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Mitochondrial DNA copy number (mtDNA-CN) is a proxy for mitochondrial function and is associated with aging-related

diseases. However, it is unclear how mtDNA-CN measured in blood can reflect diseases that primarily manifest in other

tissues. Using the Genotype-Tissue Expression Project, we interrogated relationships between mtDNA-CN measured in

whole blood and gene expression from whole blood and 47 additional tissues in 419 individuals. mtDNA-CN was signifi-

cantly associated with expression of 700 genes in whole blood, including nuclear genes required for mtDNA replication.

Significant enrichment was observed for splicing and ubiquitin-mediated proteolysis pathways, as well as target genes for

the mitochondrial transcription factor NRF1. In nonblood tissues, there were more significantly associated genes than ex-

pected in 30 tissues, suggesting that global gene expression in those tissues is correlated with blood-derived mtDNA-CN.

Neurodegenerative disease pathways were significantly associated in multiple tissues, and in an independent data set, the

UK Biobank, we observed that higher mtDNA-CN was significantly associated with lower rates of both prevalent (OR=

0.89, CI =0.83; 0.96) and incident neurodegenerative disease (HR=0.95, 95% CI=0.91;0.98). The observation that

mtDNA-CN measured in blood is associated with gene expression in other tissues suggests that blood-derived mtDNA-

CN can reflect metabolic health across multiple tissues. Identification of key pathways including splicing, RNA binding,

and catalysis reinforces the importance of mitochondria in maintaining cellular homeostasis. Finally, validation of the

role of mtDNA CN in neurodegenerative disease in a large independent cohort study solidifies the link between blood-

derived mtDNA-CN, altered gene expression in multiple tissues, and aging-related disease.

[Supplemental material is available for this article.]

Mitochondria perform multiple essential metabolic functions in-
cluding energy production, lipidmetabolism, and signaling for ap-
optosis. Mitochondria possess circular genomes (mtDNA) that are
distinct from the nuclear genome. Although cells typically only
possess two copies of the nuclear genome, they contain 100s to
1000s of mitochondria, and each individual mitochondrion can
hold 2–10 copies of mtDNA, resulting in wide variation in
mtDNA copy number (mtDNA-CN) (Wai et al. 2010). The amount
of mtDNA-CN also varies widely across cell types, with higher en-
ergy demand cell types typically possessing higher levels of
mtDNA-CN (Chabi et al. 2003; Miller et al. 2003; Clay Montier
et al. 2009; Kelly et al. 2012). Due to the importance of mitochon-
dria in metabolism and energy production, mitochondrial dys-
function plays a role in the etiology of many human diseases
(Herst et al. 2017). mtDNA-CN has been shown to be a proxy for
mitochondrial function and is consequently an attractive bio-
marker due to its ease of measurement (Malik and Czajka 2013;
Castellani et al. 2020b). Indeed, low levels of mtDNA-CN in pe-

ripheral blood have been associated with an increased risk for a
number of chronic aging-related diseases including frailty, kidney
disease, cardiovascular disease, heart failure, and overall mortality
(Ashar et al. 2015, 2017; Huang et al. 2016; Tin et al. 2016).

Crosstalk between the mitochondrial and nuclear genomes is
essential for maintaining cellular homeostasis. Many essential mi-
tochondrial proteins are encoded by the nuclear genome, and ex-
pression of these nuclear genes must be modified to match
mitochondrial activity. Likewise, mitochondrial activity must re-
spond to cellular energy demands. Polymorphisms in the nuclear
genome have been associated with changes inmitochondrial gene
expression, and mitochondrial genome variation has been associ-
ated with changes in nuclear gene expression, suggesting interplay
between the two genomes (Lee et al. 2017b; Ali et al. 2019).

In cancer cells, mtDNA-CN alters gene expression through
modifying DNA methylation (Reznik et al. 2016; Sun and St
John 2018). Recent work from our lab has shown that mtDNA-
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CN is also associated with nuclear DNAmethylation in noncancer
settings (Castellani et al. 2020a). Given that DNAmethylation can
modify gene expression, the current study seeks to explore the po-
tential association between blood-derived mtDNA-CN and gene
expression. Past work has shown that mtDNA-CN is associated
with gene expression of nuclear-encoded genes in lymphoblast
cell lines, but this may not reflect biological processes occurring
in other tissues, especially after an extended culturing period
(Gibbons et al. 2014). Therefore, we leveraged data from the
Genotype-Tissue Expression Project (GTEx), a cross-sectional
study with gene expression data from multiple nondiseased post-
mortem tissues, to examine associations between mtDNA-CN
and expression of both nuclear and mitochondrially encoded
genes (The GTEx Consortium 2013). This study aimed to evaluate
associations between blood-derived mtDNA-CN and gene ex-
pression across multiple tissues and to follow up on a novel associ-
ation between neurodegenerative disease and blood-derived
mtDNA-CN.

Results

Determination and validation of mtDNA-CN metric

mtDNA-CN estimates were generated from whole genome se-
quences performed on DNA derived from whole blood using the
ratio of mitochondrial reads to total aligned reads. As mtDNA-
CN is known to be affected by cell type composition, cell counts
for samples with available RNA-sequencing data were deconvo-
luted using gene expression measured in whole blood (Aran
et al. 2017; Zhang et al. 2017). We identified a batch effect that re-
sulted in significantly altered mtDNA-CN for individuals se-
quenced prior to January 2013. Therefore, only individuals
sequenced after January 2013 were retained for analysis
(Supplemental Fig. S1). After quality control, outlier filtering,
and normalization of the RNA-sequencing data, 419 individuals
remained for analyses (see Methods).

