
Global Exception Handling in .NET 6

Piumi Liyana Gunawardhana • 6 min read • Apr 24, 2024 • Updated • 6 Comments

Global Exception Handling in .NET 6

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 1 of 12 View blog Link

https://www.syncfusion.com/blogs/author/piumi-liyana-gunawardhana
https://www.syncfusion.com/downloads/maui?tag=es-blog-maui-trial-ad&action=download-pdf
https://www.syncfusion.com/blogs/post/global-exception-handling-net-6

TL;DR: Want to streamline error handling in your ASP.NET 6 apps?

Explore two methods: traditional try-catch blocks and custom

middleware for global exception handling.

Exception handling is one of the most critical areas in modern web application

development. If exceptions are not handled properly, the whole app can be

terminated, causing severe issues for users and developers.

In this article, I will discuss different methods of global exception handling in .NET

apps.

Error handling with try-catch blocks

Try-catch blocks are widely used in apps to handle exceptions. They are the most

basic way of handling exceptions. To demonstrate this, I will be using an ASP .NET

Core web API project based on .NET 6.

Consider the following CustomerController class as a code example:

Global Exception Handling in .NET 6

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 2 of 12 View blog Link

https://www.syncfusion.com/blogs/post/global-exception-handling-net-6

using ExceptionHandling.Services;

using Microsoft.AspNetCore.Mvc;

namespace ExceptionHandling.Controllers;

[ApiController]

[Route("api/[controller]")]

public class CustomerController : Controller

{

 private readonly ICustomerService _customerService;

 private readonly ILogger<CustomerController> _logger;

 public CustomerController(ICustomerService customerService, ILogger<Customer

 {

 _customerService = customerService;

 _logger = logger;

 }

 [HttpGet]

 public IActionResult GetCustomers()

 {

 try

 {

 _logger.LogInformation("Getting customer details");

 var result = _customerService .GetCustomers();

 if (result == null)

 throw new ApplicationException("Getting errors while fetching cu

 return Ok(result);

 }

 catch (Exception e)

Copy

Global Exception Handling in .NET 6

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 3 of 12 View blog Link

https://www.syncfusion.com/blogs/post/global-exception-handling-net-6

 {

 _logger.LogError(e.Message);

 return BadRequest("Internal server error");

 }

 }

}

The above code example is a typical case where we use try-catch to handle the

exception. Any exception thrown by the code enclosed within the try block will be

caught and handled by the catch block.

The try-catch method is ideal for novice developers, and it is something that every

developer should be aware of. However, this technique has a disadvantage when

working with massive projects with complex architectures.

Consider a scenario where you have many controllers and actions in your project,

and you need to utilize try-catch for each action in the controllers. In some cases,

try-catch must be used in the services as well. In such instances, it will double the

lines of code in your project, which is undesirable.

If the solution architecture contains different layers (e.g., data access, business

logic, and presentation layer), you will have to map that exception in between

layers when your code throws an exception. Or else you may have more severe

Global Exception Handling in .NET 6

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 4 of 12 View blog Link

https://www.syncfusion.com/blogs/post/global-exception-handling-net-6

issues, such as missing the exception where no one knows the error until checking

the log/trace.

Global exception handling is a handy approach for eliminating these drawbacks. In

the next section of this article, we’ll see how you can use custom middleware to

handle exceptions globally in .NET 6.

Global exception handling with custom middleware

Global exception handling with custom middleware grants the developer much

broader authority and enhances the procedure. It’s a block of code that can be

added to the ASP.NET Core pipeline as middleware and holds our custom error

handling mechanism. This pipeline is capable of catching a wide range of

exceptions.

This approach aims to ensure your ASP.NET Core API produces consistent

responses regardless of the type of request. It makes things simpler for anybody

who uses your API to do their job. It also provides a better development

experience.

Global Exception Handling in .NET 6

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 5 of 12 View blog Link

https://www.syncfusion.com/blogs/post/global-exception-handling-net-6

Create a separate folder named CustomMiddlewares and add a class file named

ExceptionHandlingMiddleware.cs within it.

Refer to the following code example:

using System.Net;

using System.Text.Json;

using ExceptionHandling.Models.Responses;

namespace ExceptionHandling.CustomMiddlewares;

public class ExceptionHandlingMiddleware

{

 private readonly RequestDelegate _next;

 private readonly ILogger<ExceptionHandlingMiddleware> _logger;

 public ExceptionHandlingMiddleware(RequestDelegate next, ILogger<ExceptionHa

 {

 _next = next;

 _logger = logger;

 }

 public async Task InvokeAsync(HttpContext httpContext)

 {

 try

 {

 await _next(httpContext);

 }

Copy

Global Exception Handling in .NET 6

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 6 of 12 View blog Link

https://www.syncfusion.com/blogs/post/global-exception-handling-net-6

 catch (Exception ex)

 {

 await HandleExceptionAsync(httpContext, ex);

 }

 }

 private async Task HandleExceptionAsync(HttpContext context, Exception excep

 {

 context.Response.ContentType = "application/json";

 var response = context.Response;

 var errorResponse = new ErrorResponse

 {

 Success = false

 };

 switch (exception)

 {

 case ApplicationException ex:

 if (ex.Message.Contains("Invalid Token"))

 {

 response.StatusCode = (int) HttpStatusCode.Forbidden;

 errorResponse.Message = ex.Message;

 break;

 }

 response.StatusCode = (int) HttpStatusCode.BadRequest;

 errorResponse.Message = ex.Message;

 break;

 default:

 response.StatusCode = (int) HttpStatusCode.InternalServerError;

 errorResponse.Message = "Internal server error!";

 break;

 }

 _logger.LogError(exception.Message);

Global Exception Handling in .NET 6

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 7 of 12 View blog Link

https://www.syncfusion.com/blogs/post/global-exception-handling-net-6

 var result = JsonSerializer.Serialize(errorResponse);

 await context.Response.WriteAsync(result);

 }

}

The above code is the custom middleware that handles exceptions. We must first

use dependency injection to register the ILogger and RequestDelegate services.

