BENOIT BLANCHON

CREATOR OF ARDUINOJSON

1
|
- - —1
[1] ! 1¥ Sty
- = - o4 T et v
el ' r‘¥ — 8 '
4l 1L i &
T = - o < ol e
: o T
| L SR ! -
2 S . 1t . - .
] (=2 il ?’-‘ 1 jqigi,—ﬁ
gy g i 1 b 1T N S s
— i — i

Mastering Arduinojson

Efficient JSON serialization for embedded C++

Arduino

Contents

Contents iv
1 Introduction 1
1.1 About thisbook 2
1.2 Introduction to JSON 3
1.2.1 Whatis JSSON? 3

1.2.2 What is serialization? 4

1.2.3 What can you do with JSON? 4

124 History of JSON 5

1.25 Whyis JSONso popular? 6

126 TheJSONsyntax 7

1.2.7 Binarydatain JSON 10

1.3 Introduction to ArduinoJson 12
1.3.1 What ArduinoJdsonis 12

1.3.2 What ArduinoJsonisnot 12

1.3.3 What makes ArduinoJson different? 13

1.3.4 Doessizereally matter? 15

1.3.5 What are the alternatives to ArduinoJson? 16

1.3.6 How to install ArduinoJson 17

1.3.7 Theexamples 23

2 The missing C++ course 25
2.1 Why a G course? 26
2.2 Stack, heap, and globals 28
221 Globals. 28

222 Heap e 30

2.2.3 Stack. 31

2.3 Pointers 33
2.3.1 Whatis a pointer? 33

2.3.2 Dereferencing a pointer 33

2.3.3 Pointersand arrays Lo 34

Contents
2.3.4 Taking the address of a variable 35
2.3.5 Pointer to class and struct 35
2.3.6 Pointertoconstant 37
237 Thenull pointer 38
2.3.8 Why use pointers? 39

2.4 Memory management 40
2.4.1 malloc() and free() 40
242 newanddelete 40
243 Smartpointers. 41
244 RAIl . .. 43

2.5 References 44
2.5.1 Whatis areference? 44
2.5.2 Differences with pointers 44
2.5.3 Referencetoconstant 45
254 Rules of references oL 46
2,55 Common problems oL 46
2.5.6 Usage forreferences 47

2.6 Strings 48
2.6.1 How are the strings stored? L. 48
2.6.2 String literalsin RAM 48
2.6.3 String literalsin Flash 49
2.6.4 Pointer to the “globals” section. 50
2.6.5 Mutable string in “globals™ 51
26.6 Acopyinthestack L. 52
267 Acopyintheheap 53
2.6.8 A word about the Stringclass 54
2.6.9 Pass strings to functions 55

2.7 Conclusion 57

3 Deserialize with ArduinoJson 58

3.1 The example of thischapter 59

3.2 Parsea JSONobject 60
321 The JSON document 60
3.2.2 Place the JSON document in memory 61
3.2.3 Introducing JsonBuffer, 61
3.2.4 How to specify the capacity of the buffer? 62
3.25 How to determine the capacity of the buffer? 62
3.2.6 StaticJsonBuffer or DynamicJsonBuffer? 63
3.2.7 Parsetheobject 64
3.2.8 Verify that parsing succeeds 64

Contents
3.3 Extract values from anobjecto 66
3.3.1 Extractvalues 66
3.3.2 Explicitcasts 66
3.33 Using get<T>() o oo 67
3.3.4 When values are missing 67
3.3.5 Change the default value 68

3.4 Inspect an unknown object 70
341 Enumeratethekeys 70
3.4.2 Detect thetypeofavalue 71
3.43 Variant types and C++types 72
3.44 Testif a key existsinanobject 73

35 ParseaJSONarray 74
35.1 The JSON document 74
3.5.2 Parsethearray 75
3.5.3 The ArduinoJson Assistant 77

3.6 Extract values from anarray 78
3.6.1 Unrolling thearray 78
3.6.2 Alternative syntaxes 78
3.6.3 When complex values are missing 79

3.7 Inspect an unknown array 81
3.7.1 Capacity of JsonBuffer for an unknown input 81
3.7.2 Number of elementsinanarray 81
3.7.3 lteration 82
3.7.4 Detect the type of the elements 83

3.8 Thezero-copy mode 84
3.8.1 Definition 34
382 Anexample 34
3.8.3 Input buffer must stay in memory L. 86

3.9 Parse from read-only memoryo 87
39.1 Theexample o 87
3.9.2 Duplication is requiredo 87
3.93 Practice 88
3.9.4 Other types of read-only input 89

3.10 Parse from stream 91
3.10.1 Parsefromafile. 91
3.10.2 Parse from an HTTP response 92

4 Serialize with ArduinoJson 97
4.1 The example of this chapter 98

Contents vii

42 Createanobject 99
421 Theexample. 99
422 Allocate the JsonBuffer00 99
423 Createtheobject 100
424 Addthewvalues. 100
425 Secondsyntax 101
426 Thirdsyntax 101
427 Replacevalueso 102
428 Removevalues. 102

43 Createanarray 103
431 Theexample. 103
4.3.2 Allocate the JsonBuffer 103
433 Createthearray 103
434 Addwvalues 104
435 Replacevalues 104
436 Removevalues. 105
437 Addnull 105
4.3.8 Add pre-formatted JSON L. 106

4.4 Serialize to memory 107
441 Minified JSSON 107
4.4.2 Specify (or not) the size of the output buffer 107
443 Prettified JSSON 108
444 Computethelength 108
445 SerializetoaStringo 109
446 CastalJsonVarianttoaString 110

45 Serialize tostream L 111
451 What's an output stream? 111
452 Serializeto Serial 112
453 Serializetoafile. 112
454 Serializetoan HTTP request 113

4.6 Duplication of strings 117
46.1 Anexample 117
4.6.2 Copy only occurs when adding values 118
4.6.3 Why copying Flash strings? 118
4.6.4 RawJson() 119

5 Inside ArduinoJson 120
5.1 Why JsonBuffer? 121
5.1.1 Memory representation 121

5.1.2 Dynamic memory 122

Contents
5.1.3 Memory pool 123
5.1.4 Strengths and weaknesses L. 124

5.2 Inside StaticJsonBuffer, 125
52.1 Fixed capacity 125
5.2.2 Compile-time determination 125
523 Stackmemory 126
5.2.4 Limitation 126
525 Otherusages. 127
5.2.6 Implementation 127
527 Stepbystep 128

5.3 Inside DynamicJsonBuffer, 130
53.1 Chunks. 130
53.2 Performance 130
533 Stepbystep 131
5.3.4 Comparison with StaticJsonBuffer 131
535 Howtochoose? 132

5.4 Inside JsonArray 133
5.4.1 Implementationo 133
5.4.2 Creating a JsonArray v i 133
5.4.3 Parsing a JsonArray 134
544 Invalid 134
545 Copying a JsonArrayo 134
5.4.6 JsonArray as a generic container 134
547 Methods 135

