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In survey sampling the randomized response (RR) technique can

be used to obtain truthful answers to sensitive questions. Although

the individual answers are masked due to the RR technique, individual

(sensitive) response rates can be estimated when observing multivariate

response data. The beta-binomial model for binary RR data will be

generalized to handle multivariate categorical RR data. The Dirichlet-

multinomial model for categorical RR data is extended with a linear

transformation of the masked individual categorical-response rates to

correct for the RR design and to retrieve the sensitive categorical-response

rates even for small data samples. This specification of the Dirichlet-

multinomial model enables a straightforward empirical Bayes estimation of

the model parameters. A constrained-Dirichlet prior will be introduced to

identify homogeneity restrictions in response rates across persons and/or

categories. The performance of the full Bayes parameter estimation

method is verified using simulated data. The proposed model will be

applied to the college alcohol problem scale study, where students were

interviewed directly or interviewed via the randomized response technique

about negative consequences from drinking.

The data collection through surveys based on direct-questioning methods

has been the most common way. The direct-questioning techniques

are usually assumed to provide the necessary level of reliability when

measuring opinions, attitudes, and behaviors. However, individuals with

different types of response behavior who are confronted with items about

sensitive issues of human life regarding ethical (stigmatizing) and legal

(prosecution) implications are reluctant to supply truthful answers.
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Tourangeau, Rips, and Rasinski (2000), and Tourangeau and Yan (2007)

argued that socially desirable answers and refusals are to be expected when

asking sensitive questions directly.

Warner (1965), and Greenberg, Abu-Ela, Simmons, and Horvitz

(1969) developed RR techniques to obtain truthful answers to sensitive

questions in such a way that the individual answers are protected but

population characteristics can be estimated. These techniques are based on

univariate RR data. Recently, RR models have been developed to analyze

multivariate response data, where the item responses are nested within

the individual. Although the individual answers are masked due to the

RR technique, individual (sensitive) characteristics can be estimated when

observing multivariate RR data. Fox (2005) and Böckenholt and van der

Heijden (2007) introduced item response models for binary RR data. The

applications are focusing on surveys where the items measure an underlying

sensitive construct. The so-called randomized item response models have

been extended to handle categorical RR data by Fox and Wyrick (2008)

and De Jong, Pieters, and Fox (2010). The class of randomized item

response models are meant for large-scale survey data, since person as

well as item parameters need to be estimated (Fox and Wyrick, 2008). For

categorical item response data, more than 500 respondents are often needed

to obtain stable parameter estimates. Furthermore, the randomized item

response data are less informative than the direct-questioning data, since the

RR technique engenders additional random noise to the data. Fox (2008)

proposed a beta-binomial model for analyzing multivariate binary RR data,

which enables the computation of individual response estimates without

requiring a large-scale data set. The beta-binomial model has several

advantages like a simple interpretation of the model parameters, stable

parameter estimates for relatively small data sets, and a straightforward

empirical Bayes estimation method.

Here, a Dirichlet-multinomial model is proposed for handling

multivariate categorical RR data such that individual category-response

rates can be estimated. The individual observed RR data consist of a

number of randomized responses per category. Each individual set of

observed numbers are assumed to be multinomially distributed given the

individual category-response rates. The individual category-response rates

are assumed to follow a Dirichlet distribution. The individual response rates

are related to the observed randomized responses, which make them not

useful for the inferences basing on regular statistical approaches. However,
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it will be shown that the individual category-response rates are linearly

related to the model-based (true) category-response rates. The latter one

relates to the latent responses, which are expected under the model when

the responses are not masked due to the randomized response technique.

The parameters of the linear transformation are design parameters and

are known characteristics of the randomizing device that is used to

mask the individual answers. The transformed categorical-response rates

will provide information about the latent individual characteristic that is

measured by the survey items. Analytical expressions of the posterior mean

and standard deviation of the true individual categorical-response rates will

be given. The expressions can be used for estimation given prior knowledge

or empirical Bayes estimates of the population response rates. Furthermore,

a WinBUGS implementation is given for a full Bayes estimation of the

model parameters.

To model and to identify constraints of homogeneity in category-

response rates, the restricted-Dirichlet prior (Schafer, 1997) is used. The

restriction on the Dirichlet prior can be used to identify effects of the

randomized response mechanism across individuals, groups of individuals,

and response categories.

In the next section, the randomized response technique is described

in a multiple-item setting. The beta-binomial model is described for

multivariate binary RR outcomes. Then, as a generalization, the Dirichlet-

multinomial model is presented for multivariate categorical RR data.

Properties of the conditional posterior distribution of the true individual

categorical-response rates are derived given observed randomized response

data. Then, empirical and full Bayes methods are proposed to estimate

all model parameters. A simulation study is given, where the properties

of the estimation methods are examined. Finally, the model will be used

to analyze data from a college alcohol problem scale survey, where U.S.

college students were asked about their alcohol drinking behavior with and

without using the randomized response technique. The restricted-Dirichlet

prior will be used to test assumptions of homogeneity over persons and

response categories. In particular, it will be shown that the effect of the

RR method varies over response categories, where the RR effect will be the

highest for the most sensitive response option.
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MULTIVARIATE RANDOMIZED RESPONSE
TECHNIQUES

In Warner’s RR technique (Warner, 1965) for univariate binary response

data, in the data collection procedure a randomizing device (RD) is

introduced. For each respondent the RD directs the choice of one of

two logically opposite questions. This sampling design guarantees the

confidentiality of the individual answers, since they cannot be related

directly to one of the opposite questions.

Greenberg et al. (1969) proposed the unrelated question technique,

where the outcome of the RD refers to the study-related sensitive question

or an irrelevant unrelated question. The RD is specified in such a way

that the sensitive question is selected with probability φ1 and the unrelated

question with probability 1− φ1. This RR method is extended to a forced

response method (Edgell, Himmelfarb, and Duchan, 1982), where the

unrelated question is not specified but an additional RD is used to generate

a forced answer. Each observed individual answer is protected, since it

cannot be revealed whether it is a true answer to the sensitive question or a

forced answer generated by the RD. As a result, the observed RR answers

are polluted by forced responses.

Let RD = 1 denote the event that an answer to the sensitive question is

required and P(RD = 1) = φ1k and RD = 0 otherwise. A forced positive

response to item k is generated with probability φ2k. For a multiple-item

survey, the probability of a positive RR of respondent i, given a forced

response sampling design, can be stated as

P(Yik = 1 | φ, pik) = P(RD = 1)pik +(1−P(RD = 1))φ2k, (1)

where the true response rate of person i to item k is denoted as pik. Note

that the response model for the RR data is a two-component mixture model.