The _next parameter of the RequestDelegate type is a function delegate that

handles our HTTP requests. In addition, after the middleware receives the request

delegate, it either processes or passes it on to the next middleware in the chain.

If the request fails, an exception may occur, and the HandleExceptionAsync

method will be called to capture the exception as per its type. In such scenarios,

use switch statements to determine the exception type and then utilize the

appropriate status code for the exception.

Also, we need not send the exception messages to the project’s client side.

Instead, use ILogger to log the exception message as an error and pass the

custom message. We can then look through the logs and traces to find the

exception message.

Global Exception Handling in .NET 6

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 8 of 12 View blog Link

https://www.syncfusion.com/blogs/post/global-exception-handling-net-6

Next, the custom middleware must be included in the Program.cs file. Using the

previous versions, you may add the custom middleware to the Startup class

Configure method.

app.UseMiddleware<ExceptionHandlingMiddleware>();

Now, remove the try-catch block from the Controller.

using ExceptionHandling.Services;

using Microsoft.AspNetCore.Mvc;

namespace ExceptionHandling.Controllers;

[ApiController]

[Route("api/[controller]")]

public class CustomerController : Controller

{

 private readonly ICustomerService _customerService;

 private readonly ILogger<CustomerController> _logger;

 public CustomerController(ICustomerService customerService, ILogger<Customer

 {

 _customerService = customerService;

 _logger = logger;

 }

Copy

Copy

Global Exception Handling in .NET 6

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 9 of 12 View blog Link

https://www.syncfusion.com/blogs/post/global-exception-handling-net-6

 [HttpGet]

 public IActionResult GetCustomers()

 {

 _logger.LogInformation("Getting customer details");

 var result = _customerService.GetCustomers();

 if (result.Count == 0)

 throw new ApplicationException("Invalid Token");

 return Ok(result);

 }

}

You just have to throw the relevant exception in the Controller instead of using a

try-catch block.

Advantage of Global exception handling

Global exception handling allows us to organize all exception handling logic in one

place. Thus, we can improve the readability of the action methods and the

maintainability of the error handling process. This strategy can effectively help

your app throw more logical and understandable exceptions. Having global

exception handling also eliminates the need to map each exception and map

between architectural layers.

Global Exception Handling in .NET 6

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 10 of 12 View blog Link

https://www.syncfusion.com/blogs/post/global-exception-handling-net-6

Conclusion

In this article, we went through how to handle errors at the global level in ASP.NET

Core web API projects based on .NET 6. When working on massive projects, this

strategy is beneficial since we won’t have to use try-catch in every controller action.

Additionally, it improves code clarity and provides the project with a

straightforward and reusable exception handling technique.

I hope you found this helpful. Thank you for reading!

The Syncfusion ASP.NET Core platform contains over 80 high-performance,

lightweight, modular, and responsive UI controls in a single package. Use them to

build stunning web apps!

If you have questions, you can contact us through our support forum, support

portal, or feedback portal. We are always happy to assist you!

Global Exception Handling in .NET 6

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 11 of 12 View blog Link

https://www.syncfusion.com/aspnet-core-ui-controls
https://www.syncfusion.com/forums
https://support.syncfusion.com/
https://support.syncfusion.com/
https://www.syncfusion.com/feedback
https://www.syncfusion.com/blogs/post/global-exception-handling-net-6

Related blogs

Implementing CPU-Bound Operations in an ASP.NET Core Application

Authentication Support in Syncfusion ASP.NET Core Project Template: An

Overview

Easily Improve Front-end ASP.NET Core App Development with Gulp

Firebase Push Notifications for Android and iOS Using Ionic and ASP.NET⁠-

A Complete Guide

MEET THE AUTHOR

Piumi Liyana Gunawardhana

Software Engineer | Technical Writer since 2020

Global Exception Handling in .NET 6

Copyright 2001 - Present. Syncfusion, Inc. All Rights Reserved. | Page 12 of 12 View blog Link

https://www.syncfusion.com/blogs/post/implementing-cpu-bound-operations-in-an-asp-net-core-application.aspx
https://www.syncfusion.com/blogs/post/authentication-support-in-syncfusion-asp-net-core-project-template-an-overview.aspx
https://www.syncfusion.com/blogs/post/authentication-support-in-syncfusion-asp-net-core-project-template-an-overview.aspx
https://www.syncfusion.com/blogs/post/easily-improve-front-end-asp-net-core-app-development-with-gulp.aspx
https://www.syncfusion.com/blogs/post/firebase-push-notifications-for-android-and-ios-using-ionic-and-asp-net%e2%81%a0.aspx
https://www.syncfusion.com/blogs/post/firebase-push-notifications-for-android-and-ios-using-ionic-and-asp-net%e2%81%a0.aspx
https://www.syncfusion.com/blogs/author/piumi-liyana-gunawardhana
https://www.syncfusion.com/blogs/author/piumi-liyana-gunawardhana
https://www.syncfusion.com/blogs/post/global-exception-handling-net-6

