BENOIT BLANCHON

CREATOR OF ARDUINOJSON

e

Mastering ArduinoJson 6

Efficient JSON serialization for embedded C++

Arduino THIRD EDITION

Contents

2.1
2.2
2.3

Contents
1 Introduction
1.1 About thisbook
1.1.1 Overview
1.1.2 Codesamples
1.1.3 What's new in the third edition
1.2 Introduction to JSON
1.2.1 Whatis JSON?
1.2.2 What is serialization?
1.2.3 What can you do with JSON?
124 Historyof JSON
1.25 Why is JSON so popular?
126 The JSONsyntax
1.2.7 Binary datain JSON
1.28 CommentsinJSON
1.3 Introduction to ArduinoJson
1.3.1 What ArduinoJsonis
1.3.2 What ArduinoJsonisnot
1.3.3 What makes ArduinoJson different?
1.3.4 Does size matter?
1.3.5 What are the alternatives to ArduinoJson? . .
1.3.6 How to install ArduinoJson
1.3.7 Theexamples
1.4 Summary
2 The missing C++ course

Why a C++ course?
Harvard and von Neumann architectures
Stack, heap, and globals
231 Globals.,

3

.......... 17

Contents
232 Heap o 35
233 Stack. 36

2.4 Pointers 38
2.4.1 Whatis a pointer? 38
2.4.2 Dereferencing a pointer 38
243 Pointersand arrayso 39
2.4.4 Taking the address of avariable 40
2.4.5 Pointer to class and struct 40
2.4.6 Pointertoconstant 41
247 Thenull pointer 43
248 Why use pointers? 44

2.5 Memory management Lo 45
251 malloc() and free() 45
252 newanddelete 45
2.5.3 Smart pointers. 46
254 RAIl . .. e 48

2.6 References 49
2.6.1 Whatis areference? 49
2.6.2 Differences with pointers 49
2.6.3 Referencetoconstant, 50
2.6.4 Rules of references L. 51
2.6.5 Common problems 51
2.6.6 Usage forreferences 52

2.7 Strings 53
2.7.1 How are the strings stored? 53
2.7.2 String literalsin RAM 53
2.7.3 String literalsin Flash 54
2.7.4 Pointer to the “globals” section. 56
2.7.5 Mutable string in “globals™o 56
276 Acopyinthestack 57
277 Acopyintheheap 58
2.7.8 A word about the Stringclass 59
2.7.9 Pass strings to functions 60

2.8 Summary 63

3 Deserialize with ArduinoJson 65

3.1 The example of this chapter 66

3.2 Deserializing anobject L 67
321 The JSON document 67

3.2.2 Placing the JSON document in memory 67

Contents
3.2.3 Introducing JsonDocument 63
3.2.4 How to specify the capacity? 68
3.2.5 How to determine the capacity? 69
3.2.6 StaticJsonDocument or DynamicJsonDocument? 70
3.2.7 Deserializing the JSON document 70

3.3 Extracting values from an object L. 72
3.3.1 Extractingvalues 72
3.32 Explicitcasts 72
3.3.3 When values are missing 73
3.3.4 Changing the default value 74

3.4 Inspecting an unknown object 75
3.4.1 Getting a reference to the object 75
3.42 Enumeratingthekeys 76
3.4.3 Detecting the type of value 76
3.4.4 Variant types and C++ types 77
3.45 Testing if a key exists in an object 78

3.5 Deserializing anarray 79
351 The JSON document 79
3.5.2 Parsingthearray 79
3.5.3 The ArduinoJson Assistant 81

3.6 Extracting values fromanarray 83
3.6.1 Retrieving elements by index 83
3.6.2 Alternative syntaxes 83
3.6.3 When complex values are missing 34

3.7 Inspecting an unknown array 86
3.7.1 Getting a reference to thearray 86
3.7.2 Capacity of JsonDocument for an unknown input 86
3.7.3 Number of elementsinanarray 87
3.7.4 lteration 87
3.7.5 Detecting the type of anelement 38

3.8 Thezero-copy mode 90
3.8.1 Definition 90
382 Anexample 90
3.8.3 Input buffer must stay in memory L. 92

3.9 Reading from read-only memory 93
391 Theexample 93
3.9.2 Duplication is requiredo 93
3.93 Practice 94

3.9.4 Other types of read-only input 95

Contents vii

3.10 Reading from astream 97
3.10.1 Reading fromafile L. 97
3.10.2 Reading from an HTTP response 98

311 Summary 106

4 Serializing with ArduinoJson 108

4.1 The example of thischapter 109

4.2 Creatinganobject 110
421 Theexample. 110
4.2.2 Allocating the JsonDocument 110
423 Adding memberso 111
424 Alternative syntaxo 111
425 Creating an empty object L. 112
426 Removingmembers 112
427 Replacing members 113

4.3 Creatinganarray 114
431 Theexample. o 114
4.3.2 Allocating the JsonDocument 114
433 Addingelements oo 115
434 Adding nested objects 115
435 Creating an empty array 116
43.6 Replacingelementso 116
43.7 Removingelementso 117

4.4 Writing to memory 118
441 Minified JSSON 118
4.4.2 Specifying (or not) the buffersize 118
443 Prettified JSSON 119
444 Measuring thelength 120
445 WritingtoaString 121
446 Casting a JsonVariant to a String 121

