
Handling Concurrent Requests with JavaScript Callbacks

Piumi Liyana Gunawardhana • 7 min read • Nov 19, 2024 • Updated

Handling Concurrent Requests with JavaScript Callbacks

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 1 of 13 View blog Link

https://www.syncfusion.com/blogs/author/piumi-liyana-gunawardhana
https://www.syncfusion.com/downloads/essential-js2?tag=es-blog-javascript-trial-ad&action=download-pdf
https://www.syncfusion.com/blogs/post/handling-concurrent-requests-with-javascript-callbacks

Concurrency is a common concept in modern web application development. It is

the ability to execute multiple tasks simultaneously. Concurrent programming may

appear complicated at first, but it helps us to enhance user experience, and make

our web apps more dynamic and interactive.

Many programming languages provide flexibility and performance with

concurrency. Despite being one of the most popular programming languages in

the world, though, JavaScript was never designed for it. But with time, while the

JavaScript event loop laid the groundwork, Node.js made JavaScript a proper

server-side concurrency solution. The event loop, callbacks, promises, and

async/await support in JavaScript make it possible.

This article will go through how we can handle concurrent requests with the use of

plain JavaScript callbacks, along with their advantages, disadvantages, applicability,

and best practices.

What is a callback?

The basic architectural building blocks for writing concurrent code in JavaScript are

callback functions and AJAX service calls.

Handling Concurrent Requests with JavaScript Callbacks

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 2 of 13 View blog Link

https://nodejs.org/
https://www.syncfusion.com/blogs/post/handling-concurrent-requests-with-javascript-callbacks

A function taken as an argument to another function and called within the outer

function to complete a task or an event afterward is known as a callback function.

Therefore, a callback function is a piece of code that must be executed only after

another piece of code with an indefinite duration has finished.

According to this definition, any function without a specific syntax passed as an

argument can be a callback function, and these are not inherently concurrent.

However, we can apply callback functions to handle concurrency in JavaScript.

Following is the way you can implement callback functions.

// A function.

function fnc() {

 console.log('A function')

}

// Higher order function: a function that takes another function as an argument.

function higherOrderFunction(callback) {

 // When you call a function that is passed as an argument to another function,

 callback()

}

// Passing a function.

higherOrderFunction(fnc)

Copy

Handling Concurrent Requests with JavaScript Callbacks

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 3 of 13 View blog Link

https://www.syncfusion.com/blogs/post/handling-concurrent-requests-with-javascript-callbacks

Executing the previous code will give you the following output.

//Output

A function

Now, let’s see how we can use callbacks to handle concurrent requests.

JavaScript concurrency with callbacks

You can see the demonstration for handling concurrent requests with callbacks in

the following example.

You know that setTimeout() is a built-in JavaScript asynchronous function that

runs a function or analyzes an expression after a specified amount of time. It takes

two parameters: a callback function and a milliseconds-long delay.

Consider the setTimeout() behavior given in the following example. It uses a

callback function to call setTimeout(), which attaches printOutput() to the result

object. We set the runtime delay for this as 500 milliseconds.

Copy

Handling Concurrent Requests with JavaScript Callbacks

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 4 of 13 View blog Link

https://www.syncfusion.com/blogs/post/handling-concurrent-requests-with-javascript-callbacks

var delay = 500;

function printOutput(result) {

var runtime = Date.now() - result.start;

 console.log('execution', result.n, 'completed in', runtime, 'ms after a delay

 return runtime;

}

var result = { n:0, start:Date.now(), delay:delay };

var out = setTimeout(() => printOutput(result), delay);

In the previous code, it’s worth noting that the setTimeout() function returns

instantly, while the printOutput() function runs 500 milliseconds later. The value

returned by printOutput() is entirely unrelated to the value returned by

setTimeout() because that function will not be invoked until setTimeout() has

generated its value for out. Though setTimeout() returns a valid result for out,

since it is irrelevant to our discussion, the code will falsely state that the value of

out is undefined.

Copy

Handling Concurrent Requests with JavaScript Callbacks

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 5 of 13 View blog Link

https://www.syncfusion.com/blogs/post/handling-concurrent-requests-with-javascript-callbacks

When the previous code is executed, the printOutput()function will return a

message including the exact time spent between the initiation of the code and its

termination, along with the latency set by the setTimeout() function. Like in the

following example output, these two durations are unlikely to be equal.