5.5 Inside JsonObject 137
5.5.1 Implementation 137
5.5.2 Creating a JsonObject 137
5.5.3 Parsing a JsonObject 138
554 Invalid 138
5.5.5 Copying a JsonObject 138
5.5.6 JsonObject as a generic container 139
557 Methods 139
5.5.8 Remark on operator[] 141

5.6 Inside Jsonvariant 142
5.6.1 Implementation 142
5.6.2 Undefined 143
5.6.3 Theunsigned long trick 143
5.6.4 ArduinoJson’s configuration 144
5.6.5 lterating through a Jsonvariant. 145

5.6.6 Theoroperator 147

Contents

56.7 Methods 147

5.7 Inside the parser 149
5.7.1 Invoke the parser 149
572 Twomodes 150
5.7.3 Nesting limit 151
5.7.4 Quotes 152
5.7.5 Escapesequences 153
576 Comments 154
5.7.7 Stream, 154

5.8 Inside the serializer 155
5.8.1 Invoke the serializer L. 155
5.8.2 Measure thelength oL 156
5.8.3 Escapesequences 156
584 Floattostring 156

5.9 Miscellaneous 158
5.9.1 The ArduinoJson namespace 158
5.9.2 JsonBuffer::clear() 158
593 Codecoverage 159
594 Fuzzing 159
5.9.5 Portability 160
5.9.6 Onlinecompiler 161
5.9.7 License 162

6 Troubleshooting 163
6.1 Programcrashes 164
6.1.1 Undefined Behaviors 164
6.1.2 A bugin ArduinoJson? 164
6.1.3 Nullstring 165
6.1.4 Useafterfree 165
6.1.5 Return of stack variable address 167
6.1.6 Bufferoverflow 169
6.1.7 Stackoverflow 170
6.1.8 How to detect these bugs? 171

6.2 Deserialization issues Lo 173
6.2.1 A lack of information L. 173
6.2.2 lIsinputvalid? 174
6.2.3 Is the JsonBuffer big enough? 174
6.2.4 Is there enough RAM? 175
6.2.5 How deep is the document? 176

6.2.6 The first deserialization works? 177

Contents
6.3 Serializationissues L 178
6.3.1 The JSON document is incomplete 178
6.3.2 The JSON document contains garbage 178
6.3.3 Too much duplication 180
6.3.4 The first serialization succeeds? 181
6.4 Understand compilererrors L. 182
6.4.1 Long compilererrors 182
6.4.2 How GCC presentserrors 183
6.4.3 The first error in our example 185
6.4.4 The second error in our example 186
6.5 Common error Messages 189
6.5.1 Ambiguous overload for operator= 189
6.5.2 Conversion from const charx to charx 189
6.5.3 Conversion from const charxtoint 190
6.5.4 equals is not a member of StringTraits<const int&> 191
6.5.5 Undefined reference to __cxa_guard_acquire and
__cxa_guard_releaseo 192
6.6 Log 194
6.6.1 Theproblem 194
6.6.2 Printdecorator 194
6.6.3 Streamdecorator 196
6.7 Askforhelp 198
7 Case Studies 200
7.1 Configuration in SPIFFS L. 201
7.1.1 Presentation 201
7.1.2 The JSON document 201
7.1.3 The configuration class 202
7.1.4 load() and save() members. 203
7.1.5 Save an ApConfig into a JsonObject 204
7.1.6 Load an ApConfig from a JsonObject 204
7.1.7 Safely copy strings from JsonObject 204
7.1.8 Save a Config to a JsonObject 205
7.1.9 Load a Config from a JsonObject 206
7.1.10 Save configurationtoafile 207
7.1.11 Read configuration fromafile 208
7.1.12 Choosing the JsonBuffer 209
7.1.13 Conclusion 210
7.2 OpenWeatherMap on mkr1000 211

7.2.1 Presentation 211

Contents
7.2.2 OpenWeatherMap's APl 211
723 TheJSONresponse 212
7.2.4 Reducing memory usage 213
7.2.5 Jumpingin thestream L. 214
726 Thecode 215
727 Conclusion 216

7.3 Weather Underground on ESP8266 217
7.3.1 Presentation 217
7.3.2 Weather Underground's APl 217
733 HTTPclient. 218
734 The JSONresponse, 218
7.3.5 Reducing memory usage L. 220
7.3.6 Jumpingin the stream 221
737 Thecode 222
7.3.8 Conclusion 223

7.4 JSON-RPCwith Kodi 224
7.4.1 Presentation 224
742 JSON-RPCRequest 224
743 JSON-RPCResponse 225
7.4.4 A JSON-RPC framework 226
7.4.5 JsonRpcRequest 226
7.4.6 JsSONRPCRESPONSE o o v o 228
7.4.7 JsonRpcClient 228
7.4.8 Send a notificationto Kodi, 230
7.4.9 Get properties from Kodi 232
7.4.10 Conclusion 233

7.5 Recursive analyzer 235
7.5.1 Presentation 235
7.5.2 Read from the serial port 235
7.5.3 Test the type of a Jsonvariant 236
754 Printvalues 238
7.5.5 Conclusion 240

8 Conclusion

Index

Deserialize with ArduinoJson

It is not the language that makes programs appear simple. It is the pro-
grammer that make the language appear simple!
— Robert C. Martin, Clean Code: A Handbook of Agile Software

Craftsmanship

Chapter 3 Deserialize with ArduinoJson

3.1 The example of this chapter

Now that you're familiar with JSON and C++, we're going learn how to use ArduinoJ-
son. This chapter explains everything there is to know about deserialization. As we've
seen, deserialization is the process of converting a sequence of byte into a memory rep-
resentation. In our case, it means converting a JSON document to a hierarchy of C++
structures and arrays.

In this chapter, we'll use a JSON response from Yahoo
Query Language (YQL) as an example. YQL is a web ser-
vice that allows fetching data from the web in a SQL-like
syntax. It is very versatile and can even retrieve data out-
side of the Yahoo realm. Here are some examples of what
you can do with YQL:

Yahoo Query Language (

= download weather forecast (we'll do that in this chap-
ter)

Sample YOL Response

= download market data

» scrape web pages via XPath or CSS selectors
= read RSS feeds
= search the web
= search on a map
For most applications, you don’t need to create an account.

For our example, we'll use a 3-day weather forecast of the city of New York. We'll begin
with a simple program, and add complexity one bit at a time.

Chapter 3 Deserialize with ArduinoJson m

3.2 Parse a JSON object

Let's begin with the most simple situation: a JSON document in memory. More pre-
cisely, our JSON document resides in the stack in a writable location. This fact is going
to matter, as we will see later.

3.2.1 The JSON document

Our example is today’s weather forecast for the city of New York:

{
"date”: "08 Nov 2017",
"high": "48",
"low": "39",
"text"”: "Rain”
3

As you see, it's a flat JSON document, meaning that there is no nested object or
array.