45 Writingtoastream 122
45.1 What's an output stream? 122
452 Writing to the serial port L. 123
453 Writingtoafile 124
454 \Writing to a TCP connection 124

4.6 Duplication of stringso 129
46.1 Anexample 129
46.2 Keysandvalues 130
4.6.3 Copy only occurs when adding values 130

4.6.4 ArduinoJson Assistant to the rescue 131

Contents
4.7 Inserting special valueso 133
47.1 Addingnull 133
4.7.2 Adding pre-formatted JSSON 133

4.8 Summary 135
5 Advanced Techniques 136
5.1 Introduction 137
5.2 Filtering theinput 138
5.3 Deserializing in chunks oL 142
5.4 JSON streaming 147
5.5 Automatic capacity 150
5.6 Fixing memory leakso 153
5.7 Using external RAM 155
5.8 Logging 158
59 Buffering 161
5.10 Custom readers and writers 164
5.11 Custom converters 169
5.12 MessagePack 175
5.13 Summary 178
6 Inside ArduinoJson 180
6.1 Why JsonDocument? 181
6.1.1 Memory representation 181
6.1.2 Dynamic memory 182
6.1.3 Memory pool 183
6.1.4 Strengths and weaknesses 184

6.2 Inside JsonDocument 185
6.2.1 Differences with Jsonvariant 185
6.2.2 Fixed capacity 185
6.2.3 String deduplication 186
6.2.4 Implementation of the allocator 186
6.2.5 Implementation of JsonDocument 188

6.3 Inside StaticJsonDocument 189
6.3.1 Capacity 189
6.3.2 Stackmemory 189
6.3.3 Limitation 190
6.3.4 Otherusages. 191
6.3.5 Implementation 191

6.4 Inside DynamicJsonDocument o e 192

6.4.1 Capacity 192

Contents
6.4.2 Shrinking a DynamicJsonDocument 192
6.4.3 Automatic capacity 193
6.44 Heapmemory 194
6.45 Allocator 194
6.4.6 Implementation 195
6.4.7 Comparison with StaticJsonDocument 195
6.4.8 How tochoose? 196

6.5 Inside Jsonvariant 197
6.5.1 Supported types 197
6.5.2 Reference semantics 197
6.5.3 Creating a JsonVariant 198
6.5.4 Implementationo 199
6.5.5 Two kindsofnull 200
6.5.6 Unsigned integers 201
6.5.7 Integer overflows 201
6.5.8 ArduinoJson’s configuration 202
6.5.9 lterating through a Jsonvariant. 203
6.5.10 The oroperator 205
6.5.11 The subscript operator 206
6.5.12 Member functions 206
6.5.13 Comparison operators, 209
6.5.14 Constreference 210

6.6 Inside JsonObject 211
6.6.1 Reference semantics 211
6.6.2 Nullobject 211
6.6.3 Createanobject 212
6.6.4 Implementation 212
6.6.5 Subscript operatoro 213
6.6.6 Member functions 214
6.6.7 Constreference 217

6.7 Inside JsonArrayo 218
6.7.1 Member functions 218
6.7.2 copyArray() 222

6.8 Insidetheparser 224
6.8.1 Invoking the parser 224
6.8.2 Twomodes 225
6.83 Pitfalls 225
6.8.4 Nesting limit 226
6.8.5 Quotes 227
6.8.6 Escapesequences, 228

Contents
6.8.7 Comments 229
6.8.8 NaN and Infinity 229
6.8.9 Stream 229
6.8.10 Filtering 230

6.9 Inside the serializer L. 231
6.9.1 Invoking the serializero 231
6.9.2 Measuring thelength 232
6.9.3 Escapesequences 233
6.9.4 Floattostring 233
6.9.5 NaN and Infinity 234

6.10 Miscellaneous 235
6.10.1 Thewversionmacro. 235
6.10.2 The private namespace 235
6.10.3 The public namespace 236
6.10.4 ArduinoJson.h and ArduinoJson.hpp. 236
6.10.5 The single header 237
6.10.6 Codecoverage 237
6.10.7 Fuzzing 237
6.10.8 Portability 238
6.10.9 Online compiler 239
6.10.10License 240

6.11 Summary 241

7 Troubleshooting 242

7.1 Introduction 243

7.2 Programcrashes 244
7.2.1 Undefined Behaviors 244
7.22 A bugin ArduinoJson? 244
723 Nullstring 245
724 Useafterfree 245
7.2.5 Return of stack variable address 247
7.2.6 Bufferoverflow 248
7.2.7 Stackoverflow 250
7.2.8 How to diagnose these bugs? 250
7.2.9 How to prevent these bugs? 253

7.3 Deserialization issues 255
7.3.1 EmptyInput 255
7.3.2 Incompletelnput 256
7.3.3 InvalidInput 258
7.3.4 NoMemory o o o . 262

Contents
7.35 TooDeep 263

7.4 Serialization issues 264
7.4.1 The JSON document is incomplete 264
7.4.2 The JSON document contains garbage 264
7.4.3 The serizalizationistooslow 265

7.5 Common error MeSSages e 267
7.5.1 no matching function for call to BasicJsonDocument() 267
7.5.2 Invalid conversion from const charxtoint. 267
7.5.3 No match for operator[] 268
7.5.4 Ambiguous overload for operator= 269
7.5.5 Call of overloaded function is ambiguous 270
7.5.6 The value is not usable in a constant expression 271

