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Record yields, average yields, and yield losses due to diseases, insects,

and unfavorable physicochemical environments for major U.S. crops.
(Values in kg per ha)

Crop Record | Average Average losses
yield yield
Diseases Insects Unfavorable
environment*
Weeds Other
Corn 19,300 4,600 750 691 511 12,700
Wheat 14,500 1,880 336 134 256 11,900
Soybeans 7,390 1,610 269 67 330 5,120
Sorghum 20,100 2,830 314 314 423 16,200
Oats 10,600 1,720 465 107 352 7,960
Barley 11,400 2,050 377 108 280 8,590
Potatoes 94,100 28,300 8,000 5,900 875 50,900
Sugar beets | 121,000 | 42,600 6,700 6,700 3,700 61,300
Mean % of record 21.6 4.1 2.6 2.6 69.1

* Calculated as: Record yield — (average yield + disease loss + insect loss)
Boyer, J.S. Science 218:443-448. 1982
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Average and maximum sugarcane yields
and the equivalent total dry matter production

Type (Australia, | Cane yield Biomass*
Col_ombla, South | (t halyr?) (t hal yr) (g m2 d)
Africa)

Average 84 39 10.7
Commercial 148 69 18.8
maximum

Experimental 212 98 27.0
maximum

* Cane yield was converted to biomass dry matter by first calculating stalk dry wt
(t cane hal yr! x 0.30) then add the proportion of trash dry wt [0.65 (stalk dry wt)]
as calculated from Thompson 1978 modified from Irvine 1983
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YIELD POTENTIAL (Yp)

“the yield of a cultivar when grown in
environments to which it is adapted, with
nutrients and water non-limiting, and with pests,
diseases, weeds, lodging and other stresses
effectively controlled” (Evans and Fisher 1999)

* Yp =n-Pn

Pn = the primary production (i.e. the total plant
biomass produced over the growing season)

n = the harvest index or efficiency with which
biomass Is partitioned into the harvested product



Primary production (Pn)

e Pn = St-¢i-ec/k
Where:

St-= annual integral of incident solar
radiation (MJ m-2)

¢l = efficiency of light capture

ec = efficiency of conversion of captured light

k = energy content of the plant mass (~17.5
MJ kg-1)

Theoretical yield calculations (Monteith 1977)



Averaged Solar Radiation 1990-2004
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Minimum energy losses in the plant photosynthetic process from light interception

to formation of chemical energy stored in the biomass
Zhu et al. Curr Opin Biotech 19:153-159. 2008

Sun Energy loss
1000 kJ
487 513 Ou?sude photosynthetically
active spectrum
438 49 Reflected and transmitted
372 66 Photochemical inefficiency
C3 C4

126 246 85 287 Carbohydrate synthesis

65 61 85 O Photorespiration
46 19 6 25 Respiration
r
N/
Biomass 46 kJ Biomass 60 kJ

Current Opinion in Biotechnology




Theoretical Maximum Yield

* Annual Mean Dally Irradiance in Sugarcane
Production Areas

230 W m==19.872 MJ m2 = 198,720 MJ ha* d*

* Theoretical daily energy stored in biomass of C4
plants (.06)

198,720 MJ hat (.06) = 11,923 MJ hat d*
« Energy content of plant mass (~17.5 MJ kg?)
carbohydrate biomass (~15.9 MJ kg)



Theoretical Maximum Yield

* Theoretical biomass produced

11,923 MJ ha! (15.9 MJ kg1) = 749.87kg
haldl

=0.750thaldt=273.70t ha?lyrt
Yp =n-Pn

n = the harvest index = 0.8
0.8 (273.70)=218.9t hat yrt



Average, maximum and theoretical
sugarcane yields and total dry matter
production

Type Cane yield Biomass*
(Australia, (t halyr?) (t ha'tyr) (g m2 d-?)
Colombia,

South Africa)

Average 84 39 10.7
Commercial 148 69 18.8
maximum
Experimental 212 98 27.0
maximum
Theoretical 472 219 72.4

maximum
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Conceptual crop physiology model with
environmental inputs and state and rate variables
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Systems Biology

Defined as the study of the interactions of
Key elements such as DNA, RNA,
oroteins, and cells with respect to one
another and the integration of information
through modeling of extensive data sets
that are scale free







