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a b s t r a c t

Clustering is a fundamental data analysis method. It is widely used for pattern recognition, feature
extraction, vector quantization (VQ), image segmentation, function approximation, and data mining.
As an unsupervised classification technique, clustering identifies some inherent structures present in
a set of objects based on a similarity measure. Clustering methods can be based on statistical model
identification (McLachlan&Basford, 1988) or competitive learning. In this paper,we give a comprehensive
overview of competitive learning based clustering methods. Importance is attached to a number of
competitive learning based clustering neural networks such as the self-organizing map (SOM), the
learning vector quantization (LVQ), the neural gas, and the ART model, and clustering algorithms such as
the C-means, mountain/subtractive clustering, and fuzzy C-means (FCM) algorithms. Associated topics
such as the under-utilization problem, fuzzy clustering, robust clustering, clustering based on non-
Euclidean distance measures, supervised clustering, hierarchical clustering as well as cluster validity are
also described. Two examples are given to demonstrate the use of the clustering methods.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Vector quantization (VQ) is a classical method for approximat-
ing a continuous probability density function (PDF) p(x) of the vec-
tor variable x ∈ Rn by using a finite number of prototypes. A set
of feature vectors x is represented by a finite set of prototypes
{c1, . . . , cK } ⊂ Rn, referred to as the codebook. Codebook design
can be performed by using clustering. Once the codebook is spec-
ified, approximation of x is to find the reference vector c from the
codebook that is closest to x (Kohonen, 1989, 1997). This is the
nearest-neighbor paradigm, and the procedure is actually simple
competitive learning (SCL).
The codebook can be designed by minimizing the expected

squared quantization error

E =
∫
‖x− c‖2p(x)dx (1)

where c is a function of x and ci. Given the sample xt , an iterative
approximation scheme for finding the codebook is derived by Ko-
honen (1997)

ci(t + 1) = ci(t)+ η(t)δwi [xt − ci(t)] (2)

where the subscript w corresponds to the winning prototype,
which is the prototype closest to xt , δwi is the Kronecker delta, with
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δwi taking 1 forw = i and 0 otherwise, and η > 0 is a small learn-
ing rate that satisfies the classical Robbins–Monro conditions, that
is,
∑
η(t) = ∞ and

∑
η2(t) < ∞. Typically, η is selected to

be decreasing monotonically in time. For example, one can select
η(t) = η0

(
1− t

T

)
, where η0 ∈ (0, 1] and T is the iteration bound.

This is the SCL based VQ.
Voronoi tessellation, also called Voronoi diagram, is useful for

demonstrating VQ results. The space is partitioned into a finite
number of regions bordered by hyperplanes. Each region is rep-
resented by a codebook vector, which is the nearest neighbor to
any point within the region. All vectors in each region constitute a
Voronoi set. For a smooth underlying probability density p(x) and
a large K , all regions in an optimal Voronoi partition have the same
within-region variance σk (Gersho, 1979).
Given a competitive learning based clustering method, learn-

ing is first conducted to adjust the algorithmic parameters; after
the learning phase is completed, the network is ready for gener-
alization. When a new input pattern x is presented to the map,
the map gives the corresponding output c based on the nearest-
neighborhood rule. Clustering is a fundamental data analysis
method, and is widely used for pattern recognition, feature extrac-
tion, VQ, image segmentation, and data mining. In this paper, we
provide a comprehensive introduction to clustering. Various clus-
tering techniques based on competitive learning are described. The
paper is organized as follows. In Section 2, we give an introduction
to competitive learning. In Section 3, the Kohonen network and
the self-organizing map (SOM) are treated. Section 4 is dedicated
to learning vector quantization (LVQ). Sections 5–7 deal with the
C-means, mountain/subtractive, and neural gas clustering meth-
ods, respectively. ART andARTMAPmodels are treated in Section 8.
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Fig. 1. Architecture of the competitive learning network. The output selects one of
the prototypes ci by setting yi = 1 and all yj = 0, j 6= i.

Fuzzy clustering is described in Section 9, and supervised cluster-
ing are described in Section 10. In Section 11, the under-utilization
problem as well as strategies for avoiding this problem is narrated.
Robust clustering is treated in Section 12, and clustering using non-
Euclidean distance measures is coped with in Section 13. Hierar-
chical clustering and its hybridization with partitional clustering
are described in Section 14. Constructive clustering methods and
other clustering methods are introduced in Sections 15 and 16, re-
spectively. Some cluster validity criteria are given in Section 17.
Two examples are given in Section 18 to demonstrate the use of
the clustering methods. We wind up by a summary in Section 19.

2. Competitive learning

Competitive learning can be implemented using a two-layer
(J–K ) neural network, as shown in Fig. 1. The input and output lay-
ers are fully connected. The output layer is called the competition
layer, wherein lateral connections are used to perform lateral inhi-
bition.
Based on the mathematical statistics problem called cluster

analysis, competitive learning is usually derived byminimizing the
mean squared error (MSE) functional (Tsypkin, 1973)

E =
1
N

N∑
p=1

Ep (3)

Ep =
K∑
k=1

µkp
∥∥xp − ck

∥∥2 (4)

where N is the size of the pattern set, and µkp is the connection
weight assigned to prototype ck with respect to xp, denoting the
membership of pattern p into cluster k. When ck is the closest
(winning) prototype to xp in the Euclidean metric, µkp = 1;
otherwiseµkp = 0. The SCL is derived byminimizing (3) under the
assumption that theweights are obtained by the nearest prototype
condition. Thus

Ep = min
1≤k≤K

∥∥xp − ck
∥∥2 (5)

which is the squared Euclidean distance between the input xp and
its closest prototype ck.
Based on the criterion (4) and the gradient-descent method,

assuming cw = cw(t) to be the winning prototype of x = xt , we
get the SCL as

cw(t + 1) = cw(t)+ η(t) [xt − cw(t)] (6)
ci(t + 1) = ci(t), i 6= w (7)

where η(t) can be selected according to the Robbins–Monro
conditions. The process is known as winner-take-all (WTA). The
WTA mechanism plays an important role in most unsupervised
learning networks. If each cluster has its own learning rate as ηi =
1
Ni
, Ni being the number of samples assigned to the ith cluster, the

algorithm achieves the minimum output variance (Yair, Zeger, &
Gersho, 1992).
ManyWTAmodelswere implementedbasedon the continuous-

timeHopfield network topology (Dempsey&McVey, 1993;Majani,
Erlanson, & Abu-Mostafa, 1989; Sum et al., 1999; Tam, Sum, Leung,
& Chan, 1996), or based on the cellular neural network (CNN) (Chua
&Yang, 1988)modelwith linear circuit complexity (Andrew, 1996;
Seiler & Nossek, 1993). There are also some circuits for realizing
theWTA function (Lazzaro, Lyckebusch, Mahowald, &Mead, 1989;
Tam et al., 1996). k-winners-take-all (k-WTA) is a process of se-
lecting the k largest components from an N-dimensional vector. It
is a key task in decision making, pattern recognition, associative
memories, or competitive learning networks. k-WTA networks are
usually based on the continuous-time Hopfield network (Calvert &
Marinov, 2000; Majani et al., 1989; Yen, Guo, & Chen, 1998), and
k-WTA circuits (Lazzaro et al., 1989; Urahama & Nagao, 1995) can
be implemented using the Hopfield network based on the penalty
method and have infinite resolution.

3. The Kohonen network

Von der Malsburg’s model (von der Malsburg, 1973) and Koho-
nen’s self-organization map (SOM) (Kohonen, 1982, 1989) are two
topology-preserving competitive learningmodels that are inspired
by the cortex of mammals. The SOM is popular for VQ, clustering
analysis, feature extraction, and data visualization.
The Kohonen network has the same structure as the competi-

tive learning network. The output layer is called the Kohonen layer.
Lateral connections are used as a form of feedback whose magni-
tude is dependent on the lateral distance from a specific neuron,
which is characterized by a neighborhood parameter. The Kohonen
network defined on Rn is a one-, two-, or higher-dimensional grid
A of neurons characterized by prototypes ck ∈ Rn (Kohonen, 1989,
1990). Input patterns are presented sequentially through the input
layer,without specifying the desired output. The Kohonen network
is called the SOM when the lateral feedback is more sophisticated
than the WTA rule. For example, the lateral feedback used in the
SOM can be selected as the Mexican hat function, which is found
in the visual cortex. The SOM is more successful in classification
and pattern recognition.

3.1. The self-organizing map

The SOM computes the Euclidean distance of the input pattern
x to each neuron k, and find the winning neuron, denoted neuron
wwith prototype cw , using the nearest-neighbor rule. Thewinning
node is called the excitation center.
For all the input vectors that are closest to cw , update all the

prototype vectors by the Kohonen learning rule (Kohonen, 1990)

ck(t + 1) = ck(t)+ η(t)hkw(t)
[
xt − ck(t)

]
, k = 1, . . . , K (8)

where η(t) satisfies the Robbins–Monro conditions, and hkw(t) is
the excitation response or neighbor function, which defines the
response of neuron k when cw is the excitation center. If hkw(t)
takes δkw , (8) reduces to the SCL. hkw(t) can be selected as a
function that decreases with the increasing distance between ck
and cw , and typically as the Gaussian function

hwk(t) = h0e
−
‖ck−cw‖

2

σ2(t) (9)

where the constant h0 > 0, σ(t) is a decreasing function of t with a
popular choice, σ(t) = σ0e−

t
τ , σ0 being a positive constant and τ a

time constant (Obermayer, Ritter, & Schulten, 1991). The Gaussian
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function is biologically more reasonable than a rectangular one.
The SOMusing theGaussian neighborhood convergesmore quickly
than that using a rectangular one (Lo & Bavarian, 1991).

ck(0) can be selected as random values, or from available sam-
ples, or any ordered initial state. The algorithm terminated when
the map achieves an equilibrium with a given accuracy or when
a specified number of iterations is reached. In the convergence
phase, hwk can be selected as time-invariant, and each prototype
can be updated by using an individual learning rate ηk Kohonen
(1997)

ηk(t + 1) =
ηk(t)

1+ hwkηk(t)
. (10)

Normalization of x is suggested since the resulting reference vec-
tors tend to have the same dynamic range. This may improve the
numerical accuracy (Kohonen, 1990).
The SOM (Kohonen, 1989) is a clustering network with a set

of heuristic procedures: it is not based on the minimization of
any known objective function. It suffers from several major prob-
lems, such as forced termination, unguaranteed convergence, non-
optimized procedure, and the output being often dependent on the
sequence of data. The Kohonen network is closely related to the C-
means clustering (Lippman, 1987). There are some proofs for the
convergence of the one-dimensional SOM based on the Markov
chain analysis (Flanagan, 1996), but no general proof of conver-
gence for multi-dimensional SOM is available (Flanagan, 1996; Ko-
honen, 1997).
The SOM performs clustering while preserving topology. It is

useful for VQ, clustering, feature extraction, and data visualization.
The Kohonen learning rule is a major development of competitive
learning. The SOM is related to adaptive C-means, but performs a
topological feature map which is more complex than just cluster
analysis. After training, the input vectors are spatially ordered
in the array. The Kohonen learning rule provides a codebook
in which the distortion effects are automatically taken into
account. The SOM is especially powerful for the visualization of
high-dimensional data. It converts complex, nonlinear statistical
relations between high-dimensional data into simple geometric
relations at a low-dimensional display. The SOM can be used to
decompose complex information processing systems into a set of
simple subsystems (Gao, Ahmad, & Swamy, 1991). A fully analog
integrated circuit of the SOM has been designed in Mann and
Gilbert (1989). A comprehensive survey of SOM applications is
given in Kohonen (1996).
However, the SOM is not a good choice in terms of clustering

performance compared to other popular clustering algorithms
such as the C-means, the neural gas, and theART2A (He, Tan, & Tan,
2004; Martinetz, Berkovich, & Schulten, 1993). For large output
dimensions, the number of nodes in the adaptive grid increases
exponentially with the number of function parameters. The
prespecified standard grid topology may not be able to match the
structure of the distribution, leading to poor topological mappings.