7.6 Askingforhelp. 272
T Summary 274
8 Case Studies 275
8.1 Configuration in SPIFFS 276
8.1.1 Presentation 276
8.1.2 The JSON document 276
8.1.3 The configuration class 277
8.1.4 Converters 278
8.1.5 Saving the configurationtoafile 282
8.1.6 Reading the configuration from afile 282
8.1.7 Sizing the JsonDocument 283
8.1.8 Conclusion 283

8.2 OpenWeatherMap on MKR1000 285
8.2.1 Presentation 285
8.2.2 OpenWeatherMap's APl 285
823 TheJSONresponse 286
8.2.4 Reducing the size of the document 288
8.2.5 The filter documento 289
826 Thecode 290
8.2.7 Summary 291

8.3 Redditon ESP8266 292
8.3.1 Presentation 292
8.3.2 Reddit's APl 293
8.3.3 Theresponse 204
834 Themainloop. 295
8.3.5 Sendingtherequest L. 296

8.3.6 Assembling the puzzle 296

Contents xii

8.3.7 Summary 298

8.4 JSON-RPCwith Kodi 299
8.4.1 Presentation 299
8.42 JSON-RPCRequest 300
8.4.3 JSON-RPCResponse 300
8.4.4 A JSON-RPC framework 301
8.45 JsonRpcRequest 302
8.4.6 JSONRPCRESPONSE 303
8.4.7 JsonRpcClient 304
8.4.8 Sending notificationto Kodi 305
8.4.9 Reading properties from Kodi 307
8.4.10 Summary 309

8.5 Recursive analyzero 311
8.5.1 Presentation 311
8.5.2 Read from the serial port 311
8.5.3 Flushing afteranerror 312
8.5.4 Testing the type of a Jsonvariant 313
8.5.5 Printingvalues. 314
85.6 Summary 316

9 Conclusion 317

Index 318

Serializing with ArduinoJson

Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.

— Martin Fowler, Refactoring: Improving the Design of Existing Code

https://amzn.to/2YqvTrt

Chapter 4 Serializing with ArduinoJson

109

4.1 The example of this chapter

Reading a JSON document is only half of the story; we'll
now see how to write a JSON document with ArduinoJ-
son.

In the previous chapter, we played with GitHub’s API. We'll
use a very different example for this chapter: pushing data
to Adafruit 10.

Adafruit 10 is a cloud storage service for loT data. They
have a free plan with the following restrictions:

= 30 data points per minute
» 30 days of data storage
» 5 feeds

If you need more, it's just $10 a month. The service is very
easy to use. All you need is an Adafruit account (yes, you
can use the account from the Adafruit shop).

As we did in the previous chapter, we'll start with a simple
JSON document and add complexity step by step.

scientists

engineers

students
veryone

' teachers

makers
tinkerers

Since Adafruit 10 doesn’t impose a secure connection, we can use a less powerful
microcontroller than in the previous chapter; we'll use an Arduino UNO with an Ethernet

Shield.

https://io.adafruit.com

Chapter 4 Serializing with ArduinoJson 110

4.2 Creating an object

4.2.1 The example

Here is the JSON object we want to create:

{
"value": 42,
"lat": 48.748010,
"lon": 2.293491
3

It's a flat object, meaning that it has no nested object or array, and it contains the
following members:

1. "value” is an integer that we want to save in Adafruit 10.
2. "lat" is the latitude coordinate.
3. "lon" is the longitude coordinate.

Adafruit 10 supports other optional members (like the elevation coordinate and the time
of measurement), but the three members above are sufficient for our example.

4.2.2 Allocating the JsonDocument

As for the deserialization, we start by creating a JsonDocument to hold the memory
representation of the object. The previous chapter introduced JsonDocument, so I'll
assume that you're now familiar with it.

As you recall, a JsonDocument has a fixed capacity which we must set on creation. Here,
we have one object with no nested values, so the size is JSON_OBJECT_SIZE(3). For
a more complex document, you can use the ArduinoJson Assistant to compute the
required capacity.

We saw that JsonDocument comes in two flavors: StaticJsonDocument, which lives in the
stack, and DynamicJsonDocument, which resides in the heap. In this case, we can use a
StaticJsonDocument because the document is small, and | never use the heap on AVR
anyway. Indeed, the Arduino UNO has only 2KB of RAM, so we can't afford any heap

https://arduinojson.org/v6/assistant/

Chapter 4 Serializing with ArduinoJson 111

fragmentation. If you don’t know which implementation of JsonDocument to choose for
your project, consult the ArduinoJson Assistant.

Here is the code:

p

const int capacity = JSON_OBJECT_SIZE(3);
StaticJsonDocument<capacity> doc;

The JsonDocument is currently empty and JsonDocument::isNull() returns true. If we
serialized it now, the output would be “null.”

4.2.3 Adding members

An empty JsonDocument automatically becomes an object when we add members to it.
We do that with the subscript operator ([1), just like we did in the previous chapter:
doc["value"] = 42;
doc["lat"] = 48.748010;
doc[”lon"] = 2.293491;

The memory usage is now JSON_OBJECT_SIZE(3), so the JsonDocument is full. When the
JsonDocument is full, so it cannot accept any new member. If you try to add another
value, the operation will fail and set the flag JsonDocument: :overflowed() to true. To
actually add more values, you must create a larger JsonDocument.