To validate mtDNA-CN measurements in the filtered GTEx
data, we determined the association between mtDNA-CN and
known correlated measures, including age, sex, and neutrophil
count (Mengel-From et al. 2014; Zhang et al. 2017; Moore et al.
2018). We observed a significant association with neutrophil
count (P=8.4 ×10−5), with higher neutrophil count associated
with lower mtDNA-CN. Although not statistically significant, ef-
fect size estimates between mtDNA-CN and age (P=0.18) and
sex (P=0.14) were also in the expected direction, with older indi-
viduals and males having lower mtDNA-CN (Supplemental Fig.
S2). Effect size estimates for age and neutrophils were also consis-
tent with prior literature (Supplemental Table S1; Longchamps
et al. 2020). Based on variance explained from previous studies,
the current study was only powered to detect a significant effect
for neutrophil count. For all downstream analyses, mtDNA-CN
was defined as the standardized residual from a linear regression
model adjusted for age, sex, cell counts estimated from RNA-seq
deconvolution, ischemic time, and cohort (see Methods).

Association of mtDNA-CN derived from whole blood with gene

expression in blood

A priori, we expect that mitochondrially encoded gene expression
would be positively correlated with mtDNA-CN. Likewise, multi-
ple nuclear-encoded genes are involved in the regulation of
mtDNA replication, and thus, expression levels of these genes
are expected to be correlated with mtDNA-CN (Garcia et al.

2017; Rusecka et al. 2018).We therefore evaluated the associations
between mtDNA-CN and expression of these two classes of genes,
correcting for cohort, sample ischemic time, genotyping PCs, age,
race, and surrogate variables derived from RNA-sequencing data to
capture known and hidden confounders (Supplemental Fig. S3;
Leek and Storey 2007).

To minimize the potential impact of outliers, we performed
an inverse normal transformation on both the mtDNA-CNmetric
and the gene expression values. To evaluate the association be-
tween mtDNA-CN and mitochondrial RNA (mtRNA) levels, we
used the median gene expression value calculated from scaled ex-
pression values across 36 mtDNA-encoded genes that passed ex-
pression thresholds (see Methods).

We observed a highly significant association between
mtDNA-CN and overall mtRNA expression (P=9.10×10−9)
(Table 1), with 33 out of 36 individual mtDNA-encoded genes
nominally significant (P<0.05) (Supplemental Fig. S4).

In addition to genes coding directly for mtDNA replication
machinery, genes involved in mtDNA transcription and nucleo-
tide metabolism are also required for mtDNA replication. The
mtDNA transcription machinery provides the RNA primers used
in mtDNA replication, and nucleotides are needed to synthesize
newmtDNAmolecules. Of the 17mtDNAmajor replication genes
tested (Rusecka et al. 2018), all were positively associated with
mtDNA-CN, as would be expected based on gene function; eight
of themwere nominally significant (P< 0.05), and four were signif-
icant after Bonferroni correction (P< 2.94× 10−3) for multiple test-
ing (Table 1).

To identify additional genes and pathways associated with
mtDNA-CN, we performed a transcriptome-wide analysis. There
was an overall inflation of test statistics, whichwe quantified using

Table 1. Blood-derived mtDNA-CN is positively associated with
gene expression for mitochondrially encoded genes and nuclear-
encoded genes required for mtDNA replication

Gene
Effect size
estimate

Standard
error P-value

Scaled mtRNA median 0.15 0.03 9.10× 10−9

mtDNA replication machinery
POLG 0.02 0.01 0.025
POLG2 0.06 0.02 4.08× 10−4

TWNK 0.03 0.02 0.11
SSBP1 0.06 0.01 1.38× 10−4

PRIMPOL 0.04 0.02 0.020
DNA2 0.05 0.02 0.010
MGME1 0.04 0.02 0.048
RNASEH1 0.06 0.02 2.51×10−4

mtDNA transcription machinery
TFAM 0.06 0.01 1.83× 10−4

TEFM 0.03 0.02 0.05
TFB2M 0.03 0.02 0.028
POLRMT 0.01 0.01 0.19

Nucleotide metabolism genes
TK2 0.02 0.02 0.11
DGUOK 0.06 0.02 6.39× 10−4

RRM2B 0.04 0.01 0.006
TYMP 0.02 0.02 0.29
SLC25A4 0.08 0.03 0.003

Effect size estimates represent the change in gene expression, in stan-
dard deviation units, associated with a 1-standard-deviation increase in
blood-derived mtDNA-CN. Mitochondrially encoded genes are repre-
sented as the median of the scaled mtRNA expression of the 36 genes
with detectable expression. Genes required for mtDNA replication were
obtained from Rusecka et al. (2018).
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the genomic inflation factor (lambda=4.71) (Devlin and Roeder
1999). Two-stage permutation testing with 1000 permutations
demonstrated no inflation in null data sets, suggesting that this in-
flation represents a true global association between blood-derived
mtDNA-CN and gene expression (Supplemental Fig. S5).

When stratified by gene functional categories (Harrow et al.
2012), all categories showed elevated test statistics, but protein-
coding genes were the most enriched (lambda=7.44) (Fig. 1).

Gene expression levels of most of the nominally significant
genes were positively correlated with mtDNA-CN (7769 genes
with positive t-values vs. 285 genes with negative t-values).
Although much of this positive skewing is likely due to correlated
gene expression, permuted data sets demonstrate that this positive
shift is significant (P< 0.001) (Supplemental Fig. S6), perhaps re-
flecting a more active transcriptional state associated with higher
mtDNA-CN. Whereas 698 of the significantly associated genes
were positively associated, only two negatively associated genes
passed the permutation cutoff (P<2.38×10−6), CAMP (P= 1.58×
10−8), and PGLYRP1 (P=1.78×10−7), both of which are involved
in innate immunity.