3.2. Extensions of the self-organizing Map

Adaptive subspace SOM (ASSOM) (Kohonen, 1996, 1997; Koho-
nen, Oja, Simula, Visa, & Kangas, 1996) is a modular neural net-
work model comprising an array of topologically ordered SOM
submodels. ASSOM creates a set of local subspace representations
by competitive selection and cooperative learning. Each submodel
is responsible for describing a specific region of the input space
by its local principal subspace, and represents a manifold such as
a linear subspace with a small dimensionality, whose basis vec-
tors are determined adaptively. ASSOM not only inherits the topo-
logical representation property of the SOM, but provides learning
results which reasonably describe the kernels of various transfor-
mation groups like the PCA. The hyperbolic SOM (HSOM) (Ritter,
1999) implements its lattice by a regular triangulation of the hy-
perbolic plane. The hyperbolic lattice provides more freedom to
map a complex information space such as language into spatial
relations.
Extraction of knowledge from databases is an essential task of

data analysis and datamining. Themulti-dimensional datamay in-
volve quantitative andqualitative (nominal, ordinal) variables such
as categorical data, which is the case in survey data. The SOM can
be viewed as an extension of principal component analysis (PCA)
due to its topology-preserving property. For qualitative variables,
the SOM has been generalized for multiple correspondence analy-
sis (Cottrell, Ibbou, & Letremy, 2004).
The SOM is designed for real-valued vectorial data analysis,

and it is not suitable for non-vectorial data analysis such as the
structured data analysis. Examples of structured data are tempo-
ral sequences such as time series, language, and words, spatial
sequences like the DNA chains, and tree or graph structured
data arising from natural language parsing and from chemistry.
Prominent unsupervised self-organizingmethods for non-vectorial
data are the temporal Kohonen map (TKM), the recurrent SOM
(RSOM), the recursive SOM (RecSOM), the SOM for structured data
(SOMSD), and themerge SOM (MSOM). All thesemodels introduce
recurrence into the SOM, and have been reviewed and compared
in Hammer, Micheli, Sperduti, and Strickert (2004) and Strickert
and Hammer (2005).

4. Learning vector quantization

The k-nearest-neighbor (k-NN) algorithm (Duda & Hart, 1973)
is a conventional classification technique. It is also used for outlier
detection. It generalizeswell for large training sets, and the training
set can be extended at any time. The theoretical asymptotic classi-
fication error is upper-bounded by twice the Bayes error. However,
it uses a large storage space, and has a computational complexity
of O

(
N2
)
. It also takes a long time for recall.

LVQ (Kohonen, 1990) employs the same network architecture
as the competitive learning network. The unsupervised LVQ is
essentially the SCL based VQ. There are two families of the LVQ-
stylemodels, supervisedmodels such as the LVQ1, th LVQ2, and the
LVQ3 (Kohonen, 1989) as well as unsupervised models such as the
LVQ (Kohonen, 1989) and the incremental C-means (MacQueen,
1967). The supervised LVQ is based on the known classification
of feature vectors, and can be treated as a supervised version of
the SOM. The LVQ is used for VQ and classification, as well as for
fine tuning the SOM (Kohonen, 1989, 1990). LVQ algorithms define
near-optimal decision borders between classes, even in the sense
of classical Bayesian decision theory.
The supervised LVQ minimizes the functional (3), where µkp =

1 if neuron k is the winner and zero otherwise, when pattern pair
p is presented. It works on a set of N pattern pairs

(
xp, yp

)
, where

xp ∈ RJ is the input vector and yp ∈ RK is the binary target vector
coding the class membership, that is, only one entry of yp takes the
value unity while all its other entries are zero. Assuming that the
pth pattern is presented at time t , the LVQ1 is given as (Kohonen,
1990)

cw(t + 1) = cw(t)+ η(k) [xt − cw(t)] , yp,w = 1
cw(t + 1) = cw(t)− η(t) [xt − cw(k)] , yp,w = 0

ci(t + 1) = ci(t), i 6= w (11)

where w is the index of the winning neuron, xt = xp and η(t)
is defined as in earlier formulations. When it is used to fine-tune
the SOM, one should start with a small η(0), usually less than 0.1.
This algorithm tends to reduce the point density of ci around the
Bayesian decision surfaces. The OLVQ1 is an optimized version of
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the LVQ1 (Kohonen, Kangas, Laaksonen, & Torkkola, 1992). In the
OLVQ1, each codebook vector ci is assigned an individual adaptive
learning rate ηi. The OLVQ1 converges at a rate up to one order of
magnitude faster than the LVQ1.
LVQ2 and LVQ3 comply better with the Bayesian decision sur-

face. In LVQ1, only one codebook vector ci is updated at each step,
while LVQ2 and LVQ3 change two codebook vectors simultane-
ously. Different LVQ algorithms can be combined in the clustering
process. However, both LVQ2 and LVQ3 have the problem of refer-
ence vector divergence (Sato & Yamada, 1995). In a generalization
of the LVQ2 (Sato & Yamada, 1995), this problem is eliminated by
applying gradient descent on a nonlinear cost function. Some ap-
plications of the LVQ were reviewed in Kohonen et al. (1996).
Addition of training counters to individual neurons can effec-

tively record the training statistics of the LVQ (Odorico, 1997). This
allows for dynamic self-allocation of the neurons to classes during
the course of training. At the generalization stage, these counters
provide an estimate of the reliability of classification of the individ-
ual neurons. Themethod is especially valuable in handling strongly
overlapping class distributions in the pattern space.

5. C-means clustering

Themostwell-knowndata clustering technique is the statistical
C-means, also known as the k-means (MacQueen, 1967; Moody &
Darken, 1989; Tou & Gonzalez, 1976). The C-means algorithm ap-
proximates themaximum likelihood (ML) solution for determining
the location of the means of a mixture density of component den-
sities. The C-means clustering is closely related to the SCL, and is
a special case of the SOM. The algorithm partitions the set of N in-
put patterns into K separate subsets Ck, each containing Nk input
patterns by minimizing the MSE

E (c1, . . . , cK ) =
1
N

K∑
k=1

∑
xn∈Ck

‖xn − ck‖2 (12)

where ck is the prototype or center of the clusterCk. Byminimizing
E with respect to ck, the optimal location of ck is obtained as the
mean of the samples in the cluster, ck = 1

Nk

∑
xi∈Ck xi.

The C-means can be implemented in either the batch mode
(Linde, Buzo, & Gray, 1980; Moody & Darken, 1989) or the incre-
mental mode (MacQueen, 1967). The batch C-means (Linde et al.,
1980), also called the Linde–Buzo–Gray, LBG or generalized Lloyd
algorithm, is applied when the whole training set is available.
The incremental C-means is suitable for a training set that is
obtained on-line. In the batch C-means, the initial partition is
arbitrarily defined by placing each input pattern into a randomly
selected cluster, and the prototypes are defined to be the average
of the patterns in the individual clusters. When the C-means is
performed, at each step the patterns keep changing from one
cluster to the closest cluster ck according to the nearest-neighbor
rule and the prototypes are then recalculated as the mean of the
samples in the clusters. In the incremental C-means, each cluster
is initialized with a random pattern as its prototype; the C-means
updates the prototypes upon the presentation of each newpattern.
The incremental C-means gives the new prototype as

ck(t + 1) =
{
ck(t)+ η(t) (xt − ck(t)) , k = w
ck(t), k 6= w (13)

where w is the index of the winning neuron, η(t) is defined as
in earlier formulations. The general procedure for the C-means
clustering is to repeat the redistribution of patterns among the
clusters using criterion (12) until there is no further change in the
prototypes of the clusters. After the algorithm converges, one can
calculate the variance vector Eσk for each cluster.
As a gradient-descent technique, the C-means achieves a lo-

cal optimum solution that depends on the initial selection of the
cluster prototypes. The number of clusters must also be prespec-
ified. Numerous improvements on the C-means have been made.
The local minimum problem can be eliminated by using global op-
timization methods such as the genetic algorithm (GA) (Bandy-
opadhyay & Maulik, 2002; Krishna & Murty, 1999), the simulated
annealing (SA) (Bandyopadhyay, Maulik, & Pakhira, 2001), and a
hybrid SA and evolutionary algorithm (EA) system (Delport, 1996).
In Chinrunrueng and Sequin (1995), the incremental C-means is
improved by biasing the clustering towards an optimal Voronoi
partition (Gersho, 1979) via a cluster variance-weightedMSE as the
objective function, and by adjusting the learning rate dynamically
according to the current variances in all partitions. The method al-
ways converges to an optimal or near-optimum configuration. The
enhanced LBG (Patane & Russo, 2001) avoids bad local minima by
incorporation of the concept of utility of a codeword. The enhanced
LBG outperforms the LBGwith utility (LBG-U) (Fritzke, 1997b) both
in terms of accuracy and the number of required iterations. The
LBG-U is also based on the LBG and the concept of utility.
When an initial prototype is in a region with few training

patterns, this results in a large cluster. This disadvantage can be
remedied by a modified C-means (Wilpon & Rabiner, 1985). The
clustering starts from one cluster. It splits the cluster with the
largest intracluster distance into two. After each splitting, the C-
means is applied until the existing clusters are convergent. This
procedure is continued until K clusters are obtained.
The relation between the PCA and the C-means has been es-

tablished in Ding and He (2004). Principal components have been
proved to be the continuous solutions to the discrete cluster
membership indicators for the C-means clustering, with a clear
simplex cluster structure (Ding & He, 2004). PCA based dimen-
sionality reductions are particularly effective for the C-means clus-
tering. Lower bounds for the C-means objective function (12) are
derived as the total variance minus the eigenvalues of the data co-
variance matrix (Ding & He, 2004).
In the two-stage clustering procedure (Vesanto & Alhoniemi,

2000), the SOM is first used to cluster the data set, and the proto-
types produced are further clustered using an agglomerative clus-
tering algorithm or the C-means. The clustering results using the
SOM as an intermediate step are comparable to that of direct clus-
tering of the data, but with a significantly reduced computation
time.