It contains the following piece of information:
1. date is the date for the forecast: November 8th, 2017
2. high is the highest temperature of the day: 48°F
3. low is the highest temperature of the day: 39°F
4. text is the textual description of the weather condition: “Rain”

There is something quite unusual with this JSON document: the integer values are
actually strings. Indeed, if you look at the high and low values, you can see that they
are wrapped in quotes, making them strings instead of integers. Don't worry, it is a
widespread problem, and ArduinoJson handles it appropriately.

Chapter 3 Deserialize with ArduinoJson

3.2.2 Place the JSON document in memory

In our C++ program, this JSON document translates to:

P

char input[] = "{\"date\":\"@8 Nov 2017\",\"high\":\"48\","
"\"LTow\":\"39\" \"text\":\"Rain\"}";

In the previous chapter, we saw that this code creates a duplication of the string in
the stack. We know it is a code smell in production code, but it's a good example for
learning. This unusual construction allows getting an input string that is writable (i.e.,
not read-only), which is important for our first contact with ArduinoJson.

3.2.3 Introducing JsonBuffer

As we saw in the introduction, one of the unique features of ArduinoJson is its fixed
memory allocation strategy.

Here is how it works:
1. First, you create a JsonBuffer to reserve a specified amount of memory.
2. Then, you deserialize the JSON document.
3. Finally, you destroy the JsonBuffer, which releases the reserved memory.

The memory of the JsonBuffer can be either in the stack or in the heap, depending on
the derived class you choose. If you use a StaticJsonBuffer, it will be in the stack; if
you use a DynamicJsonBuffer, it will be in the heap.

A JsonBuffer is responsible for reserving and releasing the memory used by ArduinoJson.
It is an instance of the RAIIl idiom that we saw in the previous chapter.

6 StaticJsonBuffer in the heap

| often say that the StaticJsonBuffer is in the stack, but it's possible to
have it in the heap, for example, if a StaticJsonBuffer is a member of an
object in the heap. It's also possible to allocate the StaticJsonBuffer with
new, but | strongly advise against it because you would lose the RAII feature.

Chapter 3 Deserialize with ArduinoJson

3.2.4 How to specify the capacity of the buffer?

When you create a JsonBuffer, you must specify its capacity in bytes.

In the case of DynamicJsonBuffer, you set the capacity via a constructor argument:

s ~N

DynamicJsonBuffer jb(capacity);

L

As it's a parameter of the constructor, you can use a regular variable, whose value can
be computed at run-time.

In the case of a StaticJsonBuffer, you set the capacity via a template parameter:

StaticJsonBuffer<capacity> jb; l

- J

As it's a template parameter, you cannot use a variable. Instead, you must use a
constant, which means that the value must be computed at compile-time. As we said
in the previous chapter, the stack is managed by the compiler, so it needs to know the
size of each variable when it compiles the program.

3.2.5 How to determine the capacity of the buffer?

Now comes a tricky question for every new user of ArduinoJson: what should be the
capacity of my JsonBuffer?

To answer this question, you need to know what ArduinoJson stores in the JsonBuffer.
ArduinoJson needs to store a tree of data structure that mirrors the hierarchy of objects
in the JSON document. In other words, the JsonBuffer contains objects which relate
to one another the same way they do in the JSON document.

Therefore, the capacity of the JsonBuffer highly depends on the complexity of the JSON
document. If it's just one object with few members, like our example, a few dozens
of bytes are enough. If it's a massive JSON document, like WeatherUnderground's
response, up to a hundred kilobytes are needed.

ArduinoJson provides macros for computing precisely the capacity of the JSON buffer.
The macro to compute the size of an object is JSON_OBJECT_SIZE(). Here is how to
compute the capacity of our JSON document composed of only one object containing
four elements:

Chapter 3 Deserialize with ArduinoJson

// Enough space for one object with four elements
const int capacity = JSON_OBJECT_SIZE(4);

. J

On an ATmega328, an 8-bit processor, this expression evaluates to 44 bytes. The result
would be significantly bigger on a 32-bit processor; for example, it would be 72 bytes
on an ESP8266.

A A read-only input requires a higher capacity

In this part of the tutorial, we consider the case of a writeable input because
it simplifies the computation of the capacity. However, if the input is read-
only (for example a const char* instead of char[]), you must increase the
capacity.

We'll talk about that later, in the section “Parse from read-only memory.”

3.2.6 StaticJsonBuffer or DynamicJsonBuffer?

For our example, running on an Arduino Ethernet, I'm going to use a StaticJsonObject
for the following reasons:

1. The buffer is tiny (44 bytes).
2. The RAM is very scarce on an ATmega328 (only 2KB).
3. The size of the stack is not limited on an ATmega328.

Here is our program so far:

-

const int capacity = JSON_OBJECT_SIZE(4);
StaticJsonBuffer<capacity> jb;

Chapter 3 Deserialize with ArduinoJson

0 Don’t forget const!

If you forget to write const, the compiler will produce the following error:

error: the value of 'capacity' is not usable in a constant
— expression

Indeed, a template parameter is evaluated at compile-time, so it must be
a constant expression. By definition a constant expression is computed at
compile-time, as opposed to a variable which is computed at run-time.

3.2.7 Parse the object

Now that the JsonBuffer is ready, we can parse the input. To parse an object, we just
need to call JsonBuffer: :parseObject():

JsonObject& obj = jb.parseObject(input);

And now we're ready to extract the content of the object!

A JsonBuffer returns references

As you see, it's not a JsonObject that is returned by parseObject() but a ref-
erence to a JsonObject. Indeed, the JsonObject resides inside the JsonBuffer,
and we don't want to make a copy.

3.2.8 Verify that parsing succeeds

The first thing we can do is to verify that JsonBuffer: :parseObject() actually succeeded.
To do that, we just need to check the return value of JsonObject: :success():

p

if (obj.success()) {

// parseObject() succeeded
} else {

// parseObject() failed

Chapter 3 Deserialize with ArduinoJson

L

ArduinoJson is not very verbose when parsing fails: the only clue is this boolean. This
design was chosen to make the code small and prevent users from bloating their code
with error checking. If | were to make that decision today, the outcome would probably
different.

However, there are a limited number of reasons why parsing could fail. Here are the
three most common causes, by order of likelihood:

1. The input is not a valid JSON document.
2. The JsonBuffer is too small.

3. There is not enough free memory.

Q More on arduinojson.org

For an exhaustive list of reasons why parsing could fail, please refer to this
question in the FAQ: "Why parsing fails?”

https://arduinojson.org/faq/why-parsing-fails/

Chapter 3 Deserialize with ArduinoJson m

3.3 Extract values from an object

In the previous section, we used ArduinoJson to parse a JSON document. We now have
an in-memory representation of the JSON object, and we can inspect it.

3.3.1 Extract values

There are multiple ways to extract the values from a JsonObject; we'll see all of them.