Gene set enrichment analysis uncovers gene regulatory networks

in whole blood

To identify specific molecular pathways, transcription factors, and
gene ontologies associated with mtDNA-CN in whole blood, we
performed gene set enrichment analyses (Irizarry et al. 2009) using
gene sets obtained from the Molecular Signatures Database
(MSigDB) (Ashburner et al. 2000; Xie et al. 2005; Liberzon et al.
2011; Meng et al. 2019; The Gene Ontology Consortium 2019).
Previous studies have shown that cross-mappability can lead to
false pseudogene positives in eQTL association studies (Saha and
Battle 2019); we therefore excluded pseudogenes from subsequent
analyses. Significantly associated KEGG pathways included
“Spliceosome” (P=1.03×10−8) and “Ubiquitin-mediated proteol-
ysis” (P=2.4 ×10−10) (Table 2).

A number of transcription factor target sequences were also
significantly enriched, including those for ELK1 (P= 8.58×
10−66), NRF1 (P=1.76×10−35), GABPB (P=3.54×10−21), YY1
(P = 3.14×10−19), and E4F1 (P=3.98×10−15). All of these tran-
scription factors regulate genes that play a role in mitochondrial
function (Barrett et al. 2006; Blesa et al. 2008; Yang et al. 2014;
Rodier et al. 2015; Chen et al. 2019). Gene expression levels of
these transcription factors were all positively correlated with

mtDNA-CN, with five out of six nominally significant, and three
remaining significant after Bonferroni correction (P<8.33×10−3)
(Table 3).

Many mitochondrially related cellular component Gene On-
tology (GO) terms were significant, including “Mitochondrion” (P
=7.77× 10−23), “Mitochondrial part” (P=2.79×10−15), and “Mito-
chondrion organization” (P= 2.87×10−14) (Fig. 2; Supek et al.
2011).

Additional significantly associated GO terms included “ubiq-
uitin ligase complex” (P= 6.6 ×10−18) and “spliceosomal complex”
(P=4.46× 10−14), supporting the KEGG pathway findings. Genes
with substantial evidence of mitochondrial localization, deter-
mined through integration of several genome-scale data sets,
were obtained from MitoCarta2.0 and demonstrated significant
enrichment (P= 8.22× 10−21) (Calvo et al. 2016).

Cross-tissue analysis reveals associations between gene expression

in multiple tissues and blood-derived mtDNA-CN

mtDNA-CNmeasured in blood has been associated with a number
of aging-related diseases, including chronic kidney disease, heart
failure, and diabetes (Huang et al. 2016; Tin et al. 2016; Al-Kafaji
et al. 2018). Given that these diseases primarily manifest in non-
blood tissues, we evaluated associations between blood-derived
mtDNA-CN and gene expression measured from 47 additional tis-
sues that had greater than 50 samples after filtering.

Though blood-derived mtDNA-CN appears to be associated
with gene expression in other tissues, we did not observe a signifi-
cant association between blood-derived mtDNA-CN and scaled
mtRNA gene expression in any tissue other than blood, and only
two out of 47 tested tissues had nominally significant associations
between tissue-specific scaled mtRNA expression and blood-
derived mtDNA-CN (uterus [P=0.004], left ventricle of the heart
[P = 0.017]) (Supplemental Table S2). However, mtRNA expression
for 35/47 nonblood tissues was positively associated with blood
mtDNA-CN,which ismore thanwhatwould be expected by chance
(P<0.001). This suggests that, although our study may be under-
powered to detect a significant association in individual tissues
due to small sample sizes, mtDNA-CNmeasured in blood is broadly
correlated with mtDNA-CN in other tissues. As expected, mtRNA
expression varies widely across tissues, with brain tissues having no-
tably more expression than other tissues (Supplemental Fig. S7).

Figure 1. Global inflation of test statistics from linear regressions be-
tween blood-derived mtDNA-CN and gene expression in blood. After
stratification by gene category, protein-coding genes have the most infla-
tion, suggesting that mtDNA-CN is strongly associated with genes that
code for proteins.

Table 2. Top five genes that were most significantly associated with
mtDNA-CNwithin the “Spliceosome” and “Ubiquitin-mediated prote-
olysis” KEGG pathways

Gene Effect size estimate Standard error P-value

Spliceosome genes
TRA2A 0.11 0.01 2.99×10−14

LSM6 0.11 0.02 3.75×10−10

HNRNPA1L2 0.12 0.02 2.07×10−8

SRSF8 0.10 0.02 2.24×10−7

NCBP2 0.06 0.01 6.60×10−7

Ubiquitin-mediated proteolysis genes
UBE2B 0.12 0.02 1.20×10−13

ELOC 0.08 0.01 2.02×10−8

UBE2I 0.09 0.02 6.26×10−8

CUL1 0.07 0.01 9.73×10−8

UBE2K 0.07 0.01 1.32×10−7

Effect size estimates represent the change in gene expression, in stan-
dard deviation units, associated with a 1- standard-deviation increase in
blood-derived mtDNA-CN.
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We calculated genomic inflation factors for each tissue to
quantify test statistic inflation. Genomic inflation factors were
elevated across multiple nonblood tissues, suggesting that blood-
derived mtDNA-CN was broadly associated with gene expression
in other tissues (Fig. 3).