For the first component the sensitive question needs to be answered and

for the second component a forced response needs to be generated. Thus,

the randomized response probability equals the true or the forced response

probability depending on the RD outcome. With φ1k > 1/2, for all k,

the data contain sufficient information to make inferences about the true

response rates.

The multiple items will be assumed to measure an underlying individual

response rate (e.g., alcohol dependence, academic fraud) such that pik =
pi for all k. This individual response rate can be estimated from
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the multivariate RR data. Note that in a multivariate setting the RD

characteristics are allowed to vary over items such that the proportion

of forced responses can vary over items. In practice, the sensitivity

of the items may vary although they relate to the same sensitive latent

characteristic. This variation in sensitivity can be controlled by adjusting

the RD characteristics, which are under the control of the interviewer.

The forced response model in Equation (1) can be extended to handle

polytomous multivariate RR data. Let φ2k(c) denote the probability of

a forced response in category c for c = 1, . . . ,Ck such that the number

of response categories may vary over items. The categorical-response

rates of individual i are denoted as pi(1), . . . , pi(Ck), which represent

the probabilities of honest (true) responses corresponding to the response

categories of item k. The probability of an observed randomized response

of individual i in category c of item k can be stated as,

P(Yik = c | φ, pik) = φ1k pi(c)+(1−φ1k)φ2k(c). (2)

This forced RR model for categorical data can be used to measure

individual categorical response rates related to a sensitive characteristic.

The individual answers are not known but the multivariate data make it

possible to retrieve information about latent individual characteristics.

THE BETA-BINOMIAL MODEL FOR MULTIVARIATE
BINARY RR DATA

Let each participant i = 1, . . . ,N respond to k = 1, . . . ,K binary items. The

observations ui1, . . . ,uiK represent the answers of the ith participant to the K

items. The response observations are assumed to be Bernoulli distributed

given response rate pi for individual i. The observations are assumed to be

independently distributed given the response rate. Therefore, the sum of

individual response observations is binomially distributed with parameters

K and pi.

It is to be expected that the response rates vary over participants. This

variation is modeled by means of a beta distribution with parameters α̃
and β̃, which specify the distribution of the response rates. This leads

to the following hierarchical model for the multivariate binary response
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observations,

Ui· | pi ∼ BI N (K, pi),

pi | α̃, β̃ ∼ B(α̃, β̃),

where Ui· = ∑k Uik.

Within a Bayesian modeling approach, the beta prior distribution for

parameter pi is a conjugated prior when the data are binomially distributed

given the response rate. In that case, the posterior distribution of the

response rate is also a beta distribution. That is,

p
(

pi | ui·, α̃, β̃
)

=
f (ui· | pi)π(pi | α̃, β̃)∫

f (ui· | pi)π(pi | α̃, β̃)d pi

=
Γ(K + α̃+ β̃)

Γ(ui·+ α̃)Γ(K −ui·+ β̃)
pui·+α̃−1

i (1− pi)
K−ui·+β̃−1,

which can be recognized as a beta density with parameters ui·+ α̃ and K −
ui·+ β̃. The posterior mean and the variance are

E(pi | ui· , α̃, β̃) =
ui· + α̃

K + α̃+ β̃
,

Var(pi | ui· , α̃, β̃) =
(ui· + α̃)(K −ui· + β̃)

(K + α̃+ β̃+1)(K + α̃+ β̃)2
,

respectively. It follows that posterior inferences can be directly made when

knowing the population parameters α̃ and β̃.

In a forced response design, the observations u are masked and

randomized responses y are observed. The RD specifies the probabilities

governing this randomization process such that an honest response is

to be given with probability φ1 and a positive forced response with

probability (1− φ1)φ2. The probability of observing a positive response

from participant i to item k is related to the true response by the following

expression:

P(Yik = 1 | pi) = φ1 f (uik | pi)+(1−φ1)φ2

= φ1 pi +(1−φ1)φ2 = Δ(pi).
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It can be seen that the forced response design corresponds with a linear

transformation of the response rate. This linear transformation function,

Δ(.), operates on the individual response rate of the true responses.

Therefore, the beta-binomial model accommodates the forced response

sampling mechanism by modeling the linearly transformed response rates;

that is,

Yi· | pi ∼ BI N (K,Δ(pi)) ,
Δ(pi) ∼ B(α,β),

where the transformation parameters φ1 and φ2 are characteristics of the RD

and are known a priori.

A population distribution is specified for the transformed response rates.

The transformed response rates are a priori beta distributed, which is the

conjugated prior for the binomially distributed likelihood. As a result, the

posterior distribution of the transformed response rates is beta distributed

with parameters yi·+α and K − yi·+β.

The posterior expected response rate given the randomized responses

can be expressed as

E (Δ(pi) | yi· ,α,β) =
yi· +α

K +α+β
= Δ(E(pi) | yi· ,α,β)

= φ1E (pi | yi· ,α,β)+(1−φ1)φ2,

using that the expected value of the linearly transformed response rate

equals the linearly transformed expected response rate. As a result, the

posterior expected value of the (true) response rate can be expressed as

E (pi | yi· ,α,β) = φ−1
1

(
yi· +α

K +α+β

)
+(1−φ−1

1 )φ2. (3)

In the same way, an expression can be found for the posterior variance of

the true response rate,

Var (pi | yi· ,α,β) =
(yi· +α)(K − yi· +β)

φ2
1(K +α+β+1)(K +α+β)2

.

There are two straightforward methods for estimating the hyperparameters

α and β, the method of moments and the method of maximizing the

marginal likelihood. Given the estimated hyperparameters, empirical
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Bayes estimates of the response rates can be derived by inserting the

hyperparameter estimates into Equation (3). Furthermore, the estimation

of confidence intervals and Bayes factors is described in Fox (2008).

THE DIRICHLET-MULTINOMIAL MODEL FOR
MULTIVARIATE CATEGORICAL RR DATA

The number of responses per response category over items for person

i are stored in a vector ui· = (ui·1, . . . ,ui·C)
t , where ui·c = ∑k uikc for c =

1, . . . ,C. They represent the number of choices per response category

over items. In the college alcohol study we will present in Section 7.2,

the data represent the frequency of alcohol-related negative consequences.