6. Mountain and subtractive clusterings

The mountain clustering (Yager & Filev, 1994a, 1994b) is a
simple and effective method for estimating the number of clusters
and the initial locations of the cluster centers. The method grids
the data space and computes a potential value for each grid point
based on its distance to the actual data points. Each grid point is
a potential cluster center. The potential for each grid is calculated
based on the density of the surrounding data points. The grid with
the highest potential is selected as the first cluster center and then
the potential values of all the other grids are reduced according to
their distances to the first cluster center. The next cluster center
is located at the grid point with the highest remaining potential.
This process is repeated until the remaining potential values of all
the grids fall below a threshold. However, the grid structure causes
the complexity to grow exponentially with the dimension of the
problem.
The subtractive clustering (Chiu, 1994a), as a modified moun-

tain clustering, uses all the data points to replace all the grid points
as potential cluster centers. This effectively reduces the number of
grid points to N (Chiu, 1994a). The potential measure for each data
point xi is defined as a function of the Euclidean distances to all the
other input data points

P(i) =
N∑
j=1

e−α‖xi−xj‖
2
, i = 1, . . . ,N (14)

where the constant α = 4
r2a
, ra being a normalized radius defining

the neighborhood. A data point surrounded by many neighboring
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data points has a high potential value. Thus, the mountain and
subtractive clustering techniques are less sensitive to noise than
other clustering algorithms, such as the C-means and the fuzzy C-
means (FCM) (Bezdek, 1981).
After the data point with the highest potential, xu, is selected

as the kth cluster center, that is, ck = xu with P(k) = P(u) as its
potential value, the potential of each data point xi is modified by
subtracting a term associated with ck

P(i) = P(i)− P(k)e−β‖xi−ck‖
2

(15)

where the constant β = 4
r2b
, rb being a normalized radius defining

the neighborhood. In order to avoid closely located cluster centers,
rb is set greater than ra, typically rb = 1.25ra. The algorithm
continues until the remaining potentials of all the data points are
below some fraction of the potential of the first cluster center

P(k) = max
i
P(i) < εP(1) (16)

where ε is selected within (0, 1). A small ε leads to a large
number of hidden nodes, while a large ε generates a small network
structure. Typically, ε is selected as 0.15.
The training data xi is recommended to be scaled before ap-

plying the method for easy selection of α and β . Since it is difficult
to select a suitable ε for all data patterns, additional criteria for
accepting/rejecting cluster centers can be used. One method is to
select two thresholds (Chiu, 1994a, 1994b), namely, ε and ε. Above
ε, ck is definitely accepted as a cluster center, while below ε it
is definitely rejected. If P(k) falls between the two thresholds, a
trade-off between a reasonable potential and its distance to the
existing cluster centers must been examined.
Unlike the C-means and the FCM, which require iterations of

many epochs, the subtractive clustering requires only one pass of
the training data. Besides, the number of clusters does not need
to be prespecified. The subtractive clustering is a deterministic
method: For the same neural network structure, the same network
parameters are always obtained. Both the C-means and the FCM
require O(KNT ) computations, where T is the total number of
epochs and each computation requires the calculation of the
distance and the memberships. The computational load for the
subtractive clustering is O

(
N2 + KN

)
, each computation involving

the calculation of the exponential function. Thus, for small- or
medium-size training sets, the subtractive clustering is relatively
fast, but it requires more training time when N � KT (Dave &
Krishnapuram, 1997).
The subtractive clustering provides only rough estimates of the

cluster centers, since the cluster centers obtained are situated at
some data points. Moreover, since α and β are not determined
from the data set and no cluster validity is used, the clusters
produced may not appropriately represent the clusters. The result
by the subtractive clustering can be used for initializing iterative
optimization based clustering algorithms such as the C-means and
the FCM.
The subtractive clustering can be improved by performing a

search over α and β , which makes it essentially equivalent to
the least-biased fuzzy clustering algorithm (Beni & Liu, 1994). The
least-biased fuzzy clustering, based on the deterministic anneal-
ing approach (Rose, 1998; Rose, Gurewitz, & Fox, 1990), tries to
minimize the clustering entropy of each cluster under the assump-
tion of unbiased centroids. In Angelov and Filev (2004), an on-line
clustering method has been implemented based on a first-order
Cauchy type potential function. In Pal and Chakraborty (2000),
the mountain and subtractive clustering methods are improved by
tuning the prototypes obtained using the gradient-descentmethod
to maximize the potential function. By modifying the potential
function, the mountain method can also be used to detect other
types of clusters like circular shells (Pal & Chakraborty, 2000).
In Kim, Lee, Lee, and Lee (2005), a kernel-induced distance is used
to replace the Euclidean distance in the potential function. This
enables to cluster the data that is linearly inseparable in the orig-
inal space into homogeneous groups in the transformed high-
dimensional space, where the data separability is increased.

7. Neural gas

The neural gas (NG) (Martinetz et al., 1993) is a VQmodelwhich
minimizes a known cost function and converges to the C-means
quantization error via a soft-to-hard competitivemodel transition.
The soft-to-hard annealing process helps the algorithm escape
from local minima. The NG is a topology-preserving network, and
can be treated as an extension to the C-means. It has a fixed
number of processing units, K , with no lateral connection.
A data optimal topological ordering is achieved by using nei-

ghborhood ranking within the input space at each training step. To
find its neighborhood rank, each neuron compares its distance to
the input vector with those of all the other neurons to the input
vector. Neighborhood ranking provides the training strategy with
mechanisms related to robust statistics, and the NG does not suffer
from theprototypeunder-utilizationproblem (Rumelhart &Zipser,
1985). At step t , the Euclidean distances between an input vector
xt and all the prototype vectors ck(t) are calculated by dk (xt) =
‖xt − ck(t)‖, k = 1, . . . , K , and d(t) = (d1 (xt) , . . . , dK (xt))T.
Each prototype ck(t) is assigned a rank rk(t), which takes an integer
value from 0, . . . , K − 1, with 0 for the smallest and K − 1 for the
largest dk (xt).
The prototypes are updated by

ck(t + 1) = ck(t)+ ηh (rk(t)) (xt − ck(t)) (17)

where h(r) = e−
r
ρ(t) realizes a soft competition, ρ(t) being the

neighborhood width. When ρ(t) → 0, (17) reduces to the C-
means update rule (13). During the iteration, both ρ(t) and η(t)

decrease exponentially, η(t) = η0
(
ηf
η0

) t
Tf and ρ(t) = ρ0

(
ρf
ρ0

) t
Tf ,

where η0 and ρ0 are the initial decay parameters, ηf and ρf are
the final decay parameters, and Tf is the maximum number of
iterations. The prototypes ck are initialized by randomly assigning
vectors from the training set.
Unlike the SOM, which uses predefined static neighborhood

relations, the NG determines a dynamical neighborhood relation
as learning proceeds. The NG is an efficient and reliable cluster-
ing algorithm, which is not sensitive to the neuron initialization.
The NG converges faster to a smaller MSE E than the C-means,
the maximum-entropy clustering (Rose et al., 1990), and the SOM.
This advantage comes at the price of a higher computational effort.
In serial implementation, the complexity for the NG is O(K log K)
while the other three methods all have a complexity of O(K).
Nevertheless, in parallel implementation all the four algorithms
have a complexity of O(log K) (Martinetz et al., 1993). The NG can
be derived from a gradient-descent procedure on a potential func-
tion associated with the framework of fuzzy clustering (Bezdek,
1981).
To accelerate the sequential NG, a truncated exponential func-

tion is used as the neighborhood function and the neighborhood
ranking is implemented without evaluating and sorting all the dis-
tances (Choy & Siu, 1998b). In Rovetta and Zunino (1999), an im-
proved NG and its analog VLSI subcircuitry have been developed
based on partial sorting. The approach reduces the training time by
up to two orders of magnitude, without reducing the performance.
In the Voronoi tessellation, when the prototype of each Voronoi

region is connected to all the prototypes of its bordering Voronoi
regions, a Delaunay triangulation is obtained. CompetitiveHebbian
learning (Martinetz, 1993;Martinetz & Schulten, 1994) is amethod
that generates a subgraph of the Delaunay triangulation, called
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Fig. 2. An illustration of the Delaunay triangulation and the induced Delaunay
triangulation. The Delaunay triangulation is represented by amix of thick and thick
dashed lines, the inducedDelaunay triangulation by thick lines, Voronoi tessellation
by thin lines, prototypes by circles, and a data distribution P(x) by shaded regions.
To generate the inducedDelaunay triangulation, two prototypes are connected only
if at least a part of the common border of their Voronoi polygons lies in a region
where P(x) > 0.

the induced Delaunay triangulation by masking the Delaunay
triangulation with a data distribution P(x). This is shown in
Fig. 2. The induced Delaunay triangulation is optimally topology-
preserving in a general sense (Martinetz, 1993). Given a number
of prototypes in RJ , competitive Hebbian learning successively
adds connections among them by evaluating input data drawn
from P(x). The method does not change the prototypes, but only
generates topology according to these prototypes. For each input
x, its two closest prototypes are connected by an edge. This leads
to the induced Delaunay triangulation, which is limited to those
regions of the input space RJ , where P(x) > 0. The topology-
representing network (Martinetz & Schulten, 1994) is obtained
by alternating the learning steps of the NG and the competitive
Hebbian learning, where the NG is used to distribute a certain
number of prototypes and the competitive Hebbian learning is
then used to generate the topology. An edge aging scheme is used
to remove obsolete edges. Competitive Hebbian learning avoids
the topological defects observed for the SOM.

8. ART networks

Adaptive resonance theory (ART) (Grossberg, 1976) is biologi-
cally motivated and is a major advance in the competitive learning
paradigm. The theory leads to a series of real-time unsupervised
network models for clustering, pattern recognition, and associa-
tive memory (Carpenter & Grossberg, 1987a, 1987b, 1988, 1990;
Carpenter, Grossberg, & Rosen, 1991a, 1991b; Carpenter, Gross-
berg, Markuzon, Reynolds, & Rosen, 1992). These models are ca-
pable of stable category recognition in response to arbitrary input
sequences with either fast or slow learning. ART models are char-
acterized by systems of differential equations that formulate stable
self-organizing learning methods. Instar and outstar learning rules
are the two learning rules used. The ART has the ability to adapt,
yet not forget the past training, and it overcomes the so-called
stability–plasticity dilemma (Carpenter & Grossberg, 1987a;
Grossberg, 1976). At the training stage, the stored prototype of a
category is adapted when an input pattern is sufficiently similar to
the prototype. When novelty is detected, the ART adaptively and
autonomously creates a new categorywith the input pattern as the
prototype. The similarity is characterized by a vigilance parame-
ter ρ ∈ (0, 1]. A large ρ leads to many finely divided categories,
while a smaller ρ gives fewer categories. The stability and plastic-
ity properties as well as the ability to efficiently process dynamic
data make the ART attractive for clustering large, rapidly cha-
nging sequences of input patterns, such as in the case of data
mining (Massey, 2003). However, the ART approach does not cor-
respond to the C-means algorithm for cluster analysis and VQ in
the global optimization sense (Lippman, 1987).

8.1. ART models

ART model family includes a series of unsupervised learning
models. ART networks employ a J–K recurrent architecture, which
is a different form of Fig. 1. The input layer F1, called the comparing
layer, has J neuronswhile the output layer F2, called the recognizing
layer, has K neurons. F1 and F2 are fully interconnected in both
directions. F2 acts as a WTA network. The feedforward weights
connecting to the F2 neuron j are represented by the vector wj,
while the feedback weights from the same neuron are represented
by the vector cj that stores the prototype of cluster j. The number
of clusters K varies with the size of the problem.
The ART models are characterized by a set of short-term mem-

ory (STM) and long-term memory (LTM) time-domain nonlinear
differential equations. The STM equations describe the evolution
of the neurons and their interactions, while the LTM equations de-
scribe the change of the interconnection weights with time as a
function of the system state. F1 stores the STM for the current input
pattern,while F2 stores the prototypes of clusters as the LTM. There
are three types of ART implementations: full mode, STM steady-
statemode, and fast learningmode (Carpenter &Grossberg, 1987b;
Serrano-Gotarredona & Linares-Barranco, 1996). In the full mode,
both the STM and LTM differential equations are realized. The STM
steady-state mode only implements the LTM differential equa-
tions, while the STM behavior is governed by nonlinear algebraic
equations. In the fast learningmode, both the STM and the LTM are
implemented by their steady-state nonlinear algebraic equations,
and thus proper sequencing of STMand LTMevents is required. The
fast learning mode is inexpensive and is most popular.
Like the incrementalC-means, theARTmodel family is sensitive

to the order of presentation of the input patterns. ARTmodels tend
to build clusters of the same size, independently of the distribution
of the data.