4.2.4 Alternative syntax

Most of the time JsonDocument: :overflowed() is enough, but ArduinoJson provides an
alternative syntax that allows you to check whether the insertion succeed. Here is the
equivalent of the previous snippet:

-

doc["value"].set(42);
doc["lat”].set(48.748010);
doc["lon"].set(2.293491);

.

The compiler generates the same executable as with the previous syntax, except that
JsonVariant::set() returns true for success or false on failure.

Chapter 4 Serializing with ArduinoJson 112

To be honest, | never check if insertion succeeds in my programs. The reason is simple:
the JSON document is roughly the same for each iteration; if it works once, it always
works. There is no reason to bloat the code for a situation that cannot happen.

4.2.5 Creating an empty object

We just saw that the JsonDocument becomes an object as soon as you insert a member,
but what if you don’t have any members to add? What if you want to create an empty
object?

When you need an empty object, you cannot rely on the implicit conversion any-
more. Instead, you must explicitly convert the JsonDocument to a JsonObject with
JsonDocument: : to<JsonObject>():

// Convert the document to an object
JsonObject obj = doc.to<JsonObject>();

This function clears the JsonDocument, so all existing references become invalid. Then,
it creates an empty object at the root of the document and returns a reference to this
object.

At this point, the JsonDocument is not empty anymore and JsonDocument::isNull()
returns false. If we serialized this document, the output would be “{}".

4.2.6 Removing members

It's possible to erase a member from an object by calling JsonObject: :remove(key).
However, for reasons that will become clear in chapter 6, this function doesn't release
the memory in the JsonDocument.

The remove() function is a frequent cause of bugs because it creates a memory leak.
Indeed, if you add and remove members in a loop, the JsonDocument grows, but memory
is never released.

Chapter 4 Serializing with ArduinoJson 113

4.2.7 Replacing members

It's possible to replace a member in the object, for example:

obj["value"]
obj["value"]

.

42;
43;

Most of the time, replacing a member doesn't require a new allocation in the
JsonDocument. However, it can cause a memory leak if the old value has associated
memory, for example, if the old value is a string, an array, or an object.

!

Memory leaks

Replacing and removing values produce a memory leak inside the
JsonDocument.

In practice, this problem only happens in programs that use a JsonDocument
to store the application’s state, which is not the purpose of ArduinoJson.
Let's be clear; the sole purpose of ArduinoJson is to serialize and deserialize
JSON documents.

Be careful not to fall into this common anti-pattern, and make sure you
read the case studies to see how ArduinoJson should be used.

Chapter 4 Serializing with ArduinoJson 114

4.3 Creating an array

4.3.1 The example

Now that we can create objects, let's see how to create an array. Our new example will
be an array that contains two objects.

"key": "al",
"value”: 12
Yo
{
"key": "a2",
"value"”: 34

The values 12 and 34 are just placeholder; in reality, we'll use the result from
analogRead().

4.3.2 Allocating the JsonDocument

As usual, we start by computing the capacity of the JsonDocument:
= There is one array with two elements: JSON_ARRAY_SIZE(2)
= There are two objects with two members: 2%JSON_OBJECT_SIZE(2)

Here is the code:

const int capacity = JSON_ARRAY_SIZE(2) + 2xJSON_OBJECT_SIZE(2);
StaticJsonDocument<capacity> doc;

Chapter 4 Serializing with ArduinoJson 115

4.3.3 Adding elements

In the previous section, we saw that an empty JsonDocument automatically becomes an
object as soon as we insert the first member. This statement was only partially correct:
it becomes an object as soon as we use it as an object.

Indeed, if we treat an empty JsonDocument as an array, it automatically becomes an
array. For example, this happens if we call JsonDocument::add(), like so:

P

doc.add(1);
doc.add(2);

After these two lines, the JsonDocument contains [1,2].

Alternatively, we can create the same array with the [] operator, like so:

p

doc[0]
doc[1]

13
25

However, this second syntax is a little slower because it requires walking the list of
members. Use this syntax to replace elements and use add() to add elements to the
array.

Now that we can create an array, let's rewind a little because that’s not the JSON array
we want: instead of two integers, we need two nested objects.

4.3.4 Adding nested objects

To add the nested objects to the array, we call JsonArray::createNestedObject(). This
function creates a nested object, appends it to the array, and returns a reference.

Here is how to create our sample document:

JsonObject objl = doc.createNestedObject();
Obj‘][”key”] = Ha-IH;
obj1["value”] = analogRead(A1);

JsonObject obj2 = doc.createNestedObject();
Objz[”key”] = HaZH;
obj2["value"] = analogRead(A2);

Chapter 4 Serializing with ArduinoJson 116

Alternatively, we can create the same document like so:

P

dOC[@][”key”] = na-lu;
doc[@]1["value"] = analogRead(Al);

doc[1]["key"] = "a2";
doc[1]1["value"] = analogRead(A2);

Again, this syntax is slower because it needs to walk the list, so only use it for small
documents.

4.3.5 Creating an empty array

We saw that the JsonDocument becomes an array as soon as we add elements, but this
doesn't allow creating an empty array. If we want to create an empty array, we need to
convert the JsonDocument explicitly with JsonDocument: : to<JsonArray>():

// Convert the JsonDocument to an array
JsonArray arr = doc.to<JsonArray>();

L

Now the JsonDocument contains [].