In marketing research, Goodhardt, Ehrenberg, and Chatfield (1984)

considered data about individual number of purchases per brand in a time

period. In social research, Wilson and Chen (2007) considered frequencies

to television viewing questions from the High School and Beyond survey

study in the United States. Their item-based test is assumed to measure

the daily television viewing habit and interest is focused on time-specific

population response rates.

The number of responses per category given the category response rates

are assumed to be independently distributed. They can be modeled by

a multinomial distribution with parameters K and category response rates

pi1, . . . , piC. For respondent i, the contribution to the likelihood is

f (ui· | pi) =
K!

∏c ui·c! ∏
c

pui·c
ic .

The variability in the vectors of response counts is often higher than can

be accommodated by the multinomial distribution. Therefore, individual

variation in category response rates is modeled by a Dirichlet distribution

with parameters α̃ = (α̃1, . . . , α̃C), which is represented by

π(pi | α̃) =
Γ(α̃0)

∏c Γ(α̃c)
∏

c
pα̃c−1

ic .

where α̃0 =∑c α̃c. The within-individual and between-individual variability
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in response rates is described by a Dirichlet-multinomial model; that is,

Ui·1, . . . ,Ui·C | pi1, . . . , piC ∼ Mult(K, pi1, . . . , piC),
pi1, . . . , piC ∼ D(α̃1, . . . , α̃C),

where Ui·c = ∑k Uikc for c = 1, . . . ,C. The compact form of this expression

can be written in terms of vector notation

Ui· | pi ∼ Mult(K,pi) ,
pi ∼ D(α̃),

where Ui· = (Ui·1, . . . ,Ui·C)
t .

The Dirichlet distribution is a conjugate prior for the parameters of the

multinomially distributed responses. Therefore, the conditional posterior

distribution of the category response rates is a Dirichlet distribution, which

is represented by

p(pi | ui· , α̃) =
f (ui· | pi)π(pi | α̃)∫

f (ui· | pi)π(pi | α̃)dpi

=
Γ(K + α̃0)

∏c Γ(ui·c + α̃c)
∏

c
pui·c+α̃c−1

ic .

The posterior mean and the variance of the category response rates of

individual i equals

E(pic | ui· , α̃) =
ui·c + α̃c

K + α̃0

and

Var(pic | ui· , α̃) =
(ui·c + α̃c)(K + α̃0 − (ui·c + α̃c))

(K + α̃0 +1)(K + α̃0)2
,

respectively, where the prior parameters α̃ are unknown.

According to Equation (2), the probability of an observed randomized

response in category c for item k can be expressed as

P(Yik = c | pic) = φ1 pic +(1−φ1)φ2(c)
= Δ(pic),

where Δ(pic) is the linearly transformed category-response rate of person
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i, which depends on the parameters of the forced randomized response

design. Let yi· = (yi·1, . . . ,yi·C)
t denote the vector of observed randomized

count data per response category across items for subject i. The Dirichlet-

multinomial model for the observed randomized count data per category

takes the form

Yi· | pi ∼ Mult(K,Δ(pi)) ,
Δ(pi) ∼ D(α), (4)

where Yi· = (Yi·1, . . . ,Yi·C)
t and Δ(pi) = (Δ(pi1), . . . ,Δ(piC))

t .

The conditional posterior distribution of the transformed category-

response rate can now be stated as

p(Δ(pi) | yi· ,α) =
Γ(K +α0)

∏c Γ(yi·c +αc)
∏

c
(Δ(pic))

yi·c+αc−1.

Subsequently, the posterior expected (true) category-response rate can be

obtained through a linear transformation. That is,

E (Δ(pic) | yi· ,α) =
yi·c +αc

K +α0
= Δ(E (pic) | yi· ,α) (5)

= φ1E (pic | yi· ,α)+(1−φ1)φ2(c).

Applying the inverse of the linear transformation on E(Δ(pic) | yi·,α), the

conditional posterior expected value can be obtained as

E(pic | yi· ,α) = φ−1
1

(
yi·c +αc

K +α0

)
+(1−φ−1

1 )φ2(c).

The expression for the conditional posterior variance can be derived in a

similar way and is equal to

Var (pic | yi· ,α) =
(yi·c +αc)(K +α0 − (yi·c +αc))

φ2
1 (K +α0 +1)(K +α0)

2
.

EMPIRICAL BAYES AND FULL BAYES ESTIMATION

There are two major approaches for estimating the model parameters when

the prior parameters are unknown. An empirical Bayes approach, where the
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prior parameters are estimated from the marginal likelihood of the data and

a full Bayes approach where hyperpriors are defined for the prior parameters

and all model parameters are estimated simultaneously.

EMPIRICAL BAYES ESTIMATION

The marginal distribution of the data given the prior parameters is obtained

by integrating out the category-response rates. In Appendix A, a derivation

is given of the marginal likelihood of the randomized response data given

the prior parameters α. This conditional distribution is given by

p(y | α) = ∏
i

∫
Δ(pi)

p(yi· | Δ(pi)) p(Δ(pi) | α)d(Δ(pi))

= ∏
i

K!

∏c yi·c!

Γ(α0)

∏c Γ(αc)

∏c Γ(αc + yi·c)

Γ(α0 +K)
.

There are two ways of obtaining empirical Bayes estimates from this

marginal likelihood. The most straightforward way is using the method

of moments (Brier, 1980; Danaher, 1988; Mosimann, 1962). The second

way is the method of marginal maximum likelihood (Paul, Balasooriya,

and Banerjee, 2005).

Method of Moments. Let the sum of the prior parameters be α0 and the

fraction αc
α0

for each c be greater than zero. Now, the observed proportion of

category responses is used to estimate the fraction αc
α0

; that is,

N−1
N

∑
i=1

yi·c/K =
α̂c

α0
,

for c = 1, . . . ,C. The sum of the prior parameters α0 is estimated using a

relationship between the covariance matrix of the observed data, denoted as

Σy of dimension (C−1)(C−1), and of the category response rates, denoted

as ΣΔ(p) of dimension (C−1)(C−1). Mosimann (1962) showed that

(1+α0)Σy = (K +α0)ΣΔ(p). (6)

The observed data can be used to estimate the covariance matrices; that is,

Σ̂y =

{
(N −1)−1 ∑N

i=1 (yi.c − y..c)
2 diagonal terms,

(N −1)−1 ∑N
i=1 (yi.c − y..c)(yi.c′ − y..c′) off-diagonal terms, c �= c′
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and

Σ̂Δ(p) =

{
y..c (K − y..c)/K diagonal terms,
−y..cy..c′/K off-diagonal terms, c �= c′,

where y..c = ∑i yi.c/N. The relationship in Equation (6) can be transformed

to specify a relationship between the determinants of both covariance

matrices, which can be used to estimate the α0. In this way, the estimate α̂0

can be obtained from⎛⎝
∣∣∣Σ̂y

∣∣∣∣∣∣Σ̂Δ(p)

∣∣∣
⎞⎠1/(C−1)

=
K + α̂0

1+ α̂0
.