8.1.1. ART 1
The simplest andmost popular ARTmodel is the ART 1 (Carpen-

ter & Grossberg, 1987a) for learning to categorize arbitrarily many,
complex binary input patterns presented in an arbitrary order. A
popular fast learning implementation is given by Du and Swamy
(2006), Moore (1988), Massey (2003) and Serrano-Gotarredona
and Linares-Barranco (1996). The ART 1 is stable for a finite train-
ing set. However, the order of the training patterns may influ-
ence the final prototypes and clusters. Unlike the SOM (Kohonen,
1982), the Hopfield network (Hopfield, 1982), and the neocogni-
tron (Fukushima, 1980), the ART 1 can deal with arbitrary com-
binations of binary input patterns. In addition, the ART 1 has no
restriction on memory capacity since its memory matrices are not
square.
Other popular ART 1-based clustering algorithms are the im-

proved ART 1 (IART 1) (Shih, Moh, & Chang, 1992), the adaptive
Hamming net (AHN) (Hung & Lin, 1995), the fuzzy ART (Carpenter
et al., 1991a, 1992; Carpenter & Ross, 1995), the fuzzy AHN (Hung
& Lin, 1995), and the projective ART (PART) (Cao &Wu, 2002). The
fuzzy ART (Carpenter et al., 1991a) simply extends the logical AND
in the ART 1 to the fuzzy AND. Both the fuzzy ART and the fuzzy
AHN have an analog architecture, and function like the ART 1 but
for analog input patterns.
The ART models, typically governed by differential equations,

have a high computational complexity for numerical implementa-
tions. Implementations using analog or optical hardware are more
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desirable. A modified ART 1 in the fast learning mode has been de-
rived for easy hardware implementation in Serrano-Gotarredona
and Linares-Barranco (1996), and the method has also been ex-
tended for the full mode and the STM steady-state mode. A num-
ber of hardware implementations of the ART 1 in different modes
are also surveyed in Serrano-Gotarredona and Linares-Barranco
(1996).

8.1.2. ART 2
The ART 2 (Carpenter & Grossberg, 1987b) is designed to

categorize analog or binary random input sequences. It is similar
to the ART 1, but has a more complex F1 field so as to allow
the ART 2 to stably categorize sequences of analog inputs that
can be arbitrarily close to one another. The F1 field includes a
combination of normalization and noise suppression, aswell as the
comparison of the bottom-up and top-down signals needed for the
reset mechanism. The clustering behavior of the ART 2 was found
to be similar to that of the C-means clustering (Burke, 1991).
The ART 2 is computationally expensive and has difficulties in

parameter selection. The ART 2A (Carpenter et al., 1991b) employs
the same architecture as the ART 2, and can accurately reproduce
the behavior of the ART 2 in the fast learning limit. The ART 2A
is two to three orders of magnitude faster than the ART 2, and
also suggests efficient parallel implementations. The ART 2A is also
fast at intermediate learning rates, which captures many desirable
properties of slow learning of the ART 2 such as noise tolerance.
In Carpenter and Grossberg (1987b), F2 initially contains a number
of uncommitted nodes, which get committed one by one upon
the input presentation. An implementation of the ART 2A, with F2
being initialized as the null set and dynamically growing during
learning, is given in Du and Swamy (2006); He et al. (2004). The
ART 2A with an intermediate learning rate η copes better with
noisy inputs than it doeswith a fast learning rate, and the emergent
category structure is less dependent on the input presentation
order (Carpenter et al., 1991b). The ART-C 2A (He et al., 2004)
applies a constraint reset mechanism on the ART 2A to allow a
direct control on the number of output clusters generated, by
adaptively adjusting the value of ρ. The ART 2A and the ART-C 2A
have clustering quality comparable to that of the C-means and the
SOM, but with less computational time He et al. (2004).

8.1.3. Other ART models
The ART 3 (Carpenter & Grossberg, 1990) carries out parallel

searches by testing hypotheses about distributed recognition
codes in a multilevel network hierarchy. The ART 3 introduces a
search process for ART architectures that can robustly cope with
sequences of asynchronous analog input patterns in real time. The
distributed ART (dART) (Carpenter, 1997) combines the stable fast
learning capability of ART systems with the noise tolerance and
code compression capabilities of the multilayer perceptron (MLP).
With a WTA code, the unsupervised dART model reduces to the
fuzzy ART (Carpenter et al., 1991a). Other ART-based algorithms
include the efficient ART (EART) family (Baraldi & Alpaydin, 2002),
the simplified ART (SART) family (Baraldi & Alpaydin, 2002), the
symmetric fuzzy ART (S-Fuzzy ART) (Baraldi & Alpaydin, 2002),
the Gaussian ART (Williamson, 1996) as an instance of SART
family, and the fully self-organizing SART (FOSART) Baraldi and
Parmiggiani (1997).

8.2. ARTMAP models

ARTMAP models (Carpenter, Grossberg, & Reynolds, 1991; Car-
penter et al., 1992; Carpenter & Ross, 1995), which are self-
organizing and goal-oriented, are a class of supervised learning
methods. The ARTMAP, also called predictive ART, autonomously
learns to classify arbitrarily many, arbitrarily ordered vectors
into recognition categories based on predictive success (Carpen-
ter et al., 1991). Compared to the backpropagation (BP) learn-
ing (Rumelhart, Hinton, & Williams, 1986), the ARTMAP has a
number of advantages such as being self-organizing, self-stabili-
zing, match learning, and real time. The ARTMAP learns orders of
magnitude faster and is also more accurate than the BP. These are
achieved by using an internal controller that jointly maximizes
predictive generalization and minimizes predictive error by link-
ing predictive success to category size on a trial-by-trial basis, us-
ing only local operations. However, the ARTMAP is very sensitive
to the order of the training patterns compared to learning by the
radial basis function network (RBFN) (Broomhead & Lowe, 1988).
The ARTMAP learns predetermined categories of binary input

patterns in a supervised manner. It is based on a pair of ART mod-
ules, namely, ARTa and ARTb. ARTa and ARTb can be fast learning
ART 1 modules coding binary input vectors. These modules are
connected by an inter-ARTmodule that resembles ART 1. The inter-
ART module includes a map field that controls the learning of an
associative map from ARTa recognition categories to ARTb recogni-
tion categories. The map field also controls match tracking of the
ARTa vigilance parameter. The inter-ART vigilance resetting sig-
nal is a form of backpropagation of information. Given a stream
of input–output pairs

{(
xp, yp

)}
. During training, ARTa receives a

stream
{
xp
}
and ARTb receives a stream

{
yp
}
. During generaliza-

tion, when a pattern x is presented to ARTa, its prediction is pro-
duced at ARTb.
The fuzzy ARTMAP (Carpenter et al., 1992; Carpenter & Ross,

1995) can be taught to supervisedly learn predetermined cate-
gories of binary or analog input patterns. The fuzzy ARTMAP in-
corporates two fuzzy ART modules. The fuzzy ARTMAP is capable
of fast, but stable, on-line recognition learning, hypothesis testing,
and adaptive naming in response to an arbitrary stream of ana-
log or binary input patterns. The fuzzy ARTMAP is also shown to
be a universal approximator (Verzi, Heileman, Georgiopoulos, &
Anagnostopoulos, 2003). Othermembers of the ARTMAP family are
the ART-EMAP (Carpenter & Ross, 1995), the ARTMAP-IC (Carpen-
ter & Markuzon, 1998), the Gaussian ARTMAP (Williamson, 1996),
the distributed ARTMAP (dARTMAP) (Carpenter, 1997), the default
ARTMAP (Carpenter, 2003), and the simplified fuzzy ARTMAP (Ka-
suba, 1993; Vakil-Baghmisheh & Pavesic, 2003). The distributed
vs. the WTA-coding representation is a primary factor differenti-
ating the various ARTMAP networks. The relations of some of the
ARTMAP variants are given by Carpenter (2003): fuzzy ARTMAP⊂
default ARTMAP⊂ ARTMAP-IC⊂ dARTMAP.

9. Fuzzy clustering

Fuzzy clustering is an important class of clustering algorithms.
Fuzzy clustering helps to find natural vague boundaries in data.
Preliminaries of fuzzy sets and logic are given in Buckley and
Eslami (2002) and Du and Swamy (2006).

9.1. Fuzzy C-means clustering

The discreteness of each clustermakes the C-means analytically
and algorithmically intractable. Partitioning the dataset in a fuzzy
manner avoids this problem. The FCM clustering (Bezdek, 1974,
1981), also known as the fuzzy ISODATA (Dunn, 1974), treats
each cluster as a fuzzy set, and each feature vector is assigned to
multiple clusters with some degree of certainty measured by the
membership function. The FCM optimizes the following objective
function (Bezdek, 1974, 1981)

E =
K∑
j=1

N∑
i=1

µmji

∥∥xi − cj
∥∥2 (18)



96 K.-L. Du / Neural Networks 23 (2010) 89–107
where the membership matrix U =
{
µji
}
, µji ∈ [0, 1] denoting

the membership of xi into cluster j. The condition must be valid
K∑
j=1

µji = 1, i = 1, . . . ,N. (19)

The weighting parameter m ∈ (1,∞) is called the fuzzifier. m
determines the fuzziness of the partition produced, and reduces
the influence of small membership values. When m → 1+,
the resulting partition asymptotically approaches a hard or crisp
partition. On the other hand, the partition becomes a maximally
fuzzy partition ifm→∞.
By minimizing (18) subject to (19), the optimal solution is

derived as

µji =

(
1

‖xi−cj‖
2

) 1
m−1

K∑
l=1

(
1

‖xi−cl‖2

) 1
m−1

, (20)

cj =

N∑
i=1

(
µji
)m xi

N∑
i=1

(
µji
)m (21)

for i = 1, . . . ,N , j = 1, . . . , K . Eq. (20) corresponds to a soft-
max rule and (21) is similar to the mean of the data points in a
cluster. Both equations are dependent on each other. The iterative
alternating optimization procedure terminates when the change
in the prototypes is sufficiently small (Bezdek, 1981; Karayiannis
& Mi, 1997). The FCM clustering with a high degree of fuzziness
diminishes theprobability of getting stuck at localminima (Bezdek,
1981). A typical value form is 1.5 or 2.0.
The FCM needs to store U and all ci’s, and the alternating

estimation ofU and ci’s causes a computational and storage burden
for large-scale data sets. The computation can be accelerated
by combining their updates (Kolen & Hutcheson, 2002), and
consequently the storage of U is avoided. The single iteration
time of the accelerated method is O(K), while that of the FCM is
O(K 2) (Kolen & Hutcheson, 2002). The C-means is a special case of
the FCM, when µji is unity for only one class and zero for all the
other classes. Like the C-means, the FCMmay find a local optimum
solution, and the result is dependent on the initialization of U or
cj(0).
There are many variants of the FCM. The penalized FCM (Yang,

1993) is a convergent generalized FCM obtained by adding a
penalty termassociatedwithµji. The compensated FCM (Lin, 1999)
speeds up the convergence of the penalized FCM by modifying
the penalty. A weighted FCM (Tsekouras, Sarimveis, Kavakli, &
Bafas, 2004) is used for fuzzy modeling towards developing a
Takagi–Sugeno–Kang (TSK) fuzzy model of optimal structure. All
these and many other existing generalizations of the FCM can
be analyzed in a unified framework called the generalized FCM
(GFCM) (Yu & Yang, 2005), by using the Lagrange multiplier
method from an objective function comprising a generalization
of the FCM criterion and a regularization term. The multistage
random sampling FCM (Cheng, Goldgof, & Hall, 1998) reduces the
clustering time normally by a factor of 2 to 3, with a quality of the
final partitions equivalent to that created by the FCM. The FCM
has been generalized by introducing the generalized Boltzmann
distribution to escape localminima (Richardt, Karl, &Muller, 1998).
Existing global optimization techniques can be incorporated into
the FCM to provide globally optimum solutions. The ε-insensitive
FCM (εFCM) is an extension to the FCM by introducing the robust
statistics using Vapnik’s ε-insensitive estimator to reduce the
effect of outliers (Leski, 2003a). The εFCM is based on L1-norm
clustering (Kersten, 1999). Other robust extensions to the FCM
includes the Lp-norm clustering (0 < p < 1) (Hathaway & Bezdek,
2000) and the L1-normclustering (Kersten, 1999). The FCMhas also
been extended for clustering other data types, such as symbolic
data (El-Sonbaty & Ismail, 1998).
For a blend of unlabeled and labeled patterns, the FCM with

partial supervision (Pedrycz & Waletzky, 1997) can be applied
and the method is derived following the same procedure as
that of the FCM. The classification information is added to the
objective function, and a weighting factor balances the supervised
and unsupervised terms within the objective function (Pedrycz &
Waletzky, 1997). The conditional FCM (Pedrycz, 1998) develops
clusters preserving homogeneity of the clustered patterns with
regard to their similarity in the input space, as well as their
respective values assumed in the output space. It is a supervised
clustering. The conditional FCM is based on the FCM, but requires
the output variable of a cluster to satisfy a particular condition,
which can be treated as a fuzzy set, defined via the corresponding
membership. This results in a reduced computational complexity
for classification problems by splitting the problem into a series
of condition-driven clustering problems. A family of generalized
weighted conditional FCM algorithms are derived in Leski (2003b).

