes, which also enables removal of outliers by reprojection error and
disparity (the options below have more detail).

Example (for generic pinhole camera data, using estimated camera positions):

bundle_adjust file1.JPG file2.JPG file1.tsai file2.tsai -o run_ba/run \

-t nadirpinhole --inline-adjustments --datum WGS_1984 \

--camera-positions nav_data.csv \

--csv-format "1:file 6:lat 7:lon 9:height_above_datum"

Here we assumed that the cameras point towards some planet's surface and used the nadirpinhole session.
If this assumption is not true one should use the pinhole session, though this one often does not perform
as well when �nding interest points in planetary context.

This tool will write the adjustments to the cameras as *.adjust �les starting with the speci�ed output
pre�x. In order for stereo to use the adjusted cameras, it should be passed this output pre�x via the
option --bundle-adjust-prefix. For example,

stereo file1.cub file2.cub run_stereo/run --bundle-adjust-prefix run_ba/run

If the --inline-adjustments option is used, no separate adjustments will be written, rather, the tool will
save to disk copies of the input cameras with adjustments already applied to them. These output cameras
can then be passed directly to stereo:

stereo file1.JPG file2.JPG run_ba/run-file1.tsai run_ba/run-file2.tsai run_stereo/run

The bundle_adjust program can read camera adjustments from a previous run, via --input-adjustments-prefix
string . It can also apply to the input cameras a transform as output by pc_align, via --initial-transform
string . This is useful if a DEM produced by ASP was aligned to a ground truth, and it is desired to apply

150

http://ceres-solver.org/


Tools

the same alignment to the cameras that were used to create that DEM. The initial transform can have a
rotation, translation, and scale, and it is applied after the input adjustments are read, if those are present.

If the --datum option is speci�ed, bundle_adjust will write the mean absolute residuals (reprojection
errors) for each triangulated point, before and after optimization. The �les are named

{output-prefix}-initial_residuals_no_loss_function_pointmap_point_log.csv

and

{output-prefix}-final_residuals_no_loss_function_pointmap_point_log.csv

(there are also versions of these �les incorporating the Ceres loss function, which attenuates large residuals,
those have in their names loss rather than no_loss). Such �les can be inspected to see at which pixels
the residual error is large. One can also invoke point2dem with the --csv-format option to grid these �les
for visualization in the GUI. Here is a sample �le:

# lon, lat, height_above_datum, mean_residual, num_observations

-55.1169093561696002, -69.3430771656333178, 4.82452381754674064, 0.114133363354161105, 2

The �eld num_observations counts how many images each point gets projected into.

A.4.1 Ground Control Points

A number of plain-text �les containing ground control points (GCP) can be passed as inputs to bundle_adjust.

These can either be created by hand, or using stereo_gui (section A.2.2).

A GCP �le must end with a .gcp extension, and contain one ground control point per line. Each line must
have the following �elds:

• ground control point id (integer)

• latitude (in degrees)

• longitude (in degrees)

• height above datum (in meters), with the datum itself speci�ed separately

• x, y, z standard deviations (three positive �oating point numbers, smaller values suggest more reliable
measurements)

On the same line, for each image in which the ground control point is visible there should be:

• image �le name

• column index in image (�oat)

• row index in image (�oat)

• column and row standard deviations (two positive �oating point numbers, smaller values suggest more
reliable measurements)

151



Chapter A

The �elds can be separated by spaces or commas. Here is a sample representation of a ground control point
measurement:

5 23.7 160.1 427.1 1.0 1.0 1.0 image1.tif 124.5 19.7 1.0 1.0 image2.tif 254.3 73.9 1.0 1.0

When the --use-lon-lat-height-gcp-error �ag is used, the three standard deviations are interpreted
as applying not to x, y, z but to latitude, longitude, and height above datum (in this order). Hence, if the
latitude and longitude are known accurately, while the height less so, the third standard deviation can be
set to something larger.

Table A.4: Command-line options for bundle_adjust

Option Description

--help|-h Display the help message.
--output-prefix|-o filename Pre�x for output �lenames.
--cost-function string Choose a cost function from: Cauchy, PseudoHuber,

Huber, L1, L2. Default: Cauchy.
--robust-threshold double(=0.5) Set the threshold for robust cost functions. Increasing

this makes the solver focus harder on the larger errors.
--datum string Use this datum. Needed only for ground control

points, a camera position �le, or for RPC sessions.
Options: WGS_1984, D_MOON (1,737,400 meters),
D_MARS (3,396,190 meters), MOLA (3,396,000 me-
ters), NAD83, WGS72, and NAD27. Also accepted:
Earth (=WGS_1984), Mars (=D_MARS), Moon
(=D_MOON).

--semi-major-axis double Explicitly set the datum semi-major axis in meters.
--semi-minor-axis double Explicitly set the datum semi-minor axis in meters.
--session-type|-t string Select the stereo session type to use for processing.

Usually the program can select this automatically by
the �le extension. Options: pinhole nadirpinhole isis
dg rpc spot5 aster opticalbar.

--min-matches integer(=30) Set the minimum number of matches between images
that will be considered.

--num-iterations integer(=100) Set the maximum number of iterations.
--parameter-tolerance double(=1e-8) Stop when the relative error in the variables being op-

timized is less than this.
--overlap-limit integer(=0) Limit the number of subsequent images to search for

matches to the current image to this value. By default
try to match all images.

--overlap-list string A �le containing a list of image pairs, one pair per line,
separated by a space, which are expected to overlap.
Matches are then computed only among the images in
each pair.

--auto-overlap-buffer double Try to automatically determine which images overlap.
Only supports Worldview style XML camera �les.

--rotation-weight double(=0.0) A higher weight will penalize more rotation deviations
from the original con�guration.

--translation-weight double(=0.0) A higher weight will penalize more translation devia-
tions from the original con�guration.

152



Tools

--camera-weight double(=1.0) The weight to give to the constraint that the camera
positions/orientations stay close to the original values
(only for the Ceres solver). A higher weight means that
the values will change less. The options --rotation-
weight and --translation-weight can be used for �ner-
grained control and a stronger response.

--ip-per-tile integer How many interest points to detect in each 10242 im-
age tile (default: automatic determination).

--ip-detect-method integer(=0) Choose an interest point detection method from:
0=OBAloG, 1=SIFT, 2=ORB.

--epipolar-threshold double(=-1) Maximum distance from the epipolar line to search for
IP matches. Default: automatic calculation.

--ip-inlier-factor double(=1.0/15) A higher factor will result in more interest points, but
perhaps also more outliers.

--ip-uniqueness-threshold

double(=0.7) A higher threshold will result in more interest points,
but perhaps less unique ones.

--nodata-value double(=NaN) Pixels with values less than or equal to this number are
treated as no-data. This overrides the no-data values
from input images.

--individually-normalize Individually normalize the input images instead of us-
ing common values.

--inline-adjustments If this is set, and the input cameras are of the pinhole
or panoramic type, apply the adjustments directly to
the cameras, rather than saving them separately as
.adjust �les.

--input-adjustments-prefix string Pre�x to read initial adjustments from, written by a
previous invocation of this program.

--initial-transform string Before optimizing the cameras, apply to them the 4x4
rotation + translation transform from this �le. The
transform is in respect to the planet center, such as
written by pc_align's source-to-reference or reference-
to-source alignment transform. Set the number of iter-
ations to 0 to stop at this step. If �input-adjustments-
pre�x is speci�ed, the transform gets applied after the
adjustments are read.

--fixed-camera-indices string A list of indices, in quotes and starting from 0, with
space as separator, corresponding to cameras to keep
�xed during the optimization process.

--fix-gcp-xyz If the GCP are highly accurate, use this option to not
�oat them during the optimization.

--use-lon-lat-height-gcp-error When having GCP, interpret the three standard devi-
ations in the GCP �le as applying not to x, y, and z,
but rather to latitude, longitude, and height.

--solve-intrinsics Optimize intrinsic camera parameters. Only used for
pinhole cameras.

--intrinsics-to-float arg If solving for intrinsics and desired to �oat only a few
of them, specify here, in quotes, one or more of: fo-
cal_length, optical_center, other_intrinsics.

153



Chapter A

--intrinsics-to-share arg If solving for intrinsics and desired to share only a
few of them, specify here, in quotes, one or more of:
focal_length, optical_center, other_intrinsics. By de-
fault all of the intrinsics are shared so to not share any
of them pass in a blank string.

--intrinsics-limits arg Set a string in quotes that contains min max ratio
pairs for intrinsic parameters. For example, "0.8 1.2"
limits the parameter to changing by no more than 20
percent. The �rst pair is for focal length, the next
two are for the center pixel, and the remaining pairs
are for other intrinsic parameters. If too many pairs
are passed in the program will throw an exception and
print the number of intrinsic parameters the cameras
use. Cameras adjust all of the parameters in the or-
der they are speci�ed in the camera model unless it
is speci�ed otherwise in D.1. Unfortunately, setting
limits can greatly slow down the solver.

--num-passes integer(=2) How many passes of bundle adjustment to do. If more
than one, outliers will be removed between passes us-
ing --remove-outliers-params and --remove-outliers-by-
disparity-params, and re-optimization will take place.
Residual �les and a copy of the match �les with the
outliers removed will be written to disk.

--num-random-passes integer(=0) After performing the normal bundle adjustment
passes, do this many more passes using the same
matches but adding random o�sets to the initial pa-
rameter values with the goal of avoiding local minima
that the optimizer may be getting stuck in. Only the
results for the optimization pass with the lowest error
are kept.

--remove-outliers-params 'pct factor

err1 err2'

Outlier removal based on percentage, when more than
one bundle adjustment pass is used. Triangulated
points with reprojection error in pixels larger than
min(max('pct'-th percentile * 'factor', err1), err2) will
be removed as outliers. Hence, never remove errors
smaller than err1 but always remove those bigger than
err2. Specify as a list in quotes. Default: '75.0 3.0 2.0
3.0'.

--remove-outliers-by-disparity-params

pct factor

Outlier removal based on the disparity of interest
points (di�erence between right and left pixel), when
more than one bundle adjustment pass is used. For
example, the 10% and 90% percentiles of disparity are
computed, and this interval is made three times big-
ger. Interest points whose disparity fall outside the
expanded interval are removed as outliers. Instead of
the default 90 and 3 one can specify pct and factor,
without quotes.

154



Tools

--elevation-limit double double Remove as outliers interest points for which the ele-
vation of the triangulated position (after cameras are
optimized) is outside of this range. Specify as two val-
ues: min max.

-lon-lat-limit double double double

double

Remove as outliers interest points for which the lon-
gitude and latitude of the triangulated position (after
cameras are optimized) are outside of this range. Spec-
ify as: min_lon min_lat max_lon max_lat.

--reference-terrain arg An externally provided trustworthy 3D terrain, either
as a DEM or as a lidar �le, very close (after alignment)
to the stereo result from the given images and cameras
that can be used as a reference, instead of GCP, to
optimize the intrinsics of the cameras.

--max-num-reference-points

integer(=100000000) Maximum number of (randomly picked) points from
the reference terrain to use.

--disparity-list arg The unaligned disparity �les to use when optimizing
the intrinsics based on a reference terrain. Specify
them as a list in quotes separated by spaces. First
�le is for the �rst two images, second is for the second
and third images, etc. If an image pair has no disparity
�le, use 'none'.

--max-disp-error double(=-1) When using a reference terrain as an external control,
ignore as outliers xyz points which projected in the left
image and transported by disparity to the right image
di�er by the projection of xyz in the right image by
more than this value in pixels.

--reference-terrain-weight double(=1) How much weight to give to the cost function terms
involving the reference terrain.

--heights-from-dem string If the cameras have already been bundle-adjusted and
aligned to a known high-quality DEM, in the triangu-
lated xyz points replace the heights with the ones from
this DEM, and �x those points unless --heights-from-
dem-weight is positive.

--heights-from-dem-weight double(=-1) How much weight to give to keep the triangulated
points close to the DEM if speci�ed via --heights-from-
dem. If the weight is not positive, keep the triangu-
lated points �xed.

155



Chapter A

--csv-format string Specify the format of input CSV �les as a list of en-
tries column_index:column_type (indices start from
1). Examples: '1:x 2:y 3:z 4:�le' (a Cartesian coordi-
nate system with origin at planet center is assumed,
with the units being in meters), '5:lon 6:lat 7:ra-
dius_m 2:�le' (longitude and latitude are in degrees,
the radius is measured in meters from planet cen-
ter), '6:�le 3:lat 2:lon 1:height_above_datum', '1:east-
ing 2:northing 3:height_above_datum' (need to set
--csv-proj4; the height above datum is in meters).
Can also use radius_km for column_type, when it is
again measured from planet center.

--csv-proj4 string The PROJ.4 string to use to interpret the entries in
input CSV �les, if those �les contain Easting and Nor-
thing �elds.

--min-triangulation-angle double(=0.1) The minimum angle, in degrees, at which rays must
meet at a triangulated point to accept this point as
valid.

--ip-triangulation-max-error double When matching IP, �lter out any pairs with a trian-
gulation error higher than this.

--forced-triangulation-distance double When triangulation fails, for example, when input
cameras are inaccurate, arti�cially create a triangu-
lation point this far ahead of the camera, in units of
meter.

--ip-num-ransac-iterations int(=1000) How many RANSAC iterations to do in interest point
matching.

--save-cnet-as-csv Save the initial control network containing all interest
points in the format used by ground control points, so
it can be inspected.

--camera-positions filename CSV �le containing estimated positions of each cam-
era. Only used with the inline-adjustments setting to
initialize global camera coordinates. If used, the csv-
format setting must also be set. The "�le" �eld is
searched for strings that are found in the input image
�les to match locations to cameras.

--disable-pinhole-gcp-init Don't try to initialize pinhole camera coordinates us-
ing provided GCP coordinates. Set this if you only
have one image per GCP or if the pinhole initializa-
tion process is not producing good results.

--transform-cameras-using-gcp Use GCP, even those that show up in just an image,
to transform cameras to ground coordinates. Need at
least two images to have at least 3 GCP each. If at
least three GCP each show up in at least two images,
the transform will happen even without this option
using a more robust algorithm.

156



Tools

--position-filter-dist double(=-1.0) If estimated camera positions are used, this option can
be used to set a threshold distance in meters between
the cameras. If any pair of cameras is farther apart
than this distance, the tool will not attempt to �nd
matching interest points between those two cameras.

--force-reuse-match-files Force reusing the match �les even if older than the
images or cameras.

--enable-rough-homography Enable the step of performing datum-based rough ho-
mography for interest point matching. This is best
used with reasonably reliable input cameras and a wide
footprint on the ground.

--skip-rough-homography Skip the step of performing datum-based rough ho-
mography. This obsolete option is ignored as is the
default.

--enable-tri-ip-filter Enable triangulation-based interest points �ltering.
This is best used with reasonably reliable input cam-
eras.

--disable-tri-ip-filter Disable triangulation-based interest points �ltering.
This obsolete option is ignored as is the default.

--no-datum Do not assume a reliable datum exists, such as for
irregularly shaped bodies.

--mapprojected-data string Given map-projected versions of the input images, the
DEM they were mapprojected onto, and IP matches
among the mapprojected images, create IP matches
among the un-projected images before doing bundle
adjustment. Specify the mapprojected images and the
DEM as a string in quotes, separated by spaces. An
example is in the documentation.

--threads integer(=0) Set the number threads to use. 0 means use the default
de�ned in the program or in the .vwrc �le. Note that
when using more than one thread and the Ceres option
the results will vary slightly each time the tool is run.

--report-level|-r integer=(10) Use a value >= 20 to get increasingly more verbose
output.

A.5 parallel_bundle_adjust

The parallel_bundle_adjust program is a modi�cation of bundle_adjust designed to distribute some
of the preprocessing steps over multiple processes and multiple computing nodes. It uses GNU Parallel to
manage the jobs in the same manner as parallel_stereo. For information on how to set up and use the
node list see A.3.

The parallel_bundle_adjust has three processing steps: statistics, matching, and optimization. Only
the �rst two steps can be done in parallel and in fact after you have run steps 0 and 1 in a folder with
parallel_bundle_adjust you could just call regular bundle_adjust to complete processing in the folder.
Steps 0 and 1 produce the -stats.tif and .match �les that are used in the last step.

Table A.5: Command-line options for parallel_bundle_adjust

157



Chapter A

Options Description

--help|-h Display the help message.
--nodes-list filename The list of computing nodes, one per line. If

not provided, run on the local machine.
--entry-point|-e integer(=0 to 4) Stereo Pipeline entry point (start at this

stage).
--stop-point|-e integer(=1 to 5) Stereo Pipeline stop point (stop at the stage

right before this value).
--verbose Display the commands being executed.
--processes integer The number of processes to use per node.
--threads-multiprocess integer The number of threads to use per process.
--threads-singleprocess integer The number of threads to use when running

a single process (for pre-processing and �lter-
ing).

A.6 point2dem

The point2dem program produces a GeoTIFF terrain model and/or an orthographic image from a set of
point clouds. The clouds can be created by the stereo command, or be in LAS or CSV format.

Example:
point2dem output-prefix -PC.tif -o stereo/filename \

--nodata-value -10000 -n

This produces a digital elevation model. The program will infer the spheroid (datum) and the projection to
use from the input images, if that information is present. Otherwise these can be set with -r and --t_srs.

Here, pixels with no data will be set to a value of -10000. Unless the input images have projection
information, the resulting DEM will be saved in a simple cylindrical map-projection. The DEM is stored
by default as a one channel, 32-bit �oating point GeoTIFF �le.

The -n option creates an 8-bit, normalized version of the DEM that can be easily loaded into a standard
image viewing application for debugging.

Another example:
point2dem output-prefix -PC.tif -o stereo/filename -r moon \

--orthoimage output-prefix -L.tif

This command takes the left input image and orthographically projects it onto the 3D terrain produced
by the Stereo Pipeline. The resulting *-DRG.tif �le will be saved as a GeoTIFF image with the same
geoheader as the DEM.

Here we have explicitly speci�ed the spheroid (-r moon), rather than have it inferred automatically. The
Moon spheroid will have a radius of 1737.4 km.

In the following example the point cloud is very close to the South Pole of the Moon, and for that reason
we use the stereographic projection:

point2dem --stereographic --proj-lon 0 --proj-lat -90 output-prefix-PC.tif

Multiple point clouds can be passed as inputs, to be combined into a single DEM. If it is desired to use the
--orthoimage option as above, the clouds need to be speci�ed �rst, followed by the L.tif images. Here is
an example, which combines together LAS and CSV point clouds together with an output �le from stereo:

158



Tools

point2dem in1.las in2.csv output-prefix-PC.tif -o combined \

--dem-spacing 0.001 --nodata-value -32768

A.6.1 Comparing with MOLA Data

When comparing the output of point2dem to laser altimeter data, like MOLA, it is important to understand
the di�erent kinds of data that are being discussed. By default, point2dem returns planetary radius values
in meters. These are often large numbers that are di�cult to deal with. If you use the -r mars option, the
output terrain model will be in meters of elevation with reference to the IAU reference spheroid for Mars:
3,396,190 m. So if a post would have a radius value of 3,396,195 m, in the model returned with the -r

mars option, that pixel would just be 5 m.

You may want to compare the output to MOLA data. MOLA data is released in three `�avors,' namely:
Topography, Radius, and Areoid. The MOLA Topography data product that most people use is just the
MOLA Radius product with the MOLA Areoid product subtracted. Additionally, it is important to note
that all of these data products have a reference value subtracted from them. The MOLA reference value is
NOT the IAU reference value, but 3,396,000 m.

In order to compare with the MOLA data, you can do one of two di�erent things. You could operate purely
in radius space, and have point2dem create radius values that are directly comparable to the MOLA radius
data. You can do this by having point2dem subtract the MOLA reference value, by using either -r mola

or setting --semi-major-axis 3396000 and --semi-minor-axis 3396000.

Alternatively, to get values that are directly comparable to MOLA Topography data, you'll need to run
point2dem with either -r mars or -r mola, then run the ASP tool dem_geoid (section A.10). This program
will convert the DEM height values from being relative to the IAU reference spheroid or the MOLA spheroid
to being relative to the MOLA Areoid.

The newly obtained DEM will inherit the datum from the unadjusted DEM, so it could be either of the two
earlier encountered radii, but of course the heights in it will be in respect to the areoid, not to this datum.
It is important to note that one cannot tell from inspecting a DEM if it was adjusted to be in respect to
the areoid or not, so there is the potential of mixing up adjusted and unadjusted terrain models.

A.6.2 Post Spacing

Recall that stereo creates a point cloud �le as its output and that you need to use point2dem on to create
a GeoTIFF that you can use in other tools. The point cloud �le is the result of taking the image-to-image
matches (which were created from the kernel sizes you speci�ed, and the subpixel versions of the same, if
used) and projecting them out into space from the cameras, and arriving at a point in real world coordinates.
Since stereo does this for every pixel in the input images, the default value that point2dem uses (if you
don't specify anything explicitly) is the input image scale, because there's an `answer' in the point cloud
�le for each pixel in the original image.

However, as you may suspect, this is probably not the best value to use because there really isn't that
much `information' in the data. The true `resolution' of the output model is dependent on a whole bunch of
things (like the kernel sizes you choose to use) but also can vary from place to place in the image depending
on the texture.

The general `rule of thumb' is to produce a terrain model that has a post spacing of about 3x the input
image ground scale. This is based on the fact that it is nearly impossible to uniquely identify a single pixel
correspondence between two images, but a 3x3 patch of pixels provides improved matching reliability. As
you go to numerically larger post-spacings on output, you're averaging more point data (that is probably
spatially correlated anyway) together.

159



Chapter A

So you can either use the --dem-spacing argument to point2dem to do that directly, or you can use your
favorite averaging algorithm to reduce the point2dem-created model down to the scale you want.

If you attempt to derive science results from an ASP-produced terrain model with the default DEM spacing,
expect serious questions from reviewers.

A.6.3 Using with LAS or CSV Clouds

The point2dem program can take as inputs point clouds in LAS and CSV formats. These di�er from point
clouds created by stereo by being, in general, not uniformly distributed. It is suggested that the user pick
carefully the output resolution for such �les (--dem-spacing). If the output DEM turns out to be sparse, the
spacing could be increased, or one could experiment with increasing the value of --search-radius-factor,
which will �ll in small gaps in the output DEM by searching further for points in the input clouds.

It is expected that the input LAS �les have spatial reference information such as WKT data. Otherwise it
is assumed that the points are raw x, y, z values in meters in reference to the planet center.

Unless the output projection is explicitly set when invoking point2dem, the one from the �rst LAS �le will
be used.

For LAS or CSV clouds it is not possible to generate intersection error maps or ortho images.

For CSV point clouds, the option --csv-format must be set. If such a cloud contains easting, northing, and
height above datum, the option --csv-proj4 containing a PROJ.4 string needs to be speci�ed to interpret
this data (if the PROJ.4 string is set, it will be also used for output DEMs, unless --t_srs is speci�ed).

Table A.6: Command-line options for point2dem

Options Description

--help|-h Display the help message.
--nodata-value float(=-3.40282347e+38) Set the nodata value.
--use-alpha Create images that have an alpha channel.
--normalized|-n Also write a normalized version of the DEM (for de-

bugging).
--orthoimage Write an orthoimage based on the texture �les passed

in as inputs (after the point clouds).
--errorimage Write an additional image whose values represent the

triangulation ray intersection error in meters (the clos-
est distance between the rays emanating from the
two cameras corresponding to the same point on the
ground).

--output-prefix|-o output-prefix Specify the output pre�x.
--output-filetype|-t type(=tif) Specify the output �le type.

--x-offset float(=0) Add a horizontal o�set to the DEM.
--y-offset float(=0) Add a horizontal o�set to the DEM.
--z-offset float(=0) Add a vertical o�set to the DEM.
--rotation-order order(=xyz) Set the order of an Euler angle rotation applied to the

3D points prior to DEM rasterization.
--phi-rotation float(=0) Set a rotation angle phi.
--omega-rotation float(=0) Set a rotation angle omega.
--kappa-rotation float(=0) Set a rotation angle kappa.

160



Tools

--t_srs string Specify the output projection (PROJ.4 string). Can
also be an URL or in WKT format, as for GDAL.

--t_projwin xmin ymin xmax ymax The output DEM will have corners with these georef-
erenced coordinates.

--datum string Set the datum. This will override the datum from
the input images and also --t_srs, --semi-major-
axis, and --semi-minor-axis. Options: WGS_1984,
D_MOON (1,737,400 meters), D_MARS (3,396,190
meters), MOLA (3,396,000 meters), NAD83, WGS72,
and NAD27. Also accepted: Earth (=WGS_1984),
Mars (=D_MARS), Moon (=D_MOON).

--reference-spheroid string This is identical to the datum option.
--semi-major-axis float(=0) Explicitly set the datum semi-major axis in meters.
--semi-minor-axis float(=0) Explicitly set the datum semi-minor axis in meters.
--sinusoidal Save using a sinusoidal projection.
--mercator Save using a Mercator projection.
--transverse-mercator Save using a transverse Mercator projection.
--orthographic Save using an orthographic projection.
--stereographic Save using a stereographic projection.
--oblique-stereographic Save using an oblique stereographic projection.
--gnomonic Save using a gnomonic projection.
--lambert-azimuthal Save using a Lambert azimuthal projection.
--utm zone Save using a UTM projection with the given zone.
--proj-lat float The center of projection latitude (if applicable).
--proj-lon float The center of projection longitude (if applicable).
--proj-scale float The projection scale (if applicable).
--false-northing float The projection false northing (if applicable).
--false-easting float The projection false easting (if applicable).
--dem-spacing|-s float(=0) Set output DEM resolution (in target georeferenced

units per pixel). If not speci�ed, it will be computed
automatically (except for LAS and CSV �les). Multi-
ple spacings can be set (in quotes) to generate multiple
output �les. This is the same as the --tr option.

--search-radius-factor float(=0) Multiply this factor by dem-spacing to get the search
radius. The DEM height at a given grid point is ob-
tained as a weighted average of heights of all points
in the cloud within search radius of the grid point,
with the weights given by a Gaussian. Default search
radius: max(dem-spacing, default_dem_spacing), so
the default factor is about 1.

--gaussian-sigma-factor float(=0) The value s to be used in the Gaussian exp(−s ∗
(x/grid_size)2) when computing the DEM. The de-
fault is -log(0.25) = 1.3863. A smaller value will result
in a smoother terrain.

161



Chapter A

--csv-format string Specify the format of input CSV �les as a list of en-
tries column_index:column_type (indices start from
1). Examples: '1:x 2:y 3:z' (a Cartesian coordi-
nate system with origin at planet center is assumed,
with the units being in meters), '5:lon 6:lat 7:ra-
dius_m' (longitude and latitude are in degrees, the
radius is measured in meters from planet center), '3:lat
2:lon 1:height_above_datum', '1:easting 2:northing
3:height_above_datum' (need to set --csv-proj4;
the height above datum is in meters). Can also use
radius_km for column_type, when it is again mea-
sured from planet center.

--csv-proj4 string The PROJ.4 string to use to interpret the entries in
input CSV �les, if those �les contain Easting and Nor-
thing �elds. If not speci�ed, --t_srs will be used.

--rounding-error

float(=1/210=0.0009765625)
How much to round the output DEM and errors, in
meters (more rounding means less precision but po-
tentially smaller size on disk). The inverse of a power
of 2 is suggested.

--dem-hole-fill-len int(=0) Maximum dimensions of a hole in the output DEM to
�ll in, in pixels.

--orthoimage-hole-fill-len int(=0) Maximum dimensions of a hole in the output orthoim-
age to �ll in, in pixels. See also --orthoimage-hole-�ll-
extra-len.

--orthoimage-hole-fill-extra-len

int(=0)

This value, in pixels, will make orthoimage hole �lling
more aggressive by �rst extrapolating the point cloud.
A small value is suggested to avoid artifacts. Hole-
�lling also works better when less strict with outlier
removal, such as in --remove-outliers-params, etc.

--remove-outliers-params pct (float)

factor (float) [default: 75.0 3.0]

Outlier removal based on percentage. Points with tri-
angulation error larger than pct-th percentile times
factor will be removed as outliers.

--max-valid-triangulation-error

float(=0)

Outlier removal based on threshold. Points with tri-
angulation error larger than this (in meters) will be
removed from the cloud.

--max-output-size columns rows Creating of the DEM will be aborted if it is calculated
to exceed this size in pixels.

--median-filter-params window_size (int)

threshold (double)

If the point cloud height at the current point di�ers
by more than the given threshold from the median of
heights in the window of given size centered at the
point, remove it as an outlier. Use for example 11 and
40.0.

--erode-length length (int) Erode input point clouds by this many pixels at bound-
ary (after outliers are removed, but before �lling in
holes).

162



Tools

--filter string(=weighted_average) The �lter to apply to the heights of the cloud points
within a given circular neighborhood when gridding
(its radius is controlled via --search-radius-factor). Op-
tions: weighted_average (default), min, max, mean,
median, stddev, count (number of points), nmad (=
1.4826 * median(abs(X - median(X)))), n-pct (where
n is a real value between 0 and 100, for example, 80-
pct, meaning, 80th percentile). Except for the default,
the name of the �lter will be added to the obtained
DEM �le name, e.g., output-min-DEM.tif.

--use-surface-sampling [default:

false]

Use the older algorithm, interpret the point cloud as a
surface made up of triangles and sample it (prone to
aliasing).

--fsaa Oversampling amount to perform antialiasing. Ob-
solete, can be used only in conjunction with
--use-surface-sampling.

--threads int(=0) Select the number of processors (threads) to use.
--no-bigtiff Tell GDAL to not create bigti�s.
--tif-compress None|LZW|Deflate|Packbits TIFF compression method.

A.7 point2mesh

The point2mesh tool produces a mesh surface that can be visualized in osgviewer, which is a standard 3D
viewing application that is part of the open source OpenSceneGraph package. This viewer is bundled with
Stereo Pipeline. 1

Unlike DEMs, the 3D mesh is not meant to be used as a �nished scienti�c product. Rather, it can be used
for fast visualization to create a 3D view of the generated terrain.

The point2mesh program requires a point cloud �le or a DEM, and an optional texture �le. For example, it
can be used with output-prefix -PC.tif and output-prefix -L.tif, as output by stereo, or otherwise
with output-prefix -DEM.tif and output-prefix -DRG.tif, with the latter two output by point2dem.