To determine true signal from noise, we performed 1000
two-stage permutations for each tissue and obtained a genomic in-
flation factor lambda cutoff of >1.20 representing a significant
elevation of lambda (study-wide P<0.05). Using this cutoff, we
identified 30 nonblood tissues with a global inflation of test statis-
tics (Supplemental Table S3). Other than blood, the most strongly
enriched tissue was the putamen region of the brain, with a lamb-
da of 3.27. Principal components analysis revealed that the puta-
men region of the brain was not significantly different from
other brain regions, andwe are uncertain what is biologically caus-
ing the strong enrichment (Supplemental Fig. S8). We note that
the two cell lines, EBV transformed lymphocytes (lambda=0.84)
and cultured fibroblasts (lambda=0.84), showed no global infla-
tion of test statistics, suggesting that blood-derived mtDNA-CN
loses its association with gene expression after the cell culturing
process.

To examine the similarity of associations of mtDNA-CN ob-
served in blood with other tissues, we calculated Spearman’s
rank correlation coefficients between effect estimates for blood-
derived mtDNA-CN on blood gene expression (βblood) and effect
estimates for blood-derivedmtDNA-CNon gene expression in oth-
er tissues (βtissue). All genes that passed a permutation cutoff for sig-
nificance in blood (P=2.38×10−6, 700 genes total) were included.
To distinguish tissues with correlations more extreme than base-
line, we calculated reference correlations between blood and other
tissues for 1000 randomly selected sets of 700 genes. Twenty-six
tissues had observed values that were significantly more extreme
than baseline (Supplemental Table S4), with 22 tissues showing
greater correlation and four tissues showing less correlation. Of
these 26 tissues, 20 were among the 30 tissues with significantly
inflated lambdas.

To identify pathways associated withmtDNA-CN across mul-
tiple tissues, we performed gene set enrichment analysis in each of
the 30 tissues with a significant genomic inflation factor. Multiple
terms were significant in greater than one tissue (Table 4), includ-
ing terms related to oxidative phosphorylation andmitochondria,
suggesting that mtDNA-CN derived from blood can reflect mito-
chondrial function occurring in other tissues.

ELK1 transcription factor binding sites were significantly en-
riched in 19 of the 30 significant tissues and were also significant
in whole blood, suggesting that mtDNA-CNmay regulate ELK1 or
vice versa. We note that gene expression for ELK1 was nominally
significantly associated (P<0.05) with blood-derived mtDNA-CN
in four of the 18 tissues for which ELK1 targets were significantly
enriched (Supplemental Fig. S9). Effect estimates for ELK1 targets
were generally consistent with the directionality of ELK1 effect es-
timates. For example, in blood,where ELK1 expression is positively
associated with mtDNA-CN, 747/750 (99.6%) nominally signifi-
cant ELK1 target genes were positively associated. On the other
hand, mtDNA-CN was negatively associated with nerve ELK1
gene expression, and 204/306 (66.67%) nominally significant
ELK1 target genes were also negatively associated. Of note, nearly
all the noted transcription factors are ubiquitously expressed
throughout the body, except for ELK1, which is not expressed in
brain putamen or spinal cord (Supplemental Fig. S10).

To identify genes driving enrichment of significant pathways
in multiple tissues, we performed a random effects meta-analysis
for all expressed genes using effect size estimates from all 47 non-
blood tissues. Genes encoding both the large and small ribosomal
subunits were negatively associated with blood-derived mtDNA-
CN across all tested tissues, implying an inverse relationship be-
tween ribosomal abundance and mitochondrial DNA quantity
(Table 5).

Huntington’s disease (HD), Parkinson’s disease (PD), and
Alzheimer’s disease (AD) were among the most significantly asso-
ciated KEGG pathways that appear in multiple tissues (Table 4).
This is an intriguing finding, given the known role of mitochon-
dria in neurodegenerative disease (Reddy 2009).

Although neurodegenerative disorders primarily manifest in
nervous tissues (Wood et al. 2015), we observed significant enrich-
ment of disease pathways in colon, pancreas, and testis tissues.
When limiting our query to brain tissues, HD and PD were nomi-
nally significantly enriched in cerebellum, caudate (basal ganglia),
and cortex, whereas AD was nominally significantly enriched in
cerebellum and spinal cord (Supplemental Fig. S11).

Table 3. Gene expression for transcription factors whose targets are
enriched for association with blood-derived mtDNA-CN is nearly all
nominally significantly associated with blood-derived mtDNA-CN

Gene

Effect size
estimate
(gene

expression)

Standard
error (gene
expression)

P-value
(gene

expression)

P-value
(enriched
target

sequences)

NRF1 0.03 0.02 0.07 1.76 × 10−35

YY1 0.07 0.01 1.78 × 10−6 3.14 × 10−19

GABPB2 0.09 0.02 1.51 × 10−9 3.54 × 10−21

GABPB1 0.03 0.01 0.048 3.54 × 10−21

E4F1 0.05 0.01 2.01 × 10−4 3.98 × 10−15

ELK1 0.04 0.02 0.021 8.58 × 10−66

Effect size estimates, standard errors, and P-values from a linear regres-
sion between transcription factor gene expression and blood-derived
mtDNA-CN. Transcription factors shown are those whose targets were
significantly enriched for association with blood-derived mtDNA-CN.