9.2. Other fuzzy clustering algorithms

Many other clustering algorithms are based on the concept of
fuzzy membership. The Gustafson–Kessel algorithm (Gustafson &
Kessel, 1979) extends the FCM by using the Mahalanobis distance,
and is suited for hyperellipsoidal clusters of equal volume. The
algorithm takes typically five times as long as the FCM to com-
plete cluster formation (Karayiannis & Randolph-Gips, 2003).
The adaptive fuzzy clustering (AFC) (Anderson, Bezdek, & Dave,
1982) also employs the Mahalanobis distance, and is suitable for
ellipsoidal or linear clusters. The Gath–Geva algorithm (Gath &
Geva, 1989) is derived froma combination of the FCMand fuzzyML
estimation. Themethod incorporates the hypervolume and density
criteria as cluster validitymeasures and performswell in situations
of large variability of cluster shapes, densities, and number of data
points in each cluster.
The C-means and the FCM are based on the minimization

of the trace of the (fuzzy) within-cluster scatter matrix. The
minimum scatter volume (MSV) and minimum cluster volume
(MCV) algorithms are two iterative clustering algorithms based
on determinant (volume) criteria (Krishnapuram & Kim, 2000).
The MSV algorithm minimizes the determinant of the sum of
the scatter matrices of the clusters, while the MCV minimizes
the sum of the volumes of the individual clusters. The behavior
of the MSV is similar to that of the C-means, whereas the MCV
is more versatile. The MCV in general gives better results than
the C-means, MSV, and Gustafson–Kessel algorithms, and is less
sensitive to initialization than the expectation–maximization (EM)
algorithm (Dempster, Laird, & Rubin, 1977). Volume prototypes
extend the cluster prototypes from points to regions in the
clustering space (Kaymak & Setnes, 2002). A cluster represented by
a volume prototype implies that all data points close to a cluster
center belong fully to that cluster. In Kaymak and Setnes (2002),
the Gustafson–Kessel algorithm and the FCM have been extended
by using the volume prototypes and similarity-driven merging of
clusters.
There are various fuzzy clustering methods that are based on

the Kohonen network, the LVQ, the ART models, and the Hopfield
network.

9.2.1. Kohonen network and learning vector quantization based fuzzy
clustering
The fuzzy SOM (Huntsberger & Ajjimarangsee, 1990) modifies

the SOM by replacing the learning rate with fuzzy membership
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of the nodes in each class. The fuzzy LVQ (FLVQ) (Bezdek & Pal,
1995), originally named the fuzzy Kohonen clustering network
(FKCN) (Bezdek, Tsao, & Pal, 1992), is a batch algorithm that
combines the ideas of fuzzy membership values for learning rates,
the parallelism of the FCM, and the structure and self-organizing
update rules of the Kohonen network. Soft competitive learning
in clustering has the same function as fuzzy clustering (Baraldi
& Blonda, 1999). The soft competition scheme (SCS) (Yair et al.,
1992) is a sequential, deterministic version of LVQ, obtained by
modifying the neighborhood mechanism of the Kohonen learning
rule and incorporating the stochastic relaxation technique. The SCS
consistently provides better codebooks than the incremental C-
means (Linde et al., 1980), even for the same computation time,
and is relatively insensitive to the choice of the initial codebook.
The learning rates of the FLVQ and SCS algorithms have opposite
tendencies (Bezdek & Pal, 1995). The SCS has difficulty in selecting
good parameters (Bezdek & Pal, 1995). Other extensions to the
FLVQ, LVQ, and FCM algorithms are the extended FLVQ family
learning schemes (Karayiannis & Bezdek, 1997), the non-Euclidean
FLVQ (NEFLVQ) and the non-Euclidean FCM (NEFCM) (Karayiannis
& Randolph-Gips, 2003), the generalized LVQ (GLVQ) (Pal, Bezdek,
& Tsao, 1993), the generalized LVQ family (GLVQ-F) (Karayiannis,
Bezdek, Pal, Hathaway, & Pai, 1996), the family of fuzzy algorithms
for LVQ (FALVQ) (Karayiannis, 1997; Karayiannis & Pai, 1996),
entropy-constrained fuzzy clustering (ECFC) algorithms, and
entropy-constrained LVQ (ECLVQ) algorithms (Karayiannis, 1999).

9.2.2. ART networks based fuzzy clustering
In Section 8.1, we havementioned some fuzzy ARTmodels such

as the fuzzy ART, the S-fuzzy ART, and the fuzzy AHN, as well
as some fuzzy ARTMAP models such as the fuzzy ARTMAP, the
ART-EMAP, default ARTMAP, the ARTMAP-IC, and the dARTMAP.
The supervised fuzzy min–max classification network (Simpson,
1992) as well as the unsupervised fuzzy min–max clustering net-
work (Simpson, 1993) is a kind of combination of fuzzy logic and
the ART 1 (Carpenter & Grossberg, 1987a). The operations in these
models require only complements, additions and comparisons that
are most suitable for parallel hardware execution. Some cluster-
ing and fuzzy clustering algorithms including the SOM (Kohonen,
1989), the FLVQ (Bezdek & Pal, 1995), the fuzzy ART (Carpenter
et al., 1991a), the growing neural gas (GNG) (Fritzke, 1995a), and
the FOSART (Baraldi & Parmiggiani, 1997) are surveyed and com-
pared in Baraldi and Blonda (1999).

9.2.3. Hopfield network based fuzzy clustering
The clustering problem can be cast as a problem of minimiza-

tion of the MSE between the training patterns and the cluster cen-
ters. This optimization problem can be solved using the Hopfield
network (Lin, 1999; Lin, Cheng, &Mao, 1996). In the fuzzy Hopfield
network (FHN) (Lin et al., 1996) and the compensated fuzzy Hop-
field network (CFHN) (Lin, 1999), the training patterns aremapped
to a Hopfield network of a two-dimensional neuron array, where
each column represents a cluster and each row a training pattern.
The state of each neuron corresponds to a fuzzymembership func-
tion. A fuzzy clustering strategy is included in the Hopfield net-
work to eliminate the need for finding the weighting factors in the
energy function. This energy function is called the scatter energy
function, and is formulated based on the within-class scatter ma-
trix. Thesemodels have inherent parallel structures. In the FHN (Lin
et al., 1996), an FCM strategy is imposed for updating the neuron
states. The CFHN (Lin, 1999) integrates the compensated FCM into
the learning scheme and updating strategies of the Hopfield net-
work to avoid theNP-hardproblem (Swamy&Thulasiraman, 1981)
and to accelerate the convergence for the clustering procedure. The
CFHN learns more rapidly and more effectively than clustering us-
ing the Hopfield network, the FCM, and the penalized FCM (Yang,
1993). The CFHN has been used for VQ in image compression (Liu &
Lin, 2000), so that the parallel implementation for codebook design
is feasible.

10. Supervised clustering

When output patterns are used in clustering, this leads to
supervised clustering. The locations of the cluster centers are
determined by both the input pattern spread and the output
pattern deviations. For classification problems, the class mem-
bership of each training pattern is available and can be used
for clustering, thus significantly improving the decision accuracy.
Examples of supervised clustering include the LVQ family (Koho-
nen, 1990), the ARTMAP family (Carpenter et al., 1991), the con-
ditional FCM (Pedrycz, 1998), the supervised C-means (Al-Harbi &
Rayward-Smith, 2006), and the C-means plus k-NN based cluster-
ing Bruzzone and Prieto (1998).
Supervised clustering can be implemented by augmenting the

input patternwith its output pattern, x̃i =
[
xTi , y

T
i

]T, so as to obtain
an improved distribution of the cluster centers by an unsupervised
clustering (Chen, Chen, & Chang, 1993; Pedrycz, 1998; Runkler &
Bezdek, 1999; Uykan, Guzelis, Celebi, & Koivo, 2000). A scaling
factor β is introduced to balance between the similarities in the
input and output spaces x̃ =

[
xTi , βy

T
i

]T (Pedrycz, 1998). By
applying the FCM, the new cluster centers cj =

[
cTx,j, c

T
y,j

]T are
obtained. The resulting cluster codebook vectors are projected onto
the input space to obtain the centers.
Based on the enhanced LBG (Patane & Russo, 2001), the clus-

tering for function approximation (CFA) (Gonzalez, Rojas, Pomares,
Ortega, & Prieto, 2002) algorithm is a supervised clusteringmethod
designed for function approximation. The CFA increases the den-
sity of the prototypes in the input areas where the target function
presents a more variable response, rather than just in the zones
with more input examples (Gonzalez et al., 2002). The CFA mini-
mizes the variance of the output response of the training examples
belonging to the same cluster. In Staiano, Tagliaferri, and Pedrycz
(2006), a prototype regression function is built as a linear combi-
nation of local linear regressionmodels, one for each cluster, and is
then inserted into the FCM. Thus, the prototypes are adjusted ac-
cording to both the input distribution and the regression function
in the output space.

11. The under-utilization problem

Conventional competitive learning based clustering like the C-
means or the LVQ suffers from a severe initialization problem
called prototype under-utilization or dead-unit problem, since
some prototypes, called dead units (Grossberg, 1987; Rumelhart
& Zipser, 1985), may never win the competition. This problem is
caused by the fact that only the winning prototype is updated for
every input. Initializing the prototypes with random input vectors
can reduce the probability of the under-utilization problem, but
does not eliminate it. Many efforts have been made to solve the
under-utilization problem.

11.1. Competitive learning with conscience

In the leaky learning strategy (Grossberg, 1987; Rumelhart &
Zipser, 1985), all the prototypes are updated. The winning proto-
type is updated by employing a fast learning rate, while all the los-
ing prototypes move towards the input vector with a much slower
learning rate. Eachprocessing unit is assignedwith a threshold, and
then increase the threshold if the unit wins, or decrease it other-
wise (Rumelhart & Zipser, 1985).
The conscience strategy realizes a similar idea by reducing

the winning rate of the frequent winners (Desieno, 1988). The
frequent winner receives a bad conscience by adding a penalty
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term to its distance from the input signal. This leads to an entropy
maximization, that is, each unit wins at an approximately equal
probability. Thus, the probability of under-utilized neurons being
selected as winners is increased.
The popular frequency sensitive competitive learning (FSCL)

(Ahalt, Krishnamurty, Chen, & Melton, 1990) reduces the under-
utilization problem by introducing a distortion measure that
ensures all codewords in the codebook to be updatedwith a similar
probability. The codebooks obtained by the FSCL algorithm have
sufficient entropy so that Huffman coding of the VQ indices would
not provide significant additional compression. In the FSCL, each
prototype incorporates a count of the number of times it has been
the winner, uj, j = 1, . . . , K . The distance measure is modified
to give prototypes with a lower count value a chance to win the
competition. The only difference with the VQ algorithm is that the
winning neuron is found by Ahalt et al. (1990)

cw(t) = argcj minj=1,...,K

{
uj(t − 1)

∥∥xt − cj(t − 1)
∥∥} (22)

uw(t) = uw(t − 1) + 1, ui(t) = ui(t − 1) for i 6= w, where w
is the index of the winning neuron and ui(0) = 0, i = 1, . . . , K .
In (22), uj

∥∥xt − cj
∥∥ can be generalized as F(uj) ∥∥xt − cj

∥∥. When
selecting the fairness function as F

(
uj
)
= uβ0e

−t/T0
j , β0 and T0

being constants, the FSCL emphasizes the winning uniformity of
codewords initially and gradually turns into competitive learning
as training proceeds to minimize the MSE function.
In the multiplicatively biased competitive learning (MBCL)

model (Choy & Siu, 1998a), the competition among the neurons is
biased by a multiplicative term. The MBCL avoids neuron under-
utilization with probability one, as time goes to infinity. The
FSCL (Ahalt et al., 1990; Krishnamurthy, Ahalt, Melton, & Chen,
1990) is a member of the MBCL family. In the MBCL, only one
weight vector is updated per step. The fuzzy FSCL (FFSCL) (Chung
& Lee, 1994) combines the frequency sensitivity with fuzzy
competitive learning. Since both the FSCL and the FFSCL use a non-
Euclidean distance to determine thewinner, the problem of shared
clusters may occur: a number of prototypes move into the same
cluster as learning proceeds.