When a texture �le is not provided, a 1D texture is applied in the local Z direction that produces a rough
rendition of a contour map. In either case, point2mesh will produce a output-prefix.osgb �le that
contains the 3D model in OpenSceneGraph format.

Two options for osgviewer bear pointing out: the -l �ag indicates that synthetic lighting should be
activated for the model, which can make it easier to see �ne detail in the model by providing some real-
time, interactive hillshading. The -s �ag sets the sub-sampling rate, and dictates the degree to which the
3D model should be simpli�ed. For 3D reconstructions, this can be essential for producing a model that
can �t in memory. The default value is 10, meaning every 10th point is used in the X and Y directions. In
other words that mean only 1/102 of the points are being used to create the model. Adjust this sampling
rate according to how much detail is desired, but remember that large models will impact the frame rate
of the 3D viewer and a�ect performance.

Examples:

point2mesh -s 2 -l output-prefix-PC.tif output-prefix-L.tif

point2mesh -s 2 -l output-prefix-DEM.tif output-prefix-DRG.tif

1The full OpenSceneGraph package can be installed separately from http://www.openscenegraph.org/.

163

http://www.openscenegraph.org/


Chapter A

To view the resulting output-prefix.osgb �le use osgviewer.

Fullscreen:
> osgviewer output-prefix.osgb

In a window:
> osgviewer output-prefix.osgb --window 50 50 1000 1000

Be sure to turn on lightning as soon as the model is loaded, by pressing on �L�. In addition, the keys T, W,
and F can be used to toggle on and o� texture, wireframe, and full-screen modes. The left, middle, and
right mouse buttons control rotation, panning, and zooming of the model.

The -t output �le type option can also take the obj value, when it will write the mesh in the Wavefront
OBJ format �le (output-prefix.obj ) that can be read into various 3D graphics programs.

Table A.7: Command-line options for point2mesh

Options Description

--help|-h Display the help message.
--simplify-mesh float Run OSG Simpli�er on mesh, 1.0 = 100%.
--smooth-mesh Run OSG Smoother on mesh
--use-delaunay Uses the delaunay triangulator to create a surface from the

point cloud. This is not recommended for point clouds with
noise issues.

--step|-s integer(=10) Sampling step size for the mesher.
--input-file pointcloud-file Explicitly specify the input �le.
--output-prefix|-o output-prefix Specify the output pre�x.
--texture-file texture-file Explicitly specify the texture �le.
--output-filetype|-t type(=osgb) Specify the output �le type.
--enable-lighting|-l Enables shades and lighting on the mesh.
--center Center the model around the origin. Use this option if you

are experiencing numerical precision issues.

164



Tools

A.8 dem_mosaic

The program dem_mosaic takes as input a list of DEM �les, optionally erodes pixels at the DEM boundaries,
and creates a mosaic. By default, it blends the DEMs where they overlap.

Usage:

dem_mosaic [options] <dem files or -l dem_files_list.txt> -o output_file_prefix

The input DEMs can either be set on the command line, or if too many, they can be listed in a text �le
(one per line) and that �le can be passed to the tool.

The output mosaic is written as non-overlapping tiles with desired tile size, with the size set either in pixels
or in georeferenced (projected) units. The default tile size is large enough that normally the entire mosaic is
saved as one tile, in the format output_�le_pre�x-tile-0.tif. Alternatively, one can pass to the -o option an
output �le name ending in .tif. Then the mosaic will be written with this exact name, without appending
tile-0.tif. (This will fail if the tool decides there is a need for more than one tile.)

Individual tiles can be saved via the --tile-index option (the tool displays the total number of tiles when
it is being run). As such, separate processes can be invoked for individual tiles for increased robustness and
perhaps speed.

The output mosaic tiles will be named <output pre�x>-tile-<tile index>.tif, where <output pre�x> is an
arbitrary string. For example, if it is set to results/output, all the tiles will be in the results directory.

By the default, the output mosaicked DEM will use the same grid size and projection as the �rst input
DEM. These can be changed via the --tr and --t_srs options.

The default behavior is to blend the DEMs everywhere. If the option --priority-blending-length

integer is invoked, the blending behavior will be di�erent. At any location, the pixel value of the DEM
earliest in the list present at this location will be kept, unless closer to the boundary of that DEM than
this blending length (measured in input DEM pixels), only in the latter case blending will happen. This
mode is useful when blending several high-resolution �foreground� DEMs covering small regions with larger
�background� DEMs covering a larger extent. Then, the pixels from the high-resolution DEMs are more
desirable, yet at their boundary these DEMs should blend into the background.

To obtain smoother blending when the input DEMs are quite di�erent at the boundary, one can increase
--weights-blur-sigma and --weights-exponent. The latter will result in weights growing slower earlier
and faster later. Some experimentation may be necessary, helped for example by examining the weights
used in blending; they can be written out with --save-dem-weight integer .

Instead of blending, dem_mosaic can compute the image of �rst, last, minimum, maximum, mean, standard
deviation, median, and count of all encountered valid DEM heights at output grid points. For the ��rst�
and �last� operations, the order in which DEMs were passed in is used. With any of these options, the
tile names will be adjusted accordingly. It is important to note that with these options blending will not
happen, since it is explicitly requested that particular values of the input DEMs be used.

If the number of input DEMs is very large, the tool can fail as the operating system may refuse to load all
DEMs. In that case, it is suggested to use the parameter --tile-size to break up the output DEM into
several large tiles, and to invoke the tool for each of the output tiles with the option --tile-index. Later,
dem_mosaic can be invoked again to merge these tiles into a single DEM.

If the DEMs have reasonably regular boundaries and no holes, smoother blending may be obtained by using
--use-centerline-weights.

Example 1 (erode 3 pixels from input DEMs and blend them):

165



Chapter A

dem_mosaic --erode-length 3 dem1.tif dem2.tif -o blended

Example 2 (read the DEMs from a list, and apply priority blending):

echo dem1.tif dem2.tif > imagelist.txt

dem_mosaic -l imagelist.txt --priority-blending-length 14 -o priority_blended

Example 3 (Find the mean DEM, no blending is used):

dem_mosaic -l imagelist.txt --mean -o mosaic

Example 4 (write with the exact output name, without using the tile-0.tif extension):

dem_mosaic dem1.tif dem2.tif -o blended.tif

Table A.8: Command-line options for dem_mosaic

Options Description

--help|-h Display the help message.
-l | --dem-list-file string Text �le listing the DEM �les to mosaic, one per line.
-o | --output-prefix string Specify the output pre�x. One or more tiles will be written

with this pre�x. Alternatively, an exact output �le can be
speci�ed, with a .tif extension.

--tile-size integer(=1000000) The maximum size of output DEM tile �les to write, in pix-
els.

--tile-index integer The index of the tile to save (starting from zero). When
this program is invoked, it will print out how many tiles are
there. Default: save all tiles.

--tile-list string List of tile indices (in quotes) to save. A tile index starts
from 0.

--erode-length integer(=0) Maximum dimensions of a hole in the output DEM to �ll in,
in pixels.

--priority-blending-length integer(=0) If positive, keep unmodi�ed values from the earliest avail-
able DEM at the current location except a band this wide
measured in pixels around its boundary where blending will
happen.

--hole-fill-length integer(=0) Erode input DEMs by this many pixels at boundary before
mosaicking them.

--tr double Output DEM resolution in target georeferenced units per
pixel. Default: use the same resolution as the �rst DEM to
be mosaicked.

--t_srs string Specify the output projection (PROJ.4 string). Default: use
the one from the �rst DEM to be mosaicked.

--t_projwin xmin ymin xmax ymax Limit the mosaic to this region, with the corners given in
georeferenced coordinates (xmin ymin xmax ymax). Max is
exclusive.

--first Keep the �rst encountered DEM value (in the input order).
--last Keep the last encountered DEM value (in the input order).
--min Keep the smallest encountered DEM value.

166



Tools

--max Keep the largest encountered DEM value.
--mean Find the mean DEM value.
--stddev Find the standard deviation of DEM values.
--median Find the median DEM value (this can be memory-intensive,

fewer threads are suggested).
--nmad Find the normalized median absolute deviation DEM value

(this can be memory-intensive, fewer threads are suggested).
--count Each pixel is set to the number of valid DEM heights at that

pixel.
--georef-tile-size double Set the tile size in georeferenced (projected) units (e.g., de-

grees or meters).
--output-nodata-value double No-data value to use on output. Default: use the one from

the �rst DEM to be mosaicked.
--ot string(=Float32) Output data type. Supported types: Byte, UInt16, Int16,

UInt32, Int32, Float32. If the output type is a kind of in-
teger, values are rounded and then clamped to the limits of
that type.

--weights-blur-sigma integer (=5) The standard deviation of the Gaussian used to blur the
weights. Higher value results in smoother weights and blend-
ing. Set to 0 to not use blurring.

--weights-exponent float (=2.0) The weights used to blend the DEMs should increase away
from the boundary as a power with this exponent. Higher
values will result in smoother but faster-growing weights.

--use-centerline-weights Compute weights based on a DEM centerline algorithm.
Produces smoother weights if the input DEMs don't have
holes or complicated boundary.

--dem-blur-sigma integer (=0) Blur the �nal DEM using a Gaussian with this value of
sigma. Default: No blur.

--extra-crop-length integer(=200) Crop the DEMs this far from the current tile (measured in
pixels) before blending them (a small value may result in
artifacts).

--nodata-threshold float Values no larger than this number will be interpreted as no-
data.

--force-projwin Make the output mosaic �ll precisely the speci�ed projwin,
by padding it if necessary and aligning the output grid to
the region.

--save-dem-weight integer Save the weight image that tracks how much the input DEM
with given index contributed to the output mosaic at each
pixel (smallest index is 0).

--save-index-map For each output pixel, save the index of the input DEM it
came from (applicable only for --�rst, --last, --min, --max,
--median, and --nmad). A text �le with the index assigned
to each input DEM is saved as well.

--threads integer(=4) Set the number of threads to use.

167



Chapter A

A.9 image_mosaic

The program image_mosaic aligns multiple input images into a single output image. Currently it only
supports a horizontal sequence of images such as scanned Corona images. An example of using this tool is
in section 11.17.

Usage:

image_mosaic [options] <images> -o output_file_path [options]

Table A.9: Command-line options for image_mosaic

Options Description

--t_orientation string(=horizontal) Specify the image layout. Currently only supports horizon-
tal.

--reverse Mosaic the images in reverse order.
--rotate After mosaicking, rotate the image by 180 degrees around

its center.
--rotate-90 After mosaicking, rotate the image by 90 degrees clockwise

around its center.
--rotate-90-ccw After mosaicking, rotate the image by 90 degrees counter-

clockwise around its center.
--use-affine-transform Solve for full a�ne transforms between segments instead of

a simpler rotate+translate transform.
-o | --output-image string Specify the output �le path. Required.
--overlap-width integer(=2000) The width of the expected overlap region in the images, in

pixels.
--blend-radius integer(=0) The width in pixels over which blending is performed. De-

fault is calculated based on the overlap width.
--band integer(=0) Specify a band to use for multi-channel images.
--ot string(=Float32) Output data type. Supported types: Byte, UInt16, Int16,

UInt32, Int32, Float32. If the output type is a kind of in-
teger, values are rounded and then clamped to the limits of
that type.

--input-nodata-value double Override the input nodata value.
--output-nodata-value double Specify the output nodata value.
--ip-per-tile integer How many interest points to detect in each 10242 image tile

(default: automatic determination).
--output-prefix string If speci�ed, save here the interest point matches used in mo-

saicking.
--tile-size integer(=256, 256) The size of image tiles used for processing. The amount of

image blending is limited by the tile size, so this will be in-
creased automatically if it is too small for the overlap width.

--help|-h Display the help message.

168



Tools

A.10 dem_geoid

This tool takes as input a DEM whose height values are relative to the datum ellipsoid, and adjusts those
values to be relative to the equipotential surface of the planet (geoid on Earth, and areoid on Mars). The
program can also apply the reverse of this adjustment. The adjustment simply subtracts from the DEM
height the geoid height (correcting, if need be, for di�erences in dimensions between the DEM and geoid
datum ellipsoids).

Three geoids and one areoid are supported. The Earth geoids are: EGM96 and EGM2008, relative
to the WGS84 datum ellipsoid (http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.
html, http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html) and NAVD88,
relative to the NAD83 datum ellipsoid (http://www.ngs.noaa.gov/GEOID/GEOID09/).

The Mars areoid is MOLA MEGDR (http://geo.pds.nasa.gov/missions/mgs/megdr.html). When im-
porting it into ASP, we adjusted the areoid height values to be relative to the IAU reference spheroid for
Mars of radius 3,396,190 m. The areoid at that source was relative to the Mars radius of 3,396,000 m. Yet
dem_geoid can adjust correctly Mars DEMs created in respect to either spheroid.

Example: Go from a DEM in respect to the WGS84 datum to one in respect to the EGM2008 geoid:

dem_geoid input-DEM.tif --geoid egm2008

This program will write a new image �le with the su�x *-adj.tif.

Table A.10: Command-line options for dem_geoid

Options Description

--help|-h Display the help message.
--nodata-value float(=-32768) The value of no-data pixels, unless speci�ed in the DEM.
--geoid string Specify the geoid to use for the given datum. For WGS84

use EGM96 or EGM2008. Default: EGM96. For Mars use
MOLA or leave blank. For NAD83 use NAVD88 or leave
blank. When not speci�ed it will be auto-detected.

--output-prefix|-o filename Specify the output �le pre�x.
--double Output using double precision (64 bit) instead of �oat (32

bit).
--reverse-adjustment Go from DEM relative to the geoid/areoid to DEM relative

to the datum ellipsoid.

A.11 dg_mosaic

This tool can be used when processing Digital Globe Imagery (chapter 4). A Digital Globe satellite may
take a picture, and then split it into several images and corresponding camera XML �les. dg_mosaic will
mosaic these images into a single �le, and create the appropriate combined camera XML �le.

Digital Globe camera �les contain, in addition to the original camera models, their RPC approximations
(section 11.12). dg_mosaic outputs both types of combined models. The combined RPC model can be
used to map-project the mosaicked images with the goal of computing stereo from them (section 5.1.7).

The tool needs to be applied twice, for both the left and right image sets.

dg_mosaic can also reduce the image resolution while creating the mosaics (with the camera �les modi�ed

169

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html
http://www.ngs.noaa.gov/GEOID/GEOID09/
http://geo.pds.nasa.gov/missions/mgs/megdr.html


Chapter A

accordingly).

Some older (2009 or earlier) Digital Globe images may exhibit seams upon mosaicking due to inconsistent
image and camera information. The --fix-seams switch can be used to rectify this problem. Its e�ect
should be minimal if such inconsistencies are not present.

Table A.11: Command-line options for dg_mosaic

Options Description

--help|-h Display the help message.
--target-resolution Choose the output resolution in meters per pixel on the

ground (note that a coarse resolution may result in alias-
ing).

--reduce-percent integer(=100) Render a reduced resolution image and XML based on this
percentage. This can result in aliasing artifacts.

--skip-rpc-gen [default: false] Skip RPC model generation.
--rpc-penalty-weight float(=0.1) The weight to use to penalize higher order RPC coe�cients

when generating the combined RPC model. Higher penalty
weight results in smaller such coe�cients.

--output-prefix string The pre�x for the output .tif and .xml �les.
--band integer Which band to use (for multi-spectral images).
--input-nodata-value float Nodata value to use on input; input pixel values less than or

equal to this are considered invalid.
--output-nodata-value float Nodata value to use on output.
--ot string(=Float32) Output data type. Supported types: Byte, UInt16, Int16,

UInt32, Int32, Float32. If the output type is a kind of in-
teger, values are rounded and then clamped to the limits of
that type.

--fix-seams Fix seams in the output mosaic due to inconsistencies be-
tween image and camera data using interest point matching.

--ignore-inconsistencies Ignore the fact that some of the �les to be mosaicked have
inconsistent EPH/ATT values. Do this at your own risk.

--preview Render a small 8 bit png of the input for preview.
-- dry-run|-n Make calculations, but just print out the commands.

170



Tools

A.12 mapproject

The tool mapproject is used to orthorectify (map-project) a camera image onto a DEM or datum. (ASP
is able to use map-projected images to run stereo, see section 5.1.7.)

The mapproject program can be run using multiple processes and can be distributed over multiple machines.
This is particularly useful for ISIS cameras, as in that case any single process must use only one thread due
to the limitations of ISIS. The tool splits the image up into tiles, farms the tiles out to sub-processes, and
then merges the tiles into the requested output image. If your image is small, smaller tiles can be used as
well to start more simultaneous processes (parameter --tile-size).

Examples:

Map-project a .cub �le (it has both image and camera information):

mapproject -t isis DEM.tif image.cub output.tif --ppd 256

Map-project an image �le with associated .xml camera �le:

mapproject -t rpc DEM.tif image.tif image.xml output.tif --mpp 20

Mapproject onto a datum rather than a DEM:

mapproject WGS84 image.tif image.xml output.tif --mpp 10

The �rst argument can either be a path to a DEM �le or the name of a standard datum. Valid datum
names include WGS84, NAD83, NAD27, D_MOON, D_MARS, and MOLA.

It is very important to pick a good value for the grid size parameter, given by --mpp, --ppd, or --tr. Ideally
it should be very close to the known image resolution as measured on the ground (in degree or meter units,
depending on the projection).

If the imagery is from Digital Globe, both the exact DG model from the XML �le can be used for map-
projection (-t dg) and its RPC approximation (-t rpc). The former is more accurate but much smaller.

Usage:

mapproject [options] <dem> <camera-image> <camera-model> <output-image>

Table A.12: Command-line options for mapproject

Options Description

--help|-h Display the help message.
--nodata-value float(=-32768) No-data value to use unless speci�ed in the input image.
--t_srs Specify the output projection (PROJ.4 string). If not

provided, use the one from the DEM.
--mpp float Set the output �le resolution in meters per pixel.
--ppd float Set the output �le resolution in pixels per degree.
--tr float Set the output �le resolution in target georeferenced units

per pixel.
--datum-offset float When projecting to a datum instead of a DEM, add this

elevation o�set to the datum.

171



Chapter A

--session-type|-t pinhole|isis|rpc Select the stereo session type to use for processing.
Choose 'rpc' if it is desired to later do stereo with the
'dg' session.

--t_projwin xmin ymin xmax ymax Limit the map-projected image to this region, with the
corners given in georeferenced coordinates (xmin ymin
xmax ymax). Max is exclusive.

--t_pixelwin xmin ymin xmax ymax Limit the map-projected image to this region, with the
corners given in pixels (xmin ymin xmax ymax). Max is
exclusive.

--bundle-adjust-prefix string Use the camera adjustment obtained by previously run-
ning bundle_adjust with this output pre�x.

--ot string(=Float32) Output data type, when the input is single channel.
Supported types: Byte, UInt16, Int16, UInt32, Int32,
Float32. If the output type is a kind of integer, values are
rounded and then clamped to the limits of that type. This
option will be ignored for multi-channel images, when the
output type is set to be the same as the input type.

--nearest-neighbor Use nearest neighbor interpolation instead of bicubic in-
terpolation.

--mo string Write metadata to the output �le. Provide as a string
in quotes if more than one item, separated by a space,
such as 'VAR1=VALUE1 VAR2=VALUE2'. Neither the
variable names nor the values should contain spaces.

--num-processes Number of parallel processes to use (default program
chooses).

--nodes-list List of available computing nodes.
--tile-size Size of square tiles to break processing up into.
--suppress-output Suppress output from sub-processes.
--threads int(=0) Select the number of processors (threads) to use.
--no-bigtiff Tell GDAL to not create bigti�s.
--tif-compress None|LZW|Deflate|Packbits TIFF compression method.

172



Tools

A.13 cam2rpc

This tool is used to generate an approximate RPC model for any camera model supported by ASP, in
a given longitude-latitude-height region for a given datum, or for a terrain covered by a given DEM. If
--save-tif-image is speci�ed, the image portion corresponding to the RPC model will be saved in the
TIF format.

The obtained RPCmodels and images can be used with stereo (when the latter is invoked with --session-type
rpc and the correct datum is speci�ed via --datum). These can also be passed to the third-party S2P and
SETSM stereo software, though both of these packages work for Earth only.

The accuracy of RPC models generally degrades if expected to cover very large regions. Hence, they
can be used piecewise, and the obtained terrain models from ASP can be then mosaicked together using
dem_mosaic.

Example for ISIS cub cameras for Mars:

cam2rpc input.cub output.xml --session-type isis --datum D_MARS --save-tif-image \

--height-range -10000 -9000 --lon-lat-range 141.50 34.43 141.61 34.15 \

--num-samples 40 --penalty-weight 0.03 --gsd 1

Example for pinhole cameras, where instead of sampling a lon-lat-height box, values from a DEM are used.

cam2rpc input.tif input.tsai output.xml --session-type nadirpinhole \

--dem-file DEM.tif --save-tif-image --image-crop-box 90 70 5511 3675

Here we have constrained the RPC camera model and output image to not go beyond a given bounding
box.

Usage:

cam2rpc [options] <camera-image> <camera-model> <output-rpc>

Table A.13: Command-line options for cam2rpc

Option Description

--datum string Use this datum to interpret the heights.
Options: WGS_1984, D_MOON
(1,737,400 meters), D_MARS (3,396,190
meters), MOLA (3,396,000 meters),
NAD83, WGS72, and NAD27. Also
accepted: Earth (=WGS_1984), Mars
(=D_MARS), Moon (=D_MOON).

--semi-major-axis double Explicitly set the datum semi-major axis
in meters.

--semi-minor-axis double Explicitly set the datum semi-minor axis
in meters.

--t_srs string Specify a projection (PROJ.4 string) in-
stead of the datum. Can also be an URL
or in WKT format, as for GDAL.

173



Chapter A

--dem-file string Instead of using a datum and a longitude-
latitude-height box, sample the surface of
this DEM.

--lon-lat-range arg (=0 0 0 0) The longitude-latitude range in which to
compute the RPC model. Specify in
the format: lon_min lat_min lon_max
lat_max.

--height-range arg (=0 0) Minimum and maximum heights above
the datum in which to compute the RPC
model.

--num-samples arg (=40) How many samples to use in each direction
in the longitude-latitude-height range.

--penalty-weight arg (=0.03) A higher penalty weight will result in
smaller higher-order RPC coe�cients.

--save-tif-image Save a TIF version of the input image that
approximately corresponds to the input
longitude-latitude-height range and which
can be used for stereo together with the
RPC model.

--input-nodata-value arg Set the image input nodata value.
--output-nodata-value arg Set the image output nodata value.
-t | --session-type string Select the input camera model type. Nor-

mally this is auto-detected, but may need
to be speci�ed if the input camera model
is in XML format. Options: pinhole isis
rpc dg spot5 aster opticalbar.

--bundle-adjust-prefix string Use the camera adjustment obtained by
previously running bundle_adjust with
this output pre�x.

--image-crop-box arg (=0 0 0 0) The output image and RPC model should
not exceed this box, speci�ed in input im-
age pixels as minx miny widx widy.

--no-crop Try to create an RPC model over the
entire input image, even if the input
longitude-latitude-height box covers just a
small portion of it. Not recommended.

--skip-computing-rpc Skip computing the RPC model.
--gsd arg (=-1) Expected resolution on the ground, in me-

ters. This is needed for SETSM.
--threads arg (=0) Select the number of processors (threads)

to use.
--tile-size arg (=256, 256) Image tile size used for multi-threaded

processing.
--no-bigtiff Tell GDAL to not create bigti�s.
--tif-compress string (=LZW) TIFF Compression method. [None, LZW,

De�ate, Packbits]
-v | --version Display the version of software.
-h | --help Display this help message.

174



Tools

A.14 disparitydebug

The disparitydebug program produces output images for debugging disparity images created from stereo.
The stereo tool produces several di�erent versions of the disparity map; the most important ending with
extensions *-D.tif and *-F.tif. (see Appendix C for more information.) These raw disparity map �les can
be useful for debugging because they contain raw disparity values as measured by the correlator; however
they cannot be directly visualized or opened in a conventional image browser. The disparitydebug tool
converts a single disparity map �le into two normalized TIFF image �les (*-H.tif and *-V.tif, containing
the horizontal and vertical, or line and sample, components of disparity, respectively) that can be viewed
using any image display program.

The disparitydebug program will also print out the range of disparity values in a disparity map, that can
serve as useful summary statistics when tuning the search range settings in the stereo.default �le.

If the input images are map-projected (georeferenced), the outputs of disparitydebug will also be georef-
erenced.

Table A.14: Command-line options for disparitydebug

Options Description

--help|-h Display the help message
--input-file filename Explicitly specify the input �le
--output-prefix|-o filename Specify the output �le pre�x
--output-filetype|-t type(=tif) Specify the output �le type
--float-pixels Save the resulting debug images as 32 bit �oating point �les

(if supported by the selected �le type)

A.15 orbitviz

Produces a Google Earth Keyhole Markup Language (KML) �le useful for visualizing camera positions.
The input for this tool is one or more images and camera �les.

Usage:

orbitviz [options] <input images and cameras>

Table A.15: Command-line options for orbitviz

Options Description

--help|-h Display the help message
--output|-o filename(=orbit.kml) The output kml �le that will be written.
--linescan-line integer(=1) Get the camera position at this pixel line.
--linescan-sample integer(=1) Get the camera position at this pixel sample.
--model-scale | -s float(=1) Scale the size of the coordinate axes by this amount. Ex: To

scale axis sizes up to Earth size, use 3.66.
--use-path-to-dae-model|-u fullpath Use this dae model to represent camera location. Google

Sketch up can create these.

175



Chapter A

-r | --reference-spheroid string=WGS_1984 Use this reference spheroid (datum). Options: WGS_1984,
D_MOON (1,737,400 meters), D_MARS (3,396,190 me-
ters), MOLA (3,396,000 meters), NAD83, WGS72, and
NAD27. Also accepted: Earth (=WGS_1984), Mars
(=D_MARS), Moon (=D_MOON).

-t | --session-type string Select the stereo session type to use for processing. Options:
pinhole isis spot5 dg aster opticalbar.

--load-camera-solve Use a specialized display for showing the results of the
camera_solve tool. When using this option, only pass in
the path to the camera_solve output folder as a positional
argument. Green lines drawn between the camera positions
indicate a successful interest point match between those two
images.

--hide-labels Hide image names unless the camera is highlighted.
--bundle-adjust-prefix string Use the camera adjustment obtained by previously running

bundle_adjust with this output pre�x.
--write-csv Write a csv �le with the orbital data.

176



Tools

Figure A.2: Example of a KML visualization produced with orbitviz depicting camera locations for the
Apollo 15 Metric Camera during orbit 33 of the Apollo command module.

177



Chapter A

A.16 camera_footprint

The tool camera_footprint computes what the footprint of in image would be if map projected on to a
provided datum or DEM and prints it to the screen. If a KML output path is provided it will also create a
KML �le containing the footprint. The KML will show a box with an X pattern showing the points ASP
used to compute the footprint. This tool can be useful for debugging camera orientations or getting a quick
overview of where images are located.

Usage:

camera_footprint [options] <camera-image> <camera-model>

Table A.16: Command-line options for camera_footprint

Options Description

--help|-h Display the help message.
--dem-file string Intersect with this DEM instead of a datum.
--datum string Use this datum to interpret the heights. Options are:

WGS_1984, D_MOON, D_MARS, and MOLA.
--t_srs Specify the georeference projection (PROJ.4 string).
--session-type|-t Select the stereo session type to use for processing. Nor-

mally this is autodetected.
--bundle-adjust-prefix string Use the camera adjustment obtained by previously run-

ning bundle_adjust with this output pre�x.
--output-kml string Write an output KML �le at this location.
--quick Use a faster but less accurate computation.

178



Tools

A.17 cam2map4stereo.py

This program takes similar arguments as the ISIS3 cam2map program, but takes two input images. With
no arguments, the program determines the minimum overlap of the two images, and the worst common
resolution, and then map-projects the two images to this identical area and resolution.

The detailed reasons for doing this, and a manual step-by-step walkthrough of what cam2map4stereo.py
does is provided in the discussion on aligning images on page 16.

The cam2map4stereo.py is also useful for selecting a subsection and/or reduced resolution portion of the
full image. You can inspect a raw camera geometry image in qview after you have run spiceinit on it,
select the latitude and longitude ranges, and then use cam2map4stereo.py's --lat, --lon, and optionally
--resolution options to pick out just the part you want.

Use the --dry-run option the �rst few times to get an idea of what cam2map4stereo.py does for you.

Table A.17: Command-line options for cam2map4stereo.py

Options Description

--help|-h Display the help message.
--manual Read the manual.
--map=MAP |-m MAP The map�le to use for cam2map.
--pixres=PIXRES |-p PIXRES The pixel resolution mode to use for cam2map.
--resolution=RESOLUTION |-r RESOLUTION Resolution of the �nal map for cam2map.
--interp=INTERP |-i INTERP Pixel interpolation scheme for cam2map.
--lat=LAT |-a LAT Latitude range for cam2map, where LAT is of the form

min:max. So to specify a latitude range between -5 and 10
degrees, it would look like --lat=-5:10.

--lon=LON |-o LON Longitude range for cam2map, where LON is of the form
min:max. So to specify a longitude range between 45 and
47 degrees, it would look like --lon=40:47.

--dry-run|-n Make calculations, and print the cam2map command that
would be executed, but don't actually run it.

--prefix Make all output �les use this pre�x. Default: no pre�x.
--suffix|-s Su�x that gets inserted in the output �le names, defaults to

`map'.

179



Chapter A

A.18 pansharp

This tool reads in a high resolution grayscale �le and a low resolution RGB �le and produces a high
resolution RGB �le. The output image will be at the resolution of the grayscale image and will cover the
region where the two images overlap. Both images must have georeferencing information. This can either
be projection information in the image metadata or it can be a separate Worldview format XML camera
�le containing four ground control points (if using the tool with Digital Globe images).

Usage:
pansharp [options] <grayscale image file> <color image file> <output image file>

Table A.18: Command-line options for pansharp

Options Description

--help Display the help message.
--min-value Manually specify the bottom of the input data range.
--max-value Manually specify the top of the input data range.
--gray-xml Look for georeference data here if not present in the grayscale

image.
--color-xml Look for georeference data here if not present in the RGB

image.
--nodata-value The nodata value to use for the output RGB �le.