Method of Marginal Maximum Likelihood. The Dirichlet prior

parameters can also be estimated from the marginal likelihood given the

observed randomized response data. The so-called marginal maximum

likelihood estimates are the values for the parameters that maximize

the marginal (log-)likelihood function. To facilitate the computation

of marginal maximum likelihood estimates, an analytical expression is

required of the marginal log-likelihood of the Dirichlet parameters given the

randomized response data. The derivation of this marginal log-likelihood

function is given in Appendix A. The terms not including any parameters

can be ignored, which leads to the following expression

l(α | y) ∝
N

∑
i=1

[
yi.1−1

∑
j=0

log(α1 + j)+ . . .+
yi.C−1

∑
j=0

log(αC + j)−
K−1

∑
j=0

log(α0 + j)

]
. (7)

The marginal maximum likelihood estimates can be obtained using the

Newton-Raphson algorithm. Convergence problems of the latter are often

associated with the parameter initialization step. Dishon and Weiss (1980)

suggested using moment estimates as initial parameter values for the

Newton-Raphson procedure.

FULL BAYES ESTIMATION

The model in Equation (4), can be extended with a hyperprior for the

prior parameters. Then, the model consists of three levels, where level
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1 defines the distribution of the randomized response data, level 2 the

prior distribution for the level-1 parameters, and level 3 the distribution

of the prior parameters. In such an hierarchical modeling approach,

uncertainties are defined at different hierarchical levels. In the empirical

Bayes estimation approach, the prior parameters are estimated using only

the observed data, but in a full Bayes estimation approach the (hyper) prior

information as well as the data are used.

In a full Bayes estimation approach all defined uncertainties can be

taken into account. Therefore, a Markov chain Monte Carlo (MCMC)

method will be used to estimate the posterior densities of all model

parameters, which includes the transformed category response rates and the

population parameters α.

To implement an MCMC procedure the collapsing property of the

multinomial and Dirichlet distributions can be used. Assume that for each

respondent the cells 2, . . . ,C are collapsed and that in total two cells are

observed with y∗i.2 = yi.2 + . . .+ yi.C. The distribution of the collapsed data

are binomially distributed given the category response rate; that is,

p(yi.1,y∗i.2 | Δ(pi)) ∝ (Δ(pi1))
yi.1 (1−Δ(pi1))

y∗i.2 . (8)

In the same way, the collapsing property of the Dirichlet distribution can be

used. The collapsed Dirichlet prior for the transformed category response

rate, Δ(pi1), is a beta distribution with parameters α1 and α0 −α1, which

leads to a beta-binomial model for the first transformed category response

rate.

This procedure can also be applied to the second response category.

Let y∗i.3 = yi.3 + . . .+ yi.C denote the collapsed data. The observed data of

respondent i in category two are binomially distributed, where the responses

to category one are excluded. Therefore, consider Δ(pi2)/(1−Δ(pi1)) as

the correctly scaled success probability such that the collapsed randomized

response data are binomially distributed,

p(yi.2,y∗i.3 | Δ(pi)) ∝
(

Δ(pi2)

1−Δ(pi1)

)yi.2
(

1− Δ(pi2)

1−Δ(pi1)

)y∗i.3
. (9)

Subsequently, the induced beta prior has parameters α2 and (α0−α1−α2).

Now, the distribution of the observed data according to the multinomial

distribution can be factorized as a product of binomial distributions. Let the

data consist of three cells such that K = yi.1 + yi.2 + yi.3, and let Equation
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(8) and (9) define the distribution of the collapsed data sets. Then, the

conditional distribution of the observed data can be given as

p (y | Δ(p)) ∝

∝ Δ(pi1)
yi.1(1−Δ(pi1))

K−yi.1

(
Δ(pi2)

1−Δ(pi1)

)yi.2
(

1− Δ(pi2)

1−Δ(pi1)

)yi.3

∝ Δ(pi1)
yi.1(1−Δ(pi1))

yi.2+yi.3

(
Δ(pi2)

1−Δ(pi1)

)yi.2
(

Δ(pi3)

1−Δ(pi1)

)yi.3

∝ Δ(pi1)
yi.1Δ(pi2)

yi.2Δ(pi3)
yi.3 ,

which equals the unnormalized multinomial density. It can be shown in a

similar way that the product of beta distributions defines the Dirichlet prior

due to the collapsing property of the latter one.

This factoring of the Dirichlet-multinomial in components of beta-

binomials is used in the WinBUGS (Spiegelhalter, Thomas, Best, and

Lunn, 2003) implementation given in Appendix B. The implementation

is given for N persons, K items, and five response categories, where

the randomized response data are specified as multinomially distributed.

Then, the individual category-response probabilities are specified as beta

distributed, where the beta prior parameters are derived from the Dirichlet

parameters.

The implementation requires the specification of a hyperprior for the

Dirichlet parameters. There is often little information available about the

category-response rates in the population. When a substantial number of

cells does not contain observations, the parameters might not be estimable

or the estimates are located on the boundary of the parameter space. A

flattening prior that smooths the estimates toward a unique mode located

in the interior of the parameter space is preferred when the data are sparse.

The prior that assigns a common value of one or greater (say, e.g., αc = 1

for c = 1, . . . ,C) will have this smoothing or flattening property. Therefore,

it might seem reasonable to restrict the prior parameters to a common value

but this uninformative proper hyperprior also fixes the influence of the prior,

which might be too weak for small sample sizes. It is also difficult to

determine the amount of prior information given the sample information.

A uniform prior, α ∼ U(0,10), will also have this flattening property but

the data will be used to estimate the prior parameters. The influence of

the prior is estimated from the data. When the data are sparse, a more

informative prior is needed to obtain stable parameter estimates but the data
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will be used to estimate the amount of prior information. Furthermore,

the estimated prior parameter estimates will reveal whether the observed

data do not support the model. In that case, a substantial amount of prior

information is needed, more than 20% of the sample data, to obtain stable

parameter estimates.