Here is the first and simplest syntax:

const charx date = obj["date"];
int high = obj["high"];
int low = obj["low"];

const charx text = obj["text"];

This syntax leverages two C++ features:

1. Operator overloading: the subscript operator ([1) has been customized to mimic
a JavaScript object.

2. Implicit casts: the result of the subscript operator is implicitly converted to the
type of the variable.

3.3.2 Explicit casts

Not everyone likes implicit casts, mainly because it messes with parameter type deduc-
tion and with the auto keyword.

9 | The auto keyword

The auto keyword is a feature of C++11. In this context, it allows inferring
the type of the variable from the type of expression on the left. It is the
equivalent of var in C#.

Here is the same code adapted for this school of thoughts:

Chapter 3 Deserialize with ArduinoJson

auto date = obj["date"].as<char*>();

auto high = obj["high"].as<int>();
auto low = obj["low"].as<int>();
auto text = obj["text"].as<char*>();

We could have used as<const char*>() instead of as<char*>(), it's just
shorter that way. The two functions are identical: in both cases, the re-
turned type is const charx.

Q | as<char*>() or as<const char*>()?

3.3.3 Using get<T>()

As operator overloading is also a matter of taste, ArduinoJson offers a third syntax
using a method instead of the subscript operator.

Here is again the same code, with this syntax:

auto date = obj.get<char*>("date");
auto high = obj.get<int>("high");
auto low = obj.get<int>("low");

auto text = obj.get<char*>("text");

6 Which syntax to use?

We saw three different syntaxes to do the same thing. They are all equivalent
and lead to the same executable. None is better than the other; it's just a
matter of coding style. You can choose whichever you are comfortable with.

3.3.4 When values are missing

We saw how to extract values from an object, but we didn't do error checking; now
let's talk about what happens when a value is missing.

Chapter 3 Deserialize with ArduinoJson m

When that happens, ArduinoJson returns a default value, which depends on the type:

Type Default value
const charx nullptr
float, double | 0.0

int, long.. Q
String "
JsonArray JsonArray: :invalid()
JsonObject JsonObject::invalid()

The two last lines (JsonArray and JsonObject) happen when you extract a nested array
or object, we'll see that in a later section.

c | No exceptions

ArduinoJson never throws exceptions. Exceptions are an excellent C++ fea-
ture, but they produce large executables, which is unacceptable for embedded
programs.

3.3.5 Change the default value

Sometimes, the default value from the table above is not what you want. In this
situation, you can use the operator | to change the default value. | call it the “or”
operator because it provides a replacement when the value is missing or incompatible.
Here is an example:

p

// Get the port or use 80 if it's not specified
short tcpPort = config["port”] | 80;

This feature is handy to specify default configuration values, like in the snippet above,
but it is even more useful to prevent a null string from propagating. Here is an exam-

ple:

// Copy the hostname or use "arduinojson.org" if it's not specified
char hostname[32];
strlcpy(hostname, config[”hostname”] | "arduinojson.org"”, 32);

Chapter 3 Deserialize with ArduinoJson m

strlcpy(), a function that copies a source string to a destination string, crashes if the
source is null. Without the operator |, we would have to use the following code:

-

char hostname[32];
const char* configHostname = config["hostname”];
if (configHostname != nullptr)
strlcpy(hostname, configHostname, 32);
else
strcpy(hostname, "arduinojson.org”);

This syntax is new in ArduinoJson 5.12, and it's only available when you use the subscript
syntax ([1). We'll see a complete example in the case studies.

Chapter 3 Deserialize with ArduinoJson

3.4 Inspect an unknown object

So far, we extracted values from an object that we know in advance. Indeed, we knew
that the JSON object had four members (date, low, high and text) and that they were
all strings. In this section, we'll see what tools are at our disposition when dealing with
unknown objects.

3.4.1 Enumerate the keys

The first thing we can do is look at all the keys and their associated values. In Ar-
duinoJson, a key-to-value association, or a key-value pair, is represented by the type
JsonPair.

We can enumerate all pairs with a simple for loop:

// Loop through all the key-value pairs in obj
for (JsonPair& p : obj) {
p.key // is a const char* pointing to the key
p.value // is a JsonVariant

Three comments on this code:
1. | explicitly used a JsonPair to emphasize the type, but you can use auto.

2. | used a reference & to prevent a (small) copy and to be able to modify the value
if | need.

3. The value associated with the key is a Jsonvariant, a type that can represent any
JSON type.

Chapter 3 Deserialize with ArduinoJson

6 When C++11 is not available

The code above leverages a C++11 feature called “range-based for loop™.
If you cannot enable C++11 on your compiler, you must use the following
syntax:

JsonObject: :iterator it;

for (it=obj.begin(); it!=obj.end(); ++it) {
it->key // is a const char* pointing to the key
it->value // is a JsonVariant

3.4.2 Detect the type of a value

As we saw, ArduinoJson stores values in a Jsonvariant. This class can hold any JSON
value: string, integer.. A JsonVariant is returned when you call the subscript oper-
ator, like obj["text”] (this statement is not 100% accurate, but it's conceptually a
JsonVariant that is returned).

To know the actual type of the value in a Jsonvariant, you need to call the method
is<T>(), where T is the type you want to test.

For example, if we want to test that the value in our object is a string:

p

// Is it a string?
if (p.value.is<char*>()) {
// Yes!
// We can get the value via implicit cast:
const charx s = p.value;
// Or, via explicit method call:
auto s = p.value.as<char*>();

If you use this with our JSON document from Yahoo Weather, you will find that all
values are strings. Indeed, as we said earlier, there is something special about this
example: integers are wrapped in quotes, making them strings. If you remove the
quotes around the integers, you will see that the corresponding JsonVariants now contain
integers instead of strings.

Chapter 3 Deserialize with ArduinoJson

6 Alternative syntax for is

cutable.

obj["low"].is<int>();
obj.is<int>("low");

3.4.3 Variant types and C++ types

If you're testing the type of a value whose key is known, you can use either
of the two following syntax:

Here too, the two statements are equivalent and produce the same exe-

There are a limited number of types that a variant can use: boolean, integer, float,
string, array, object. However, different C++ types can store the same JSON type; for

example, a JSON integer could be a short, an int or a long in the C++ code.

The following table shows all the C++ types you can use as a parameter for
JsonVariant::is<T>() and JsonVariant::as<T>().

Variant type | Matching C++ types

Boolean bool

Integer int, long, short, char (all signed and unsigned)
Float float, double

String charx, const char*

Array JsonArray

Object JsonObject

0 More on arduinojson.org

The complete list of types that you can use as a parameter for
JsonVariant::is<T>() can be found in the APl Reference.

https://arduinojson.org/v5/api/jsonvariant/is/

Chapter 3 Deserialize with ArduinoJson

3.4.4 Test if a key exists in an object

If you have an object and want to know whether a key exists in the object, you can call
containsKey().

Here is an example:

~

// Is there a value named "text"” in the object?
if (obj.containsKey("text")) {
// Yes!

However, | don't recommend using this function because you can avoid it most of the
time.

Here is an example where we can avoid containsKey():
// 1Is there a value named "error" in the object?
if (obj.containsKey('error”)) {

// Get the text of the error

const charx error = obj["error"];

/] ...