Figure 2. REVIGO visualization of GO cellular component terms signifi-
cantly associated with mtDNA-CN after removal of redundant GO terms.
Size of the circle represents the relative number of genes in each gene
set, color represents significance. Axes represent semantic similarities be-
tween GO terms; GO terms that are more similar will cluster with one
another.
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mtDNA-CN is associated with incident and prevalent

neurodegenerative disease in the UK Biobank

To examine the association betweenmtDNA-CN and neurodegen-
erative disease risk, we used the UK Biobank (UKB) (Bycroft et al.
2018), a prospective cohort study with whole exome sequencing
(WES) for ∼50,000 individuals and genotyping for ∼500,000 indi-
viduals. mtDNA-CN was estimated from a combination of WES
data andmitochondrial SNP probe intensities from genotyping ar-
rays (see Methods) and was significantly associated with age and
sex in the expected directions (Supplemental Fig. S12). Analyses
were restricted to unrelated individuals of self-identified
European descent, and individuals with blood cell type count out-
liers were excluded, followed by adjustment of mtDNA-CN for age
and sex. Associations betweenmtDNA-CN and prevalent and inci-
dent neurodegenerative disease were evaluated using logistic
regression models and Cox proportional-hazards models, respec-
tively. mtDNA-CN was significantly associated with prevalent
Parkinson’s disease and prevalent dementia (Table 6). As there
were only 12 individuals with prevalent Alzheimer’s disease, we
did not test for an association with prevalent Alzheimer’s disease.
For incident disease, median follow-up time was ∼10 yr. mtDNA-
CN was significantly associated with incident Parkinson’s disease
and incident dementia (Table 6). Consistent with other aging-
related diseases (Ashar et al. 2015, 2017), higher mtDNA-CN was
associated with lower risk for developing incident neurodegenera-
tive disease (Table 6). A combined analysis for all individuals with
neurodegenerative disease revealed a consistent strongly signifi-
cant association for both prevalent (OR=0.89, CI = 0.83;0.96)
and incident (HR=0.95, CI = 0.91;0.98) disease.

Discussion

In this study, blood-derivedmtDNA-CNwas significantly associat-
ed with a host of blood-expressed genes. As expected, nearly all
genes involved inmtDNA replication were significantly associated
with mtDNA-CN in a positive direction. There was also a clear
overall shift toward significant positive estimates, possibly indicat-
ing that increased mtDNA-CN is reflective of a more active tran-
scriptional state. This finding is consistent with previous
literature demonstrating that higher mitochondrial content is cor-

related with increased transcriptional ac-
tivity (Guantes et al. 2015; Márquez-
Jurado et al. 2018). The twonegatively as-
sociated genes both play roles in innate
immune function (Gombart et al. 2005;
Osanai et al. 2011), suggesting that
higher mtDNA-CN levels are correlated
with decreased immune response.
Mitochondria play a role in immune re-
sponses to pathogens in several ways;
for example, mitochondrial DNA release
from compromised mitochondria can
trigger an intracellular antiviral response
through the cGAS–STINGpathway (West
et al. 2015), binding of viral dsRNA to the
mitochondrial antiviral signaling com-
plex (MAVS) can trigger an interferon re-
sponses through STAT6 activation (Chen
et al. 2011), and release of mitochondrial
components from cells can bind to dam-
age-associatedmolecular pattern (DAMP)

receptors to trigger innate immune responses (Nakahira et al.
2015). These novel findings correlating expression of mtDNA-
CN with specific immune response genes in tissues represent an
area for further investigation.

Gene set enrichment analyses revealed pathways potentially
involved in mitochondrial DNA control, including ubiquitin-me-
diated proteolysis and splicing. Supporting this finding, Guantes
et al. demonstrated thatmitochondrial contentmodulates alterna-
tive splicing (Guantes et al. 2015). Additionally, we found that
genes expressed inwholeblood thatwere associatedwithblood-de-
rived mtDNA-CNwere enriched for target sequences for the ELK1,

Figure 3. Observed genomic inflation factors are significantly different from permuted genomic infla-
tion factors for certain tissues. A higher genomic inflation factor represents increased global associations
between blood-derived mtDNA-CN and gene expression in a specific tissue. One thousand permuted
genomic inflation factors were obtained using two-stage permutation testing. Red line represents per-
muted lambda cutoff of 1.20.

Table 4. Pathways, transcription factor targets, andGO terms signif-
icantly enriched in multiple tissues (excluding blood)

Pathway

Number of
significant
tissues

Transcription factors
SCGGAAGY_ELK1_02 19
RCGCANGCGY_NRF1_Q6 12
GCCATNTTG_YY1_Q6 8
TGCGCANK_UNKNOWN 8
MGGAAGTG_GABP_B 7

GO terms
GO_RNA_BINDING 16
GO_CATALYTIC_COMPLEX 14
GO_CELLULAR_MACROMOLECULE_LOCALIZATION 13
GO_INTRACELLULAR_TRANSPORT 13
GO_MACROMOLECULE_CATABOLIC_PROCESS 13

KEGG terms
KEGG_RIBOSOME 7
KEGG_HUNTINGTONS_DISEASE 5
KEGG_OXIDATIVE_PHOSPHORYLATION 4
KEGG_PARKINSONS_DISEASE 4
KEGG_ALZHEIMERS_DISEASE 3

Mitochondrial terms
GO_MITOCHONDRIAL_ENVELOPE 8
GO_MITOCHONDRIAL_PART 8
GO_MITOCHONDRION 8
GO_MITOCHONDRION_ORGANIZATION 4
GO_MITOCHONDRIAL_PROTEIN_COMPLEX 3

The top five terms for each category that were significantly enriched in
multiple tissues are shown.
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NRF1, YY1, GABPB, and E4F1 transcription factors. All of these
transcription factors have been implicated in mitochondrial path-
ways, as ELK1 is associated with the mitochondrial permeability
transition pore complex in neurons, NRF1 regulates expression of
themitochondrial translocase TOMM34, YY1 binds to and repress-
es mitochondrial gene expression in skeletal muscle, GABPB is re-
quired for mitochondrial biogenesis, and E4F1 controls
mitochondrial homeostasis (Barrett et al. 2006; Blesa et al. 2008;
Yang et al. 2014; Rodier et al. 2015; Chen et al. 2019).
Additionally, we found significant enrichment of signal for genes
implicated in ubiquitin-mediated proteolysis and splicing. Given
that mitochondrial quality control is regulated through ubiquiti-
nation, and that nuclear-encoded spliceosomes are involved in
mtRNA splicing, our results likely implicate processes involved in
mitochondrial DNA regulatory networks (Bragoszewski et al.
2017; Herai et al. 2017).