A.19 datum_convert

This tool is used to convert a DEM from one datum to another. For example, a UTM zone 10 DEM
with an NAD27 datum can be converted to a UTM zone 10 DEM with a WGS84 datum. This tool
does not convert between projections, another program such as gdalwarp (included with ASP) or ASP's
dem_mosaic should be used for that. datum_convert performs horizontal conversion; vertical conversion
is only provided for the limited case of conversions between datums de�ned only by the +a and +b terms
(such as our D_MARS and MOLA datums). The underlying Proj.4 library does have some support for
vertical datums (see https://github.com/OSGeo/proj.4/wiki/VerticalDatums) so a motivated user may
be able to apply them successfully. If you do, let us know what steps you took so we can add them to
the manual! ASP ships with some vertical datum grid �les in the ASP/share/proj folder but more can be
found on the Internet. Whenever you perform datum conversions be careful; the Proj.4 library tends to fail
silently by performing an identity transform on the input data. If your output data exactly matches your
input data this means that something has probably gone wrong.

The tool will try to automatically �nd datum information from the input �le but the input datum can be
manually speci�ed if the information in the �le is missing or incorrect. Be aware that if the --keep-bounds
option is not set there may be noticeable changes in the image data just from re-interpolating to the new
projected space grid. In the case of sparsely sampled input images this e�ect can be much larger than the
changes resulting from the actual datum transformation.

Intuitively, the input and output DEMs should correspond to the same point cloud in 3D space up to the
interpolation errors required to perform the conversion. In practice datum conversion is a complex task
which may need to account for things like shifting tectonic plates over time. ASP's implementation is based
on Proj.4 and the HTDPGrids extension (https://github.com/OSGeo/proj.4/wiki/HTDPGrids). Datum
support in Proj.4 is not robust even with the extension so if it is critical that you have a very accurate
conversion we recommend that you attempt to verify results obtained using datum_convert with another

180

https://github.com/OSGeo/proj.4/wiki/VerticalDatums
https://github.com/OSGeo/proj.4/wiki/HTDPGrids


Tools

conversion method.

This tool requires the gdal and numpy Python packages to run. One way to get these is to install the ASP
Python tools, described at the end of section 4.5.

Usage:
datum_convert [options] <input dem> <output dem>

Table A.19: Command-line options for datum_convert

Options Description

--help Display the help message.
--show-all-datums Print out all the datum names which are recognized.
--output-datum string The datum to convert to. Supported options include:

WGS_1984, NAD83, WGS72, and NAD27.
--input-datum string Override the datum of the input �le. Supports the same

options as �output-datum.
--output-datum-year default: 2000.0 Specify the exact date of the output datum in �oating point

format ex: 2003.4.
--input-datum-year default: 2000.0 As �output-datum-year, but for the input �le.
--t_srs string Specify the output datum via the PROJ.4 string.
--keep-bounds Don't recompute the projected space boundary. This can

help reduce changes caused by interpolation.
--nodata-value The value of no-data pixels, unless speci�ed in the DEM.
--double Create �oat64 instead of �oat32 output �les.
--show-grid-calc Don't hide the shift grid creation output.
--debug-mode Print the converted lon/lat/alt coordinates for each pixel.

Only useful for investigating exact change that is happening.
--grid-size-lon Specify the number of columns in the grid shift �le.
--grid-size-lat Specify the number of rows in the grid shift �le.
--keep-working-files Don't delete intermediate �les.

A.20 point2las

This tool can be used to convert point clouds generated by ASP to the public LAS format for interchange
of 3-dimensional point cloud data.

If the input cloud has a datum, or the --datum option is speci�ed, then the output LAS �le will be created
in respect to this datum. Otherwise raw x, y, z values will be saved.

Table A.20: Command-line options for point2las

Options Description

--help|-h Display the help message.
--datum Create a geo-referenced LAS �le in respect to this da-

tum. Options: WGS_1984, D_MOON (1,737,400 me-
ters), D_MARS (3,396,190 meters), MOLA (3,396,000 me-
ters), NAD83, WGS72, and NAD27. Also accepted: Earth
(=WGS_1984), Mars (=D_MARS), Moon (=D_MOON).

--reference-spheroid string This is identical to the datum option.

181



Chapter A

--t_srs string Specify the output projection (PROJ.4 string).
--compressed Compress using laszip.
--output-prefix|-o filename Specify the output �le pre�x.
--threads integer(=0) Set the number threads to use. 0 means use the default

de�ned in the program or in the .vwrc �le.
--tif-compress None|LZW|Deflate|Packbits TIFF compression method.

A.21 pc_align

This tool can be used to align two point clouds. The algorithms employed are one of the several �avors of
Iterative Closest Point (ICP), based on the libpointmatcher library [124]

https://github.com/ethz-asl/libpointmatcher

It also implements the Fast Global Registration algorithm

https://github.com/IntelVCL/FastGlobalRegistration

In addition, it supports feature-based alignment (terrains are hillshaded and interest point matches are found
among them), and alignment using least squares. It can handle a scale change in addition to rotations and
translations. For joint alignment of more than two clouds, the related tool n_align can be used (section
A.22).

Usage:

pc_align --max-displacement <float> [other options] <reference cloud> <source cloud> \

-o <output prefix>}

An example of using this tool is in section 5.2.5.

Several important things need to be kept in mind if pc_align is to be used successfully and give accurate
results, as described below.

A.21.1 The input point clouds

Due to the nature of ICP, the �rst input point cloud, that is, the reference (�xed) cloud, should be denser
than the second, source (movable) point cloud, to get the most accurate results. This is not a serious
restriction, as one can perform the alignment this way and then simply invert the obtained transform if
desired (pc_align outputs both the direct and inverse transform, and can output the reference point cloud
transformed to match the source and vice-versa).

In many typical applications, the source and reference point clouds are already roughly aligned, but the
source point cloud may cover a larger area than the reference. The user should provide to pc_align the
expected maximum distance (displacement) source points may move by as result of alignment, using the
option --max-displacement. This number will help remove source points too far from the reference point
cloud which may not match successfully and may degrade the accuracy. If in doubt, this value can be set
to something large but still reasonable, as the tool is able to throw away a certain number of unmatched
outliers. At the end of alignment, pc_align will display the observed maximum displacement, a multiple of
which can be used to seed the tool in a subsequent run. If an initial transform is applied to the source cloud

182

https://github.com/ethz-asl/libpointmatcher
https://github.com/IntelVCL/FastGlobalRegistration


Tools

(section A.21.5), the outliers are thrown out after this operation. The observed maximum displacement
is also between the source points with this transform applied and the source points after alignment to the
reference.

The user can choose how many points to pick from the reference and source point clouds to perform the
alignment. The amount of memory and processing time used by pc_align is directly proportional to these
numbers, ideally the more points the better. Pre-cropping to judiciously chosen regions may improve the
accuracy and/or run-time.

A.21.2 Alignment method

The default alignment method is Point-to-Plane ICP, which may be more robust to large translations
than Point-to-Point ICP, though the latter can be good enough if the input point clouds have small
alignment errors and it is faster and uses less memory as well. The tool also accepts an option named
--highest-accuracy which will compute the normals for Point-to-Plane ICP at all points rather than
about a tenth of them. This option is not necessary most of the time, but may result in better alignment
at the expense of using more memory and processing time.

The default alignment transform is rigid, that is, a combination of rotation and translation. With Point-
to-Point ICP, it is also possible to solve for a scale change (to obtain a so-called similarity transform).
It is suggested this approach be used only when a scale change is expected. It can be turned on by setting
--alignment-method similarity-point-to-point. (This method works best if an initial alignment is
�rst performed with, for example, the Point-to-Plane approach, to determine the rotation and translation
part of the transform, and then that one can be used as an initial guess in order to solve for the scale as
well.)

For very large scale di�erence or translation among the two clouds, both of these algorithms may fail.
If the clouds are DEMs, one may specify the option --initial-transform-from-hillshading string

which will hillshade the two DEMs, �nd interest point matches among them, and use that to compute an
initial transform between the clouds (section A.21.5), which may or may not contain scale, after which the
earlier algorithms will be applied to re�ne the transform. This functionality is implemented with ASP's
hillshade, ipfind, and ipmatch tools, and pc_align has options to pass �ags to these programs, such
as to increase the number interest points being found, if the defaults are not su�cient. If the two clouds
look too di�erent for interest point matching to work, they perhaps can be re-gridded to use the same
(coarser) grid, as described in section A.21.10, to obtain the initial transform which can then be applied to
the original clouds.

A non-ICP algorithm supported by ASP is Fast Global Registration, accessible with --alignment-method

fgr, and customizable using the --fgr-options �eld (see the table below for more details). This approach
can perform better than ICP when the clouds are close enough to each other but there is a large number of
outliers, since it does a cross-check, so it can function with very large --max-displacement. It does worse
if the clouds need a big shift to align.

This one is being advertised as less sensitive to outliers, hence it should give good results with a larger
value of the maximum displacement.

Another option is to use least squares (with outlier handling using a robust cost function) to �nd the trans-
form, if the reference cloud is a DEM. For this, one should specify the alignment method as least-squares
or similarity-least-squares (the latter also solves for scale). It is suggested that the input clouds be
very close or otherwise the --initial-transform option be used, for the method to converge, and use
perhaps on the order of 10-20 iterations and a smaller value for --max-num-source-points (perhaps a few
thousand) for this approach to converge reasonably fast.

183



Chapter A

A.21.3 File formats

The input point clouds can be in one of several formats: ASP's point cloud format (the output of stereo),
DEMs as GeoTIFF or ISIS cub �les, LAS �les, or plain-text CSV �les (with .csv or .txt extension).

By default, CSV �les are expected to have on each line the latitude and longitude (in degrees), and the
height above the datum (in meters), separated by commas or spaces. Alternatively, the user can specify
the format of the CSV �le via the --csv-format option. Entries in the CSV �le can then be (in any order)
(a) longitude, latitude (in degrees), height above datum (in meters), (b) longitude, latitude, distance from
planet center (in meters or km), (c) easting, northing and height above datum (in meters), in this case
a PROJ.4 string must be set via --csv-proj4, (d) Cartesian coordinates (x, y, z) measured from planet
center (in meters). The precise syntax is described in the table below. The tool can also auto-detect the
LOLA RDR PointPerRow format.

Any line in a CSV �le starting with the pound character (#) is ignored.

If none of the input �les have a geoheader with datum information, and the input �les are not in Cartesian
coordinates, the datum needs to be speci�ed via the --datum option, or by setting --semi-major-axis and
--semi-minor-axis.

A.21.4 The alignment transform

The transform obtained by pc_align is output to a text �le as a 4 × 4 matrix with the upper-left 3 × 3
submatrix being the rotation (and potentially also a scale, per section A.21.2) and the top three elements
of the right-most column being the translation. This transform, if applied to the source point cloud, will
bring it in alignment with the reference point cloud. The transform assumes the 3D Cartesian coordinate
system with the origin at the planet center (known as ECEF). This matrix can be supplied back to the tool
as an initial guess (section A.21.5). The inverse transform is saved to a �le as well.

A.21.5 Applying an initial transform

The transform output by pc_align can be supplied back to the tool as an initial guess via the --initial-transform
option, with the same or di�erent clouds. If it is desired to simply apply this transform to the clouds with-
out further work, one can specify --num-iterations 0. This may be useful, for example, in �rst �nding
the alignment transform over a smaller, more reliable region (e.g., over rock, excluding moving ice), then
applying it over the entire available dataset.

Alternatively, one can apply to the source cloud an initial shift, expressed in the North-East-Down co-
ordinate system at the centroid of the source points, before the alignment algorithm is invoked. Hence,
if it is desired to move the source cloud North by 5 m, East by 10 m, and down by 15 m relative to
the point on planet surface which is the centroid of the source points, one can invoke pc_align with
--initial-ned-translation '5 10 15' (notice the quotes).

If an initial transform is used, the alignment transform output by the program will be from the source points
before the initial transform, hence the output alignment transform will incorporate the initial transform.

If a good initial alignment is found, it is suggested to use a smaller value for --max-displacement, as the
clouds will already be mostly on top of each other after the initial transform is applied.

A.21.6 Interpreting the transform

The alignment transform, with its origin at the center of the planet, can result in large movements on the
planet surface even for small angles of rotation. Because of this it may be di�cult to interpret both its

184



Tools

rotation and translation components.

The pc_align program outputs the translation component of this transform, de�ned as the vector from
the centroid of the original source points (before any initial transform applied to them) to the centroid of
the source points with the computed alignment transform applied to them. This translation component is
displayed in three ways (a) Cartesian coordinates with the origin at the planet center, (b) Local North-
East-Down coordinates at the centroid of the source points (before any initial transform), and (c) Latitude-
Longitude-Height di�erences between the two centroids. If the e�ect of the transform is small (e.g., the
points moved by at most several hundred meters) then the representation in the form (b) above is most
amenable to interpretation as it is in respect to cardinal directions and height above ground if standing at
a point on the planet surface.

This program prints to screen the Euler angles of the rotation transform, and also the axis of rotation
and the angle measured against that axis. It can be convenient to interpret the rotation as being around
the center of gravity of the reference cloud, even though it was computed as a rotation around the planet
center, since changing the point around which a rigid transform is applied will only a�ect its translation
component, which is relative to that point, but not the rotation matrix.

A.21.7 Error metrics and outliers

The tool outputs to CSV �les the lists of errors together with their locations in the source point cloud, before
the alignment of the source points (but after applying any initial transform), and also after the alignment
computed by the tool. They are named <output prefix>-beg_errors.csv and <output prefix>-end_errors.csv.
An error is de�ned as the distance from a source point used in alignment to the closest reference point.
The format of output CSV �les is the same as of input CSV �les, or as given by --csv-format, although
any columns of extraneous data in the input �les are not saved on output.

The program prints to screen and saves to a log �le the 16th, 50th, and 84th error percentiles as well as
the means of the smallest 25%, 50%, 75%, and 100% of the errors.

When the reference point cloud is a DEM, a more accurate computation of the errors from source points to
the reference cloud is used. A source point is projected onto the datum of the reference DEM, its longitude
and latitude are found, then the DEM height at that position is interpolated. That way we determine a
�closest� point on the reference DEM that interprets the DEM not just as a collection of points but rather
as a polyhedral surface going through those points. These errors are what is printed in the statistics. To
instead compute errors as done for other type of point clouds, use the option --no-dem-distances.

By default, when pc_align discards outliers during the computation of the alignment transform, it keeps
the 75% of the points with the smallest errors. As such, a way of judging the e�ectiveness of the tool is to
look at the mean of the smallest 75% of the errors before and after alignment.

A.21.8 Output point clouds and convergence history

The transformed input point clouds (the source transformed to match the reference, and the reference
transformed to match the source) can also be saved to disk if desired. If an input point cloud is in CSV or
ASP point cloud format, the output transformed cloud will be in the same format. If the input is a DEM,
the output will be an ASP point cloud, since a gridded point cloud may not stay so after a 3D transform.
The point2dem program can be used to re-grid the obtained point cloud back to a DEM.

The convergence history for pc_align (the translation and rotation change at each iteration) is saved to
disk and can be used to �ne-tune the stopping criteria.

185



Chapter A

A.21.9 Manual alignment

If automatic alignment fails, for example, if the clouds are too di�erent, or they di�er by a scale factor,
a manual alignment can be computed as an initial guess transform (and one can stop there if pc_align
is invoked with 0 iterations). For that, the input point clouds should be �rst converted to DEMs using
point2dem, unless in that format already. Then, stereo_gui can be called to create manual point corre-
spondences (interest point matches) from the reference to the source DEM (hence they should be displayed
in the GUI in this order, from left to right, and one can hillshade them to see features better). Once the
match �le is saved to disk, it can be passed to pc_align via the --match-file option, which will compute
an initial transform before continuing with alignment. This transform can also be used for non-DEM clouds
once it is found using DEMs obtained from those clouds.

A.21.10 Creating a point cloud from a DEM

Given a DEM, if one invokes pc_align as follows:

pc_align dem.tif dem.tif --max-displacement -1 --num-iterations 0 \

--save-transformed-source-points -o run/run

this will create a point cloud out of the DEM. This cloud can then be re-gridded using point2dem at a
lower resolution or with a di�erent projection.

A.21.11 Troubleshooting

Remember that �ltering is applied only to the source point cloud. If you have an input cloud with a lot of
noise, make sure it is being used as the source cloud.

If you are not getting good results with pc_align, something that you can try is to convert an input point
cloud into a smoothed DEM. Use point2dem to do this and set --search-radius-factor if needed to �ll
in holes in the DEM. For some input data this can signi�cantly improve alignment accuracy.

Table A.21: Command-line options for pc_align

Options Description

--num-iterations default: 1000 Maximum number of iterations.
--max-displacement float Maximum expected displacement of source points as

result of alignment, in meters (after the initial guess
transform is applied to the source points). Used for
removing gross outliers in the source (movable) point
cloud.

--output-prefix|-o filename Specify the output �le pre�x.
--outlier-ratio default: 0.75 Fraction of source (movable) points considered inliers

(after gross outliers further than max-displacement
from reference points are removed).

--max-num-reference-points default: 108 Maximum number of (randomly picked) reference
points to use.

--max-num-source-points default: 105 Maximum number of (randomly picked) source points
to use (after discarding gross outliers).

186



Tools

--alignment-method default:

point-to-plane

The type of iterative closest point method to
use. [point-to-plane, point-to-point, similarity-point-
to-point, fgr, least-squares, similarity-least-squares]

--highest-accuracy Compute with highest accuracy for point-to-plane (can
be much slower).

--datum string Use this datum for CSV �les. Options: WGS_1984,
D_MOON (1,737,400 meters), D_MARS (3,396,190
meters), MOLA (3,396,000 meters), NAD83, WGS72,
and NAD27. Also accepted: Earth (=WGS_1984),
Mars (=D_MARS), and Moon (=D_MOON).

--semi-major-axis float Explicitly set the datum semi-major axis in meters.
--semi-minor-axis float Explicitly set the datum semi-minor axis in meters.
--csv-format string Specify the format of input CSV �les as a list of en-

tries column_index:column_type (indices start from
1). Examples: '1:x 2:y 3:z' (a Cartesian coordi-
nate system with origin at planet center is assumed,
with the units being in meters), '5:lon 6:lat 7:ra-
dius_m' (longitude and latitude are in degrees, the
radius is measured in meters from planet center), '3:lat
2:lon 1:height_above_datum', '1:easting 2:northing
3:height_above_datum' (need to set --csv-proj4;
the height above datum is in meters). Can also use
radius_km for column_type, when it is again mea-
sured from planet center.

--csv-proj4 string The PROJ.4 string to use to interpret the entries in
input CSV �les, if those �les contain Easting and Nor-
thing �elds.

--compute-translation-only Compute the transform from source to reference point
cloud as a translation only (no rotation).

--save-transformed-source-points Apply the obtained transform to the source points so
they match the reference points and save them.

--save-inv-transformed-reference-points Apply the inverse of the obtained transform to the
reference points so they match the source points and
save them.

--initial-transform string The �le containing the transform to be used as an ini-
tial guess. It can come from a previous run of the tool.

--initial-ned-translation string Initialize the alignment transform based on a trans-
lation with this vector in the North-East-Down co-
ordinate system around the centroid of the reference
points. Specify it in quotes, separated by spaces or
commas.

--initial-transform-from-hillshading

string

If both input clouds are DEMs, �nd interest point
matches among their hillshaded versions, and use them
to compute an initial transform to apply to the source
cloud before proceeding with alignment. Specify here
the type of transform, as one of: 'similarity' (rotation
+ translation + scale), 'rigid' (rotation + translation)
or 'translation'.

187



Chapter A

--hillshade-options Options to pass to the hillshade program
when computing the transform from hillshad-
ing. Default: --azimuth 300 --elevation 20

--align-to-georef.
--ipfind-options Options to pass to the ipfind program when com-

puting the transform from hillshading. Default:
--ip-per-image 500000 --interest-operator

sift --descriptor-generator sift.
--ipmatch-options Options to pass to the ipmatch program when

computing the transform from hillshading. Default:
--inlier-threshold 100 --ransac-iterations

10000 --ransac-constraint similarity.
--match-file Compute an initial transform from the source to

the reference point cloud using manually selected
point correspondences (obtained for example using
stereo_gui). The type of transform can be set via
--initial-transform-from-hillshading string .

--fgr-options Options to pass to the Fast Global Registration
algorithm, if used. Default: 'div_factor: 1.4
use_absolute_scale: 0 max_corr_dist: 0.025 itera-
tion_number: 100 tuple_scale: 0.95 tuple_max_cnt:
10000'.

--diff-rotation-error default: 10−8 Change in rotation amount below which the algorithm
will stop (if translation error is also below bound), in
degrees.

--diff-translation-error default: 10−3 Change in translation amount below which the algo-
rithm will stop (if rotation error is also below bound),
in meters.

--no-dem-distances For reference point clouds that are DEMs, don't take
advantage of the fact that it is possible to interpolate
into this DEM when �nding the closest distance to it
from a point in the source cloud (the text above has
more detailed information).

--config-file file.yaml This is an advanced option. Read the alignment pa-
rameters from a con�guration �le, in the format ex-
pected by libpointmatcher, over-riding the command-
line options.

--threads integer(=0) Set the number threads to use. 0 means use the default
as set by OpenMP. Only some parts of the algorithm
are multi-threaded.

--help|-h Display the help message.

A.22 n_align

This tool can be used to jointly align a set of two or more point clouds, hence it extends the functionality of
pc_align (section A.21). It implements the ICP �avor from [147], more exactly, the MATLAB algorithm
at

https://searchcode.com/file/13619767/Code/matlab/GlobalProcrustesICP/globalProcrustes.m

188

https://searchcode.com/file/13619767/Code/matlab/GlobalProcrustesICP/globalProcrustes.m


Tools

It is hoped that joint alignment will give less biased results than pairwise alignment for the clouds.

Usage:

n_align <cloud files> -o <output prefix>

This tool supports the same types of data on input and output as pc_align.

Even for two clouds this algorithm is not the same as the ones that are part of pc_align. This algorithm
is expected to be more robust to outliers than the regular ICP in pc_align since it uses a cross-check. Yet,
it may not handle a large translation di�erence between the clouds as well. In that case, given a set of
clouds, one can �rst use pc_align to align all other clouds to the �rst one, then invoke this algorithm for
joint alignment while passing the obtained alignment transforms as an argument to this tool, to be used as
initial guesses. The option to use for this, as shown below for simplicity for three clouds, is:

--initial-transforms 'identity.txt run_12/run-transform.txt run_13/run-transform.txt'

where the �le 'identity.txt' contains the 4× 4 identity matrix (the transform from the �rst cloud to itself),
and 'run_12/run' is the output pre�x for pc_align when invoked on the �rst and second clouds, etc. The
�nal transforms output by this tool will incorporate the initial guesses.

This tool should be less sensitive than pc_align to the order of the clouds since any two of them are
compared against each other. The number of iterations and number of input points used will dramatically
a�ect its performance, and likely the accuracy. Cropping all clouds to the same region is likely to to improve
both run-time and the results.

Table A.22: Command-line options for n_align

Option Description

--num-iterations arg (=100) Maximum number of iterations.
--max-num-points arg (=1000000) Maximum number of (randomly picked)

points from each cloud to use.
--csv-format arg Specify the format of input CSV �les as

a list of entries column_index:column_type
(indices start from 1). Examples: '1:x 2:y
3:z', '2:�le 5:lon 6:lat 7:radius_m', '3:lat
2:lon 1:height_above_datum 5:�le', '1:east-
ing 2:northing 3:height_above_datum' (need
to set �csv-proj4). Can also use radius_km
for column_type.

--csv-proj4 arg The PROJ.4 string to use to interpret the en-
tries in input CSV �les.

--datum arg Use this datum for CSV �les instead of
auto-detecting it. Options: WGS_1984,
D_MOON (1,737,400 meters), D_MARS
(3,396,190 meters), MOLA (3,396,000 me-
ters), NAD83, WGS72, and NAD27. Also
accepted: Earth (=WGS_1984), Mars
(=D_MARS), Moon (=D_MOON).

--semi-major-axis arg (=0) Explicitly set the datum semi-major axis in
meters.

189



Chapter A

--semi-minor-axis arg (=0) Explicitly set the datum semi-minor axis in
meters.

-o | --output-prefix arg Specify the output pre�x. The computed
alignment transforms and, if desired, the
transformed clouds, will be saved to names
starting with this pre�x.

--save-transformed-clouds Apply the obtained alignment transforms to
the input clouds and save them.

--initial-transforms-prefix arg The pre�x of the transforms to be used as
initial guesses. The naming convention is the
same as for the transforms written on output.

--initial-transforms arg Specify the initial transforms as a list of �les
separated by spaces and in quotes, that is, as
'trans1.txt ... trans_n.txt'.

--relative-error-tolerance (=1e-10) Stop when the change in the error divided by
the error itself is less than this.

--align-to-first-cloud Align the other clouds to the �rst one, rather
than to their common centroid.

-v | --verbose Print the alignment error after each iteration.
--threads arg (=0) Select the number of processors (threads) to

use.
--tile-size arg (=256, 256) Image tile size used for multi-threaded pro-

cessing.
--no-bigtiff Tell GDAL to not create bigti�s.
--tif-compress arg (=LZW) TIFF Compression method. [None, LZW,

De�ate, Packbits]
-v | --version Display the version of software.
-h | --help Display this help message.

A.23 pc_merge

This is a simple tool for combining multiple ASP-generated point cloud �les into a single concatenated
�le. The output �le will be �oat32 unless the input images are �oat64 or the user has speci�ed the �oat64
option.

pc_merge can merge clouds with 1, 3, 4, and 6 bands. In particular, it can merge output-pre�x -L.tif images
created by stereo. This is useful if it is desired to create an ortho-image from a merged cloud with
point2dem. In that case, one can invoke pc_merge on individual �L� �les to create a merged texture �le to
pass to point2dem together with the merged point cloud tile.

Usage:
pc_merge [options] [required output file option] <multiple point cloud files>

Table A.23: Command-line options for pc_merge

Options Description

--help Display the help message.
--write-double|-d Force output �le to be �oat64 instead of �oat32.
--output-file|-o Specify the output �le (required).

190



Tools

A.24 wv_correct

An image taken by one of Digital Globe's World View satellite cameras is formed of several blocks as tall as
the image, mosaicked from left to right, with each block coming from an individual CCD sensor [43]. Either
due to imperfections in the camera or in the subsequent processing the image blocks are o�set in respect
to each other in both row and column directions by a subpixel amount. These so-called CCD boundary
artifacts are not visible in the images but manifest themselves as discontinuities in the the DEMs obtained
with ASP.

The tool named wv_correct is able to signi�cantly attenuate these artifacts (see Figure 4.2 in the Digital
Globe tutorial for an example). This tool should be used on raw Digital Globe images before calling
dg_mosaic and mapproject.

It is important to note that both the positions of the CCD o�sets and the o�set amounts were determined
empirically without knowledge of Digital Globe's mosaicking process; this is why we are not able to remove
these artifacts completely.

Presently, wv_correct works for WV01 images for TDI of 8, 16, 32, 48, 56 and 64, and for WV02 images
for TDI of 8, 16, 48, and 64 (both the forward and reverse scan directions for both cameras). In addition,
the WV02 TDI 32 forward scan direction is supported. These are by far the most often encountered TDI.
We plan to extend the tool to support other TDI when we get more such data to be able to compute the
corrections. For WV03 images, CCD artifacts appear to not be signi�cant, hence no corrections are planned
for the near future.

Usage:
wv_correct [options] <input image> <input camera model> <output image>

Table A.24: Command-line options for wv_correct

Options Description

--ot string(=Float32) Output data type. Supported types: Byte, UInt16,
Int16, UInt32, Int32, Float32. If the output type is a
kind of integer, values are rounded and then clamped
to the limits of that type.

--help|-h Display the help message.
--threads integer(=0) Set the number threads to use. 0 means use the default

de�ned in the program or in the .vwrc �le.

A.25 hiedr2mosaic.py

Assemble a collection of HiRISE EDR �les into a single image. This runs the sequence of ISIS preprocessing
commands, followed by hijitreg, to assemble the input images into a single output image. You can either
download the input �les yourself and pass them all in or specify a download folder and pass in only a URL
such as http://hirise-pds.lpl.arizona.edu/PDS/EDR/ESP/ORB_029400_029499/ESP_029421_2300/. If
you use a URL, the program will attempt to download all of the HiRISE images found at that location and
then run the processing script. See the "Mars Reconnaissance Orbiter HiRISE" section in the examples
chapter for a more detailed explanation.

Usage:
hiedr2mosaic.py [options] <input files OR a URL>

191

http://hirise-pds.lpl.arizona.edu/PDS/EDR/ESP/ORB_029400_029499/ESP_029421_2300/


Chapter A

Table A.25: Command-line options for hiedr2mosaic.py

Options Description

--manual Display the help message.
--match|-m The CCD number passed as the match argument to noproj

(default 5). .
--stop-at-no-proj Stops processing after the noproj steps are complete.
--resume-at-no-proj Restarts processing using the results from 'stop-at-no-proj.
--download-folder Download input �les to this folder. Must pass in a URL

instead of �les.
--threads|-t Specify the number of threads to use.
--keep|-k Keep all intermediate �les.

A.26 lronac2mosaic.py

This tool takes in two LRONAC �les (M*LE.IMG and M*RE.IMG) and produces a single noproj mosaic
composed of the two inputs. It performs the following operations in this process: lronac2isis, lronaccal,
lronacecho, spiceinit, noproj, and handmos. The o�sets used in handmos are calculated using an ASP
internal tool called lronacjitreg and is similar in functionality to the ISIS command hijitreg. O�sets
need to be calculated via feature measurements in image to correct for imperfections in camera pointing.
The angle between LE and RE optics changes slightly with spacecraft temperature.

Optionally, lronac2mosiac.py can be given many IMG �les all at once. The tool will then look at image
names to determine which should be paired and mosaicked. The tool will also spawn multiple processes
of ISIS commands were possible to �nish the task faster. The max number of simultaneous processes is
limited by the --threads option.

Usage:
lronac2mosaic.py [options] <IMG file 1> <IMG file 2>

Table A.26: Command-line options for lronac2mosaic.py

Options Description

--manual Display the help message.
--output-dir|-o Set the output folder (default is input folder).
--stop-at-no-proj Stops processing after the noproj steps are complete.
--resume-at-no-proj Restarts processing using the results from 'stop-at-no-proj.
--threads|-t Specify the number of threads to use.
--keep|-k Keep all intermediate �les.