RESTRICTED DIRICHLET-MULTINOMIAL
MODELING

The Dirichlet-multinomial model in Equation (4) is a saturated model

in the sense that the category-response rates are freely estimated over

individuals. The Dirichlet prior does not impose any restrictions that are

typically present in a cross-classified data structure.

Schafer (1997) proposed a constrained Dirichlet prior to impose a

loglinear model on the individual response rates. This constrained prior

forms a conjugate class since it has the same functional form as the

multinomial likelihood. The constrained Dirichlet prior is represented by

Δ(pi) ∝ ∏
c

Δ(pic)
αc−1

log(Δ(pi)) = Mλ,

where M is the design matrix that defines a restriction on the transformed

response rates.

In the same way, a restriction can be defined on the (true) category-

response rates instead of the transformed category-response rates. It will

restrict the posterior solution to that area where the loglinear model on

the category response rates is true; that is, log(pic) = Mt
cλc, for c =

1, . . . ,C. Such a constrained prior makes the strong assumption that

the category-response rates can be partitioned according to the implied

structure. Here, such a model restriction will be particularly used to test

alternative models that assume a certain homogeneity in category-response

rates over individuals or groups of individuals.
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APPLICATION OF THE DIRICHLET-MULTINOMIAL
MODEL

A simulation study is performed to evaluate the performance of the full

Bayes method for estimating the population proportions. Furthermore, the

full and empirical Bayes estimates of the true individual response rates are

compared under different conditions given categorical randomized response

data. Then, the model is used to analyze randomized response data from the

college alcohol problem scale (CAPS, O’Hare, 1997).

SIMULATION STUDY

In order to investigate the performance of the full Bayes estimation method,

data were simulated under various conditions. The number of persons (N
equaled 100 or 500), items (K equaled ten or fifteen), response categories (C
equaled three or five), and randomizing device characteristics (φ1 equaled .6

or .8) were varied. The data generation procedure comprised the following.

For each respondent C category-response rates were simulated from a

Dirichlet distribution given prior parameters α. The prior parameters were

constant or varied over response categories. For the constant case, the sum

of the prior parameters equaled C and the prior parameters equaled one such

that the population proportions equaled 1/C. For the non-constant case, the

sum of the prior parameters was not equal to C and the prior parameters

(α1,α2,α3) equaled (1,2,1) for C = 3 and (α1,α2,α3,α4,α5) equaled

(1,2,4,2,1) for C = 5. The simulated category-response rates were used

to generate true response patterns, which were randomized using the forced

response design with randomizing device probabilities φ1 and φ2 = 1/C.

Ten independent samples were generated for each condition.

The parameters were re-estimated using WinBUGS. The WinBUGS

code of the Dirichlet-multinomial model for RR data is given in Appendix

B. For each data set, 15,000 iterations were made with a burn-in period of

5,000 iterations. Each model parameter was estimated by the average of the

corresponding sampled values, which is an estimate of the posterior mean.

The method was successful in model parameter estimation. In both

cases, the point estimates are close to the true values and the standard

deviations become smaller when increasing the number of respondents.

Similar trends were found for the cases of three and five response categories.

However, for the C = 5 case, the reduction in the estimated prior weights

is better visible when increasing the number of items and/or decreasing
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the percentage of forced responses. This follows from the fact that more

parameters need to be estimated with the same amount of observed data.

In Table 1, for C = 5, the estimated population proportions per category

are presented. The prior parameters were divided by the sum of the prior

parameters such that they were scaled in the same way as the true generating

values. Note that each estimate is an average of the estimates corresponding

to the ten independently generated data sets. It can be seen that the prior

parameter estimates resemble the true values quite well for the constant and

non-constant case. Increasing the number of persons leads to more accurate

results, since the estimated standard deviations become smaller.

When decreasing the percentage of forced responses, the standard

deviations remain constant for the case of ten and fifteen items, and 100

and 500 persons. The actual amount of information will increase when the

amount of forced responses is reduced, since the forced responses are just

random noise to mask the individual answers. From Equation (5) it can be

seen that the the number of items K as well as α0 determine the prior weight

in the computation of the individual expected posterior category-response

rate. It is clear that particularly for these situations the prior weights

reduce since the sum of the prior parameters become smaller. That is, the

influence of the population prior on the posterior mean category-response

rates becomes smaller when decreasing the amount of forced responses.

The observed RR data will contain more information about the individual

category-response rates when less forced responses are observed and less

prior information will be used to estimate the response rates. Note that the

standard deviations of the sum of the prior parameters (α0) become smaller

when decreasing the number of forced responses. The typical advantage of

the full Bayes estimation method applies here, where the prior weights are

also estimated from the data. Note that for φ1 = .6, 40% of the data are

forced responses. So, the actual amount of information in the data is rather

limited but the population parameters can still be recovered. The decrease

in the amount of forced responses leads to more accurate results.

When increasing the number of items, the standard deviations only

become slightly smaller. The additional amount of five RR observations

did not led to a substantial increase in the precision of the posterior mean

estimates. The increase in items led in to a higher estimate of α0 with a

smaller standard deviation. As a result, the posterior mean response rates

will be more influenced by the data than the prior information due to the

higher number of items and the higher posterior mean estimate of α0.
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Table 1: Full Bayes estimates of population proportions for five response

categories, 100 and 500 respondents, and 10 and 15 items.

K = 10 K = 15

Const. Non-Const. Const. Non-Const.