Biology in the ERA of

4 Genomics (DNA)

4 Post genomics

transcriptomics = gene
expression analyses
(RNA)

proteomics = protein
analyses (protein)
metabolomics =
(metabolites)
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Functional grouping and ranking (by abundance in the collections) of

maturing cane stem (MCS) and young cane stem (YCS) ESTs

Casu et al. Plant Mol Biol 54:503-517 (2004)

Functional grouping Number % in Rank Number in % in YC Rank for
in MCS MC for MC YCS YCS
Protein synthesis and processing 836 22.0 1 175 26.2 1
Primary metabolism 753 19.8 109 16.3 2
Gene expression and RNA metabolism 369 9.7 3 54 8.1 4
Signal transduction 336 8.8 4 43 6.4 6
Membrane transport 290 7.6 5 49 7.3
Defence/stress-related proteins 238 6.3 6 38 4.6
Carbohydrate metabolism 180 4.7 7 27 4.0 9
Fibre biosynthesis and degradation 167 4.4 9 1 0.1 16
Chromatin and DNA metabolism 163 4.3 10 62 9.3 3
Cytoskeleton 95 2.5 11 23 3.4 10
Vesicu_lar trafficking, protein sorting and 91 2.4 12 13 1.9 13
secretion
ATP synthesis/electron transport 37 1.0 13 14 2.1 12
Cell wall structure or metabolism 34 0.9 14 15 2.2 11
Cell division cycle 25 0.7 15 0.4 15
Secondary and hormone metabolism 17 0.4 16 1.2 14
Miscellaneous 174 4.5 8 41 6.1 7
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Model based approach for
predicting crop performance

Create a crop model that predicts complex traits based
on relations between elementary processes and
environmental variables

Evaluate capability of model to predict the complex trait
across a wide range of GXE combinations

ldentify QTL for model-input traits using a genetic QTL
approach

Develop a QTL-based model by replacing original model
Input traits with QTL-based inputs

Validate the QTL-based model across environments



Integration of genomics into crop physiology for
crop Improvement
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Modeling transition to flowering in
Arabidopsis

 (a) genetic network control

(b) gene network with environmental drivers
(c) empirical photothermal model for prediction
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Multi-trait gene-to-phenotype modeling
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« (a) map of QTLs regulating adaptive traits
(b) crop process model
(c) contrasting phenotypes

Hammer et al. 2006



Flowering, Cane and Sugar Yields in Response
to 30 2-hr Light Breaks During Autumn Induction
of Flowering

Treatment Flowering % Yield
IstYear | 2"dYear | 1%tYear | 2"dYear | Cane (tha?) | Sugar (t ha?)
0 0 36.2 16.7 304 34.3
0 + 26.0 0.8 343 36.8
+ 0 0.0 10.3 365 41.8
+ + 0.3 0.8 349 40.0
L.S.D. 25.7 3.46

Ewa test 1951, cv. H37-1933
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Fig. 3. Relationship between total plant biomass (gDW) and internal
nitrogen use efficiency (iNUE, g DW g~! N) for 61 genotypes of sugarcane
at low (circles) and high (triangles) N supply. Regression equations for
relationship between biomass and INUE are y=0.47x+4 14.26 (high N
supply) and y=0.05x4 6.72 (low N supply).
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Major transcriptional regulatory networks of cis-acting elements and TFs involved in abiotic stress-

responsive gene expression in Arabidopsis and grasses such as rice

Arabidopsis
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Conclusions

Sugarcane yields may be increased locally through increasing
management inputs and using traditional genetic approaches.

The sugarcane yield ceiling will not likely be broken by:

/

* Iincreasing management inputs (fertilizer, water, pesticides, growth
regulators)

+» traditional genetic approaches to optimize resistance to pests &
diseases, improve sucrose storage, optimize development, etc.



Anticipated impact of improvements in agronomics, breeding, and biotechnology on average corn yields in
the United States
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Conclusions

(continued)

The sugarcane yield ceiling will likely be broken by using high-

L)

L)

L)

L)

throughput genomic approaches to produce large data sets that can
be analyzed with appropriate models in a Systems Approach for
producing knowledge to:

produce varieties with improved physiological attributes (e.g.
photosynthetic efficiency, carbon partitioning between sucrose and
fiber, water use efficiency, N use efficiency, multi-gene pest and
pathogen resistance). Improvements that could not be made
previously because of the biological system complexity

provide technologies to growers for optimum management of multi-
gene developmental pathways, e.g. germination, tillering, lodging,
flowering, ripening, lodging

THE FUTURE LOOKS EXCITING AND THE OUTLOOK BRIGHT