Furthermore, the printOutput() method returns the exact runtime (in

milliseconds), but this value is unnecessary.

execution 0 completed in 520 ms after a delay of 505

Now, create custom concurrent functions by encapsulating setTimeout() calls and

with the use of callbacks. The concurrent behavior is based on the inclusion of

unnecessary and random latency.

The asyncFn() in the following code is an asynchronous function that takes an

integer n. When called, the function creates a random latency and publishes a

message to the terminal once that time has passed. The number n is a label that

notes how many times the asyncFn() has been called. Of course, asyncFn()

immediately returns the value as undefined. Therefore, the value of the result will

generally be undefined.

Copy

Handling Concurrent Requests with JavaScript Callbacks

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 6 of 13 View blog Link

https://www.syncfusion.com/blogs/post/handling-concurrent-requests-with-javascript-callbacks

function asyncFn(n){

 var delay = Math.floor(100 + Math.random() * 900);

function printOutput(result){

 var runtime = Date.now() - result.start;

 console.log('execution', n, 'completed in', runtime, 'ms after a delay of',

 return runtime;

}

var result = { n:n, start:Date.now(), delay:delay }

 setTimeout(() => printOutput(result), delay);

}

for(var rank = 0; rank < 5; rank++) {

 var out = asyncFn(rank);

}

When the loop executes, the asynchronous nature of this code is visible. The

output provided by these five sequential calls does not match the sequence in

which they are executed, despite the fact that the asyncFn() is called five times

with rankings of 0 through 5 in order. Furthermore, the gap between delay time

and actual completion time fluctuates among invocations.

The output will look as follows for one execution of the previous code.

Copy

Handling Concurrent Requests with JavaScript Callbacks

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 7 of 13 View blog Link

https://www.syncfusion.com/blogs/post/handling-concurrent-requests-with-javascript-callbacks

execution 2 finished in 170 ms after a delay of 166

execution 0 finished in 185 ms after a delay of 184

execution 1 finished in 481 ms after a delay of 476

execution 3 finished in 519 ms after a delay of 518

execution 4 finished in 794 ms after a delay of 792

Although it shows concurrency, the code is inefficient because the asyncFn():

Fails to convey the calculated output back to the caller.

Assumes that the calculated output should be written to the console.

Functions should disclose their outputs to the caller and let the caller determine

what to do with the calculated values. The callback functions offer a solution for

resolving both of these design problems.

Let’s now rewrite asyncFn() as a function that takes two arguments: an integer

value n and a callback function cb. The callback function takes one argument, the

asyncFn’s calculated output, and executes after a random delay of 100 to 999

milliseconds. The client code is therefore allowed to design its own callback

function that:

Copy

Handling Concurrent Requests with JavaScript Callbacks

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 8 of 13 View blog Link

https://www.syncfusion.com/blogs/post/handling-concurrent-requests-with-javascript-callbacks

Receives the calculated output via the provided parameter.

Handles that in any way the client desires.

In the following example, the callback function is declared in the client’s context,

allowing the client to access the calculated output through the callback’s explicit

parameter result.

function asyncFn(n, cb) {

var delay = Math.floor(100 + Math.random() * 900);

var result = { n:n, start:Date.now(), delay:delay };

setTimeout(() => cb(result), delay);

}

for(var rank = 0; rank < 5 ; rank++){

 function printOutput(result) {

 var runtime = Date.now() - result.start;

 console.log('execution', result.n, 'completed in', runtime,

 'ms after a delay of', result.delay);

 return runtime;

}

var out= asyncFn(rank, printOutput);

}

So, now you should understand how we can achieve concurrency via callbacks in

JavaScript.

Copy

Handling Concurrent Requests with JavaScript Callbacks

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 9 of 13 View blog Link

https://www.syncfusion.com/blogs/post/handling-concurrent-requests-with-javascript-callbacks

Even though the callbacks in the previous example are instantly executed, most

JavaScript callbacks are associated with an event, such as a timer, an API call, or

reading a file. If you utilize callbacks correctly, they might assist in making your

code more manageable.