Parameter Mean SD Mean SD Mean SD Mean SD

N = 100
φ1 = 0.6

α1/α0 .209 .016 .144 .013 .207 .014 .145 .012

α2/α0 .203 .016 .200 .015 .205 .014 .205 .013

α3/α0 .197 .016 .318 .018 .197 .014 .308 .015

α4/α0 .195 .016 .198 .015 .195 .014 .195 .013

α5/α0 .196 .016 .140 .013 .195 .014 .147 .012

α0 12.003 1.642 15.615 2.225 12.082 1.432 17.445 2.204

φ1 = 0.8

α1/α0 .199 .017 .123 .013 .206 .016 .114 .011

α2/α0 .207 .017 .208 .016 .194 .015 .201 .014

α3/α0 .190 .017 .350 .019 .202 .016 .357 .017

α4/α0 .205 .017 .204 .016 .201 .016 .197 .014

α5/α0 .200 .017 .116 .012 .197 .016 .119 .011

α0 7.785 1.008 12.217 1.679 7.984 .861 14.183 1.781

N = 500
φ1 = 0.6

α1/α0 .196 .007 .140 .006 .204 .006 .141 .005

α2/α0 .197 .007 .203 .007 .201 .006 .201 .006

α3/α0 .202 .007 .321 .008 .201 .006 .319 .007

α4/α0 .201 .007 .195 .007 .196 .006 .200 .006

α5/α0 .203 .007 .141 .006 .198 .006 .139 .005

α0 14.276 1.116 22.994 2.083 15.534 1.001 26.183 2.057

φ1 = 0.8

α1/α0 .197 .008 .122 .006 .200 .007 .122 .005

α2/α0 .202 .008 .201 .007 .202 .007 .198 .006

α3/α0 .203 .008 .357 .008 .200 .007 .357 .007

α4/α0 .198 .008 .201 .007 .200 .007 .201 .006

α5/α0 .200 .008 .119 .005 .198 .007 .122 .005

α0 8.351 .526 15.232 1.265 8.672 .454 16.511 1.110

In this simulation study, the posterior mean response rates were also

compared for different number of respondents (100 and 500) and different

prior values. To evaluate the prior influence, individual category-response

rates were estimated using the simulated and estimated prior parameters,
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and through a full Bayes estimation method. Per response category, the

mean squared error (MSE) of the estimated response rates was calculated.

The MSE comprises a comparison of the estimate of the individual response

rate with the true value. For category c, the MSE can be stated as

MSE(p̂c | y) =
N

∑
i=1|c

E(pic − p̂ic)
2 +

N

∑
i=1|c

Var(p̂ic)
2,

where the first term is the cumulative bias between the true value and its

estimate and the second term represents the cumulative variance of the

estimate.

In Table 2, the MSEs are presented for five response categories, where

the cumulative bias and variance terms are given in parenthesis.

Table 2: Estimated MSEs concerning response-rate estimates for five

response categories, and 100 and 500 respondents. The bias and variance

components of the MSE are given in parenthesis, respectively.

Category MSE(p̂EB,αc) MSE(p̂EB,αc = 1) MSE(p̂FB)
N=100

c = 1 .45 ( .44, .00) .52 ( .51, .01) .90 ( .42, .48)

c = 2 .66 ( .66, .01) .85 ( .84, .01) 1.33 ( .59, .74)

c = 3 1.18 (1.16, .02) 1.53 (1.50, .02) 2.11 (1.01, 1.09)

c = 4 .90 ( .89, .01) 1.05 (1.03, .02) 1.67 ( .88, .79)

c = 5 .51 ( .51, .00) .56 ( .55, .01) .98 ( .47, .50)

N = 500

c = 1 2.22 (2.20, .02) 3.12 (3.08, .04) 4.27 (1.95, 2.32)

c = 2 4.29 (4.24, .05) 5.32 (5.25, .07) 7.66 (4.00, 3.66)

c = 3 6.24 (6.15, .09) 7.91 (7.79, .12) 10.78 (5.62, 5.16)

c = 4 4.34 (4.30, .05) 5.22 (5.15, .07) 7.63 (4.14, 3.49)

c = 5 2.51 (2.49, .02) 3.18 (3.14, .40) 4.54 (2.26, 2.27)

Two empirical Bayes estimates are considered, the MSE( p̂EB,αc = 1) and

the MSE( p̂,αc), which is based on prior parameters that are set to one,

denoted as the homogenous prior, and the simulated prior parameters,

respectively. The MSE(p̂FB) is based on full Bayes estimates using the

WinBUGS program. The simulated prior parameters correspond to the non-

constant case with α = (1,2,4,2,1), which differs from the homogenous

prior with prior parameters equal to one.
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For 100 and 500 persons, the bias is smallest for the full Bayes

estimates and they are slightly better than empirical Bayes estimates given

the true prior parameters. The full Bayes estimates are accurate with

respect to bias since the prior weights are also estimated from the sampled

data. The estimates using the homogenous prior, with all prior parameters

equal to one, have the highest bias but smaller MSEs than those based

on the full Bayes estimates. For the latter one, the estimated variances

are much higher due to the fact that the prior parameters also need to

be estimated. Therefore, the homogenous prior leads to quite accurately

estimated category-response rates and performs better than the full Bayes

estimates given the MSEs.

RESPONSE RATES OF ALCOHOL-RELATED NEGATIVE
CONSEQUENCES

The college alcohol problem scale (CAPS; OHare, 1997) was used

to measure frequencies of alcohol-related negative consequences among

college students. Thirteen items of the CAPS scale were used that

covered socio-emotional problems (hangovers, memory loss, nervousness,

depression) and community problems (drove under the influence, engaged

in activities related to illegal drugs, problems with the law). Each item has

a five-point scale (one = never/almost never, five =almost always).

A total of 793 US college student were at random divided in two groups.

One group of 351 participants answered the questionnaire directly without

using a randomizing device, denoted as the direct-questioning (DQ) group.

The other group, denoted as the RR group, consisted of 442 participants

and they responded to the questionnaire according to a forced randomized

response design, where φ1 = .60 and φ2(c) = .20 for c = 1, . . . ,5. The RR

group used a spinner to answer the questions. The spinner was developed

such that 60% of the area was comprised of answer honestly space, and 40%

of the area was divided into equal sections to represent the five possible

answer choices.

The main focus of the study was to investigate whether the RR technique

improved the accuracy of self-reports. The sensitivity of the response

categories was evaluated, where it was expected that a strong confirmation

to an item is more sensitive than a negative confirmation. The Dirichlet-

multinomial model with a restricted Dirichlet prior was used to evaluate

the effect of the RR technique per category, where the between-group



382 M. Avetisyan & J.-P. Fox

differences in mean category-response rates were investigated.

Group-Specific Population Proportions. The Dirichlet-multinomial

model was estimated using group-specific population proportions such

that the DQ and the RR group each had their own prior parameters. In

Table 3, the full Bayes mean estimates of the population proportions and

standard deviations are presented. Note that the estimated population

proportions of the RR group are transformed such that they estimate the true

category proportions in this group. The estimated population proportions

corresponding to the observed response rates are given in parenthesis,

which also take the forced responses into account. The standard deviations

are given in the next column, where the standard deviations of the non-

transformed proportions are given in parenthesis.

Table 3: CAPS: Estimated population proportions per category for the DQ

and RR group.