11.2. Rival-penalized competitive learning

The problem of shared clusters is considered in the rival-
penalized competitive learning (RPCL) algorithm (Xu, Krzyzak, &
Oja, 1993). The RPCL adds a newmechanism to the FSCL by creating
a rival penalizing force. For each input, thewinning unit ismodified
to adapt to the input, the second-place winner called the rival
is also updated by a smaller learning rate along the opposite
direction, and all the other prototypes remain unchanged

ci(t + 1) =

{ci(t)+ ηw (xt − ci(t)) , i = w
ci(t)− ηr (xt − ci(t)) , i = r
ci(t), otherwise

(23)

where w and r are the indices of winning and rival prototypes,
which are decided by (22), and ηw and ηr are their respective
learning rates, ηw(t)� ηr.
This actually pushes the rival away from the sample pattern

so as to prevent it from interfering the competition. The RPCL
automatically allocates an appropriate number of prototypes for an
input data set, and all the extra candidate prototypes will finally
be pushed to infinity. It provides a better performance than the
FSCL. The RPCL can be regarded as an unsupervised extension of
the supervised LVQ2 (Kohonen, 1990). It simultaneously modifies
the weight vectors of both the winner and its rival, when the
winner is in a wrong class but the rival is in a correct class for an
input vector (Xu et al., 1993). The lotto type competitive learning
(LTCL) (Luk & Lien, 1998) can be treated as a generalization of
the RPCL, where instead of just penalizing the nearest rival, all
the losers are penalized equally. The generalized LTCL (Luk & Lien,
1999) modifies the LTCL by allowing more than one winner, which
are divided into tiers, with each tier being rewarded differently.
The RPCL may, however, encounter the over-penalization or

under-penalization problem (Zhang & Liu, 2002). The STepwise
Automatic Rival-penalized (STAR) C-means (Cheung, 2003) is a
generalization of the C-means based on the FSCL (Ahalt et al., 1990)
and a Kullback–Leibler divergence based criterion. The STAR C-
means has a mechanism similar to the RPCL, but penalizes the
rivals in an implicit way, whereby avoiding the problem of the
RPCL.

11.3. Soft competitive learning

The winner-take-most rule relaxes the WTA rule by allowing
more than one neuron as winners to a certain degree. The is the
soft competitive learning. Examples are the SCS (Yair et al., 1992),
the SOM (Kohonen, 1989), the NG (Martinetz et al., 1993), the
GNG (Fritzke, 1995a), maximum-entropy clustering (Rose et al.,
1990), the GLVQ (Pal et al., 1993), the FCM (Bezdek, 1981), the
fuzzy competitive learning (FCL) (Chung & Lee, 1994), and fuzzy
clustering algorithms. The FCL algorithms (Chung & Lee, 1994) are
a class of sequential algorithms obtained by fuzzifying competitive
learning algorithms, such as the SCL and the FSCL. The enhanced
sequential fuzzy clustering (ESFC) (Zheng & Billings, 1999) is a
modification to the FCL to better overcome the under-utilization
problem. The SOM (Kohonen, 1989) employs the winner-take-
most strategy at the early stages and approaches aWTAmethod as
time goes on. Due to the soft competitive strategy, these algorithms
are less likely to be trapped at local minima and to generate dead
units than hard competitive alternatives (Baraldi & Blonda, 1999).
The maximum-entropy clustering (Rose et al., 1990) circum-

vents the under-utilization problem and local minima in the error
function by using soft competitive learning and deterministic an-
nealing. The prototypes are updated by

ci(t + 1) = ci(t)+ η(t)

 e−β‖xt−ci(t)‖
2

K∑
j=1
e−β‖xt−cj(t)‖

2

 (xt − ci(t)) (24)

where η is the learning rate, 1
β
anneals from a large number to zero,

and the term within the bracket turns out to be the Boltzmann
distribution. The SCS (Yair et al., 1992) employs a similar soft
competitive strategy, but β is fixed as unity.
The winner-take-most criterion, however, detracts some pro-

totypes from their corresponding clusters, and consequently be-
comes biased toward the global mean of the clusters, since all the
prototypes are attracted to each input pattern (Liu, Glickman, &
Zhang, 2000).

12. Robust clustering

Outliers in a data set affects the result of clustering. The in-
fluence of outliers can be eliminated by using the robust statistics
approach (Huber, 1981). This idea has also been incorporated into
many robust clustering methods (Bradley, Mangasarian, & Steet,
1996; Dave & Krishnapuram, 1997; Frigui & Krishnapuram, 1999;
Hathaway & Bezdek, 2000; Kersten, 1999; Leski, 2003a). The C-
median clustering (Bradley et al., 1996) is derived by solving a
bilinear programming problem that utilizes the L1-norm distance.
The fuzzy C-median (Kersten, 1999) is a robust FCM method that
uses the L1-normwith the exemplar estimation based on the fuzzy
median. Robust clustering algorithms can be derived by optimizing
an objective function ET, which comprises of the cost E for the
conventional algorithms and a constraint term Ec for describing the
noise.
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12.1. Noise clustering

In the noise clustering approach (Dave, 1991), all outliers
are collected into a separate, amorphous noise cluster, whose
prototype has the same distance δ from all the data points, while
all the other points are collected into K clusters. The threshold δ
is relatively large compared to the distances of the good points to
their respective cluster prototypes. If a noisy point is far away from
all the K clusters, it is attracted to the noise cluster. In the noise
clustering approach (Dave, 1991), the constraint term is given by

Ec =
N∑
i=1

δ2

(
1−

K∑
j=1

µji

)m
. (25)

Optimizing on E yields

µji =

(
1

‖xi−cj‖2

) 1
m−1

K∑
k=1

(
1

‖xi−ck‖2

) 1
m−1
+

(
1
δ2

) 1
m−1

. (26)

The second term in the denominator, due to outliers, lowers µji.
The formula for the prototypes is the same as that in the FCM. Thus,
the noise clustering can be treated as a robustified FCM. When
all the K clusters have a similar size, the noise clustering is very
effective. However, a single threshold is too restrictive if the cluster
size varies widely in the data set.

12.2. Possibilistic C-means

Unlike fuzzy clustering, the possibilistic C-means (PCM) (Kr-
ishnapuram & Keller, 1993) does not require the sum of the
memberships of a data point across the clusters to be unity. The
membership functions represent a possibility of belonging rather
than a relative degree of membership between clusters. Thus, the
derived degree of membership does not decrease as the number of
clusters increases. Without this constraint, the modified objective
function is decomposed into many individual objective functions,
one for each cluster, which can be optimized separately.
The constraint term for the PCM is given by a sum associated

with the fuzzy complements of all the K clusters

Ec =
K∑
j=1

βj

N∑
i=1

(
1− µji

)m (27)

where βj are suitable positive numbers. The individual objective
functions are given as

E jT =
N∑
i=1

µmji

∥∥xi − cj
∥∥2 + βj N∑

i=1

(
1− µji

)m
, j = 1, . . . , K . (28)

Optimizing (28) with respect to µji yields the solution

µji =
1

1+
(
‖xi−cj‖

2

βj

) 1
m−1

. (29)

For outliers, µji is small. Some heuristics for selecting βj are given
in Krishnapuram and Keller (1993).
Given a number of clusters K , the FCM will arbitrarily split or

merge real clusters in the data set to produce exactly the specified
number of clusters, while the PCM can find those natural clusters
in the data set. When K is smaller than the number of actual
clusters, only K good clusters are found, and the other data points
are treated as outliers. When K is larger than the number of actual
clusters, all the actual clusters can be found and some clusters will
coincide. In the noise clustering, there is only one noise cluster,
while in the PCM there are K noise clusters. The PCM behaves as
a collection of K independent noise clustering algorithms, each
searching a single cluster. The performance of the PCM, however,
relies heavily on initialization of cluster prototypes and estimation
of βj, and the PCM tends to converge to coincidental clusters (Dave
& Krishnapuram, 1997).

12.3. Other robust clustering problems

A family of robust clustering algorithms have been obtained by
treating outliers as the fuzzy complement (Yang & Wang, 2004).
Assuming that a noise cluster exists outside each data cluster,
the fuzzy complement of µji can be viewed as the membership
of xi in the noise cluster with a distance βj. Based on this idea,
many different implementations of the probabilistic approach can
be proposed (Dave & Krishnapuram, 1997; Yang & Wang, 2004),
and a general form of Ec is obtained as a generalization of that for
the PCM (Yang & Wang, 2004). The alternating cluster estimation
method (Runkler & Bezdek, 1999) is a simple extension of the
generalmethod (Dave&Krishnapuram, 1997; Yang&Wang, 2004).
The fuzzy robust C-spherical shells algorithm (Yang & Wang,
2004) searches the clusters that belongs to the spherical shells by
combining the concept of the fuzzy complement and the fuzzy
C-spherical shells algorithm (Krishnapuram, Nasraoui, & Frigui,
1992). The hard robust clustering algorithm (Yang&Wang, 2004) is
an extension of the GLVQ-F algorithm (Karayiannis et al., 1996). All
these robust algorithms are highly dependent on the initial values
and adjustment of βj.
The robust competitive agglomeration (RCA) algorithm (Frigui

& Krishnapuram, 1999) combines the advantages of both the
hierarchical and partitional clustering techniques. The objective
function also contains a constraint term. An optimum number of
clusters is determined via a process of competitive agglomeration,
while the knowledge of the global shape of the clusters is
incorporated via the use of prototypes. Robust statistics like the
M-estimator (Huber, 1981) is incorporated to combat the outliers.
Overlapping clusters are handled by using fuzzy memberships.
Clustering of a vectorial data set withmissing entries belongs to

robust clustering. In Hathaway and Bezdek (2001), four strategies,
namely the whole data, partial distance, optimal completion and
nearest prototype strategies, are discussed for implementing the
FCM for incomplete data. The introduction of the concept of
noise clustering into relational clustering techniques leads to their
robust versions (Dave & Sen, 2002). A review of robust clustering
methods is given in Dave and Krishnapuram (1997).