A.27 image_calc

This tool can be used to perform simple, per-pixel arithmetic on one or more input images. An arithmetic
operation speci�ed on the command line is parsed and applied to each pixel, then the result is written to
disk. The tool supports multiple input images but each must be the same size and data type. Input images
are restricted to one channel.

The following symbols are allowed in the arithmetic string: +, -, *, /, (), min(), max(), pow(), abs(), and
var_N where N is the index of one of the input images. An example arithmetic string is: "-abs(var_2)

192



Tools

+ min(58, var_1, var_3) / 2". The tool respects the normal PEMDAS order of operations except that it
parses equal priority operations from right to left, not the expected left to right. Parentheses can be used
to enforce any preferred order of evaluation.

Usage:

image_calc [options] -c <arithmetic formula> <inputs> -o <output>

Example:

image_calc -c "pow(var_0/3.0, 1.1)" input_image.tif -o output_image.tif -d float32

Table A.27: Command-line options for image_calc

Options Description

--help Display the help message.
--calc|-c The arithmetic string in quotes (required).
--output-data-type|-d The data type of the output �le (default is �oat64).
--input-nodata-value Set an override nodata value for the input images.
--output-nodata-value Manually specify a nodata value for the output image (de-

fault is data type min).
--output-file|-o Specify the output �le instead of using a default.
--mo string Write metadata to the output �le. Provide as a string in

quotes if more than one item, separated by a space, such
as 'VAR1=VALUE1 VAR2=VALUE2'. Neither the variable
names nor the values should contain spaces.

A.28 hsv_merge

Replaces the intensity information in an RGB image with the provided grayscale image by temporarily
converting to HSV. Both input image must be the same size.

Mimics hsv_merge.py by Frank Warmerdam and Trent Hare. Use it to combine results from gdaldem.

Usage:

hsv_merge [options] <rgb_image> <gray_image>

Table A.28: Command-line options for hsv_merge

Options Description

--help Display the help message.
--output-file|-o Specify the output �le. Required!

193



Chapter A

A.29 colormap

The colormap tool reads a DEM and writes a corresponding color-coded height image that can be used for
visualization.

Usage:
colormap [options] <input DEM>

Table A.29: Command-line options for colormap

Option Description

--help Display a help message.
-s [ --shaded-relief-file ] arg Specify a shaded relief image (grayscale) to apply to the

colorized image.
-o [ --output-file ] arg Specify the output �le.
--colormap-style arg Specify the colormap style. Options: binary-red-blue (de-

fault), jet, or the name of a �le having the colormap, similar
to the �le used by gdaldem.

--nodata-value arg Remap the DEM default value to the min altitude value.
--min arg Minimum height of the color map.
--max arg Maximum height of the color map.
--moon Set the min and max height to good values for the Moon.
--mars Set the min and max height to good values for Mars.
--legend Generate an unlabeled legend, saved as "legend.png".

A.30 hillshade

The hillshade tool reads in a DEM and outputs an image of that DEM as though it were a three-
dimensional surface, with every pixel shaded as though it were illuminated by a light from a speci�ed
location.

Table A.30: Command-line options for hillshade

Option Description

--help Display a help message
--input-file arg Explicitly specify the input �le
-o [ --output-file ] arg Specify the output �le
--align-to-georef Azimuth is relative to geographic East, not +x in the image.
-a [ --azimuth ] arg (=300) Sets the direction that the light source is coming from (in degrees).

Zero degrees is to the right, with positive degree counter-clockwise.
-e [ --elevation ] arg (=20) Set the elevation of the light source (in degrees)
-s [ --scale ] arg (=0) Set the scale of a pixel (in the same units as the DTM height values
--nodata-value arg Remap the DEM default value to the min altitude value
--blur arg Pre-blur the DEM with the speci�ed sigma

194



Tools

A.31 image2qtree

image2qtree turns a georeferenced image (or images) into a quadtree with geographical metadata. For
example, it can output a kml �le for viewing in Google Earth.

Table A.31: Command-line options for image2qtree

Option Description

General Options
--help Display a help message
-o [ --output-name ] arg Specify the base output directory
-q [ --quiet ] Quiet output
-v [ --verbose ] Verbose output
--cache arg (=1024) Cache size, in megabytes
Input Options
--force-wgs84 Use WGS84 as the input images' geographic

coordinate systems, even if they're not (old
behavior)

--pixel-scale arg (=1) Scale factor to apply to pixels
--pixel-offset arg (=0) O�set to apply to pixels
--normalize Normalize input images so that their full dy-

namic range falls in between [0,255]
Output Options
-m [ --output-metadata ] arg (=none) Specify the output metadata type. One of

[kml, tms, uniview, gmap, celestia, none]
--file-type arg (=png) Output �le type
--channel-type arg (=uint8) Output (and input) channel type. One of

[uint8, uint16, int16, �oat]
--module-name arg (=marsds) The module where the output will be placed.

Ex: marsds for Uniview, or Sol/Mars for Ce-
lestia

--terrain Outputs image �les suitable for a Uniview
terrain view. Implies output format as PNG,
channel type uint16. Uniview only

--jpeg-quality arg (=0.75) JPEG quality factor (0.0 to 1.0)
--png-compression arg (=3) PNG compression level (0 to 9)
--palette-file arg Apply a palette from the given �le
--palette-scale arg Apply a scale factor before applying the

palette
--palette-offset arg Apply an o�set before applying the palette
--tile-size arg (=256) Tile size, in pixels
--max-lod-pixels arg (=1024) Max LoD in pixels, or -1 for none (kml only)
--draw-order-offset arg (=0) O�set for the <drawOrder> tag for this over-

lay (kml only)
--composite-multiband Composite images using multi-band blending
--aspect-ratio arg (=1) Pixel aspect ratio (for polar overlays; should

be a power of two)
Projection Options
--north arg The northernmost latitude in degrees

195



Chapter A

--south arg The southernmost latitude in degrees
--east arg The easternmost longitude in degrees
--west arg The westernmost longitude in degrees
--force-wgs84 Assume the input images' geographic coordi-

nate systems are WGS84, even if they're not
(old behavior)

--sinusoidal Assume a sinusoidal projection
--mercator Assume a Mercator projection
--transverse-mercator Assume a transverse Mercator projection
--orthographic Assume an orthographic projection
--stereographic Assume a stereographic projection
--lambert-azimuthal Assume a Lambert azimuthal projection
--lambert-conformal-conic Assume a Lambert Conformal Conic projec-

tion
--utm arg Assume UTM projection with the given zone
--proj-lat arg The center of projection latitude (if applica-

ble)
--proj-lon arg The center of projection longitude (if appli-

cable)
--proj-scale arg The projection scale (if applicable)
--std-parallel1 arg Standard parallels for Lambert Conformal

Conic projection
--std-parallel2 arg Standard parallels for Lambert Conformal

Conic projection
--nudge-x arg Nudge the image, in projected coordinates
--nudge-y arg Nudge the image, in projected coordinates

A.32 geodi�

The geodiff program takes as input two DEMs (or a DEM and a CSV �le, with the latter in the same
format as used for pc_align and point2dem), and subtracts the second from the �rst. The grid used is the
one from the �rst DEM, so the second one is interpolated into it (when one �le is a CSV, the grid from the
other one, the DEM, is used). The tool can also take the absolute di�erence of the two DEMs.

It is important to note that the tool is very sensitive to the order of the two DEMs, due to the fact that
the grid comes from the �rst one. Ideally the grid of the �rst DEM would be denser than the one of the
second.

Usage:

> geodiff [options] <dem1> <dem2> [ -o output_file_prefix ]

Table A.32: Command-line options for geodi�

Option Description

--help|-h Display the help message.
--output-prefix|-o filename Specify the output pre�x.
--absolute Output the absolute di�erence as opposed to

just the di�erence.

196



Tools

--float Output using �oat (32 bit) instead of using
doubles (64 bit).

--csv-format string Specify the format of input CSV �les as
a list of entries column_index:column_type
(indices start from 1). Examples: '1:x 2:y 3:z'
(a Cartesian coordinate system with origin at
planet center is assumed, with the units be-
ing in meters), '5:lon 6:lat 7:radius_m' (lon-
gitude and latitude are in degrees, the radius
is measured in meters from planet center),
'3:lat 2:lon 1:height_above_datum', '1:east-
ing 2:northing 3:height_above_datum' (need
to set --csv-proj4; the height above datum
is in meters). Can also use radius_km for col-
umn_type, when it is again measured from
planet center.

--csv-proj4 string The PROJ.4 string to use to interpret the en-
tries in input CSV �les, if those �les contain
Easting and Northing �elds. If not speci�ed,
it will be borrowed from the DEM.

--nodata-value float(=-32768) The no-data value to use, unless present in
the DEM geoheaders.

--threads integer(=0) Set the number of threads to use. 0 means
use as many threads as there are cores.

--no-bigtiff Tell GDAL to not create bigti�s.
--tif-compress None|LZW|Deflate|Packbits TIFF compression method.

A.33 aster2asp

The aster2asp tool takes as input a directory containing ASTER images and associated metadata, and
creates TIF and XML �les that can then be passed to stereo to create a point cloud.

An example for how to use this tool is given in section 11.15.

The tool can only process Level 1A ASTER images. The input should be a directory containing visible and
near-infrared (VNIR) nadir (Band3N) and backward (Band3B) images, together with plain text �les con-
taining values for the satellite positions, sight vectors, longitudes, latitudes, lattice points, and radiometric
correction tables. These �les are described in [1].

Usage:

aster2asp <input directory> -o <output prefix>

The tool will apply the existing radiometric corrections to the the images, and save two images with Float32
pixels with names like out-Band3N.tif and out-Band3B.tif. Based on the metadata mentioned earlier, it
will create approximate RPC camera models in XML format (section 11.12) for the left and right cameras,
following [42], with names of the form out-Band3N.xml and out-Band3B.xml (we do not perform yet any
jitter corrections as described in that paper).

These can then be passed to stereo as:

197



Chapter A

stereo -t rpc out-Band3N.tif out-Band3B.tif out-Band3N.xml out-Band3B.xml \

out_stereo/run

It is important to note that the tool expects the minimum and maximum simulation box heights (in meters,
above the datum) in which to compute the RPC approximation. The defaults are 0 and 8000, corresponding
to sea level and the highest location on Earth. Narrowing down these numbers (if it is known what range
of terrain heights is expected) may result in slightly more accurate models.

Table A.33: Command-line options for aster2asp

Option Description

-o | --output-prefix arg Specify the output pre�x.
--min-height arg (=0) The minimum height (in meters) above the

WGS84 datum of the simulation box in which
to compute the RPC approximation.

--max-height arg (=8000) The maximum height (in meters) above the
WGS84 datum of the simulation box in which
to compute the RPC approximation.

--num-samples arg (=100) How many samples to use between the mini-
mum and maximum heights.

--penalty-weight arg (=0.1) Penalty weight to use to keep the higher-
order RPC coe�cients small. Higher penalty
weight results in smaller such coe�cients.

--no-bigtiff Tell GDAL to not create bigti�s.
--tif-compress arg (=LZW) TIFF Compression method. [None, LZW,

De�ate, Packbits]
-v | --version Display the version of software.
-h | --help Display this help message.

A.34 add_spot_rpc

The add_spot_rpc tool creates an RPC model to approximate a SPOT5 sensor model. The RPC model
can be appended to the end of a SPOT5 metadata �le, allowing it to be used with the RPC session type in
other ASP tools. The most important application is to map project SPOT5 images, then to perform stereo
on the map projected images with the spot5maprpc session type.

If the output �le does not exist, a new �le is created containing the RPC model. Otherwise the RPC model
is appended to an existing �le. When an existing SPOT5 metadata �le is the output �le, the new RPC
model is properly inserted into the �le so that it is ready to use.

An example for how to use this tool is given in section 11.13.

Usage:

add_spot_rpc <input metadata file> -o <output file>

It is important to note that the tool expects the minimum and maximum simulation box heights (in meters,
above the datum) in which to compute the RPC approximation. The defaults are 0 and 8000, corresponding
to sea level and the highest location on Earth. Narrowing down these numbers (if it is known what range
of terrain heights is expected) may result in slightly more accurate models.

198



Tools

Table A.34: Command-line options for add_spot_rpc

Option Description

-o | --output-prefix arg Specify the output pre�x.
--min-height arg (=0) The minimum height (in meters) above the

WGS84 datum of the simulation box in which
to compute the RPC approximation.

--max-height arg (=8000) The maximum height (in meters) above the
WGS84 datum of the simulation box in which
to compute the RPC approximation.

--num-samples arg (=100) How many samples to use between the mini-
mum and maximum heights.

--penalty-weight arg (=0.1) Penalty weight to use to keep the higher-
order RPC coe�cients small. Higher penalty
weight results in smaller such coe�cients.

-v | --version Display the version of software.
-h | --help Display this help message.

A.35 sfs

The sfs tool can improve a DEM using shape-from-shading. Examples for how to use it are in chapter
10. The tool parallel_sfs (next section) extends sfs to run using multiple processes and potentially on
multiple machines.

Usage:

sfs -i <input DEM> -n <max iterations> -o <output prefix> <images> [other options]

The tool outputs at each iteration the current DEM and a slew of other auxiliary and appropriately-named
datasets.

Table A.35: Command-line options for sfs

Option Description

-i | --input-dem arg The input DEM to re�ne using SfS.
-o | --output-prefix arg Pre�x for output �lenames.
-n | --max-iterations arg (=100) Set the maximum number of iterations.
--reflectance-type arg (=1) Re�ectance type (0 = Lambertian, 1 =

Lunar-Lambert, 2 = Hapke, 3 = Experimen-
tal extension of Lunar-Lambert, 4 = Charon
model (a variation of Lunar-Lambert)).

--smoothness-weight arg (=0.04) A larger value will result in a smoother solu-
tion.

--initial-dem-constraint-weight arg (=0) A larger value will try harder to keep the
SfS-optimized DEM closer to the initial guess
DEM.

--albedo-constraint-weight arg (=0) If �oating the albedo, a larger value will try
harder to keep the optimized albedo close to
the nominal value of 1.

199



Chapter A

--bundle-adjust-prefix arg Use the camera adjustments obtained by pre-
viously running bundle_adjust with this out-
put pre�x.

--float-albedo Float the albedo for each pixel. Will give in-
correct results if only one image is present.

--float-exposure Float the exposure for each image. Will give
incorrect results if only one image is present.

--float-cameras Float the camera pose for each image except
the �rst one.

--float-all-cameras Float the camera pose for each image, includ-
ing the �rst one. Experimental.

--model-shadows Model the fact that some points on the DEM
are in the shadow (occluded from the Sun).

--shadow-thresholds arg Optional shadow thresholds for the input im-
ages (a list of real values in quotes, one per
image).

--save-dem-with-nodata Save a copy of the DEM while using a no-data
value at a DEM grid point where all images
show shadows. To be used if shadow thresh-
olds are set.

--use-approx-camera-models Use approximate camera models for speed.
--use-rpc-approximation Use RPC approximations for the camera

models instead of approximate tabulated
camera models (invoke with �use-approx-
camera-models).

--rpc-penalty-weight arg (=0.1) The RPC penalty weight to use to keep the
higher-order RPC coe�cients small, if the
RPC model approximation is used. Higher
penalty weight results in smaller such coe�-
cients.

--coarse-levels arg (=0) Solve the problem on a grid coarser than the
original by a factor of 2 to this power, then
re�ne the solution on �ner grids. Experimen-
tal.

--max-coarse-iterations arg (=50) How many iterations to do at levels of reso-
lution coarser than the �nal result.

--crop-input-images Crop the images to a region that was com-
puted to be large enough and keep them fully
in memory, for speed.

--image-exposures-prefix arg Use this pre�x to optionally read initial expo-
sures (�lename is <pre�x>-exposures.txt).

--model-coeffs-prefix arg Use this pre�x to optionally read model co-
e�cients from a �le (�lename is <pre�x>-
model_coe�s.txt) .

200



Tools

--model-coeffs arg Use the model coe�cients speci�ed as a list
of numbers in quotes. Lunar-Lambertian: O,
A, B, C, e.g., '1 0.019 0.000242 -0.00000146'.
Hapke: omega, b, c, B0, h, e.g., '0.68 0.17
0.62 0.52 0.52'. Charon: A, f(alpha), e.g.,
'0.7 0.63'.

--crop-win arg (=xoff yoff xsize ysize) Crop the input DEM to this region before
continuing.

--init-dem-height arg (=nan) Use this value for initial DEM heights. An
input DEM still needs to be provided for geo-
reference information.

--nodata-value arg (=nan) Use this as the DEM no-data value, over-
riding what is in the initial guess DEM.

--float-dem-at-boundary Allow the DEM values at the boundary of the
region to also �oat (not advised).

--fix-dem Do not �oat the DEM at all. Useful when
�oating the model params.

--float-reflectance-model Allow the coe�cients of the re�ectance model
to �oat (not recommended).

--integrability-constraint-weight arg (=0.0) Use the integrability constraint from Horn
1990 with this value of its weight (experimen-
tal).

--smoothness-weight-pq (=0.0) Smoothness weight for p and q, when the in-
tegrability constraint is used. A larger value
will result in a smoother solution (experimen-
tal).

--query Print some info and exit. Invoked from par-
allel_sfs.

--camera-position-step-size arg (=1) Larger step size will result in more aggres-
siveness in varying the camera position if it
is being �oated (which may result in a better
solution or in divergence).

--threads arg (=0) Select the number of processors (threads) to
use.

--no-bigtiff Tell GDAL to not create bigti�s.
--tif-compress arg (=LZW) TIFF Compression method. [None, LZW,

De�ate, Packbits]
-v | --version Display the version of software.
-h | --help Display this help message.

A.36 parallel_sfs

The program parallel_sfs is a wrapper around sfs meant to divide the input DEM into tiles with overlap,
run sfs on each tile as multiple processes, potentially on multiple machines, and then merge the results
into a single output DEM. It has the same options as sfs, and a few additional ones, as outlined below.

Usage:

parallel_sfs -i <input DEM> -n <max iterations> -o <output prefix> <images> [other options]

201



Chapter A

Table A.36: Command-line options for parallel_sfs

Option Description

--tile-size (integer=300) Size of approximately square tiles to break up
processing into (not counting the padding).

--padding (integer=50) How much to expand a tile in each direction.
This helps with reducing artifacts in the �nal
mosaicked SfS output.

--num-processes integer Number of processes to use (the default pro-
gram tries to choose best).

--nodes-list string A �le containing the list of computing nodes,
one per line. If not provided, run on the local
machine.

--threads (integer=1) How many threads each process should use.
The sfs executable is single-threaded in most
of its execution, so a large number will not
help here.

--suppress-output Suppress output of sub-calls.

A.37 undistort_image

The undistort_image program takes as input an image and a pinhole model .tsai �le describing the image.
The tool will generate a copy of the input image with the lens distortion speci�ed in the pinhole model �le
removed. It will also save the corresponding pinhole camera model �le without the distortion.

Usage:

> undistort_image [options] <input image> <camera model> -o <output image>

Table A.37: Command-line options for undistort_image

Option Description

--help|-h Display the help message.
--output-file|-o filename Specify the output �le.
--output-nodata-value double(=smallest float) Set the output nodata value. Only applicable

if the output is a single-channel image with
pixels that are �oat or double.

--preserve-pixel-type Save the undistorted image with integer pix-
els if so is the input. This may result in re-
duced accuracy.

--interpolation-method string Interpolation method. Options: bilinear,
bicubic. Default: bilinear.

A.38 camera_calibrate

The camera_calibrate tool can generate camera models suitable for use by camera_solve and other
ASP tools. This tool only solves for intrinsic camera parameters; to obtain the camera pose you should
use the camera_solve tool. This tool is a wrapper around the OpenCV (http://opencv.org/) checker-

202

http://opencv.org/


Tools

board calibration tool which takes care of converting the output into readily usable formats. When you
run the tool, three camera model �les will be created in the output folder: solve_cam_params.txt,
vw_cam_params.tsai, and ocv_cam_params.yml. The �rst �le can be used as a camera calibration �le
for the camera_solve tool. The second �le is a pinhole camera format that is recognized by ASP but
remember that the extrinsic parameters were not solved for so ASP is limited in what it can do with the
camera �le. The last �le contains the camera information as formatted by the OpenCV calibration tool. If
you use the �rst �le as an input to camera_solve you must remember to replace the wildcard image path
in the �le with the one to the images you want to use solve for (as opposed to the checkerboard images).

In order to use this tool you must provide multiple images of the same checkerboard pattern acquired with
the camera you wish to calibrate. When calling the tool you must specify the number of internal square
corners contained in your checkerboard pattern (width and height can be swapped) so that OpenCV knows
what to look for. You must also specify an image wildcard path such as "checkers/image_*.jpg". You
may need to enclose this parameter in quotes so that your command line does not expand the wildcard
before it is passed to the tool. If you do not provide the �box-size parameter the output calibration
numbers will be unitless.

Usage:

> camera_calibrate [options] <output folder> <Board Height> <Board Width> <Image Wildcard> ...

Table A.38: Command-line options for camera_calibrate

Option Description

-h | --help Display this help message.
--overwrite Recompute any intermediate steps already

completed on disk.
--suppress-output Reduce the amount of program console out-

put.
--box-size-cm float The size of the checkerboard squares in cen-

timeters.
--duplicate-files Make a copy of the vw param �le for each

input camera.

A.39 camera_solve

The camera_solve tool generates pinhole sensor models (frame cameras), including camera poses, for input
images lacking metadata. See chapter 9 for an overview and examples of using the tool.

The camera calibration passed with the --calib-file option should be a .tsai pinhole camera model �le
in one of the formats compatible with ASP. Our supported pinhole camera models are described in section
D.1.

You can use a set of estimated camera positions to register camera models in world coordinates. This
method is not as accurate as using ground control points but it may be easier to use. To do this, use the
--camera-positions parameter to bundle-adjust via the --bundle-adjust-params option similar to the
example line below. If you see the camera models shifting too far from their starting positions try using
the --camera-weight option to restrain their movement.

--bundle-adjust-params '--camera-positions nav.csv \

--csv-format "1:file 12:lat 13:lon 14:height_above_datum" --camera-weight 1.0'

203



Chapter A

This tool will generate two .tsai camera model �les in the output folder per input image. The �rst �le,
appended with .tsai, is in a local coordinate system and does not include optimizations for intrinsic param-
eters but it may be useful for debugging purposes. The second �le, appended with .�nal.tsai, contains the
�nal solver results. If ground control points or estimated camera positions were provided then the second
�le will be in a global coordinate system.

Usage:

> camera_solve [options] <output folder> <Input Image 1> <Input Image 2> ...

Table A.39: Command-line options for camera_solve

Option Description

-h | --help Display this help message.
--datum string The datum to use when calibrating. Default

is WGS84.
--calib-file string Path to an ASP compatible pinhole model �le

containing camera model information. The
position and pose information will be ignored.
If you want to use a unique �le for each in-
put image, pass a space separated list of �les
surrounded by quotes.

--gcp-file string Path to a ground control point �le. This al-
lows the tool to generate cameras in a global
coordinate system.

--bundle-adjust-params string Additional parameters (in single quotes) to
pass to the bundle_adjust tool.

--theia-overrides string Override any option in the auto-generated
Theia �ag �le. Set as "�option1=val1 �
option2=val2 ...".

--theia-flagfile string Path to a custom Theia �ag�le to use settings
from. File paths speci�ed in this �le are ig-
nored.

--overwrite Recompute any intermediate steps already
completed on disk.

--reuse-theia-matches Pass Theia's IP �nd results into ASP instead
of recomputing them to reduce total process-
ing time.

--suppress-output Reduce the amount of program console out-
put.

This tool is a wrapper that relies on on two other tools to operate. The �rst of these is THEIA, as mentioned
earlier, for computing the relative poses of the cameras. ASP's bundle_adjust tool is used to register the
cameras in world coordinates using the ground control points. If the tool does not provide good results
you can customize the parameters being passed to the underlying tools in order to improve the results. For
bundle_adjust options, see the description in this document. For more information about THEIA �ag�le
options see their website or edit a copy of the default �ag�le generated in the output folder

204



Tools

A.40 convert_pinhole_model

This tool can be used to approximately convert a pinhole model from one of the types listed in section D.1
or an optical bar model (section D.3) to any other pinhole model type. This can be convenient, for example,
because the Brown-Conrady and Photometrix models provide a fast formula to undistort pixels, while the
distortion operation is very slow, requiring a solver with multiple iterations using the undistortion formula
at each step, which can make it time-consuming to run bundle adjustment and epipolar alignment during
stereo. For other models, such as Tsai and Adjustable Tsai, the reverse is true, hence converting from the
former to the latter models can be very convenient for performance reasons.

This program can also be used to convert a pinhole or optical bar model to a pinhole model with RPC lens
distortion, which is a model where distortion is expressed as a ratio of polynomials. The RPC lens distortion
model has the advantage that both the forward and reverse distortion calculation are approximated using
RPC, hence both of these operations are fast, which can provide a large speedup when running stereo and
bundle adjustment.

The degree of the RPC lens distortion can be speci�ed via --rpc-degree. A smaller value is suggested to
start with, as lower-degree polynomials may be easier to interpret.

Usage:

convert_pinhole_model [options] <input image> <input camera> -o <output camera>

Example (convert a camera model to the RPC type):

convert_pinhole_model input.jpg input.tsai --output-type RPC \

--rpc-degree 2 -o output_rpc.tsai

Table A.40: Command-line options for convert_pinhole_model

Option Description

-h | --help Display this help message.
-o | --output-file string Specify the output �le. It is expected to have

the .tsai extension.
--output-type string The output model type. Options: TsaiLens-

Distortion, BrownConradyDistortion, RPC.
Default: TsaiLensDistortion.

--rpc-degree int The degree of the polynomials, if the output
distortion model is RPC. Default: 3.

--sample-spacing int Pick one out of this many consecutive pixels
to sample. If not speci�ed, it will be auto-
computed.

205



Chapter A

A.41 cam_gen

This tool will create a Pinhole or Optical Bar camera model given camera's optical center, focal length,
pixel pitch, the longitude-latitude coordinates of the camera image corners (or some other pixels) projected
onto a DEM, and the DEM itself. A datum (and a height above it) can be used instead of the DEM.
Normally all these inputs are known only approximately, so the output camera model will not be quite
precise either, yet it could be good enough to re�ne later with bundle adjustment, which can also make use
of the GCP �le that this tool creates.

This program can be used with historical images for which camera position and orientation is not known.
If the corners of the image on the ground are not known, they could be guessed in Google Earth. A good
DEM to infer the heights from, at least for Earth, is the SRTM dataset. Section 11.16 makes use of cam_gen
for SkySat images.

Usage:

cam_gen [options] <image-file> -o <camera-file>

Example:

cam_gen --refine-camera --lon-lat-values \

'-122.389 37.6273,-122.354 37.626,-122.358 37.6125,-122.393 37.6138' \

--reference-dem dem.tif --focal-length 553846.153846 \

--optical-center 1280 540 --pixel-pitch 1 \

img.tif -o img.tsai --gcp-file img.gcp --gcp-std 1e-2 \

Here we assume that the pixel pitch is 1, hence both the focal length and the optical center are in units
of pixels. If the focal length and pixel pitch are given in meters, and one assumes the optical center to be
the center of the image, then the optical center passed to this tool should be half of the image width and
height, with both multiplied by the pixel pitch, to make them in meters as well.

Some other pixels can be used instead of corners, if using the --pixel-values option.

Note that for Optical Bar cameras the camera parameters must be passed in using the --sample-file

option instead of specifying them all manually.

It is strongly suggested to mapproject the image onto the obtained camera to verify if it projects where
expected:

mapproject dem.tif img.tif img.tsai img_map.tif

The output img_map.tif can be overlayed onto the hillshaded DEM in stereo_gui.

The camera obtained using this tool (whether with or without the --refine-camera option) can be further
optimized in bundle_adjust using the GCP �le written above as follows:

bundle_adjust img.tif img.tsai img.gcp -o run/run --datum WGS84 \

--inline-adjustments --robust-threshold 10000

It is suggested that this is avoided by default. One has to be a bit careful when doing this optimization to
ensure some corners are not optimized at the expense of others. This is discussed in section 9.4.

One can invoke orbitviz as:

206



Tools

orbitviz img.tif img.tsai -o orbit.kml

to visualize the computed camera above the ground in Google Earth.

This tool can also create a Pinhole camera approximating any camera supported by ASP, such as from ISIS
cubes, RPC cameras, etc., as long as the intrinsics are known, as above. For that, it will shoot rays from
the image corners (and also some inner points) using the provided camera that will intersect a reference
DEM determining the footprint on the ground, and then the best-�t pinhole model will be created based
on that. Here's an example for ISIS cameras:

cam_gen image.cub --input-camera image.cub --focal-length 1000 \

--optical-center 500 300 --pixel-pitch 1 --height-above-datum 4000 \

--gcp-std 1 --datum WGS84 --refine-camera --reference-dem dem.tif \

-o output.tsai --gcp-file output.gcp

Here we passed the image as the input camera, since for ISIS cubes (and also for some RPC cameras) the
camera information is not stored in a separate camera �le.

Table A.41: Command-line options for cam_gen.

Option Description

-o | --output-camera-file string Specify the output camera �le with a .tsai
extension.

--camera-type string Specify the camera type. Options are: pin-
hole (default) and opticalbar.

--lon-lat-values string A (quoted) string listing numbers, separated
by commas or spaces, having the longitude
and latitude (alternating and in this order) of
each image corner. The corners are traversed
in the order 0,0 w,0, w,h, 0,h where w and h
are the image width and height.

--pixel-values string A (quoted) string listing numbers, separated
by commas or spaces, having the column and
row (alternating and in this order) of each
pixel in the raw image at which the longi-
tude and latitude is known. By default this
is empty, and will be populated by the image
corners traversed as earlier.

--reference-dem string Use this DEM to infer the heights above da-
tum of the image corners.

--datum string Use this datum to interpret the lon-
gitude and latitude, unless a DEM is
given. Options: WGS_1984, D_MOON
(1,737,400 meters), D_MARS (3,396,190 me-
ters), MOLA (3,396,000 meters), NAD83,
WGS72, and NAD27. Also accepted: Earth
(=WGS_1984), Mars (=D_MARS), Moon
(=D_MOON).