DQ (351) RR (442)

Mean SD Mean SD

α1/α0 .590 .010 .471(.363) .012(.007)

α2/α0 .161 .007 .170(.182) .010(.006)

α3/α0 .129 .006 .153(.172) .009(.006)

α4/α0 .069 .005 .131(.159) .009(.005)

α5/α0 .051 .003 .075(.125) .008(.005)

α0 9.872 .648 20.360 1.672

It can be seen that the estimated population proportion of category one

of the DQ group is higher and that the other category-mean proportions are

smaller compared to the RR group. This indicates that the respondents in

the DQ group are less likely to confirm experiences with alcohol-related

negative consequences. However, the respondents were randomly assigned

to the RR group, which suggests serious underreporting in the DQ group.

Although the RR group contains more respondents than the DQ group,

the standard deviations of the estimated population proportions of the RR

group are higher, since 40% of the data are forced responses. The standard

deviations of the non-transformed population proportions are comparable

since they are based on all data. The RR group has a higher estimate of the

prior weight (α0) compared to the DQ group due to the number of forced

responses. As a result, the posterior means of the individual category-
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response rates are more influenced by the prior in the RR group than in

the DQ group.

Linear Restricted Category Response Rates. To investigate the category-

specific effect of the RR method, a loglinear model was defined for the

category-response rates. For each category, the logarithm of the true

category-response rates were explained by a constant and a category-

specific RR effect. This restriction of the Dirichlet prior is given by

log(pic) = λ0c +λ1cRRi,

for c = 1, . . . ,C, where RRi equals one when respondent i belongs to the RR

group and zero otherwise. Note that the loglinear representation was only

used to evaluate the category-specific RR effect.

In Table 4, the intercept and RR effect are presented per category for

the DQ and RR group. The 95% highest posterior density (HPD) region

is also given for each parameter. The estimates can be used to compute

the posterior expected population proportion per category in each group. It

follows that about exp(−.62) = 54% and exp(−.62− .27) = 41% in the DQ

group and the RR group, respectively, say that they almost never experience

negative consequences of drinking. The other posterior mean percentages

can be computed in a similar way.

Table 4: CAPS: Category-specific intercepts and RR effects.

Intercept RR Effect

Mean SD HPD Mean SD HPD

1 Almost never -.62 .03 -.68, -.56 -.27 .03 -.33, -.22

2 Seldom -2.13 .07 -2.28,-2.00 .43 .08 .28, .57

3 Sometimes -2.39 .08 -2.56,-2.23 .65 .08 .49, .81

4 Often -3.61 .16 -3.93,-3.33 1.65 .13 1.39, 1.91

5 Almost always -4.71 .18 -5.09,-4.37 2.70 .13 2.45, 2.94

The RR effect is negative for the first category (labeled almost never)

and positive for all other effects. From the HPD regions follow that all

RR effects are significantly different from zero. It can be concluded that

in the DQ group, respondents underreported any experiences of negative

consequences and, subsequently, overreported that almost never negative
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consequences were experienced. Furthermore, the estimated RR effects

increase with an increase in the number of negative experiences, where the

fifth category has the highest RR effect. Thus, an increase in the number

of experiences of alcohol-related negative consequences leads to a more

sensitive response option. The difference between the groups with respect

to the posterior expected proportion of respondents that admits experiencing

negative consequences is highest for the fifth response option. In that case,

around 1% of the DQ group admits to have almost always alcohol-related

negative consequences, which is around 13% in the RR group. It can be

concluded that the RR technique led to a higher degree of cooperation and

more accurate data, especially when the response options become more

sensitive.

The response data from the RR group were used to explore ethnic

differences in experiencing alcohol-related negative consequences. The

responses from the DQ group were shown to be biased, since effects of

under- and overreporting were found. In this study, the racial origin of the

respondents was administered. The RR group consisted of 2% Asians, 83%

white Americans, 11% African Americans, and 12% belonged to another

race. An indicator variable, labeled Ethnicity, was used in the log-linear

model that represented the racial origin of each respondent.

In Table 5, the estimated category-specific effects of ethnicity on the

individual category response rates are given. Each posterior mean effect is

accompanied with a posterior standard deviation (SD) and a 95% highest

posterior density (HPD) interval. Under the column labeled Effect, the

estimated effects are represented, where each category-specific intercept

represents the average population level on the logarithmic scale. Under

the column labeled Scaled Effect, the intercept represents the average

population level of the African Americans on the logarithmic scale. The

scaled ethnic effect of the this group is in that case equal to zero.

For the first category, the African Americans score significantly higher

than the other groups. Furthermore, the estimated scaled effects of the

other groups are significantly smaller. This means that the percentage

of African-Americans experiencing almost never negative consequences is

much higher compared to the other groups. In the same way, it follows that

the percentage of African-Americans experiencing negative consequences

seldom to almost always is lower than that of other groups. In the second

category, the white Americans also score significantly higher than the

African Americans, which follows from the scaled effects. The third to
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Table 5: CAPS: Ethnic differences per response category.

Effect Scaled Effect

Cat. Ethnicity Mean SD HPD Mean SD HPD

1

Asian -.04 .12 -.29, .17 -.18 .16 -.51, .11

White American -.03 .05 -.12, .07 -.16 .05 -.26,-.06

African American .13 .06 .02, .24 .00

Other -.06 .08 -.22, .08 -.20 .10 -.40,-.02

2

Asian .25 .19 -.14, .60 .46 .26 -.08,1.00

White American -.02 .08 -.17, .13 .19 .09 .00, .37

African American -.21 .10 -.40,-.03 .00

Other -.01 .12 -.26, .22 .20 .16 -.14, .50

3

Asian -.23 .20 -.60, .17 -.28 .27 -.80, .25

White American .07 .08 -.09, .22 .03 .09 -.15, .20

African American .04 .10 -.15, .23 .00

Other .11 .12 -.12, .36 .08 .16 -.23, .39

4

Asian .13 .20 -.27, .50 .22 .27 -.30, .76

White American .06 .08 -.10, .21 .15 .09 -.02, .32

African American -.09 .10 -.29, .09 .00

Other -.10 .12 -.34, .13 -.01 .16 -.33, .28

5

Asian -.01 .19 -.37, .35 .07 .25 -.43, .55

White American -.03 .07 -.18, .10 .04 .08 -.12, .19

African American -.08 .09 -.25, .09 .00

Other .12 .11 -.11, .33 .19 .14 -.09, .46

fifth response categories did not show any significant ethnic differences.