13. Clustering using non-Euclidean distance measures

Due to the Euclidean distancemeasure, conventional clustering
methods favor hyperspherically shaped clusters of equal size,
but have the undesirable property of splitting big and elongated
clusters (Duda & Hart, 1973). The Mahalanobis distance can be
used to look for hyperellipsoid shaped clusters. However, the
C-means algorithm using the Mahalanobis distance tends to
produce unusually large or unusually small clusters (Mao & Jain,
1996). The hyperellipsoidal clustering (HEC) network (Mao & Jain,
1996) integrates PCA and clustering into one network, and can
adaptively estimate the hyperellipsoidal shape of each cluster.
The HEC implements clustering using a regularized Mahalanobis
distance that is a linear combination of the Mahalanobis and
Euclidean distances. The regularized distance achieves a trade-off
between the hyperspherical and hyperellipsoidal cluster shapes
to prevent the HEC network from producing unusually large or
unusually small clusters. The Mahalanobis distance is used in the
Gustafson–Kessel algorithm (Gustafson & Kessel, 1979) and the
AFC (Anderson et al., 1982). The symmetry based C-means (Su
& Chou, 2001) employs the C-means as a coarse search for the K
cluster centroid and an ensuing fine-tuning procedure based on the
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point-symmetry distance as the dissimilaritymeasure. Themethod
can effectively find clusters with symmetric shapes, such as the
human face.
A number of algorithms for detecting circles and hyperspherical

shells have been proposed as extensions of the C-means and FCM
algorithms. These include the fuzzy C-shells (Dave, 1990), fuzzy C-
ring (Man & Gath, 1994), hard C-spherical shells (Krishnapuram
et al., 1992), unsupervised C-spherical shells (Krishnapuram
et al., 1992), fuzzy C-spherical shells (Krishnapuram et al.,
1992), and possibilistic C-spherical shells (Krishnapuram & Keller,
1993) algorithms. All these algorithms are based on iterative
optimization of objective functions similar to that for the FCM, but
defines the distance from a prototype Eλi = (ci, ri) to the point xj as

d2j,i = d
2
(
xj, Eλi

)
=
(∥∥xj − ci

∥∥− ri)2 (30)

where ci and ri are the center and radius of the hypersphere,
respectively. The optimal number of substructures in the data
set can be effectively estimated by using some validity criteria
such as spherical shell thickness (Krishnapuram et al., 1992), fuzzy
hypervolume and fuzzy density (Gath & Geva, 1989; Man & Gath,
1994).
By using different distance measures, many clustering algo-

rithms can be derived for detecting clusters of various shapes such
as lines and planes (Bezdek, 1981; Dave & Krishnapuram, 1997;
Frigui & Krishnapuram, 1999; Kaymak & Setnes, 2002; Zhang &
Liu, 2002), circles and spherical shells (Krishnapuram et al., 1992;
Pal & Chakraborty, 2000; Zhang & Liu, 2002), ellipses (Frigui & Kr-
ishnapuram, 1999; Gath & Hoory, 1995), curves, curved surfaces,
ellipsoids (Bezdek, 1981; Frigui & Krishnapuram, 1999; Gath &
Geva, 1989; Kaymak & Setnes, 2002; Mao & Jain, 1996), rectangles,
rectangular shells and polygons (Hoeppner, 1997). Relational data
can be clustered by using the non-Euclidean relational FCM (NER-
FCM) (Hathaway & Bezdek, 1994, 2000). Fuzzy clustering for rela-
tional data is reviewed in Dave and Sen (2002).

14. Hierarchical clustering

Existing clustering algorithms are broadly classified into
partitional, hierarchical, and density based clustering. Clustering
methods discussed thus far belong to partitional clustering.

14.1. Partitional, hierarchical, and density based clustering

Partitional clustering can be either hard or fuzzy one. Fuzzy
clustering candealwith overlapping cluster boundaries. Partitional
clustering is dynamic, where points can move from one cluster
to another. Knowledge of the shape or size of the clusters can
be incorporated by using appropriate prototypes and distance
measures. Partitional clustering is susceptible to local minima of
its objective function, and the number of clusters K is usually
required to beprespecified. Also, it is sensitive to noise andoutliers.
Partitional clustering has a typical complexity of O(N).
Hierarchical clustering consists of a sequence of partitions in

a hierarchical structure, which can be represented as a clustering
tree called dendrogram. Hierarchical clustering takes the formof ei-
ther agglomerative or divisive technique. New clusters are formed
by reallocating the membership degree of one point at a time,
based on a certainmeasure of similarity or distance. Agglomerative
clustering is suitable for data with dendritic substructure. Outliers
can be easily identified in hierarchical clustering, since they merge
with other points less often due to their larger distances from the
other points and the number of outliers is typically much less than
that in a cluster. The number of clusters K need not be specified,
and the local minimum problem arising from initialization does
not occur. However, prior knowledge of the shape or size of the
clusters cannot be incorporated, and overlapping clusters cannot
be separated. Moreover, hierarchical clustering is static, and points
committed to a given cluster cannot move to a different cluster.
Hierarchical clustering has a typical complexity of O

(
N2
)
, making

it impractical for larger data set. Divisive clustering reverses the
procedure, but is computationally more expensive (Xu & Wunsch
II, 2005).
Density based clustering groups objects of a data set into clus-

ters based on density conditions. Clusters are dense regions of
objects in the data space and are separated by regions of low den-
sity. The method is robust against outliers since an outlier affects
clustering only in the neighborhood of this data point. It can han-
dle outliers and discover clusters of arbitrary shape. Density based
clustering has a complexity of the same order as hierarchical clus-
tering. The DBSCAN (Ester, Kriegel, Sander, & Xu, 1996) is a widely
known density based clustering algorithm. In the DBSCAN, a re-
gion is defined as the set of points that lie in the ε-neighborhood of
some point p. Cluster label propagation from p to the other points
in a regionR happens if |R|, the cardinality ofR, exceeds a given
threshold for the minimal number of points.

14.2. Distance measures and cluster representations

The inter-cluster distance is usually characterized by the single-
linkage or the complete-linkage technique. The single-linkage
technique calculates the inter-cluster distance using the two clos-
est data points in different clusters. Themethod ismore suitable for
finding well-separated stringy clusters. In contrast, the complete-
linkage technique defines the inter-cluster distance as the farthest
distance between any two data points in different clusters. Other
more complicated methods are group-average-linkage, median-
linkage, and centroid-linkage techniques.
A cluster is conventionally represented by its centroid or pro-

totype. This is desirable only for spherically shaped clusters, but
causes cluster splitting for a large or arbitrarily shaped cluster,
since the centroids of its subclusters can be far apart. At the other
extreme, if all data points in a cluster are used as its representa-
tives, the clustering algorithm is extremely sensitive to noise and
outliers. This all-points representation can cluster arbitrary shapes.
The scatter-points representation (Guha, Rastogi, & Shim, 2001),
as a trade-off between the two extremes, represents each cluster
by a fixed number of points that are generated by selecting well-
scattered points from the cluster and then shrinking them toward
the center of the cluster by a specified fraction. This reduces the ad-
verse effects of the outliers since the outliers are typically farther
away from themean and are thus shifted by a larger distance due to
shrinking. The scatter-points representation achieves robustness
to outliers, and identifies clusters that have non-spherical shape
and wide variations in size.

14.3. Agglomerative clustering

Agglomerative clustering starts from N clusters, each contain-
ing one data point. A series of nested merging is performed un-
til all the data points are grouped into one cluster. The algorithm
processes a set of N2 numerical relationships between the N data
points, and agglomerates according to their similarity or distance.
Agglomerative clustering is based on a local connectivity criterion.
The run time isO

(
N2
)
. Dendrogram is used to illustrate the clusters

produced by agglomerative clustering. Agglomerative clustering
can be based on the centroid (Zhang, Ramakrishnan, & Livny, 1996),
all-points (Zahn, 1971), or scatter-points (Guha et al., 2001) rep-
resentation. For large data sets, storage or multiple input/output
scans of the data points is a bottleneck for the existing clustering
algorithms. Some strategies can be applied to combat this prob-
lem (Guha et al., 2001; Vesanto & Alhoniemi, 2000; Wang & Rau,
2001; Zhang et al., 1996).
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The conventional minimum spanning tree (MST) algorithm
(Zahn, 1971) is a graph-theoretical technique (Swamy & Thulasir-
aman, 1981; Thulasiraman & Swamy, 1992). It uses the all-points
representation. The method first finds an MST for the input data.
Then, by removing the longest K − 1 edges, K clusters are ob-
tained. The MST algorithm is good at clustering arbitrary shapes.
The method, however, is very sensitive to the outliers, and it may
merge two clusters due to a chain of outliers between them. The
BIRCH method (Zhang et al., 1996) first performs an incremen-
tal and approximate preclustering phase in which dense regions
of points are represented by compact summaries, and a centroid
based hierarchical algorithm is then used to cluster the set of sum-
maries. The outliers are eliminated from the summaries via the
identification of the sparsely distributed data points in the feature
space. The BIRCH needs only a littlemore than one scan of the data.
However, the method fails to identify clusters with non-spherical
shapes or a wide variation in size by splitting larger clusters and
merging smaller clusters. The CUREmethod (Guha et al., 2001) is a
robust clustering algorithm based on the scatter-points represen-
tation. To handle large databases, the CURE employs a combination
of random sampling and partitioning. The complexity of the CURE
is not worse than that of centroid based hierarchical algorithms.
The CURE provides a better performance with less execution time
compared to the BIRCH (Guha et al., 2001). It can discover clusters
with interesting shapes and is less sensitive to the outliers than the
MST. The CHAMELEON (Karypis, Han, & Kumar, 1999) first creates
a graph, where each node represents a pattern and all the nodes
are connected according to the k-NN paradigm. The graph is recur-
sively partitioned into many small unconnected subgraphs, each
partitioning yielding two subgraphs of roughly equal size. Agglom-
erative clustering is applied to the subclusters. Two subclusters are
merged only when the interconnectivity as well as the closeness of
the individual clusters is very similar. The CHAMELEON automati-
cally adapts to the characteristics of the clusters beingmerged. The
method is more effective than the CURE in discovering clusters of
arbitrary shapes and varying densities (Karypis et al., 1999).

14.4. Hybridization of hierarchical and partitional clusterings

The advantages of both the hierarchical and the partitional
clustering have been incorporated into many methods (Frigui
& Krishnapuram, 1999; Geva, 1999; Su & Liu, 2005; Vesanto
& Alhoniemi, 2000; Wang & Rau, 2001). The VQ-clustering and
VQ-agglomeration methods (Wang & Rau, 2001) involve a VQ
process followed, respectively, by clustering and agglomerative
clustering that treat the codewords as initial prototypes. Each
codeword is associated with a gravisphere that has a well defined
attraction radius. The agglomeration algorithm requires that each
codeword be moved directly to the centroid of its neighboring
codewords. A similar two-stage clustering procedure that uses the
SOM for VQ and an agglomerative clustering or the C-means for
further clustering is given in Vesanto and Alhoniemi (2000). The
performance results of these two-stage methods are comparable
to those of direct methods, with a significantly reduced execution
time (Vesanto & Alhoniemi, 2000;Wang & Rau, 2001). A two-stage
procedure given in Su and Liu (2005) can cluster data with arbi-
trary shapes, where an ART-like algorithm partitions data into a
set of small multi-dimensional hyperellipsoids and an agglomera-
tive algorithm sequentially merges those hyperellipsoids. Dendro-
grams and the so-called tables of relative frequency counts are then
used to pick some trustable clustering results from a lot of different
clustering results. In the hierarchical unsupervised fuzzy clustering
(HUFC) (Geva, 1999), PCA is applied to each cluster for optimal fea-
ture extraction. This method is effective for data sets with a wide
dynamic variation in both the covariance matrix and the number
of members in each class. The robust competitive agglomeration
(RCA) (Frigui & Krishnapuram, 1999) finds the optimum number
of clusters by competitive agglomeration, and achieves noise im-
munity by integrating robust statistics.
15. Constructive clustering techniques