mtDNA-CN measured in one tissue has previously been
found to be uncorrelated with mtDNA-CN in another tissue
from the same individual (Wachsmuth et al. 2016). We found
that, although mtRNA transcription in individual tissues was not
significantly correlated with blood-derived mtDNA-CN, across all
tissues, there was a significant enrichment for positive associa-

tions, suggesting a weak positive correlation between blood-de-
rived mtDNA-CN and mtDNA-CN in other tissues. Moreover, we
found that blood-derived mtDNA-CN was associated with various
biological pathways in nonblood tissues (includingmitochondrial
function), providing a possible explanation as to why blood-
derived mtDNA-CN is associated with aging-related diseases that
primarily manifest in nonblood tissues. Further examination of
pathways significant in multiple tissues revealed that ribosomal
subunit genes were significantly negatively associated with
mtDNA-CN. Although there has been conflicting evidence on
the relationship between mtDNA-CN and ribosomal content,
our study revealed a strong inverse relationship between ribosomal
DNA dosage and mtDNA-CN (Gibbons et al. 2014; Guantes et al.
2015). Importantly, because these are statistical associations, caus-
al directionality cannot be determined between gene expression
and blood-derived mtDNA-CN. Future follow-up studies are need-
ed to determine functional causality for mtDNA-CN and gene
expression.

KEGG pathways that were significantly enriched in multiple
tissues included Huntington’s disease, Alzheimer’s disease, and
Parkinson’s disease. These aging-related neurodegenerative diseas-
es all have underlying mitochondrial pathologies (Coskun et al.
2010; Petersen et al. 2014;Wei et al. 2017; Park et al. 2018) anddys-
regulated ubiquitination pathways (Atkin and Paulson 2014). In
particular, mtDNA-CN has been implicated in Alzheimer’s disease
(Rice et al. 2014; Delbarba et al. 2016; Lv et al. 2019) and cognitive
function (Lee et al. 2010, 2017a). Further, the ELK1 transcription
factor, whose target sequences were significantly enriched in 19
tissues, plays a role in multiple neurodegenerative diseases
(Besnard et al. 2011). Finally, after finding that blood-derived
mtDNA-CN was associated with expression of neurodegenerative
disease genes, we used an independent data set, the UK Biobank,
and found that mtDNA-CN was significantly associated with
both prevalent and incident neurodegenerative disease risk. In
conclusion, our findings show that blood-derived mtDNA-CN is
significantly associated with gene expression from tissues across
the body and that higher mtDNA-CN is associated with decreased
incident neurodegenerative disease risk.

Methods

GTEx sample acquisition

Whole genome sequences were downloaded from the GTEx
version 8 cloud repository on 11/18/2020. RNA-sequencing

Table 6. mtDNA-CN is associated with incident and prevalent neurodegenerative disease

Prevalent disease Odds ratio Confidence interval Number of cases/controls P-value

Parkinson’s disease 0.90 0.83;0.97 697/368,734 0.005
Dementia (excluding AD) 0.81 0.67;0.99 107/368,607 0.039
Combined neurodegenerative disease 0.89 0.83;0.96 853/368,578 1.00× 10−3

Incident disease Hazard ratio Confidence interval Number of cases/controls P-value

Parkinson’s disease 0.92 0.86;0.98 965/367,769 0.016
Alzheimer’s disease 0.98 0.91;1.06 705/368,714 0.625
Dementia (excluding AD) 0.93 0.88;0.99 1106/367,501 0.026
Combined neurodegenerative disease 0.95 0.91;0.98 2468/366,110 0.007

Hazard ratios and odds ratios for neurodegenerative disease associate with a 1-standard-deviation increase in whole blood mtDNA-CN estimated from
either a Cox proportional-hazards model (incident) or a logistic regression model (prevalent) in the UKBiobank. Analysis was restricted to individuals of
European descent, and individuals who were outliers for cell counts were excluded from analysis. P-values have not been adjusted for multiple testing.

Table 5. Random-effects meta-analysis for genes driving the enrich-
ment of pathways in multiple tissues

Gene
Meta effect size

estimate
Meta standard

error
Meta P-
value

ELK1 targets
STARD3 0.05 0.00 1.49 × 10−17

EIF5A 0.08 0.01 4.97 × 10−17

ERH 0.07 0.01 8.82 × 10−17

RNA-binding genes
SUZ12 0.06 0.00 4.49 × 10−18

C1D 0.11 0.01 8.03 × 10−18

MRPL23 −0.09 0.01 8.37 × 10−18

Ribosome genes
RPL34 −0.07 0.01 8.57 × 10−16

RPS27 −0.08 0.01 1.35 × 10−15

RPL39 −0.08 0.01 1.16 × 10−14

Mitochondrial part genes
MRPL23 −0.09 0.01 8.37 × 10−18

MTERF3 −0.06 0.00 3.12 × 10−17

MICU3 0.09 0.01 3.34 × 10−17

Meta-analysis results are from all 47 tested tissues, excluding effects from
whole blood. The top three most significant genes for each pathway are
shown.
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data used for analyses were downloaded from the GTEx portal
(http://gtexportal.org/home/datasets) on 06/18/2019, and pheno-
types were obtained from the database of Genotypes
and Phenotypes (dbGaP; https://www.ncbi.nlm.nih.gov/gap/)
(phs000424.v8.p2).

