
Thoughts on the Evolution Towards Model-Integrating Software

Mahdi Derakhshanmanesh1, Marvin Grieger2, Jürgen Ebert1, Gregor Engels2

1University of Koblenz-Landau, Germany, Institute for Software Technology
2s-lab – Software Quality Lab, Germany, Paderborn University

Email: {manesh|ebert}@uni-koblenz.de, {mgrieger|engels}s-lab.uni-paderborn.de

1 Background and Motivation
Developing software that can be modified and

evolved easily is a challenging task. Yet, the fast-
paced market requires quick adaptation of products
in reaction to emerging requirements.

As a basis for flexible software, we proposed to
develop software based on Model-Integrating Compo-
nents (MoCos) in previous work [1]. A MoCo is
a non-redundant, reusable and executable combina-
tion of logically related models and code in an in-
tegrated form where both parts are stored together
in one component. The outcome of two comprehen-
sive feasibility studies on building software with Mo-
Cos let us conclude that combining the strengths of
modeling languages (e.g., abstraction, separation of
concerns) and programming languages (e.g., perfor-
mance) within components yields flexible and well-
performing software, indeed.

Even though we provided the MoCo concept as a
basis for designing a flexible target architecture, we
neglected to introduce process descriptions for engi-
neering Model-Integrating Software (MIS), so far.

As a first step towards closing this gap, we intro-
duce the current state of an engineering process for
the development of MIS. In addition, we describe a
set of evolution scenarios to evolve existing software
towards MIS and discuss related evolution processes.

2 Model-Integrating Development
The central phases of Model-Integrating Develop-

ment (MID) are aligned with the Model-Driven Ar-
chitecture (MDA), a well-accepted development style
for complex software. The core activities and artifacts
of MID are shown in Figure 1.

The main phases of MID are: (i) Platform-
Independent Design where Platform-Independent
Models (PIMs) express the central software parts
without relations to a concrete target platform,
(ii) Platform-Specific Design where Platform-Specific
Models (PSMs) express the mapping to a platform-

Platform-Independent
Design

Activity

Platform-Specific
Design

Implementation
Model

Comprehensive
Language Model

(CLMpim)

MoCo
Architecture

Model (MAMpim)

Application
Logic Model

(ALMpim)

Control
Flow

Data
Flow

Comprehensive
Language Model

(CLMpsm)

MoCo
Architecture

Model (MAMpsm)

Application
Logic Model

(ALMpsm)

Requirements
Specification

Figure 1: Core Activities and Artifacts of the Model-
Integrating Development Process

specific solution and (iii) Implementation where the
final software is derived in its deployable form.

Platform-Independent Design Phase. First, us-
ing the MoCo Template [1], the MoCo Architecture
Model (MAMpim) is specified in terms of components
and connectors. Second, the same model is used to
specify the parts of each MoCo to be represented by
models and by code. The Application Logic Model
(ALMpim) describes the domain-specific data and be-
havior encapsulated by a MoCo including the internal
interfaces between models and code. Third, based on
the desired language capabilities for the ALMpim, dif-
ferent modeling language are specified with a Compre-
hensive Language Model (CLMpim) that conforms to
the CLM Template (specification of syntax, semantics
and pragmatics).

Platform-Specific Design Phase. First, a com-
ponent technology such as OSGi is chosen and the
MAMpim is transformed accordingly. This step yields
the MoCo Architecture Model (MAMpsm). Second,
the ALMpim is refined to match a concrete program-
ming language, its suitable execution environment
as well as a concrete technological space for model-

1

MoCoMoCo

Runtime Environment

Modeling Infrastructure Component
Infrastructure

Language
Infrastructure MoCo Core

Sy
st

em
In

fra
st

ru
ct

ur
e

ComponentMoCo

Runtime Environment

Modeling Infrastructure Component
Infrastructure

Language
Infrastructure MoCo Core

Sy
st

em
In

fra
st

ru
ct

ur
e

ComponentComponent

Runtime Environment

Component
Infrastructure

Sy
st

em
In

fra
st

ru
ct

ur
e

Migration Scenario (II)

Greenfield Development Scenario (I)

Incremental Transition Scenario (III)