Advantages of callbacks

Callbacks will help you to:

Make your code as simple as possible (less repetition).

Improve abstraction so that you may use more generic functions that can

perform a wide range of functionalities (e.g., sum, product).

Enhance your code’s readability and maintainability.

Disadvantages of callbacks

Callback functions have certain limitations, despite the fact that they provide a

simple approach for dealing with asynchrony in JavaScript.

The drawbacks of callbacks are:

Handling Concurrent Requests with JavaScript Callbacks

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 10 of 13 View blog Link

https://www.syncfusion.com/blogs/post/handling-concurrent-requests-with-javascript-callbacks

The possibility of creating callback hells if callbacks are not used properly.

Error handling is a challenge.

You can’t use the throw keyword or return values with the return

statement.

Easily build real-time apps with

Syncfusion’s high-performance,

lightweight, modular, and responsive

JavaScript UI components.

Try It Free

Conclusion

Concurrent code is better than sequential code because it is nonblocking and can

accommodate several users or requests concurrently with minimal issues. This

article walked through a demonstration of how to deal with concurrency using

JavaScript callbacks. It’s up to you to decide where callbacks should be used to

handle concurrent requests without ending up in callback hell.

I hope you found this article helpful and do share your experiences with callbacks

in the comments section.

Handling Concurrent Requests with JavaScript Callbacks

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 11 of 13 View blog Link

https://www.syncfusion.com/downloads/essential-js2
https://www.syncfusion.com/downloads/essential-js2
https://www.syncfusion.com/downloads/essential-js2
https://www.syncfusion.com/downloads/essential-js2
https://www.syncfusion.com/downloads/essential-js2
https://www.syncfusion.com/downloads/essential-js2
https://www.syncfusion.com/downloads/essential-js2
https://www.syncfusion.com/downloads/essential-js2
https://www.syncfusion.com/downloads/essential-js2
https://www.syncfusion.com/downloads/essential-js2
https://www.syncfusion.com/downloads/essential-js2
https://www.syncfusion.com/downloads/essential-js2
https://www.syncfusion.com/blogs/post/handling-concurrent-requests-with-javascript-callbacks

Thank you for reading!

Syncfusion Essential JS 2 is the only suite you will ever need to build an app. It

contains over 65 high-performance, lightweight, modular, and responsive UI

components in a single package. Download a free trial to evaluate the controls

today.

If you have any questions or comments, you can also contact us through

our support forums, support portal, or feedback portal. We are always happy to

assist you!

Related blogs

Top 7 JavaScript Object Destructuring Techniques

5 Different Ways to Deep Compare JavaScript Objects

Easily Configure Syncfusion JavaScript UI Controls in Salesforce

10 JavaScript Naming Conventions Every Developer Should Know

Handling Concurrent Requests with JavaScript Callbacks

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 12 of 13 View blog Link

https://www.syncfusion.com/javascript-ui-controls
https://www.syncfusion.com/downloads/essential-js2
https://www.syncfusion.com/forums
https://support.syncfusion.com/
https://www.syncfusion.com/feedback/
https://www.syncfusion.com/blogs/post/top-7-javascript-object-destructuring-techniques.aspx
https://www.syncfusion.com/blogs/post/5-different-ways-to-deep-compare-javascript-objects.aspx
https://www.syncfusion.com/blogs/post/easily-configure-syncfusion-javascript-ui-controls-in-salesforce.aspx
https://www.syncfusion.com/blogs/post/10-javascript-naming-conventions-every-developer-should-know.aspx
https://www.syncfusion.com/blogs/post/handling-concurrent-requests-with-javascript-callbacks

MEET THE AUTHOR

Piumi Liyana Gunawardhana

Software Engineer | Technical Writer since 2020

Handling Concurrent Requests with JavaScript Callbacks

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 13 of 13 View blog Link

https://www.syncfusion.com/blogs/author/piumi-liyana-gunawardhana
https://www.syncfusion.com/blogs/author/piumi-liyana-gunawardhana
https://www.syncfusion.com/blogs/post/handling-concurrent-requests-with-javascript-callbacks