--height-above-datum arg double(=0) Assume this height above datum in meters for
the image corners unless read from the DEM.

207



Chapter A

--sample-file string Instead of manually specifying all of the
camera parameters, specify a sample camera
model �le on disk to read them from.

--focal-length double(=0) The camera focal length.
--optical-center double(=0 0) The camera optical center.
--pixel-pitch double(=0) The camera pixel pitch.
--refine-camera After a rough initial camera is obtained, re-

�ne it using least squares.
--frame-index string A �le used to look up the longitude and lat-

itude of image corners based on the image
name, in the format provided by the SkySat
video product.

--gcp-file string If provided, save the image corner coordinates
and heights in the GCP format to this �le.

--gcp-std arg double(=1) The standard deviation for each GCP pixel, if
saving a GCP �le. A smaller value suggests
a more reliable measurement, hence will be
given more weight.

--input-camera string Create the output pinhole camera approxi-
mating this camera.

-t | --session-type string Select the input camera model type. Nor-
mally this is auto-detected, but may need to
be speci�ed if the input camera model is in
XML format. Options: pinhole isis rpc dg
spot5 aster opticalbar.

--bundle-adjust-prefix string Use the camera adjustment obtained by pre-
viously running bundle_adjust when provid-
ing an input camera.

--threads integer(=0) Set the number of threads to use. 0 means
use as many threads as there are cores.

--tile-size integer(=256, 256) Image tile size used for multi-threaded pro-
cessing.

--no-bigtiff Tell GDAL to not create bigti�s.
--tif-compress None|LZW|Deflate|Packbits TIFF compression method.
-v | --version Display the version of software.
-h | --help Display this help message.

A.42 ip�nd

The ipfind tool detects interest points (IPs) in images and writes them out to .vwip �les. ASP is able to
read these �les to recover the IPs.

This tool is useful in testing out di�erent IP detection settings and visualizing them (using the option
--debug-image).

One can pass multiple input images to the tool and they will be processed one after another.

This program works in conjunction with ipmatch (section A.43) to match interest points across images.

Usage:

208



Tools

ipfind [options] <images>

Table A.42: Command-line options for ip�nd

Option Description

--interest-operator string (=sift) Choose an interest point detector from: sift (default), orb,
OBALoG, LoG, Harris, IAGD.

--descriptor-generator string (=sift) Choose a descriptor generator from: sift (default), orb,
sgrad, sgrad2, patch, pca. Some descriptors work only
with certain interest point operators.

--ip-per-image integer Set the maximum number of IP to �nd in the whole image.
If not speci�ed, use instead �ip-per-tile.

-t | --tile-size integer The tile size for processing interest points. Useful when
working with large images. Default: 256.

--ip-per-tile integer (=250) Set the maximum number of IP to �nd in each tile. De-
fault: 250.

-g | --gain float (=1) Increasing this number will increase the gain at which
interest points are detected. Default: 1.

--single-scale Turn o� scale-invariant interest point detection. This op-
tion only searches for interest points in the �rst octave of
the scale space. Harris and LoG only.

--no-orientation Turn o� rotational invariance.
--normalize Normalize the input. Use for images that have non-

standard values such as ISIS cube �les.
--per-tile-normalize Individually normalize each processing tile.
--nodata-radius integer (=1) Don't detect IP within this many pixels of image borders

or nodata. Default: 1.
--output-folder string Write output �les to this location.
--num-threads integer (=0) Set the number of threads for interest point detection. If

set to 0 (default), use the visionworkbench default number
of threads.

-h | --help Display this help message.
-d | --debug-image integer (=0) Write out a low-resolution or full-resolution debug image

with interest points on it if the value of this �ag is respec-
tively 1 or 2. Default: 0 (do nothing).

--print-ip integer (=0) Print information for this many detected IP. Default: 0.
--lowe Save the interest points in an ASCII data format that is

compatible with the Lowe-SIFT toolchain.

209



Chapter A

A.43 ipmatch

The ipmatch reads in interest points (IPs) from .vwip �les and attempts to match them, writing out .match
�les containing these results. Other ASP tools can read in these �les. ipmatch also produces debug images
which can be useful. Note that this tool does not implement many of the IP matching steps that are used
in stereo_pprc and stereo_corr since it does not use any sensor model information.

If more than two image/vwip sets are passed in, each possible combination of images will be matched.

Usage:

ipmatch [options] <image 1> <vwip file 1> <image 2> <vwip file 2> ...

Table A.43: Command-line options for ipmatch

Options Description

--help|-h Display the help message.
--output-prefix string Write output �les using this pre�x.
--matcher-threshold float Threshold for the separation between closest and next

closest interest points. Default 0.6
--non-kdtree Use a non-KDTree version of the matching algorithm.
--distance-metric string Distance metric to use. Choose one of: [L2 (default),

Hamming (only for binary types like ORB)].
--ransac-constraint string RANSAC constraint type. Choose one of: [similarity,

homography, fundamental, or none].
--inlier-threshold float RANSAC inlier threshold. Default 10.
--ransac-iterations integer Number of RANSAC iterations. Default 100.
--debug-image|-d Set to write out debug images.

210



Tools

A.44 icebridge_kmz_to_csv

A simple tool for use with data from the NASA IceBridge program. Google Earth compatible .kmz �les
are available at http://asapdata.arc.nasa.gov/dms/missions.html which display the aircraft position
at the point when each DMS frame image was captured. This tool exports those positions into a csv �le
which can be passed into bundle_adjust using the following parameters:

--camera-positions ../camera_positions.csv --csv-format "1:file 2:lon 3:lat 4:height_above_datum"

This may be useful in conjunction with the camera_solve tool to allow conversion of camera positions from
local to global coordinates.

Usage:

> icebridge_kmz_to_csv <input kmz file> <output csv file>

A.45 lvis2kml

A simple tool for use with LVIS (Land, Vegetation, and Ice Sensor) lidar data from the NASA IceBridge
program. Generates a Google Earth compatible .kml �les from either an LVIS data �le (.TXT extension)
or an LVIS boundary �le (.xml extension). Using this tool makes it easy to visualize what region a given
LVIS �le covers and what the shape of its data looks like. If the output path is not passed to the tool it will
generate an output path by appending ".kml" to the input path. This tool requires the simplekml Python
package to run. One way to get this is to install the ASP Python tools, described at the end of section 4.5.

Usage:

> lvis2kml [options] <input path> [output path]

Table A.44: Command-line options for lvis2kml

Option Description

-h | --help Display this help message.
--name string Assign a name to the KML �le.
--color string Draw plots in one of (red | green | blue)
--skip int(=1) When loading a data �le, plot only every N-th

point. Has no e�ect on boundary �les.

A.46 GDAL Tools

ASP distributes in the bin directory the following GDAL tools: gdalinfo, gdal_translate, gdalbuildvrt,
gdalwarp, and gdaldem. These executables are compiled with JPEG2000 and BigTIFF support, and can
handle NTF images in addition to most image formats. They can be used to see image statistics, crop
and scale images, build virtual mosaics, reproject DEMs, etc. Detailed documentation is available on the
GDAL web site, at http://www.gdal.org/.

211

http://asapdata.arc.nasa.gov/dms/missions.html
http://www.gdal.org/


Chapter A

Figure A.3: Example of KML visualizations produced with lvis2kml. The output from both the boundary
�le (red) and the data �le (green) with a point skip of 500 are shown in this image. The color saturation
of data points is scaled with the elevation such that the points in the �le with the least elevation show up
as white and the highest points show up as the speci�ed color.

212



Appendix B

The stereo.default File

The stereo.default �le contains con�guration parameters that the stereo program uses to process images.
The stereo.default �le is loaded from the current working directory when you run stereo unless you
specify a di�erent �le using the -s option. Run stereo --help for more information. The extension is not
important for this �le.

A sample stereo.default.example �le is included in the examples/ directory of the Stereo Pipeline
software distribution.

As mentioned in section 5.1.5, all the stereo parameters can also be speci�ed on the command line.

Listed below are the parameters used by stereo, grouped by processing stage.

B.1 Preprocessing

alignment-method (= a�neepipolar, homography, epipolar, none) (default = a�neepipolar)

When alignment-method is set to homography, stereo will attempt to pre-align the images by
automatically detecting tie-points between images using a feature based image matching technique.
Tie points are stored in a *.match �le that is used to compute a linear homography transformation
of the right image so that it closely matches the left image. Note: the user may exercise more control
over this process by using the ipfind and ipmatch tools.

When alignment-method is set to affineepipolar, stereo will attempt to pre-align the images by
detecting tie-points, as earlier, and using those to transform the images such that pairs of conjugate
epipolar lines become collinear and parallel to one of the image axes. The e�ect of this is equivalent
to rotating the original cameras which took the pictures.

When alignment-method is set to epipolar, stereo will apply a 3D transform to both images so
that their epipolar lines will be horizontal. This speeds of stereo correlation as it greatly reduces the
area required for searching.

Epipolar alignment is only available when performing stereo matches using the pinhole stereo session
(i.e. when using stereo -t pinhole), and cannot be used when processing ISIS images at this time.

left-image-crop-win xo� yo� xsize ysize
Do stereo in a sub-region of the left image [default: use the entire image].

213



Chapter B

right-image-crop-win xo� yo� xsize ysize
When combined with left-image-crop-win, do stereo in given subregions of left and right images.
The crop windows can be determined using stereo_gui. It is important to note that when both of
these are speci�ed, we explicitly crop the input images to these regions, which does not happen when
left-image-crop-win alone is speci�ed. In that case we use the full images but only restrict the
computation to the speci�ed region.

force-use-entire-range (default = false)
By default, the Stereo Pipeline will normalize ISIS images so that their maximum and minimum
channel values are ±2 standard deviations from a mean value of 1.0. Use this option if you want to
disable normalization and force the raw values to pass directly to the stereo correlations algorithms.

For example, if ISIS's histeq has already been used to normalize the images, then use this option to
disable normalization as a (redundant) pre-processing step.

individually-normalize (default = false)
By default, the maximum and minimum valid pixel value is determined by looking at both images.
Normalized with the same �global� min and max guarantees that the two images will retain their
brightness and contrast relative to each other.

This option forces each image to be normalized to its own maximum and minimum valid pixel value.
This is useful in the event that images have di�erent and non-overlapping dynamic ranges. You can
sometimes tell when this option is needed: after a failed stereo attempt one of the recti�ed images
(*-L.tif and *-R.tif) may be either mostly white or black. Activating this option may correct this
problem.

Note: Photometric calibration and image normalization are steps that can and should be carried out
beforehand using ISIS's own utilities. This provides the best possible input to the stereo pipeline and
yields the best stereo matching results.

ip-per-tile
How many interest points to detect in each 10242 image tile (default: automatic determination).

ip-detect-method
What type of interest point detection algorithm to use for image alignment. 0 = Custom OBAloG
implementation (default) 1 = SIFT implementation from OpenCV 2 = ORB implementation from
OpenCV If the default method does not perform well, try out one of the other two methods.

nodata-value (default = none)
Pixels with values less than or equal to this number are treated as no-data. This overrides the nodata
values from input images.

datum (default = WGS_1984)
Set the datum to use with RPC camera models. Options: WGS_1984, D_MOON (1,737,400 me-
ters), D_MARS (3,396,190 meters), MOLA (3,396,000 meters), NAD83, WGS72, and NAD27. Also
accepted: Earth (=WGS_1984), Mars (=D_MARS), Moon (=D_MOON).

no-datum
Do not assume a reliable datum exists, such as for irregularly shaped bodies.

epipolar-threshold
Maximum distance in pixels from the epipolar line to search for matches for each interest point. Due
to the way ASP �nds matches, reducing this value can actually increase the number of interest points
detected. If image alignment seems to be working well but you are not getting enough interest points
to get a good search range estimate, try setting this value to a small number, perhaps in the low
double digits.

214



The stereo.default File

ip-inlier-factor (default = 1.0/15)
A higher factor will result in more interest points, but perhaps also more outliers. It is impor-
tant to note that this parameter overlaps somewhat in scope and e�ect with epipolar-threshold

and sometimes not both are active. It is suggested to experiment with both, as well as with
ip-uniqueness-threshold below, which has a di�erent justi�cation but also somewhat similar ef-
fects.

ip-uniqueness-threshold (default = 0.7)
A higher threshold will result in more interest points, but perhaps less unique ones.

ip-triangulation-max-error double

When matching IP, �lter out any pairs with a triangulation error higher than this.

ip-num-ransac-iterations int(=100)

How many RANSAC iterations to do in interest point matching.

force-reuse-match-�les
Force reusing the match �les even if older than the images or cameras.

skip-rough-homography
Skip the step of performing datum-based rough homography if it fails.

B.2 Correlation

pre�lter-mode (= 0,1,2) (default = 2)
This selects the pre-processing �lter to be used to prepare imagery before it is fed to the initialization
stage of the pipeline.

0 - None

1 - Subtracted Mean - This takes a preferably large Gaussian kernel and subtracts its value from
the input image. This e�ectively reduces low frequency content in the image. The result is
correlation that is immune to translations in image intensity.

2 - LoG Filter - Takes the Laplacian of Gaussian of the image, This provides some immunity to
di�erences in lighting conditions between a pair of images by isolating and matching on blob
features in the image.

For all of the modes above, the size of the �lter kernel is determined by the prefilter-kernel-width
parameter below.

The choice of pre-processing �lter must be made with thought to the cost function being used (see
cost-mode, below). LoG �lter preprocessing provides good immunity to variations in lighting condi-
tions and is usually the recommended choice.

pre�lter-kernel-width (�oat) (default = 1.4)
This de�nes the diameter of the Gaussian convolution kernel used for the preprocessing modes 1 and
2 above. A value of 1.4 works well for LoG and 25-30 works well for Subtracted Mean.

corr-seed-mode (=0,1,2,3) (default = 1)
This integer parameter selects a strategy for how to solve for the low-resolution integer correlation
disparity, which is used to seed the full-resolution disparity later on.

215



Chapter B

0 - None - Don't calculate a low-resolution variant of the disparity image. The search range provided
by corr-search is used directly in computing the full-resolution disparity.

1 - Low-resolution disparity from stereo - Calculate a low-resolution version of the disparity
from the integer correlation of subsampled left and right images. The low-resolution disparity
will be used to narrow down the search range for the full-resolution disparity.

This is a useful option despite the fact that our integer correlation implementation does indeed
use a pyramid approach. Our implementation cannot search in�nitely into lower resolutions due
to its independent and tiled nature. This low-resolution disparity seed is a good hybrid approach.

2 - Low-resolution disparity from an input DEM - Use a lower-resolution DEM together with
an estimated value for its error to compute the low-resolution disparity, which will then be used
to �nd the full-resolution disparity as above. These quantities can be speci�ed via the options
disparity-estimation-dem and disparity-estimation-dem-error respectively. This option
is not compatible with map projected input images.

3 - Disparity from full-resolution images at a sparse number of points. This is an advanced
option for terrain having snow and no large-scale features. It is described in section 4.5.

For large images, bigger than MOC-NA, using the low-resolution disparity seed is a de�nitive plus.
Smaller images such as Cassini ISS or MER images should just shut this option o� to save storage
space.

corr-sub-seed-percent (�oat) (default=0.25)
When using corr-seed-mode 1, the solved-for or user-provided search range is grown by this factor
for the purpose of computing the low-resolution disparity.

min-num-ip (integer) (default = 20)
Automatic search range estimation will quit if at least this many interest points are not detected.

cost-mode (= 0,1,2,3,4) (default = 2)
This de�nes the cost function used during integer correlation. Squared di�erence is the fastest cost
function. However it comes at the price of not being resilient against noise. Absolute di�erence is the
next fastest and is a better choice. Normalized cross correlation is the slowest but is designed to be
more robust against image intensity changes and slight lighting di�erences. Normalized cross corre-
lation is about 2x slower than absolute di�erence and about 3x slower than squared di�erence. The
census transform [159] and ternary census transform [60] can only be used with the SGM correlator.
See section 7.2.4 for details.

0 - absolute di�erence

1 - squared di�erence

2 - normalized cross correlation

3 - census transform

4 - ternary census transform

corr-kernel (integer integer) (default = 25 25)
These option determine the size (in pixels) of the correlation kernel used in the initialization step. A
di�erent size can be set in the horizontal and vertical directions, but square correlation kernels are
almost always used in practice.

corr-search (integer integer integer integer)

These parameters determine the size of the initial correlation search range. The ideal search range
depends on a variety of factors ranging from how the images were pre-aligned to the resolution and

216



The stereo.default File

range of disparities seen in a given image pair. This search range is successively re�ned during
initialization, so it is often acceptable to set a large search range that is guaranteed to contain all of
the disparities in a given image. However, setting tighter bounds on the search can sometimes reduce
the number of erroneous matches, so it can be advantageous to tune the search range for a particular
data set.

If this option is not provided, stereo will make an attempt to guess its search range using interest
points.

These four integers de�ne the minimum horizontal and vertical disparity and then the maximum
horizontal and vertical disparity.

corr-search-limit (integer integer integer integer)

Set these parameters to constrain the search range that stereo automatically computes when corr-search
is not set. This setting is useful when you have a good idea of the alignment quality in the verti-
cal direction but not in the horizontal direction. For example, when using pinhole frame cameras
with epipolar alignment the actual vertical search range may be much smaller than the automatically
computed search range.

elevation-limit (�oat �oat)

Notify ASP that all elevations are expected to fall in this range relative to the datum. Currently only
used to restrict the search range estimate in nadir epipolar alignment cases.

corr-max-levels (integer) (default = 5)
The maximum number of additional (lower) resolution levels to use when performing integer correla-
tion. Setting this value to zero just performs correlation at the native resolution.

xcorr-threshold (integer) (default = 2)
Integer correlation to a limited sense performs a correlation forward and backwards to double check
its result. This is one of the �rst �ltering steps to insure that we have indeed converged to a global
minimum for an individual pixel. The xcorr-threshold parameter de�nes an agreement threshold
in pixels between the forward and backward result.

Optionally, this parameter can be set to a negative number. This will signal the correlator to only
use the forward correlation result. This will drastically improve speed at the cost of additional noise.

min-xcorr-level (integer) (default = 0)
When using the cross-correlation check controlled by xcorr-threshold, this parameter sets the minimum
pyramid resolution level that the check will be performed at. By default the check will be performed
at every resolution level but you may wish to increase this value to save time by not doubling up on
processing the largest levels.

Currently this feature is not enabled when using the default block-matching correlation method. In
that case cross correlation is only ever performed on the last resolution level.

remove-outliers-by-disparity-params (double double) (default = 100 3)
Outlier removal based on the disparity of interest points (di�erence between right and left pixel),
when estimating the disparity search range. For example, the 10% and 90% percentiles of disparity
are computed, and this interval is made three times bigger. Interest points whose disparity fall outside
the expanded interval are removed as outliers. Instead of the default 100 and 3 one can specify pct
and factor, without quotes.

rm-quantile-percentile (double) (default = 0.85)
See rm-quantile-multiple for details.

217



Chapter B

rm-quantile-multiple (double) (default = -1)
Used for �ltering disparity values in D_sub. Disparities greater than MULTIPLE*PERCENTILE (of
the histogram) will be discarded. If this value is set greater than zero, this �ltering method will be
used instead of the method using the values RM_MIN_MATCHES and RM_THRESHOLD. This
method will help �lter out clusters of pixels which are too large to be �ltered out by the neighborhood
method but that have disparities signi�cantly greater than the rest of the image.

use-local-homography (default = false)
This �ag, if provided, enables using local homography during correlation, as described in Section
7.2.3.

corr-timeout (integer) (default = 1800)
Correlation timeout for an image tile, in seconds. A non-positive value will result in no timeout
enforcement. A value of 600 seconds should be su�cient in most cases.

stereo-algorithm (default = 0)
Use this setting to switch between the di�erent integer correlation options supported by ASP.

0 - Local Search Window - The default option searches for the best match for a local window
around each window using the selected cost mode. This is the fastest algorithm and works well
for similar images with good texture coverage.

1 - Semi-Global Matching - Use the popular SGM algorithm [58]. This algorithm is slow and has
high memory requirements but it performs better in images with less texture. See section 7.2.4
for important details on using this algorithm.

2 - Smooth Semi-Global Matching - Uses the MGM variant of the SGM algorithm [33] to reduce
high frequency artifacts in the output image at the cost of increased run time. See section 7.2.4
for important details on using this algorithm.

3 - MGM Final - Use MGM on the �nal resolution level and SGM on preceding resolution levels.
This produces a result somewhere in between the pure SGM and MGM options.

corr-blob-�lter (integer) (default = 0)
Set to apply a blob �lter in each level of pyramidal integer correlation. When the correlator fails
it often leaves "islands" of erroneous disparity results. Using this blob �lter to remove them cleans
up the �nal stereo output and can even reduce processing times by preventing the correlator from
searching at large, incorrect disparity amounts. The value provided is the size of blobs in pixels that
will be removed at the full image resolution.

corr-tile-size (integer) (default = 1024)
Manually speci�es the size of image tiles used by the correlator for multi-threaded processing. Typi-
cally there is no need to adjust this value but it is very important when using semi-global matching.
See section 7.2.4 for details. This value must be a multiple of 16.

sgm-collar-size (integer) (default = 512)
Specify the size of a region of additional processing around each correlation tile when using SGM or
MGM processing. This helps reduce seam artifacts at tile borders when processing an image that
needs to be broken up into tiles at the cost of additional processing time. This has no e�ect if the
entire image can �t in one tile.

sgm-search-bu�er (integer integer) (default = 4 4)
This option determines the size (in pixels) searches around the expected disparity location in successive
levels of the correlation pyramid. A smaller value will decrease run time and memory usage but will
increase the chance of blunders. It is not recommended to reduce either value below 2.

218



The stereo.default File

corr-memory-limit-mb (integer) (default = 6144)
Restrict the amount of memory used by the correlation step to be slightly above this value. This
only really a�ects SGM/MGM which use a pair of large memory bu�er in their computation. The
total memory usage of these bu�ers is compared to this limit, and if it is greater then smaller search
ranges will be used for uncertain pixels in order to reduce memory usage. If the required memory is
still over this limit then the program will error out. The unit is in megabytes.

B.3 Subpixel Re�nement

subpixel-mode (integer) (default = 1)
This parameter selects the subpixel correlation method. Parabola subpixel is very fast but will produce
results that are only slightly more accurate than those produced by the initialization step. Bayes EM
(mode 2) is very slow but o�ers the best quality. When tuning stereo.default parameters, it is
expedient to start out using parabola subpixel as a �draft mode.� When the results are looking good
with parabola subpixel, then they will look even better with subpixel mode 2. For inputs with little
noise, the a�ne method (subpixel mode 3) may produce results equivalent to Bayes EM in a shorter
time. Phase correlation (subpixel mode 4) is uses a frequency domain technique. It is slow and is
best may not produce better results than mode 2 but it may work well in some situations with �at
terrain.

Subpixel modes 5 and 6 are experimental. Modes 7-12 are only used as part of SGM/MGM correlation.
These are much faster than subpixel modes 2-4 and if selected (with SGM/MGM) will be the only
subpixel mode performed. They interpolate between the SGM/MGM integer results and should
produce reasonable values. The default blend method for SGM/MGM is a custom algorithm that
should work well but the you may �nd that one of the other options is better for your data.

Subpixel modes 1-4 can be used in conjunction with SGM/MGM. In this case subpixel mode 12 will
be used �rst, followed by the selected subpixel mode. Depending on your data this may produce
better results than using just the SGM/MGM only methods. You may get bad artifacts combining
mode 1 with SGM/MGM.

0 - no subpixel re�nement

1 - parabola �tting

2 - a�ne adaptive window, Bayes EM weighting

3 - a�ne window

4 - phase correlation

5 - Lucas-Kanade method (experimental)

6 - a�ne adaptive window, Bayes EM with Gamma Noise Distribution (experimental)

7 - SGM None

8 - SGM linear

9 - SGM Poly4

10 - SGM Cosine

11 - SGM Parabola

12 - SGM Blend

For a visual comparison of the quality of these subpixel modes, refer back to Chapter:7.

219



Chapter B

subpixel-kernel (integer integer) (default = 35 35) Specify the size of the horizontal and vertical size
(in pixels) of the subpixel correlation kernel. It is advantageous to keep this small for parabola �tting
in order to resolve �ner details. However for the Bayes EM methods, keep the kernel slightly larger.
Those methods weight the kernel with a Gaussian distribution, thus the e�ective area is small than
the kernel size de�ned here.

B.4 Filtering

�lter-mode (integer) (default = 1)
This parameter sets the �lter mode. Three modes are supported as described below. Here, by neigh-
boring pixels for a current pixel we mean those pixels within the window of half-size of rm-half-kernel
centered at the current pixel.

0 - No �ltering.

1 - Filter by discarding pixels at which disparity di�ers from mean disparity of neighbors by more
than max-mean-diff.

2 - Filter by discarding pixels at which percentage of neighboring disparities that are within rm-threshold
of current disparity is less than rm-min-matches.

rm-half-kernel (integer integer) (default = 5 5)
This setting adjusts the behavior of an outlier rejection scheme that �erodes� isolated regions of pixels
in the disparity map that are in disagreement with their neighbors.

The two parameters determine the size of the half kernel that is used to perform the automatic removal
of low con�dence pixels. A 5× 5 half kernel would result in an 11× 11 kernel with 121 pixels in it.

max-mean-di� (integer) (default = 3)
This parameter sets the maximum di�erence between the current pixel disparity and the mean of
disparities of neighbors in order for a given disparity value to be retained (for filter-mode 1).

rm-min-matches (integer) (default = 60)
This parameter sets the percentage of neighboring disparity values that must fall within the inlier
threshold in order for a given disparity value to be retained (for filter-mode 2).

rm-threshold (double) (default = 3)
This parameter sets the inlier threshold for the outlier rejection scheme. This option works in con-
junction with RM_MIN_MATCHES above. A disparity value is rejected if it di�ers by more than
RM_THRESHOLD disparity values from RM_MIN_MATCHES percent of pixels in the region being
considered (for filter-mode 2).

rm-cleanup-passes (integer) (default = 1)
Select the number of outlier removal passes that are carried out. Each pass will erode pixels that do
not match their neighbors. One pass is usually su�cient.

median-�lter-size (integer) (default = 0)
Apply a median �lter of the selected kernel size to the subpixel disparity results. This option can
only be used if rm-cleanup-passes is set to zero.

texture-smooth-size (integer) (default = 0)
Apply an adaptive �lter to smooth the disparity results inversely proportional to the amount of
texture present in the input image. This value sets the maximum size of the smoothing kernel used
(in pixels). This option can only be used if rm-cleanup-passes is set to zero.

220



The stereo.default File

texture-smooth-scale (�oat) (default = 0.15)
Used in conjunction with texture-smooth-size, this value helps control the regions of the image
that will be smoothed. A larger value will result in more smoothing being applied to more of the
image. A smaller value will leave high-texture regions of the image unsmoothed.

enable-�ll-holes (default = false)

Enable �lling of holes in disparity using an inpainting method. Obsolete. It is suggested to use instead
point2dem's analogous functionality.

�ll-holes-max-size (integer) (default = 100,000)
Holes with no more pixels than this number should be �lled in.

edge-bu�er-size (integer) (default = -1)
Crop to be applied around image borders during �ltering. If not set, default to subpixel kernel size.

erode-max-size (integer) (default = 0)
Isolated blobs with no more pixels than this number should be removed.

B.5 Post-Processing (Triangulation)

near-universe-radius (�oat) (default = 0.0)

far-universe-radius (�oat) (default = 0.0)

These parameters can be used to remove outliers from the 3D triangulated point cloud. The points
that will be kept are those whose distance from the universe center (see below) is between near-universe-radius
and far-universe-radius, in meters.

universe-center (default = none)
De�nes the reference location to use when �ltering the output point cloud using the above near and
far radius options. The available options are:

None - Disable �ltering.

Camera - Use the left camera's center as the universe center.

Zero - Use the center of the planet as the universe center.

bundle-adjust-pre�x (string)

Use the camera adjustments obtained by previously running bundle_adjust with this output pre�x.

min-triangulation-angle (double)

The minimum angle, in degrees, at which rays must meet at a triangulated point to accept this point
as valid. The internal default is somewhat less than 1 degree.

point-cloud-rounding-error (double)

How much to round the output point cloud values, in meters (more rounding means less precision
but potentially smaller size on disk). The inverse of a power of 2 is suggested. Default: 1/210 meters
(about 1mm) for Earth and proportionally less for smaller bodies.

221



Chapter B

save-double-precision-point-cloud (default = false)

Save the �nal point cloud in double precision rather than bringing the points closer to origin and
saving as �oat (marginally more precision at twice the storage).

compute-error-vector (default = false)

When writing the output point cloud, save the 3D triangulation error vector (the vector between the
closest points on the rays emanating from the two cameras), rather than just its length. In this case,
the point cloud will have 6 bands (storing the triangulation point and triangulation error vector)
rather than the usual 4. When invoking point2dem on this 6-band point cloud and specifying the
--errorimage option, the error image will contain the three components of the triangulation error
vector in the North-East-Down coordinate system.

The next several parameters are used for jitter correction for Digital Globe imagery. A usage tutorial
is given in section 4.4.

image-lines-per-piecewise-adjustment (integer) (default = 0) A positive value, e.g., 1000, will turn
on using piecewise camera adjustments to help reduce jitter e�ects. Use one adjustment per this
many image lines.

piecewise-adjustment-percentiles (�oat �oat) (default = 5 95) A narrower range will place the piece-
wise adjustments for jitter correction closer together and further from the �rst and last lines in the
image.

piecewise-adjustment-interp-type (integer) (default = 1) How to interpolate between adjustments.
[1 Linear, 2 Using Gaussian weights]

piecewise-adjustment-camera-weight (�oat) (default = 1.0) The weight to use for the sum of squares
of adjustments component of the cost function. Increasing this value will constrain the adjustments
to be smaller.

num-matches-for-piecewise-adjustment (integer) (default = 90000) How many matches among im-
ages to create based on the disparity for the purpose of solving for jitter using piecewise adjustment.

These last two options are used internally.

compute-piecewise-adjustments-only (default = false)
Compute the piecewise adjustments as part of jitter correction, and then stop.

skip-computing-piecewise-adjustments (default = false)
Skip computing the piecewise adjustments for jitter, they should have been done by now.