The code above is not horrible, but it can be simplified and optimized if we just remove
the call to containsKey():

// Get the text of the error
const charx error = obj["error"];

// Is there an error after all?
if (error != nullptr) {
/...

This code is faster and smaller because it only looks for the key “error” once (whereas
the previous code did it twice).

Chapter 3 Deserialize with ArduinoJson

3.5 Parse a JSON array

3.5.1 The JSON document

We've seen how to parse a JSON object from a Yahoo Weather forecast; it's time to
move up a notch by parsing an array of object. Indeed, the weather forecast comes in
sequence: one object for each day.

Here is our example:

L
{
"item": {
"forecast": {
"date”: "09 Nov 2017",
"high": "53",
"low": "38",
"text": "Mostly Cloudy”
3
3
},
{
"item": {
"forecast": {
"date”: "10 Nov 2017",
"high": "47",
"low": "26",
"text": "Breezy"
}
3
Yo
{
"item": {
"forecast": {
"date”: "11 Nov 2017",
"high": "39",
"Tow": "24",

Chapter 3 Deserialize with ArduinoJson

"text": "Partly Cloudy”

Hum... that's not exactly what | expected, but alright...

So instead of just an array of forecast objects, Yahoo Weather returns a JSON docu-
ment with four levels of nesting:

1. The root is an array of objects.

2. Each object contains a nested object named item.

3. Each item contains a nested object named forecast.

4. Each forecast contains the information we want: date, high, low and text.

This document is not as straightforward as one would hope but it's not that complicated
either. Furthermore, it perfectly illustrates a problem that many ArduinoJson users
encounter: the confusion between object and array.

G Optimized cross-product

With Yahoo Weather, it's possible to pass an extra parameter to change
the layout of the array to match our initial expectation. This parameter is
crossProduct=optimized. However, if we use it, we lose the ability to limit
the number of days in the forecast and we take the risk of having a response
that is too big for our ATmega328. We could get along with that, as we'll
see in the case studies, but | want to keep things simple for your first contact
with ArduinoJson.

3.5.2 Parse the array

You should now be familiar with the process:
1. Put the JSON document in memory.
2. Compute the size with FSON-OBIECF-STZECJSON_ARRAY_SIZE().

Chapter 3 Deserialize with ArduinoJson

3. Allocate the JsonBuffer.
4. Call parsedbjectOparseArray().
5. Check the return value of success().

Let's do it:

// Put the JSON input in memory (shortened)
char input[] = "[{\"item\":{\"forecast\":{\"date\":\"09 Nov 2017\"...";

// Compute the required size

const int capacity = JSON_ARRAY_SIZE(3)
+ 6xJSON_OBJECT_SIZE(1)
+ 3xJSON_OBJECT_SIZE(4);

// Allocate the JsonBuffer
StaticJsonBuffer<capacity> jb;

// Parse the JSON input
JsonArray& arr = jb.parseArray(input);

// Parse succeeded?
if (arr.success()) {
// Yes! We can extract values.
} else {
// No!
// The input may be invalid, or the JsonBuffer may be too small.

.

As said earlier, an hard-coded input like this would never happen in production code,
but it's a good step for your learning process.

You can see that the expression for computing the capacity of the JsonBuffer is quite
complicated:

= There is one array of three elements: JSON_ARRAY_SIZE(3)
= In this array, there are three objects of one element: 3xJSON_OBJECT_SIZE(1)

= In each object, there is one object (item) containing one element:
3%JSON_OBJECT_SIZE(1)

Chapter 3 Deserialize with ArduinoJson

= In each item, there is one object (forecast) containing four elements:
3%JSON_OBJECT_SIZE(4)

3.5.3 The ArduinoJson Assistant

For complicated JSON documents, the expression to compute the capacity of the
JsonBuffer becomes impossible to write by hand. Here, | did it so that you under-
stand the process; but, in practice, we use a program to do this task.

This tool is the “ArduinoJson Assistant.” You can use it online at arduinojson.org/
assistant.

Assistant

ArduinoJson Assistant

I T

[{"item" {"forecast"-{"date":"09 Nov EXpI‘eSSiOI‘I
2017","high":"53" "low" "38" "text""M

ostly Cloudy"}}} {"item™{"forecast" I AT SEEE) 5

{'date""10 Nov 6*JSON_OBIECT_SIZE(1) +
2017","nigh""47" "low"."26","text" "B 3*JSON_OBJECT_SIZE(4)
reezy"}}},{"item" {"forecast"
{"date""11 Nov 11
2017","nigh™"39" "low™"24" "text""P Ad dltlonal, byt_es for
artly Cloudy"}] input duplication
138
Platform Size
AVR 8-bit 432
ESP8266 592
P Visual Studio x86 956
Examples: OpenWeatherMap, Weather Visual Studio x64 1076
Underground

You just need to paste your JSON document in the box on the left, and the Assistant
will return the expression in the box on the right. Don't worry, the Assistant respects
your privacy: it computes the expression locally in the browser; it doesn't send your
JSON document to a web service.

https://arduinojson.org/assistant/
https://arduinojson.org/assistant/

Chapter 3 Deserialize with ArduinoJson

3.6 Extract values from an array

3.6.1 Unrolling the array

The process of extracting the values from an array is very similar to the one for objects.
The only difference is that arrays are indexed by an integer, whereas objects are indexed
by a string.

To get access to the forecast data, we need to unroll the nested objects. Here is the
code to do it, step by step:

// Get the first element of the array
JsonObject& arr@ = arr[0];

// Get the ‘item' object inside this object
JsonObject& item@ = arr@["item"];

// Get the ‘forecast' object inside this object
JsonObject& forecast@ = item@["forecast”];

And we're back to the JsonObject with four elements: date, low, high and text. This
subject was entirely covered in the previous section, so there is no need to repeat.

Fortunately, it's possible to simplify the program above with just a single line:

// Get the first ‘forecast' object
JsonObject& forecast® = arr[0]["item”"]J["forecast"];

3.6.2 Alternative syntaxes

It may not be obvious, but the two programs above use implicit casts. Indeed,
the subscript operator ([1) returns a JsonVariant which is implicitly converted to a
JsonObject&.

Again, some programmers don't like implicit casts, that is why ArduinoJson offer an
alternative syntax with as<7>(). For example:

Chapter 3 Deserialize with ArduinoJson

auto arr@ = arr[0].as<JsonObject&>();

L

There is also another form with JsonArray::get<T>():

s N

auto arr@ = arr.get<JsonObject&>(0);

All of this should sound very familiar because it's similar to what we've seen for ob-
jects.

3.6.3 When complex values are missing

When we learned how to extract values from an object, we saw that, if a member is
missing, a default value is returned (for example @ for an int). It is the same if you use
an index that is out of the range of the array.