Conventional partitional clustering algorithms assume a net-
work with a fixed number of clusters (nodes) K . However, select-
ing the appropriate value of K is a difficult task without a prior
knowledge of the input data. Constructive clustering can solve this
difficulty.
A simple strategy for determining K is to perform clustering for

a range of K , and select the value of K that minimizes a cluster
validity measure. This procedure is computationally intensive
when the actual number of clusters is large. Examples of such
strategy are the scatter based FSCL clustering (Sohn & Ansari,
1998) and a method using the distortion errors plus a codebook
complexity term as the cost function (Buhmann & Kuhnel, 1993).
The ISODATA (Ball & Hall, 1967) can be treated as a variant of the
incremental C-means (MacQueen, 1967) by incorporating some
heuristics for merging and splitting clusters, and for handling
outliers; thus, it realizes a variable number of clusters K .
Self-creating mechanism in the competitive learning process

can adaptively determine the natural number of clusters. The self-
creating and organizing neural network (SCONN) (Choi & Park,
1994) employs adaptively modified node thresholds to control
its self-growth. For a new input, the winning node is updated if
it is active; otherwise a new node is created from the winning
node. Activation levels of all the nodes decrease with time, so that
the weight vectors are distributed at the final stage according to
the input distribution. Nonuniform VQ is realized by decreasing
the activation levels of the active nodes and increasing those
of the other nodes to estimate the asymptotic point density
automatically. The SCONN avoids the under-utilization problem,
and has VQ accuracy and speed advantage over the SOM and the
batch C-means (Linde et al., 1980).
The growing cell structures (GCS) network (Fritzke, 1994a)

can be viewed as a modification of the SOM by integrating node
recruiting/pruning functions. It assigns each nodes with a local
accumulated statistical variable called signal counter ui. For each
new pattern, only the winning node increases its signal counter uw
by 1, and then all the signal counters ui decay with a forgetting
factor. After a fixed number of iterations, a new node is inserted
between the node with the largest signal counter and its farthest
neighbor. The algorithm occasionally prunes a node with its signal
counter below a specified threshold during a complete epoch.
The growing grid network (Fritzke, 1995b) is strongly related to
the GCS. As opposed to the GCS, the growing grid has a strictly
rectangular topology. By inserting complete rows or columns of
units, the grid may adapt its height/width ratio to the given
pattern distribution. The branching competitive learning (BCL)
network (Xiong, Swamy, Ahmad, & King, 2004) adopts the same
technique for recruiting and pruning nodes as the GCS except that
a new geometrical criterion is applied to the winning node before
updating its signal counter uw .
The GNG model (Fritzke, 1995a, 1997a) is based on the GCS

(Fritzke, 1994a) and the NG (Martinetz et al., 1993). The GNG is ca-
pable of generating and removing neurons and lateral connections
dynamically. Lateral connections are generated by the competitive
Hebbian learning rule. The GNG achieves robustness against noise
and performs perfect topology-preservingmapping. The GNGwith
utility criterion (GNG-U) (Fritzke, 1997a) integrates an on-line cri-
terion to identify and delete useless neurons, and can thus track
nonstationary data input. A similar on-line clustering method is
given in Furao and Hasegawa (2005). The dynamic cell structures
(DCS) model (Bruske & Sommer, 1995) uses a modified Kohonen
learning rule to adjust the prototypes and the competitive Heb-
bian rule so as to establish a dynamic lateral connection structure.
Applying the DCS to the GCS yields the DCS-GCS algorithm, which
has a behavior similar to that of the GNG. The life-long learning cell
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structures (LLCS) algorithm (Hamker, 2001) is an on-line clustering
and topology representation method. It employs a strategy similar
to that of the ART, and incorporates similarity based unit pruning
and aging based edge pruning procedures.
The self-splitting competitive learning (SSCL) (Zhang & Liu,

2002) can find the natural number of clusters based on the
one-prototype-take-one-cluster (OPTOC) paradigm and a validity
measure for self-splitting. The OPTOC enables each prototype to
situate at the centroid of one natural cluster when the number of
clusters is greater than that of the prototypes. The SSCL starts with
a single prototype and splits adaptively until all the clusters are
found. During the learning process, one prototype is chosen to split
into two prototypes according to the validity measure, until the
SSCL achieves an appropriate number of clusters.

16. Miscellaneous clustering methods

There are also numerous density based and graph theory
based clustering algorithms. Here, we mention some algorithms
associated with competitive learning and neural networks. The
LBG has been implemented by storing the data points via a k-
d tree, achieving typically an order of magnitude faster than the
LBG (Kanungo et al., 2002). The expectation–maximization (EM)
clustering (Bradley, Fayyad, & Reina, 1998) represents each cluster
using a probability distribution, typically a Gaussian distribution.
Each cluster is represented by a mean and a J1 × J1 covariance
matrix, where J1 is the dimension of an input vector. Each
pattern belongs to all the clusters with the probabilities of
membership determined by the distributions of the corresponding
clusters. Thus, the EM clustering can be treated as a fuzzy
clustering technique. The EM technique is derived by maximizing
the log likelihood of the probability density function of the
mixture model. The C-means is equivalent to the classification
EM (CEM) algorithm corresponding to the uniform spherical
Gaussian model (Celeux & Govaert, 1992; Xu & Wunsch II, 2005).
Kernel based clustering first nonlinearly maps the patterns into an
arbitrarily high-dimensional feature space, and clustering is then
performed in the feature space. Some examples are the kernel
C-means (Scholkopf, Smola, & Muller, 1998), kernel subtractive
clustering (Kim et al., 2005), variants of kernel C-means based
on the SOM and the ART (Corchado & Fyfe, 2000), a kernel based
algorithm that minimizes the trace of the within-class scatter
matrix (Girolami, 2002), and support vector clustering (SVC) (Ben-
Hur, Horn, Siegelmann, & Vapnik, 2001; Camastra & Verri, 2005;
Chiang &Hao, 2003). The SVC can effectively deal with the outliers.

17. Cluster validity

An optimal number of clusters or a good clustering algorithm is
only in the sense of a certain cluster validity criterion.Many cluster
validity measures are defined for this purpose.

17.1. Measures based on maximal compactness and maximal separa-
tion of clusters

Agood clustering algorithm should generate clusterswith small
intracluster deviations and large inter-cluster separations. Cluster
compactness and cluster separation are two measures for the
performance of clustering. A popular cluster validity measure is
defined as (Davies & Bouldin, 1979; Du & Swamy, 2006)

EWBR =
1
K

K∑
k=1

max
l6=k

{
dWCS (ck)+ dWCS (cl)

dBCS (ck, cl)

}
(31)

where the within-cluster scatter for cluster k, denoted dWCS (ck),
and the between-cluster separation for clusters k and l, denoted
dBCS (ck, cl), are calculated by
dWCS (ck) =

∑
i
‖xi − ck‖

Nk
, dBCS (ck, cl) = ‖ck − cl‖ (32)

Nk being the number of data points in cluster k. The best clustering
minimizes EWBR. This index indicates good clustering results for
spherical clusters (Vesanto & Alhoniemi, 2000). Alternative criteria
for the cluster compactness, cluster separation, and overall cluster
quality measures are given in He et al. (2004). In Xie and Beni
(1991), the ratio of compactness and separation is used as a cluster
validity criterion for fuzzy clustering. Entropy cluster validity
measures based on class conformity are given in Boley (1998); He
et al. (2004). Some cluster validity measures are described and
compared in Bezdek and Pal (1998).

17.2. Measures based on minimal hypervolume and maximal density
of clusters

A good partitioning of the data usually leads to a small
total hypervolume and a large average density of the clusters.
Cluster validity measures can be thus selected as the hypervolume
and average density of the clusters. The fuzzy hypervolume
criterion (Gath & Geva, 1989; Krishnapuram et al., 1992) is defined
as the sum of the volumes of all the clusters, Vi, and Vi =
[det (Fi)]

1
2 , where Fi, the fuzzy covariance matrix of the ith cluster,

is defined by Gustafson and Kessel (1979)

Fi =
1

N∑
j=1
µmij

N∑
j=1

µmij
(
xj − ci

) (
xj − ci

)T
. (33)

The average fuzzy density criterion (Gath & Geva, 1989) is defined
as the average of the fuzzy density in each cluster, SiVi , where
Si sums the membership degrees of only those members within
a hyperellipsoid defined by Fi. The fuzzy hypervolume criterion
typically has a clear extremum; the average fuzzy density criterion
is not desirable when there is a substantial cluster overlapping and
a large variation in the compactness of the clusters (Gath & Geva,
1989). A partitioning that results in both dense and loose clusters
may lead to a large average fuzzy density.
For shell clustering, the hypervolume and average densitymea-

sures are still applicable. However, the distance vector between a
pattern and a prototype needs to be redefined. In the case of spher-
ical shell clustering, the displacement or distance vector between
a pattern xj and a prototype Eλi = (ci, ri) is defined by

dji =
(
xj − ci

)
− ri

xj − ci∥∥xj − ci
∥∥ . (34)

The fuzzy hypervolume and average fuzzy density measures for
spherical shell clustering are obtained by replacing the distance
vector

(
xj − ci

)
in (33) by dji. For shell clustering, the shell thick-

ness measure can be used to describe the compactness of a shell.
In the case of fuzzy spherical shell clustering, the fuzzy shell thick-
ness of a cluster is defined in Krishnapuram et al. (1992). The av-
erage shell thickness of all clusters can be used as a cluster validity
measure for shell clustering.

18. Computer simulations

In this section, we give two examples to illustrate the applica-
tion of clustering algorithms.

18.1. An artificial example

Given a data set of 1000 random data points in the two-
dimensional space: In each of the two half rings there are 500
uniformly random data points. We use the SOM to realize VQ
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Fig. 3. Random data points in the two-dimensional space. In each of the two quarters, there are 1000 uniformly random points. (a) The out cells are arranged in a 10× 10
grid. (b) The output cells are arranged in a one-dimensional grid of 100 cells.
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Fig. 4. The iris classification: (a) The iris data set and the class information. (b) The clustering result by the FCM. (c) The clustering result by the subtractive clustering.
and topology-preserving by producing a grid of cells. Simulation
is based on the Matlab Neural Network Toolbox. In the first group
of simulations, the output cells are arranged in a 10× 10 grid, and
the hexagonal neighborhood topology is used. The training result
for 1000 epochs is shown in Fig. 3a. When the 100 output cells are
arranged in one dimension, the training result for 1000 epochs is
shown in Fig. 3b. Given a test point, the trained network can always
find the prototype based on the nearest-neighbor paradigm.
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18.2. Iris classification

In the iris data set, 150 patterns are classified into 3 classes.
Each pattern has four numeric attributes, denoted by xi, i =
1, 2, 3, 4, and each class has 50 patterns. The Iris data set and
the corresponding classification are shown in Fig. 4a. We now use
the FCM and subtractive clustering methods to cluster the data
set. For the FCM, we select the number of clusters K = 3; for
subtractive clustering, we select the radius for all the clusters as
0.8, and this also leads to K = 3. The clustering results for the FCM
and the subtractive clustering are, respectively, shown in Fig. 4b,
c. A comparison of Fig. 4b, c with Fig. 4a reveals that there are 14
classification errors for the FCM and 24 classification errors for the
subtractive clustering. Thus the classification accuracy is 90.67% for
the FCM, and 84.00% for the subtractive clustering.

19. Summary

Clustering is one of the most important data analysis methods.
In this paper,we provide a state-of-the-art survey and introduction
to neural network based clustering. Various aspects of clustering
are addressed. Two examples are given to illustrate the application
of clustering. Interested readers are referred to Jain, Murty, and
Flynn (1999), Xu and Wunsch II (2005) and Du and Swamy (2006)
for more information on clustering and their applications. Other
topics such as global search based clustering are also reviewed
in Xu and Wunsch II (2005).
Clustering has become an important tool for data mining, also

known as knowledge discovery in databases (KDD) (Jain et al.,
1999), which emerges as a rapidly growing area. The wealth of
information in huge databases or the world wide web (WWW)
has aroused tremendous interest in the area of data mining.
Data mining is to automatically search large stores of data for
consistent patterns and/or relationships between variables so as
to predict future behavior. The process of data mining consists of
three phases, namely, data preprocessing and exploration, model
selection and validation, as well as final deployment. Clustering,
neuro-fuzzy systems and rough sets, and evolution based global
optimization methods are usually used for data mining (Du &
Swamy, 2006). Neuro-fuzzy systems and rough sets are ideal tools
for knowledge representation. Data mining needs first to discover
the structural features in a database, and exploratory techniques
through self-organization such as clustering are particularly
promising. Some of the datamining approaches that use clustering
are database segmentation, predictive modeling, and visualization
of large databases (Jain et al., 1999). Structured databases have
well defined features and data mining can easily succeed with
good results. Web mining is more difficult since the WWW is a
less structured database (Etzioni, 1996). The topology-preserving
property for the SOM makes it particularly suitable for web in-
formation processing.
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