Estimation of mtDNA-CN

SAMtools version 1.9 (Li et al. 2009) was used to count the number
of mitochondrial, unaligned, and total reads for each whole ge-
nome sequence.mtDNA-CNwas estimated as the number ofmito-
chondrial reads divided by the difference between the number of
total reads and the number of unaligned reads to obtain a ratio
of mtDNA to nuclear DNA. Whole genome is a highly accurate
method for estimation of mtDNA-CN (Wachsmuth et al. 2016;
Longchamps et al. 2020).

Correcting mtDNA-CN for covariates

All statistical analyses were performed with R version 3.6.1 (R Core
Team 2019). Cell type composition for whole blood samples was
determined from RNA sequencing using xCell (Aran et al. 2017),
only allowing for deconvolution of cell types found in blood. A
stepwise regression in both directions was used to select appropri-
ate cell types to correct mtDNA-CN. To avoid model overfitting,
correlated cell types (R>0.8) were removed. The final model used
to adjust mtDNA-CN included neutrophils, hematopoietic stem
cells, megakaryocytes, subject cohort, ischemic time, age, and
sex. Residuals were standardized after adjusting for covariates.
Power calculations were performed using R2 values from previous
studies using the pwr package (Longchamps et al. 2020).

Filtering pipeline

A batch effect due to sample collection and/or sequencing meth-
ods resulted in significantly altered mtDNA-CN for individuals
whowere sequenced prior to January 2013. To keep this from con-
founding the analysis, we excluded subjects with whole genome
sequencing prior to January 2013 (Supplemental Fig. S1).
Individuals whohad greater than 5×107 unalignedwhole genome
sequence reads were also omitted from the analysis. Cell type out-
liers who were greater than three standard deviations (SDs) from
the mean were excluded as well. Only one individual remained
from the surgical cohort after filtering and therefore was also re-
moved (Supplemental Fig. S13).

RNA-sequencing pipeline

GTEx version 8 RNA-sequencing data was downloaded from the
GTEx website in read counts and normalized using the trimmed
mean of M-values method prior to analyses (Robinson and
Oshlack 2010; Robinson et al. 2010). For each separate tissue,
only genes with expression greater than 0.1 counts for at least
20% of samples for that tissue were retained for analysis. To iden-
tify potential hidden confounders, we used surrogate variable
analysis (SVA), protecting mtDNA-CN from SV generation (Leek
and Storey 2007). SVs were associated with known covariates in
the data, such as whether individuals were in the postmortem or
the organ donor cohorts (Supplemental Fig. S3). Individuals who
were greater than three standard deviations from the mean for
the first 10 SVs were omitted from analysis. SV generationwas per-
formed iteratively three times.

Linear model for evaluating associations

To reduce the influence of outliers, both the gene expression met-
ric and the mtDNA-CN metric were inverse normal transformed

prior to linear regression.We then tested for association usingmul-
tiple linear regression, with mtDNA-CN as the predictor and gene
expression as the outcome, correcting for SVs, sex, cohort, race,
ischemic time, and the first three genotyping principal
components.

Genomic inflation factor calculation

Genomic inflation factors were calculated by squaring z-scores to
obtain χ2 values. The median observed χ2 value was divided by
the expected median to obtain lambda (Devlin and Roeder 1999).

Two-stage permutations

To determine an appropriate P-value cutoff, we created null data
sets for permutation testing. First, a multiple linear regression
model for the alternate hypothesis was used to obtain gene expres-
sion residuals. Second, a multiple linear regression model for the
null hypothesis was used to obtain estimates for each gene.
Residuals from the alternatemodel were then permuted and added
to effect estimates from the null model to create null data sets.
Permuted gene expression data were then tested for association
with mtDNA-CN. Permutations were performed 1000 times.
Minimum P-values from each permuted data set were obtained,
and the fifth lowest P-value was utilized as a permutation cutoff.

Annotation of gene categories

Gene annotations were downloaded from GENCODE (Harrow
et al. 2012). Test statistics were then stratified by gene type, and ob-
served and expected distributions were generated for each
category.

Overrepresentation of positive beta estimates

Percentage of positive effect estimates was calculated using all
nominally significant genes in blood, dividing the number of
nominally significant genes with positive effect estimates by the
total number of nominally significant genes. Percentages for null
distributions were calculated using 1000 permutations, generated
using the two-stage permutation method described above.

Gene set enrichment analysis

To examine enrichment for genes in specific pathways, gene sets
for KEGG pathways, transcription factor target sequences, and
Gene Ontologies were downloaded from the Molecular
Signatures Database (Kanehisa and Goto 2000; Liberzon et al.
2011; The Gene Ontology Consortium 2019). Then, using the ab-
solute value of the t-scores from the regression model with
mtDNA-CN, we performed a t-test of t-scores for genes in a specific
pathway versus genes that were not contained in the pathway. For
each tissue, only genes with greater than 0.1 counts in at least 20%
of the tissue samples were used for gene set enrichment analyses.
Based on which genes passed expression thresholds, different lists
of genes were used for enrichment analyses for different tissues.
We also performed 1000 permutations using randomized t-scores
to determine appropriate cutoffs for significance. To confirm
that results were not driven by individual genes in a pathway
with very large t-scores, we also performed t-tests using ranked t-
scores as opposed to absolute value t-scores.

REVIGO trimming and visualization of GO terms

For visualization of significantly enriched GO terms and elimina-
tion of redundant GO terms, REVIGO (http://revigo.irb.hr/) was
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used with the default settings except for the allowed similarity,
which was set to medium (0.7) (Supek et al. 2011).