As we already saw, JsonDocument: : to<T>() clears the JsonDocument, so it also invalidates
all previously acquired references.

4.3.6 Replacing elements

As for objects, it's possible to replace elements in arrays using JsonArray: :operator[]:

arr[0] = 666;
arr[1] = 667;

.

Most of the time, replacing the value doesn’t require a new allocation in the
JsonDocument. However, if some memory was held by the previous value (a JsonObject,
for example), this memory is not released. It's a limitation of ArduinoJson’s memory
allocator, as we'll see later in this book.

Chapter 4 Serializing with ArduinoJson 117

4.3.7 Removing elements

As for objects, you can remove an element from the array, with JsonArray: : remove():

arr.remove(0);

= J

As | said, remove() doesn’t release the memory from the JsonDocument, so you should
never call this function in a loop.

Chapter 4 Serializing with ArduinoJson 118

4.4 Writing to memory

We saw how to construct an array. Now, it's time to serialize it into a JSON document.
There are several ways to do that. We'll start with a JSON document in memory.

We could use a String, but as you know, | prefer avoiding dynamic memory allocation.
Instead, we'd use a good old char[]:

// Declare a buffer to hold the result
char output[128];

4.4.1 Minified JSON

To produce a JSON document from a JsonDocument, we simply need to call
serializeJson():

// Produce a minified JSON document
serializeJson(doc, output);

After this call, the string output contains:

[{"key":"a1","value":12},{"key":"a2","value":34}]

As you see, there are neither space nor line breaks; it's a “minified” JSON document.

4.4.2 Specifying (or not) the buffer size

If you're a C programmer, you may have been surprised that | didn’t provide the buffer
size to serializeJson(). Indeed, there is an overload of serializeJson() that takes a
charx and a size:

serializeJson(doc, output, sizeof(output));

However, that's not the overload we called in the previous snippet. Instead, we called
a template method that infers the size of the buffer from its type (in this case,
char[128]).

Chapter 4 Serializing with ArduinoJson 119

Of course, this shorter syntax only works because output is an array. If it were a charx
or a variable-length array, we would have had to specify the size.

0 Variable-length array
A variable-length array, or VLA, is an array whose size is unknown at compile
time. Here is an example:

void f(int n) {
char buf[n];
/] ...

C99 and C11 allow VLAs, but not C++. However, some compilers support
VLAs as an extension.

This feature is often criticized in C++ circles, but Arduino users seem to
love it. That's why ArduinoJson supports VLAs in all functions that accept
a string.

4.4.3 Prettified JSON

The minified version is what you use to store or transmit a JSON document because
the size is optimal. However, it's not very easy to read. Humans prefer “prettified”
JSON documents with spaces and line breaks.

To produce a prettified document, you must use serializeJsonPretty() instead of
serializeJson():

// Produce a prettified JSON document
serializeJsonPretty(doc, output);

Here is the content of output:

"key": "al",
"value": 12
b
{

Chapter 4 Serializing with ArduinoJson 120

llkey": Ha2H’
"value”: 34

. J

Of course, you need to make sure that the output buffer is big enough; otherwise, the
JSON document will be incomplete.

4.4.4 Measuring the length

ArduinoJson allows computing the length of the JSON document before producing it.
This information is helpful for:

1. allocating an output buffer,
2. reserving the size on disk, or
3. setting the Content-Length header.

There are two methods, depending on the type of document you want to produce:
// Compute the length of the minified JSON document
int len1 = measureJson(doc);

// Compute the length of the prettified JSON document
int len2 = measureJsonPretty(doc);

In both cases, the result doesn’t count the null-terminator.

By the way, serializeJson() and serializeJsonPretty() return the number of bytes they
wrote. The results are the same as measureJson() and measureJsonPretty(), except if
the output buffer is too small.

O Avoid prettified documents

- With the example above, the sizes are 73 and 110. In this case, the prettified
version is only 50% bigger because the document is simple, but in most
cases, the ratio is largely above 100%.

Remember, we're in an embedded environment: every byte counts, and so
does every CPU cycle. Always prefer a minified version.

Chapter 4 Serializing with ArduinoJson 121

4.4.5 Writing to a String

The functions serializeJson() and serializeJsonPretty() have overloads taking a
String:

String output = "JSON = ";
serializeJson(doc, output);

The behavior is slightly different: the JSON document is appended to the String; it
doesn't replace it. That means the above snippet sets the content of the output variable
to:

JSON = [{"key":"al","value":123},{"key":"a2","value":34}]

This behavior seems inconsistent? That's because ArduinoJson treats String like a
stream; more on that later.

4.4.6 Casting a JsonVariant to a String

You should remember from the chapter on deserialization that we must cast JsonVariant
to the type we want to read.

It is also possible to cast a JsonVariant to a String. If the JsonVariant contains a
string, the return value is a copy of the string. However, if the Jsonvariant contains
something else, the returned string is a serialization of the variant.

We could rewrite the previous example like this:

// Cast the JsonDocument to a string
String output = "JSON = " + doc.as<String>();

This trick works with JsonDocument and JsonVariant, but not with JsonArray and
JsonObject because they don't have an as<T>() function.

Chapter 4 Serializing with ArduinoJson 122

4.5 Writing to a stream

4.5.1 What’s an output stream?

For now, every JSON document we produced remained in memory, but that's usually
not what we want. In many situations, it's possible to send the JSON document directly
to its destination (whether it's a file, a serial port, or a network connection) without
any copy in RAM.