222



Appendix C

Guide to Output Files

The stereo tool generates a variety of intermediate �les that are useful for debugging. These are listed
below, along with brief descriptions about the contents of each �le. Note that the pre�x of the �lename for
all of these �les is dictated by the �nal command line argument to stereo. Run stereo --help for details.

*.vwip - image feature �les
If alignment-method is not none, the Stereo Pipeline will automatically search for image features to
use for tie-points. Raw image features are stored in *.vwip �les; one per input image. For example,
if your images are left.cub and right.cub you'll get left.vwip and right.vwip. Note: these �les
can also be generated by hand (and with �ner grained control over detection algorithm options) using
the ipfind utility.

*.match - image to image tie-points
The match �le lists a select group of unique points out of the previous .vwip �les that have been
identi�ed and matched in a pair of images. For example, if your images are left.cub and right.cub

you'll get a left__right.match �le.

The .vwip and .match �les are meant to serve as cached tie-point information, and they help speed
up the pre-processing phase of the Stereo Pipeline: if these �les exist then the stereo program will
skip over the interest point alignment stage and instead use the cached tie-points contained in the
*.match �les. In the rare case that one of these �les did get corrupted or your input images have
changed, you may want to delete these �les and allow stereo to regenerate them automatically. This
is also recommended if you have upgraded the Stereo Pipeline software.

Both .vwip and .match �les can be visualized in stereo_gui.

*-L.tif - recti�ed left input image
The left input image of the stereo pair, saved after the pre-processing step. This image may be
normalized, but should otherwise be identical to the original left input image.

*-R.tif - recti�ed right input image
Right input image of the stereo pair, after the pre-processing step. This image may be normalized
and possibly translated, scaled, and/or rotated to roughly align it with the left image, but should
otherwise be identical to the original right input image.

*-lMask.tif - mask for left recti�ed image

*-rMask.tif - mask for right recti�ed image
These �les contain binary masks for the input images. These are used throughout the stereo process
to mask out pixels where there is no input data.

223



Chapter C

*-align-L.exr - left pre-alignment matrix

*-align-R.exr - right pre-alignment matrix
The 3 × 3 a�ne transformation matrices that are used to warp the left and right images to roughly
align them. These �les are only generated if alignment-method is not none in the stereo.default

�le. Normally, a single transform is enough to warp one image to another (for example, the right
image to the left). The reason we use two transforms is the following: after the right image is warped
to the left, we would like to additionally transform both images so that the origin (0, 0) in the left
image would correspond to the same location in the right image. This will somewhat improve the
e�ciency of subsequent processing.

*-D.tif - disparity map after the disparity map initialization phase
This is the disparity map generated by the correlation algorithm in the initialization phase. It contains
integer values of disparity that are used to seed the subsequent sub-pixel correlation phase. It is largely
un�ltered, and may contain some bad matches.

Disparity map �les are stored in OpenEXR format as 3-channel, 32-bit �oating point images. (Channel
0 = horizontal disparity, Channel 1 = vertical disparity, and Channel 2 = good pixel mask)

*-RD.tif - disparity map after sub-pixel correlation
This �le contains the disparity map after sub-pixel re�nement. Pixel values now have sub-pixel
precision, and some outliers have been rejected by the sub-pixel matching process.

*-F-corrected.tif - intermediate data product
Only created when alignment-method is not none. This is *-F.tif with e�ects of interest point
alignment removed.

*-F.tif - �ltered disparity map
The �ltered, sub-pixel disparity map with outliers removed (and holes �lled with the inpainting
algorithm if FILL_HOLES is on). This is the �nal version of the disparity map.

*-GoodPixelMap.tif - map of good pixels
An image showing which pixels were matched by the stereo correlator (gray pixels), and which were
�lled in by the hole �lling algorithm (red pixels).

*-PC.tif - point cloud image
The point cloud image is generated by the triangulation phase of Stereo Pipeline. Each pixel in
the point cloud image corresponds to a pixel in the left input image (*-L.tif). The point cloud has
four channels, the �rst three are the Cartesian coordinates of each point, and the last one has the
intersection error of the two rays which created that point (the intersection error is the closest distance
between rays). By default, the origin of the Cartesian coordinate system being used is a point in the
neighborhood of the point cloud. This makes the values of the points in the cloud relatively small,
and we save them in single precision (32 bits). This origin is saved in the point cloud as well using the
tag POINT_OFFSET in the GeoTi� header. To output point clouds using double precision with the
origin at the planet center, call stereo_tri with the option --save-double-precision-point-cloud.
This can e�ectively double the size of the point cloud.

All these images that are single-band can be visualized in stereo_gui (section A.2). The disparities
can be �rst split into the individual horizontal and vertical disparity �les using disparitydebug, then
they can be seen in this viewer as well.

If the input images are map-projected (georeferenced) and the alignment method is none, all the
output images listed above, will also be georeferenced, and hence can be overlayed in stereo_gui on
top of the input imagery (the outputs of disparitydebug will then be georeferenced as well).

224



Guide to Output Files

The point cloud �le saves the datum (and projection if available) inferred from the input images,
regardless of whether these images are map-projected or not.

The point2mesh and point2dem programs can be used to convert the point cloud to formats that are
easier to visualize.

*-stereo.default - backup of the Stereo Pipeline settings �le
This is a copy of the stereo.default �le used by stereo. It is stored alongside the output products
as a record of the settings that were used for this particular stereo processing task.

225



226



Appendix D

Frame Camera Models

Ames Stereo Pipeline supports a generic Pinhole camera model with several lens distortion models which
cover common calibration methods, and also the somewhat more complicated panoramic (optical bar)
camera model.

D.1 Pinhole Models

D.2 Overview

The generic Pinhole model uses the following parameters:

• fu = The focal length in horizontal pixel units.

• fv = The focal length in vertical pixel units.

• cu = The horizontal o�set of the principal point of the camera in the image plane in pixel units, from
0,0.

• cv = The vertical o�set of the principal point of the camera in the image plane in pixel units, from
0,0.

• pitch = The size of each pixel in the units used to specify the four parameters listed above. This will
usually either be 1.0 if they are speci�ed in pixel units or alternately the size of a pixel in millimeters.

The focal length is sometimes known as the principal distance. The value cu is usually approximately half
the image width in pixels times the pitch, while cv is often the image height in pixels times the pitch,
though there are situations when these can be quite di�erent.

A few sample Pinhole models are shown later in the text. The underlying mathematical model is described
in section D.2.2.

Along with the basic Pinhole camera parameters, a lens distortion model can be added. Note that the units
used in the distortion model must match the units used for the parameters listed above. For example, if
the camera calibration was performed using units of millimeters the focal lengths etc. must be given in
units of millimeters and the pitch must be equal to the size of each pixel in millimeters. The following lens
distortion models are currently supported:

227



Chapter D

• Null = A placeholder model that applies no distortion.

• Tsai = A common distortion model similar to the one used by OpenCV and THEIA. This model
uses the following parameters:

K1, K2 = Radial distortion parameters.

P1, P2 = Tangential distortion parameters.

The following equations describe the distortion, starting with the undistorted pixel (Px, Py):

(x, y) =
(
Px− cu
fu

,
Py − cv
fv

)
r2 = x2 + y2

x(distorted) = x

(
K1r

2 +K2r
4 + 2P1y + P2

(
r2

x
+ 2x

))
y(distorted) = y

(
K1r

2 +K2r
4 + 2P2x+ P1

(
r2

y
+ 2y

))
References:

Roger Tsai, A Versatile Camera Calibration Technique for a High-Accuracy 3D Machine Vision
Metrology Using O�-the-shelf TV Cameras and Lenses

Note that this model uses normalized pixel units.

• Adjustable Tsai = A variant of the Tsai model where any number of K terms and a skew term
(alpha) can be used. Can apply the AgiSoft Lens calibration parameters.

• Brown-Conrady = An older model based on a centering angle.

This model uses the following parameters:

K1, K2, K3 = Radial distortion parameters.

P1, P2 = Tangential distortion parameters.

xp, yp = Principal point o�set.

phi = Tangential distortion angle in radians.

The following equations describe the distortion:

x = x(distorted)− xp

y = y(distorted)− yp

r2 = x2 + y2

dr = K1r
3 +K2r

5 +K3r
7

x(undistorted) = x+ x
dr

r
− (P1r

2 + P2r
4) sin(phi)

228



Frame Camera Models

y(undistorted) = y + y
dr

r
+ (P1r

2 + P2r
4) cos(phi)

Note that this model uses non-normalized pixel units, so they are in mm.

References:

Decentering Distortion of Lenses - D.C. Brown, Photometric Engineering, pages 444-462, Vol. 32,
No. 3, 1966

Close-Range Camera Calibration - D.C. Brown, Photogrammetric Engineering, pages 855-866, Vol.
37, No. 8, 1971

• Photometrix = A model matching the conventions used by the Australis software from Photometrix.

K1, K2, K3 = Radial distortion parameters.

P1, P2 = Tangential distortion parameters.

xp, yp = Principal point o�set.

B1, B2 = Unused parameters.

The following equations describe the distortion:

x = x(distorted)− xp

y = y(distorted)− yp

r2 = x2 + y2

dr = K1r
3 +K2r

5 +K3r
7

x(undistorted) = x+ x
dr

r
+ P1(r2 + 2x2) + 2P2xy

y(undistorted) = y + y
dr

r
+ P2(r2 + 2y2) + 2P1xy

Note that this model uses non-normalized pixel units, so they are in mm.

• RPC = A rational polynomial coe�cient model.

In this model, one goes from distorted coordinates (x, y) to undistorted coordinates via the formula

x(undistorted) =
P1(x, y)
Q1(x, y)

y(undistorted) =
P2(x, y)
Q2(x, y)

The functions in the numerator and denominator are polynomials in x and y with certain coe�cients.
The degree of polynomials can be any positive integer.

RPC distortion models can be generated as approximations to other pre-existing models with the tool
convert_pinhole_model (section A.40).

This tool also creates RPC to speed up the reverse operation, of going from undistorted to distorted
pixels, and those polynomial coe�cients are also saved as part of the model.

229



Chapter D

D.2.1 File Formats

ASP Pinhole model �les are written in an easy to work with plain text format using the extension .tsai.
A sample �le is shown below.

VERSION_4

PINHOLE

fu = 28.429

fv = 28.429

cu = 17.9712

cv = 11.9808

u_direction = 1 0 0

v_direction = 0 1 0

w_direction = 0 0 1

C = 266.943 -105.583 -2.14189

R = 0.0825447 0.996303 -0.0238243 -0.996008 0.0832884 0.0321213 0.0339869 0.0210777 0.9992

pitch = 0.0064

Photometrix

xp = 0.004

yp = -0.191

k1 = 1.31024e-04

k2 = -2.05354e-07

k3 = -5.28558e-011

p1 = 7.2359e-006

p2 = 2.2656e-006

b1 = 0.0

b2 = 0.0

The �rst half of the �le is the same for all Pinhole models:

• VERSION_X = A header line used to track the format of the �le.

• PINHOLE = The type of camera model, so that other types can be stored with the .tsai extension.

• fu, fv, cu, cv = The �rst four intrinsic parameters described in the previous section.

• u, v, and w_direction = These lines allow an additional permutation of the axes of the camera
coordinates. By default, the positive column direction aligns with x, the positive row direction aligns
with y, and downward into the image aligns with z.

• C = The location of the camera center, usually in the geocentric coordinate system (GCC/ECEF).

• R = The rotation matrix describing the camera's absolute pose in the coordinate system.

• pitch = The pitch intrinsic parameter described in the previous section.

The second half of the �le describes the lens distortion model being used. The name of the distortion
model appears �rst, followed by a list of the parameters for that model. The number of parameters may
be di�erent for each distortion type. Samples of each format are shown below:

• Null

230



Frame Camera Models

NULL

• Tsai

TSAI

k1 = 1.31024e-04

k2 = -2.05354e-07

p1 = 0.5

p2 = 0.4

• Adjustable Tsai

AdjustableTSAI

Radial Coeff: Vector3(1.31024e-04, 1.31024e-07, 1.31024e-08)

Tangential Coeff: Vector2(-2.05354e-07, 1.05354e-07)

Alpha: 0.4

• Brown-Conrady

BrownConrady

xp = 0.5

yp = 0.4

k1 = 1.31024e-04

k2 = -2.05354e-07

k3 = 1.31024e-08

p1 = 0.5

p2 = 0.4

phi = 0.001

• Photometrix

Photometrix

xp = 0.004

yp = -0.191

k1 = 1.31024e-04

k2 = -2.05354e-07

k3 = -5.28558e-011

p1 = 7.2359e-006

p2 = 2.2656e-006

b1 = 0.0

b2 = 0.0

• RPC

RPC

rpc_degree = 1

image_size = 5760 3840

distortion_num_x = 0 1 0

distortion_den_x = 1 0 0

distortion_num_y = 0 0 1

distortion_den_y = 1 0 0

231



Chapter D

undistortion_num_x = 0 1 0

undistortion_den_x = 1 0 0

undistortion_num_y = 0 0 1

undistortion_den_y = 1 0 0

This sample RPC lens distortion model represents the case of no distortion, when the degree of the
polynomials is 1, and both the distortion and undistortion formula leave the pixels unchanged, that
is, the distortion transform is

(x, y)→ (x, y) =
(

0 + 1 · x+ 0 · y
1 + 0 · x+ 0 · y

,
0 + 0 · x+ 1 · y)
1 + 0 · x+ 0 · y

)
.

In general, if the degree of the polynomials is n, there are 2(n + 1)(n + 2) coe�cients. The zero-th
degree coe�cients in the denominator are always set to 1.

For several years Ames Stereo Pipeline generated Pinhole �les in the binary .pinhole format. That format
is no longer supported.

Also in the past Ames Stereo Pipeline has generated a shorter version of the current �le format, also with
the extension .tsai, which only supported the TSAI lens distortion model. Existing �les in that format
can still be used by ASP.

Note that the orbitviz tool can be useful for checking the formatting of .tsai �les you create and to
estimate the position and orientation. To inspect the orientation use the optional .dae model �le input
option and observe the rotation of the 3D model.

D.2.2 How the Pinhole model is applied

As mentioned in section D.2.1, the ASP Pinhole models store the focal length as fu and fv, the optical
center (cu, cv) (which is the pixel location at which the ray coming from the center of the camera is
perpendicular to the image plane, in units of the pixel pitch), the vector C which is the camera center in
world coordinates system, and the matrix R that is the transform from camera to world coordinates.

To go in more detail, a point Q in the camera coordinate system gets transformed to a point P in the world
coordinate system via:

P = RQ+ C

Hence, to go from world to camera coordinates one does:

Q = R−1P −R−1C

From here the pixel location is computed as:

1
p

(
fu
Q1

Q3
+ cu, fv

Q2

Q3
+ cv

)

where p is the pixel pitch.

232



Frame Camera Models

D.3 Panoramic Camera Model

ASP also supports a simple panoramic/optical bar camera model for use with images such as the declassi�ed
Corona KH4 and Keyhole KH9 images. It implements the model from [132] with the motion compensation
from [139].

Such a model looks as follows:

VERSION_4

OPTICAL_BAR

image_size = 110507 7904

image_center = 55253.5 3952

pitch = 7.0e-06

f = 0.61000001430511475

scan_time = 0.5

forward_tilt = -0.261799

iC = -1047140.9611702315 5508464.4323527571 3340425.4078937685

iR = -0.96635634448923746 -0.16918164442572045 0.1937343197650008 -0.23427205529446918 0.26804084264169648 -0.93448954557235941 0.10616976770014927 -0.94843643849513648 -0.29865750042675621

speed = 7700

mean_earth_radius = 6371000

mean_surface_elevation = 4000

motion_compensation_factor = 1.0

scan_dir = left

Here, the image size and center are given in pixels, with the width followed by the height. The pixel pitch
and focal length f are in meters. The scan time is seconds, the forward tilt is in radians, the speed is
in meters per second, and the Earth radius and mean surface elevation are in meters. The initial camera
center iC is in meters, and the rotation matrix iR stores the absolute pose. scan_dir must be set to 'left'
or 'right'. scan_dir and use_motion_compensation control how the sensor model accounts accounts for
the motion of the satellite during the image scan. Without the bene�t of detailed historical documents it
may require experimentation to �nd the good initial values for these cameras. When using bundle_adjust,
the intrinsic parameters that are solved for are speed, motion_compensation_factor, and scan_time.

233



234



Appendix E

Papers that used ASP

These works have made use of the Ames Stereo Pipeline to produce their results or enable their studies. If
something is missing, let us know!

1. R. A. Beyer, B. Archinal, Y. Chen, K. Edmundson, D. Harbour, E. Howington-Kraus, R. Li, A. McEwen,
S. Mattson, Z. Moratto, J. Oberst, M. Rosiek, F. Scholten, T. Tran, M. Robinson, and LROC Team.
LROC Stereo Data�Results of Initial Analysis. In S. Mackwell and E. Stansbery, editors, Lunar and
Planetary Science Conference 41, number #2678. Lunar and Planetary Institute, Houston, March
2010

2. T. R. Watters, M. S. Robinson, R. A. Beyer, J. F. Bell, M. E. Pritchard, M. E. Banks, E. P. Turtle,
N. R. Williams, and LROC Team. Lunar Thrust Faults: Implications for the Thermal History of
the Moon. In S. Mackwell and E. Stansbery, editors, Lunar and Planetary Science Conference 41,
number #1863. Lunar and Planetary Institute, Houston, March 2010

3. C. B. Phillips, R. A. Beyer, F. Nimmo, J. H. Roberts, and G. Robuchon. Crater Relaxation and
Stereo Imaging of the Icy Satellites of Jupiter and Saturn. AGU Fall Meeting Abstracts, (#P21B-
1596), December 2010

4. N. P. Hammond, C. B. Phillips, G. Robuchon, R. A. Beyer, F. Nimmo, and J. Roberts. Crater
relaxation and stereo imaging of rhea. In S. Mackwell and E. Stansbery, editors, Lunar and Planetary
Science Conference 42, number #2633. Lunar and Planetary Institute, Houston, 2011

5. John Hu�man, Andrew Forsberg, Andrew Loomis, James Head, James Dickson, and Caleb Fassett.
Integrating advanced visualization technology into the planetary geoscience work�ow. Planetary and
Space Science, 59(11�12):1273 � 1279, 2011. ISSN 0032-0633. URL http://www.sciencedirect.

com/science/article/pii/S0032063310002175

6. R. A. Beyer, B. Archinal, Y. Cheng, K. Edmundson, E. Howington-Kraus, R. L. Kirk, R. Li, A. S.
McEwen, S. Mattson, X. Meng, Z. Moratto, J. Oberst, M. Rosiek, F. Scholten, T. Tran, O. Thomas,
W. Wang, and the LROC Team. LROC DTM comparison e�ort. In S. Mackwell and E. Stansbery,
editors, Lunar and Planetary Science Conference 42, number #2715. Lunar and Planetary Institute,
Houston, 2011

7. Z. Moratto, A. Ne�an, T. Kim, M. Broxton, R. A. Beyer, and T. Fong. Stereo reconstruction from
apollo 15 and 16 metric camera. In S. Mackwell and E. Stansbery, editors, Lunar and Planetary
Science Conference 42, number #2267. Lunar and Planetary Institute, Houston, 2011

235

http://www.sciencedirect.com/science/article/pii/S0032063310002175
http://www.sciencedirect.com/science/article/pii/S0032063310002175


Chapter E

8. A. Lefort, D. M. Burr, R. A. Beyer, and A. D. Howard. Topographic post-formation modi�cations of
inverted �uvial features in the western Medusa Fossae formation, Mars. In S. Mackwell and E. Stans-
bery, editors, Lunar and Planetary Science Conference 42, number #2418. Lunar and Planetary
Institute, Houston, 2011

9. C. B. Phillips, N. P. Hammond, F. Nimmo, G. robuchon, R. A. Beyer, and J. H. Roberts. Crater
Relaxation and Stereo Imaging of Icy Satellites. AGU Fall Meeting Abstracts, (#P41F-07), December
2011

10. Vytas SunSpiral, D.W. Wheeler, Daniel Chavez-Clemente, and David Mittman. Development and
�eld testing of the footfall planning system for the athlete robots. Journal of Field Robotics, 29(3):
483�505, 2012. ISSN 1556-4967. URL http://dx.doi.org/10.1002/rob.20410

11. Cristina Re, Gabriele Cremonese, Elisa Dall'Asta, Gianfranco Forlani, Giampiero Naletto, and Ric-
cardo Roncella. Performance evaluation of dtm area-based matching reconstruction of moon and mars.
Proc. SPIE 8537, Image and Signal Processing for Remote Sensing XVIII, pages 85370V�85370V�12,
2012. URL http://dx.doi.org/10.1117/12.974524

12. Teemu Öhman and David A. Kring. Photogeologic analysis of impact melt-rich lithologies in kepler
crater that could be sampled by future missions. Journal of Geophysical Research: Planets, 117(E12):
n/a�n/a, 2012. ISSN 2156-2202. URL http://dx.doi.org/10.1029/2011JE003918

13. M. Golombek, J. Grant, D. Kipp, A. Vasavada, R. Kirk, R. Fergason, P. Bellutta, F. Calef, K. Larsen,
Y. Katayama, A. Huertas, R. Beyer, A. Chen, T. Parker, B. Pollard, S. Lee, Y. Sun, R. Hoover,
H. Sladek, J. Grotzinger, R. Welch, E. Noe Dobrea, J. Michalski, and M. Watkins. Selection of the
mars science laboratory landing site. Space Science Reviews, 170(1-4):641�737, 2012. ISSN 0038-6308.
URL http://dx.doi.org/10.1007/s11214-012-9916-y

14. A. Lefort, D. M. Burr, R. A. Beyer, and A. D. Howard. Inverted �uvial features in the Aeolis-Zephyria
Plana, western Medusae Fossae Formation, Mars: Evidence for post-formation modi�cation. Journal
of Geophysical Research (Planets), 117:E03007, March 2012

15. A. Lefort, D. M. Burr, R. A. Beyer, and A. D. Howard. Sinuous Ridges as Tools to Investigate Post-
Flow Modi�cation in the Aeolis-Zephyria Plana, Western Medusae Fossae Formation, Mars. In Lunar
and Planetary Science Conference 43, number #1953, March 2012

16. J. R. Laura, D. Miller, and M. V. Paul. AMES Stereo Pipeline Derived DEM Accuracy Experiment
Using LROC-NAC Stereopairs and Weighted Spatial Dependence Simulation for Lunar Site Selection.
In Lunar and Planetary Science Conference, page 2371, March 2012

17. C. B. Phillips, N. P. Hammond, G. Robuchon, F. Nimmo, R. A. Beyer, and J. Roberts. Stereo
Imaging, Crater Relaxation, and Thermal Histories of Rhea and Dione. In Lunar and Planetary
Science Conference 43, number #2571, March 2012

18. A. M. Morgan, R. A. Beyer, A. D. Howard, and J. M. Moore. The Alluvial Fans of Saheki Crater. In
Lunar and Planetary Science Conference 43, number #2815, March 2012

19. P. Allemand, A. Deschamps, M. Lesaout, C. Delacourt, C. Quantin, and H. Clenet. Magma rheology
from 3D geometry of martian lava �ows. In EGU General Assembly Conference Abstracts, volume 14,
page 8723, April 2012

20. N.P. Hammond, C.B. Phillips, F. Nimmo, and S.A. Kattenhorn. Flexure on dione: Investigating
subsurface structure and thermal history. Icarus, 223(1):418 � 422, 2013. ISSN 0019-1035. URL
http://www.sciencedirect.com/science/article/pii/S0019103513000043

236

http://dx.doi.org/10.1002/rob.20410
http://dx.doi.org/10.1117/12.974524
http://dx.doi.org/10.1029/2011JE003918
http://dx.doi.org/10.1007/s11214-012-9916-y
http://www.sciencedirect.com/science/article/pii/S0019103513000043


Papers that used ASP

21. Samantha E. Peel and Caleb I. Fassett. Valleys in pit craters on mars: Characteristics, distribution,
and formation mechanisms. Icarus, (0):�, 2013. ISSN 0019-1035. URL http://www.sciencedirect.

com/science/article/pii/S0019103513001474

22. C. B. Phillips, N. P. Hammond, J. H. Roberts, F. Nimmo, R. A. Beyer, and S. Kattenhorn. Stereo
Topography and Subsurface Thermal Pro�les on Icy Satellites of Saturn. In Lunar and Planetary
Science Conference 44, number #2766, March 2013

23. T. Öhman and P. J. McGovern. Strain Calculations for Circumferential Graben on Alba Mons, Mars.
LPI Contributions, 1719:2966, March 2013

24. W. A. Watters, L. Geiger, and M. Fendrock. Shape Distribution of Fresh Martian Impact Craters
from High-Resolution DEMs. In Lunar and Planetary Science Conference 44, volume 44 of Lunar
and Planetary Institute Science Conference Abstracts, March 2013

25. C. B. Phillips, E. El Henson, and F. Nimmo. Stereo Topography of Surface Features on Europa and
Comparisons with Formation Models. In AGU Fall Meeting Abstracts, volume 2013, pages P53A�1846,
December 2013

26. W. A. Watters and A. C. Radford. 3-D Morphometry of Martian Secondary Impact Craters from
Zunil and Gratteri. In Lunar and Planetary Science 45, volume 45 of Lunar and Planetary Institute
Science Conference Abstracts, March 2014

27. A. Lucchetti, R. Thomas, G. Cremonese, M. Massironi, D. A. Rothery, S. J. Conway, and M. Anand.
Analysis and Numerical Modeling of a Pit Crater on Mercury. In Lunar and Planetary Science
Conference 45, volume 45 of Lunar and Planetary Institute Science Conference Abstracts, March
2014

28. A. C. G. Hughes, E. Hauber, and A. P. Rossi. Geomorphology of Glacial and Periglacial Landforms
Within a Small Crater in Terra Cimmeria, Mars: Stratigraphy and Inferred Chronology of Processes.
In Lunar and Planetary Science Conference 45, volume 45 of Lunar and Planetary Institute Science
Conference Abstracts, March 2014

29. Z. M. Moratto, S. T. McMichael, R. A. Beyer, O. Alexandrov, and T. Fong. Automated and Accurate:
Making DTMs from LRO-NAC Using the Ames Stereo Pipeline. In Lunar and Planetary Science
Conference, page 2892, March 2014

30. R. A. Beyer, O. Alexandrov, and Z. M. Moratto. Aligning Terrain Model and Laser Altimeter Point
Clouds with the Ames Stereo Pipeline. In Lunar and Planetary Science Conference, page 2902, March
2014

31. A. Lucas, A. Mangeney, and J. P. Ampuero. Frictional velocity-weakening in landslides on Earth and
on other planetary bodies. Nature Communications, 5:3417, March 2014

32. P. J. Mouginis-Mark, J. M. Boyce, and H. Garbeil. Digital Elevation Models Aid the Analysis of
Double Layered Ejecta (DLE) Impact Craters on Mars. In AGU Fall Meeting Abstracts, volume 2014,
pages P34C�05, December 2014

33. Vladimir Yershov, Anton Ivanov, Jan-Peter Muller, Yu Tao, Mr, William Pool, Jung-Rack Kim, and
Panagiotis Sidiropoulos. Assessment of Digital Terrain Model algorithms for the development of a
massive processing system for all high-resolution stereo images of Mars from CTX and HiRISE. In
40th COSPAR Scienti�c Assembly, volume 40, pages B0.8�11�14, January 2014

34. Laura A Stevens, Mark D Behn, Je�rey J McGuire, Sarah B Das, Ian Joughin, Thomas Herring,
David E Shean, and Matt A King. Greenland supraglacial lake drainages triggered by hydrologically
induced basal slip. Nature, 522(7554):73�76, 2015

237

http://www.sciencedirect.com/science/article/pii/S0019103513001474
http://www.sciencedirect.com/science/article/pii/S0019103513001474


Chapter E

35. Michael J Willis, Andrew K Melkonian, and Matthew E Pritchard. Outlet glacier response to the
2012 collapse of the matusevich ice shelf, severnaya zemlya, russian arctic. Journal of Geophysical
Research: Earth Surface, 120(10):2040�2055, 2015

36. S. McMichael, Z. M. Moratto, and R. A. Beyer. LRO-NAC Mass DTM Pipeline. In Lunar and
Planetary Science Conference, page 2491, March 2015

37. W. A. Watters, L. Geiger, M. Fendrock, R. Gibson, and A. Radford. Statistical Morphometry of
Small Martian Craters: New Methods and Results. In Issues in Crater Studies and the Dating of
Planetary Surfaces, volume 1841, page 9032, May 2015

38. V. Yershov. A system for generating multi-resolution Digital Terrain Models of Mars based on the
ESA Mars Express and NASA Mars Reconnaissance Orbiter data. In European Planetary Science
Congress, pages EPSC2015�343, October 2015

39. R. S. Bauer, M. K. Barker, E. Mazarico, and G. A. Neumann. Calibration of Mercury Laser Altimeter
Data Using Digital Elevation Models Derived from Stereo Image Pairs. In AGU Fall Meeting Abstracts,
volume 2015, pages P41C�2079, December 2015

40. David E Shean, Oleg Alexandrov, Zachary M Moratto, Benjamin E Smith, Ian R Joughin, Claire
Porter, and Paul Morin. An automated, open-source pipeline for mass production of digital eleva-
tion models (dems) from very-high-resolution commercial stereo satellite imagery. ISPRS Journal of
Photogrammetry and Remote Sensing, 116:101�117, 2016

41. Pascal Lacroix. Landslides triggered by the gorkha earthquake in the langtang valley, volumes and
initiation processes. Earth, Planets and Space, 68(1):1�10, 2016

42. Allen Pope, TA Scambos, M Moussavi, M Tedesco, M Willis, D Shean, and S Grigsby. Estimating
supraglacial lake depth in west greenland using landsat 8 and comparison with other multispectral
methods. The Cryosphere, 10:15, 2016

43. Andrew K Melkonian, Michael J Willis, Matthew E Pritchard, and Adam J Stewart. Recent changes
in glacier velocities and thinning at novaya zemlya. Remote Sensing of Environment, 174:244�257,
2016

44. D. P. Mayer and E. S. Kite. An Integrated Work�ow for Producing Digital Terrain Models of Mars
from CTX and HiRISE Stereo Data Using the NASA Ames Stereo Pipeline. In Lunar and Planetary
Science Conference, page 1241, March 2016

