Aller au contenu

Nombre octogonal centré

Un article de Wikipédia, l'encyclopédie libre.
Ceci est la version actuelle de cette page, en date du 17 juillet 2022 à 19:48 et modifiée en dernier par OrlodrimBot (discuter | contributions). L'URL présente est un lien permanent vers cette version.
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)
Représentation des nombres octogonaux centrés d'indices 2, 3, 4 et 5.

En mathématiques, un nombre octogonal centré est un nombre figuré polygonal centré qui représente un octogone avec un point au centre et tous les autres points entourant le centre en couches successives. Pour tout entier n ≥ 1, le n-ième nombre octogonal centré est donc

c'est-à-dire simplement le n-ième nombre carré impair.

Les dix premiers nombres octogonaux centrés sont 1, 9, 25, 49, 81, 121, 169, 225, 289, 361 et 441 (suite A016754 de l'OEIS).

Le chiffre des unités en base dix suit le motif 1-9-5-9-1.

La fonction tau de Ramanujan appliquée à un nombre octogonal centré donne un nombre impair, alors que pour tout autre nombre, elle donne un nombre pair.