We saw in the previous chapter what an “input stream” is, and we saw that Arduino
represents this concept with the Stream class. Similarly, there are "output streams,”
which are sinks of bytes. We can write to an output stream, but we cannot read. In
the Arduino land, an output stream is materialized by the Print class.

Here are examples of classes derived from Print:

Library Class Well known instances
Core HardwareSerial Serial, Seriall..
BluetoothSerial SerialBT
ESP File
WiFiClient
WiFiClientSecure
EthernetClient
Ethernet
EthernetUDP
GSM GSMClient
LiquidCrystal | LiquidCrystal
SD File
SoftwareSerial | SoftwareSerial
WiFi WiFiClient
Wire TwoWire Wire

(r) std: :ostream

- In the C++ Standard Library, an output stream is represented by the
std: :ostream class.

ArduinoJson supports both Print and std::ostream.

Chapter 4 Serializing with ArduinoJson 123

g Performance issues
serializeJson() writes bytes one by one to the output stream, which can
result in bad performances with unbuffered streams like WiFiClient or File.

We'll see a simple workaround in the next chapter.

4.5.2 Writing to the serial port

The most famous implementation of Print is HardwareSerial, which is the class of
Serial. To serialize a JsonDocument to the serial port of your Arduino, just pass Serial
to serializeJson():

// Print a minified JSON document to the serial port
serializeJson(doc, Serial);

// Same with a prettified document
serializeJsonPretty(doc, Serial);

You can see the result in the Arduino Serial Monitor, which is very handy for debug-
ging.

€2 com3 - O X

Send

"key": "arduincijson.al”,
"yaluse™: ldd

"key": "arduincjscn.ai”,
"wvalue™: 192

W

Autoscroll Mo line ending . | | 9600 baud i Clear output

If you want to send JSON documents between two boards, | recommend using Seriall
for the communication link and keeping Serial for the debugging link. Of course, this

Chapter 4 Serializing with ArduinoJson 124

requires that your board has several UART, which is not the case of the UNO, so we
would have to upgrade to a Leonardo (an excellent board, by the way).

Alternatively, you can use Wire for the communication link; but you must know that
the Wire library limits the size of a message to 32 bytes (but there is a workaround for
longer messages).

In theory, SoftwareSerial could also serve as the communication link, but | highly
recommend against it because it's completely unreliable.

4.5.3 Writing to a file

Similarly, we can use a File instance as the target of serializeJson() and
serializeJsonPretty(). Here is an example with the SD library:

// Open file for writing
File file = SD.open("adafruit.txt”, FILE_WRITE);

// Write a prettified JSON document to the file
serializeJsonPretty(doc, file);

.

You can find the complete source code for this example in the WriteSdCard folder of the
zip file provided with the book.

You can apply the same technique to write a file on SPIFFS or LittleFS, as we'll see in
the case studies.

4.5.4 Writing to a TCP connection

We're now reaching our goal of sending our measurements to Adafruit 10.

As | said in the introduction, we'll suppose that our program runs on an Arduino UNO
with an Ethernet shield. Because the Arduino UNO has only 2KB of RAM, we'll not
use the heap at all. As | said, | never use the heap on processors with so little RAM
because | cannot afford any fragmentation.

Chapter 4 Serializing with ArduinoJson 125

Preparing the Adafruit 10 account

If you want to run this program, you need an account on Adafruit 10 (a free account is
sufficient). Then, you need to copy your user name and your “AlO key” to the source
code.

P

#define IO_USERNAME "bblanchon"
#define I0_KEY "aio_iCpP41N5k8yo0ZStMrh2US1AOhNAU"

We'll include the AIO key in an HTTP header, and it will authenticate our program on
Adafruit’s server:

X-AIO-Key: aio_iCpP41N5k8yoZStMrh2US1AOhNAuU

Finally, you need to create a “group” named “arduinojson” in your Adafruit IO account.
In this group, you need to create two feeds: “al” and “a2."

The request

To send our measured samples to Adafruit O, we have to send a POST request to http://
io.adafruit.com/api/v2/bblanchon/groups/arduinojson/data, and include the following
JSON document in the body:

"location”: {
"lat": 48.748010,
"lon": 2.293491

Fe

"feeds": [

{
"key": "al",
"value": 42
Yo
{
"key": "a2",
"value": 43

http://io.adafruit.com/api/v2/bblanchon/groups/arduinojson/data
http://io.adafruit.com/api/v2/bblanchon/groups/arduinojson/data

Chapter 4 Serializing with ArduinoJson 126

L

Let’s review the HTTP request before jumping to the code:

POST /api/v2/bblanchon/groups/arduinojson/data HTTP/1.1
Host: io.adafruit.com

Connection: close

Content-Length: 103

Content-Type: application/json

X-AIO-Key: aio_iCpP41N5k8y0ZStMrh2US1AOhNAuU

{"location”:{"lat":48.748010,"lon":2.293491},"feeds":[{"key":"al", ...

The code

OK, time for action! We'll open a TCP connection to io.adafruit.com using an
EthernetClient, and we'll send the request. As far as ArduinoJson is concerned, there
are very few changes compared to the previous examples because we can pass the
EthernetClient as the target of serializeJson(). We'll call measureJson() to set the
value of the Content-Length header.