45. Anton Ivanov, Jan-Peter Muller, Yu Tao, Jung-Rack Kim, Klaus Gwinner, Stephan Van Gasselt,
Jeremy Morley, Robert Houghton, Steven Bamford, Panagiotis Sidiropoulos, Lida Fanara, Marita
Waenlish, Sebastian Walter, Ralf Steinkert, Bjorn Schreiner, Federico Cantini, Jessica Wardlaw, James
Sprinks, Michele Giordano, and Stuart Marsh. EU-FP7-iMARS: analysis of Mars multi-resolution im-
ages using auto- coregistration, data mining and crowd source techniques. In 41st COSPAR Scienti�c
Assembly, volume 41, pages B0.2�22�16, July 2016

46. David Nebouy, Claire Capanna, Laurent Jorda, Robert W. Gaskell, Stubbe Faurschou Hviid, Frank
Scholten, Frank Preusker, and OSIRIS Team. Co-registration and comparison of high-resolution
shape models of comet 67P/C-G. In AAS/Division for Planetary Sciences Meeting Abstracts #48,
AAS/Division for Planetary Sciences Meeting Abstracts, page 116.08, October 2016

47. Lida Fanara, Klaus Gwinner, Ernst Hauber, and Juergen Oberst. Frequency of block displacements
at the north pole of Mars based on HiRISE images. In AAS/Division for Planetary Sciences Meeting
Abstracts #48, AAS/Division for Planetary Sciences Meeting Abstracts, page 513.11, October 2016

238



Papers that used ASP

48. P. J. Mouginis-Mark and V. L. Sharpton. Topographic Analysis of the Asymmetric Ejecta of Zunil
Crater, Mars. In AGU Fall Meeting Abstracts, pages P11E�01, December 2016

49. Caleb I. Fassett. Ames stereo pipeline-derived digital terrain models of Mercury from MESSENGER
stereo imaging. Planetary and Space Science, 134:19�28, December 2016

50. Paul M. Montesano, Christopher Neigh, Guoqing Sun, Laura Duncanson, Jamon Van Den Hoek,
and K. Jon Ranson. The use of sun elevation angle for stereogrammetric boreal forest height in
open canopies. Remote Sensing of Environment, 196:76 � 88, 2017. ISSN 0034-4257. URL http:

//www.sciencedirect.com/science/article/pii/S0034425717301827

51. Cheng Jiang, Sylvain Douté, Bin Luob, and Liangpei Zhang. Fusion of photogrammetric and pho-
toclinometric information for high-resolution dems from mars in-orbit imagery. ISPRS Journal of
Photogrammetry and Remote Sensing, 130:Pages 418�430, 2017. URL http://www.sciencedirect.

com/science/article/pii/S0924271616306554

52. J. M. C. Belart, E. Berthier, E. Magnússon, L. S. Anderson, F. Pálsson, T. Thorsteinsson, I. M.
Howat, G. Aðalgeirsdóttir, T. Jóhannesson, and A. H. Jarosch. Winter mass balance of drangajökull
ice cap (nw iceland) derived from satellite sub-meter stereo images. The Cryosphere, 11(3):1501�1517,
2017. URL https://www.the-cryosphere.net/11/1501/2017/

53. Jan-Peter Muller, Panagiotis Sidiropoulos, Yu Tao, Kiky Putri, Jacqueline Campbell, Si-Ting Xiong,
Klaus Gwinner, Konrad Willner, Lida Fanara, Marita Waehlisch, Sebastian Walter, Bjoern Schreiner,
Ralf Steikert, Anton Ivanov, Federico Cantini, Jessica Wardlaw, James Sprinks, Robert Houghton, and
Jung-Rack Kim. EU-FP7-iMARS: analysis of Mars multi-resolution images using auto- coregistration,
data mining and crowd source techniques: A Final Report on the very variable surface of Mars. In
EGU General Assembly Conference Abstracts, volume 19, page 18917, April 2017

54. S. McMichael, O. Alexandrov, and R. Beyer. Enhanced 3D Surface Generation in the Ames Stereo
Pipeline. In Third Planetary Data Workshop and The Planetary Geologic Mappers Annual Meeting,
volume 1986, page 7090, June 2017

55. H. M. Brown, A. A. Awumah, M. R. Henriksen, M. R. Manheim, E. Cisneros, R. V. Wagner, and
M. S. Robinson. Ames Stereo Pipeline and LROC ASU Digital Terrain Model (DTM) Comparison. In
Third Planetary Data Workshop and The Planetary Geologic Mappers Annual Meeting, volume 1986,
page 7096, June 2017

56. R. L. Fergason, R. L. Kirk, G. Cushing, D. M. Galuszka, M. P. Golombek, T. M. Hare, E. Howington-
Kraus, D. M. Kipp, and B. L. Redding. Analysis of Local Slopes at the InSight Landing Site on Mars.
Space Science Reviews, 211:109�133, October 2017

57. A. M. Annex, K. W. Lewis, and C. S. Edwards. Stratigraphic Mapping of Intra-Crater Layered
Deposits in Arabia Terra from High-Resolution Imaging and Stereo Topography. In AGU Fall Meeting
Abstracts, volume 2017, pages P24C�04, December 2017

58. C. Rezza, C. B. Phillips, and M. L. Cable. `Dem DEMs: Comparing Methods of Digital Elevation
Model Creation. In AGU Fall Meeting Abstracts, volume 2017, pages P43D�2914, December 2017

59. S. H. Moon and H. L. Choi. Alignment and Ortho-Recti�cation of Lunar Surface Image Using the
NASA Ames Stereo Pipeline. In Lunar and Planetary Science Conference, page 1384, March 2018

60. D. P. Mayer. An Improved Work�ow for Producing Digital Terrain Models of Mars from CTX Stereo
Data Using the NASA Ames Stereo Pipeline. In Lunar and Planetary Science Conference, page 1604,
March 2018

239

http://www.sciencedirect.com/science/article/pii/S0034425717301827
http://www.sciencedirect.com/science/article/pii/S0034425717301827
http://www.sciencedirect.com/science/article/pii/S0924271616306554
http://www.sciencedirect.com/science/article/pii/S0924271616306554
https://www.the-cryosphere.net/11/1501/2017/


Chapter E

61. Al�ah Rizky Diana Putri, Panagiotis Sidiropoulos, Yu Tao, and Jan-Peter Muller. Automatic Multiple-
Expert Quality Assessment for Batch Processed Martian DTMs. In EGU General Assembly Confer-
ence Abstracts, volume 20, page 1120, April 2018

62. Jan-Peter Muller, Yu Tao, Panagiotis Sidiropoulos, Al�ah Putri, Jacqueline Campbell, and Sebastian
Walter. Assessment of ≈5,000 Mars-wide CTX DTMs created using the EU-FP7 iMars CASP-GO
system. In EGU General Assembly Conference Abstracts, volume 20, page 15971, April 2018

63. Y. Tao, J. P. Muller, P. Sidiropoulos, Si-Ting Xiong, A. R. D. Putri, S. H. G. Walter, J. Veitch-
Michaelis, and V. Yershov. Massive stereo-based DTM production for Mars on cloud computers.
Planetary and Space Science, 154:30�58, May 2018

64. Valentin Tertius Bickel, CI Honniball, SN Martinez, A Rogaski, HM Sargeant, SK Bell, EC Czaplinski,
BE Farrant, EM Harrington, GD Tolometti, et al. Analysis of lunar boulder tracks: Implications for
tra�cability of pyroclastic deposits. Journal of Geophysical Research: Planets, 2019

65. S. Shahrzad, K. M. Kinch, T. A. Goudge, C. I. Fassett, D. H. Needham, C. Quantin-Nataf, and C. P.
Knudsen. Crater Statistics on the Dark-Toned, Ma�c Floor Unit in Jezero Crater, Mars. Geophysical
Research Letters, 46:2408�2416, March 2019

66. P. J. Mouginis-Mark and H. Garbeil. CTX Digital Elevation Models Facilitate Geomorphic Analysis
of Mars. In Lunar and Planetary Science Conference, page 1069, Mar 2019

67. D. P. Mayer. Filling the Gap: Building a CTX-Based Digital Terrain Model Mosaic of the South Pole
of Mars. In Lunar and Planetary Science Conference, page 1128, Mar 2019

68. T. A. Goudge, C. I. Fassett, and G. R. Osinski. How Do Crater Lakes on Mars Develop Inlet Valleys?
In Lunar and Planetary Science Conference, page 1223, Mar 2019

69. R. Hemmi and H. Miyamoto. HiRISE Digital Elevation Model of Phobos: Implications for Morpho-
logical Analysis of Grooves. In Lunar and Planetary Science Conference, page 1759, Mar 2019

70. A. M. Annex, A. H. D. Koeppel, C. Pan, C. E. Edwards, and K. W. Lewis. Scarp Associated with
Martian Layered Deposits in Arabia Terra. In Lunar and Planetary Science Conference, page 1973,
Mar 2019

71. R. Hemmi and H. Miyamoto. High-resolution Topographic Analysis of Pitted Mounds in Southern
Acidalia Planitia, Mars: Updates on Morphometric Parameters of Candidate Mud Volcanoes. In
Lunar and Planetary Science Conference, page 2479, Mar 2019

240



Bibliography

[1] Michael Abrams, Simon Hook, and Bhaskar Ramachandran. Aster user handbook, version 2. Jet
Propulsion Laboratory, 4800:135, 2002.

[2] C. H. Acton. Ancillary data services of NASA's Navigation and Ancillary Information Facility.
Planetary and Space Science, 44:65�70, January 1996.

[3] C. H. Acton. SPICE Products Available to the Planetary Science Community. In Lunar and Planetary
Science XXX, number #1233. Lunar and Planetary Institute, Houston (CD-ROM), March 1999.

[4] C. H. Acton, N. J. Bachman, J. A. Bytof, B. V. Semenov, W. Taber, F. S. Turner, and E. D. Wright.
Examining Mars with SPICE. In Fifth International Conference on Mars, number #6042. Lunar and
Planetary Institute, Houston (CD-ROM), July 1999.

[5] P. Allemand, A. Deschamps, M. Lesaout, C. Delacourt, C. Quantin, and H. Clenet. Magma rheology
from 3D geometry of martian lava �ows. In EGU General Assembly Conference Abstracts, volume 14,
page 8723, April 2012.

[6] J. A. Anderson, S. C. Sides, D. L. Soltesz, T. L. Sucharski, and K. J. Becker. Modernization of the
Integrated Software for Imagers and Spectrometers. In S. Mackwell and E. Stansbery, editors, Lunar
and Planetary Science XXXV, number #2039. Lunar and Planetary Institute, Houston (CD-ROM),
March 2004.

[7] J.A. Anderson. ISIS Camera Model Design. In Proc of the Lunar and Planetary Science Conference
(LPSC) XXXIX, page 2159, March 2008.

[8] A. M. Annex, K. W. Lewis, and C. S. Edwards. Stratigraphic Mapping of Intra-Crater Layered
Deposits in Arabia Terra from High-Resolution Imaging and Stereo Topography. In AGU Fall Meeting
Abstracts, volume 2017, pages P24C�04, December 2017.

[9] A. M. Annex, A. H. D. Koeppel, C. Pan, C. E. Edwards, and K. W. Lewis. Scarp Associated with
Martian Layered Deposits in Arabia Terra. In Lunar and Planetary Science Conference, page 1973,
Mar 2019.

[10] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying framework. International
Journal of Computer Vision, 56(3):221�255, Feb 2004. ISSN 1573-1405. URL https://doi.org/10.

1023/B:VISI.0000011205.11775.fd.

[11] R. S. Bauer, M. K. Barker, E. Mazarico, and G. A. Neumann. Calibration of Mercury Laser Altimeter
Data Using Digital Elevation Models Derived from Stereo Image Pairs. In AGU Fall Meeting Abstracts,
volume 2015, pages P41C�2079, December 2015.

[12] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up robust features.
In Computer Vision and Image Understanding (CVIU), volume 110, pages 346�359, 2008. URL
http://www.vision.ee.ethz.ch/~surf/.

241

https://doi.org/10.1023/B:VISI.0000011205.11775.fd
https://doi.org/10.1023/B:VISI.0000011205.11775.fd
http://www.vision.ee.ethz.ch/~surf/


Chapter E

[13] J. M. C. Belart, E. Berthier, E. Magnússon, L. S. Anderson, F. Pálsson, T. Thorsteinsson, I. M.
Howat, G. Aðalgeirsdóttir, T. Jóhannesson, and A. H. Jarosch. Winter mass balance of drangajökull
ice cap (nw iceland) derived from satellite sub-meter stereo images. The Cryosphere, 11(3):1501�1517,
2017. URL https://www.the-cryosphere.net/11/1501/2017/.

[14] R. A. Beyer, B. Archinal, Y. Chen, K. Edmundson, D. Harbour, E. Howington-Kraus, R. Li,
A. McEwen, S. Mattson, Z. Moratto, J. Oberst, M. Rosiek, F. Scholten, T. Tran, M. Robinson,
and LROC Team. LROC Stereo Data�Results of Initial Analysis. In S. Mackwell and E. Stansbery,
editors, Lunar and Planetary Science Conference 41, number #2678. Lunar and Planetary Institute,
Houston, March 2010.

[15] R. A. Beyer, B. Archinal, Y. Cheng, K. Edmundson, E. Howington-Kraus, R. L. Kirk, R. Li, A. S.
McEwen, S. Mattson, X. Meng, Z. Moratto, J. Oberst, M. Rosiek, F. Scholten, T. Tran, O. Thomas,
W. Wang, and the LROC Team. LROC DTM comparison e�ort. In S. Mackwell and E. Stansbery,
editors, Lunar and Planetary Science Conference 42, number #2715. Lunar and Planetary Institute,
Houston, 2011.

[16] R. A. Beyer, O. Alexandrov, and Z. M. Moratto. Aligning Terrain Model and Laser Altimeter Point
Clouds with the Ames Stereo Pipeline. In Lunar and Planetary Science Conference, page 2902, March
2014.

[17] Ross A. Beyer, Oleg Alexandrov, and Scott McMichael. The Ames Stereo Pipeline: NASA's open
source software for deriving and processing terrain data. Earth and Space Science.

[18] Valentin Tertius Bickel, CI Honniball, SN Martinez, A Rogaski, HM Sargeant, SK Bell, EC Czaplinski,
BE Farrant, EM Harrington, GD Tolometti, et al. Analysis of lunar boulder tracks: Implications for
tra�cability of pyroclastic deposits. Journal of Geophysical Research: Planets, 2019.

[19] Tye Brady. ALHAT Requirements. presentation at the Lunar Coordinate Systems Review Data
Product Recommendation Meeting, NASA Ames Research Center, October 11.

[20] H. M. Brown, A. A. Awumah, M. R. Henriksen, M. R. Manheim, E. Cisneros, R. V. Wagner, and
M. S. Robinson. Ames Stereo Pipeline and LROC ASU Digital Terrain Model (DTM) Comparison.
In Third Planetary Data Workshop and The Planetary Geologic Mappers Annual Meeting, volume
1986, page 7096, June 2017.

[21] Michael Broxton, Ara V. Ne�an, Zachary Moratto, Taemin Kim, Michael Lundy, and Aleksandr V.
Segal. 3D Lunar Terrain Reconstruction from Apollo Images . In to appear in the Proceedings of the
5th International Symposium on Visual Computing, 2009.

[22] USGS Astrogeology Science Center. USGS ISIS Documentation. Isis 3 Application Documen-
tation http://isis.astrogeology.usgs.gov/Application/index.html. URL http://isis.astrogeology.

usgs.gov/Application/index.html.

[23] Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam. Algo-
rithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Trans.
Math. Softw., 35(3):22:1�22:14, October 2008. ISSN 0098-3500. URL http://doi.acm.org/10.1145/

1391989.1391995.

[24] Li Cheng and T. Caelli. Bayesian stereo matching. Computer Vision and Pattern Recognition Work-
shop, 2004. CVPRW '04. Conference on, pages 192�192, June 2004.

[25] G. Chin, A. Bartels, S. Brylow, M. Foote, J. Garvin, J. Kaspar, J. Keller, I. Mitrofanov, K. Raney,
M. Robinson, D. Smith, H. Spence, P. Spudis, S. A. Stern, and M. Zuber. Lunar Reconnaissance
Orbiter Overview: The Instrument Suite and Mission. In S. Mackwell and E. Stansbery, editors,
Lunar and Planetary Science XXXVII, page #1949, March 2006.

242

https://www.the-cryosphere.net/11/1501/2017/
http://isis.astrogeology.usgs.gov/Application/index.html
http://isis.astrogeology.usgs.gov/Application/index.html
http://doi.acm.org/10.1145/1391989.1391995
http://doi.acm.org/10.1145/1391989.1391995


BIBLIOGRAPHY

[26] G. Chin, S. Brylow, M. Foote, J. Garvin, J. Kasper, J. Keller, M. Litvak, I. Mitrofanov, D. Paige,
K. Raney, M. Robinson, A. Sanin, D. Smith, H. Spence, P. Spudis, S. A. Stern, and M. Zuber. Lunar
Reconnaissance Orbiter Overview: The Instrument Suite and Mission. Space Science Reviews, 129:
391�419, April 2007.

[27] The Open Scene Graph Community. The open scene graph website. 2009. URL http://www.

openscenegraph.org/projects/osg.

[28] S. Debei, A. Aboudan, G. Colombatti, and M. Pertile. Lutetia surface reconstruction and uncertainty
analysis. Planetary and Space Science, 71:64�72, October 2012.

[29] Stefano Debei, Alessio Aboudan, Giacomo Colombatti, and Marco Pertile. Lutetia surface reconstruc-
tion and uncertainty analysis. Planetary and Space Science, 71(1):64 � 72, 2012. ISSN 0032-0633.
URL http://www.sciencedirect.com/science/article/pii/S0032063312002073.

[30] NASA ARC Intelligent Systems Division. NASA Vision Workbench. NASA Ames Research Cen-
ter, Mo�ett Field, CA. http://ti.arc.nasa.gov/visionworkbench/. URL http://ti.arc.nasa.gov/

visionworkbench/.

[31] L. Edwards and M. Broxton. Automated 3D Surface Reconstruction from Orbital Imagery. In
Proceedings of AIAA Space 2006, September 2006.

[32] L. Edwards, J. Bowman, C. Kunz, D. Lees, and M. Sims. Photo-realistic Terrain Modeling and
Visualization for Mars Exploration Rover Science Operations. In Proceedings of IEEE SMC 2005,
October 2005.

[33] Gabriele Facciolo, Carlo De Franchis, and Enric Meinhardt. Mgm: A signi�cantly more global
matching for stereovision. In Proceedings of the British Machine Vision Conference (BMVC), BMVA
Press, pages 90�1, 2015.

[34] Lida Fanara, Klaus Gwinner, Ernst Hauber, and Juergen Oberst. Frequency of block displacements
at the north pole of Mars based on HiRISE images. In AAS/Division for Planetary Sciences Meeting
Abstracts #48, AAS/Division for Planetary Sciences Meeting Abstracts, page 513.11, October 2016.

[35] Caleb I. Fassett. Ames stereo pipeline-derived digital terrain models of Mercury from MESSENGER
stereo imaging. Planetary and Space Science, 134:19�28, December 2016.

[36] R. L. Fergason, R. L. Kirk, G. Cushing, D. M. Galuszka, M. P. Golombek, T. M. Hare, E. Howington-
Kraus, D. M. Kipp, and B. L. Redding. Analysis of Local Slopes at the InSight Landing Site on Mars.
Space Science Reviews, 211:109�133, October 2017.

[37] J Fernando, F Schmidt, X Ceamanos, P Pinet, S Douté, and Y Daydou. Surface re�ectance of mars
observed by crism/mro: 2. estimation of surface photometric properties in gusev crater and meridiani
planum. Journal of Geophysical Research: Planets, 118(3):534�559, 2013.

[38] Martin A. Fischler and Robert C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting
with Applications to Image Analysis and Automated Cartography. Graphics and Image Processing,
24(6), June 1981.

[39] The CGIAR Consortium for Spatial Information. CGIAR-CSI SRTM 90m DEM Digital Elevation
Database. URL http://srtm.csi.cgiar.org.

[40] L. Gaddis, J. Anderson, K. Becker, T. Becker, D. Cook, K. Edwards, E. Eliason, T. Hare, H. Kie�er,
E. M. Lee, J. Mathews, L. Soderblom, T. Sucharski, J. Torson, A. McEwen, and M. Robinson. An
Overview of the Integrated Software for Imaging Spectrometers (ISIS). In Lunar and Planetary
Science Conference, volume 28, page 387, March 1997.

243

http://www.openscenegraph.org/projects/osg
http://www.openscenegraph.org/projects/osg
http://www.sciencedirect.com/science/article/pii/S0032063312002073
http://ti.arc.nasa.gov/visionworkbench/
http://ti.arc.nasa.gov/visionworkbench/
http://srtm.csi.cgiar.org


Chapter E

[41] GeoEye. Sample Imagery Request Form. GeoEye sample imagery request form
http://geoeye.com/CorpSite/solutions/learn-more/sample-imagery.aspx. URL http://geoeye.com/

CorpSite/solutions/learn-more/sample-imagery.aspx.

[42] L Girod, C Nuth, and A Kääb. Improvement of dem generation from aster images using satellite
jitter estimation and open source implementation. The International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences, 40(1):249, 2015.

[43] Digital Globe. Radiometric Use of WorldView 2 Imagery. Description of the WV02 camera, .
URL http://www.digitalglobe.com/sites/default/files/Radiometric_Use_of_WorldView-2_

Imagery%20%281%29.pdf.

[44] Digital Globe. Satellite Imagery and Geospatial Information Products. Digital Globe sample imagery
https://www.digitalglobe.com/samples, . URL https://www.digitalglobe.com/samples.

[45] M. Golombek, J. Grant, D. Kipp, A. Vasavada, R. Kirk, R. Fergason, P. Bellutta, F. Calef, K. Larsen,
Y. Katayama, A. Huertas, R. Beyer, A. Chen, T. Parker, B. Pollard, S. Lee, Y. Sun, R. Hoover,
H. Sladek, J. Grotzinger, R. Welch, E. Noe Dobrea, J. Michalski, and M. Watkins. Selection of the
mars science laboratory landing site. Space Science Reviews, 170(1-4):641�737, 2012. ISSN 0038-6308.
URL http://dx.doi.org/10.1007/s11214-012-9916-y.

[46] T. A. Goudge, C. I. Fassett, and G. R. Osinski. How Do Crater Lakes on Mars Develop Inlet Valleys?
In Lunar and Planetary Science Conference, page 1223, Mar 2019.

[47] Manuel Guizar-Sicairos, Samuel T Thurman, and James R Fienup. E�cient subpixel image registra-
tion algorithms. Optics letters, 33(2):156�158, 2008.

[48] Rajiv Gupta and Richard I. Hartley. Linear Pushbroom Cameras. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(9), September 1997.

[49] Ebner H., Spiegel M., Albert B., Bernd G., and Neukum G. et. al. Improving The Exterior Orientation
of Mars Express Hrsc Imagery. In XXth ISPRS Congress, Commission IV, 2004.

[50] N. P. Hammond, C. B. Phillips, G. Robuchon, R. A. Beyer, F. Nimmo, and J. Roberts. Crater
relaxation and stereo imaging of rhea. In S. Mackwell and E. Stansbery, editors, Lunar and Planetary
Science Conference 42, number #2633. Lunar and Planetary Institute, Houston, 2011.

[51] N.P. Hammond, C.B. Phillips, F. Nimmo, and S.A. Kattenhorn. Flexure on dione: Investigating
subsurface structure and thermal history. Icarus, 223(1):418 � 422, 2013. ISSN 0019-1035. URL
http://www.sciencedirect.com/science/article/pii/S0019103513000043.

[52] Bruce Hapke. Bidirectional re�ectance spectroscopy: 6. e�ects of porosity. Icarus, 195(2):918�926,
2008.

[53] Bruce W Hapke, Robert M Nelson, and William D Smythe. The opposition e�ect of the moon: The
contribution of coherent backscatter. Science, 260(5107):509�511, 1993.

[54] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University
Press, ISBN: 0521540518, second edition, 2004.

[55] C. Heipke and J. Oberst et. al. The HRSC DTM Test. In Symposium of ISPRS Commission IV -
Geo Spatial Databases for Sustainable Development, 2006.

[56] R. Hemmi and H. Miyamoto. HiRISE Digital Elevation Model of Phobos: Implications for Morpho-
logical Analysis of Grooves. In Lunar and Planetary Science Conference, page 1759, Mar 2019.

244

http://geoeye.com/CorpSite/solutions/learn-more/sample-imagery.aspx
http://geoeye.com/CorpSite/solutions/learn-more/sample-imagery.aspx
http://www.digitalglobe.com/sites/default/files/Radiometric_Use_of_WorldView-2_Imagery%20%281%29.pdf
http://www.digitalglobe.com/sites/default/files/Radiometric_Use_of_WorldView-2_Imagery%20%281%29.pdf
https://www.digitalglobe.com/samples
http://dx.doi.org/10.1007/s11214-012-9916-y
http://www.sciencedirect.com/science/article/pii/S0019103513000043


BIBLIOGRAPHY

[57] R. Hemmi and H. Miyamoto. High-resolution Topographic Analysis of Pitted Mounds in Southern
Acidalia Planitia, Mars: Updates on Morphometric Parameters of Candidate Mud Volcanoes. In
Lunar and Planetary Science Conference, page 2479, Mar 2019.

[58] Heiko Hirschmüller. Stereo processing by semiglobal matching and mutual information. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 30:328�341, 2008.

[59] Heiko Hirschmüller, Helmut Mayer, G Neukum, et al. Stereo processing of hrsc mars express images
by semi-global matching. Int. Arch. Photogramm. Remote Sensing Spatial Inf. Sci, 36:305�310, 2006.

[60] Han Hua, Chongtai Chenb, Bo Wua, Xiaoxia Yangc, Qing Zhub, and Yulin Dingb. Texture-aware
dense image matching using ternary census transform. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, pages 59�66, 2016.

[61] John Hu�man, Andrew Forsberg, Andrew Loomis, James Head, James Dickson, and Caleb Fassett.
Integrating advanced visualization technology into the planetary geoscience work�ow. Planetary and
Space Science, 59(11�12):1273 � 1279, 2011. ISSN 0032-0633. URL http://www.sciencedirect.

com/science/article/pii/S0032063310002175.

[62] A. C. G. Hughes, E. Hauber, and A. P. Rossi. Geomorphology of Glacial and Periglacial Landforms
Within a Small Crater in Terra Cimmeria, Mars: Stratigraphy and Inferred Chronology of Processes.
In Lunar and Planetary Science Conference 45, volume 45 of Lunar and Planetary Institute Science
Conference Abstracts, March 2014.

[63] A. B. Ivanov and J. J. Lorre. Analysis of Mars Orbiter Camera Stereo Pairs. In Lunar and Planetary
Institute Conference Abstracts, pages 1845�+, March 2002.

[64] Anton Ivanov, Jan-Peter Muller, Yu Tao, Jung-Rack Kim, Klaus Gwinner, Stephan Van Gasselt,
Jeremy Morley, Robert Houghton, Steven Bamford, Panagiotis Sidiropoulos, Lida Fanara, Marita
Waenlish, Sebastian Walter, Ralf Steinkert, Bjorn Schreiner, Federico Cantini, Jessica Wardlaw,
James Sprinks, Michele Giordano, and Stuart Marsh. EU-FP7-iMARS: analysis of Mars multi-
resolution images using auto- coregistration, data mining and crowd source techniques. In 41st
COSPAR Scienti�c Assembly, volume 41, pages B0.2�22�16, July 2016.

[65] Cheng Jiang, Sylvain Douté, Bin Luob, and Liangpei Zhang. Fusion of photogrammetric and pho-
toclinometric information for high-resolution dems from mars in-orbit imagery. ISPRS Journal of
Photogrammetry and Remote Sensing, 130:Pages 418�430, 2017. URL http://www.sciencedirect.

com/science/article/pii/S0924271616306554.

[66] Je�rey R Johnson, William M Grundy, Mark T Lemmon, James F Bell, Miles J Johnson, Robert G
Deen, Raymond E Arvidson, William H Farrand, Edward A Guinness, Alexander G Hayes, et al.
Spectrophotometric properties of materials observed by pancam on the mars exploration rovers: 1.
spirit. Journal of Geophysical Research: Planets, 111(E2), 2006.

[67] M. D. Johnston, J. E. Graf, R. W. Zurek, H. J. Eisen, and B. Jai. The Mars Reconnaissance Orbiter
Mission. In 2003 IEEE Aerospace Conference, pages 447�464, 2003.

[68] J.R. Kim and J.-P. Muller. Multi-resolution topographic data extraction from martian stereo imagery.
Planetary and Space Science, 57(14�15):2095 � 2112, 2009. ISSN 0032-0633. URL http://www.

sciencedirect.com/science/article/pii/S0032063309002888.

[69] R. L. Kirk, E. Howington-Kraus, D. Galuszka, B. Redding, T. M. Hare, C. Heipke, J. Oberst,
G. Neukum, and HRSC Co-Investigator Team. Mapping Mars with HRSC, ISIS, and SOCET SET.
In S. Mackwell and E. Stansbery, editors, Lunar and Planetary Science XXXVII, page #2050, March
2006.

245

http://www.sciencedirect.com/science/article/pii/S0032063310002175
http://www.sciencedirect.com/science/article/pii/S0032063310002175
http://www.sciencedirect.com/science/article/pii/S0924271616306554
http://www.sciencedirect.com/science/article/pii/S0924271616306554
http://www.sciencedirect.com/science/article/pii/S0032063309002888
http://www.sciencedirect.com/science/article/pii/S0032063309002888


Chapter E

[70] R.L. Kirk, Laurence A. Soderblom, Elipitha Howington-Kraus, and Brent Archinal. USGS High-
Resolution Topomapping of Mars with Mars Orbiter Camera Narrow-Angle Images. IAPRS: GeoSpa-
tial Theory, Processing and Applications, 34, 2002.

[71] Kurt Konolige. Sparse sparse bundle adjustment. In British Machine Vision Conference, Aberyst-
wyth, Wales, 08/2010 2010.

[72] C. Kunz and H. Singh. Stereo self-calibration for sea�oor mapping using auvs. In Autonomous
Underwater Vehicles (AUV), 2010 IEEE/OES, pages 1�7, 2010.

[73] Pascal Lacroix. Landslides triggered by the gorkha earthquake in the langtang valley, volumes and
initiation processes. Earth, Planets and Space, 68(1):1�10, 2016.