Component-Based
Software System

Model-Integrating
Software System

Mixed
Software System

Model-Integrating
Development

System
Transformation

Component
Transformation

Component
Transformation

or Addition

Model-Driven
Architecture

Component
Transformation

or Addition

Initial State

Process

MoCoMoCo

Runtime Environment

Modeling Infrastructure Component
Infrastructure

Language
Infrastructure MoCo Core

Sy
st

em
In

fra
st

ru
ct

ur
e

Model-Integrating
Development

Greenfield Development Scenario (I)

Scenario

State

Figure 2: Evolution Scenarios Towards Model-
Integrating Software

ing. This step yields the Application Logic Model
(ALMpsm). Third, the specified modeling languages
are mapped and optimized for the chosen target plat-
form, which yields a specific Comprehensive Language
Model (CLMpsm) for each modeling language.

Implementation Phase. First, all technical de-
pendencies are derived from the PSMs and the target
environment is set up. Second, the MAMpsm is used
to generate a project structure that reflects the soft-
ware architecture. Third, the application logic code
part of each MoCo is generated using the ALMpsm
and integrated with the remaining Application Logic
Model (ALMrt) to be used at runtime.

3 Evolution Towards MIS
To describe Model-Integrating Evolution (MIE)

processes, i.e., processes to evolve existing systems
towards model-integrating systems, we introduce the
envisioned evolution scenarios. These scenarios can
be seen in Figure 2.

For the sake of completeness, we include the Green-
field Development Scenario (I). Thereby, an MIS is de-
veloped from scratch. In this scenario, the MID pro-
cess that we introduced in the previous section can be
applied to guide the endeavor.

The Migration Scenario (II) describes the situation
that an existing component-based system is turned
into an MIS. Thereby, all components are migrated to
MoCos at once. In this scenario, we envision to ap-
ply a model-driven transformation process [2] to guide

the System Transformation. This process is aligned
with the Architecture-Driven Modernization (ADM)
and uses the same abstraction levels as the MDA. We
assume that the use of this specific process is benefi-
cial for two reasons. On the one hand, the overall pro-
cess is model-driven, i.e., models are central artifacts
to realize automatic transformations. Some of these
models can be directly used within the resulting Mo-
Cos. On the other hand, tools like metamodels that
are required to automatically transform the system
can later on be reused in the MoCo Infrastructure.

The first two scenarios represent situations in which
the MIS is created at once. In contrast, the Incremen-
tal Transition Scenario (III) describes the situation
that an existing component-based system is incremen-
tally turned into an MIS. In this scenario, new compo-
nents that are added to the system are MoCos (Com-
ponent Addition). In addition, existing components
are transformed to MoCos over time, i.e., they are re-
placed or migrated (Component Transformation). We
envision to guide the replacement as well as the addi-
tion by a variant of the MID process, while the model-
driven transformation process guides the migration of
single components. In this scenario, a specific chal-
lenge is to incrementally evolve the already existing
infrastructure to a complete MoCo Infrastructure.

4 Concluding Remarks
MoCos support the development of flexible soft-

ware that can adapt itself at runtime and can also be
evolved easily. In this short paper, we presented an
overview of the MID process as a systematic way of
engineering MoCo-based software. We also sketched
the opportunities of evolving existing systems towards
model-integrating systems. This research direction
will be deepened in future work.

Acknowledgements. This work is supported by
the Deutsche Forschungsgemeinschaft (DFG) under
grants EB 119/11-1 and EN 184/6-1.

References
[1] M. Derakhshanmanesh, J. Ebert, T. Iguchi, and

G. Engels. Model-Integrating Software Compo-
nents. In J. Dingel and W. Schulte, editors, Model
Driven Engineering Languages and Systems, 17th
International Conference, MODELS 2014, Valen-
cia, Spain, September 28 - October 3, 2014, Va-
lencia, Spain, 2014. Springer.

[2] M. Grieger and M. Fazal-Baqaie. Towards
a Framework for the Modular Construction of
Situation-Specific Software Transformation Meth-
ods. Softwaretechnik-Trends, 35(2):41–42, 2015.

	Background and Motivation
	Model-Integrating Development
	Evolution Towards MIS
	Concluding Remarks