Testing for associations between blood-derived mtDNA-CN

and gene expression in other tissues

Filtering parameters and models for testing the association of
blood-derived mtDNA-CN with gene expression in other tissues
were identical to the pipeline used in whole blood. Only tissues
with greater than 50 observations after filteringwere tested. For tis-
sues that had no variation in covariates, covariates were dropped
from the linear model (i.e., sex was not used in the model for test-
ing gene expression in reproductive organs, and cohort was not
used in the model for brain tissues).

Spearman’s correlations for effect estimates with whole blood

All significant genes in whole blood that passed the permutation
cutoff (P=2.38×10−6) were used for testing. Spearman’s correla-
tions between effect estimates in blood and effect estimates in oth-
er tissues were calculated. To compare correlations for genes
significant in blood with baseline correlation, we randomly select-
ed 100 random genes and calculated correlations between blood
estimates and specific tissue estimates for those genes.We repeated
this random selection 1000 times to generate multiple baseline
correlation measures.

Meta-analysis of genes driving specific ontologies

To calculate meta-analysis effect estimates and P-values, the R
“meta” package (Balduzzi et al. 2019) was used to perform a ran-
dom-effects meta-analysis using all effect estimates and P-values
for all tissues, excluding results from whole blood.

Association of mtDNA-CN with neurodegenerative disease in

UKB

UKB mtDNA-CN derivation

We started with 49,997 Exome SPB CRAM files (version Jul 2018)
downloaded from the UKB data repository and used SAMtools
(ver1.9) to extract read summary statistics (“idxstats” command).
A custom Perl script was used to aggregate the summary statistics
from each individual file into the following categories (see Perl
script and example stats file): (1) Total Reads (sum of columns 3
and 4, across all rows); (2) Mapped Reads (sum of column 3, across
all rows); (3) Unmapped Reads (sum of column 4 across all rows);
(4) Autosomal Reads (sum of column 3, rows 1–22); (5) Chr X;
(6) Chr Y; (7) Chr MT; (8) “Random” Reads (sum of column 3,
across rows 26–67); (9) “Unknown” Reads (sum of column 3 across
rows 68–194); (10) EBV Reads; (11) “Decoy1” Reads (sum of col-
umn 3 across rows 196–582); (12) “Decoy2” Reads (sum of column
3 across rows 583–2580). Linear regressionmodels were used to ad-
just for total DNA and potential technical artifacts. Specifically, we
used 10-fold cross-validation for variable selection, using the
“leaps” R package (version 3.0), with an initial model with
chrMT read count as the dependent variable, and “Total”,
“Mapped”, “unknown”, “random”, “decoy1”, and “decoy2” read
counts as the independent variables. For each of the independent
variables, we included a natural spline with df = 4 to allow for non-
linear effects. The independent variables “Total”, “unknown”,
“decoy1”, and “decoy2” read counts were selected. We then in-
creased the natural spline df to 15 and then used backward selec-
tion to reduction model complexity, requiring P<0.005 to keep
a term in themodel. The final regressionmodel residuals were gen-

erated with the following R (version 3.6.0) code:

WES.mtDNA = residuals(lm(chrMT�ns(Total, df = 3)

+ ns(unknown, df = 4)+ ns(decoy1, df = 7)

+ decoy2))

Mitochondrial SNP probe intensities were obtained from the
“ukb_chrMT_l2r.txt” file downloaded from the UK Biobank, and
samples were stratified by array type (UKBelieve, Axiom). To cor-
rect for potential artifacts and/or batch effects, we generated 250
principal components (PCs) using the “rpca” command from the
“rsvd” package (version 1.0.3) from autosomal nuclear probes by
randomly sampling 5% of probes from either even or odd chromo-
somes that were required to be present on both array types
(n∼19,500 probes). Note that we generated the two independent
sets of PCs so that we could ensure that probe selection for PCA
did not bias results. Prior to PCA, all probe intensities were rank-
transformed to reduce the impact of any outliers. For each array
type, all mitochondrial SNP probes (UKBelieve, n=181; Axiom, n
=244) along with the 250 PCs were regressed on the
“WES.mtDNA” metric derived as described above. Beta estimates
from these analyses were then used to generate fitted values in
the full UK Biobank data set using the “predict” function
(“array.mtDNA”).

Given the known impact of age, sex, and cell counts on
mtDNA-CN, we first used visual inspection to identify outliers
for cell counts:

Log(WBC) ≤1.25 or ≥3
Log(RBC) ≤1.4 or ≥2s
Platelet ≤10 or ≥500
Log(Lymphocyte) ≤0.10 or ≥2
Log(Mono) ≥0.9
Log(Neutrophil) ≤0.75 or ≥2.75
Log(Eos) ≥0.75
Log(Baso) ≥0.45

We then excluded self-identified non-white individuals
due to insufficient WES data, related individuals
(used.in.pca.calculation==0), and cell count outliers and then ad-
justed for age and sex using the following linear regression model:

mtDNA-CN = residuals(lm(array.mtDNA�ns(age, df = 2)+ sex

Beta estimates from these analyses were then used to generate fit-
ted values in the full UK Biobank data set using the “predict”
function.

For all analyses, mtDNA-CN was standardized by subtracting
the mean and dividing by the standard deviation.

A Cox proportional-hazards model was used to evaluate the
association between mtDNA-CN and time to incident neurode-
generative disease, adjusting for age and sex, whereas a logistic re-
gressionmodel was used to evaluate associations betweenmtDNA-
CN and prevalent neurodegenerative disease. Individuals with
prevalent neurodegenerative disease were omitted from the inci-
dent analysis.

Software availability

All in-house scripts are available as Supplemental Code and at
GitHub (https://github.com/syyang93/mtDNA_GE_scripts).
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