DISCUSSION

For small data samples, the Dirichlet-multinomial model is proposed

for categorical RR data, where a linear transformation of the response

rates is implemented to adjust for the RR sampling design. This model

is a generalization of the beta-binomial model for binary RR data. Both

models are suitable for sensitive-survey studies and small data samples.

The individual category-response rates are related to the observed data, but
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a linear transformation can be used to derive the true categorical-response

rates. The parameters of this linear transformation are the characteristics

of the randomizing device and they are usually known. The derived

expressions of the posterior expectation and variance of the category-

response rates are useful in case of empirical Bayes estimation or explicit

prior knowledge about response rate population parameters.

The idea of full Bayes parameter estimation was elaborated using the

synthetic data set. The simulation study has shown that full Bayes model

was able to rather accurately estimate values of parameters for different

number of response categories. The method was equally successful

in retrieving the parameters for the constant case of homogenous prior

parameters as well as for the case of non-constant prior parameters.

Moreover, the simulation study concluded that increasing the number of

persons leads to more accurate results, while the variation of the percentage

of forced responses does not influence the accuracy.

A constrained-Dirichlet prior is used to identify homogeneity in

response rates over items and persons. Therefore, the WinBUGS program

was extended to define a constrained-Dirichlet prior, where a loglinear

model was defined on the true category-response rates.

An important effect was identified in the real data study, which showed

that the effect of the RR method varied over response categories. A priori

it was assumed that the response options varied in their sensitivity, where a

higher degree of accordance with the sensitive item but this hypothesis was

never tested in the literature. The analysis showed a substantial increase

in agreement with more sensitive response options under the randomized

response condition.

In RR studies the topic of compliance is often an issue. Respondents

are instructed to follow the RR instructions but may for different reasons

act differently. In large-scale sample studies, a latent class structure can be

integrated in the model to identify non-compliant behavior. The responses

from the non-compliant subjects are modeled differently. The Dirichlet-

multinomial model can also be extended with a two-component latent-class

structure to allow for non-compliance, but that would require more response

data to obtain stable parameter estimates.
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A Derivation of the Marginal Log-Likelihood Function

Here, the derivation of the marginal likelihood expressed by Equation (7) is given. The

marginal distribution of the RR data given the prior parameters α can be stated as

p(y | α) = ∏
i

∫
Δ(pi)

p(yi. | Δ(pi)) p(Δ(pi) | α)d(Δ(pi))

= ∏
i

K!

∏c yi.c!

Γ(α0)

∏c Γ(αc)

∫
Δ(pi)

∏
c

Δ(pic)
αc+yi.c−1d(Δ(pi))

= ∏
i

K!

∏c yi.c!

Γ(α0)

∏c Γ(αc)

∏c Γ(αc + yi.c)

Γ(α0 +K)
.

The gamma function Γ can be represented as a factorial function, where Γ(n) = (n− 1)!.
Therefore, the marginal distribution can be rewritten in terms of factorial multipliers.

p(y | α) = ∏
i

K!

∏c yi.c!

(α0 −1)!

∏c(αc −1)!

∏c(αc + yi.c −1)!

(α0 +K −1)!
.

The factorial multipliers of the last fraction can be manipulated such that

(αc + yi.c −1)! =
[

∏yi.c
j=1((αc −1)+ j)

]
(αc −1)!

=
[

∏yi.c−1
j=0 (αc + j)

]
(αc −1)!

and

(α0 +K −1)! =
[

∏K
j=1((α0 −1)+ j)

]
(α0 −1)!

=
[

∏K−1
j=0 (α0 + j)

]
(α0 −1)!.

The density p(y | α) can be rewritten as

p(y | α) = ∏
i

K!

∏c yi.c!

[
∏yi.1−1

j=0 (α1 + j)
]
. . .

[
∏yi.C−1

j=0 (αC + j)
]

∏K−1
j=0 (α0 + j)

and the the logarithm of the density p(y | α) can be stated as

l(α | y) ∝
N

∑
i=1

[
yi.1−1

∑
j=0

log
(

α1 + j
)
+ . . .+

yi.C−1

∑
j=0

log
(

αC + j
)−K−1

∑
j=0

log
(

α0 + j
)]

,

leaving out the first term, which is a constant.
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B WinBUGS Code of the Multinomial-Dirichlet Model

The code of the Dirichlet-multinomial model for RR data is given for N persons, K items,

and five response categories. The randomizing device has parameters φ1 and φ2.

model

{
f o r ( i i n 1 :N)

{
y [ i , 1 : 5 ] ˜ d m u l t i ( q [ i , ] , K)

q [ i , 1 ] ˜ d b e t a ( a l p h a [ 1 ] , b e t a t o t 1 )

q 2 s t a r [ i ] ˜ d b e t a ( a l p h a [ 2 ] , b e t a t o t 2 )

q [ i ,2]<− q 2 s t a r [ i ]∗(1−q [ i , 1 ] )

q 3 s t a r [ i ] ˜ d b e t a ( a l p h a [ 3 ] , b e t a t o t 3 )

q [ i ,3]<− q 3 s t a r [ i ]∗(1−q [ i ,1]−q [ i , 2 ] )

q 4 s t a r [ i ] ˜ d b e t a ( a l p h a [ 4 ] , a l p h a [ 5 ] )

q [ i ,4]<− q 4 s t a r [ i ]∗(1−q [ i ,1]−q [ i ,2]−q [ i , 3 ] )

q [ i ,5]<−1−q [ i ,1]−q [ i ,2]−q [ i ,3]−q [ i , 4 ]

}

a l p h a [ 1 ] ˜ d u n i f ( 0 , 1 0 )

a l p h a [ 2 ] ˜ d u n i f ( 0 , 1 0 )

a l p h a [ 3 ] ˜ d u n i f ( 0 , 1 0 )

a l p h a [ 4 ] ˜ d u n i f ( 0 , 1 0 )

a l p h a [ 5 ] ˜ d u n i f ( 0 . 5 , 1 0 )

a lpha0<−sum ( a l p h a [ 1 : 5 ] )

b e t a t o t 1 <−sum ( a l p h a [ 2 : 5 ] )

b e t a t o t 2 <−sum ( a l p h a [ 3 : 5 ] )

b e t a t o t 3 <−sum ( a l p h a [ 4 : 5 ] )

f o r ( i i n 1 :N)

{ f o r ( c i n 1 : 5 )

{
p [ i , c ] <− ( q [ i , c ] − (1− ph i1 )∗ ph i2 ) / ph i1

}
}

}