[74] J. R. Laura, D. Miller, and M. V. Paul. AMES Stereo Pipeline Derived DEM Accuracy Experiment
Using LROC-NAC Stereopairs and Weighted Spatial Dependence Simulation for Lunar Site Selection.
In Lunar and Planetary Science Conference, page 2371, March 2012.

[75] S. J. Lawrence, M. S. Robinson, M. Broxton, J. D. Stopar, W. Close, J. Grunsfeld, R. Ingram,
L. Je�erson, S. Locke, R. Mitchell, T. Scarsella, M. White, M. A. Hager, T. R. Watters ad E. Bowman-
Cisneros, J. Danton, and J. Garvin. The Apollo Digital Image Archive: New Research and Data
Products. In Proc of the NLSI Lunar Science Conference, page 2066, 2008.

[76] A. Lefort, D. M. Burr, R. A. Beyer, and A. D. Howard. Topographic post-formation modi�cations of
inverted �uvial features in the western Medusa Fossae formation, Mars. In S. Mackwell and E. Stans-
bery, editors, Lunar and Planetary Science Conference 42, number #2418. Lunar and Planetary
Institute, Houston, 2011.

[77] A. Lefort, D. M. Burr, R. A. Beyer, and A. D. Howard. Inverted �uvial features in the Aeolis-Zephyria
Plana, western Medusae Fossae Formation, Mars: Evidence for post-formation modi�cation. Journal
of Geophysical Research (Planets), 117:E03007, March 2012.

[78] A. Lefort, D. M. Burr, R. A. Beyer, and A. D. Howard. Sinuous Ridges as Tools to Investigate
Post-Flow Modi�cation in the Aeolis-Zephyria Plana, Western Medusae Fossae Formation, Mars. In
Lunar and Planetary Science Conference 43, number #1953, March 2012.

[79] Rongxing Li, Juwon Hwangbo, Yunhang Chen, and Kaichang Di. Rigorous photogrammetric process-
ing of hirise stereo imagery for mars topographic mapping. Geoscience and Remote Sensing, IEEE
Transactions on, 49(7):2558�2572, 2011. ISSN 0196-2892.

[80] Volker Lohse, Christian Heipke, and Randolph L Kirk. Derivation of planetary topography using
multi-image shape-from-shading. Planetary and space science, 54(7):661�674, 2006.

[81] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of
Computer Vision, 2004.

[82] A. Lucas, A. Mangeney, and J. P. Ampuero. Frictional velocity-weakening in landslides on Earth and
on other planetary bodies. Nature Communications, 5:3417, March 2014.

[83] A. Lucchetti, R. Thomas, G. Cremonese, M. Massironi, D. A. Rothery, S. J. Conway, and M. Anand.
Analysis and Numerical Modeling of a Pit Crater on Mercury. In Lunar and Planetary Science
Conference 45, volume 45 of Lunar and Planetary Institute Science Conference Abstracts, March
2014.

[84] Daniel Machacek. Images from the long-awaited Dawn Vesta data set. http://www.planetary.org/
blogs/guest-blogs/20121129-machacek-dawn-vesta.html, 2012.

246

http://www.planetary.org/blogs/guest-blogs/20121129-machacek-dawn-vesta.html
http://www.planetary.org/blogs/guest-blogs/20121129-machacek-dawn-vesta.html


BIBLIOGRAPHY

[85] M. C. Malin and K. S. Edgett. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise
through primary mission. Journal of Geophysical Research, 106(E10):23429�23570, October 2001.

[86] M. C. Malin, G. E. Danielson, A. P. Ingersoll, H. Masursky, J. Veverka, M. A. Ravine, and T. A.
Soulanille. Mars Observer Camera. Journal of Geophysical Research, 97(E5):7699�7718, May 1992.

[87] D. P. Mayer. An Improved Work�ow for Producing Digital Terrain Models of Mars from CTX Stereo
Data Using the NASA Ames Stereo Pipeline. In Lunar and Planetary Science Conference, page 1604,
March 2018.

[88] D. P. Mayer. Filling the Gap: Building a CTX-Based Digital Terrain Model Mosaic of the South Pole
of Mars. In Lunar and Planetary Science Conference, page 1128, Mar 2019.

[89] D. P. Mayer and E. S. Kite. An Integrated Work�ow for Producing Digital Terrain Models of Mars
from CTX and HiRISE Stereo Data Using the NASA Ames Stereo Pipeline. In Lunar and Planetary
Science Conference, page 1241, March 2016.

[90] Alfred S McEwen. Photometric functions for photoclinometry and other applications. Icarus, 92(2):
298�311, 1991.

[91] S. McMichael, Z. M. Moratto, and R. A. Beyer. LRO-NAC Mass DTM Pipeline. In Lunar and
Planetary Science Conference, page 2491, March 2015.

[92] S. McMichael, O. Alexandrov, and R. Beyer. Enhanced 3D Surface Generation in the Ames Stereo
Pipeline. In Third Planetary Data Workshop and The Planetary Geologic Mappers Annual Meeting,
volume 1986, page 7090, June 2017.

[93] Andrew K Melkonian, Michael J Willis, Matthew E Pritchard, and Adam J Stewart. Recent changes
in glacier velocities and thinning at novaya zemlya. Remote Sensing of Environment, 174:244�257,
2016.

[94] Christian Menard. Robust Stereo and Adaptive Matching in Correlation Scale-Space. PhD thesis,
Institute of Automation, Vienna Institute of Technology (PRIP-TR-45), January 1997.

[95] Paul M. Montesano, Christopher Neigh, Guoqing Sun, Laura Duncanson, Jamon Van Den Hoek,
and K. Jon Ranson. The use of sun elevation angle for stereogrammetric boreal forest height in
open canopies. Remote Sensing of Environment, 196:76 � 88, 2017. ISSN 0034-4257. URL http:

//www.sciencedirect.com/science/article/pii/S0034425717301827.

[96] S. H. Moon and H. L. Choi. Alignment and Ortho-Recti�cation of Lunar Surface Image Using the
NASA Ames Stereo Pipeline. In Lunar and Planetary Science Conference, page 1384, March 2018.

[97] Zach Moore, Dan Wright, Chris Lewis, and Dale Schinstock. Comparison of bundle adjustment
formulations. In ASPRS Annual Conf., Baltimore, Maryland, 2009.

[98] Z. Moratto, A. Ne�an, T. Kim, M. Broxton, R. A. Beyer, and T. Fong. Stereo reconstruction from
apollo 15 and 16 metric camera. In S. Mackwell and E. Stansbery, editors, Lunar and Planetary
Science Conference 42, number #2267. Lunar and Planetary Institute, Houston, 2011.

[99] Z. M. Moratto, S. T. McMichael, R. A. Beyer, O. Alexandrov, and T. Fong. Automated and Accurate:
Making DTMs from LRO-NAC Using the Ames Stereo Pipeline. In Lunar and Planetary Science
Conference, page 2892, March 2014.

[100] Zachary Moratto. Creating control networks and bundle adjusting with isis3. http://lunokhod.

org/?p=468, 2012.

247

http://www.sciencedirect.com/science/article/pii/S0034425717301827
http://www.sciencedirect.com/science/article/pii/S0034425717301827
http://lunokhod.org/?p=468
http://lunokhod.org/?p=468


Chapter E

[101] Zachary Moratto. Making well registered dems with isis and ames stereo pipeline. http://lunokhod.
org/?p=559, 2012.

[102] A. M. Morgan, R. A. Beyer, A. D. Howard, and J. M. Moore. The Alluvial Fans of Saheki Crater.
In Lunar and Planetary Science Conference 43, number #2815, March 2012.

[103] P. J. Mouginis-Mark and H. Garbeil. CTX Digital Elevation Models Facilitate Geomorphic Analysis
of Mars. In Lunar and Planetary Science Conference, page 1069, Mar 2019.

[104] P. J. Mouginis-Mark and V. L. Sharpton. Topographic Analysis of the Asymmetric Ejecta of Zunil
Crater, Mars. In AGU Fall Meeting Abstracts, pages P11E�01, December 2016.

[105] P. J. Mouginis-Mark, J. M. Boyce, and H. Garbeil. Digital Elevation Models Aid the Analysis of
Double Layered Ejecta (DLE) Impact Craters on Mars. In AGU Fall Meeting Abstracts, volume
2014, pages P34C�05, December 2014.

[106] Jan-Peter Muller, Panagiotis Sidiropoulos, Yu Tao, Kiky Putri, Jacqueline Campbell, Si-Ting Xiong,
Klaus Gwinner, Konrad Willner, Lida Fanara, Marita Waehlisch, Sebastian Walter, Bjoern Schreiner,
Ralf Steikert, Anton Ivanov, Federico Cantini, Jessica Wardlaw, James Sprinks, Robert Houghton, and
Jung-Rack Kim. EU-FP7-iMARS: analysis of Mars multi-resolution images using auto- coregistration,
data mining and crowd source techniques: A Final Report on the very variable surface of Mars. In
EGU General Assembly Conference Abstracts, volume 19, page 18917, April 2017.

[107] Jan-Peter Muller, Yu Tao, Panagiotis Sidiropoulos, Al�ah Putri, Jacqueline Campbell, and Sebastian
Walter. Assessment of ≈5,000 Mars-wide CTX DTMs created using the EU-FP7 iMars CASP-GO
system. In EGU General Assembly Conference Abstracts, volume 20, page 15971, April 2018.

[108] David Nebouy, Claire Capanna, Laurent Jorda, Robert W. Gaskell, Stubbe Faurschou Hviid, Frank
Scholten, Frank Preusker, and OSIRIS Team. Co-registration and comparison of high-resolution
shape models of comet 67P/C-G. In AAS/Division for Planetary Sciences Meeting Abstracts #48,
AAS/Division for Planetary Sciences Meeting Abstracts, page 116.08, October 2016.

[109] Ara V. Ne�an, Kyle Husmann, Michael Broxton, Mattew D. Hancher, and Michael Lundy. A Bayesian
Formulation for Subpixel Re�nement in Stereo Orbital Imagery. In to appear in the Proceedings of
the 2009 IEEE International Conference on Image Processing, 2009.

[110] Diego Nehab, Szymon Rusinkiewicz, and James Davis. Improved sub-pixel stereo correspondences
through symmetric re�nement. Computer Vision, IEEE International Conference on, 1:557�563,
2005. ISSN 1550-5499.

[111] G. Neukum and R. Jaumann. HRSC: the High Resolution Stereo Camera of Mars Express. In Andrew
Wilson and Agustin Chicarro, editors, Mars Express: the scienti�c payload, number ESA SP-1240,
pages 17�35. ESA Publications Division, Noordwijk, Netherlands, August 2004.

[112] G. A. Neumann, F. G. Lemoine, E. Mazarico, J. F. McGarry, D. D. Rowlands, D. E. Smith, X. Sun,
M. Torrence, T. Zagwodski, R. Zellar, and M. T. Zuber. Status of Lunar Reconnaissance Orbiter Laser
Ranging and Laser Altimeter Experiments. AGU Fall Meeting Abstracts, pages B1419+, December
2008.

[113] et al. Nguyen, L. Virtual reality interfaces for visualization and control of remote vehicles. Autonomous
Robots, 11(1), 2001.

[114] H.K. Nishihara. PRISM: A Practical real-time imaging stereo matcher. Optical Engineering, 23(5):
536�545, 1984.

248

http://lunokhod.org/?p=559
http://lunokhod.org/?p=559


BIBLIOGRAPHY

[115] H.K. Nishihara. Practical real-time imaging stereo matcher. Optical Engineering, 23(5):536�545,
1984.

[116] T. Öhman and P. J. McGovern. Strain Calculations for Circumferential Graben on Alba Mons, Mars.
LPI Contributions, 1719:2966, March 2013.

[117] Teemu Öhman and David A. Kring. Photogeologic analysis of impact melt-rich lithologies in kepler
crater that could be sampled by future missions. Journal of Geophysical Research: Planets, 117(E12):
n/a�n/a, 2012. ISSN 2156-2202. URL http://dx.doi.org/10.1029/2011JE003918.

[118] Samantha E. Peel and Caleb I. Fassett. Valleys in pit craters on mars: Characteristics, distribution,
and formation mechanisms. Icarus, (0):�, 2013. ISSN 0019-1035. URL http://www.sciencedirect.

com/science/article/pii/S0019103513001474.

[119] C. B. Phillips, R. A. Beyer, F. Nimmo, J. H. Roberts, and G. Robuchon. Crater Relaxation and
Stereo Imaging of the Icy Satellites of Jupiter and Saturn. AGU Fall Meeting Abstracts, (#P21B-
1596), December 2010.

[120] C. B. Phillips, N. P. Hammond, F. Nimmo, G. robuchon, R. A. Beyer, and J. H. Roberts. Crater
Relaxation and Stereo Imaging of Icy Satellites. AGU Fall Meeting Abstracts, (#P41F-07), December
2011.

[121] C. B. Phillips, N. P. Hammond, G. Robuchon, F. Nimmo, R. A. Beyer, and J. Roberts. Stereo
Imaging, Crater Relaxation, and Thermal Histories of Rhea and Dione. In Lunar and Planetary
Science Conference 43, number #2571, March 2012.

[122] C. B. Phillips, E. El Henson, and F. Nimmo. Stereo Topography of Surface Features on Europa and
Comparisons with Formation Models. In AGU Fall Meeting Abstracts, volume 2013, pages P53A�1846,
December 2013.

[123] C. B. Phillips, N. P. Hammond, J. H. Roberts, F. Nimmo, R. A. Beyer, and S. Kattenhorn. Stereo
Topography and Subsurface Thermal Pro�les on Icy Satellites of Saturn. In Lunar and Planetary
Science Conference 44, number #2766, March 2013.

[124] François Pomerleau, Francis Colas, Roland Siegwart, and Stéphane Magnenat. Comparing ICP Vari-
ants on Real-World Data Sets. Autonomous Robots, 34(3):133�148, February 2013.

[125] Allen Pope, TA Scambos, M Moussavi, M Tedesco, M Willis, D Shean, and S Grigsby. Estimating
supraglacial lake depth in west greenland using landsat 8 and comparison with other multispectral
methods. The Cryosphere, 10:15, 2016.

[126] Al�ah Rizky Diana Putri, Panagiotis Sidiropoulos, Yu Tao, and Jan-Peter Muller. Automatic
Multiple-Expert Quality Assessment for Batch Processed Martian DTMs. In EGU General Assembly
Conference Abstracts, volume 20, page 1120, April 2018.

[127] Cristina Re, Gabriele Cremonese, Elisa Dall'Asta, Gianfranco Forlani, Giampiero Naletto, and Ric-
cardo Roncella. Performance evaluation of dtm area-based matching reconstruction of moon and mars.
Proc. SPIE 8537, Image and Signal Processing for Remote Sensing XVIII, pages 85370V�85370V�12,
2012. URL http://dx.doi.org/10.1117/12.974524.

[128] C. Rezza, C. B. Phillips, and M. L. Cable. `Dem DEMs: Comparing Methods of Digital Elevation
Model Creation. In AGU Fall Meeting Abstracts, volume 2017, pages P43D�2914, December 2017.

[129] M. S. Robinson, E. M. Eliason, H. Hiesinger, B. L. Jolli�, A. S. McEwen, M. C. Malin, M. A. Ravine,
D. Roberts, P. C. Thomas, and E. P. Turtle. LROC � Lunar Reconnaissance Orbiter Camera. In
S. Mackwell and E. Stansbery, editors, Lunar and Planetary Science XXXVI, number #1576. Lunar
and Planetary Institute, Houston (CD-ROM), March 2005.

249

http://dx.doi.org/10.1029/2011JE003918
http://www.sciencedirect.com/science/article/pii/S0019103513001474
http://www.sciencedirect.com/science/article/pii/S0019103513001474
http://dx.doi.org/10.1117/12.974524


Chapter E

[130] M.S. Robinson, E.M. Eliason, H. Hiesinger, B.L. Jolli�, A.S. McEwen, M.C. Malin, M.A. Ravine,
D. Roberts, P.C. Thomas, and E.P. Turtle. LROC - Lunar Reconaissance Orbiter Camera. In Proc
of the Lunar and Planetary Science Conference (LPSC) XXXVI, page 1576, March 2005.

[131] Mathias Rothermel, Konrad Wenzel, Dieter Fritsch, and Norbert Haala. Sure: Photogrammetric
surface reconstruction from imagery. In Proceedings LC3D Workshop, Berlin, volume 8, 2012.

[132] Toni Schenk, Beata Csatho, and Sung Woong Shin. Rigorous panoramic camera model for disp
imagery. In Proceedings of the ISPRS Workshop: High Resolution Mapping from Space, 2003.

[133] Jakob Schwendner and Javier Hidalgo. Terrain aided navgiation for plaentary exploration missions.
In International Symposium on Arti�cial Intelligence, Robotics and Automation in Space (i-SAIRAS),
September 2012.

[134] S. Shahrzad, K. M. Kinch, T. A. Goudge, C. I. Fassett, D. H. Needham, C. Quantin-Nataf, and C. P.
Knudsen. Crater Statistics on the Dark-Toned, Ma�c Floor Unit in Jezero Crater, Mars. Geophysical
Research Letters, 46:2408�2416, March 2019.

[135] David E Shean, Oleg Alexandrov, Zachary M Moratto, Benjamin E Smith, Ian R Joughin, Claire
Porter, and Paul Morin. An automated, open-source pipeline for mass production of digital eleva-
tion models (dems) from very-high-resolution commercial stereo satellite imagery. ISPRS Journal of
Photogrammetry and Remote Sensing, 116:101�117, 2016.

[136] Greg Slabaugh, Ron Schafer, and Mark Livingston. Optimal ray intersection for computing 3d points
from n-view correspondences. http://www.soi.city.ac.uk/~sbbh653/publications/opray.pdf,
2001.

[137] D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill,
R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, T. C. Duxbury, M. P. Golombek, F. G.
Lemoine, G. A. Neumann, and et al. Mars Orbiter Laser Altimeter: Experiment summary after
the �rst year of global mapping of Mars. Journal of Geophysical Research, 106(E10):23689�23722,
October 2001.

[138] DE Smith, MT Zuber, GA Neumann, E Mazarico, J Head, MH Torrence, et al. Results from the
lunar orbiter laser altimeter (lola): global, high resolution topographic mapping of the moon. In
Lunar and Planetary Science Conference, volume 42, page 2350, 2011.

[139] Hong-Gyoo Sohn, Gi-Hong Kim, and Jae-Hong Yom. Mathematical modelling of historical reconnais-
sance corona kh-4b imagery. The Photogrammetric Record, 19(105):51�66, 2004.

[140] Andrew Stein, Andres Huertas, and Larry Matthies. Attenuating stereo pixel-locking via a�ne window
adaptation. In IEEE International Conference on Robotics and Automation, pages 914 � 921, May
2006.

[141] Laura A Stevens, Mark D Behn, Je�rey J McGuire, Sarah B Das, Ian Joughin, Thomas Herring,
David E Shean, and Matt A King. Greenland supraglacial lake drainages triggered by hydrologically
induced basal slip. Nature, 522(7554):73�76, 2015.

[142] C. et al. Stoker. Analyzing Path�nder data using virtual reality and superresolved imaging. Journal
of Geophysical Research, 104(E4):8889�8906, April 1999.

[143] Changming Sun. Fast stereo matching using rectangular subregioning and 3d maximum-surface
techniques. International Journal of Computer Vision, 47(1):99�117, Apr 2002. ISSN 1573-1405.
URL https://doi.org/10.1023/A:1014585622703.

250

http://www.soi.city.ac.uk/~sbbh653/publications/opray.pdf
https://doi.org/10.1023/A:1014585622703


BIBLIOGRAPHY

[144] Vytas SunSpiral, D.W. Wheeler, Daniel Chavez-Clemente, and David Mittman. Development and
�eld testing of the footfall planning system for the athlete robots. Journal of Field Robotics, 29(3):
483�505, 2012. ISSN 1556-4967. URL http://dx.doi.org/10.1002/rob.20410.

[145] Richard Szeliski and Daniel Scharstein. Sampling the Disparity Space Image. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 26:419 � 425, 2003.

[146] Y. Tao, J. P. Muller, P. Sidiropoulos, Si-Ting Xiong, A. R. D. Putri, S. H. G. Walter, J. Veitch-
Michaelis, and V. Yershov. Massive stereo-based DTM production for Mars on cloud computers.
Planetary and Space Science, 154:30�58, May 2018.

[147] Roberto Toldo, Alberto Beinat, and Fabio Crosilla. Global registration of multiple point clouds
embedding the generalized procrustes analysis into an icp framework. In Proc. 3DPVT, pages 109�
122, 2010.

[148] Bill Triggs, Philip F. Mclauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. Bundle adjustment
� a modern synthesis. Lecture Notes in Computer Science, 1883:298+, January 2000.

[149] Tuscon University of Arizona. The high resolution imaging science experiment. 2009. URL http:

//hirise.lpl.arizona.edu/.

[150] AZ U.S. Geological Survey, Flagsta�. Integrated software for imagers and spectrometers (ISIS). 2009.
URL http://isis.astrogeology.usgs.gov/.

[151] T. R. Watters, M. S. Robinson, R. A. Beyer, J. F. Bell, M. E. Pritchard, M. E. Banks, E. P. Turtle,
N. R. Williams, and LROC Team. Lunar Thrust Faults: Implications for the Thermal History of
the Moon. In S. Mackwell and E. Stansbery, editors, Lunar and Planetary Science Conference 41,
number #1863. Lunar and Planetary Institute, Houston, March 2010.

[152] W. A. Watters and A. C. Radford. 3-D Morphometry of Martian Secondary Impact Craters from
Zunil and Gratteri. In Lunar and Planetary Science 45, volume 45 of Lunar and Planetary Institute
Science Conference Abstracts, March 2014.

[153] W. A. Watters, L. Geiger, and M. Fendrock. Shape Distribution of Fresh Martian Impact Craters
from High-Resolution DEMs. In Lunar and Planetary Science Conference 44, volume 44 of Lunar
and Planetary Institute Science Conference Abstracts, March 2013.

[154] W. A. Watters, L. Geiger, M. Fendrock, R. Gibson, and A. Radford. Statistical Morphometry of
Small Martian Craters: New Methods and Results. In Issues in Crater Studies and the Dating of
Planetary Surfaces, volume 1841, page 9032, May 2015.

[155] Michael J Willis, Andrew K Melkonian, and Matthew E Pritchard. Outlet glacier response to the
2012 collapse of the matusevich ice shelf, severnaya zemlya, russian arctic. Journal of Geophysical
Research: Earth Surface, 120(10):2040�2055, 2015.

[156] Jiang Xiang, Ziyun Li, David Blaauw, Hun Seok Kim, and Chaitali Chakrabarti. Low complexity
optical �ow using neighbor-guided semi-global matching. In 2016 IEEE International Conference on
Image Processing (ICIP), pages 4483�4487. IEEE, 2016.

[157] V. Yershov. A system for generating multi-resolution Digital Terrain Models of Mars based on the
ESA Mars Express and NASA Mars Reconnaissance Orbiter data. In European Planetary Science
Congress, pages EPSC2015�343, October 2015.

[158] Vladimir Yershov, Anton Ivanov, Jan-Peter Muller, Yu Tao, Mr, William Pool, Jung-Rack Kim, and
Panagiotis Sidiropoulos. Assessment of Digital Terrain Model algorithms for the development of a
massive processing system for all high-resolution stereo images of Mars from CTX and HiRISE. In
40th COSPAR Scienti�c Assembly, volume 40, pages B0.8�11�14, January 2014.

251

http://dx.doi.org/10.1002/rob.20410
http://hirise.lpl.arizona.edu/
http://hirise.lpl.arizona.edu/
http://isis.astrogeology.usgs.gov/


Chapter E

[159] Ramin Zabih and John Wood�ll. Non-parametric local transforms for computing visual correspon-
dence. In European conference on computer vision, pages 151�158. Springer, 1994.

[160] M. T. Zuber, D. E. Smith, S. C. Solomon, D. O. Muhleman, J. W. Head, J. B. Garvin, J. B. Abshire,
and J. L. Bufton. The Mars Observer laser altimeter investigation. Journal of Geophysical Research,
97(E5):7781�7797, May 1992.

252


	Introduction
	Background
	Human vs. Computer: When to Choose Automation?
	Software Foundations
	NASA Vision Workbench
	The USGS Integrated Software for Imagers and Spectrometers

	Getting Help and Reporting Bugs
	Typographical Conventions
	Referencing the Ames Stereo Pipeline in Your Work
	Warnings to Users of the Ames Stereo Pipeline

	I Getting Started
	Installation
	Binary Installation
	Quick Start for ISIS Users
	Quick Start for Digital Globe Users
	Quick Start for Aerial and Historical Imagery
	Common Errors

	Installation from Source
	Settings Optimization
	Performance Settings
	Logging Settings


	Tutorial: Processing Mars Orbiter Camera Imagery
	Quick Start
	Preparing the Data
	Loading and Calibrating Images using ISIS
	Aligning Images


	Tutorial: Processing Earth Digital Globe Imagery
	Processing Raw
	Processing Map-Projected Imagery
	Handling CCD Boundary Artifacts
	Managing Camera Jitter
	Dealing with Terrain Lacking Large-Scale Features
	Processing Multi-Spectral Images

	The Next Steps
	Stereo Pipeline in More Detail
	Stereo Algorithms
	Setting Options in the stereo.default File
	Performing Stereo Correlation
	Running the GUI Frontend
	Specifying Settings on the Command Line
	Stereo on Multiple Machines
	Running Stereo with Map-projected Images
	Multi-View Stereo
	Diagnosing Problems
	Dealing with Long Run-times

	Visualizing and Manipulating the Results
	Building a 3D Mesh Model
	Building a Digital Elevation Model and Ortho Image
	Orthorectification of an Image From a Different Source
	Correcting Camera Positions and Orientations
	Alignment to Point Clouds From a Different Source
	Alignment and Orthoimages
	Creating DEMs Relative to the Geoid/Areoid
	Converting to the LAS Format
	Generating Color Hillshade Maps
	Building Overlays for Moon and Mars Mode in Google Earth
	Using DERT to Visualize Terrain Models


	Tips and Tricks

	II The Stereo Pipeline in Depth
	Stereo Correlation
	Pre-Processing
	Disparity Map Initialization
	Debugging Disparity Map Initialization
	Search Range Determination
	Local Homography
	Semi-Global Matching

	Sub-pixel Refinement
	Triangulation

	Bundle Adjustment
	Overview
	Bundle adjustment using ASP
	Floating intrinsics and using a lidar or DEM ground truth

	Bundle adjustment using ISIS
	Tutorial: Processing Mars Orbital Camera Imagery


	Solving for Camera Poses Based on Images
	Camera Solve Overview
	Example: Apollo 15 Metric Camera
	Example: IceBridge DMS Camera
	Solving for Pinhole cameras using GCP
	Solving For Intrinsic Camera Parameters

	Shape-from-Shading
	How to get good test imagery
	Running sfs at 1 meter/pixel using a single image
	SfS with multiple images in the presence of shadows
	Dealing with large camera errors and LOLA comparison
	Running SfS with an external initial guess DEM
	Insights for getting the most of SfS

	Data Processing Examples
	Guidelines for Selecting Stereo Pairs
	Mars Reconnaissance Orbiter HiRISE
	Columbia Hills

	Mars Reconnaissance Orbiter CTX
	North Terra Meridiani

	Mars Global Surveyor MOC-NA
	Ceraunius Tholus

	Mars Exploration Rovers
	PANCAM, NAVCAM, HAZCAM

	K10
	Lunar Reconnaissance Orbiter LROC NAC
	Lee-Lincoln Scarp

	Apollo 15 Metric Camera Images
	Ansgarius C

	Mars Express High Resolution Stereo Camera (HRSC)
	Cassini ISS NAC
	Rhea

	Digital Globe Imagery
	RPC Imagery, including GeoEye, Astrium, Cartosat-1, and PeruSat-1
	SPOT5 Imagery
	Dawn (FC) Framing Camera
	ASTER Imagery
	SkySat Imagery
	The input data
	Initial camera models and a reference DEM
	Bundle adjustment
	Creating terrain models
	Mosaicking and alignment
	Alignment of cameras
	Mapprojection
	When things fail
	Structure from motion
	RPC models
	Bundle adjustment using reference terrain
	Floating the camera intrinsics

	Declassified satellite images: KH-4B
	Fetching the data
	Stitching the images
	Fetching a ground truth DEM
	Creating camera files
	Bundle adjustment and stereo
	Floating the intrinsics
	Modeling the camera models as pinhole cameras with RPC distortion

	Declassified satellite images: KH-7
	Declassified satellite images: KH-9


	III Appendices
	Tools
	stereo
	Entry Points
	Decomposition of Stereo

	stereo_gui
	Use as an Image Viewer
	Other Functionality

	parallel_stereo
	bundle_adjust
	Ground Control Points

	parallel_bundle_adjust
	point2dem
	Comparing with MOLA Data
	Post Spacing
	Using with LAS or CSV Clouds

	point2mesh
	dem_mosaic
	image_mosaic
	dem_geoid
	dg_mosaic
	mapproject
	cam2rpc
	disparitydebug
	orbitviz
	camera_footprint
	cam2map4stereo.py
	pansharp
	datum_convert
	point2las
	pc_align
	The input point clouds
	Alignment method
	File formats
	The alignment transform
	Applying an initial transform
	Interpreting the transform
	Error metrics and outliers
	Output point clouds and convergence history
	Manual alignment
	Creating a point cloud from a DEM
	Troubleshooting

	n_align
	pc_merge
	wv_correct
	hiedr2mosaic.py
	lronac2mosaic.py
	image_calc
	hsv_merge
	colormap
	hillshade
	image2qtree
	geodiff
	aster2asp
	add_spot_rpc
	sfs
	parallel_sfs
	undistort_image
	camera_calibrate
	camera_solve
	convert_pinhole_model
	cam_gen
	ipfind
	ipmatch
	icebridge_kmz_to_csv
	lvis2kml
	GDAL Tools

	The stereo.default File
	Preprocessing
	Correlation
	Subpixel Refinement
	Filtering
	Post-Processing (Triangulation)

	Guide to Output Files
	Frame Camera Models
	Pinhole Models
	Overview
	File Formats
	How the Pinhole model is applied

	Panoramic Camera Model

	Papers that used ASP
	Bibliography