Now is a good time to see what happens if a complete object is missing. For example:

s ~

// Get an object out of array's range
JsonObject& forecast666 = arr[666]["item"]["forecast”];

- J

The index 666 doesn’'t exist in the array, so a special value is returned:
JsonObject::invalid(). It's a special object that doesn't contain anything and whose
success() method always returns false:

// Does the object exists?
if (!forecast666.success()) {
// Of course not!

.

There are two special objects like this: JsonArray::invalid() and
JsonObject::invalid(). They are just here to fill the hole when a JsonArray or
a JsonObject is missing. Usually, your program doesn’t have to deal with them directly,
so you don't have to remember them.

Chapter 3 Deserialize with ArduinoJson m

6 The null-object design pattern

What we just saw is an implementation of the null-object design pattern. In
short, this pattern saves the calling program from constantly checking that
a result is not null. Instead of returning null when the value is missing, a
placeholder is returned: the “null-object.” This object has no behavior, and
all its methods fail.

If ArduinoJson didn’t implement this pattern, we would not be able to write
the following statement:

JsonObject& forecast® = arr[0]["item"]J["forecast"];

https://en.wikipedia.org/wiki/Null_object_pattern

Chapter 3 Deserialize with ArduinoJson

3.7 Inspect an unknown array

Our example was very straightforward because we knew that the JSON array had pre-
cisely three elements and we knew the content of these elements. In this section, we'll
see what tools are available when the content of the array is not known.

3.7.1 Capacity of JsonBuffer for an unknown input

If you know absolutely nothing about the input, which is strange, you need to determine
a memory budget allowed for parsing the input. For example, you could decide that
10KB of heap memory is the maximum you accept to spend on JSON parsing.

This constraint looks terrible at first, especially if you're a desktop or server application
developer; but, once you think about it, it makes complete sense. Indeed, your program
is going to run in a loop, always on the same hardware, with a known amount of
memory. Having an elastic capacity would just produce a larger and slower program
with no additional value.

However, most of the time, you know a lot about your JSON document. Indeed, there is
usually a few possible variations in the input. For example, an array could have between
zero and four elements, or an object could have an optional member. In that case, use
the ArduinoJson Assistant to compute the size of each variant, and pick the biggest.

3.7.2 Number of elements in an array

The first thing you want to know about an array is the number of elements it contains.
This is the role of JsonArray::size():

int count = arr.size();

As the name may be confusing, | insist that JsonArray::size() returns the number
of elements, not the memory consumption. If you want to know how many bytes of
memory are used, call JsonBuffer::size():

int memoryUsed = jb.size();

https://arduinojson.org/assistant/

Chapter 3 Deserialize with ArduinoJson

Remark that JsonObject also has a size() method returning the number of key-value
pairs, but it's rarely useful.

3.7.3 lteration

Now that you have the size of the array, you probably want to write the following
code:

// BAD EXAMPLE, see below
for (int i=0; i<arr.size(); i++) {
JsonObject& forecast = arr[i]["item"]["forecast”];

.

The code above works but is terribly slow. Indeed, a JsonArray is internally stored as a
linked list, so accessing an element at a random location costs 0(n); in other words, it
takes n iterations to get to the nth element. Moreover, the value of JsonArray::size()
is not cached, so it needs to walk the linked list too.

That's why it is essential to avoid arr[i] and arr.size() in a loop, like in the example
above. Instead, you should use the iteration feature of JsonArray, like this:

// Walk the JsonArray efficiently
for (JsonObject& elem : arr) {
JsonObject& forecast = elem["item”]["forecast”];

With this syntax, the internal linked list is walked only once, and it is as fast as it gets.

| used a JsonObject& in the loop because | knew that the array contains objects. If it's
not your case, you can use a JsonVariant instead.

Chapter 3 Deserialize with ArduinoJson

ﬂ When C++11 is not available

The code above leverages a C++11 feature called “range-based for loop.”
If you cannot enable C++11 on your compiler, you must use the following
syntax:

JsonArray: :iterator it;
for (it=arr.begin(); it!=arr.end(); ++it) {
JsonObject& elem = *it;

3.7.4 Detect the type of the elements

To test the type of array elements the same way we did for object values. In short, we
can either use JsonVariant::is<T>() or JsonArray::is<T>().

Here is a code sample with all syntaxes:

// Is the first element an integer?
if (arr[0].is<int>()) {
// We called JsonVariant::is<int>()

// Is the second element a float?
if (arr.is<float>(1)) {
// We called JsonArray::is<float>(int)

// Same in a loop
for (JsonVariant& elem : arr) {
// Is the current element an object?
if (elem.is<JsonObject>()) {
// We called JsonVariant::is<JsonObject>()

Chapter 3 Deserialize with ArduinoJson

3.8 The zero-copy mode

3.8.1 Definition

At the beginning of this chapter, we saw how to parse a JSON document that is writable.
Indeed, the input variable was a char[] in the stack, and therefore, it was writable. | told
you that this fact would matter, and it's time to explain.

ArduinoJson behaves differently with writable inputs and read-only inputs.

When the argument passed to parseObject() or parseArray() is of type charx or char[],
ArduinoJson uses a mode called “zero-copy.” It has this name because the parser never
makes any copy of the input; instead, it will use pointers pointing inside the input
buffer.

In the zero-copy mode, when a program requests the content of a string member,
ArduinoJson returns a pointer to the beginning of the string in the input buffer. To
make it possible, ArduinoJson inserts null-terminators at the end of each string; it is
the reason why this mode requires the input to be writable.

0 The jsmn library

As we said at the beginning of the book, jsmn is a C library that detects the
tokens in the input. The zero-copy mode is very similar to the behavior of
jsmn. This information should not be a surprise because the first version of
ArduinoJson was just a C++ wrapper on top of jsmn.

3.8.2 An example

To illustrate how the zero-copy mode works, let's have a look at a concrete example.
Suppose we have a JSON document that is just an array containing two strings:

[”hip”, "hop"]

And let's says that the variable is a char[] at address 0x200 in memory:

Chapter 3 Deserialize with ArduinoJson

char inputl[] = "[\"hip\",\"hop\"]";
// We assume: &input == 0x200

. J

After parsing the input, when the program requests the value of the first element,
ArduinoJson returns a pointer whose address is 9x202 which is the location of the string
in the input buffer:

s ~

JsonArray& arr = jb.parseArray(input);

const charx hip = arr[0];
const char* hop = arr[1];
// Now: hip == 0x202 && hop == 0x208

We naturally expect hip to be "hip” and not "hip\",\"hop\"]"; that's why ArduinoJson
adds a null-terminator after the first p. Similarly, we expect hop to be "hop” and not
"hop\"]", so a second null-terminator is added.

The picture below summarizes this process.

Input buffer before parsing

T [T [T [T o e [T o]

A
0x200

parseArray()

Input buffer after parsing

[T W e o Jol [[w o o e 1 o]

A A

0x202 0x208

Adding null-terminators is not the only thing the parser modifies in the input buffer. It
also replaces escaped character sequences, like \n by their corresponding ASCII charac-
ters.

| hope this explanation gives you a clear understanding of what the zero-copy mode is
and why the input is modified. It is a bit of a simplified view, but the actual code is
very similar.