Here is the code:

// Allocate JsonDocument
const int capacity = JSON_ARRAY_SIZE(2) + 4 * JSON_OBJECT_SIZE(2);
StaticJsonDocument<capacity> doc;

// Add the "location"” object

JsonObject location = doc.createNestedObject(”location”);
location["lat"] = 48.748010;

2.293491;

location["lon"]

// Add the "feeds" array
JsonArray feeds = doc.createNestedArray('feeds”);

As you see, it's a little more complex than our previous example because the array is
not at the root of the document. Instead, the array is nested in an object under the
key "feeds".

Chapter 4 Serializing with ArduinoJson 127

JsonObject feedl = feeds.createNestedObject();
feed1["key"] = "al";

feed1["value”] = analogRead(A1);

JsonObject feed2 = feeds.createNestedObject();
feed2["key"] = "a2";

feed2["value”] = analogRead(A2);

// Connect to the HTTP server
EthernetClient client;
client.connect("io.adafruit.com”, 80);

// Send "POST /api/v2/bblanchon/groups/arduinojson/data HTTP/1.1"
client.println("POST /api/v2/" I0_USERNAME
"/groups/arduinojson/data HTTP/1.1");

// Send the HTTP headers

client.println("Host: io.adafruit.com");
client.println(”Connection: close”);
client.print(”Content-Length: ");
client.println(measureJson(doc));
client.println(”Content-Type: application/json");
client.println(”"X-AIO-Key: " IO_KEY);

// Terminate headers with a blank line
client.println();

// Send JSON document in body
serializeJson(doc, client);

You can find the complete source code of this example in the Adafruitlo folder of
the zip file. This code includes the necessary error checking that | removed from the
manuscript for clarity.

Chapter 4 Serializing with ArduinoJson

Below is a picture showing the results on the Adafruit 10 dashboard.

* dafruit Profile

bblanchon > Dashboards

London

Feeds Dashboards Triggers Services My Key

duinojson

arduinojson
arduin

arduinojson
arduinojson

o o~ o » o~ »
5500 e o™ e ™ o™ v ™ o0 ™ ge

 —

128

Chapter 4 Serializing with ArduinoJson 129

4.6 Duplication of strings

Depending on the type, ArduinoJson stores strings either by pointer or by copy. If the
string is a const charx, it stores a pointer; otherwise, it makes a copy. This feature
reduces memory consumption when you use string literals.

String type Storage
const charx pointer
charx copy
String copy
const __FlashStringHelper* | copy

As usual, the copy lives in the JsonDocument, so you may need to increase its capacity
depending on the type of string you use.

ArduinoJson will store only one copy of each string, a feature called “string deduplica-
tion”. For example, if you insert the string "hello” multiple times, the JsonDocument will
only keep one copy.

4.6.1 An example

Compare this program:

// Create the array ["valuel”,"value2"]
doc.add("valuel”);
doc.add("value2");

// Print the memory usage
Serial.println(doc.memoryUsage()); // 16

with the following:

// Create the array ["valuel”,"value2"]
doc.add(String("valuel”));
doc.add(String("value2"));

// Print the memory usage

Chapter 4 Serializing with ArduinoJson 130

Serial.println(doc.memoryUsage()); // 30

L

They both produce the same JSON document, but the second one requires much more
memory because ArduinoJson copies the strings. If you run these programs on an
ATmega328, you'll see 16 for the first and 30 for the second. On an ESP8266, it would
be 32 and 46.

4.6.2 Keys and values

The duplication rules apply equally to keys and values. In practice, we mostly use string
literals for keys, so they are rarely duplicated. String values, however, often originate
from variables and then entail string duplication.

Here is a typical example:

String identifier = getIdentifier();
doc["id"] = identifier; // "id"” is stored by pointer
// identifier is copied

Again, the duplication occurs for any type of string except const charx.

4.6.3 Copy only occurs when adding values

In the example above, ArduinoJson copied the String because it needed to add it to
the JsonDocument. On the other hand, if you use a String to extract a value from a
JsonDocument, it doesn't make a copy.

Here is an example:
// The following line produces a copy of "key"
doc[String("key"”)] = "value";

// The following line produces no copy
const char* value = doc[String("key")T;

Chapter 4 Serializing with ArduinoJson 131

4.6.4 ArduinoJson Assistant to the rescue

As we saw in the previous chapter, the Assistant shows the number of bytes required
to duplicate the strings of the document.

noJson Assistant

JsonDocument

Configuration JSON Size Program
Step 3: Size

Data structures 1040 Bytes needed to stores the JSON objects and arrays in memory @
| Strings 175 Bytes needed to stores the strings in memory @ | -

Total (minimum) 1215 Minimum capacity for the JsonDocument

Total (recommended) 1536 Including some slack in case the strings change, and rounded to a power of two

¥ Tweaks (advanced users only)

store floating point values as

float (default) v
This setting doesn't affect the document size of this platform, so you won't see any change in the table above.
Store integral values values as

long (default) v

This setting doesn't affect the document size of this platform, so you won't see any change in the table above.

n their types. It stores const char* by pointer (which takes no extra space) and all other types by copy,

Assume keys are const char*

Same as above but for keys. -

Uncheck this box if your program generates keys at runtime,

o

Deduplicate values when measuring the capacity

Arduinolson detects duplicate strings to store

eck this box if you used pl.

copy, but you can tell
alues (like X000 in the

stant to include all strings.