Chapter 3 Deserialize with ArduinoJson m

3.8.3 Input buffer must stay in memory

As we saw, in the zero-copy mode, ArduinoJson returns pointers into the input buffer.
So, for a pointer to be valid, the input buffer must be in memory at the moment the
pointer is dereferenced.

If a program dereferences the pointer after the destruction of the input buffer, it is
very likely to crash instantly, but it could also work for a while and crash later, or it
could produce nasty side effects. In the C++ jargon, this is what we call an "Undefined
Behavior”; we'll talk about that in “Troubleshooting.”

Here is an example:

// Declare a pointer
const char *hip;

// New scope

{
// Declare the input in the scope
char input[] = "[\"hip\",\"hop\"]1";

// Parse input
JsonArray& arr = jb.parseArray(input);

// Save a pointer
hip = arr[0];
}

// input is destructed now

// Dereference the pointer
Serial.println(hip); // <- Undefined behavior

0 Common cause of bugs

Dereferencing a pointer to a destructed variable is a common cause of bugs.
Always remember that, to use a JsonArray or a JsonObject, you must keep
the JsonBuffer alive. In addition, when using the zero-copy mode, you must
also keep the input buffer in memory.

Chapter 3 Deserialize with ArduinoJson

3.9 Parse from read-only memory

3.9.1 The example

We saw how ArduinoJson behaves with a writable input, and how the zero-copy mode
works. It's time to see what happens when the input is read-only.

Let's go back to out previous example except that, this time, we change its type from
char[] to const char=:

const char* input = "[\"hip\",\"hop\"]";

As we saw in the C++ course, this statement creates a sequence of bytes in the "“globals”
area of the RAM. This memory is supposed to be read-only, that's why we need to add
the const keyword.

Previously, we had the whole string duplicated in the stack, but it's not the case anymore.
Instead, the stack only contains the pointer input pointing to the beginning of the string
in the “globals” area.

3.9.2 Duplication is required

As we saw in the previous section, in the zero-copy mode, ArduinoJson stores pointers
pointing inside the input buffer. We saw that it has to replace some characters of
the input with null-terminators. But, with a read-only input, ArduinoJson cannot do
that anymore; to return a null-terminated string, it needs to make copies of "hip” and
"hop".

Where do you think the copies would go? In the JsonBuffer of course!

In this mode, the JsonBuffer holds a copy of each string, so we need to increase its
capacity. Let's do the computation for our example:

1. We still need to store an object with two elements, that's JSON_ARRAY_SIZE(2).

2. We have to make a copy of the string "hip”, that's 4 bytes including the null-
terminator.

3. And we also need to copy the string "hop”, that's 4 bytes too.

Chapter 3 Deserialize with ArduinoJson

The exact capacity required is:

L const int capacity = JSON_ARRAY_SIZE(2) + 8; J

In practice, you would not use the exact length of the strings; it's safer to add a bit
of slack, in case the input changes. My advice is to add 10% to the longest possible
string, which gives a reasonable margin.

Q Use the ArduinoJson Assistant

The ArduinoJson assistant also computes the number of bytes required for
the duplication of the string. It's the field named “Additional bytes for input
duplication.”

Assistant

ArduinoJson Assistant

I T

[hip" "hop'] Expression

\ JSON_ARRAY_SIZE(2)

Additional bytes for
input duplication

8

Platform Size
AVR 8-bit 28
ESP8266 40

3.9.3 Practice

Apart from the capacity of the JsonBuffer, we don't need to change anything to the
program.

Chapter 3 Deserialize with ArduinoJson m

Here is the complete hip-hop example with read-only input:

// A read-only input
const char* input = "[\"hip\",\"hop\"]";

// Allocate the JsonBuffer
const int capacity = JSON_ARRAY_SIZE(2) + 8;
StaticJsonBuffer<capacity> jb;

// Parse the JSON input.
JsonArray& arr = jb.parseArray(input);

// Extract the two strings.
const char* hip = arr[0];
const charx hop = arr[1];

// How much memory is used?
int memoryUsed = jb.size();

| added a call to JsonBuffer::size() which returns the current memory usage. Do not
confuse the size with the capacity which is the maximum size.

If you compile this program on an ATmega328, the variable memoryUsed will contain 28,
as the ArduinoJson Assitant predicted.

3.9.4 Other types of read-only input

const charx is not the only type you can use. It's possible to use a String:

p

// Put the JSON input in a String
String input = "[\"hip\",\"hop\"1";

It's also possible to use a Flash string, but there is one caveat. As we said in the C++
course, ArduinoJson needs a way to figure out if the input string is in RAM or Flash. To
do that, it expects a Flash string to have the type const __FlashStringHelper*. So, if
you declare a char[] PROGMEM, it will not be considered as Flash string by ArduinoJson.
You either need to cast it to const __FlashStringHelper* or use the F() macro:

The simplest is to use the F() macro:

Chapter 3 Deserialize with ArduinoJson

// Put the JSON input in the Flash
auto input = F("[\"hip\",\"hop\"1");

// (auto is deduced to const __FlashStringHelperx)

In the next section, we'll see another kind of read-only input: streams.

Chapter 3 Deserialize with ArduinoJson

3.10 Parse from stream

In the Arduino jargon, a stream is a volatile source of data, like a serial port. As opposed
to a memory buffer, which allows reading any bytes at any location, a stream only allows
to read one byte at a time and cannot go back.

This concept is materialized by the Stream abstract class. Here are examples of classes
derived from Stream:

Library Class Well known instances
Core HardwareSerial | Serial, Seriall..
ESP8266 FS File

Ethernet EthernetClient

Ethernet EthernetUDP

GSM GSMClient

SD File

SoftwareSerial | SoftwareSerial

Wifi wifiClient

Wire TwoWire Wire

Q std::istream

In the C++ Standard Library, an input stream is represented by the class
std::istream.

ArduinoJson can use both Stream and std::istream.

3.10.1 Parse from a file

As an example, we'll create a program that reads a JSON file stored on an SD card.
We suppose that this file contains the three-days forecast that we used as an example
earlier.

The program will just read the file and print the content of the weather forecast for
each day.

Here is the relevant part of the code:

Chapter 3 Deserialize with ArduinoJson

// Open file
File file = SD.open("weather.txt");

// Parse directly from file
JsonArray& arr = jb.parseArray(file);

// Loop through all element of the array
for (JsonObject& elem : arr) {
// Extract the forecast object
JsonObject& forecast = elem["item”]["forecast”"];

// Print weather
Serial.println(forecast["date”].as<char*>());
Serial.println(forecast["text"”].as<char*>());
Serial.println(forecast["high”].as<int>());
Serial.println(forecast["low"].as<int>());

A few things to note:

1. | used the .txt extension instead of .json because the FAT file-system is limited
to three characters for the file extension.

2. | used the ArduinoJson Assistant to compute the capacity (not shown above; it's
not the focus of this snippet).