You should u

ArduinoJson is a JSON library for embedded C++ Newsletter

Simple, efficient, and versatile. Subscribe

G

In practice, the actual size may differ from what the Assistant predicts because it doesn't
know which strings need to be copied and which don't. By default, it assumes it must
store keys by pointer and values by copy. Moreover, it doesn’t deduplicate the values,
in case you repeated the same placeholder several times in your sample input.

You can change the Assistant behavior by expanding the “Tweaks"” section at the bottom
of step 3, as shown in the picture above. You can choose the storage type (pointer or

Chapter 4 Serializing with ArduinoJson 132

copy) for keys and values. You can also enable or disable deduplication. The changes
are instantly reflected into the “Strings” row of the table so that you can see the effect
of each setting.

Chapter 4 Serializing with ArduinoJson 133

4.7 Inserting special values

Before finishing this chapter, let's see how we can insert special values in the JSON
document.

4.7.1 Adding null

The first special value is null, which is a legal token in a JSON. There are several ways
to add a null in a JsonDocument; here they are:

// Use a nullptr (requires C++11)
arr.add(nullptr);

// Use a null char-pointer
arr.add((char*)0);

// Use a null JsonArray, JsonObject, or JsonVariant
arr.add(JsonVariant());

4.7.2 Adding pre-formatted JSON

The other special value is a JSON string that is already formatted and that ArduinoJson
should not treat as a regular string.

You can do that by wrapping the string with a call to serialized():

// adds "[1,2]"
arr.add("[1,21");

// adds [1,2]
arr.add(serialized("[1,21"));

The program above produces the following JSON document:

Chapter 4 Serializing with ArduinoJson 134

1,2]

. J

Use this feature when a part of the document cannot change; it will simplify your code
and reduce the executable size. You can also use it to insert something that the library
doesn't allow.

You can pass a Flash string or a String instance to serialized(), but its content
will be copied into the JsonDocument. As usual, Flash strings must have the type
const __FlashStringHelperx to be recognized as such.

Chapter 4 Serializing with ArduinoJson 135

4.8 Summary

In this chapter, we saw how to serialize a JSON document with ArduinoJson. Here are
the key points to remember:

= Creating the document:
— To add a member to an object, use the subscript operator ([1)
— To append an element to an array, call add()

— The first time you add a member to a JsonDocument, it automatically becomes
an object.

— The first time you append an element to a JsonDocument, it automatically
becomes an array.

— You can explicitly convert a JsonDocument with JsonDocument: : to<T>().

— JsonDocument: : to<T>() clears the JsonDocument, so it invalidates all previously
acquired references.

— JsonDocument: : to<T>() return a reference to the root array or object.

— To create a nested array or object, call createNestedArray() or
createNestedObject().

— When you insert a string in a JsonDocument, it makes a copy, except if it's a
const charx.

= Serializing the document:
— To serialize a JsonDocument, call serializeJson() or serializeJsonPretty().

— To compute the length of the JSON document, call measureJson() or
measureJsonPretty().

— serializeJson() appends to String, but it overrides the content of a charx.

— You can pass an instance of Print (like Serial, EthernetClient, WiFiClient,
or File) to serializeJson() to avoid a copy in the RAM.

In the next chapter, we'll see advanced techniques like filtering and logging.

Continue reading...

That was a free chapter from “Mastering ArduinoJson”; the book contains seven chap-
ters like this one. Here is what readers say:

This book is 100% worth it. Between solving my immediate problem in
minutes, Chapter 2, and the various other issues this book made solving
easy, it is totally worth it. | build software but | work in managed languages
and for someone just getting started in C++and embedded programming this
book has been indispensable. — Nathan Burnett

| think the missing C++course and the troubleshooting chapter are worth
the money by itself. Very useful for C programming dinosaurs like myself.
— Doug Petican

The short C++section was a great refresher. The practical use of Arduino-
Json in small embedded processors was just what | needed for my home
automation work. Certainly worth having! Thank you for both the book
and the library. — Douglas S. Basberg

For a really reasonable price, not only you'll learn new skills, but you'll also be one of
the few people that contribute to sustainable open-source software. Yes, giving
money for free software is a political act!

The e-book comes in three formats: PDF, epub and mobi. If you purchase the e-book,
you get access to newer versions for free. A carefully edited paperback edition is
also available.

Ready to jump in?
Go to arduinojson.org/book and use the coupon code THIRTY to get a 30% discount.

Tk g fo g iyt
{Soud

https://arduinojson.org/book/

	Cover
	Contents
	Serializing with ArduinoJson
	The example of this chapter
	Creating an object
	The example
	Allocating the JsonDocument
	Adding members
	Alternative syntax
	Creating an empty object
	Removing members
	Replacing members

	Creating an array
	The example
	Allocating the JsonDocument
	Adding elements
	Adding nested objects
	Creating an empty array
	Replacing elements
	Removing elements

	Writing to memory
	Minified JSON
	Specifying (or not) the buffer size
	Prettified JSON
	Measuring the length
	Writing to a String
	Casting a JsonVariant to a String

	Writing to a stream
	What’s an output stream?
	Writing to the serial port
	Writing to a file
	Writing to a TCP connection

	Duplication of strings
	An example
	Keys and values
	Copy only occurs when adding values
	ArduinoJson Assistant to the rescue

	Inserting special values
	Adding null
	Adding pre-formatted JSON

	Summary

	Continue reading...