3. | called Jsonvariant::as<charx>() to pick the right overload of Serial.println().

You can find the complete source code for this example in the folder ReadFromSdCard of
the zip file.

You can apply the same technique to read a file on an ESP8266, as we'll see in the case
studies.

3.10.2 Parse from an HTTP response

Now is the time to parse the real data coming from Yahoo Weather server.

Yahoo services use a custom language named “YQL" to perform a query. Carefully
crafting the query allows to retrieve only the information we need, and therefore reduces
the work of the microcontroller.

Chapter 3 Deserialize with ArduinoJson

In our case the query is:

P

select item.forecast.date,
item.forecast. text,
item.forecast.low,
item.forecast.high
from weather.forecast(3)
where woeid=2459115

This query asks for the weather forecast of the city of New York (woeid=2459115) and
limits the results to three days (weather.forecast(3)). As we don't need all forecast
data, we only select relevant columns: date, text, low and high.

The YQL query is passed as an HTTP query parameters, here is the (shortened) URL
we need to fetch:

s ~

http://query.yahooapis.com/v1/public/yql?qg=select%20item.forecast.date...

The HTTP request we need to send is:

GET http://query.yahooapis.com/v1/public/yql...&format=json HTTP/1.0
Host: query.yahooapis.com
Connection: close

. J

The HTTP response we receive looks like:

s ~

HTTP/1.0 200 OK
Content-Type: application/json;charset=utf-8
Date: Tue, 14 Nov 2017 ©9:57:39 GMT

{"query”:{"count":3,"created"”:"2017-11-14T09:57:3972","lang": "en-US". ..

The JSON document in the body looks like that:

-

"queryll: {
"count"”: 3,
"created”: "2017-11-14T09:57:392",

Chapter 3 Deserialize with ArduinoJson

"1ang"Z "en-US" ,
"results”: {
"channel”: [

{
"item": {
"forecast”: {
"date”: "14 Nov
"high": "46",
"low": "36",
"text": "Partly
3
}
o
{
"item": {
"forecast"”: {
"date": "15 Nov
"high": "47",
"low": "38",
"text”: "Mostly
}
3
Lo
{
"item": {
"forecast”: {
"date”: "16 Nov
"high": "52",
"low": "43",
"text"”: "Partly
3
}
3
]
3
3
3

2017",

Cloudy"”

2017",

Cloudy”

2017",

Cloudy”

As the class EthernetClient also derives from Stream, we can

pass it

directly to

Chapter 3 Deserialize with ArduinoJson

parseObject(), just like we did with File.

The following program performs the HTTP request and displays the result in the con-
sole:

// Connect to HTTP server

EthernetClient client;

client.setTimeout (10000);
client.connect("query.yahooapis.com”, 80);

// Send HTTP request (shortened)

client.println("GET /v1/public/yql?qg=select%20item.forecast.date...");
client.println("Host: query.yahooapis.com");
client.println(”"Connection: close”);

client.println();

// Skip response headers
char endOfHeaders[] = "\r\n\r\n";
client.find(endOfHeaders);

// Allocate JsonBuffer
const size_t capacity

JSON_ARRAY_SIZE(3)

8+JSON_OBJECT_SIZE(1)
+ 4%JSON_OBJECT_SIZE(4)
+ 300;

StaticJsonBuffer<capacity> jsonBuffer;

4

// Parse response
JsonObject& root = jsonBuffer.parseObject(client);

// Extract the array "query.results.channel”
JsonArray& results = root["query”]["results”]J["channel”];

// Loop through the element of the array
for (JsonObject& result : results) {
// Extract the object "item.forecast”
JsonObject& forecast = result["item"]["forecast”];

// Print the values to the Serial
Serial.println(forecast["date”].as<char*>());

Chapter 3 Deserialize with ArduinoJson

Serial.println(forecast["text"”].as<char*>());
Serial.println(forecast["high”].as<int>());
Serial.println(forecast["low"].as<int>());

A few remarks:

1. [used HTTP 1.0 instead of 1.1 to avoid Chunked transfer encoding.

2. We're not interested in the response's headers, so we skip them

using

Stream::find(), placing the reading cursor right at the beginning of the JSON

document.

3. Stream::find() takes a charx* instead of a const charx, that's why we need to

declare endOfHeaders.

4. As usual, | used the ArduinoJson Assistant to compute the capacity of the

JsonBuffer.

You can find the complete source code of this example in the folder YahooWeather in the

zip file. We will see two other weather services in the case studies.

https://en.wikipedia.org/wiki/Chunked_transfer_encoding

Continue reading...

That was a free chapter from “Mastering ArduinoJson”; the book contains seven chap-
ters like this one. Here is what readers say:

This book is 100% worth it. Between solving my immediate problem in
minutes, Chapter 2, and the various other issues this book made solving
easy, it is totally worth it. | build software but | work in managed languages
and for someone just getting started in C++and embedded programming this
book has been indispensable. — Nathan Burnett

| think the missing C++course and the troubleshooting chapter are worth
the money by itself. Very useful for C programming dinosaurs like myself.
— Doug Petican

The short C++section was a great refresher. The practical use of Arduino-
Json in small embedded processors was just what | needed for my home
automation work. Certainly worth having! Thank you for both the book
and the library. — Douglas S. Basberg

For a really reasonable price, not only you'll learn new skills, but you'll also be one of
the few people that contribute to sustainable open-source software. Yes, giving
money for free software is a political act!

The e-book comes in three formats: PDF, epub and mobi. If you purchase the e-book,
you get access to newer versions for free. A carefully edited paperback edition is
also available.

Ready to jump in?
Go to arduinojson.org/book and use the coupon code THIRTY to get a 30% discount.

Tk g fo g iyt
{Soud

https://arduinojson.org/book/

	Cover
	Contents
	Deserialize with ArduinoJson
	The example of this chapter
	Parse a JSON object
	The JSON document
	Place the JSON document in memory
	Introducing JsonBuffer
	How to specify the capacity of the buffer?
	How to determine the capacity of the buffer?
	StaticJsonBuffer or DynamicJsonBuffer?
	Parse the object
	Verify that parsing succeeds

	Extract values from an object
	Extract values
	Explicit casts
	Using get<T>()
	When values are missing
	Change the default value

	Inspect an unknown object
	Enumerate the keys
	Detect the type of a value
	Variant types and C++ types
	Test if a key exists in an object

	Parse a JSON array
	The JSON document
	Parse the array
	The ArduinoJson Assistant

	Extract values from an array
	Unrolling the array
	Alternative syntaxes
	When complex values are missing

	Inspect an unknown array
	Capacity of JsonBuffer for an unknown input
	Number of elements in an array
	Iteration
	Detect the type of the elements

	The zero-copy mode
	Definition
	An example
	Input buffer must stay in memory

	Parse from read-only memory
	The example
	Duplication is required
	Practice
	Other types of read-only input

	Parse from stream
	Parse from a file
	Parse from an HTTP response

	Continue reading...

